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Abstract We present a way to study a wide class of optimal design problems with a perimeter
penalization. More precisely, we address existence and regularity properties of saddle points
of energies of the form

(u, A) �→
∫

�

2 f u dx −
∫

�∩A
σ1A u · A u dx −

∫
�\A

σ2A u · A u dx + Per (A;�),

where � is a bounded Lipschitz domain, A ⊂ R
N is a Borel set, u : � ⊂ R

N → R
d , A

is an operator of gradient form, and σ1, σ2 are two not necessarily well-ordered symmetric
tensors. The class of operators of gradient form includes scalar- and vector-valued gradients,
symmetrized gradients, and higher order gradients. Therefore, our results may be applied to
a wide range of problems in elasticity, conductivity or plasticity models. In this context and
under mild assumptions on f , we show for a solution (w, A), that the topological boundary
of A ∩ � is locally a C1-hypersurface up to a closed set of zero H N−1-measure.

Mathematics Subject Classification Primary 49J20 · 49J35 · 49N60 · 49Q20; Secondary
49J45

1 Introduction

The problem of finding optimal designs involving two materials goes back to the work
of Hashin and Shtrikman. In [1], the authors made the first successful attempt to derive
the optimal bounds of a composite material. It was later on, in the series of papers [2–4],
that Kohn and Strang described the connection between composite materials, the method of
relaxation, and the homogenization theory developed by Murat and Tartar [5,6]. In the context
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of homogenization, better designs tend to develop finer and finer geometries; a process which
results in the creation of non-classical designs. One way to avoid the mathematical abstract
of infinitely fine mixtures is to add a cost on the interfacial energy. In this regard, there is a
large amount of optimal design problems that involve an interfacial energy and a Dirichlet
energy. The study of regularity properties in this setting has been mostly devoted to problems
where the Dirichlet energy is related to a scalar elliptic equation; see [7–12], where partial
C1-regularity on the interface is shown for an optimization problem oriented to find dielectric
materials of maximal conductivity. We shall study regularity properties of similar problems in
a rather general framework. Our results extend the aforementioned results to linear elasticity
and linear plate theory models.

Before turning to a precise mathematical statement of the problem let us first present the
model in linear plate theory that motivated our results. Let � = ω×[−h, h] be the reference
configuration of a plate of thickness 2h and cross section ω ⊂ R

2. The linear equations
governing a clamped plate � as h tends to zero for the Kirchhoff model are{∇ · (∇ · (σ∇2u)) = f in ω,

∂νu = u = 0 in ∂ω,
(1)

where u : ω → R represents the displacement of the plate with respect to a vertical load
f ∈ L∞(ω), and the design of the plate is described by a symmetric positive definite fourth-
order tensor σ (up to a cubic dependence on the constant h). Here, we denote the second
gradient by

∇2u :=
(

∂2u

∂xi∂x j

)
i j

, i, j = 1, 2.

Consider the physical problem of a thin plate � made-up of two elastic materials. More
precisely, for a given set A ⊂ ω ⊂ R

2 we define the symmetric positive tensor

σA(x) := 1Aσ1 + (1 − 1A)σ2,

where σ1, σ2 ∈ Sym (R2×2,R2×2). In this way, to each Borel subset A ⊂ ω, there corre-
sponds a displacement uA : ω → R solving Eq. (1) with σ = σA. One measure of the rigidity
of the plate is the so-called compliance, i.e., the work done by the loading. The smaller the
compliance, the stiffer the plate is. A reasonable optimal design model consists in finding
the most rigid design A under the aforementioned costs. One seeks to minimize an energy
of the form

A �→
∫

ω

σA∇2uA · ∇2uA dx + Per(A;ω), among Borel subsets A of R2.

Optimality conditions for a stiffest plate can be derived by taking local variations on the
design. For such analysis to be meaningful, one has to ensure first that the variational equations
of optimality have a suitable meaning in the interface. Hence, it is natural to ask for the
maximal possible regularity of ∂A and ∇2uA.

We will introduce a more general setting where one can replace the second gradient ∇2

by an operator A of gradient type (see Definition 2.1 and the subsequent examples in the
next section for a precise description of this class).

1.1 Statement of the problem

Let N ≥ 2, and let d, k be positive integers. We shall work in � ⊂ R
N ; a nonempty, open,

and bounded Lipschitz domain. We also fix a function f ∈ L∞(�;Rd) and let σ1 and σ2 be
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two positive definite tensors in Sym(RdNk ⊗ R
dNk

) satisfying a strong pointwise Gårding
inequality: there exists a positive constant M such that

1

M
|P|2 ≤ σi P · P ≤ M |P|2 for all P ∈ R

dNk
, i ∈ {1, 2}. (2)

For a fixed Borel set A ⊂ R
N , define the two-point valued tensor

σA(x) := 1Aσ1 + 1(RN \A)σ2. (3)

We consider a k’th-order homogeneous linear differential operator A : L2
(
�;Rd

) →
W−k,2(�;RdNk

) of gradient form (see Definition 2.1 in Sect. 2). As a consequence of the
definition of operators of gradient form, the following equation

A ∗(σAA u) = f in D ′(�;Rd), u ∈ WA
0 (�) ⊂ Wk,2

0 (�;Rd), (4)

has a unique solution (cf. Theorem 1.1). We will refer to Eq. (4) as the state constraint and
we will denote by wA its unique solution.

It is a physically relevant question to ask which designs have the least dissipated energy.
To this end, consider the energy defined as1

A �→ E(A) :=
∫

�

f wA dx + Per (A;�) among Borel subsets A of RN .

We will be interested in the optimal design problem with Dirichlet boundary conditions on
sets:

minimize
{
E(A) : A ⊂ R

N is a Borel set, A ∩ �c ≡ A0 ∩ �c
}

, (5)

where A0 ⊂ R
N is a set of locally finite perimeter.2

Most attention has been drawn to the case where designs are mixtures of two well-ordered
materials. The presentation given here places no comparability hypotheses on σ1 and σ2.
Instead, we introduce a weaker condition on the decay of generalized minimizers of a
double-well problem. Our technique also holds under various constraints other than Dirichlet
boundary conditions; in particular, any additional cost that scales as O(r N−1+ε). For exam-
ple, a constraint on the volume occupied by a particular material (cf. [8,12,13]). Lastly, we
remark that our technique is robust enough to treat models involving the maximization of
dissipated energy.

1.2 Main results and background of the problem

Existence of a minimizer of (5) can be established by standard methods. We are interested in
proving that a solution pair (wA, A) enjoys better regularity properties than the ones needed
for existence. The notion of regularity for a set A will be understood as the local regularity
of ∂A seen as a submanifold of RN , whereas the notion of regularity for wA will refer to its
differentiability and integrability properties.

It can be seen from the energy, that the deviation from being a perimeter minimizer for
a solution A of problem (5) is bounded by the dissipated energy. Therefore, one may not
expect better regularity properties for A than the ones for perimeter minimizers; and thus,

1 Here, Per(A; �) = |μA|(�), where μA is the Gauss–Green measure of A; see Sect. 2.4.
2 Due to the nature of the problem, we cannot replace Per(A; �) with Per(A; �) in E(A) because it possible
that minimizing sequences tend to accumulate perimeter in ∂�.
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one may only expect regularity up to singular set (we refer the reader to [14,15] for classic
results, see also [12] for a partial regularity result in a similar setting to ours).

Since a constrained problem may be difficult to treat, we will instead consider an equivalent
variational unconstrained problem by introducing a multiplier as follows. Consider the saddle
point problem

inf
A⊂�

sup
u∈WA

0 (�)

I�(u, A), (P)

where

I�(u, A) :=
∫

�

2 f u dx −
∫

�

σAA u · A u dx + Per (A;�).

Our first result shows the equivalence between problem (P) and the minimization problem
(5) under the state constraint (4):

Theorem 1.1 (Existence) There exists a solution (w, A) of problem (P). Furthermore, there
is a one to one correspondence

(w, A) �→ (wA, A)

between solutions of the problem (P) and solutions of the minimization problem (5) under
the state constraint (4).

We now turn to the question of regularity. Let us depict an outline of the key steps and
results obtained in this regard. The Morrey space Lp,λ(�;Rd) is the subspace of Lp(�;Rd)

for which the semi-norm

[u]p
Lp,λ(�)

:= sup

{
1

rλ

∫
Br (x)

|u|p dy : Br (x) ⊂ �

}
, 0 < λ ≤ N ,

is finite.
The first step in proving regularity for solutions (w, A) consists in proving a critical

L2, N−1 local estimate for A w. This estimate arises naturally since we expect a kind of
balance between

∫
Br (x)

σAA w · A w dy and the perimeter part Per(A; Br (x)) that scales as

r N−1 in balls of radius r .
To do so, let us recall a related relaxed problem. As part of the assumptions onA there must

exist an m’th-order diferential operator B : L2(�; Z) → W−m,2(�;Rn) with constant rank
and Ker (B) = A [WA (�)].3 It has been shown by Fonseca and Müller [16], that a necessary
and sufficient condition for the lower semi-continuity of integral energies with superlinear
growth under a constant rank differential constraint Bv = 0 is the B-quasiconvexity of the
integrand. In this context, the B-free quasiconvex envelope of the double-well W (P) :=
min{σ1 P · P, σ2 P · P}, at a point P ∈ Z ⊂ R

dNk
, is given by

QBW (P) := inf

{∫
[0,1]N

W (P + v(y)) dy :

v ∈ C∞
per

([0, 1]N ; Z),Bv = 0 and
∫

[0,1]N
v(y) dy = 0

}
.

The idea is to get an L2, N−1 estimate by transferring the regularizing effects from generalized
minimizers of the energy u �→ ∫

B1
W (A u) onto our original problem. In order to achieve

3 Here, WA (�) = {
u ∈ L2(�;Rd ) : A u ∈ L2(�;RdNk

)
}

is the A -Sobolev space of �.
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this, we use a 	-convergence argument with respect to a perturbation in the interfacial energy
from which the next result follows:

Theorem 1.2 (Upper bound) Let (w, A) be a variational solution of problem (P). Assume
that, for some δ ∈ [0, 1) and some positive constant c, the higher integrability condition

[A ũ]2
L2,N−δ(B1/2)

≤ c‖A ũ‖2
L2(B1)

, (Reg)

holds for local minimizers of the energy u �→ ∫
B1

QBW (A u), where u ∈ WA (�). Then,
for every compactly contained set K ⊂⊂ �, there exists a positive constant �K such that∫

Br (x)
σAA w · A w dy + Per(A; Br (x))

≤ �K r
N−1 for all x ∈ K and every r ∈ (0, dist(K , ∂�)). (6)

Remark 1.3 (Well-ordering assumption) If σ1, σ2 are well-ordered, say σ2 − σ1 is positive
definite, then QBW is precisely the quadratic form σ2 P ·P . Due to standard elliptic regularity
results (cf. Lemma 2.6), estimate (Reg) holds for δ = 0; therefore, assuming that the materials
are well-ordered is a sufficient condition for the higher integrability assumption (Reg) to hold.

Remark 1.4 (Non-comparable materials) In dimensions N = 2, 3 and restricted to the setting
A = ∇, d = 1, condition (Reg) is strictly weaker than assuming the materials to be well-
ordered. Indeed, one can argue by a Moser type iteration as in [17] to lift the regularity of
minimizers. For higher-order gradients or in the case of systems it is not clear to us whether
assumption (Reg) is equivalent to the well-ordering of the materials.

The second step, consists of proving a discrete monotonicity for the excess of the Dirichlet
energy on balls under a low perimeter density assumption. More precisely, on the function
that assigns

r �→ 1

r N−1

∫
Br (x)

|A w|2 dx, x ∈ ∂A, r > 0.

The discrete monotonicity of the map above, together with the upper bound estimate (6), will
allow us to prove a local lower bound λK on the density of the perimeter:

Per(A; Br (x))
r N−1 ≥ λK for every x ∈ (K ∩ ∂A), and every 0 < r ≤ rK . (LB)

As usual, the lower bound on the density of the perimeter is the cornerstone to prove
regularity of almost perimeter minimizers. In fact, once the estimate (LB) is proved we
simply apply the excess improvement results of [8, Sections 4 and 5] to obtain our main
result:

Theorem 1.5 (Partial regularity) Let (w, A) be a saddle point of problem (P) in �. Assume
that the operator PHu = A ∗(σHA u) is hypoelliptic and regularizing for the half-space
problem (see properties (60), (61)), and that the higher integrability (Reg) holds. Then there
exists a positive constant η ∈ (0, 1] depending only on N such that

H N−1((∂A\∂∗A) ∩ �) = 0, and ∂∗A is an open C1,η/2- hypersurface in �.

Moreover ifA is a first-order partial differential operator, thenA w ∈ C0,η/8
loc (�\(∂A\∂∗A));

and hence, the trace of A w exists on either side of ∂∗A.
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Let us make a quick account of previous results. To our knowledge, only optimal design
problems modeling the maximal dissipation of energy have been treated.

In [7] Ambrosio and Buttazzo considered the case where A = ∇ is the gradient operator
for scalar-valued (d = 1) functions and where σ2 ≥ σ1 in the sense of quadratic forms. The
authors proved existence of solutions and showed that, up to choosing a good representative,
the topological boundary is the closure of the reduced boundary and H N−1(∂A\∂∗A) = 0.
Soon after, Lin [8], and Kohn and Lin [9] proved, in the same case, that ∂∗A is an open
C1-hypersurface. From this point on, there have been several contributions aiming to discuss
the optimal regularity of the interface for this particular case. In this regard and in dimension
N = 2, Larsen [10] proved that connected components of A are C1 away from the boundary.
In arbitrary dimensions, Larsen’s argument cannot be further generalized because it relies on
the fact that convexity and positive curvature are equivalent in dimension N = 2. During the
time this project was developed, we have learned that Fusco and Julin [11] found a different
proof for the same results as stated in [8]; besides this, De Philippis and Figalli [12] recently
obtained an improvement on the dimension of the singular set (∂∗A\∂A).

The paper is organized as follows. In the beginning of Sect. 2 we fix notation and discuss
some facts of linear operators, Young measures and sets of finite perimeter. We also give
the precise definition of gradient type operators and include a compensated compactness
result that will be employed throughout the paper. In Sect. 3 we show the equivalence of the
constrained problem (4), (5) and the unconstrained problem (P) (Theorem 1.1). In the first
part of Sect. 4 we shortly discuss how the higher integrability assumption (Reg) holds for
various operators of gradient form. The rest of the section is devoted to the proof of the Upper
bound (6). Section 5 is devoted to the proof of the Lower bound estimate (LB). Finally, in
Sect. 6 we recall the flatness excess improvement [8] from which Theorem 1.5 easily follows.

