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Abstract. The goal of the paper is to study the angle between two curves in the framework

of metric (and metric measure) spaces. More precisely, we give a new notion of angle between
two curves in a metric space. Such a notion has a natural interplay with optimal transportation

and is particularly well suited for metric measure spaces satisfying the curvature-dimension

condition. Indeed one of the main results is the validity of the cosine formula on RCD∗(K,N)
metric measure spaces. As a consequence, the new introduced notions are compatible with the

corresponding classical ones for Riemannian manifolds, Ricci limit spaces and Alexandrov spaces.
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1. Introduction

The ‘angle’ between two curves is a fundamental concept of mathematics, which aims to quan-
tify the infinitesimal distance between two crossing curves at a crossing point. Such a notion is
classical in Euclidean and in Riemannian geometries where a global (respectively infinitesimal)
scalar product is given: the cosine of the angle between two crossing curves is by definition the
scalar product of the velocity vectors. If the space is not given an infinitesimal scalar product, it is
a challenging problem to define angles in a sensible way. In this paper, we will study this problem
in a metric (measure) sense. More precisely, consider a metric space (X,d), a point p ∈ X, and
two geodesics γ, η such that γ0 = η0 = p. Our task is to propose a meaningful definition of the
angle between the curves γ, η at the point p, denoted by ∠γpη, and to establish some interesting
properties.

We recall some examples first. Assume that γ and η are geodesics, and the space (X,d) is an
Alexandrov space, with upper or lower curvature bounds. From the monotonicity implied by the
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Alexandrov condition, it is known (see for instance [7]) that the angle ∠γpη is well defined by the
cosine formula:

∠γpη = lim
s,t→0

arccos
s2 + t2 − d2(γs, ηt)

2st
= lim
t→0

arccos
2t2 − d2(γt, ηt)

2t2
.

In order to define the angle for geodesics in a more general framework, a crucial observation is
that a geodesic can be seen as gradient flow of the distance function, i.e. a geodesic γ ‘represents’
the gradient of −d(γ0, γ1) d(γ1, ·) on each point γt. Inspired by the seminal work of De Giorgi on
gradient flows [15], given an arbitrary metric space (X,d) with a geodesic γ : [0, 1] → X and a
Lipschitz function f : X → R, we say that γ represents ∇f at time 0, or γ represents the gradient
of the function f at the point p = γ(0) if the following inequality holds

lim
t→0

f(γt)− f(γ0)

t
≥ 1

2
|lip(f)|2 +

1

2
|γ̇|2,

where |γ̇| = d(γ0, γ1) is the (constant, metric) speed of the geodesic γ. Notice that the opposite
inequality

lim
t→0

f(γt)− f(γ0)

t
≤ 1

2
|lip(f)|2 +

1

2
|γ̇|2

is always true by Leibniz rule and Cauchy-Schwartz inequality. Hence γ represents ∇f at time 0 if
and only if the equality holds. It is easily seen that the geodesic γ always represents the gradient
of fγ(·) := −d(γ0, γ1) d(γ1, ·) at the point γ0 (see for instance Lemma 3.5). We then say that the

angle ∠γpη between two geodesics γ, η with γ0 = η0 = p exists if the limit limt↓0
fγ(ηt)−fγ(η0)

t
exists. In this case we set

(1.1) ∠γpη := arccos

(
1

|γ̇||η̇|
lim
t↓0

fγ(ηt)− fγ(η0)

t

)
.

Notice that in case (X,d) is the metric space associated to a smooth Riemannian manifold (M, g),
the definition (1.1) reduces to the familiar notion of angle

∠γpη = arccos gp

(
∇fγ(p)

|γ̇0|
,
η̇0

|η̇0|

)
= arccos gp

(
γ̇0

|γ̇0|
,
η̇0

|η̇0|

)
.

Besides the case of Alexandrov spaces, a class of spaces where the angle is particularly well
behaved is the one of Lipschitz-infinitesimally Hillbertian spaces. By definition, a metric measure
space (X,d,m) is Lipschitz-infinitesimally Hillbertian if for any pair of Lipschitz functions f, g :

X → R both the limits for ε→ 0 of |lip(f+εg)|2(x)−|lip(f)|2(x)
2ε and |lip(g+εf)|2(x)−|lip(g)|2(x)

2ε exist and
are equal for m-a.e. x ∈ X, where lip(f) is the local Lipschitz constant of f (for the standard
definition see (2.1)). A remarkable example of Lipschitz-infinitesimally Hillbertian spaces is given
by the RCD∗(K,N)-spaces, a class of metric measure spaces satisfying Ricci curvature lower bound
by K ∈ R and dimension upper bound by N ∈ (1,∞) in a synthetic sense such that the Laplacian
is linear, and which include as notable subclasses the Alexandrov spaces with curvature bounded
below and the Ricci limit spaces (i.e. pointed measured Gromov-Hausdorff limits of sequences of
Riemannian manifolds with uniform lower Ricci curvature bounds).
In the class of Lipschitz-infinitesimally Hillbertian spaces, the second author [26] introduced a
notion of ‘angle between three points’; more precisely for every fixed pair of points p, q ∈ X, for
m-a.e. x ∈ X the angle ∠pxq given by the formula

(1.2) [0, π] 3 ∠pxq := arccos

(
lim
ε→0

|lip(rp + εrq)|2(x)− |lip(rp)|2(x)

2ε

)
,

is well defined, unique, and symmetric in p and q. Here rp(·) := d(p, ·) is the distance function
from p. A first result of the present paper is to relate the angle between three points with the angle
between two geodesics: in Theorem 3.9 we prove that if the angle ∠pxq exists in the sense of [26]
then also the angle between the geodesics γxp, γxq joining x to p and x to q exists and coincides
with the angle between the three points, i.e. ∠γxpxγxq = ∠pxq. In particular it follows that in a
Lipschitz-infinitesimally Hilbertian geodesic space the angle between two geodesics in well defined
in an a.e. sense.

An important class of metric spaces are the spaces of probability measures over metric spaces
endowed with the quadratic transportation distance: given a metric space (X,d) denote by W2 :=
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(P2(X),W2) the corresponding Wasserstein space. By using ideas similar to the ones above, to-
gether with Otto Calculus (see [28]) and the calculus tools developed by Ambrosio-Gigli-Savaré [2]
and Gigli [17], in Subsection 3.3 we study in detail the angle between two geodesics in W2. In par-
ticular if the underlying space (X,d,m) is an RCD∗(K,N) space, we get the angle ∠pxq between
three points as the limit of the angle between the geodesics in W2 obtained by joining geodesically
diffused approximations of Dirac masses centered at p, x and q (see Proposition 3.15 for the precise
statement; see also Proposition 3.17 for a more detailed link with the optimal transport picture).

Besides the case of Alexandrov spaces, another class of spaces where the notion of angle is quite
well understood is given by Ricci limit spaces. Indeed it was proved by Honda [23] that if (X,d,m)
is a Ricci-limit space, then for m-a.e. p ∈ X the angle between two geodesics is well defined and it
satisfies the following single-variable cosine formula:

(1.3) cos∠γpη = lim
t→0

2t2 − d2(γt, ηt)

2t2
.

One of the main goals of the present paper is to extend the validity of the formula (1.3) to
metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense, the so-called
RCD∗(K,N)-spaces (for the definition and basic properties of such spaces see Section 2 and refer-
ences therein). This is the content of the next theorem (corresponding to Theorem 4.4 in the body
of the manuscript), which is one of the main results of the paper.

Theorem 1.1 (Cosine formula for angles in RCD∗(K,N) spaces). Let (X,d,m) be an RCD∗(K,N)
space and fix p, q ∈ X. Then for m-a.e. x ∈ X there exist unique geodesics from x to p and from
x to q denoted by γxp, γxq ∈ Geo(X) and

(1.4) ∠γxpxγxq = ∠pxq = lim
t→0

arccos
2t2 − d2(γxpt , γxqt )

2t2
, for m-a.e. x.

The proof of Theorem 1.1 is independent and different from the one given by Honda [23] for Ricci
limit spaces: indeed Honda argues by getting estimates on the smooth approximating manifolds and
then passes to the limit, while our proof for RCD∗(K,N) spaces goes by arguing directly on the non
smooth space (X,d,m). More precisely, we perform a blow up argument centered at x and use that
for m-a.e. x the tangent cone is unique and euclidean [21,27]. From the technical point of view we
also make use of the fine convergence results for Sobolev functions proved in [4, 20], and we prove
estimates on harmonic approximations of distance functions (see in particular Proposition 4.3).
Harmonic approximations of distance functions are well known for smooth Riemannian manifolds
with lower Ricci curvature bounds, and are indeed one of the key technical tools in the Cheeger-
Colding theory of Ricci limit spaces [12–14]; on the other hand for non-smooth RCD∗(K,N)-spaces
it seems they have not yet appeared in the literature, and we expect them to be a useful technical
tool in the future development of the field.
As a consequence of Theorem 1.1, we get that our definition of angle between two geodesics agrees
(at least in a.e. sense) with the Alexandrov’s definition in case (X,d) is an Alexandrov space, and
with the Honda’s definition [23] in case (X,d,m) is a Ricci limit space.

Acknowledgement: The first author would like to thank Nicola Gigli, Shouhei Honda and Karl
Theodor Sturm for discussions on the topic.

2. Preliminaries

2.1. Metric measure spaces. Let (X,d) be a complete metric space. A continuous map γ :
[0, 1] 7→ X will be called curve. The space of curves defined on [0, 1] with values in X is denoted
by C([0, 1], X). The space C([0, 1], X) equipped with the uniform distance is a complete metric
space.

We define the length of γ by

l[γ] := sup
τ

n∑
i=1

d(γti−1
, γti)
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where τ := {0 = t0, t1, ..., tn = 1} is a partition of [0, 1], and the sup is taken over all finite
partitions. The space (X,d) is said to be a length space if for any x, y ∈ X we have

d(x, y) = inf
γ
l[γ],

where the infimum is taken over all γ ∈ C([0, 1], X) connecting x and y. A geodesic from x to y is
a curve γ such that:

d(γs, γt) = |s− t|d(γ0, γ1), ∀t, s ∈ [0, 1], γ0 = x, γ1 = y.

