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1 A geometric heat flow for vector fields

Recently, we have witnessed the power of geometric flows in studying lots of problems in geometry and

topology. In this paper, we introduce a geometric heat flow for vector fields on a Riemannian manifold

and study its varies properties.

Throughout this paper, we adopt the Einstein summation and notions as those in [3]. All manifolds

and vector fields are smooth; a manifold is said to be closed if it is compact and without boundary. We

shall often raise and lower indices for tensor fields.

1.1 Deformation tensor field of a vector field

Let (M, g) be a closed and orientable Riemannian manifold. To a vector field X we associate its defor-

mation (0, 2)-tensor field Def(X), which is an obstruction of X to be Killing and is locally defined by

(Def(X))ij :=
∇iXj +∇jXi

2
, (1.1)

where ∇ denotes the Levi-Civita connection of g. Equivalently, it is exactly (up to a constant factor)

the Lie derivative of g along the vector field X , i.e., LXg. We say that X is a Killing vector field if

Def(X) = 0. Consider the L2-norm of Def(X):

L(X) :=

∫
M

|Def(X)|2dV, (1.2)
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where dV stands for the volume form of g and | · | means the norm of Def(X) with respect to g. It is

clear that the critical point X of L satisfies

ΔX i +∇idiv(X) +Ri
jX

j = 0. (1.3)

Here and henceforth, Δ := gij∇i∇j is the Laplace-Beltrami operator of g and Rij denotes the Ricci

curvature of g. In fact,

d

dt
L(Xt) = 2

∫
M

〈Def(Xt), ∂tDef(Xt)〉dV

= 2

∫
M

(∇i(Xt)
j +∇j(Xt)

i)(∇i∂t(Xt)j +∇j∂t(Xt)i)dV

= −
∫
M

[Δ(Xt)
i · ∂t(Xt)i +∇j∇i(Xt)

j · ∂t(Xt)i]dV

= −
∫
M

[Δ(Xt)
i +∇idiv(Xt) +Ri

j(Xt)
j ]∂t(Xt)

idV.

1.2 A geometric heat flow for vector fields

Motivated by (1.3), we introduce a geometric heat flow for vector fields

∂t(Xt)
i = Δ(Xt)

i +∇idiv(Xt) +Ri
j(Xt)

j , X0 = X, (1.4)

where X is a fixed vector field on M and ∂t :=
∂
∂t is the time derivative. If we define Ric�, the (1, 1)-tensor

field associated to Ric, by

g(Ric�(X), Y ) := Ric(X,Y ),

where X,Y are two vector fields, then Ric� is an operator on the space of vector fields, denoted by

C∞(TM), and the flow (1.4) can be rewritten as

∂tXt = ΔXt +∇div(Xt) + Ric�(Xt). (1.5)

In 1952, Yano [15–17] showed that a vector field X = X i ∂
∂xi is a Killing vector field if and only if it

satisfies

ΔX i +Ri
jX

j = 0, div(X) = 0. (1.6)

His result depends on an integral formula, now called Yano’s integral formula,

0 =

∫
M

[Ric(X,X)− |∇X |2 + 2|Def(X)|2 − |div(X)|2]dV, (1.7)

which holds for any vector field X . This integral formula lets us define so-called the Bochner-Yano integral

for every vector field X :

E(X) :=

∫
M

[|∇X |2 + |div(X)|2 − Ric(X,X)]dV. (1.8)

Consequently, Yano’s integral formula implies that E(X) is always nonnegative and E(X) = 2L(X) for

every vector field X . On the other hand, Watanabe [13] proved that X is a Killing vector field if and

only if E(X) = 0, and hence if and only if L(X) = 0.

Yano’s equations (1.6) induces a system of equations, called the Bochner-Yano flow

∂t(Xt)
i = Δ(Xt)

i +Ri
j(Xt)

j , div(Xt) = 0. (1.9)

Notice that Yano’s equation (1.6) (resp., Bochner-Yano flow (1.9)) is a special case of (1.3) (resp., our

flow (1.4)).
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Proposition 1.1. If Xt is the solution to the flow (1.4), then

E(Xt) � 0, (1.10)

d

dt
E(Xt) = −2

∫
M

|∂tXt|2dV � 0, (1.11)

E(Xt) = − d

dt

(
1

2

∫
M

|Xt|2dV
)
. (1.12)

Consequently, E(Xt) is monotone nonincreasing and
∫
M |Xt|2dV is also monotone nonincreasing.

Proof. The first one directly follows from (1.7). Since the flow (1.4) is the gradient flow of the func-

tional E , we prove the second one. To prove (1.12), we use the formula

1

2
Δ|X |2 = 〈X,ΔX〉+ |∇X |2

to deduce that

E(Xt) =

∫
M

[
1

2
Δ|Xt|2 − (Xt)iΔ(Xt)

i + |div(Xt)|2 − Ric(Xt, Xt)

]
dV

= −
∫
M

[(Xt)iΔ(Xt)
i + (Xt)i∇idiv(Xt) + (Xt)i · Ri

j(Xt)
j ]dV

= −
∫
M

(Xt)i[Δ(Xt)
i +∇idiv(Xt) +Ri

j(Xt)
j ]dV

= −1

2

∫
M

∂t|Xt|2dV.