2 Notation and preliminaries

We will write � to represent a non-empty, open, bounded subset of R
N with Lipschitz

boundary ∂�. The use of capital letters A, B, . . . , will be reserved to denote Borel subsets
of RN and we will write B(RN ) to denote the Borel σ -algebra of RN .

The letters x, y will denote points in �; while z ∈ R
d and P ∈ R

dNk
will be reserved for

vectors and arrays in Euclidean space. The Greek letters ε, δ, ρ and γ shall be used for general
smallness or scaling constants. We follow Lin’s convention in [8], bounding constants will
be generally denoted by c1 ≥ c2 ≥ · · · , while smallness and decay constants will be usually
denoted by ε1 ≥ ε2 ≥ · · · , and θ1 ≥ θ2 ≥ · · · , respectively. Let us mention that in proving
regularity results one may often find it impractical to keep track of numerical constants due
to the large amount of parameters; to illustrate better their uses and dependencies we have
included a glossary of constants at the end of the paper.

It will often be useful to write a point x ∈ R
N = R

N−1 × R as x = (x ′, xN ), in the same
fashion we will also write ∇ = (∇′, ∂N ) to decompose the gradient operator. The bilinear
form R

p × R
p → R : (x, y) �→ x · y will stand for the standard inner product between two

points while we will use the notation |x | := √
x · x to represent the standard p-dimensional

Euclidean norm. To denote open balls in R
N centered at a point x with radius r we will

simply write Br (x). Similarly, B ′
r := {x ′ ∈ R

N−1 : (x ′, 0) ∈ Br }.
We keep the standard notation for Lp and Wl,p spaces. We write Cl(�; Z), and Cl

c(�;Rd)

to denote the spaces of functions with values inR
d and with continuous l-th derivative, and its

subspace of functions compact support respectively. Similar notation stands for M (�;Rd)
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the space of bounded Radon measures in �, and D(�;Rd) the space of smooth functions in
� with compact support. For X and Y Banach spaces, the standard pairing between X and
Y will be denoted by 〈·, ·〉 : X × Y → R : (u, v) �→ 〈u, v〉.
2.1 Operators of gradient form

We introduce an abstract class of linear differential operators A : L2(�;Rd) →
W−k,2(�;RdNk

).
This class contains scalar- and vector-valued gradients, higher gradients, and symmetrized

gradients among its elements. The motivation behind it is that we may treat different models
by employing a general and neat abstract setting. At a first glance this framework may appear
too sterile, however, this definition is only meant to capture some of the essential regularity
and rigidity properties of gradients.

Let A : L2(�;Rp) → W−k,2(�;Rq) be a k’-th order homogeneous partial differential
operator of the form

A =
∑
|α|=k

Aα∂α, (7)

where Aα ∈ Lin (Rp;Rq), and ∂α = ∂
α1
1 . . . ∂

αN
N for every multi-index α = (α1, . . . , αN ) ∈

(N ∪ {0})N with |α| := |α1| + · · · |αN |. We define the A -Sobolev space of � as

WA (�) := {
u ∈ L2(�;Rp) : A u ∈ L2(�;Rq)

}

endowed with the norm ‖u‖2
WA (�)

:= ‖u‖2
L2(�)

+‖A u‖2
L2(�)

. We also define theA -Sobolev
space with zero boundary values in ∂� by letting

WA
0 (�) := cl

{
C∞

c (�;Rp), ‖ · ‖WA (�)

}
.

The principal symbol of A is the positively k-homogeneous map defined as

ξ �→ A(ξ) :=
∑
|α|=k

ξαAα ∈ Lin (Rp,Rq), ξ ∈ R
N ,

where ξα = ξ
α1
1 · · · ξαN

N . One says that A has the constant rank property if there exists a
positive integer r such that

rank (A(ξ)) = r for all ξ ∈ R
N\{0}. (†)

Definition 2.1 (Operators of gradient form) Let A a homogeneous partial differential oper-
ator as in (7) with p = d and q = dNk . We say that A is an operator of gradient form if the
following properties hold:

1. Compactness. There exists a positive constant C(�) for which

‖ϕ‖2
Wk,2(�)

≤ C(�)

(
‖ϕ‖2

L2(�)
+ ‖A ϕ‖2

L2(�)

)
(8)

for all ϕ ∈ C∞(�;Rd). Even more, for every u ∈ WA (�) the following Poincaré
inequality holds:

inf
{ ‖u − v‖2

Wk,2(�)
: v ∈ WA (�),A v = 0

} ≤ C(�)‖A u‖2
L2(�)

. (9)
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2. Exactness. There exists an m’-th homogeneous partial differential operator

B :=
∑

|α|=m

Bα∂α, (10)

with coefficients Bα ∈ Lin (Z;Rn) for some positive integer n and a subspace Z ofRdNk
,

such that for every open and simply connected subset ω ⊂ � we have the property{
A u : u ∈ WA (ω)

} = {
v ∈ L2(ω; Z) : Bv = 0 in D ′(ω;Rn)

}
.

We write A ∗ to denote the L2-adjoint of A , which is given by

A ∗ := (−1)k
∑
|α|=k

AT
α ∂α.

Remark 2.2 (Constant rank) Let A and B be two linear differential operators satisfying an
exactness property as in Definition 2.1. Then both operators A and B have the constant rank
property (†). This follows from the lower semi-continuity of the rank in any subspace of
matrices.

Remark 2.3 (Rigidity) The wave cone of an operator A of the form (7) which is defined as

�A :=
⋃

|ξ |=1

Ker(A(ξ)) ⊂ R
p,

contains the admissible amplitudes in Fourier space for which concentration and oscillation
behavior is allowed under the constraint A u = 0. As in the case of gradients, it can be seen
from the compactness assumption in Definition 2.1 that the wave cone �A of a gradient
operator A is the zero space. In particular, there exists a positive constant λ (depending only
on the coefficients of A ) such that

|A(ξ)z|2 ≥ λ|ξ |2k |z|2 for all ξ ∈ R
N\{0} and all z ∈ R

d . (11)

Remark 2.4 (Poincaré inequality II) It follows from the definition of WA
0 (�) and the com-

pactness assumption of A that WA
0 (�) ⊂ Wk,2

0 (�;Rd). In particular, Ker(A )∩WA
0 (�) =

{0} ⊂ L2(�;Rd) and A [WA
0 (�)] is closed in the L2 norm. Thus, by [18, Theorem 2.21],

there exists a constant4 C(�) such that

‖u‖2
L2(�)

≤ C(�)‖A u‖2
L2(�)

for all u ∈ WA
0 (�). (12)

2.1.1 Elliptic regularity

Let A be an operator of gradient form as in Definition 2.1 and let σ ∈ L∞(�;RdNk
) be a

tensor of variable coefficients satisfying the strong pointwise Gårding inequality (see (2))

1

M
|P|2 ≤ σ(x) P · P ≤ M |P|2 for almost every x ∈ � and every P ∈ R

dNk
. (13)

If we define

Ai j
βα := (Aα)iβ, j for |α| = |β| = k, and 1 ≤ i, j ≤ d,

4 Possibly abusing the notation, we will denote by C(�) the Poincaré constants from Definition 2.1 and
Remark 2.4.
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then we may write
A ϕ = A∇kϕ for every ϕ ∈ Ck(�;Rd). (14)

It is easy to verify, using the compactness assumption of A , that C := (AT σ A) satisfies the
weak Gårding inequality

〈C ∇kϕ,∇kϕ〉 ≥
(

1

MC

)
‖∇kϕ‖2

L2(�)
−

(
1

M

)
‖ϕ‖2

L2(�)
, (15)

where C = C(�) is the constant in the compactness assumption of Definition 2.1; for all
smooth, Rd -valued functions ϕ in �.

Lemma 2.5 (Caccioppoli inequality) Let σ ∈ L∞(�;RdNk
) satisfy the strong pointwise

Gårding inequality (13) and let w ∈ WA (�) be a solution of the state equation

A ∗(σA u) = 0 in D ′(�;Rd).

Then there exists a positive constant C depending only on M, N , σ and A such that
∫
Br (x)

|∇kw|2 dx ≤ C

(R − r)2k

∫
BR(x)

|w|2 dx for every Br (x) ⊂ BR(x) ⊂ �.

Proof We may re-write A ∗(σA u) as the elliptic operator in divergence form

(−1)k
∑

∂β(Ci j
βα∂αu j ),

for coefficients C = (AT σA) satisfying a weak Gårding inequality as in (15). The assertion
then follows from Corollary 22 in [19]. ��

Using Lemma 2.5 one can show, by classical methods, the following lemma on the regu-
larizing properties of elliptic operators with constant coefficients:

Lemma 2.6 (Constant coefficients) Let A be an operator of gradient form and let σ0 ∈
Lin(RdNk ;RdNk

) be a tensor satisfying the strongGårding inequality (13). Then the operator

Lσ0u := A ∗(σ0A u)

is hypoelliptic in the sense that if � is open and connected, and w ∈ L2(�;Rd), then

Lσ0w = 0 ⇒ w ∈ C∞
loc(�;Rd).

Furthermore, there exists a constant c = c(M, N ) ≥ 2N such that

1

ρN

∫
Bρ(x)

|∇ku|2 dx ≤ c

r N

∫
Br (x)

|∇ku|2 dx for all 0 < ρ ≤ r

2
,

1

ρN

∫
Bρ(x)

|A u|2 dx ≤ c

r N

∫
Br (x)

|A u|2 dx for all 0 < ρ ≤ r

2
,

for every Br (x) ⊂ �.
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2.1.2 Examples

Next, we gather some well-known differential structures that fit into the definition of operators
of gradient form.

(i) Gradients. Let A : L2(�;Rd) → W−1,2(�;RdN ) : u �→ (∂ j ui ) for 1 ≤ i ≤ d and
1 ≤ j ≤ N . In this case

A j z = z ⊗ e j for every z ∈ R
d .

Hence, WA (�) = W1,2(�;Rd) and the compactness property is a consequence of the
classical Poincaré inequality on �.
The exactness assumption is the result of the characterization of gradients via curl-free
vector fields.
Let B : L2(�;RdN ) → W−1,2(�;RdN2

) be the curl operator

Bv = (curl(vi ))i := (∂lvir − ∂rvil)ilr 1 ≤ i ≤ d, 1 ≤ l, r ≤ N ,

then condition (10) is fulfilled for B = ∑N
j=1 Bj∂i with coefficients

(Bj )ilr,pq = δi p(δ jlδrq − δ jr δlq) 1 ≤ l, r, q ≤ N , 1 ≤ i, p ≤ d.

Observe that Bv = 0 if and only if curl vi = 0, for every 1 ≤ i ≤ d; or equivalently,
vi = ∇ui for some function ui : � ⊂ R

N → R, for every 1 ≤ p ≤ d (as long as � is
simply connected). Hence,

{∇u : u ∈ W1,2(ω;Rd)
} = {

v ∈ L2(ω;RdN ) : Bv = 0
}
,

for all Lipschitz, and simply connected ω ⊂⊂ �.
(ii) Higher gradients. Let A : L2(�) → W−k,2(�;RNk

) be the linear operator given by

u �→ ∂αu, where |α| = k.

Compactness is similar to the case of gradients.
We focus on the exactness condition: LetBk : L2(�; Sym(RNk

)) → W−1,2(�;RNk+1
)

be the curl operator on symmetric functions defined by the coefficients

(Bk
j )pqβ2...βk ,α1...αk :=

(
δ j pδα1q

k∏
h=2

δαhβh − δ jqδα1 p

k∏
h=2

δαhβh

)
,

1 ≤ p, q, βh, αh ≤ N , h ∈ {2, · · · , k}.
We write

Bkv :=
N∑
i=1

Bk
j ∂ jv, v : � ⊂ R

N → Sym (RNk
).

It easy to verify that Bkv = 0 if and only if

curl((vpα′)p) = 0 for all |α′| = k − 1.

If � is simply connected, then there exists a function uα′ : � → R such that vpα′ =
∂puα′

for every |α′| = k − 1. Using the symmetry of v under the permutation of its
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coordinates one can further deduce the existence of a function uk : � → Sym (RNk−1
)

with

v = ∇uk and (uk)α′ = uα′
.

Moreover, Bk−1uk = 0. By induction one obtains that

v = ∇ku0 for some function u0 : � ⊂ R
N → R.

(iii) Symmetrized gradients. Let E : L2(�;RN ) → W−1,2(�; Sym (RN2
)) be the linear

operator given by

u �→ E u := 1

2
(∂ j u

i + ∂i u
j )i j , for 1 ≤ i, j ≤ N .

The compactness property is a direct consequence of Korn’s inequality. Consider
the second-order homogeneous differential operator B : L2(�; Sym (RN2

)) →
W−2,2(�;RN3

) defined in the following way

Bv = curl (curl(v)) =
(

∂2vi j

∂xi∂xl
+ ∂2vil

∂xi∂x j
− ∂2vi i

∂x j∂xl
− ∂2v jl

∂xi∂xi

)
1≤i, j,l≤N

.

Then Bv = 0, if and only if v = E u for some u ∈ W1,2(�;RN ) = WE (�).5

Remark 2.7 In the previous examples, we have omitted the characterization of higher gra-
dients of vector-valued functions; however, the ideas remain the same as in the examples (i)
and (ii).

Remark 2.8 (Two-dimensional elasticity) In dimension N = 2 and provided that � is simply
connected, the fourth-order equation for pure bending of a thin plate given by

∇ · (∇ · (D(x)∇2u(x))) = 0 for u ∈ W2,2(�)

is equivalent to the in-plane elasticity equation

∇ · (S(x)Ew(x)) = 0 where w ∈ W1,2(�;R2),

for some tensor S such thatD = (R⊥S−1 R⊥), and whereR⊥ is the fourth-order tensor whose
action is to rotate a second-order tensor by 90◦ (see, e.g., [20, Chapter 2.3]). Furthermore,

S(x)Ew(x) = R⊥∇2u(x) and ∇ · (∇ · (R⊥Ew(x))) = 0.

For this reason, when working with the linear equations for pure bending of a thin plate we
may indistinctly use regularizing properties of any of the equations above in the portions
where D is regular.

2.2 Compensated compactness

The following theorem is a generalized version of the well-known div-curl Lemma.

Lemma 2.9 LetA bea k’-th order operator of gradient formand let {σh} ⊂ L2(�; Sym(RdNk

⊗ R
dNk

)) be a sequence of strongly elliptic tensors as in (13). Assume also that {uh} ⊂
WA (�) and { fh} ⊂ W−k,2(�;Rd) are sequences for which

A ∗(σhA uh) = fh in D ′(�;Rd), f or every h ∈ N.