The space of all geodesics on X will be denoted by Geo(X). It is a closed subset of C([0, 1], X).

Given p ∈ [1,+∞] and a curve γ, we say that γ belongs to ACp([0, 1], X) if

d(γs, γt) ≤
∫ t

s

G(r) dr, ∀t, s ∈ [0, 1], s < t ,

for some G ∈ Lp([0, 1]). In particular, the case p = 1 corresponds to absolutely continuous curves,
whose class is denoted by AC([0, 1], X). It is known that for γ ∈ AC([0, 1], X), there exists an a.e.
minimal function G satisfying this inequality, called metric derivative and denoted by |γ̇|. The
metric derivative of γ can be computed for a.e. t ∈ [0, 1] as

|γ̇t| := lim
h→0

d(γt+h, γt)

|h|
.

It is known that (see for example [7]) the length of a curve γ ∈ AC([0, 1], X) can be computed as

l[γ] :=

∫ 1

0

|γ̇t|dt.

In particular, on a length space X we have

d(x, y) = inf
γ

∫ 1

0

|γ̇t|dt

where the infimum is taken among all γ ∈ AC([0, 1], X) which connect x and y.

Given f : X 7→ R, the local Lipschitz constant lip(f) : X 7→ [0,∞] is defined as

(2.1) lip(f)(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

if x is not isolated, 0 otherwise, while the (global) Lipschitz constant is defined as

Lip(f) := sup
x6=y

|f(y)− f(x)|
d(x, y)

.

If (X,d) is a length space, we have Lip(f) = supx lip(f)(x).

We are not only interested in metric structures, but also in the interaction between metric and
measure. For the metric measure space (X,d,m), basic assumptions used in this paper are:

Assumption 2.1. The metric measure space (X,d,m) satisfies:

• (X,d) is a complete and separable length space,
• m is a non-negative Borel measure with respect to d and finite on bounded sets,
• suppm = X.

In this paper, we will often assume that the metric measure space (X,d,m) satisfies the RCD∗(K,N)
condition, for some K ∈ R and N ∈ [1,∞] (when N = ∞ it is denoted by RCD(K,∞) ). The
RCD(K,∞) and RCD∗(K,N) conditions are refinements of the curvature-dimensions proposed by
Lott-Sturm-Villani (see [25] and [30,31] for CD(K,∞)), and Bacher-Sturm (see [9] for CD∗(K,N))
in order to isolate the non-smooth ‘Riemannian’ structures from the ‘Finslerian’ ones. More pre-
cisely, the RCD conditions are obtained by reinforcing the corresponding CD conditions by adding
the requirement that the Sobolev space W 1,2(X,d,m) is a Hilbert space (see the next subsection
for more details). It is then clear that the following relations hold

RCD∗(K,N) ⊂ CD∗(K,N) and RCD(K,∞) ⊂ CD(K,∞);

moreover one has that

RCD∗(K,N) ⊂ RCD(K,∞) and CD∗(K,N) ⊂ CD(K,∞).
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It is known that, for finite N ∈ [1,∞), a CD∗(K,N) space (X,d,m) satisfies the following proper-
ties:

• (X,d,m) is locally doubling and therefore a locally compact space, [9];
• (X,d,m) supports a local Poincaré inequality, [29].

For more details about RCD(K,∞) and RCD∗(K,N) spaces, we refer to [1, 3, 5, 16].

2.2. Optimal transport and Sobolev functions. The set of Borel probability measures on
(X,d) will be denoted by P(X). We also use P2(X) ⊆ P(X) to denote the set of measures with
finite second moment, i.e. µ ∈ P2(X) if µ ∈ P(X) and

∫
d2(x, x0) dµ(x) < +∞ for some (and thus

every) x0 ∈ X. For t ∈ [0, 1], the evaluation map et : C([0, 1], X)→ X is given by

et(γ) := γt, ∀γ ∈ C([0, 1], X).

The space P2(X) is naturally endowed with the quadratic transportation distance W2 defined by:

(2.2) W 2
2 (µ, ν) := inf

π

∫
X×X

d2(x, y) dπ(x, y),

where the inf is taken among all couplings π ∈ P(X ×X) with marginals µ and ν, i.e. (P1)]π = µ
and (P2)]π = ν where Pi, i = 1, 2 are the projection maps onto the first and second coordinate
respectively. The metric space (P2(X),W2) will be denoted by W2. Let us recall that the infimum
in the Kantorovich problem (2.2) is always attained by an optimal coupling π. We denote the set
of optimal couplings between µ and ν by Opt(µ, ν). Below we recall some fundamental properties
of the metric space W2 we will use throughout the paper.

Proposition 2.2 (Geodesics in the Wasserstein space). Let (X,d) be a metric space and fix
µ0, µ1 ∈ P2(X). Then the curve (µt)t∈[0,1] ⊂ W2 is a constant speed geodesic connecting µ0 and
µ1, i.e. it satisfies

(2.3) W2(µs, µt) = |s− t|W2(µ0, µ1), ∀s, t ∈ [0, 1]

if and only if there exists Π ∈ P(Geo(X)) ⊆ P(C([0, 1],X)), called optimal dynamical plan (or
simply optimal plan), such that

µt = (et)]Π ∀t ∈ [0, 1] and (e0, e1)]Π ∈ Opt(µ0, µ1).

The set of optimal dynamical plans from µ0 to µ1 is denoted by OptGeo(µ0, µ1).
Moreover, if X is a geodesic space, then W2 is also geodesic.

Absolutely continuous curves in W2 are characterized by the following theorem:

Theorem 2.3 (Superposition principle, [24]). Let (X,d) be a complete and separable metric space
and let (µt) ∈ AC2([0, 1],P2(X)). Then there exists a measure Π ∈ P(C([0, 1], X)) concentrated
on AC2([0, 1], X) such that:

(et)]Π = µt, ∀t ∈ [0, 1]∫
|γ̇t|2 dΠ(γ) = |µ̇t|2, for a.e. t ∈ [0, 1].

Moreover, the infimum of the energy
∫ 1

0

∫
|γ̇t|2 dΠ′(γ) dt among all the Π′ ∈ P(C([0, 1], X))

satisfying (et)]Π
′ = µt for every t ∈ [0, 1] is attained by such Π.

Definition 2.4 (Test plan). Let (X,d,m) be a metric measure space and Π ∈ P(C([0, 1], X)). We
say that Π ∈ P(C([0, 1], X)) has bounded compression provided there exists C > 0 such that

(et)]Π ≤ Cm, ∀t ∈ [0, 1].

We say that Π is a test plan if it has bounded compression, is concentrated on AC2([0, 1], X) and∫ 1

0

∫
|γ̇t|2 dΠ(γ) dt < +∞.

The notion of Sobolev function is given in duality with that of test plan:
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Definition 2.5 (The Sobolev class S2(X)). Let (X,d,m) be a metric measure space. A Borel
function f : X → R belongs to the Sobolev class S2(X) (resp. S2

loc(X)) provided there exists a
non-negative function G ∈ L2(X,m) (resp. L2

loc(X,m)) such that∫
|f(γ1)− f(γ0)|dΠ(γ) ≤

∫ ∫ 1

0

G(γs)|γ̇s|dsdΠ(γ), ∀ test plan Π.

In this case, G is called a 2-weak upper gradient of f , or simply weak upper gradient.

It is known, see e.g. [2], that there exists a minimal function G in the m-a.e. sense among all the
weak upper gradients of f . We denote such minimal function by |Df | or |Df |X to emphasize which
space we are considering and call it minimal weak upper gradient. Notice that if f is Lipschitz,
then |Df | ≤ lip(f) m-a.e., because lip(f) is a weak upper gradient of f .

It is known that the locality holds for |Df |, i.e. |Df | = |Dg| m-a.e. on the set {f = g}, moreover
S2
loc(X,d,m) is a vector space and the inequality

(2.4) |D(αf + βg)| ≤ |α||Df |+ |β||Dg|, m-a.e.,

holds for every f, g ∈ S2
loc(X,d,m) and α, β ∈ R. Moreover, the space S2

loc ∩ L∞loc(X,d,m) is an
algebra, with the inequality

(2.5) |D(fg)| ≤ |f ||Dg|+ |g||Df |, m-a.e.,

being valid for any f, g ∈ S2
loc ∩ L∞loc(X,d,m).

The Sobolev space W 1,2(X,d,m), also denoted by W 1,2(X) for short, is defined as

W 1,2(X) := S2(X,d,m) ∩ L2(X,m)

and is endowed with the norm

‖f‖2W 1,2(X) := ‖f‖2L2(X,m) + ‖|Df |‖2L2(X,m).

W 1,2(X) is always a Banach space, but in general it is not a Hilbert space. (X,d,m) is said
infinitesimally Hilbertian if W 1,2(X) is a Hilbert space.

On an infinitesimally Hilbertian space, we have a natural pointwise inner product 〈∇·,∇ · 〉 :
[W 1,2(X)]2 7→ L1(X) defined by

〈∇f,∇g〉 :=
1

4

(
|D(f + g)|2 − |D(f − g)|2

)
.

In order to prove the cosine formula we will use properties of harmonic functions in open sets of a
m.m. space. Let us define the relevant quantities and recall the properties we will use; for simplicity,
as always we assume the space (X,d) to be proper, complete and separable, and the measure m to
be finite on bounded sets (this indeed is the geometric case correspoding to RCD∗(K,N) spaces,
for N <∞ we will be interested in). For the general case see for instance [6, 17,19].