Hence, the conclusion is obvious.

Corollary 1.2. If Xt is the solution to the flow (1.4) for t ∈ [0, T ], then we have

∫ T

0

∫
M

|∂tXt|2dV dt � 1

2
E(X). (1.13)

Proof. For any T , we have

−2

∫ T

0

∫
M

|∂tXt|2dV dt = E(XT )− E(X) � −E(X),

since E is nonnegative. This proves (1.13).

1.3 Evolution equations

To study the long time existence and the convergence of the geometric heat flow (1.4), we prove its several

associated evolution equations.

Lemma 1.3. If Xt is the solution to (1.4), then

∂t|Xt|2 = Δ|Xt|2 − 2|∇Xt|2 + 2 〈Xt,∇div(Xt)〉+ 2Ric(Xt, Xt). (1.14)

Proof. Calculate

∂t|Xt|2 = 2(Xt)i∂t(Xt)
i

= 2(Xt)i(Δ(Xt)
i +∇idiv(Xt) +Ri

j(Xt)
j)

= Δ|Xt|2 − 2|∇Xt|2 + 2 〈Xt,∇div(Xt)〉+ 2Ric(Xt, Xt),

which proves (1.4).
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Lemma 1.4. If Xt is the solution to (1.4), then

∂t|∇Xt|2 = Δ|∇Xt|2 − 2|∇2Xt|2 − 4Rijk�∇i(Xt)
k · ∇j(Xt)

�

− 2Rij∇i(Xt)
k · ∇j(Xt)k + 2Rij∇k(Xt)

i · ∇k(Xt)
j

+ 2 〈Def(Xt),∇∇div(Xt)〉
+ 2(∇iRjk −∇�R�ikj)(Xt)

k∇i(Xt)
j . (1.15)

Proof. From the definition of the flow, we have

∂t|∇Xt|2 = 2∇i(Xt)j · ∇i∂t(Xt)
j

= 2∇i(Xt)j · ∇i(Δ(Xt)
j +∇jdiv(Xt) +Rj

k(Xt)
k).

We use the Ricci identity to deduce that

∇iΔ(Xt)
j = gpq∇i∇p∇q(Xt)

j

= gpq[∇p∇i∇q(Xt)
j −Ripq

r∇r(Xt)
j +Ripr

j∇q(Xt)
r]

= ∇q[∇q∇i(Xt)
j +Riqr

j(Xt)
r]−Rir∇r(Xt)

j +Ripr
j∇p(Xt)

r

= Δ∇i(Xt)
j +∇q(Riqr

j(Xt)
r)−Rir∇r(Xt)

j +Ripr
j∇p(Xt)

r

= Δ∇i(Xt)
j +∇qRiqr

j · (Xt)
r + 2Riqr

j∇q(Xt)
r −Rir∇r(Xt)

j .

Plugging it into the equation for ∂t|∇Xt|2, we arrive at

∂t|∇Xt|2 = 2∇i(Xt)j [Δ∇i(Xt)
j +∇qRiqr

j(Xt)
r + 2Riqr

j∇q(Xt)
r

− Rir∇r(Xt)
j +∇i∇jdiv(Xt) + (Xt)

k∇iR
j
k +Rj

k∇i(Xt)
k]

= Δ|∇Xt|2 − 2|∇2Xt|2 + 2∇qRiqr
j∇i(Xt)j · (Xt)

r

+ 4Riqrj∇q(Xt)
r∇i(Xt)

j − 2Rir∇r(Xt)
j∇i(Xt)j

+ 2∇i(Xt)j · ∇i∇jdiv(Xt) + 2∇iR
j
k · (Xt)

k∇i(Xt)j2R
j
k∇i(Xt)

k∇i(Xt)j

= Δ|∇Xt|2 − 2|∇2Xt|2 − 4Rqirj∇q(Xt)
r∇i(Xt)

j

− 2Rir∇r(Xt)
j∇i(Xt)j + 2Rjk∇i(Xt)

k∇i(Xt)
j

+ 2∇i(Xt)j · ∇i∇jdiv(Xt) + 2∇iRjk · (Xt)
k∇i(Xt)

j

− 2∇qRqirj(Xt)
r∇i(Xt)

j .

Changing the indices yields the desired result.

By the Bianchi identity, the above lemma can be written as the following corollary.

Corollary 1.5. If Xt is the solution to the flow (1.4), then

∂t|∇Xt|2 = Δ|∇Xt|2 − 2|∇2Xt|2 − 4Rijk�∇i(Xt)
k∇j(Xt)

�

− 2Rij∇i(Xt)
k∇j(Xt)k + 2Rij∇k(Xt)

i∇k(Xt)
j

+ 2(∇iRjk −∇jRki +∇kRij)(Xt)
k∇i(Xt)

j

+ 2 〈Def(Xt),∇∇div(Xt)〉 .