5 Here, B is a second order operator expressing the Saint-Venant compatibility conditions.
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Further assume there exist σ ∈ L2(�; Sym(RdNk ⊗ R
dNk

)), u ∈ WA (�), and f ∈
W−k,2(�;Rd) for which

A uh ⇀ A u in L2(�;RdNk
), fh → f in W−k,2(�;Rd), and σh → σ

in L2(�;RdNk ⊗ R
dNk

).

Then,

A ∗(σA u) = f in D ′(�;Rd), σhA uh · A uh → σA u · A u in D ′(�).

In particular,

A uh → A u in L2
loc(�;RdNk

).

Proof For simplicity we denote τh := σhA uh, τ := σA u. It suffices to observe that τh ⇀ τ

in L2 to prove that

A ∗τ = f in D ′(�;Rd).

The strong convergence on compact subsets of � requires a little bit more effort. Con-
sidering that A is a k’-th order linear differential operator, we may find constants cαβ with
|α| + |β| ≤ k, |β| ≥ 1 such that

A (uhϕ) = (A uh)ϕ +
∑
α,β

cαβ∂αuh∂
βϕ ∈ L2(�;Rd) ∀ ϕ ∈ D(�),∀ h ∈ N.

Hence,

〈τh · A uh, ϕ〉 = 〈 fh, uhϕ〉 −
〈
τh,

∑
α,β

cαβ∂αuh∂
βϕ

〉
.

By the compactness assumption on A we may assume without loss of generality that uh ⇀ u
in Wk,2(�;Rd). Thus, passing to the limit we obtain

lim
h→∞〈τh · A uh, ϕ〉 = 〈 f, uϕ〉 −

〈
τ,

∑
α,β

cαβ∂αu ∂βϕ

〉
= 〈τ · A u, ϕ〉,

for every ϕ ∈ D(�). One concludes that

σhA uh · A uh → σA u · A u in D ′(�). (16)

Fix ω ⊂⊂ � and let 0 ≤ ϕ ∈ D(�) with ϕ ≡ 1 on ω. Using the convergence in (16), the
uniform ellipticity (2) and the symmetry of {σh}, one gets

lim
h→∞ ‖A uh − A u‖L2(ω) ≤ M · lim

h→∞〈σh(A (uh − u)) · A (uh − u), ϕ〉

≤ M ·
(

lim
h→∞〈σhA uh · A uh, ϕ〉

− lim
h→∞ 2〈σhA uh · A u, ϕ〉 + 〈σhA u · A u, ϕ〉

)

= 0.

��
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2.3 Young measures and lower semi-continuity of integral energies

In this section B : L2(�; Z) → W−m,2(�;Rn) is assumed to be a an m’-th order homoge-
neous partial differential operator of the form∑

α

Bα∂α, Bα ∈ Lin (Z;Rn), with Z a linear subspace of RdNk
,

satisfying the constant rank condition (†).
Next, we recall some facts about B-quasiconvexity, lower semi-continuity and Young

measures. The results in this section hold for differential operators with coefficients Bα in
arbitrary spaces Lin (Rp;Rq) for p, q a pair of positive integers; however, we only present
versions where the dimensions match our current setting. We start by stating a version of the
Fundamental theorem for Young measures due to Ball [21].

Theorem 2.10 (Fundamental theorem for Young measures) Let � ⊂ R
N be a measurable

set with finite measure and let {v j } be a sequence of measurable functions v j : � → Z.
Then there exists a subsequence {vh( j)} and a weak∗ measurable map μ : � → M (Z) with
the following properties:

1. Wedenoteμx := μ(x) for simplicity, thenμx ≥ 0 in the sense ofmeasures and |μx |(Z) ≤
1 for a.e. x ∈ �.

2. If one additionally assumes that {vh( j)} is uniformly bounded in L1(�; Z), then
|μx |(Z) = 1 for a.e. x ∈ �.

3. If F : RdNk → R is a Borel and lower semi-continuous function, and is also bounded
from below, then ∫

�

〈μx , F〉 dx ≤ lim inf
j→∞

∫
�

F(vh( j)) dx .

4. If {vh( j)} is uniformly bounded in L1(�; Z) and F : RdNk → R is a continuous function,
and bounded from below, then∫

�

〈μx , F〉 dx = lim inf
j→∞

∫
�

F(vh( j)) dx

if and only if {F ◦ vh( j)} is equi-integrable. In this case,

F ◦ vh( j) ⇀ 〈μx , F〉 in L1(�).

In the sense of Theorem 2.10, we say that the sequence {vh( j)} generates the Young
measure μ.

The following proposition tells us that a uniformly bounded sequence in the Lp norm,
which is also sufficiently close to Ker(B), may be approximated by a p-equi-integrable
sequence in Ker(B) in a weaker Lq norm. We remark that this rigidity result is the only one
where Murat’s constant rank condition (†) is used.

Proposition 2.11 [16, Lemma 2.15] Let 1 < p < ∞. Let {vh} be a bounded sequence in
Lp(�; Z) generating a Young measure μ, with vh ⇀ v in Lp(�; Z) and Bvh → 0 in
W−m,p(�;Rn). Then there exists a p-equi-integrable sequence {uh} in Lp(�; Z) ∩Ker(B)

that generates the same Young measure μ and is such that∫
�

vh dx =
∫

�

uh dx, ‖vh − uh‖Lq (�) → 0, for all 1 ≤ q < p.

��
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Let F : RdNk → R be a lower semi-continuous function with 0 ≤ F(P) ≤ C(1 + |P|p)
for some positive constantC . The B-quasiconvex envelope of F at P ∈ Z ⊂ R

dNk
is defined

as

QBF(P) := inf

{∫
[0,1]N

F(P + v(y)) dy :

v ∈ C∞
per

(
[0, 1]N ; Z

)
, Bv = 0 and

∫
[0,1]N

v dy = 0

}
. (17)

The most relevant feature of QBF is that, for p > 1, the lower semi-continuous envelope
with respect to the weak-Lp topology of the functional

v �→
∫

�

F(v) dx, where v ∈ Lp(�; Z) and Bv = 0, (18)

is given by the functional

v �→
∫

�

QBF(v) dx, where v ∈ Lp(�; Z) and Bv = 0.

If μ is a Young measure generated by a sequence {vh} in Lp(�; Z) such that Bvh = 0
for every h ∈ N, then we say that μ is a B-free Young measure.

We recall the following Jensen inequality for B-free Young measures [16, Theorem 4.1]:

Theorem 2.12 Let 1 < p < ∞. Letμ be aB-free Young measure in�. Then for a.e. x ∈ �

and all lower semi-continuous functions that satisfy |F(P)| ≤ C(1+|P|p) for some positive
constant C and all P ∈ R

dNk
, one has that

〈μx , F〉 ≥ QBF(〈μx , id〉).
2.4 Geometric measure theory and sets of finite perimeter

Most of the facts collected in this section can be found in [22] and [23]; however, some
notions as the slicing of sets of finite perimeter are presented there only in a formal way. For
a better understanding of such topics we refer the reader to [24].

Let A ⊂ R
N be a Borel set. The Gauss-Green measure μA of A is the derivative of the

characteristic function of A in the sense of distributions, i.e., μA := D(1A). We say that A is
a set of locally finite perimeter if and only if |μA| is a vector-valued Radon measure in R

N .
We write A ∈ BVloc(R

N ) to express that A is a set of locally finite perimeter in R
N .

Let ω ⊂⊂ R
N be a Borel set. The perimeter in ω of a set A with locally finite perimeter

is defined as

Per(A, ω) := |μA|(ω).

The Radon–Nikodým differentiation theorem states that the set of points

∂∗A :=
{
x ∈ R

N : lim
r↓0

Per(A; Br (x))
vol (B ′

1) · r N−1 = 1,

and
dμA

d|μA| (x) exists and belongs to S
N−1

}
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has full |μA|-measure in R
N ; this set is commonly known as the reduced boundary of A. We

will also use the notation

νA(x) := dμA

d|μA| (x) x ∈ ∂∗A;

the measure theoretic normal of A.
In general, for s ≥ 0, we will denote by H s the s-dimensional Hausdorff measure in

R
N . The following well-known theorem captures the structure of sets with finite perimeter

in terms of the measure H N−1:

Theorem 2.13 (De Giorgi’s Structure Theorem) Let A be a set of locally finite perimeter.
Then

∂∗A =
∞⋃
j=1

K j ∪ N ,

where

|μA|(N ) = 0,

and each K j is a compact subset of a C1-hypersurface S j for every j ∈ N. Furthermore,
νA|S j is normal to S j and

μA = νA H N−1�∂∗A.

From De Giorgi’s Structure Theorem it is clear that spt μA = ∂∗A. Actually, up to modifying
A on a set of zero measure, one has that ∂A = ∂∗A (see [22, Proposition 12.19]). From this
point on, each time we deal with a set A of finite perimeter, we will assume without loss of
generality that

∂A = spt μA = ∂∗A. (19)

For a set of locally finite perimeter A, the deviation from being a perimeter minimizer in
�, at a given scale r , is quantified by the monotone function

Dev�(A, r) := sup{Per(A; Br (x)) − Per(E; Br (x)) : E�A ⊂⊂ Br (x) ⊂ �}.
The next result, due to Tamanini [25], states that a set of locally finite perimeter with small
deviation Dev� at every scale is actually a C1-hypersurface up to a lower dimensional set.

Theorem 2.14 Let A ⊂ R
N be a set of locally finite perimeter and let c(x) be a locally

bounded function for which

Dev�(A, r) ≤ c(x)r N−1+2η for some η ∈ (0, 1/2 ].
Then the reduced boundary in �, (∂∗A ∩ �), is an open C1,η-hypersurface and the singular
set � ∩ (∂A\∂∗A) has at most Hausdorff dimension (N − 8).

2.4.1 Slicing sets of finite perimeter

Given a Borel set E ⊂ R
N and a Lipschitz function g : RN → R, we shall consider the level

set slices

Et := E ∩ {
g = t

}
, t ∈ R.
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For a set A ⊂ R
N of finite perimeter in �, the level set slice of the reduced boundary

(∂∗A)t is H N−2-rectifiable for almost every t ∈ R. Furthermore, by the co-area formula,
t �→ H N−2((∂∗A)t ) ∈ L1

loc(R).
If the set {g = t} is a C1-manifold and t is such that H N−2((∂∗A)t ) < ∞, we shall

define the slice of A in g−1{t} as

〈A, g, t〉 := H N−2�(∂∗A)t .

It turns out that, for g(x) = |x |, the level set slice At is locally diffeomorphic to a set of
finite perimeter in R

N−1. Even more,

H N−2�∂∗At = 〈A, g, t〉 for a.e. t > 0, and (20)

πgνA := (id
RN −∇g ⊗ ∇g)νA �= 0 for H N−2- a.e. x ∈ (∂∗A)t . (21)

Here, ∂∗At is understood as the image, under local diffeomorphisms, of the reduced boundary
of a set of finite perimeter. These properties can be inferred from the classical slicing by
hyperplanes, see e.g., [22, Chapter 18.3].

We also define the cone extension of a set E ⊂ R containing {0} by letting

DE := {λx ∈ R
N : λ > 0, x ∈ E}.

For a.e. t > 0 and g(x) = |x |, the cone extension of At is a set of locally finite perimeter in
R
N with

∂∗DAt = D(∂∗A)t and Per(DAt ; Bρ) =
(

1

N − 1

)
ρN−1

t N−2 · H N−2((∂∗A)t ). (22)

In order to attend different variational problems involving the minimization of perimeter, a
well-known technique is to modify a set A within balls Bt without modifying its Gauss-Green
measure in (Bt )

c.
For almost every t > 0, where 〈A, g, t〉 is well-defined and (20), (21) hold, we construct

a cone-like comparison set of A by setting

Ã := 1Bt DAt + 1�\Bt A. (23)

Exploiting the basic properties of reduced boundaries, it follows by (20) that

μ Ã = μDAt
�Bt + μA�(Bt )

c; (24)

and, in particular,

Per(Ã; Br ) = Per(D∂∗At ; Bt ) + Per(A; (Bt )
c ∩ Br ) for all r > t.

On the other hand, again by the co-area formula,

H N−1((∂∗A)t ∩ {g = t}) = 0 for almost every t > 0.

Using the monotonicity of r �→ Per(A; Br ) and the general version of the co-area formula
(see [24, Theorem 3.2.22]) one can show that the derivative of r �→ Per(A; Br ) exists at
almost every t > 0; even more, one has that

d

dr

∣∣∣∣
r=t

Per(A; Br ) ≥ |πtνA|−1H N−2((∂∗A)t ) ≥ 〈A, g, t〉(RN ). (25)

The previous estimate will play a crucial role in proving the Lower bound (LB).
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3 Existence of solutions: proof of Theorem 1.1

We show an equivalence between the constrained problem (5) and the unconstrained problem
(P) for which existence of solutions and regularity properties for minimizers are discussed in
the present and subsequent sections. We fix A : L2(� R

d) → W−k,2(�;RdNk
) an operator

of gradient from as in Definition 2.1. We also fix A0 ⊂ R
N , a set of locally finite perimeter.

Recall that, the minimization problem (5) under the state constraint (4) reads:

minimize

{ ∫
�

f wA + Per(A;�) : A ∈ BVloc(R
N ), A ∩ �c ≡ A0 ∩ �c

}
,

where wA is the unique distributional solution to the state equation

A ∗(σAA u) = f, u ∈ WA
0 (�).

On the other hand, the associated saddle point problem (P) reads6:

inf

{
sup

u∈WA
0 (�)

I�(u, A) : A ∈ BVloc(R
N ), A ∩ �c ≡ A0 ∩ �c

}
, (P)

where

I�(u, A) :=
∫

�

2 f u dx −
∫

�

σAA u · A u dx + Per(A;�).

Theorem 1.1 (Existence) There exists a solution (w, A) of problem (P). Furthermore, there
is a one to one correspondence

(w, A) �→ (wA, A)

between solutions of the problem (P) and solutions of the minimization problem (5) under
the constraint (4).

Proof We employ the direct method. We begin by proving existence of solutions to problem
(P). To do so, we will first prove the following:

Claim 1. For any set A ⊂ R
N as in the assumptions, there exists wA ∈ WA

0 (�) such that

0 ≤ I�(wA, A) = sup
u∈WA

0 (�)

I�(u, A) < ∞.