Definition 2.6 (Sobolev classes in Ω ). Let (X,d,m) be a m.m. space and let Ω ⊂ X be an open
subset. The space S2(Ω) is the space of Borel functions f : Ω → R such that χf ∈ S2(X) for
any Lipschitz function χ : X → [0, 1] such that suppχ ⊂ Ω, where χf is taken 0 by definition
on X \ Ω. Let W 1,2(Ω) := L2(Ω) ∩ S2(Ω) be the corresponding Sobolev space endowed with the

natural norm, and denote by W 1,2
0 (Ω) ⊂ W 1,2(X) the closure of compactly supported Lipschitz

functions on Ω.

Definition 2.7 (Measure valued Laplacian). Let (X,d,m) be a m.m. space, Ω ⊂ X an open
subset and f : Ω→ R a Borel function. We say that f is in the domain of the Laplacian in Ω, and
write f ∈ D(∆,Ω) provided f ∈ S2(Ω) and there exists a locally finite Borel measure µ on Ω such
that for any ϕ ∈ LIP(X) with compact support contained in Ω it holds∫

X

ϕdµ = −
∫
X

〈∇ϕ,∇f〉dm.

In this case the measure µ is unique and we denote it by ∆fxΩ, or simply ∆f . If ∆fxΩ� m, we
denote its density with respect to m by ∆fxΩ or simply by ∆f .
A function f ∈ D(∆,Ω) is said to be harmonic in Ω, or simply harmonic, if ∆fxΩ = 0.
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For simplicity we state the next proposition for RCD∗(K,N) space, though it is valid more
generally for doubling spaces supporting a weak-local 1-2 Poincaré inequality (see [6] for details).

Proposition 2.8. Let (X,d,m) be a RCD∗(K,N) space, for some K ∈ R and N ∈ [1,∞), and
let Ω ⊂ X be a bounded open set. Then the following properties hold.

i) Regularity. Let f : Ω→ R be harmonic in Ω. Then f admits a continuous representative
(actually even locally Lipschitz).

ii) Comparison. If f, g ∈ D(∆,Ω) are such that f ∈ W 1,2
0 (Ω), |g| ≤ C m-a.e. on Ω for some

C ∈ R and ∆(f + g) ≥ 0 then f ≤ 2C m-a.e. on Ω.
ii) Existence and uniqueness of harmonic functions. Assume that m(X \ Ω) > 0 and let f ∈

W 1,2(X). Then there exists a unique harmonic function g on Ω such that f−g ∈W 1,2
0 (Ω).

iv) Strong maximum principle. Let f : Ω→ R be harmonic in Ω and assume that its continu-
ous representative has a maximum at a point x0 ∈ Ω. Then f is constant on the connected
component of Ω containing x0.

In order to state the Laplacian Comparison Theorem, let us introduce the coefficients σ̃K,N (·) :
[0,∞)→ R defined by

σ̃K,N (θ) :=


θ
√

K
N cotan

(
θ
√

K
N

)
, if K > 0,

1 if K = 0,

θ
√
−KN cotanh

(
θ
√
−KN

)
, if K < 0.

Theorem 2.9 (Laplacian comparison, [17]). Let (X,d,m) be an RCD∗(K,N) space for some
K ∈ R and N ∈ (1,∞). Then

d2(x0, ·)
2

∈ D(∆, X) with ∆
d2(x0, ·)

2
≤ N σ̃K,N (d(x0, ·))m ∀x0 ∈ X

and

d(x0, ·) ∈ D(∆, X \ {x0}) with ∆d(x0, ·)xX \ {x0} ≤
N σ̃K,N (d(x0, ·))− 1

d(x0, ·)
m ∀x0 ∈ X.

2.3. Pointed measured Gromov-Hausdorff convergence and convergence of functions.
In order to study the convergence of possibly non-compact metric measure spaces, it is useful to
fix reference points. We then say that (X,d,m, x̄) is a pointed metric measure space, p.m.m.s. for
short, if (X,d,m) is a m.m.s. as before and x̄ ∈ X plays the role of reference point. Recall that, for
simplicity, we always assume suppm = X. We will adopt the following definition of convergence
of p.m.m.s. (see [7], [20] and [32]):

Definition 2.10 (Pointed measured Gromov-Hausdorff convergence). A sequence (Xj ,dj ,mj , x̄j)
is said to converge in the pointed measured Gromov-Hausdorff topology (p-mGH for short) to
(X∞,d∞,m∞, x̄∞) if there exists a separable metric space (Z,dZ) and isometric embeddings {ιj :
(Xj ,dj) → (Z,dZ)}i∈N̄ such that for every ε > 0 and R > 0 there exists j0 such that for every
j > j0

ι∞(BX∞R (x̄∞)) ⊂ BZε [ιj(B
Xj
R+ε(x̄j))] and ιj(B

Xj
R (x̄j)) ⊂ BZε [ι∞(BX∞R+ε(x̄∞))],

where BZε [A] := {z ∈ Z : dZ(z,A) < ε} for every subset A ⊂ Z, and

lim
j→∞

∫
Z

ϕd((ιj)](mj)) =

∫
Z

ϕd((ι∞)](m∞)) ∀ϕ ∈ Cb(Z),

where Cb(Z) denotes the set of real valued bounded continuous functions with bounded support
in Z.

Sometimes in the following, for simplicity of notation, we will identify the spaces Xj with their
isomorphic copies ιj(Xj) ⊂ Z. It is obvious that this is in fact a notion of convergence for isomor-
phism classes of p.m.m.s., moreover it is induced by a metric (see e.g. [20] for details).
Next, following [20], we recall various notions of convergence of functions defined on p-mGH con-
verging spaces.
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Definition 2.11 (Pointwise convergence of scalar valued functions). Let (Xj ,dj ,mj , x̄j), j ∈
N ∪ {∞} be a p-mGH converging sequence of p.m.m.s. and let fj : Xj 7→ R, j ∈ N ∪ {∞} be a
sequence of functions. We say that fj converge pointwise to f∞ provided:

fj(xj)→ f∞(x∞) for every sequence of points xj ∈ Xj such that ιj(xj)→ ι∞(x∞) in (Z,dZ).

If for any ε > 0 there exists N ∈ N such that |fj(xj) − f∞(x∞)| ≤ ε for every j ≥ N and every
xj ∈ Xj , x∞ ∈ X∞ with dZ(ιj(xj), ι∞(x∞)) ≤ 1

N , we say that fj → f∞ uniformly.

Definition 2.12 (L2 weak and strong convergence). Let (Xj ,dj ,mj , x̄j), j ∈ N∪{∞} be a p-mGH
converging sequence of pointed metric measure spaces and let fj ∈ L2(Xj ,mj), j ∈ N ∪ {∞} be a
sequence of functions.

• We say that (fj) converges weakly in L2 to f∞ provided (ιj)](fj mj) ⇀ (ι∞)](f∞m) weakly
as Radon measures, i.e.∫

Xj

fj(x) ϕ(ιj(x)) dmj(x)→
∫
X∞

f∞(x) ϕ(ι∞(x)) dm∞(x), ∀ϕ ∈ Cb(Z),

and

sup
j∈N

∫
Xj

|fj |2 dmj <∞.

• We say that (fj) converges strongly in L2 to f∞ provided it converges weakly in L2 to f∞
and moreover

lim
j→∞

∫
Xj

|fj |2 dmj =

∫
X∞

|f∞|2 dm∞.

Definition 2.13 (W 1,2 weak and strong convergence). Let (Xj ,dj ,mj , x̄j), j ∈ N ∪ {∞} be a
p-mGH converging sequence of pointed metric measure spaces and let fj ∈ W 1,2(Xj ,dj ,mj), j ∈
N ∪ {∞} be a sequence of functions. We say that (fj) converges weakly in W 1,2 to f∞ if fj are
L2-weakly convergent to f and

sup
j∈N

∫
Xj

|Dfj |2 dmj <∞.

Strong convergence in W 1,2 is defined by requiring L2-strong convergence of the functions and that

lim
j→∞

∫
Xj

|Dfj |2 dmj =

∫
X∞

|Df∞|2 dm∞.

The next result proved in [4, Corollary 5.5] (see also [20, Corollary 6.10]) will be useful in the
sequel.

Proposition 2.14. Let (Xj ,dj ,mj , x̄j), j ∈ N ∪ {∞} be a p-mGH converging sequence of pointed
metric measure spaces. If for every j ∈ N one has fj ∈ W 1,2(Xi), fj ∈ D(∆j , Xj) with ∆jfj
uniformly bounded in L2, and (fj) converges strongly in L2 to f∞, then f∞ ∈ D(∆∞, X∞) and
(fj) converges to f∞ strongly in W 1,2.

2.4. Euclidean tangent cones to RCD∗(K,N) spaces. Let us first recall the notion of measured
tangents. Let (X,d,m) be a m.m.s., x̄ ∈ X and r ∈ (0, 1); we consider the rescaled and normalized
p.m.m.s. (X, r−1d,mx̄r , x̄) where the measure mx̄r is given by

(2.6) mx̄r :=

(∫
Br(x̄)

1− 1

r
d(·, x̄) dm

)−1

m.

Then we define:

Definition 2.15 (Tangent cone and regularity). Let (X,d,m) be a m.m.s. and x̄ ∈ X. A p.m.m.s.
(Y,dY , n, y) is called a tangent to (X,d,m) at x̄ ∈ X if there exists a sequence of rescalings rj ↓ 0

so that (X, r−1
j d,mx̄rj , x̄) → (Y,dY , n, y) as j → ∞ in the p-mGH sense. We denote the collection

of all the tangents of (X,d,m) at x̄ ∈ X by Tan(X,d,m, x̄). A point x̄ ∈ X is called regular if
the tangent is unique and euclidean, i.e. if Tan(X,d,m, x̄) = {(Rn,dE ,Ln, 0n)}, where dE is the
Euclidean distance and Ln is the properly rescaled Lebesgue measure of Rn.
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The a.e. regularity was settled for Ricci-limit spaces by Cheeger-Colding [12–14]; for an RCD∗(K,N)-
space (X,d,m), it was proved in [21] that for m-a.e. x ∈ X there exists a blow-up sequence
converging to a Euclidean space. The m-a.e. uniqueness of the blow-up limit, together with the
rectifiability of an RCD∗(K,N)-space, was then established in [27]. More precisely the following
holds:

Theorem 2.16 (m-a.e. infinitesimal regularity of RCD∗(K,N)-spaces). Let (X,d,m) be an
RCD∗(K,N)-space for some K ∈ R, N ∈ (1,∞). Then m-a.e. x ∈ X is a regular point, i.e.
for m-a.e. x ∈ X there exists n = n(x) ∈ [1, N ]∩N such that, for any sequence rj ↓ 0, the rescaled

pointed metric measure spaces (X, r−1
j d,mxrj , x) converge in the p-mGH sense to the pointed Eu-

clidean space (Rn,dE ,Ln, 0n).