Lemma 1.6. (1) If Xt is the solution to the flow (1.4), then

∂tdiv(Xt) = 2Δdiv(Xt) + 〈Xt,∇R〉+ 2Rij∇i(Xt)
j . (1.16)

(2) If Xt is the solution to the flow (1.4), then

∂t|div(Xt)|2 = 2Δ|div(Xt)|2 − 4|∇div(Xt)|2
+ 2div(Xt)〈Xt,∇R〉+ 4div(Xt) · Rij∇i(Xt)

j
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and

d

dt

∫
M

|div(Xt)|2dV = −4

∫
M

|∇div(Xt)|2dV

− 4

∫
M

Ric(Xt,∇div(Xt))dV. (1.17)

In particular, if Ric = 0 and div(X) ≡ 0, then div(Xt) ≡ 0.

Proof. According to (1.4), one has

∂tdiv(Xt) = ∇i(∂t(Xt)
i) = ∇i(Δ(Xt)

i +∇idiv(Xt) +Ri
j(Xt)

j)

= ∇i(Δ(Xt)
i) + Δdiv(Xt) +∇i(Rij(Xt)

j).

Next, we compute the first term ∇i

(
Δ(Xt)

i
)
as follows:

∇i(Δ(Xt)
i) = gpq∇i∇p∇q(Xt)

i

= gpq(∇p∇i∇q(Xt)
i −Ripq

r∇r(Xt)
i +Ripr

i∇q(Xt)
r)

= ∇q(∇q∇i(Xt)
i +Riqr

i(Xt)
r)−Rir∇r(Xt)

i +Rpr∇p(Xt)
r

= Δ∇i(Xt)
i +∇q(Rqr(Xt)

r).

Combining those two expression gives

∂tdiv(Xt) = 2Δdiv(Xt) + 2∇i(Rij(Xt)
j)

= 2Δdiv(Xt) + 2∇iRij · (Xt)
j + 2Rij∇i(Xt)

j

= 2Δdiv(Xt) +∇jR · (Xt)
j + 2Rij∇i(Xt)

j ,

proving (1.16). For (1.17), the evolution equation for |div(Xt)|2 is

∂t|div(Xt)|2 = 2div(Xt) · ∂tdiv(Xt)

= 2div(Xt)(2Δdiv(Xt) + (Xt)
i∇iR+ 2Rij∇i(Xt)

j)

= 2Δ|div(Xt)|2 − 4|∇div(Xt)|2
+ 2div(Xt) · (Xt)

i∇iR+ 4(div(Xt)Rij)∇i(Xt)
j .

Integrating both sides over M yields

d

dt

∫
M

|div(Xt)|2dV = − 4

∫
M

|∇div(Xt)|2dV + 2

∫
M

div(Xt)((Xt)
i∇iR)dV

− 4

∫
M

∇i(div(Xt)Rij)(Xt)
jdV.

Since

4∇i(div(Xt)Rij)(Xt)
j = 4[∇idiv(Xt) ·Rij + div(Xt) · ∇iRij ](Xt)

j

= 4Rij(Xt)
j∇idiv(Xt) + 2∇jR · (Xt)

jdiv(Xt),

it follows that (1.17) is true. When Ric = 0, we obtain

d

dt

∫
M

|div(Xt)|2dV � 0,

which means ∫
M

|div(Xt)|2dV �
∫
M

|div(X)|2dV = 0

and therefore |div(Xt)|2 = 0. Thus div(Xt)≡0.
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1.4 Long-time existence

Now we can state our main result to the flow (1.4).

Theorem 1.7 (Long-time existence). Suppose that (M, g) is a closed and orientable Riemannian

manifold. Given an initial vector field, the flow (1.4) exists for all time.

The main method on proving above theorem is the standard approach in PDEs and an application of

Sobolev embedding theorem. After establishing the long-time existence, we can study the convergence

problem of the flow (1.4).

Proof. We now turn to the proof of the short-time existence of the flow (1.4). Note that (1.4) can be

written as

∂t(Xt)
i = Δ(Xt)

i +∇idiv(Xt) +Ri
j(Xt)

j

= ∇k∇k(Xt)
i +∇i∇j(Xt)

j +Ri
j(Xt)

j

=

m∑
j=1

(
δij

m∑
k=1

∇k∇k +∇i∇j

)
(Xt)

j +Ri
j(Xt)

j . (1.18)

For any ξ = (ξ1, . . . , ξm) ∈ Rm, we have

m∑
i,j=1

(
δij

m∑
k=1

ξkξk + ξiξj

)
=

m∑
i,k=1

ξkξk +

m∑
i,j=1

ξiξj = m|ξ|2 +
m∑

i,j=1

ξiξj , (1.19)

where

|ξ| �
( m∑

k=1

ξ2k

)1/2

denotes the length of ξ in Rm. On the other hand, plugging

m∑
i,j=1

(ξi + ξj)
2 =

m∑
i,j=1

(ξ2i + ξ2j + 2ξiξj) = 2m|ξ|2 + 2

m∑
i,j=1

ξiξj

into (1.19) yields

m∑
i,j=1

(
δij

m∑
k=1

ξkξk + ξiξj

)
=

1

2

m∑
i,j=1

(ξi + ξj)
2

= 2

m∑
i=1

ξ2i +
1

2

∑
i�=j

(ξi + ξj)
2

� 2|ξ|2.