The tensor σA is a positive definite tensor and therefore the mapping

u �→ I�(u, A) =
∫

�

2 f u − σAA u · A u dx + Per (A;�)

is strictly concave. Observe that supu∈WA
0 (�)

I�(u, A) ≥ Per (A;�); indeed, we may take

u ≡ 0 ∈ WA
0 (�). Hence,

sup
u∈WA

0 (�)

I�(u, A) ≥ Per (A;�) ≥ 0. (26)

6 As stated in Sect. 2.4, we write A ∈ BVloc(R
N ) to express that A is a Borel set of locally finite perimeter

in R
N .
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Because of this, we may find a maximizing sequence {wh} in WA
0 (�), i.e.,

I�(wh, A) → sup
u∈WA

0 (�)

I�(u, A), as h tends to infinity.

Even more, one has from (2) that

− 1

M
‖A wh‖2

L2(�)
≥ −

∫
�

σAA wh · A wh dx

and consequently from (26) and (12) one infers that

C(�)−1·lim sup
h→∞

1

M
‖wh‖2

L2(�)
≤ lim sup

h→∞
1

M
‖A wh‖2

L2(�)
≤ 2‖ f ‖L2(�)·lim sup

h→∞
‖wh‖L2(�).

(27)
A fast calculation shows that ‖wh‖L2(�) ≤ 2MC(�)‖ f ‖L2(�); in return, (27) also implies
that

lim sup
h→∞

‖A wh‖2
L2(�)

≤ 4C(�)M2‖ f ‖2
L2(�)

.

Hence, using again the compactness property of A , we may pass to a subsequence (which
we will not relabel) and find wA ∈ WA

0 (�) with

wh → wA in L2(�;Rd), A wh ⇀ A wA in L2(�;RdNk
).

The concavity of −σAz · z is a well-known sufficient condition for the upper semi-continuity
of the functional A u �→ − ∫

�
σAA u · A u. Therefore,

sup
u∈WA

0 (�)

I�(u, A) = lim
h→∞ I�(wh, A) ≤ I�(wA, A).

This proves the claim.
Now, we use Claim 1 to find a minimizing sequence {Ah} for A �→ I�(wA, A). Since the

uniform bound (27) does not depend on A, we may again assume (up to a subsequence) that
there exists w̃ ∈ WA

0 (�) such that

wAh → w̃ in L2(�;Rd), A wAh ⇀ A w̃ in L2(�;RdNk
), and A ∗(σAhA wAh ) = f.

Even more, since {Ah} is minimizing, it must be that suph{Per(Ah; BR)} < ∞, for some ball
BR properly containing �, and thus (for a further subsequence) there exists a set Ã ⊂ R

N of
locally finite perimeter with Ã ∩ �c ≡ A0 ∩ �c and such that

1Ah → 1 Ã in L1(BR), |μ Ã|(BR) ≤ lim inf
h→∞ |μ Ãh

|(BR).

Therefore

Per( Ã;�) = |μ Ã|(BR) − |μA0 |(BR\�)

≤ lim inf
h→∞ |μAh |(BR) − |μA0 |(BR\�) = lim inf

h→∞ Per(Ah;�) (28)

A consequence of Lemma 2.9 is that7

A ∗(σ ÃA w̃) = f in D ′(�;Rd), and
∫

�

σAhA wAh · A wAh →
∫

�

σ ÃA w̃ · A w̃.

(29)

7 The convergence of the total energy is not covered by Lemma 2.9; however, this can be deduced using
integration by parts and the fact that wh has zero boundary values for every h ∈ N.
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By taking the limit as h goes to infinity we get from (28) and the convergence above that

min
A

sup
u∈WA

0 (�)

I�(u, A) = lim
h→∞ I�(wAh , Ah) ≥ I�(w̃, Ã) = I�(w Ã, Ã),

where the last equality is a consequence of the identity w̃ = w Ã which can be easily derived
by using the equation and the strict concavity of I� in the first variable. Thus, the pair (w Ã, Ã)

is a solution to problem (P).
The equivalence of problem (P) and problem (5) under the state constraint (4) follows

easily from (29), the strict concavity of I�(·, A), and a simple integration by parts argument.
��

4 The energy bound: proof of Theorem 1.2

Throughout this section and for the rest of the manuscript we fix A : L2(�;Rd) →
W−k,2(�;RdNk

) in the class of operators of gradient form. Accordingly, the notations Z
and B shall denote the subspace of RdNk

and the homogeneous operator associated to A
(see Definition 2.1). We will also write (w, A) to denote a particular solution of problem (P).

Consider the energy Jω : L2(�; Z) × B(RN ) → R defined as

Jω(v, E) :=
∫

ω

σEv · v dy + Per(E;ω), for ω ⊂ R
N an open set.

The goal of this section is to prove a local bound for the map x �→ JBr (x)(A w, A). More
precisely, we aim to prove that for every compactly contained subset K of � there exists a
positive number �K such that

JBr (x)(A w, A) ≤ �K r
N−1 for all x ∈ K and every r ∈ (0, dist(K , ∂�)). (30)

Our strategy will be the following. We first define a one-parameter family J ε of perturbations
of JB1 in the perimeter term. In Theorem 4.2 we show that, as the perimeter term vanishes,
these perturbations 	-converge (with respect to the L2-weak topology) to the relaxation of
the energy

w �→
∫
B1

W (A w) dx,

for which we will assume certain regularity properties (cf. property (Reg)). Then, using a
compensated compactness argument, we prove Theorem 1.2 (Upper bound) by transferring
the regularity properties of the relaxed problem to our original problem.

Before moving forward, let us shortly discuss how the higher integrability property (Reg)
stands next to the standard assumption that the materials σ1 and σ2 are well-ordered.

4.1 A digression on the regularization assumption

As commented beforehand in the introduction, a key assumption in the proof of the upper
bound (30) is that generalized local minimizers of the energy

u �→
∫
B1

W (A u) dy, where u ∈ WA (B1),
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possess improved decay estimates. More precisely, we require that local minimizers ũ of the
functional

u �→
∫
B1

QBW (A u) dy, where u ∈ WA (B1), (31)

possess a higher integrability estimate of the form

[A ũ]2
L2,N−δ(B1/2)

≤ c‖A ũ‖2
L2(B1)

for some δ ∈ [0, 1). (Reg)

Only then, we will be able to transfer a decay estimate of order ρN−1 to solutions of our
original problem.

Remark 4.1 (The case of gradients) In the case A = ∇, condition (Reg) boils down to
regularity above the critical C0,1/2 local regularity. More specifically,

1

r N−δ+2

∫
Br (x)

|w − (w)r,x |2 dy ≤ [∇w]2
L2, N−δ(B1/2)

≤ c‖∇w‖2
L2(B1)

for all Br (x) ⊂ B1/2.
By Poincaré’s inequality and Campanato’s Theorem one can easily deduce that w ∈

C
0, 1

2 +ε

loc (B1/2) (cf. [9]).

Let us give a short account of some cases where one may find (Reg) to be a natural
assumption.

4.1.1 The well-ordered case

The notion of well-ordering in Materials Science is not only justified as the comparability of
two materials, one being at least better than the other. It has also been a consistent assumption
when dealing with optimization problems because it allows explicit calculations. See for
example [1,26,27], where the authors discuss how the well-ordering assumption plays a role
in proving the optimal lower bounds of an effective tensor made-up by two materials. If σ1

and σ2 are well-ordered, say σ2 ≥ σ1 as quadratic forms, then W (P) = σ2P · P . Hence, by
Lemma 2.6, the desired higher integrability (Reg) holds with δ = 0.

4.1.2 The non-ordered case

Applications for this setting are mostly reserved for gradients of scalar valued functions.
In this particular case one can ensure that QBW = W ∗∗, where W ∗∗ is the convex enve-
lope of W . For example, one may consider an optimal design problem involving the linear
conductivity equations for two dielectric materials which happen to be incomparable as
quadratic forms. In this setting, it is not hard to see that indeed QW = W ∗∗ and even that
W ∗∗ ∈ C1,1(RdNk

,R). In dimensions N = 2, 3, one can employ a Moser-iteration technique
for the dual problem as the one developed in [17] to show better regularity of minimizers of
(31).

Regarding the case of systems, if no well-ordering of the materials is assumed, it is not
clear to us that (Reg) necessary holds (compare to [28,29]).
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4.2 Proof of Theorem 1.2

We define an ε-perturbation of v �→ ∫
B1

σAv · v as follows. Consider the functional

(v, A) �→ J ε(v, A) :=
∫
B1

σAv · v dy + ε2Per(A; B1), for ε ∈ [0, 1]; J := J 1. (32)

By a scaling argument one can easily check that

ε2 J (v, A) = J ε(εv, A). (33)

Furthermore,

v is a local minimizer of J ( · , A) if and only if εv is a local minimizer of J ε( · , A). (34)

We also consider the following one-parameter family of functionals:

v �→ Gε(v) :=
⎧⎨
⎩

min
A∈B(RN )

J ε(v, A) if v ∈ L2(�; Z) and Bv = 0,

∞ otherwise.
(35)

The next result characterizes the 	-limit of these functionals as ε tends to zero.

Theorem 4.2 The 	-limit of the functionals Gε, as ε tends to zero, and with respect to the
weak-L2 topology is given by the functional

G(v) :=
⎧⎨
⎩

∫
B1

QBW (v) dy if v ∈ L2(�; Z) and Bv = 0,

∞ else.
(36)

Proof We divide the proof into three steps. First, we will prove the following auxiliary lemma.

Lemma 4.3 Let ω ⊂ R
N be an open and bounded domain. Let p > 1 and let F : RdNk →

[0,∞) be a continuous integrand with p-growth, i.e.,

0 ≤ F(P) ≤ C(1 + |P|p), P ∈ R
dNk

.

If v ∈ Lp(ω; Z) and Bv = 0, then there exists a p-equi-integrable recovery sequence
{vh} ⊂ Lp(ω; Z) for v such that

Bvh = 0 and F(vh) ⇀ QBF(v) in L1(ω).

Proof Since v �→ ∫
ω
QBF(v) is the lower semi-continuous envelope of v �→ ∫

ω
F(v) (see

(17), (18)) with respect to the weak-Lp topology, we may find a sequence {vh} with the
following properties:

Bvh = 0, vh
Lp

⇀ v,

and ∫
ω

QBF(v) dx ≥
∫

ω

F(vh) dx − 1

h
.

Passing to a subsequence if necessary, we may assume that the sequence {vh} generates a
B-free Young measure which we denote by μ. We then apply [16, Lemma 2.15] to find a
p-equi-integrable sequence {v′

h} (with Bvh = 0) generating the same Young measure μ. On
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the one hand, the Fundamental Theorem for Young measures (Theorem 2.10) and the fact
that {vh} generates μ yield

lim inf
h→∞

∫
ω

F(vh) dx ≥
∫

ω

〈μx , F〉 dx .

Even more, due to the same theorem and the equi-integrability of the sequence {|v′
h |p} one

gets the convergence F(v′
h) ⇀ 〈μx , F〉 ∈ L1. In other words,

lim
h→∞

∫
ω

F(v′
h) dx =

∫
ω

〈μx , F〉 dx .

The three relations above yield∫
ω

QBF(v) dx ≥ lim sup
h→∞

∫
ω

F(vh)≥
∫

ω

〈μx , F〉 dx= lim
h→∞

∫
ω

F(v′
h) dx≥

∫
ω

QBF(v) dx .

(37)
We summon the characterization for B-free Young measures from Theorem 2.12 to observe
that

〈μx , F〉 ≥ QBF(〈μx , id〉) = QBF(v(x)) a.e. x ∈ ω.

This inequality and (37) imply

〈μx , F〉 = QBF(v(x)) a.e. x ∈ ω.

We conclude by recalling that F(v′
h) ⇀ 〈μx , F〉 in L1(ω). ��

The lower bound. Let v ∈ L2(B1; Z) and let {vε} be a sequence in L2(B1; Z) such that
vε ⇀ v in L2(B1; Z). We want to prove that

lim inf
ε↓0

Gε(vε) ≥ G(v).

Notice that, we may reduce the proof to the case where Bvε = 0 for every ε. From the
inequality σA ≥ W ≥ QBW (as quadratic forms), we infer that

J ε(vε) ≥
∫
B1

QBW (vε) dy.

Next, we recall that v �→ ∫
B1

QBW (v) is lower semi-continuous in {v ∈ L2(�; Z) : Bv =
0} with respect to the weak-L2 topology. Hence,

lim inf
ε↓0

Gε(vε) ≥
∫
B1

QBW (v) dy.

This proves the lower bound inequality.

The upper bound. We fix v ∈ L2(B1; Z), we want to show that there exists a sequence {vε}
in L2(B1; Z) with vε ⇀ v in L2(B1; Z) and such that

lim sup
ε↓0

Gε(vε) ≤ G(v).

We may assume that Bv = 0, for otherwise the inequality occurs trivially. Lemma 4.3
guarantees the existence of a 2-equi-integrable sequence {vh}∞h=1 for which

Bvh = 0, vh ⇀ v in L2(B1; Z), and W (vh) ⇀ QBW (v) in L1(B1). (38)
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Next, we define an h-parametrized sequence of subsets of B1 in the following way:

Ah := {x ∈ B1 : (σ1 − σ2)vh · vh ≤ 0}.
Using the fact that smooth sets are dense in the broader class of subsets with respect to
measure convergence, we may take a smooth set A′

h ⊂ B1 such that the following estimates
hold for some strictly monotone function L : N → N (with limh→∞ L(h) = ∞):

|(A′
h�Ah) ∩ B1| = O(h−1), Per(A′

h; B1) ≤ L(h). (39)

Observe that, by the 2-equi-integrability of {vh}, one gets that

‖(σAh − σA′
h
)vh · vh‖L2(B1)

≤ M‖vh‖2
L2(Sh)

= O(h−1), where Sh := A′
h�Ah . (40)

The next step relies, essentially, on stretching the sequence {vh}. Define the ε-sequence

vε := vK (ε), ε ≤ 1

L(1)
,

where K : R+ → N is the piecewise constant decreasing function defined as

K :=
∞∑
h=1

h · 1Rh , Rh :=
(

1

L(h + 1)
,

1

L(h)

]
.

Claim 1. L ◦ K (ε) ≤ ε−1, if ε ∈ (0, L(1)−1].
2. K (ε) = h, where h is such that ε ∈ Rh.

Proof To prove 1, observe from the strict monotonicity of L that ∪∞
h=1Rh = (0, L(1)−1]. A

simple calculation gives

L(K (ε)) = L

( ∞∑
h=1

h · 1Rh (ε)

)
=

∞∑
h=1

L(h) · 1Rh (ε) = L(h0) · 1Rh0
(ε) ≤ 1

ε
, (41)

where h0 is such that ε ∈ Rh0 . The proof of 2 is an easy consequence of the definition of K and
the fact that {Rh} is a disjoint family of sets. Indeed, if ε ∈ Rh then K (ε) = h · 1Rh (ε) = h.