3. Definition of angle

3.1. Angle between three points. In [26], the second author proposed a notion of angle between
three points p, x, q ∈ X in a metric space (X,d). In general such an angle is not unique, the possible
causes of non-uniqueness being a lack of regularity of the distance function (e.g. x is in the cut
locus of p or q) or a lack of infinitesimal strict convexity of the distance function (for more details
we refer to [26, Sections 1,2]). For simplicity, here we only treat the case when the angle is unique.
Given two points p, q ∈ X, consider the distance functions

(3.1) rp(·) := d(p, ·), rq(·) := d(q, ·).
Definition 3.1. We say that the angle ∠pxq exists if and only if the limit for ε→ 0 of the quantity
|lip(rp+εrq)|2(x)−|lip(rp)|2(x)

2ε exists. In this case we set

(3.2) [0, π] 3 ∠pxq := arccos

(
lim
ε→0

|lip(rp + εrq)|2(x)− |lip(rp)|2(x)

2ε

)
.

Note that if (X,d) is a smooth Riemannian manifold and x is not in the cut locus of p and q,
then ∠pxq is the angle based at x between ∇rp(x) and ∇rq(x); in other words ∠pxq is the angle
based at x “in direction of p and q”. As already mentioned, for a general triple pxq in a general
metric space (X,d) the angle ∠pxq may not exist; moreover, even if both ∠pxq and ∠qxp exist they
may not be equal in general. On the other hand, such a definition satisfies some natural properties
one expects from the geometric picture: the angle is invariant under a constant rescaling of the
metric d, moreover for any two points x, p ∈ X the angle ∠pxp always exists and, if (X,d) is a
length space, is equal to 0.

We now discuss an important class of metric measure spaces (X,d,m) where the angle exists
and is symmetric in an a.e. sense, the so called Lipschitz-infinitesimally Hilbertian spaces.

Definition 3.2. A metric measure space (X,d,m) is said to be Lipschitz-infinitesimally Hilbertian

if for any pair of Lipschitz functions f, g ∈ LIP(X) both the limits for ε→ 0 of (|lip(f+εg)|2(x)−|lip(f)|2(x)
2ε

and |lip(g+εf)|2(x)−|lip(g)|2(x)
2ε exist and are equal for m-a.e. x ∈ X, i.e.

(3.3) lim
ε→0

|lip(f + εg)|2(x)− |lip(f)|2(x)

2ε
= lim
ε→0

|lip(g + εf)|2(x)− |lip(g)|2(x)

2ε
, m-a.e. x.

It is clear that if (X,d,m) is Lipschitz-infinitesimally Hilbertian then, given p, q ∈ X, for m-a.e.
x ∈ X both the angles ∠pxq,∠qxp exist and ∠pxq = ∠qxp.

Remark 3.3. The concept of Lipschitz-infinitesimally Hilbertian space was proposed in [26] as a
variant of the notion of infinitesimally Hilbertian space introduced in [3, 17], using the language
of minimal weak upper gradients; let us mention that Lipschitz-infinitesimally Hilbertian always
implies infinitesimally Hilbertian, but the converse is not clear in general. An important class of
spaces where also the converse implication holds is the one of locally doubling spaces satisfying a
weak Poincaré inequality. Indeed, by a celebrated result of Cheeger [11], we have that for every
f ∈ LIP(X) it holds lip(f) = |Df | m-a.e., in other words the local Lipschitz constant is equal to
the minimal weak upper gradient m-a.e. In particular for CD∗(K,N) spaces, K ∈ R, N ∈ [1,∞)
the two notions are equivalent. For more details we refer to [26, Remark 3.3].
It follows that RCD∗(K,N)-spaces are Lipschitz-infinitesimally Hilbertian, for N <∞; let us recall
that the class of RCD∗(K,N)-spaces include finite dimensional Alexandrov spaces with curvature
bounded below and Ricci limit spaces as remarkable sub-classes.
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3.2. Angle between two geodesics. First of all observe that if (X,d) is a metric space and
γ ∈ Geo(X) is a geodesic, then |γ̇t| = d(γ0, γ1) for a.e. t ∈ [0, 1]; we will denote such a constant
simply by |γ̇|. The next definition is inspired by the De Giorgi’s metric concept of gradient flow [15].

Definition 3.4 (A geodesic representing the gradient of a Lipschitz function). Let f ∈ LIP(X) be
a Lipschitz function on (X,d). We say that γ ∈ Geo(X) represents ∇f at time 0, or γ ∈ Geo(X)
represents the gradient of f at the point x = γ0 if the following inequality holds

(3.4) lim
t→0

f(γt)− f(γ0)

t
≥ 1

2
lip(f)2(γ0) +

1

2
|γ̇|2.

Notice that the opposite inequality is always true, indeed

lim
t→0

f(γt)− f(γ0)

t
≤ lip(f)(γ0) |γ̇| ≤ 1

2
lip(f)2(γ0) +

1

2
|γ̇|2.

Hence γ ∈ Geo(X) represents ∇f at time 0 if and only if the equality holds. Note that, in the case
of Riemannian manifolds, γ represents ∇f at time 0 if and only if γ̇0 = ∇f .
It is easy to check that the geodesic γ ∈ Geo(X) represents the gradient of f ∈ LIP(X) at x ∈ X
if and only if for every α ∈ (0, 1) the rescaled geodesic γ̃ ∈ Geo(X) defined by γ̃t := γαt, ∀t ∈ [0, 1],
represents the gradient of the Lipschitz function αf at x. In the next lemma we give a simple but
important example of a geodesic representing the gradient of a function.

Lemma 3.5. Let (X,d) be a metric space, fix p ∈ X and let rp(·) := d(p, ·). If for some x ∈ X
there exists a geodesic γxp ∈ Geo(X) such that γ0 = x and γ1 = p then γxp represents the gradient
of f(·) := −d(p, x) rp(·) at x.

Proof. For every t ∈ (0, 1) it holds

f(γxpt )− f(γxp0 )

t
= d(p, x)

d(p, x)− d(p, γxpt )

t
= d(p, x)

d(x, γxpt )

t
= d(p, x)

td(x, p)

t

= d(p, x)2.

On the other hand, by triangle inequality it is clear that lip(rp) ≤ 1 and with an analogous argument
as above it is easily checked that actually lip(rp)(x) = 1. Therefore lip(f)(x) = d(p, x) =: |γ̇xp|
and the claim follows. �

We can now define the angle between two geodesics.

Definition 3.6 (Angle between two geodesics). Let (X,d) be a metric space and let γ, η ∈ Geo(X)
be two geodesics with γ0 = η0 = p. Let f ∈ LIP(X) be a Lipschitz function such that γ represents
the gradient of f at time 0. We say that the angle ∠ηpγ exists if and only if the limit as t ↓ 0 of
f(ηt)−f(η0)

t exists. In this case we set

(3.5) [0, π] 3 ∠ηpγ := arccos

(
1

|η̇||γ̇|
lim
t↓0

f(ηt)− f(η0)

t

)
.

Remark 3.7 (Locality of the angle between two geodesics). It is easily seen that the angle between
the two geodesics γ, η ∈ Geo(X) at the point p = γ0 = η0 depend just on the germs of the curves
at p. To see that, fix arbitrary Tγ , Tη ∈ (0, 1) and call γ̃, η̃ the restrictions of γ, η to [0, Tγ ], [0, Tη]
properly rescaled, i.e:

γ̃(t) := γ(Tγt), η̃(t) := η(Tηt), ∀t ∈ [0, 1].

Of course we still have γ̃, η̃ ∈ Geo(X), and it is readily seen that γ̃ represents the gradient of

f̃ := Tγf . It follows that ∠ηpγ exists if and only if ∠η̃pγ̃ exists, and in this case it holds

∠ηpγ := arccos

(
1

|η̇||γ̇|
lim
t→0

f(ηt)− f(η0)

t

)
= arccos

(
1

| ˙̃η|| ˙̃γ|
lim
t→0

f̃(η̃t)− f̃(η̃0)

t

)
= ∠η̃pγ̃.

Remark 3.8 (Dependence on the function f). Note also in the generality of metric spaces, the angle
∠γpη as given in Definition 3.6 may depend on the function f chosen in (3.5) (for instance this
is the case of a tree with a vertex in p and two edges made by γ and η). In case (X,d,m) is an
RCD∗(K,N)-space we will see later in the paper that actually the angle between two geodesics is
well defined for m-a.e. base point p just in terms of the geometric data, so it does not depend on
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the choice of f . In the general case of a metric space, a way to overcome the problem would be to
fix a canonical Lipschitz function f such that γ represents ∇f at time 0. In view of Lemma 3.5,
a natural choice is to consider fγ(·) := −d(γ0, γ1)d(γ1, ·). In case (X,d,m) is not an RCD∗(K,N)
space we will tacitly make such a choice so to have a good definition.

The next goal is to relate the angle between three points with the angle between two geodesics,
i.e. relate Definitions 3.1 and 3.6.

Theorem 3.9. Let (X,d) be a metric space and let p 6= x 6= q ∈ X satisfy the following assump-
tions:

• the angle ∠pxq exists in the sense of Definition 3.1,
• there exist geodesics γxp, γxq ∈ Geo(X) from x to p and from x to q respectively.