Then, by the standard theory for partial differential equations of parabolic type, we have that the

flow (1.4) exists for a short time.

Since the flow equation is linear, a standard theory in PDEs implies the long-time existence.

1.5 Convergence

In what follows, we always assume that (M, g) is a closed and oriented Riemannian manifold of dimen-

sion m. Since M is compact, we can find a constant B such that

Rij � Bgij . (1.20)

Then the energy functional E(Xt) satisfies∫
M

[|∇Xt|2 + (div(Xt))
2 −B|Xt|2]dV � E(Xt). (1.21)
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Using Proposition 1.1, we have∫
M

|∇Xt|2dV � E(Xt) +B

∫
M

|Xt|2dV = E(Xt) +B · u(t) � E(X) +B · u(0),

where

u(t) :=

∫
M

|Xt|2dV.

Hence ∇Xt ∈ L2(M,TM). On the other hand u(t) � u(0), we conclude that

‖Xt‖H1(M,TM) � C1(M, g,X). (1.22)

By the regularity of parabolic equations and the flow (1.4), we obtain

‖Xt‖H�(M,TM) � C� = C�(M, g,X)

for each �. Therefore we can find X∞ ∈ H�(M,TM) and a subsequence (Xti)i∈N such that Xti → X∞
a.e. as i → ∞. By Sobolev imbedding theorem, X∞ ∈ C∞(M,TM) and Xt → X∞ as t → ∞.

Corollary 1.2 implies there exists a subsequence, say, without loss of generality, (Xti)i∈N, such that

‖∂tXt|t=ti‖L2.(M,g) → 0. (1.23)

According to (1.11) and (1.23), ‖∂tXt‖L2(M,g) decreases and converges to 0 as t → ∞. Therefore, the

smooth vector field X∞ satisfies

Δ(X∞)i +∇idiv(X∞) +Ri
j(X∞)j = 0. (1.24)

In summary, we proved the following theorem.

Theorem 1.8 (Convergence). Suppose that (M, g) is a closed and orientable Riemannian manifold.

If X is a vector field, there exists a unique smooth solution Xt to the flow (1.4) for all time t. As t goes

to infinity, the vector field Xt converges uniformly to a Killing vector field X∞.

Remark 1.9. Cliff Taubes remarked that Theorems 1.7 and 1.8 also follow from an eigenfunction

expansion for the relevant linear operator that defines the flow (1.4), which gives a short proof of those

two theorems.

Theorem 1.8 does not guarantee that a nontrivial Killing vector field. For example, if X is identically

zero, then by the uniqueness theorem the limit vector field is also identically zero. When the Ricci

curvature is negative, Bochner’s theorem implies that there is no nontrivial Killing vector field.

To obtain a nonzero Killing vector field, we have the following criterion.

Proposition 1.10. Suppose that (M, g) is a closed and orientable Riemannian manifold and X is a

vector field on M . If Xt is the solution to the flow (1.4) with the initial value X, then∫ ∞

0

E(Xt)dV < ∞. (1.25)

Let

Err(X) :=
1

2

∫
M

|X |2dV −
∫ ∞

0

E(Xt) dt. (1.26)

Therefore Err(X) � 0 and X∞ is nonzero if and only if Err(X) > 0.

The higher derivatives of E(Xt) have explicit formulas in terms of the energy functionals of lower

derivatives of Xt.

Proposition 1.11. If Xt is the solution to the flow (1.4), then

E ′′(Xt) = 4E(∂tXt) � 0. (1.27)
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Proof. Using (1.11), we have

E ′′(Xt) = −4

∫
M

∂t(Xt)i · ∂t(∂t(Xt)
i)dV

= −4

∫
M

∂t(Xt)i · ∂t(ΔLB(Xt)
i +∇idiv(Xt) +Ri

j(Xt)
j)dV

= −4

∫
M

∂t(Xt)i(ΔLB∂t(Xt)
i +∇idiv(∂tXt) +Ri

j∂t(Xt)
j)dV

= −4

∫
M

(
1

2
Δ|∂tXt|2 − |∇∂tXt|2

)
dV

− 4

∫
M

∂t(Xt)i(∇idiv(∂tXt) +Ri
j∂t(Xt)

j)dV

= 4

∫
M

[|∇∂tXt|2 +∇i∂t(Xt)i · div(∂tXt)− Ric(∂tXt, ∂tXt)]dV

= 4

∫
M

|[∇∂tXt|2 + ∂tdiv(Xt) · div(∂tXt)− Ric(∂tXt, ∂tXt)]dV

= 4

∫
M

[|∇∂tXt|2 + (div(∂tXt))
2 − Ric(∂tXt, ∂tXt)]dV

= 4E(∂tXt),

which is nonnegative according to (1.7).