��
Since K is a piecewise decreasing function and K (R+) = N ∪ {0}, it remains true that

vK (ε) ⇀ v in L2(B1;RdNk
), as ε → 0.

We are now in position to calculate the lim sup inequality:

Gε(vK (ε)) = min
A∈B(B1)

∫
B1

σAvK (ε) · vK (ε) + ε2Per(A; B1)

≤
∫
B1

σA′
K (ε)

vK (ε) · vK (ε) + ε2Per(A′
K (ε); B1)

≤
∫
B1

σAK (ε)
vK (ε) · vK (ε) + O(K (ε)−1) + ε2L(K (ε))

≤
∫
B1

W (vK (ε)) + O(ε) + ε.

Hence, by (38)

lim sup
ε↓0

Gε(vε) ≤ lim sup
ε↓0

∫
B1

W (vK (ε)) = lim
h→∞

∫
B1

W (vh) =
∫
B1

QBW (v).
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This proves the upper bound inequality. ��
Corollary 4.4 Let {wε} ⊂ WA (B1)bea sequenceof almost localminimizers of the sequence
of functionals

{u �→ Gε(A u)}.
Assume that {A wε} is 2-equi-integrable in Bs for every s < 1. Assume also that there exists
w ∈ WA (B1) such that

A wε ⇀ A w in L2(B1;RdNk
).

Then,

QBW (A wε) ⇀ QB(A w) in L1
loc(B1).

Moreover, w is a local minimizer of u �→ G(A u).

Proof The first step is to check that

QBW (A wε) ⇀ QB(A w) in L1(Bs), for every s < 1. (42)

The sequence A wε generates (up to taking a subsequence) a B-free Young measure μ :
B1 → M (Z) so that by Theorem 2.10, Theorem 2.12 and the local 2-equi-integrability
assumption,

W (A w′
ε) ⇀ 〈μx ,W 〉 ≥ QBW (A w) in L1

loc(B1). (43)

Fix s ∈ (0, 1) and consider the rescaled functions

ws
ε := wε(sy)

sk− 1
2

, ws := w(sy)

sk− 1
2

.

It is not hard to see that, because of the (almost) minimization properties of {wε}, the rescaled
sequence {ws

ε} is also a sequence of almost local minimizers of the sequence of functionals
{u �→ G(A u)}.8 Moreover, A ws

ε ⇀ A ws in L2(B1; Z).
From the proof of the lower bound in Theorem 4.2, we may find a 2-equi-integrable

recovery sequence {v′
ε} for v, i.e., such that v′

ε ⇀ A ws and

lim
ε↓0

Gε(v′
ε) = G(A ws).

Recall that, by the exactness assumption of A and B, there are functions w′
ε ∈ WA (B1)

such that

v′
ε = A w′

ε for every ε > 0.

A recovery sequence with the same boundary values. The next step is to show that one
may assume, without loss of generality, that spt(w′

ε − ws
ε) ⊂⊂ B1.

We may further assume (without loss of generality) that {ws
ε} and {w′

ε} are Wk,2-uniformly
bounded, and that ws

ε − w′
ε ⇀ 0 in Wk,2(B1;Rd).

Define

ṽh,ε :=A (ϕhw
′
ε+(1−ϕh)w

s
ε)=ϕhA w′

ε+(1 − ϕh)A ws
ε+

g(h)︷ ︸︸ ︷∑
|β|≥1

|α|+|β|=k

cαβ∂α(w′
ε − ws

ε)∂
βϕh;

8 This scaling has the property that sN−1 JB1 (A ws , As ) = JBs (A w, A).
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where, for every h ∈ N, ϕh ∈ C∞(B1; [0, 1]) with ϕh ≡ 1 in B1−1/h . Since ‖g(h)‖L2(B1)
→

0 as ε → 0, we infer that

lim sup
ε↓0

‖ṽh,ε − A w′
ε‖L2(B1)

≤ lim sup
ε↓0

‖A w′
ε‖L2(B1\B1−1/h )

+ lim sup
ε↓0

‖A wε‖L2(B1\B1−1/h )
.

We now let h → ∞ and use the 2-equi-integrability of {A ws
ε} and {A w′

ε} to get

lim sup
h→∞

lim sup
ε↓0

‖ṽh,ε − A w′
ε‖L2(B1)

= 0.

Thus, we may find a diagonal sequence ṽε = ṽh(ε),ε = A w̃s
ε which is 2-equi-integrable,

spt(ws
ε − w̃ε) ⊂⊂ B1, and such that

lim
ε↓0

‖A w′
ε − A w̃ε‖L2(Bs ) = O(ε).

In particular, the (almost) local minimizing property of {A ws
ε} gives

lim sup
ε↓0

∫
B1

W (A ws
ε) ≤ lim sup

ε↓0
Gε(A ws

ε) ≤ lim sup
ε↓0

Gε(A w̃ε) ≤ lim
ε↓0

Gε(A w′
ε)

= G(A ws).

Rescaling back, the inequality above yields

lim sup
ε↓0

∫
Bs

W (A wε) ≤
∫
Bs

QBW (A w),

which together with (43) proves (42).

Localminimizer ofG. The second step is to show that w is a local minimizer of u �→ G(A u).
We argue by contradiction: assume that w is not a local minimizer of u �→ G(A u), then we
would find s ∈ (0, 1) and η ∈ C∞

c (Bs;RdNk
) for which

G(A w) > G(A w + A η).

Again, using a re-scaling argument, this would imply that

G(A ws) > G(A ws + A ηs).

Similarly to the previous step, we can find a 2-equi-integrable recovery sequence {A (φs
ε+ηs)}

of (A ws +A ηs) with the property that spt(φs
ε − ws

ε) ⊂⊂ B1, for every ε > 0. On the other
hand, the (almost) minimizing property of A ws

ε and (42) yield

G(A ws + A ηs) < G(A ws) = lim
ε↓0

Gε(A ws
ε) ≤ lim

ε↓0
Gε(A φs

ε + A ηs) = G(A ws + A ηs),

which is a contradiction. This shows that w is a local minimizer of u �→ G(A u). ��
Let us recall, for the proof of the next proposition, that the higher integrability assumption

(Reg) on local minimizers ũ of u �→ G(A u) reads:

[A ũ]2
L2,N−δ(B1/2)

≤ c‖A ũ‖2
L2(B1), for some δ ∈ [0, 1). (Reg)

Proposition 4.5 Let (w, A) be a saddle-point of problem (P). Assume that the higher integra-
bility condition (Reg) holds for local minimizers of u �→ G(A u). Then, for every K ⊂⊂ �

there exists a positive constant C(K ) > 1 and a smallness constant ρ ∈ (0, 1/2) such that
at least one of the following properties
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1. JBr (x)(A w, A) ≤ C(K )r N−1,

2. JBρr (x)(A w, A) ≤ ρN−(1+δ)/2 JBr (x)(A w, A),

holds for all x ∈ K and every r ∈ (0, dist(K , ∂�)). Here,

JBr (x)(A u, A) =
∫
Br (x)

σAA u · A u dy + Per(A; Br (x)).

Proof Let (w, A) be a saddle-point of (P) and fix ρ ∈ (0, 1) (to be specified later in the
proof). We argue by contradiction through a blow-up technique: Negation of the statement
would allow us to find a sequence {(xh, rh)} of points xh ∈ K and positive radii rh ↓ 0 for
which

JBrh (xh)(A w, A) > hr N−1
h , and (44)

JBρrh (xh)(A w, A) > ρN−(1+δ)/2 JBrh (xh)(A w, A). (45)

An equivalent variational problem. It will be convenient to work with a similar variational
problem: Consider the saddle-point problem

inf

⎧⎨
⎩ sup

u∈WA
0 (�)

Ĩ�(A u, A) : A ⊂ R
N Borel set, A ∩ �c ≡ A0 ∩ �c

⎫⎬
⎭ , (P̃)

where

Ĩ�(A u, A) :=
∫

�

2τA · A u dx −
∫

�

σAA u · A u dx + Per(A;�).

Here we recall the notation τA := σAA wA, where wA ∈ WA
0 (�) is the unique maximizer

of u �→ I�(u, A). It follows immediately from the identity∫
�

τA · A u dx =
∫

�

f u dx u ∈ WA
0 (�),

that saddle-points (w, A) of problem (P) are also saddle-points of (P̃) and vice versa; hence,
in the following we will make no distinction between saddle-points of (P) and (P̃). A special
property of Ĩ is that, its density is always positive on saddle-points (w, A) of (P). Indeed, in
this case w = wA and therefore

ĨBr (x)(A w, A) =
∫
Br (x)

σAA wA ·A wA+Per(A; Br (x)) = JBr (x)(A w, A), Br (x) ⊂ �.

(46)
A re-scaling argument. We re-scale and translate Br (x) into B1 by letting

Ar,x := A

r
−x, f r,x (y) :=rk+

1
2 f (ry+x) → 0 in L∞(B1), and wr,x (y) := w(ry + x)

rk− 1
2

.

(47)
A further normalization on the sequence takes place by setting

ε(h)2 := r N−1
h · JBrh (xh)(A w, A)−1 = O(h−1),

and defining

Aε(h) := Arh ,xh , fε(h) := ε(h) · f rh ,xh , wε(h) := ε(h) · wrh ,xh ,

and τε(h) := σAε(h)
A wε(h).
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It is easy to check that the scaling rule (33), and the relations (45) and (46) imply

J ε(h)(A wε(h), Aε(h)) = 1, and (48)∫
Bρ

σAε(h)
A wε(h) · A wε(h) + ε(h)2Per(Aε(h); Bρ) > ρN−(1+δ)/2. (49)

In particular, due to the coercivity of σ1 and σ2, the norms ‖A wε(h)‖2
L2(B1)

are h-uniformly
bounded by M .

Local almost-minimizers of Gε(h). The next step is to show that {wε(h)} is O(ε)-close in
L2 to a sequence {w̃ε} of almost minimizers of {u �→ Gε(h)(A u)}. Observe that wε(h) is the
unique solution to the equation

A ∗(σAεA u) = fε(h), u ∈ WA
wε(h)

(B1).

Let w̃ε(h) be the unique minimizer of u �→ J ε(h)(A u, Aε(h)) – see (32) – in the affine space
WA

wε(h)
(B1). Thus, in particular, w̃ε(h) is the unique solution of the equation

A ∗(σAε(h)
A u) = 0, u ∈ WA

wε(h)
(B1).

A simple integration by parts, considering that w̃ε(h) − wε(h) ∈ WA
0 (B1), gives the estimate

‖A wε(h) − A w̃ε(h)‖2
L2(B1)

≤ C(B1) · M2‖ fε(h)‖2
L2(B1)

= O(h−1), (50)

where C(B1) is the Poincaré constant from (12); and therefore ‖wε(h) − w̃ε(h)‖Wk,2
0 (B1)

=
O(h−1).

Lastly, we use strongly the fact that (w, A) is a saddle-point of (P) to see that
{(wε(h), Aε(h))} is also a local saddle-point of the energy

(u, E) �→ Ĩ ε(h)(A u, E) :=
∫
B1

2τE · A u dy −
∫
B1

σEA u · A u dy + ε(h)2Per(E; B1).

Moreover, by (33), (46) and (50) one has that

Ĩ ε(h)(A wε(h), Aε(h)) = J ε(h)(A wε(h), Aε(h)) = J ε(h)(A w̃ε(h), Aε(h)) + O(h−1). (51)

An immediate consequence of the two facts above is that {w̃ε(h)} is a sequence of local almost
minimizers of the sequence of functionals {u �→ Gε(h)(A u)}. The local (almost) minimizing
properties of the sequence {w̃ε(h)} – with respect to the functionals {u �→ Gε(h)(A u)} – are
not affected by subtracting A -free fields; hence, using the compactness assumption of A
once more, we may assume without loss of generality that suph ‖w̃ε(h)‖Wk,2(B1)

< ∞. Upon
passing to a further subsequence, we may also assume that there exists w̃ ∈ Wk,2(B1) such
that

w̃ε(h) ⇀ w̃ in Wk,2(B1;Rd).

Equi-integrability of {A w̃ε(h)}. The last but one step is to show that {A w̃ε} is a 2-equi-
integrable sequence in Bs , for every s < 1.

Since σAε is uniformly bounded, there exists τ̃ ∈ L2(B1;RdNk
) such that (upon passing

to a further subsequence)

σAε(h)
A w̃ε(h) =: τ̃ε(h) ⇀ τ̃ in L2(B1;RdNk

), A ∗τ̃ε(h) = A ∗τ̃ = 0. (52)
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Let ϕ ∈ D(B1) and fix ε > 0, integration by parts yields

〈τ̃ε(h) · A w̃ε(h), ϕ〉 = −
∑
|β|≥1

|α|+|β|=k

cαβ〈τ̃ε(h), ∂
αw̃ε(h)∂

βϕ〉 cα,β ∈ R.

Since the term in the right hand side of the equality depends only on ∇k−1w̃ε(h), the strong
convergence w̃ε → w̃ in Wk−1,2(B1;Rd) gives

lim
ε→0

〈τ̃ε(h) · A w̃ε(h), ϕ〉 = −
∑
|β|≥1

|α|+|β|=k

cαβ〈τ̃ , ∂αw̃∂βϕ〉 = 〈τ̃ · A w̃, ϕ〉.

Therefore,

σAε(h)
A w̃ε(h) · A w̃ε(h) = τ̃ε(h) · A w̃ε(h)

∗
⇀ τ̃ · A w̃ ∈ L1(B1) weakly* in M+(B1).

The positivity of σAεA w̃ε · A w̃ε , the Dunford-Pettis Theorem and the convergence above
imply that the sequence

{σAεA w̃ε · A w̃ε} is equi-integrable in Bs; for every s < 1.

In turn, due to the uniform coerciveness and boundedness of {σAε }, both sequences {A w̃ε}
and {τ̃ε} are 2-equi-integrable in Bs ; for every s < 1.