Then the angle ∠γxpxγxq exists in the sense of Definition 3.6 and

(3.6) ∠γxpxγxq = ∠pxq.

Note that if (X,d) is a geodesic Lipschitz-infinitesimally Hilbertian space then for every given
p, q ∈ X the two assumptions of Theorem 3.9 are satisfied for m-a.e. x ∈ X. This is in particular
the case for RCD∗(K,N) spaces (see Remark 3.3).

Proof. Let fp(·) := −d(p, x) rp(·) and fq(·) := −d(p, x) rq(·). Recall from Lemma 3.5 that γxp

represents ∇fp at x = γxp0 in the sense of Definition 3.4, i.e.

(3.7) lim
t↓0

fp(γ
xp
t )− fp(γxp0 )

t
≥ lip(fp)

2(x)

2
+
|γ̇xp|2

2
.

On the other hand

(3.8) lim
t↓0

(fp + εfq)(γ
xp
t )− (fp + εfq)(γ

xp
0 )

t
≤ lip(fp + εfq)

2(x)

2
+
|γ̇xp|2

2
.

Subtracting (3.7) from (3.8) yields

lim
t↓0

ε
fq(γ

xp
t )− fq(γxp0 )

t
≤ lip(fp + εfq)

2(x)− lip(fp)
2(x)

2

= d(p, x)2 lip(rp + εrq)
2(x)− lip(rp)

2(x)

2
.(3.9)

If ε > 0, dividing both sides by εd(p, x)2 and letting ε ↓ 0 we get

lim
t↓0

1

d(p, x)2

fq(γ
xp
t )− fq(γxp0 )

t
≤ lim

ε↓0

lip(rp + εrq)
2(x)− lip(rp)

2(x)

2ε
= cos(∠pxq),

where in the last identity we used the assumption that ∠pxq exists. Analogously, if ε < 0, dividing
both sides by εd(p, x)2 and letting ε ↑ 0 we get

lim
t↓0

1

d(p, x)2

fq(γ
xp
t )− fq(γxp0 )

t
≥ lim

ε↑0

lip(rp + εrq)
2(x)− lip(rp)

2(x)

2ε
= cos(∠pxq).

The combination of the last two inequalities gives the existence of the limit for t ↓ 0 of 1
d(p,x)2

fq(γ
xp
t )−fq(γxp0 )

t

and, more precisely,

lim
t↓0

1

d(p, x)2

fq(γ
xp
t )− fq(γxp0 )

t
= cos(∠pxq).

Multiplying and dividing by d(q, x) the left hand side, we get

lim
t↓0

1

d(p, x)

d(q,x)
d(p,x)fq(γ

xp
t )− d(q,x)

d(p,x)fq(γ
xp
0 )

t
= cos(∠pxq).

Since by Lemma 3.5 we know that γxq represents the gradient of −d(q, x)rq(·) = d(q,x)
d(p,x)fq(·) at

x = γxq0 in the sense of Definition 3.4, we get that the left hand side coincides with ∠γxpxγxq and
the thesis follows. �
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3.3. Angles in Wasserstein spaces. In the Wasserstein space, we have the notion of “Plans
representing gradients” which is similar to the one of “geodesic representing the gradient” above.

Definition 3.10 (Plans representing gradients, see [17]). Let (X,d,m) be a metric measure space,
g ∈ S2(X) and Π ∈ P(C([0, 1], X)) be a test plan. We say that Π represents the gradient of g if

lim
t↓0

∫
g(γt)− g(γ0)

t
dΠ(γ) ≥ 1

2

∫
|Dg|2(γ0) dΠ(γ) +

1

2
lim
t↓0

1

t

∫∫ t

0

|γ̇s|2 dsΠ(γ).

Let (µt) ∈ AC2([0, 1],P2(X)) be with uniformly bounded densities, Π be its lifting given by
Theorem 2.3, and let ϕ ∈ S2(X). In case (X,d,m) is infinitesimally Hilbertian, it is proved
in [18, Theorem 4.6] that Π represents the gradient of ϕ if and only if

(3.10)
d

dt

∣∣∣
t=0

∫
X

f dµt =

∫
X

〈∇f,∇ϕ〉dµ0, ∀f ∈ S2(X).

If (3.10) holds, we also say that the velocity field of µt at time 0 is ∇ϕ.

Combing the above technical tools with ideas from Otto’s calculus [28], we can define the angle
between two geodesics in W2.

Definition 3.11 (Angle between curves in W2). Let (X,d,m) be an infinitesimally Hilbertian
metric measure space, let (µt), (νt) ∈ AC2([0, 1],P2(X)) be with bounded compression, and such
that µ0 = ν0 =: η. Assume there exist lifting test plans of (µt) and (νt) representing the gradients
of f and g respectively, for some f, g ∈ S2(X). Then the angle between µ = (µt) and ν = (νt) at
t = 0 is defined by

[0, π] 3 ∠Wµην := arccos

( ∫
X
〈∇f,∇g〉dη

‖|Dg|‖L2(X,η)‖|Df |‖L2(X,η)

)
.

The same definition makes sense if f, g ∈ S2
loc(X) provided (µt), (νt) have uniformly bounded

supports.

From the formula (3.10), we can see that the value of the angle does not depend on the choice
of f, g, but just on (µt), (νt).

Remark 3.12 (Locality of the angle in the Wasserstein space). The angle ∠Wµην depends just on
the germs of the curves µ and ν at t = 0; i.e., given T1, T2 ∈ (0, 1), called µ̃t := µT1t, ν̃t := νT2t

for all t ∈ [0, 1] the restrictions of µ, ν to [0, T1] and [0, T2] respectively, it holds ∠µην = ∠µ̃ην̃.
Indeed let Π, lift of the curve (µt)t∈[0,1], be a test plan representing the gradient of f ∈ S2(X); fix

T ∈ (0, 1) and let µ̃t := µTt for every t ∈ [0, 1] be the restriction of the curve µ to [0, T ]; called Π̃

the lift of (µ̃t)t∈[0,1], it is easily seen that Π̃ represents the gradient of f̃ := Tf . The claim follows.

Thanks to the locality expressed in Remark 3.12, given two curves (µt)t∈[0,1], (νt)t∈[0,1] such
that they are of bounded compression once restricted to [0, T ] for some T ∈ (0, 1), we can define
the angle between them as the angle between their restrictions µ̃, ν̃ to [0, T ]. This will be always
tacitly assumed throughout the paper.

Let us briefly discuss the particular but important case when (µt) and (νt) are W2-geodesics in a
general m.m.s. (X,d,m). If (µt) is a W2-geodesic with bounded compression then any lift Π of (µt)
is a test plan and moreover is an optimal dynamical plan, i.e. Π ∈ OptGeo(µ0, µ1). Moreover, as a
consequence of the Metric Brenier Theorem proved in [2] (see also [18, Theorem 5.2] for the present
formulation), if (µt) has bounded compression and ϕ ∈ S2(X) is a Kantorovich potential from µ0

to µ1, then any lift Π of (µt) represents the gradient of −ϕ. Therefore, specializing Definition 3.11
to this case we get the following notion.

Definition 3.13 (Angle between geodesics in W2). Let (X,d,m) be an infinitesimally Hilbertian
metric measure space, let (µt), (νt) be W2-geodesics with bounded compression, and such that
µ0 = ν0 =: η. Assume there exist ϕ,ψ ∈ S2(X) Kantorovich potentials from µ0 to µ1 and from ν0

to ν1 respectively. Then the angle between µ = (µt) and ν = (νt) at t = 0 is defined by

[0, π] 3 ∠Wµην := arccos

( ∫
X
〈∇ϕ,∇ψ〉dη

‖|Dϕ|‖L2(X,η)‖|Dψ|‖L2(X,η)

)
.
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The same definition makes sense if ϕ,ψ ∈ S2
loc(X) provided (µt), (νt) have uniformly bounded

supports.

Note that, thanks to Otto calculus and (3.10), Definition 3.13 is the analog for W2 geometry of
the angle between two geodesics in a general metric space in the sense of Definition 3.6.

3.4. The case of RCD∗(K,N) spaces. In Theorem 3.9 we related the angle between three points
with the angle between two geodesics, i.e. we related Definitions 3.1 and 3.6. Now, adding a
curvature assumption on the space, we wish to relate Definition 3.13 with Definition 3.1 and
Definition 3.6, i.e. the angle between two geodesics in W2 with the angle between three points and
the angle between two geodesics of X. To this aim the next lemma will be useful.

Lemma 3.14. Let (X,d,m) be an RCD∗(K,N) space, and let ϕ1, ϕ2 be locally Lipschitz functions
on X. Then the functions

F+(x) := lim
ε↓0

|lip(ϕ1 + εϕ2)|2(x)− |lip(ϕ1)|2(x)

2ε
,

F−(x) := lim
ε↑0

|lip(ϕ1 + εϕ2)|2(x)− |lip(ϕ1)|2(x)

2ε

are well defined at every x ∈ X and it holds

F+ = F− = 〈∇ϕ1,∇ϕ2〉, m-a.e. .

Proof. From the definition of local Lipschitz constant we know that the function ε 7→ |lip(ϕ1 + εϕ2)|2(x)
is convex for any x. Consider the function

Fε(x) := ε 7→ |lip(ϕ1 + εϕ2)|2(x)− |lip(ϕ1)|2(x)

2ε
,

and observe that ε 7→ Fε(x) is non-decreasing on (−∞, 0) and (0,+∞) for any fixed x. Hence F+

and F− are well-defined for any point x ∈ X as

F+(x) := inf
ε>0

Fε(x) = lim
ε↓0

Fε(x), F−(x) := sup
ε<0

Fε(x) = lim
ε↑0

Fε(x).