1.6 A connection to the Navier-Stokes equations

A surprising observation is that our flow (1.4) is very close to the Navier-Stokes equations [2,12] (without

the pressure) on manifolds

∂tXt +∇XtXt = div(St), div(Xt) = 0, (1.28)

where St := 2Def(Xt) is the stress tensor of Xt. By an easy computation we can write (1.28) as

∂t(Xt)
i + (∇XtXt)

i = Δ(Xt)
i +∇idiv(Xt) +Ri

jX
j , div(Xt) = 0. (1.29)

Compared (1.4) with (1.29), we give a geometric interpolation of the right (or the linear) part of the

Navier-Stokes equations on manifolds.

When the Ricci tensor field is identically zero, our flow (1.4) keeps the property that div(Xt) = 0

(see (1.17)).

As a consequence of the non-negativity of E we can prove the following theorem.

Theorem 1.12. Suppose that (M, g) is a closed and orientable Riemannian manifold. If Xt is a

solution to the Navier-Stokes equations (1.29), then

d

dt

(∫
M

|Xt|2dV
)

= −2E(Xt) � 0. (1.30)

In particular, ∫
M

|Xt|2dV �
∫
M

|X0|2dV. (1.31)

Proof. By multiplying by (Xt)i the equation (1.29) equals

1

2
∂t|Xt|2 + 〈∇XtXt, Xt〉 = 〈ΔXt +∇div(Xt) + Ric�(Xt), Xt〉.

Integrating on both sides yields

1

2

d

dt

∫
M

|Xt|2dV +

∫
M

〈∇XtXt, Xt〉 dV = −E(Xt).

From Lemma 1.13 below, we verify (1.30) since div(Xt) = 0.
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Lemma 1.13. Suppose that (M, g) is a closed and oriented Riemannian manifold. Then for any vector

field X ∈ C∞(M,TM), we have∫
M

〈∇XX,X〉dV = −1

2

∫
M

div(X)|X |2dV. (1.32)

Proof. Indeed, using (∇XX)j = X i∇iX
j we have∫

M

〈∇XX,X〉dV =

∫
M

(∇XX)jXjdV =

∫
M

X i∇iX
j ·XjdV

=

∫
M

∇iX
j(X iXj)dV = −

∫
M

Xj∇i(X
iXj)dV

= −
∫
M

Xj [div(X)Xj +X i∇iXj]dV

= −
∫
M

div(X)|X |2dV −
∫
M

X iXj∇iXjdV

= −
∫
M

div(X)|X |2dV −
∫
M

〈∇XX,X〉dV.

Arranging the terms yields (1.32).

The similar result was considered by Wilson [14] for the standard metric on R3.

1.7 A connection to Kazdan-Warner-Bourguignon-Ezin identity

If (M, g) is a closed Riemannian manifold with m � 2 and if X is a Killing vector field, then∫
M

〈∇R,X〉dV = 0, (1.33)

where R is the scalar curvature of g. This identity (actually holds for any conformal Killing vector fields)

was proved by Bourguignon and Ezin [1] and the surface case is the classical Kazdan-Warner identity [6].

For convenience, we call such an identity as KWBE identity. For its application to Ricci flow we refer

readers to [3]. In this subsection, we study the asymptotic behavior of the KWBE identity under the

flow (1.4).

For any vector field X , we define the KWBE functional as

I(X) :=

∫
M

〈∇R,X〉dV.

Then, under the flow (1.4), where Xt = X i ∂
∂xi ,

d

dt
I(Xt) =

∫
M

∇iR(ΔX i +∇idiv(Xt) +Ri
jX

j)dV

=

∫
M

∇iR ·ΔX idV −
∫
M

ΔR · div(Xt)dV +

∫
M

RijX
i∇jRdV.

Using the commutative formula ∇ΔR = Δ∇R− Ric(∇R, ·) yields∫
M

∇iR ·ΔX idV =

∫
M

〈Xt,Δ∇R〉dV

=

∫
M

〈Xt,∇ΔR+Ric(∇R, ·)〉dV

= −
∫
M

ΔR · div(Xt)dV +

∫
M

RijX
i∇jRdV

and therefore
d

dt
I(Xt) = −2

∫
M

ΔR · div(Xt)dV + 2

∫
M

Ric(Xt,∇R)dV. (1.34)



682 Li Y et al. Sci China Math April 2015 Vol. 58 No. 4

The last term on the right-hand side of (1.34) can be simplified by∫
M

∇iR(XjRij)dV = −
∫
M

R

(
∇iXj ·Rij +Xj · 1

2
∇jR

)
dV

= −
∫
M

RRij∇iXjdV − 1

2

∫
M

RXj∇jRdV.