The contradiction. We are in position to apply Proposition 4.4 to the sequence {w̃ε}, which
in particular implies

ε(h)2Per(Aε(h); Bρ) → 0,

σAε(h)
A w̃ε(h) · A w̃ε(h) ⇀ QBW (A w̃) ≤ M |A w̃|2 in L1

loc(B1), (53)

and that w is a local minimizer of u �→ G(A u). On the other hand, the higher integrability
assumption (Reg) tells us that

[A w̃]2
L2, N−δ(B1/2)

≤ c‖A w̃‖2
L2(B1)

. (54)

We set the value of ρ ∈ (0, 1/2) to be such that 2cM2ρ(1−δ)/2 ≤ 1. Taking the limit in (48)
and (49), using Fatou’s Lemma, (50), (51), (53) and (54), we get

1

M
‖A w̃‖2

L2(B1)
≤ lim

h→∞ J ε(h)(A w̃ε(h), Aε(h)) = 1

≤
(

1

ρN−(1+δ)/2

)
‖QBW (A w̃)‖L1(Bρ) ≤

(
Mρ(1−δ)/2

ρN−δ

)
‖A w̃‖2

L2(Bρ)

≤ Mρ(1−δ)/2[A w̃]2
L2, N−δ(B1/2)

≤ cMρ(1−δ)/2‖A w̃‖2
L2(B1)

≤ 1

2M
‖A w̃‖2

L2(B1)
;

a contradiction. ��

Theorem 1.2 (Upper bound) Let (w, A) be a variational solution of problem (P). Assume
that the higher integrability condition

[A ũ]2
L2,N−δ(B1/2)

≤ c‖A ũ‖2
L2(B1)

, for some δ ∈ [0, 1) and some positive constant c,
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holds for local minimizers of the energy u �→ ∫
B1

QBW (A u), where u ∈ WA (B1). Then,
for every compactly contained set K ⊂⊂ �, there exists a positive constant �K such that
∫
Br (x)

σAA w · A w dy + Per(A; Br (x)) ≤ �K r
N−1 ∀ x ∈ K ,∀ r ∈ (0, dist(K , ∂�)).

(55)

Proof Let x ∈ K , and set

ϕ(r, x) := JBr (x)(A w, A),

where we recall that

JBr (x)(A w, A) =
∫
Br (x)

σAA w · A w dy + Per(A; Br (x))

Proposition 4.5 tells us that there exists a positive constant ρ ∈ (0, 1/2) such that if Br (x) ⊂
�, then

ϕ(ρr, x) ≤ ρN−(1+δ)/2ϕ(r, x) + C(K )r N−1.

An application of the Iteration Lemma (stated below) to r ∈ (0, min{1, dist(K , ∂�}), and
α1 := N − (1 + δ)/2 > α2 := N − 1 yields the existence of positive constants c = c(x),
and r = r(K ) such that

ϕ(s, x) ≤ csN−1 ∀ s ∈ (0, R(K )).

Notice that the constants c and r depend continuously on x ∈ �. Hence, for any K ⊂⊂ �

we may find �K > 0 for which

JBr (x)(A w, A) ≤ �K r
N−1 ∀ x ∈ K , ∀ r ∈ (0, dist(K , ∂�)).

��

Lemma 4.6 (Iteration Lemma [30, Lemma 2.1, Chapter III]) Assume that ϕ(ρ) is a non-
negative, real-valued, non-decreasing function defined on the (0, 1) interval. Assume further
that there exists a number τ ∈ (0, 1) such that for all r < 1 we have

ϕ(τr) ≤ τα1ϕ(r) + Crα2

for some non-negative constant C, and positive exponents α1 > α2. Then there exists a
positive constant c = c(τ, α1, α2) such that for all 0 ≤ ρ ≤ r ≤ R we have

ϕ(ρ) ≤ c
(ρ

r

)α2
ϕ(r) + Cρα2 .

Corollary 4.7 (Compactness of blow-up sequences) Let (w, A) be a variational solution of
problem (P). Under the assumptions of the Upper bound Theorem 1.2, there exists a positive
constant CK such that

[A w]2
L2,N−1(K )

≤ CK . (56)

Proof The assertion follows directly from the Upper bound Theorem and the coercivity of
σ1 and σ2. ��
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5 The Lower bound: proof of estimate (LB)

During this section we will write (w, A) to denote a solution of problem (P) under the
assumptions of Theorem 1.2. In light of the results obtained in the previous section we will
assume, throughout the rest of the paper, that for every compact set K ⊂⊂ � there exist
positive constants CK , and �K such that

Per(A; Br (x)) ≤ �K r
N−1,

‖A wx,r‖2
L2(B1) ≤ [A w]2

L2,N−1(K )
≤ CK ,

for all x ∈ K and every r ∈ (0, dist(K , ∂�)). Here, wx,r := w(x + ry)/rk− 1
2 .

The main result of this section is a lower bound on the density of the perimeter in ∂∗A. In
other words, there exists a positive constant λK = λK (N , M) such that

Per(A; Br (x)) ≥ λK r
N−1 for every 0 < r < dist(x, ∂�). (LB)

There are two major consequences from estimate (LB). The first one (cf. Corollary 5.8) is
that the difference between the topological boundary of A and the reduced boundary of A is at
most a set of zero H N−1-measure. In other words, (∂A\∂∗A) = � where H N−1(�) = 0
(cf. [7, Theorem 2.2]). The second is that (LB) is a necessary assumption for the Height
bound Lemma and the Lipschitz approximation Lemma, which are essential tools to prove
the flatness excess improvement in the next section.

Throughout this section and the rest of the manuscript we will constantly use the following
notations:

The scaled Dirichlet energy

D(w; x, r) := 1

r N−1

∫
Br (x)

|A w|2 dy,

and the excess for γ -weighted energy

Eγ (w, A; x, r) := D(w; x, r) + γ

r N−1 Per(A, Br (x)).

Granted that the spatial-, radius-, or (w, A)- dependence is clear, we will shorten the notations
to the only relevant variables, e.g., D(r) and Eγ (r). Recall that, up to translation and re-
scaling, we may assume

0 ∈ ∂∗A ∩ K , and B1 ⊂ K + B9 ⊂ �.

Bear also in mind that all the constants in this section are universal up to their dependence
on �K and CK .

We will proceed as follows. First we prove in Lemma 5.1 that if the density of the perimeter
is sufficiently small, one may regard the regularity properties of solutions as those ones for
an elliptic equation with constant coefficients. Then, in Lemma 5.2, we prove a lower bound
on the decay of the density of the perimeter in terms of D. Combining these results, we are
able to show a discrete monotonicity formula on the decay of Eγ .

The proof of the Lower density bound (LB) follows easily from this discrete monotonicity
formula, De Giorgi’s Structure Theorem, and the Upper bound Theorem of the previous
section. Finally, we prove that the difference between ∂A and ∂∗A is H N−1-negligible
(Theorem 5.8) as a corollary of the estimate (LB).
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Lemma 5.1 (Approximative solutions of the constant coefficient problem) For every θ1 ∈
(0, 1/2), there exist positive constants9 c1(θ1, N , M) and ε1(θ1, N , M) such that either∫

Bρ

|A w|2 dy ≤ c1ρ
N‖ f ‖2

L∞(B1)
,

or ∫
Bρ

|A w|2 dy ≤ 2cρN
∫
B1

|A w|2 dy for every ρ ∈ [θ1, 1),

where c = c(N , M) is the constant from Lemma 2.6; whenever

Per(A; B1) ≤ ε1.

Proof Since c ≥ 2N , the result holds if we assume ρ ≥ 1/2, therefore we focus only on the
case where ρ ∈ (θ1, 1/2]. Fix θ1 ∈ (0, 1/2). We argue by contradiction: We would find a
sequence of pairs (wh, Ah) (locally solving (P) in B1 for a source function fh) and constants
ρh ∈ [θ1, 1/2], such that

δ2
h :=

∫
Bρh

|A wh |2 dy > 2 cρN
h

∫
B1

|A wh |2 dy, (57)

and simultaneously

ρN
h · ‖ fh‖2

L∞(B1)

δ2
h

≤ 1

h
, and Per(Ah; B1) ≤ 1

h
.

The estimate above yields δ−1
h fh → 0 in L2(B1;Rd). Also, since Per(Ah; B1) → 0, the

isoperimetric inequality yields that either σAh → σ1 or σAh → σ2 in L2 as h tends to infinity.
Let us assume that the former convergence σAh → σ1 holds.

Let uh := δ−1
h wh , and observe that

sup
h

‖A uh‖L2(B1)
< ∞.

We use that wh is a (local) solution to (P) for Ah as indicator set and fh as source term, to
see that

A ∗(σAhA uh) = δ−1
h fh in B1.

Up to modifying the sequence by A -free fields and passing to a further subsequence, we may
assume that uh ⇀ u in Wk,2(B1;RdNk

). We may then apply the compensated compactness
result from Lemma 2.9 to obtain that

A ∗(σ1A u) = 0 in B1,

and

D(uh; s) → D(u; s) where ρh → s ∈ [θ1, 1/2].
Hence, by (57) and Fatou’s Lemma one gets

2 csN D(u; 1) ≤ lim
h→∞ cρN

h D(uh; 1) ≤ 1 = lim
h→∞ D(uh; ρh) = lim

h→∞ D(uh; s) = D(u; s).
This is a contradiction to Lemma 2.6 because u is a solution for the problem with constant
coefficients σ1. The case when σAh → σ2 can be solved by similar arguments. ��
9 As it can be seen from the proof of Lemma 5.1, the constant c1 does not depend on K .
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The next lemma is the principal ingredient in proving the (LB) estimate. It relies on a cone-
like comparison to show that the decay of the perimeter density is controlled by D(r)/r : The
perimeter density cannot blow-up at smaller scales, while for a fixed scale, the perimeter
density is small.

Lemma 5.2 (Universal comparison decay)There exists a positive constant10 c2 = c2(N , M)

such that

d

dr

∣∣∣∣
ρ=r

(
Per(A; Bρ)

ρN−1

)
≥ −c2

D(r)

r
for a.e. r ∈ (0, 1].

Proof For a.e. r ∈ (0, 1) the slice 〈A, g, r〉, where g(x) = |x |, is well defined (see Sect.
2.4). Fix one such r and let Ã be the cone-like comparison set to A as in (23). By minimality
of (w, A) and a duality argument, we get

∫
Br

σ−1
A τA · τA dy + Per(A; Br ) ≤

∫
Br

σ−1
Ã

τA · τA dy + Per( Ã; Br )

for τA = σAA w. Hence,

Per(A; Br ) ≤ Per( Ã; Br ) + M3
∫
Br

|A wA|2 dy

≤ r

N − 1
〈A, g, r〉(RN ) + M3r N−1D(r). (58)

To reach the inequality in the last row we have used that the cone extension Ã is precisely
built (cf. (24)) so that the Green-Gauss measures μ Ã and μA agree in (Br )c; where, by (22),

Per( Ã; Bρ) = 1

(N − 1)

(
ρN−1

r N−2

)
H N−2(∂∗A ∩ {g = r})

≤ 1

(N − 1)

(
ρN−1

r N−2

)
〈A, g, r〉(RN ) ∀ 0 < ρ ≤ r.

We know from (25) that d
dρ

∣∣
rPer(A; Bρ) ≥ 〈A, g, r〉(RN ) for a.e. r > 0. Since (58) and the

previous inequality are valid almost everywhere in (0, 1), a combination of these arguments
yields

d

dr

∣∣∣∣
ρ=r

(
Per(A; Bρ)

ρN−1

)
≥ −M3(N − 1)

D(r)

r
for a.e. r ∈ (0, 1).

The result follows for c2 := M3(N − 1). ��
The following result is a discrete monotonicity for the weighted excess energy Eγ . We remark
that, in general, a monotonicity formula may not be expected in the case of systems.

Theorem 5.3 (Discrete monotonicity) There exist positive constants γ = γ (N , M), ε2 =
ε2(γ, N ) ≤ vol(B ′

1) · γ /2, and θ2 = θ2(N , M) ∈ (0, 1/2) such that

Eγ (θ2) ≤ Eγ (1) + c1(θ2)‖ f ‖2
L∞(B1)

, whenever Eγ (1) ≤ ε2. (59)

10 The constant c2 is independent of the compact set K ; indeed, this is the result of universal comparison
estimates in �.
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Proof We fix γ and θ1 such that

γ c2 max{c, c1(θ1)} ≤ 1

4
, where 2θ1c ≤ 1

2
.

Set θ2 := θ1. Recall that c2 is the constant from Lemma 5.2, and c is the constant of Lemma
2.6.

Let also ε2 = ε2(γ, ε1) be a positive constant with ε2 ≤ min{γ ε1(θ2), γ · vol (B ′
1)/2}.

This implies

Per(A; B1) ≤ ε1(θ2),

which in turn gives, for c1 = c1(θ2),

Eγ (θ2) ≤ γ

θN−1
2

Per(A; Bθ2) + 2cθ2D(1) + c1θ2‖ f ‖2
L∞(B1)

.

Now, we apply Lemmas 5.1 and 5.2 to s ∈ (θ2, 1) to get

Eγ (θ2) ≤ γ

θN−1
2

Per(A; Bθ2) + 2cθ2D(1) + c1θ2‖ f ‖2
L∞(B1)

≤ γ Per(A; B1) + γ

∫ 1

θ2

− d

dr

∣∣∣
r=s

(
Per(A, Br )

r N−1

)
ds + 1

2
D(1) + c1θ2‖ f ‖2

L∞(B1)

≤ γ Per(A; B1) + γ c2

∫ 1

θ1

D(s)

s
ds + 1

2
D(1) + c1θ2‖ f ‖2

L∞(B1)

≤ γ Per(A; B1) + 2γ cc2D(1) + γ c2c1‖ f ‖2
L∞(B1)

+ 1

2
D(1) + c1θ2‖ f ‖2

L∞(B1)

≤ γ Per(A; B1) + D(1) + c1‖ f ‖2
L∞(B1)

= Eγ (1) + c1‖ f ‖2
L∞(B1)

.

This proves the desired result. ��

Lemma 5.4 For every ε > 0, there exist positive constants θ0(N , M, K , ε) ∈ (0, 1/2) and
κ(N , M, K , ε) > 0 such that

Eγ (θ0) ≤ ε + c1‖ f ‖2
L∞(B1)

;
whenever

Per(A; B1) ≤ κ.

Proof The result follows by taking θ0 such that 2cθ0CK ≤ ε/2 (recall that, D(s) ≤ CK for

every s ∈ (0, 1)) and κ ≤ min

{
εθN−1

0
2γ

, ε1(θ0)

}
and then simply applying Lemma 5.1. ��

Lemma 5.5 Let (w, A) be a saddle-point of (P) and let x ∈ K ⊂⊂ �. Then, for every ε > 0
there exists a positive radius r0 = r0(N , M, K , ‖ f ‖L∞(B1), ε) for which

Eγ (w, A; x, r) ≤ 2ε;

whenever r ≤ r0 and Per
(
A; B

θ−1
0 r

) ≤ κ(ε) · ( r
θ

)N−1
.
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Proof Let r0 be a positive constant such that c1r
2k+1
0 ‖ f ‖2

L∞(B1)
≤ θ2k+1

0 ε and let us set

s := θ−1
0 r . Since

Per(Ax,s; B1) = s−(N−1)Per(A; Bs) ≤ κ(ε),

it follows from the previous lemma and a rescaling argument that

Eγ (w, A; r) = Eγ (w, A; θ0s) ≤ ε + c1‖ f s‖2
L∞(B1)

= ε + c1s
2k+1‖ f ‖2

L∞(B1)
≤ 2ε.