Since (X,d,m) is a RCD∗(K,N) metric measure space, it holds a local Poincaré inequality and it
is locally doubling. Then, from [11, Theorem 6.1], we know lip(f)(x) = |Df |(x) for m-a.e. x ∈ X.
The definition of infinitesimal Hilbertian space and of 〈∇ϕ1,∇ϕ2〉, then gives

〈∇ϕ1,∇ϕ2〉 = ess inf
ε>0

|D(ϕ1 + εϕ2)|2 − |Dϕ1|2

2ε
= ess inf

ε>0
Fε

and

〈∇ϕ1,∇ϕ2〉 = ess sup
ε<0

|D(ϕ1 + εϕ2)|2 − |Dϕ1|2

2ε
= ess sup

ε<0
Fε.

Hence

〈∇ϕ1,∇ϕ2〉 = ess inf
ε>0

Fε = ess sup
ε<0

Fε.

In particular, we infer F+ = F− = 〈∇ϕ1,∇ϕ2〉 m-a.e.. �

In the next result we relate Definition 3.13 with Definition 3.1. Before stating it, let us recall [22,
Theorem 1.1] that if (X,d,m) is an RCD∗(K,N) m.m.s., µ0, µ1 ∈ P2(X) with µ0 � m, then there
exists a unique W2 geodesic connecting µ0 and µ1; let us mention that the same result holds more
generally for essentially non-branching m.m.s satisfying the weaker MCP(K,N) condition [10].

Proposition 3.15. Let (X,d,m) be an RCD∗(K,N) m.m.s. and fix p, q ∈ X. For every x ∈ X
and R > 0 let µR0 = νR0 = ηR := 1

m(BR(x))mxBR(x) and let µR := (µRt )t∈[0,1], ν
R := (νRt )t∈[0,1] be

the unique W2-geodesics from µR0 to δp and from νR0 to δq respectively. Then

(3.11) ∠pxq = lim
R↓0
∠WµRηRνR, for m-a.e. x ∈ X.
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Proof. Calling as usual rp(·) := d(p, ·), rq(·) := d(q, ·), Lemma 3.14 implies

cos(∠pxq) := lim
ε→0

|lip(rp + εrq)|2(x)− |lip(rp)|2(x)

2ε
= 〈∇rp,∇rq〉(x), m-a.e. x ∈ X.

On the other hand, it is easily seen that ϕ(·) := 1
2rp(·)

2, ψ(·) := 1
2rq(·)

2 are Kantorovich potentials

from η = µR0 to δp and from η = νR0 to δq respectively. Moreover the geodesics (µRt ), (νRt )
have uniformly bounded supports, and bounded compression once restricted to [0, 1− δ] for every
δ ∈ (0, 1), see for instance [22, Corollary 1.7]. Then, Definition 3.13 yields

lim
R↓0

cos(∠WµRηRνR) := lim
R↓0

∫
X
〈∇ϕ,∇ψ〉dη

‖|Dϕ|‖L2(X,η)‖|Dψ|‖L2(X,ηR)

= lim
R↓0

1
m(BR(x))

∫
BR(x)

rp(y) rq(y) 〈∇rp,∇rq〉(y) dm(y)

‖rp‖L2(X,ηR)‖rq‖L2(X,ηR)

= 〈∇rp,∇rq〉(x) for m-a.e. x ∈ X.
The combination of the two formulas gives the claim. �

Remark 3.16. For uniformity with the rest of the paper we decided to state Proposition 3.15
for RCD∗(K,N) spaces, but using the results of [10] the same conclusion holds for essentially
non-branching Lipschitz-infinitesimally Hilbertian spaces satisfying MCP(K,N).

In the next result we relate Definition 3.6 with the optimal transport picture.

Proposition 3.17. Assume that (X,d,m) is an RCD∗(K,N) metric measure space. Let (µ1
t ) and

(µ2
t ) be W2-geodesics with bounded compression and with µ1

0 = µ2
0 =: η; let Π1,Π2 ∈ OptGeo(X)

be corresponding lifts. Then, for i = 1, 2, we can find Γi ⊂ Geo(X) with Πi(Γi) = 1, such that

for η-a.e. x there exist unique geodesics γx,i ∈ Γi with γx,i0 = x, and the angle ∠γx,1xγx,2 exists
according to the Definition 3.6. Moreover

cos∠γx,1xγx,2 = cos∠γx,2xγx,1 = lim
t↓0

ϕ1(γx,2t )− ϕ1(γx,20 )

t lip(ϕ1)(x) |γ̇x,2|
= lim

t↓0

ϕ2(γx,1t )− ϕ2(γx,10 )

t lip(ϕ2)(x) |γ̇x,1|

=
〈∇ϕ1,∇ϕ2〉(x)

lip(ϕ1)(x) lip(ϕ2)(x)
, for η-a.e. x,(3.12)

where −ϕi ∈ S2(X) is any locally Lipschitz Kantorovich potential from η = µi0 to µi1.

Proof. From [3,18] we know that any lift Πi of (µit) represents the gradient of ϕi, for i = 1, 2, i.e:

lim
t↓0

∫
ϕi(γt)− ϕi(γ0)

t
dΠi(γ) ≥ 1

2

∫
|Dϕi|2(γ0) dΠi(γ) +

1

2
lim
t↓0

1

t

∫∫ t

0

|γ̇s|2 dsdΠi(γ).

From [17, Proposition 3.11] we then get for i = 1, 2:

(3.13) lim
t↓0

ϕi(γt)− ϕi(γ0)

t
=

1

2
|Dϕi|2(γ0) +

1

2
|γ̇|2 =

1

2
|lip(ϕi)|2(γ0) +

1

2
|γ̇|2, Πi-a.e. γ.

In other words, for Πi-a.e. γ, we have that γ represents ∇ϕi at γ0, i = 1, 2.
For any ε > 0, consider the function ϕ1 + εϕ2 and observe that

(3.14) lim
t↓0

(ϕ1 + εϕ2)(γt)− (ϕ1 + εϕ2)(γ0)

t
≤ 1

2
|lip(ϕ1 + εϕ2)|2(γ0) +

1

2
|γ̇|2, ∀γ ∈ Geo(X).

The difference between (3.14) and (3.13), for i = 1, gives

(3.15) ε lim
t↓0

ϕ2(γt)− ϕ2(γ0)

t
≤ |lip(ϕ1 + εϕ2)|2(γ0)− |lip(ϕ1)|2(γ0)

2
, Π1-a.e. γ.

Multiplying by ε−1 > 0 both sides of (3.15) yields

lim
t↓0

ϕ2(γt)− ϕ2(γ0)

t
≤ |lip(ϕ1 + εϕ2)|2(γ0)− |lip(ϕ1)|2(γ0)

2ε
, Π1-a.e. γ.

Letting ε ↓ 0 and using Lemma 3.14, we infer

lim
t↓0

ϕ2(γt)− ϕ2(γ0)

t
≤ 〈∇ϕ2,∇ϕ1〉(γ0), Π1-a.e. γ.
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Following verbatim the same arguments after (3.13), but now for ε < 0, gives

lim
t↓0

ϕ2(γt)− ϕ2(γ0)

t
≥ 〈∇ϕ2,∇ϕ1〉(γ0), Π1-a.e. γ.

Since from [22, Theorem 3.4] we can find Γi ⊂ Geo(X) with Πi(Γi) = 1, such that for η-a.e. x

there exists unique geodesics γx,i ∈ Γi with γx,i0 = x, it follows that

(3.16) lim
t↓0

ϕ2(γx,1t )− ϕ2(γx,10 )

t
= 〈∇ϕ2,∇ϕ1〉(x), η-a.e. x.

Recalling from (3.13) that Π2-a.e. γ represents the gradient of ϕ2 at γ0, we get that for η-a.e.
x the geodesic γx,2 represents the gradient of ϕ2 at x. Therefore (3.16) proves that for η-a.e. x
the angle ∠γx,1xγx,2 exists according to Definition 3.6 and coincides with arccos

(
〈∇ϕ2,∇ϕ1〉(x)

)
.

With the same arguments, just exchanging i = 1 with i = 2, we get that also ∠γx,2xγx,1 exists for
η-a.e. x, and that the identities (3.12) hold. �

4. The cosine formula for angles in RCD∗(K,N) spaces

The goal of this section is to prove Theorem 4.4, stating that the cosine formula holds for
the angle between two geodesics in an RCD∗(K,N) space. The first lemma states the almost
everywhere uniqueness and extendability of geodesics in RCD∗(K,N) spaces; this fact is already
present in the literature under slightly different formulations so we just briefly sketch the proof.

Lemma 4.1. Let (X,d,m) be an RCD∗(K,N) space for some K ∈ R, N ∈ (1,∞), and fix p, q ∈ X.
Then for m-a.e. x there exist unique geodesics γxp, γxq ∈ Geo(X) such that

• γxp0 = γxq0 = x, γxp1 = p, γxq1 = q,
• both γxp and γxq are extendable to geodesics γ̃xp and γ̃xq having x as interior point; in

other words there exist γ̃xp, γ̃xq ∈ Geo(X) and t̄ ∈ (0, 1) such that γ̃xpt̄ , γ̃xqt̄ = x and
γ̃xp[t̄,1] = γxp[0,1], γ̃

xq
[t̄,1] = γxq[0,1].

Proof. Step 1. ∀p ∈ X, m-a.e. x ∈ X is an interior point of a geodesic with end point at p.
Fix p ∈ X and R > 0. Consider

µ0 :=
1

m(BR(p))
mxBR(p) and µ1 := δp.

Analyzing the optimal transport from µ0 to µ1 by following verbatim the proof of [21, Lemma 3.1]
(i.e. use Jensen’s inequality and the convexity property of the entropy granted by the curvature
condition), we get that for m-a.e. x ∈ BR(0) there exists a geodesic γ ∈ Geo(X) such that γ1 = p
and γt = x, for some t ∈ (0, 1). The claim then follows by the arbitrariness of R > 0.