We also have ∫
M

RXj∇jRdV = −
∫
M

∇j(RXj)RdV

=

∫
M

RXj∇jRdV −
∫
M

R2div(Xt)dV

so that ∫
M

RXj∇jRdV = −1

2

∫
M

R2div(Xt)dV. (1.35)

From (1.34), (1.35), (1.1) and Theorem 1.8, we arrive at the following proposition.

Proposition 1.14. If (M, g) is a closed Riemannian manifold and Xt is a solution to (1.4), then

d

dt
I(Xt) = 2

∫
M

(
−Δ+

R

4

)
R · div(Xt)dV − 2

∫
M

R〈Ric,Def(Xt)〉dV. (1.36)

In particular,

lim
t→∞

d

dt
I(Xt) = 0. (1.37)

This proposition gives the limiting behavior of d
dtI(Xt). In some cases, we can prove that d

dtI(Xt) is

pointwisely equal to zero.

Corollary 1.15. Suppose that (M, g) is a closed m-dimensional Einstein manifold with m � 3. When

m = 4 or the scalar curvature of g vanishes identically, d
dtI(Xt) = 0 for all t, where Xt is the solution

to (1.4) with any given initial vector field X.

Proof. By assumption we have Ric = R
mg and R is constant. Using (1.36), we obtain

d

dt
I(Xt) =

∫
M

R2

2
· div(Xt)dV − 2

∫
M

R2

m
div(Xt)dV

=

∫
M

m− 4

2m
R2 · div(Xt)dV.

This proves the statement.

2 A conjecture to the flow and its application

Before stating a conjecture to the flow (1.4), we shall look at a simple case that (M, g) is an Einstein

manifold with positive sectional curvature and the solution to (1.4) is the sum of the initial vector field

and a gradient vector field, i.e., we assume

Rij =
R

m
gij , m � 3, Xt = X +∇ft,

where ft are some functions on M . By a theorem of Schur, the scalar curvature R must be a constant.

In this case, the flow (1.4) is equivalent to

∇
(
∂tft − 2Δft − 2R

m
ft

)
= X†, (2.1)

where

X† := ΔX +∇(div(X)) + Ric�(X) (2.2)

is the vector field associated to X . Clearly that the operator † is not self-adjoint on the space of vector

fields, with respect to the L2-inner product with respect to (M, g).
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2.1 Einstein manifolds with positive scalar curvature

If (M, g) is an m-dimensional Einstein manifold with positive scalar curvature, then we can prove that

the limit vector field converges to a nonzero Killing vector field, provided the initial vector field satisfying

some conditions. We first give a L2-estimate for ft.

Proposition 2.1. Suppose that (M, g) is an m-dimensional closed and orientable Einstein manifold

with positive scalar curvature R, where m � 3. Let X be a nonzero vector field satisfying X† = ∇ϕX for

some smooth function ϕX on M . Then for any given constant c, the equation

∂tft = 2Δft +
2R

m
ft + ϕX , f0 = c, (2.3)

exists for all time. Moreover,

(i) we have ∫
M

ftdV =

[
c · Vol(M, g) +

m

2R

∫
M

ϕXdV

]
e

2R
m t − m

2R

∫
M

ϕXdV. (2.4)

Setting

cX := − m

2R ·Vol(M, g)

∫
M

ϕXdV,

yields ∫
M

ftdV = − m

2R

∫
M

ϕXdV, if c = cX .

(ii) If we choose the nonzero function ϕX so that its integral over M is zero and f0 = 0, then∫
M

ftdV = 0

and the L2-norm of ft is bounded by

‖ft‖2 � ‖ϕX‖2
2(λ1 − R

m )
− ‖ϕX‖2

2(λ1 − R
m )

e−2(λ1− R
m )t, (2.5)

where ‖ · ‖2 means ‖ · ‖L2(M,g) the L2-norm with respect to (M, g), and λ1 stands for the first nonzero

eigenvalue of (M, g).

For a moment, we put

a(t) :=

∫
M

ftdV, b(t) :=

∫
M

|ft|2dV.

Then, the equation (2.3) implies that

a′(t) =
2R

m
a(t) +

∫
M

ϕXdV,

and

b′(t) = −4

∫
M

|∇ft|2dV +
4R

m
b(t) + 2

∫
M

ftϕXdV

� −4

(
λ1 − R

m

)
b(t) + 2b1/2(t)‖ϕX‖2.

By a theorem of Lichnerowicz, we have that

λ1 � R

m− 1
>

R

m
.

Hence, (2.4) and (2.5) follow immediately.

Consequently, we have the following theorem.
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Theorem 2.2. Suppose that (M, g) is an m-dimensional closed and orientable Einstein manifold with

positive scalar curvature R, where m � 3. If X is a nonzero vector field satisfying the following two

conditions:

(i) X† is a gradient vector field, and

(ii) X is not a gradient vector field.

Then the flow (1.4) with initial value X converges uniformly to a nonzero Killing vector field.

2.2 A conjecture and its applications

By Bochner’s theorem, any Killing vector field on a closed and orientable Riemmanian manifold with

negative Ricci curvature is trivial. Hence, based on a result in the Einstein case, we propose the following

conjecture.