��
Theorem 5.6 (Lower bound) Let (w, A) be a solution of problem (P) in �. Let K ⊂⊂ � be
a compact subset. Then, there exist positive constants λK and rK depending only on K , the
dimension N, the constant M in the assumption (2), and f such that

Per(A; Br (x)) ≥ λK r
N−1, (LB)

for every r ∈ (0, rK ) and every x ∈ ∂∗A ∩ K.

Proof Let p(θ2) := ∑∞
h=0 θ

(2k+1)h
2 ∈ R and let r1 ∈ (0, 1) be a positive constant for which

r2k+1
1 c1(θ2)p(θ2)‖ f ‖2

L∞(B1)
≤ ε2

4
.

We argue by contradiction. If the assertion does not hold, we would be able to find a point
x ∈ ∂∗A and a radius r ≤ min{r0, r1} for which

Per
(
A; B r

θ0
(x)

) ≤
(
r

θ0

)N−1

κ(ε), ε := ε2

4
.

After translation, we may assume that x = 0. The fact that r ≤ r0 and Lemma 5.5 yield the
estimate

Eγ (w, A; r) ≤ 2ε ≤ ε2

2
;

in return, Lemma 5.3 and a rescaling argument give (recall that f r (y) = rk+ 1
2 f (ry))

Eγ (w, A; θ2r) ≤ Eγ (wr , Ar ; 1) + c1‖ f r‖2
L∞(B1)

≤ ε2

2
+ c1r

2k+1‖ f ‖2
L∞(B1)

≤ ε2.

A recursion of the same argument gives the estimate

Eγ (w, A; θ
j

2 r) ≤ Eγ (w, A; r) + c1r
2k+1‖ f ‖2

L∞(B1)

( j∑
h=0

θ
(2k+1)h
2

)
≤ ε2.

Taking the limit as j → ∞ we get

lim sup
j→∞

Per(A; B
θ
j

2 r
)

vol (B ′
1) · (θ

j
2 r)

N−1
≤ lim sup

j→∞
Eγ (w, A; θ

j
2 r)

vol (B ′
1) · γ

≤ ε2

vol (B ′
1) · γ

≤ 1

2
.

This a contradiction to the fact that x = 0 ∈ ∂∗A (cf. Sect. 2.4). ��
Corollary 5.7 Let (w, A) be a solution for problem (P) in �. Let K ⊂⊂ � be a compact
subset. Then, there exist positive constants λK and rK depending only on K , the dimension
N, and f such that

Per(A; Br (x)) ≥ λK r
N−1,

for every r ∈ (0, rK ) and for every x ∈ ∂A ∩ K.
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Proof The property (LB) from the Lower bound theorem is a topologically closed property,
i.e., it extends to ∂∗A = spt μA = ∂A (cf. (19)). ��
Corollary 5.8 Under the same assumptions of Theorem 5.6, the following characterization
for the topological boundary of A holds:

∂A = ∂∗A ∪ �, where H N−1(�) = 0.

Proof An immediate consequence of the previous corollary is that H N−1�∂A � |μA| as
measures in �. The assertion follows by De Giorgi’s Structure Theorem. ��

6 Proof of Theorem 1.5

As we have established in the past section, we will assume that for every K ⊂⊂ � there
exist positive constants λK ,CK such that D(w; x, r) ≤ CK and

Per(A, Br (x)) ≥ λK r
N−1 ∀ x ∈ (∂A ∩ K ),∀ r ∈ (0, dist(K , ∂�)). (LB)

Half-space regularity.Throughout this section we shall work with the additional assumption
for solutions of the half-space problem: let H := { x ∈ R

N : xN > 0 } and let σH be the
two-point valued tensor defined in (3) for � = B1 (so that σH = σ1 in H ∩ B1), then the
operator

PHu := A ∗(σHA u)

is hypoelliptic in B1\∂H in the sense that, if w ∈ L2(B1;Rd), then11

PHw = 0 ⇒ w ∈ C∞(B+
r ;Rd) ∪ C∞(B−

r ;Rd) for every 0 < r < 1. (60)

Furthermore, there exists a positive constant c∗ = c∗(N , M,A ) such that

1

ρN

∫
Bρ

|∇kw|2 dx ≤ c∗
∫
B1

|∇kw|2 dx for all 0 < ρ ≤ 1

2
,

1

ρN

∫
Bρ

|A w|2 dx ≤ c∗
∫
B1

|A w|2 dx for all 0 < ρ ≤ 1

2
,

sup
B+

ρ ∪B−
ρ

|∇k+1w|2 ≤ c∗
∫
B1

|w|2 dx for all 0 < ρ ≤ 1

2
.

(61)

Remark 6.1 (Half-space regularity in applications) For 1-st order operators of gradient form
it is relatively simple to show that such estimates as in (61) hold. This case includes gradients
and symmetrized gradients; while the linear plate equations may be also reduced to this case
(cf. Remark 2.8).

A sketch of the proof is as follows: the first step is to observe that the tangential derivatives
(i �= N ) ∂iw of a solution w of PHu = 0 are also solutions of PHu = 0. The second step is
to repeat recursively the previous step and use the Caccioppoli inequality from Lemma 2.5
to estimate ∫

B1/2

|∂αw|2 dx ≤ C(|α|)
∫
B1

|w|2 dx for arbitrary α with αN ≤ 1. (62)

11 The notation B±
r stands for the upper and lower half ball of radius r : Br ∩ H and Br ∩ −H respectively.
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The third step consists in using the ellipticity of AN = A(eN ) (cf. Remark 2.3) and the
equation to express ∂NNw in terms of the rest of derivatives12: The tensor (AT

N σ AN ) is
invertible, this can be seen from the inequality |A(eN )z|2 ≥ λ(A )|z|2 for every z ∈ R

d (cf.
2.3) and the fact that σH satisfies Gårding’s strong inequality (2) with M−1. Hence, using
that PHw = 0, we may write

∂NNw = −(AT
N σH AN )−1

∑
i j �=NN

(AT
i σ1 A j )∂i jw in B+

1 , (63)

from which estimates for ∂NNw of the form (62) in the upper half ball easily follow (similarly
for the lower half ball). Further ∂N differentiation of the equation in B±

1 and iteration of this
procedure together with the Sobolev embedding yield bounds as in (61).

For arbitrary higher-order gradients and other general elliptic systems one cannot rely on
the same method. However, the Schauder and Lp boundary regularity of such systems has
been systematically developed in [31,32] through the so called complementing condition. In
the case of strongly elliptic systems (cf. (2) and (11)) this complementing condition is fulfilled,
see [32, pp 43-44]; see also [33] where a closely related natural notion of hypoellipticity of
the half-space problem is assumed.

Flatness excess. Given a set A ⊂ R
N of locally finite perimeter, the flatness excess of A at

x for scale r and with respect to the direction ν ∈ S
n−1, is defined as

e(A; x, r, ν) := 1

r N−1

∫
C(x,r,ν)∩∂∗A

|νE (y) − ν|2
2

dH n−1(y).

Here, C(x, r, ν) denotes for the cylinder centered at x with height 2, that is parallel to ν, of
radius r .

Intuitively, the flatness excess expresses (for a setA) the deviation from being a hyperplane
at a given scale r . Again, up to re-scaling, translating and rotating, it will be enough to work
the case x = 0, ν = eN , and r = 1. In this case, we will simply write e(A). The hyper-plane
energy excess is defined as

Hex(w, A; x, r, ν) := e(A; x, r, ν) + D(w, A; x, r),
and as long as its dependencies are understood we will simply write Hex(r) = e(r) + D(r).

The following result relies on the (LB) property, a proof can be found in [24, Section 5.3]
or [22, Theorem 22.8].

Lemma 6.2 (Height bound) There exist positive constants c∗
1 = c∗

1(N ) and ε∗
1 = ε∗

1(N )with
the following property. If A ⊂ R

N is a set of locally finite perimeter with the (LB) property,

0 ∈ ∂A and e(9) ≤ ε∗
1,

then

sup{|yN | : y ∈ B ′
1 × [−1, 1] ∩ ∂A} ≤ c∗

1 · e(4)
1

2N−2 . (HB)

The next decay lemma is the half-space problem analog of Lemma 5.1. The proof is similar
except that it relies on the half-space regularity assumptions (60), (61) (instead of the ones
given by Lemma 2.6), and the Height bound Lemma stated above.

12 Recall that, for a 1-st order operator as in (7), the coefficients Aα can be simply denoted by Ai with
i = 1, . . . , N .

123



Regularity for free interface variational problems. . . Page 37 of 44 154

Lemma 6.3 (Approximative solutions of the half-space problem) Let (w, A) be a solution of
problem (P) in B1. Then, for every θ∗

1 ∈ (0, 1/2) there exist positive constants c∗
2(θ∗

1 , N , M)

and ε∗
2(θ∗

1 , N , M) such that either∫
Bρ

|A w|2 dx ≤ c∗
2ρN‖ f ‖2

L∞(B1)
,

or ∫
Bρ

|A w|2 dx ≤ 2c∗ρN
∫
B1

|A w|2 dx for every ρ ∈ [θ1, 1),

where c∗ = c∗(N , M) is the constant from the regularity condition (61); whenever

Per(A; B1) ≤ ε∗
2 .

��
Remark 6.4 Let δ ∈ (0, 1). Then there exists κ∗ = κ∗(N , M, δ) such that if e(1) ≤ κ∗, and
if one further assumes that the excess function r �→ e(r) is monotone increasing, then the

scaling w(ry)/r (k− δ
2 ) and the Iteration Lemma 4.6 imply that

1

r N−δ

∫
Br

|A w|2 ≤ Cδ

(‖A w‖2
L2(B1)

+ c∗
2‖ f ‖2

L∞(B1)
· r2k+δ

)
for every r ∈ (0, 1/2),

for some positive constant Cδ = Cδ(N , M). ��
The next crucial result can be found in [8, Section 5]. We have decided not to include

a proof because the ideas remain the same. The ingredients for the proof are: the estimate
(LB), the Height bound Lemma, the Lipschitz approximation Theorem, the estimates from
Lemma 6.3 and the higher integrability for solutions to elliptic equations.13

Lemma 6.5 (Flatness excess improvement) Let (w, A) be a saddle point of problem (P) in
�. There exist positive constants η ∈ (0, 1], c∗

3 , and ε3 depending only on K , the dimension
N, the constant M in (2), and ‖ f ‖L∞ with the following properties: If (w, A) is a saddle
point of problem (P) in B9, and

Hex(9) ≤ ε∗
3,

then, for every r ∈ (0, 9), there exists a direction ν(r) ∈ S
N−1 for which

|ν(r) − eN | ≤ c∗
3 Hex(9) and Hex(r, ν(r)) ≤ c∗

3r
ηHex(9).

��

Theorem 1.5 (Partial regularity) Let (w, A) be a saddle point of problem (P) in �. Assume
that the operator PHu = A ∗(σA u) is hypoelliptic and regularizing as in (60), (61), and
that the higher integrability condition

[A ũ]2
L2,N−δ(B1/2)

≤ c‖A ũ‖2
L2(B1)

, for some δ ∈ [0, 1),

holds for every local minimizer ũ of the energy u �→ ∫
B1

QBW (A u), where u ∈ WA (B1).
Then there exists a positive constant η ∈ (0, 1] depending only on N such that

H N−1((∂A\∂∗A) ∩ �) = 0, and ∂∗A is an open C1,η/2- hypersurface in �.

13 L2∗
(�)-integrability of A w, for some exponent 2∗ > 2, can be established by standard methods through

the use of the Caccioppoli inequality in Lemma 2.5.
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Moreover if A is a first-order differential operator, then A w ∈ C0,η/8
loc (�\(∂A\∂∗A)); and

hence, the trace of A w exists on either side of ∂∗A.

Proof The reduced boundary is an open hypersurface. The first assertion H N−1((∂A\
∂∗A) ∩ �) = 0 is a direct consequence of Corollary 5.8.

To see that ∂∗A is relatively open in ∂Awe argue as follows: De Giorgi’s Structure Theorem
guarantees that for every x ∈ ∂∗A there exist r > 0 (sufficiently small) and ν ∈ S

N−1 such
that

Hex(w, A; r, x, ν) ≤ 1

2
ε∗

3, and μA(∂Br (x)) = 0.

The map y �→ μA(Br (y)) = 0 is continuous at x , therefore we may find δ(x) ∈ (0, 1) such
that

Hex(w, A; r, y, ν) ≤ ε∗
3 for every y ∈ Bδ(x) ∩ ∂A.

We may then apply Lemma 6.5 to get an estimate of the form

inf
ξ∈SN−1

Hex(w, A; y, ρ, ξ) ≤ c∗
3ρηHex(w, A; y, r, ν) for all y ∈ Bδ(x), and all ρ ∈ (0, r).

This and the first assertion of Lemma 6.5 imply that y ∈ ∂∗A for every y ∈ Bδ(x) ∩ ∂A.
Therefore, the reduced boundary ∂∗A is a relatively open subset of the topological boundary
∂A.

We proceed to prove the regularity for ∂∗A. It follows from the last equation that

D(w; y, ρ) ≤ inf
ξ∈SN−1

Hex(w, A; y, ρ, ξ)

≤ c∗
3ε∗

3ρη ≤ Cρη for every y ∈ Bδ(x), and everyρ ∈ (0, r), (64)

for some constant C = C(CBδ(x), �Bδ(x), N , M).
Through a simple comparison, we observe from (64) and the property that (w, A) is a

local saddle point of problem (P) in Bδ(x), that

DevBδ(x)(A, ρ) ≤ 2MρN−1D(w; y, ρ)

≤ 2MCρN−1+η, for all ρ ∈ (0, r) and every y ∈ Bδ(x).

We conclude with an application of Tamanini’s Theorem 2.14:

∂A = ∂∗A is a C1,η/2- hypersurface in Bδ(x).

The assertion follows by observing that the regularity of ∂∗A is a local property.