Step 2. ∀p ∈ X, m-a.e. x ∈ X there exists a unique geodesic from x to p.
The uniqueness of geodesics connecting a fixed p ∈ X and m-a.e. x ∈ X is a consequence of [22,
Theorem 3.5] applied to the optimal transportation from the measures µ0, µ1 above.

Step 3. Applying steps 1 and 2 to p and q, since the union of two negligible sets is still negligible,
the thesis follows. �

The next lemma will be useful to get good estimates on harmonic approximations of distance
functions.

Lemma 4.2. Let B be a unit ball in an RCD∗(K,N) metric measure space (X,d,m), K ∈ R, N ∈
(1,∞). Then there exists a function G : B → R with G ∈ D(∆, B) such that

∆GxB = (∆GxB)mxB, ∆GxB = 1, 0 ≤ G ≤ C on B,

where C = C(K,N) > 0 is a constant which depends only on K and N .

Proof. Since (X,d,m) is a RCD∗(K,N) metric measure space, it satisfies a local (1-2)-Poincaré
inequality and it is locally doubling. It is also known [3, Remark 6.9 and Theorem 6.10] that the
metric d is induced by the Dirichlet form f 7→

∫
|Df |2 dm. Therefore the standing assumptions
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of [8] are fulfilled and from [8, Corollary 1.2] we know that for any f ∈ Lp(B,m), p > 2 , there

exists a function uf ∈W 1,2
0 (B) such that∫

B

〈∇uf ,∇v〉dm =

∫
B

fv dm

for any v ∈W 1,2
0 (B). In other words, we know uf ∈ D(∆, B) and

∆uf = f m-a.e. .

Furthermore, from [8, Theorem 4.1] we know

sup
B
|uf | ≤ cm(B)−

1
p ‖f‖Lp(B,m)

where c only depends on the constants in the Poincaré inequality and in the doubling condition.
In our case, c only depends on N and K.
Now, choosing f = 1 on B, we get that G := uf + c satisfies the thesis with C = 2c. �

Using Lemma 4.2, in the next proposition we prove a key estimate in order to establish the
cosine formula for angles.

Proposition 4.3. Let (X,d,m) be an RCD∗(K,N) metric measure space, for some K ∈ R, N ∈
(1,∞), and fix x0 ∈ X. Let R ≥ 2, p, p̂ ∈ X such that d(x0, p) + d(x0, p̂) = d(p, p̂), and
d(x0, p),d(x0, p̂) ≥ R. We denote bp(·) := d(p, ·) − d(p, x0) and bp̂(·) := d(p̂, ·) − d(p̂, x0). As-
sume that there exists a function Φ(R|K,N) satisfying limR→+∞ Φ(R|K,N) = 0 for fixed K,N ,
such that 0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K,N) for any x ∈ B1(x0).

Then there exists a harmonic approximation bp of bp with the following properties:

(1) bp − bp ∈W 1,2
0 (B1(x0)), bp ∈ D(∆, B1(x0)) with ∆bpxB1(x0) = 0,

(2) it holds

(4.1) ‖bp − bp‖L∞(B1(x0)) +
1

m(B1(x0))

∫
B1(x0)

|D(bp − bp)|2 dm ≤ Ψ(R|K,N),

where Ψ : R3 → R>0 satisfies limR→+∞Ψ(R|K,N) = 0 for fixed K,N .

Proof. From Proposition 2.8 we know there exists bp satisfying (1) of the thesis. Similarly, we can
find a harmonic approximation bp̂ of bp̂.
We are then left to show the validity of the estimate (4.1). To this aim, let G : B1(x0)→ R≥0 be
given by Lemma 4.2, so that

∆GxB1(x0) = (∆GxB1(x0))mxB1(x0), ∆GxB1(x0) = 1, 0 ≤ G ≤ C on B1(x0),

where C(K,N) depends only on K,N and in particular is independent of R.
From Laplacian Comparison Theorem 2.9 we know that bp, bp̂ ∈ D(∆, B1(x0)) and

(4.2) ∆bpxB1(x0) ≤ Ψ(R|K,N)m

and

(4.3) ∆bp̂xB1(x0) ≤ Ψ(R|K,N)m

for some suitable Ψ : R3 → R>0 satisfying limR→+∞Ψ(R|K,N) = 0 for fixed K,N . Then we have

∆(bp − bp −ΨG)xB1(x0) ≤ 0, ∆(−bp̂ + bp̂ + ΨG)xB1(x0) ≥ 0.

Applying the comparison statement of Proposition 2.8 to (−bp + bp) + ΨG we get that

(4.4) − bp + bp ≤ 2Ψ sup
B1(x0)

|G| ≤ 2C(K,N)Ψ, m-a.e. on B1(x0).

Analogously, applying the comparison statement of Proposition 2.8 to −bp̂ + bp̂ + ΨG we get

−bp̂ + bp̂ ≤ 2Ψ sup
B1(x0)

|G| ≤ 2C(K,N)Ψ, m-a.e. on B1(x0).

By assumption, we know there exists a function Φ(R|K,N) satisfying limR→+∞ Φ(R|K,N) = 0
for fixed K,N , such that 0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K,N) for any x ∈ B1(x0). Using maximum
principle of Proposition 2.8, we know

0 ≤ bp̂(x) + bp(x) ≤ Φ(R|K,N)
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for any x ∈ B1(x0). The combination of the last three estimates gives

bp − bp = (bp + bp̂)− (bp + bp̂) + (−bp̂ + bp̂) ≤ Φ(R|K,N) + 2C(K,N)Ψ(R|K,N), on B1(x0).

(4.5)

Putting together (4.4) and (4.5), we get

(4.6) ‖bp − bp‖L∞(B1(x0)) ≤ 2C(K,N) Ψ(R|K,N) + Φ(R|K,N).

Next, write B = B1(x0) for short. Recalling that ∆bpxB = 0, combining (4.2) with (4.6) and

using that (bp − bp) ∈W 1,2
0 (B) in order to integrate by parts, we obtain∫

B

|D(bp − bp)|2 dm = −
∫
B

(bp − bp) d (∆(bp − bp))

=

∫
B

(
‖bp − bp‖L∞(B) + (bp − bp)

)
d (∆bp) + ‖bp − bp‖L∞(B)

∫
B

d (∆(bp − bp))

≤
∫
B

(
‖bp − bp‖L∞(B) + (bp − bp)

)
Ψ(R|K,N) dm

≤ 2‖bp − bp‖L∞(B) m(B) Ψ(R|K,N)

≤ 2
(
2C(K,N) Ψ(R|K,N) + Φ(R|K,N)

)
m(B) Ψ(R|K,N),(4.7)

where we used that, since (bp − bp) ∈W 1,2
0 (B), it holds∫

B

d (∆(bp − bp)) =

∫
B

1 d (∆(bp − bp)) = −
∫
B

〈∇(bp − bp),∇1〉dm = 0.

Summing up (4.6) and (4.7) we get (4.1) by renaming with Ψ(R|K,N) the quantity 2
(
2C(K,N) Ψ(R|K,N)+

Φ(R|K,N)
)

Ψ(R|K,N) + 2C(K,N) Ψ(R|K,N) + Φ(R|K,N). �

Theorem 4.4. Let (X,d,m) be an RCD∗(K,N) space for some K ∈ R, N ∈ (1,∞), and fix
p, q ∈ X. Then for m-a.e. x ∈ X let γxp, γxq ∈ Geo(X) be the unique geodesics from x to p
and from x to q given by Lemma 4.1. We may also assume that the tangent cone at x is unique
and isomorphic as m.m. space to (Rk,dE ,Lk), for some k = k(x) ∈ N ∩ [1, N ]. Let ri ↓ 0 be
any sequence, p̄, q̄ ∈ Rk be the limit points of γxp(ri), γ

xq(ri) under the rescalings (X, r−1
i d,mxri , x)

which converge to (Rk,dE ,Lk, O) in p-mGH sense. Then

(4.8) ∠γxpxγxq = ∠pxq = ∠p̄Oq̄ = lim
t↓0

arccos
2t2 − d2(γxpt , γxqt )

2t2
, for m-a.e. x.

Proof. Step 1. Fix p, q ∈ X. Combining Theorem 2.16, Remark 3.3, Theorem 3.9 and Lemma 4.1
we get that for m-a.e. x ∈ X

• we can find unique geodesics γxp, γxq ∈ Geo(X) such that γxp0 = γxq0 = x, γxp1 = p, γxq1 = q,
and both γxp, γxq are extendable beyond x in the sense of Lemma 4.1, so we can assume
that γxp, γxq could be extended to p̂ := γxp−ε, q̂ := γxq−ε respectively, for some ε > 0,

• both the angles ∠pxq and ∠γxpxγxq exist in the sense of Definitions 3.1, 3.6 respectively,
and ∠pxq = ∠γxpxγxq,

• x ∈ X is a Lebesgue point for 〈∇rp,∇rq〉 so that

(4.9) cos∠pxq := 〈∇rp,∇rq〉(x) = lim
r↓0

1

m(Br(x))

∫
Br(x)

〈∇rp,∇rq〉dm,

• the tangent to X at x is unique and euclidean.

From the locality of the angle (see Remark 3.7) we know that

(4.10) ∠pxq = ∠γxpxγxq = ∠(γxp|s0)x (γxq|t0), ∀s, t ∈ (0, 1),

where (γ|s0)t := γst for all t ∈ [0, 1].

Let ri ↓ 0 be any sequence and let (X, r−1
i d,mxri , x) be the corresponding sequence of rescaled

spaces. Since by assumption x is regular, we know that (X, r−1
i d,mxri , x) p-mGH converge to

(Rk,dE ,Lk, O) for some k = k(x) ∈ N ∩ [1, N ]. Since by assumption both γxp and γxq are ex-
tendable beyond x, they converge in p-GH sense to half lines `p, `q in Rk such that O ∈ `p ∩ `q
and both `p, `q are extendable to full lines of Rk. We parametrize such half lines on [0,+∞) such
that for every t > 0 one has that `p(t), `q(t) are the limit points of γxp(rit), γ

xq(rit) respectively.
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Denote by p̄ = `p(1), q̄ = `q(1) ∈ Rk be the limit points of γxp(ri), γ
xq(ri). By the uniqueness of

the tangent space, the parametrized half lines `p, `q and the points p̄, q̄ ∈ Rk do not depend on the
choice of the rescaling sequence (ri).