Conjecture 2.3. Suppose that M is a closed Riemannian manifold with positive sectional curvature.

For some initial vector field and a certain Riemannian metric g of positive sectional curvature, the

flow (1.4) converges uniformly to a nonzero Killing vector field with respect to g.

Our study shows that we may need to change to a new metric, which still has positive sectional

curvature, to get the nonzero limit which is a Killing vector field with respect to this new metric. For

this purpose we have computed variations of the functional L or E relative to the new metric, as well as

the Perelman-type functional for our flow.

Obviously a solution to this conjecture immediately answers the following long-standing question of

Yau [11].

Question 2.4. Does there exist an effective S1-action on a closed manifold with positive sectional

curvature?

Assuming Conjecture 2.3, we can deduce several important corollaries. We first recall the well-known

Hopf’s conjectures.

Conjecture 2.5. If M is a closed and even dimensional Riemannian manifold with positive sectional

curvature, then the Euler characteristic number of M is positive, i.e., χ(M) > 0.

Conjecture 2.6. On S2 × S2 there is no Riemannian metric with positive sectional curvature.

For the recent development of Hopf’s conjectures, we refer to [10, 11]. A simple argument shows that

Conjectures 2.5 and 2.6 follow from Conjecture 2.3.

Corollary 2.7. Conjecture 2.3 implies Conjecture 2.5.

Proof. From [7] we know that the Killing vector fieldX must have zero, and the zero sets consist of finite

number of totally geodesic submanifolds {Mi} of M with the induced Riemannian metrics. Moreover,

each Mi is even dimensional and has positive sectional curvature. Hence we have χ(M) =
∑

i χ(Mi). By

induction, we obtain χ(M) > 0.

Hsiang and Kleiner [5] showed that if M is a 4-dimensional closed Riemannian manifold with positive

sectional curvature, admitting a nonzero Killing vector field, then M is homeomorphic to S4 or CP
2.

Consequently, S2 × S2 does not admit a Riemannian metric, whose sectional curvature is positive, with

a nontrivial Killing vector field. Therefore, we obtain the following corollary.

Corollary 2.8. Conjecture 2.3 implies Conjecture 2.6.

3 Variants geometric flows

In Section 3, we discuss several new geoemtric flows whose fixed points give Killing vector fields. Recall

the notions in [9]. Let (M, g) be a closed and orientable Riemannian manifold of dimension m and φ a

positive smooth function on M . Define

R̃ic∞ := Ric−Hess(ln φ) (3.1)
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the Bakry-Émery Ricci tensor field. For any smooth tensor field T on M consider the weighted L2-inner

product given by

〈T, T 〉φ :=

∫
M

(T, T )φdV (3.2)

and let us denote δ̃ the formal adjoint of d with respect to this inner product. Then

δ̃ = δ − i(d lnφ)# , (3.3)

where δ is the usual formal adjoint of d and (d ln φ)# stands for the corresponding vector field of the

1-form d ln φ.

Lott [9] obtained the following Bochner formula (where ω is a 1-form):

〈dω, dω〉φ + 〈δ̃ω, δ̃ω〉φ − 〈∇ω,∇ω〉φ = 〈R̃ic∞ω, ω〉φ (3.4)

or

〈∇ω,∇ω〉φ + 〈δ̃ω, δ̃ω〉φ − 〈ω, R̃ic∞ω〉φ = 〈Lω#g,Lω#g〉φ, (3.5)

where L means the Lie derivative. Let X := ω# or X� = ω in (3.5) we obtain∫
M

|LXg|2φdV =

∫
M

[|∇X |2 + |δ̃X�|2 − R̃ic∞(X,X)]φdV. (3.6)

3.1 New criterion: I

Given a smooth function f on M , set

φ := ef , lnφ = f (3.7)

and define

Ricf := R̃ic∞ = Ric−Hess(f),

divf := −δ̃ = −δ + i∇f = div + i∇f .

For any smooth vector field X , we have

e−fdiv(efX) = e−f(efdiv(X) + ef 〈∇f,X〉) = div(X) + 〈∇f,X〉,

which implies that

divf =
1

ef
div(ef ), (3.8)

a weighted divergence in the sense of [4]. Therefore the identity (3.6) can be rewritten as∫
M

|LXg|2efdV =

∫
M

[|∇X |2 + |divf (X)|2 − Ricf (X,X)]efdV. (3.9)

On the other hand, we have∫
M

|∇X |2efdV =

∫
M

∇iXj(e
f∇iXj)dV

= −
∫
M

Xj(∇if∇iXj +ΔXj)efdV

= −
∫
M

〈X,ΔfX〉efdV,

where

ΔfX
j := ΔXj +∇if∇iXj .

Similarly, ∫
M

|divf (X)|2efdV =

∫
M

divf (X)(efdivf (X))dV
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=

∫
M

e−fdiv(efX)(efdivf (X))dV

= −
∫
M

〈X,∇divf (X)〉efdV.