Jump conditions for the hyper-space problem. Let τ ∈ L2
loc(B1; Z) ∩ (C∞(B+

ρ ; Z) ∪
C∞(B−

ρ ; Z)) for every ρ ∈ (0, 1), assume furthermore that τ is a solution of the equation

A ∗τ = 0 in B1.

Let η ∈ C∞
c (B ′

1;Rd) be an arbitrary test function and choose a function ϕ ∈ C∞
c (B1;Rd)

with the following property:

ϕ(y′, yN ) = yk−1
N

(k − 1)!η(y′) in a neighborhood of B ′
1.

Then, integration by parts and Green’s Theorem yield that

0 =
∫
B1

τ · A ϕ dy =
∫

∂H∩B1

[A(eN )T · τ ] · η dy′,
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where [A(eN )T · τ ] = A(eN )T · (τ+ − τ−). Here, τ+ and τ− are the traces of τ in ∂H from
B+

1 and B−
1 respectively. Since η is arbitrary, a density argument shows that

[A(eN )T · τ ] = 0 in ∂H ∩ B1, and hence A(eN )T · τ ∈ W1,2
loc (B1;Rd). (65)

Regularity ofA w. From this point and until the end of the proof we will assume that A is a
first-order differential operator of gradient form; we may as well assume that ∂∗A is locally
parametrized by C1,η/2 functions.

Due to Campanato’s Theorem (C0,η/8 � L2, N+(η/4) on Lipschitz domains), our goal is
to show local boundedness of the map

x �→ sup
r≤1

{
1

r N+(η/4)

∫
Br (x)∩A

|A w − (A w)Br (x)∩A|2 dy

}
x ∈ (�\(∂A\∂∗A)); (66)

and a similar result for Ac instead of A. ��
Also, since Campanato estimates in the interior are a simple consequence of Lemma 2.6, we
may restrict our analysis to show only local boundedness at points x ∈ ∂∗A. We first prove
the following decay for solutions of the half-space:

Lemma 6.6 Let w̃ ∈ WA (B1) be such that

A ∗(σHA w̃) = 0 in B1. (67)

Then w̃ satisfies an estimate of the form

1

ρN+2

∫
Bρ

|RH w̃ − (RH w̃)ρ |2 dy ≤ c(N , σ1, σ2)

∫
B1

|RH w̃ − (RH w̃)1|2 dy (68)

for all 0 < ρ ≤ 1, where we have defined

RAu := (∇′u, AT
N (σAA u)

)
, A ⊂ B1 Borel.

Proof Since for ρ ≥ 1/2 one can use c := 2(N+2), we only focus on proving the estimate for
ρ ∈ (0, 1/2). It is easy to verify that A ∗(σHA (∂i w̃ −λ)) = 0 in D ′(B1;Rd) for all λ ∈ R

d ,
and every i = 1, . . . , N − 1. In particular, by (61) we know that

1

ρN+2

∫
Bρ

|∂i w̃−(∂i w̃)ρ |2 dy ≤ C

ρN

∫
Bρ

|∇∂i w̃|2 dy ≤ c∗ C
∫
B1

|∂i w̃−(∂i w̃)1|2 dy, (69)

for every ρ ∈ (0, 1/2), and every i = 1, . . . , N − 1. Here, C = C(N ) is the standard scaled
Poincaré constant for balls. Summation over i ∈ {1, . . . , N − 1} yields an estimate of the
form (68) for ∇′w̃.

We are left to calculate the decay estimate for gH (w̃) := AT
N (σHA w̃) = A(eN )·(σHA w̃).

By the hypoellipticity assumption (60) and the jump condition (65), we infer that gH (w̃) ∈
W1,2

loc (B1;Rd).
Even more, by the classical Poincaré’s inequality

1

ρN+2

∫
Bρ

|g(w̃) − (g(w̃))ρ |2 dy ≤ C

ρN

∫
Bρ\∂H

|∇(g(w̃))|2 dy (70)

for every ρ ∈ (0, 1/2). On the other hand, it follows from the equation in (B1\∂H) and (63)
that one may write ∇g(w̃) in terms of ∇(∇′w̃) for almost every x ∈ (Br\∂H). We may then
find a constant C ′ = C ′(σ1, σ2,A ) such that

|∇g(w̃(x))|2 ≤ C ′|∇(∇′w̃)(x)|2 for every x ∈ (Bρ\∂H).
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Using the same calculation as in the derivation of (69), it follows from (70) that

1

ρN+2

∫
Bρ

|g(w̃) − (g(w̃))ρ |2 dy ≤ c∗ C C ′
∫
B1

|∇′w̃ − (∇′w̃)1|2 dy

≤ c∗ C C ′
∫
B1

|RH w̃ − (RH w̃)1|2 dy,

for every ρ ∈ (0, 1/2). The assertion follows by letting c(N , σ1, σ2) := c∗ C max{1,

C ′}. ��
The next corollary can be inferred from (68) by following the strategy of Lin in [8, pp

166–167]:

Corollary 6.7 Let w̃ ∈ WA (B2) solve the equation

A ∗(σAA u) = f in B2, and assume furthermore that

‖w̃‖L2(B2) ≤ 1 and ‖ f ‖L∞(B2) ≤1, (71)

where A := { x ∈ B ′
2 × R : xN > ϕ(x ′) } for some function ϕ ∈ C1,η/2(B ′

2) with ϕ(0) =
|∇ϕ|(0) = 0, and ‖ϕ‖C1,η/2(B′

2) ≤ 1. Then there exist positive constants θ(N , σ1, σ2) ∈
(0, 1/2), and C(N , σ1, σ2) such that either

1

θN+1

∫
Bθ

|RAw̃ − (RAw̃)θ |2 dy ≤
∫
B1

|RAw̃ − (RAw̃)1|2 dy, (72)

or ∫
Bθ

|RAw̃ − (RAw̃)θ |2 dy ≤ C

(
‖ϕ‖C1,η/2(B′

1)
+ ‖ f ‖2

L∞(B1)

)
. (73)

��
We are now in the position to prove (66). Let δ ∈ (0, η/2) and let (w, A) be solution of

problem (P). Since local regularity properties of the pair (w, A) are inherited to any (possibly
rotated and translated) re-scaled pair (wx,r , Ax,r ) – as defined in (47), where in particular
the source f x,r tends to zero – with r ≤ dist(x, ∂�), we may do the following assumptions
without any loss of generality: B4 ⊂ � and x = 0 ∈ ∂∗A, ∂A∗ is parametrized in B2 by a
function ϕ ∈ C1,η/2(B ′

2) such that ϕ(0) = |∇ϕ(0)| = 0, and ‖ϕ‖C1,η/2(B′
2), ‖ f ‖L∞(B2;Rd ) ≤

min{1, κ∗} where κ∗ = κ∗(δ, N , M) is the constant of Remark 6.4. Additionally, since
(w, A) is a solution of problem (P), we know that

A ∗(σAA w) = f in B2, (74)

and

1

r N−δ

∫
Br

|A w|2 dy ≤ Cδ

(‖A w‖2
L2(B2)

+ ‖ f ‖2
L∞(B1)

)
for every r ∈ (0, 1), (75)

where Cδ(N , M) is the constant from Remark 6.4.
Notice that the rescaled functions14 wr (y) := (w(ry) − vr (ry))/r1−(δ/2) and ϕr (y) :=

ϕ(ry)/r still solve (74) for f r (y) := r1+(δ/2) f (ry) and Ar := A/r with ‖ϕr‖C1,η/2(B′
2),

‖ f r‖L∞(B2;Rd ) ≤ min{1, κ∗}. In particular, by (75) and Poincaré’s inequality

‖wr‖2
L2(B1)

≤ C(B1)‖A wr‖2
L2(B1)

< C := C(B1)Cδ

(‖A w‖2
L2(B2)

+ 1
)
.

14 Here, νr is the A -free corrector function for w in Br , see Definition 2.1.
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Recall that ‖ϕr‖C1,η/2(B′
1)

scales as rη/2‖ϕ‖C1,η/2(B′
r )

and, in view of its definition, ‖ f r‖2
L∞(B1)

scales as r2+δ . In view of these properties, we are in position to apply Corollary 6.7 to

wr/ max{1,C
1/2}: We infer that either

1

θN+1

∫
Bθ

|RAr w
r − (RAr w

r )θ |2 dy ≤
∫
B1

|RAr w
r − (RAr w

r )1|2 dy, (76)

or ∫
Bθ

|RAr w
r − (RAr w

r )θ |2 dy ≤ max{1,C} · C(N , σ1, σ2)

(
‖ϕr‖C1,η/2(B′

1)
+ r2+δ

)
,

(77)

where θ = θ(N , σ1, σ2) ∈ (0, 1/2) is the constant from Corollary 6.7.
It is not difficult to verify, with the aid of the Iteration Lemma 4.6, that re-scaling in (76)

and (77) conveys a decay of the form

1

r N+η/2−δ

∫
Br

|RA(w − νr ) − (RA(w − νr ))r |2 dy ≤ c′ for all r ∈ (0, 1), (78)

and some constant c′ = c′(δ, N , σ1, σ2, ‖A w‖L2(B2)).
The last step of the proof consists in showing that RA(w − νr ) dominates ∇(w − νr ).

By the definition of RA, it is clear that |∇′(w − νr )(x) − (∇′(w − νr ))Br∩A|2 ≤ |RA(w −
νr )(x)−(RA(w−νr ))Br∩A|2 for all x ∈ B1 and every r ∈ (0, 1). We show a similar estimate
for ∂N (w − νr ):

The pointwise Gårding inequality (2) and (11) imply, in particular, that the tensor
(A(eN )T σ1 A(eN )) = (AT

Nσ1AN ) ∈ Lin (Rd ;Rd) is invertible (use, e.g., Lax-Milgram
in R

d ). Hence,

∂N (w − νr ) =(AT
Nσ1AN )−1

(
g(w − νr ) −

∑
j �=N

(AT
Nσ1 A j )∂ j (w − νr )

)
in B1 ∩ A,

(79)

from where we deduce that

1

r N+(η/2)−δ

∫
Br∩A

|∂N (w − νr ) − (∂N (w − νr ))Br∩A|2 dy

≤ c′′

r N+(η/2)−δ

∫
Br∩A

|RA(w − νr ) − (RA(w − νr ))Br∩A|2 dy

for some constant c′′ = c′′(σ1,A ) ≥ 1 bounding the right hand side of (79) in terms of
∇′(w − vr ) and g(w − vr ).

By (78) and the estimate above we obtain

1

r N+(η/2)−δ

∫
Br∩A

|A w − (A (w))Br∩A|2 dy

= 1

r N+(η/2)−δ

∫
Br∩A

|A (w − νr ) − (A (w − νr ))Br∩A|2 dy

≤ C(A )

r N+(η/2)−δ

∫
Br∩A

|∇(w − νr ) − (∇(w − νr ))Br∩A|2 dy

≤ c(N , σ1, σ2, ‖A w‖L2(B2)) := C(A ) · c′ · c′′,

for every r ∈ (0, 1). The assertion follows by taking δ = η/4.
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Notice that the dependence on ‖A w‖L2(B2) is local since we assumed B4 ⊂ �; this means
that in general we may not expect a uniform boundedness of the decay. Similar bounds for
A replaced by Ac can be derived by the same method. ��
Remark 6.8 (Regularity I) In general, for a k’-th order operator A of gradient form, the only
feature required to prove the regularity of ∇kw up to the boundary ∂∗A by the same methods
as for first-order operators of gradient form is to obtain an analog of Lemma 6.6 (and its
Corollary 6.7) for higher-order operators.

More specifically, if w̃ ∈ WA (B1) is a solution of the equation

A ∗(σHA u) = 0 in B1,

then w̃ satisfies an estimate of the form

1

ρN+2

∫
Bρ

|RH w̃ − (RH w̃)ρ |2 dy ≤ c(N , σ1, σ2)

∫
B1

|RH w̃ − (RH w̃)1|2 dy (80)

for all 0 < ρ ≤ 1,
where

RAu := (∇′u,A(eN )T (σAA u)
)
, A ⊂ B1.

Unfortunately, for 2k’-th order systems of elliptic equations (with k > 1) it is not clear to us
whether one can prove such decay estimates by standard methods. While a decay estimate for
∇k−1(∇′u) can be shown by the very same method as the one in the proof of Theorem 1.5, the
main problem centers in proving a decay estimate for the term A(eN )T (σA u) ∈ W1,2(B1)

– cf. (65). Technically, the issue is that one cannot use the equation on half-balls to describe
∂(0,...,0,k)u in terms of ∇k−1(∇′u).

Remark 6.9 (Regularity II: linear plate theory) In the particular case of models in linear plate
theory (A = ∇2, N = 2, and d = 1) it is possible to show a decay estimate as in (80) for
solutions w ∈ W2,2

0 (B2) of the equation

∇ · (∇ · (σH∇2u)) = 0.

By Remark 2.8, there exists a field w ∈ W 1,2(B2;R2) which turns out to be a solution of
the equation

∇ · (SH Ew) = 0,

where S is a positive fourth-order symmetric tensor such that σH (x) = R⊥S−1
H (x)R⊥;

furthermore,R⊥Ew = σH∇2u. SinceA = ∇2, it is easy to verify that Aα = A(i, j) = ei⊗e j
for i, j ∈ {1, 2}, a simple calculation shows that

gH (u) := A(eN )T (σHA u) = (σH∇2u)22 = (R⊥Ew)22 = ∂1w
1;

and thus, since E is an operator of gradient form of order one, it follows form the proof of
Theorem 1.5 that an estimate of the form (80) indeed holds for gH (u).
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7 Glossary of constants

N spatial dimension
M coercivity and bounding constant for the tensors σ1 and σ2 (as quadratic forms)
K an arbitrary compact set in �

λK local upper bound constant

Other constants Groups of constants are numbered in non-increasing order, e.g., c∗
1 ≥ c∗

2 ≥
c∗

3. The following constants play an important role in our calculations:

Constant Dependence Description

θ1 arbitrary in (0, 1/2) Ratio constant
c1 θ1, N , M Universal constant
ε1 θ1, N , M Smallness of perimeter density
c2 N , M Universal constant
γ N , M Universal constant
θ2 N , M Universal constant
ε2 N , M Smallness of excess energy
θ0(ε) N, M, K Smallness of perimeter density
c∗1 λK , N Constant in the Height bound Lemma
θ∗

1 arbitrary in (0, 1/2) Ratio constant
c∗2 θ∗

1 , N , M Universal constant
ε∗

2 θ∗
1 , N , M Smallness of flatness excess

c∗3 K , N , M, f Flatness excess improvement scaling constant
ε∗

3 K , N , M, f Smallness of flatness excess
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