Let ˆ̀
p, ˆ̀

q be the half lines in Rk antipodal to `p, `q respectively; in other words `p ∪ ˆ̀
p and

`q ∪ ˆ̀
q are straight lines in Rk intersecting at O. We parametrize ˆ̀

p, ˆ̀
q on (−∞, 0] such that

d
dt |t=t1 ˆ̀

p(t) = d
dt |t=t2`p(t),

d
dt |t=t1 ˆ̀

q(t) = d
dt |t=t2`q(t), for all t1 < 0 < t2.

Step 2. We claim that

(4.11) ∠γxpxγxq = ∠pxq = ∠p̄Oq̄ = ∠`pO`q.

Since the first identity is true by construction, and the last is trivially true because the ambient
space is Rk, it is enough to show that ∠pxq = ∠p̄Oq̄. Given any sequence of rescalings ri ↓ 0, let
di(·, ·) := 1

ri
d(·, ·) and define

(4.12) bip(·) := di(p, ·)− di(p, x), biq(·) := di(q, ·)− di(q, x).

Set also b∞p , b
∞
q : Rk → R to be the Busemann functions associated to `p, `q, i.e.

(4.13) b∞p (·) := lim
t→+∞

t− dE(`p(t), ·), b∞q (·) := lim
t→+∞

t− dE(`q(t), ·).

Since by construction we know that (X,di, x) → (Rk,dE , O) in p-GH sense, γxprit → `p(t) and
γxqrit → `q(t) for every t > 0, it follows that

(4.14) bip → b∞p , biq → b∞q pointwise in the sense of Definition 2.11.

More strongly, since bip are all Lipschitz with unit Lipschitz constant, by an Arzelá-Ascoli procedure
(see for instance in [27, Proposition 2.12]) we get that the convergences are uniform on bounded
subsets, in the sense of Definition 2.11. In particular, since the measures mxri are converging weakly
to Lk we get that

(4.15) bip → b∞p , biq → b∞q strongly in L2 in the sense of Definition 2.12.

Define bip̂, b
∞
p̂ , b

i
q̂, b
∞
q̂ analogously to (4.12)-(4.13):

bip̂(·) := di(p̂, ·)− di(p̂, x), biq̂(·) := di(q̂, ·)− di(q̂, x),

b∞p̂ (·) := lim
t→−∞

−t− dE(ˆ̀
p(t), ·), b∞q̂ (·) := lim

t→−∞
−t− dE(ˆ̀

q(t), ·).

With analogous arguments as above we get

bip̂ → b∞p̂ , biq̂ → b∞q̂ uniformly on bounded subsets in the sense of Definition 2.11.

Since we are working in the euclidean space Rk, it is not difficult to see that b∞p + b∞p̄ = 0 and
b∞q + b∞q̄ = 0. Note that such equalities holds more generally in manifolds with non-negative Ricci
curvature: the argument, used in the proof of the Cheeger-Gromoll Splitting Theorem, goes via
maximum principle; here in any case one can argue more directly by using the geometry of the
euclidean space. It follows that bip+bip̂ → 0 and bip+bip̂ → 0 uniformly on bounded sets in the sense

of Definition 2.11. Hence there exists a function Φ(R|K,N) satisfying limR→+∞ Φ(R|K,N) = 0
for fixed K,N , such that 0 ≤ bip(y) + bip̂(y) ≤ Φ( 1

ri
|K,N) and 0 ≤ biq(y) + biq̂(y) ≤ Φ( 1

ri
|K,N) for

any y ∈ Bdi

1 (x).

Using Proposition 4.3, for every i ∈ N we can construct harmonic approximations bip,b
i
q of

bip, b
i
q, respectively, in the unit ball Bdi

1 (x) of the space (X,di,mxri). Since di(p, x) = 1
ri

d(p, x) →
∞, di(q, x) = 1

ri
d(q, x) → ∞ and the spaces (X,di,mxri) are RCD∗(r2

iK,N), so in particular

RCD∗(−1, N) for i large enough, we infer that

‖bip − bip‖L∞(B
di
1 (x))

+
1

mxri(B
di
1 (x))

∫
B

di
1 (x)

|D(bip − bip)|2 dmxri → 0 as i→∞,(4.16)

‖biq − biq‖L∞(B
di
1 (x))

+
1

mxri(B
di
1 (x))

∫
B

di
1 (x)

|D(biq − biq)|2 dmxri → 0 as i→∞.(4.17)

The combination of (4.15), (4.16) and (4.17) yields

bipxB
di
1 (x)→ b∞p xB

dE
1 (O), biqxB

di
1 (x)→ b∞q xB

dE
1 (O) strongly in L2.
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Since by construction ∆bipxB
di
1 (x) = 0, by Proposition 2.14 we get that

bipxB
di
1 (x)→ b∞p xB

dE
1 (O), biqxB

di
1 (x)→ b∞q xB

dE
1 (O) strongly in W 1,2.

But then the gradient estimates in (4.16)-(4.17) give that

(4.18) bipxB
di
1 (x)→ b∞p xB

dE
1 (O), biqxB

di
1 (x)→ b∞q xB

dE
1 (O) strongly in W 1,2.

In particular, for every ρ ∈ (0, 1) we have

(4.19) lim
i→∞

1

mxri(B
di
ρ (x))

∫
B

di
ρ (x)

〈∇bip,∇biq〉dmxri =
1

Lk(BdE
ρ (O))

∫
B

dE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk.

We now analyze the two sides of (4.19). Recalling (4.9), from the very definitions of mxri and of di

it follows that

lim
i→∞

1

mxri(B
di
ρ (x))

∫
B

di
ρ (x)

〈∇bip,∇biq〉dmxri = lim
i→∞

1

m(Bd
riρ(x))

∫
Bd
riρ

(x)

〈∇bp,∇bq〉dm

= ∠pxq.(4.20)

On the other hand, since b∞p , b
∞
q are the Busemann functions of the lines `p, `q in Rk it is readily

seen that

(4.21) lim
ρ↓0

1

Lk(BdE
ρ (O))

∫
B

dE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk = ∠p̄Oq̄.

Putting together (4.19), (4.20) and (4.21) finally yields

∠p̄Oq̄ = lim
ρ↓0

1

Lk(BdE
ρ (O))

∫
B

dE
ρ (O)

〈∇b∞p ,∇b∞q 〉dLk = lim
ρ↓0

lim
i→∞

1

mxri(B
di
ρ (x))

∫
B

di
ρ (x)

〈∇bip,∇biq〉dmxri

= ∠pxq,

as desired.

Step 3. We claim that

(4.22) ∠pxq = lim
t↓0

arccos
2t2 − d(γxpt , γxqt )2

2t2
.

To this aim, first of all observe that the cosine formula in Rk ensures that

(4.23) ∠p̄Oq̄ = arccos
2− dE(p̄, q̄)

2
.

Let now ti ↓ 0 be any sequence and set ri := ti. Define the rescaled spaces (X,di, x) as above,
with di(·, ·) := r−1

i d(·, ·). Notice first of all that the p-GH convergence of (X,di, x) to (Rk,dE , O)
ensures that

(4.24) lim
i→∞

di(γxpti , γ
xq
ti ) = dE(p̄, q̄).

It follows that

lim
i→∞

2t2i − d(γxpti , γ
xq
ti )2

2t2i
= lim
i→∞

2− di(γxpti , γ
xq
ti )2

2

(4.24)
=

2− dE(p̄, q̄)

2

(4.23)
= cos (∠p̄Oq̄)

(4.11)
= cos (∠pxq) .(4.25)

Since the sequence ti ↓ 0 was arbitrary, (4.25) implies (4.22).

The thesis then follows by combining (4.11) and (4.22).

�

Remark 4.5. The cosine formula in Rk ensures that

(4.26) ∠p̄Oq̄ = arccos
s2 + t2 − dE(`p(s), `q(t))

2

2st
∀s, t > 0.

It is natural to ask if the same formula holds in the non-smooth case. This remains an open
problem even for Ricci limit spaces, so a fortiori in RCD∗(K,N) spaces.
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Here let us briefly mention that with analogous arguments as above one can show the weaker
statement

(4.27) ∠pxq = lim
s,t↓0, 1

C≤
s
t≤C

arccos
s2 + t2 − d(γxps , γxqt )2

2st
, for every C ≥ 1.

To this aim let si ↓ 0, ti ↓ 0 be any two sequences. Up to subsequences, we may assume that
for all i ∈ N it holds either 0 ≤ si ≤ ti or 0 ≤ ti ≤ si. Without loss of generality we may assume
the first case. Up to further subsequences we may also assume that si/ti has a limit s̄ ∈ (0, 1] as
i→∞. Let ri := ti ↓ 0 and define the rescaled spaces (X,di, x) as above, with di(·, ·) := r−1

i d(·, ·).
Calling s′i := r−1

i si → s̄, t′i := r−1
i ti = 1, the p-GH convergence of (X,di, x) to (Rk,dE , O) ensures

lim
i→∞

di(γxpsi , γ
xq
ti ) = dE(`p(s̄), q̄).

Then we have

lim
i→∞

s2
i + t2i − d(γxpsi , γ

xq
ti )2

2siti
= lim
i→∞

(s′i)
2 + (t′i)

2 − di(γxpsi , γ
xq
ti )2

2s′it
′
i

= lim
i→∞

(s′i)
2 + (t′i)

2 − dE(`p(s
′
i), `q(t

′
i))

2

2s′it
′
i

(4.26)
= cos (∠p̄Oq̄)

(4.11)
= cos (∠pxq) .(4.28)

Since the sequences si, ti ↓ 0 were arbitrary, (4.28) implies (4.27).
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