Hence, the identity (3.9) implies∫
M

|LXg|2efdV = −
∫
M

〈X,ΔfX +∇divf (X) + Ricf (X)〉 efdV. (3.10)

The above identity shows that the Euler-Lagrange equation for the functional X 
→ ∫
M |LXg|2efdV is

ΔfX +∇divf (X) + Ricf (X) = 0. (3.11)

We now simplify the equation (3.11). Compute

ΔfX
i = ΔX i +∇jf∇jX i,

∇idivf (X) = ∇i(e−fdiv(efX))

= ∇i(div(X) + 〈∇f,X〉)
= ∇idiv(X) +∇i(Xj∇jf)

= ∇idiv(X) +∇iXj∇jf +Xj∇i∇jf.

Consequently,

ΔfX
i +∇idivf (X) = ΔX i +∇idiv(X) +∇jf(LXg)ij +Xj∇i∇jf. (3.12)

Plugging (3.12) into (3.11) and noting the definition of Ricf yields

0 = ΔX i +∇idiv(X) +Ri
jX

j +∇jf(LXg)ij . (3.13)

As in [15], we can prove the following theorem.

Theorem 3.1. Given any smooth function f on a closed orientable Riemanian manifold (M, g). A

smooth vector field X is Killing if and only if it satisfies (3.13). When f ≡ 0, it reduces to the classical

criterion of Yano.

Proof. Suppose X is Killing. Then LXg = 0 and ΔX + ∇div(X) + Ric(X) = 0 by Yano’s theorem.

These two equations immediately imply (3.13). Conversely, if X is a smooth vector field satisfying (3.13),

then it also satisfies (3.11) and then ∫
M

|LXg|2efdV = 0

according to (3.10). Hence LXg ≡ 0 and X is Killing.

The above theorem suggests us to consider the following flow:

∂tX
i = ΔX i +∇idiv(X) +Ri

jX
j +∇jf(LXg)ij (3.14)

for a given smooth function f ∈ C∞(M), or consider a nonlinear flow

∂tX
i = ΔX i +∇idiv(X) +Ri

jX
j +∇jdiv(X)(LXg)ij . (3.15)

As in the proof of Theorem 1.8, we have the following theorem.

Theorem 3.2. Let (M, g) be a closed orientable Riemannian manifold, f a smooth function on M ,

and X a smooth vector field on M . Then the flow (3.14) starting with the initial data X smoothly

converges to a Killing vector field X∞.

Proof. By replacing div,Δ, dV,Ric by divf ,Δf , e
fdV,Ricf in the argument of Theorem 1.8, we can

show that
∫
M |Xt|2efdV is decreasing,

∫
M |∂tXt|2efdV → 0, and then by the same method Xt smoothly

converges to a smooth vector field X∞ satisfying (3.13). By Theorem 3.1, X∞ must be Killing.
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3.2 New criterion: II

The second new criterion is based on the following identity:∫
M

[
(LXg)(X,X) +

1

2
div(X)|X |2

]
dV = 0, (3.16)

for any smooth vector field X on M . Since

2(LXg)ij = ∇iXj +∇jXi,

to prove (3.16), it suffices to show that∫
M

[
X iXj∇iXj +

1

2
div(X)|X |2

]
dV = 0.

Actually, ∫
M

X iXj∇iXjdV = −
∫
M

Xj∇i(X
iXj)dV

= −
∫
M

Xj [div(X)Xj +X i∇iX
j]dV

= −
∫
M

div(X)|X |2dV −
∫
M

X iXj∇iX
jdV,

which yields ∫
M

X iXj∇iXjdV = −1

2

∫
M

div(X)|X |2dV.

The second new criterion can be stated as follows:

Theorem 3.3. A smooth vector field X on a closed orientable Riemannian manifold (M, g) is a Killing

vector field if and only if it satisfies

0 = ΔX +∇div(X) + Ric(X, ·) + (LXg)(X, ·) + 1

2
div(X)X. (3.17)

Proof. If X is Killing, then div(X) = LXg = 0 and hence (3.17) reduces to Yano’s classical result.

Conversely, suppose a smooth vector field X satisfies (3.17). Multiplying (3.17) by X and integrating

over M , we obtain

0 = −
∫
M

[|∇X |2 + |div(X)|2 − Ric(X,X)]dV

+

∫
M

[
(LXg)ijX

iXj +
1

2
div(X)|X |2

]
dV. (3.18)

The second integral on the right-hand side equals zero by the identity (3.16), and consequently, (3.18)

is equivalent to E(X) = 0, where E(X) was defined in (1.8). By a result of Watanabe [13], X must

be Killing.

Theorem 3.3 also suggests a nonlinear equation

∂tXt = ΔXt +∇div(Xt) + Ric(Xt, ·) + (LXtg)(Xt, ·) + 1

2
div(Xt)Xt. (3.19)

We note that the flows (1.4) and (3.14) are linear, while the flows (3.15) and (3.19) are nonlinear. We

will later study those flows and applications to geometry.
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