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1 Introduction

Consider the space-time R with a Lorentz metric

h= V2! 22 23)dt ® dt + Z gij(azl,x2,x3)dxi ® da?,
1<i,j<3
where V is a positive smooth function on R? and ¢ is a Riemannian metric on
R3. A solution to the static Einstein vacuum equation® is a pair (V,g), where
V is a positive smooth function on R? and ¢ is a Riemannian metric on R3,

satisfying
Ric, = V'V2V, VIAV =0. (1.1)

In particular, when V is a positive constant, we obtain the classical Einstein
equation. Consider the conformal transformation

g:=eYg, Y eC®X),dimE =n,ack.
Then
Eij = Rij — (’I’L — 2)Ozvivj‘?/) + (’I’L — 2)0&2VZ"QZJVJ'1/)
—agiiAg — (n = 2)0’|Vetlggis, (1.2)
Asf=e A f + (n—2)a(Vh, Vo f)gl, [€CTX).
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Let u = logV, g = €®*g in (1.1). We then obtain

Ri; = 2V;uVju, Azu=0, (1.3)

since

R;; = V;Vju+ VuV;u.

To find a solution to the static Einstein vacuum equation, we shall try to
solve (1.3). Ome method is to use the corresponding parabolic flow, that is,
Ricci-harmonic flow (RHF).

Given a closed manifold M of dimension n, the RHF is defined by

Org(t) = —2Ricy(y) + 2a() V) d(t) @ Vi d(t),  0rd(t) = Agyo(t), (1.4)

introduced in [27,28,32,34], where ¢(t) is a family of Riemannian metric, ¢(t)
is a family of functions, and t € [0,T") (with T" € (0, +o0], and the existence
of T was proved in [27,32]). Here, a(t) is a time-dependent positive constant.
In particular, we may choose «a(t) = «, a positive constant. If all functions
¢(t) = 0, we obtain the Ricci flow (RF) introduced by Hamilton in his
famous paper [22] and definitely used by Perelman [37-39] on his work about
the Poincaré conjecture. The flow equations (1.1) come from mentioned static
FEinstein vacuum equations arising in the general relativity, and also arise as
dimensional reductions of RF in higher dimensions [30].

Several analogous flows have been investigated in recent years. For example,
connection Ricci flow [44], Ricci-Yang-Mills flow [43,46,56], and renormalization
group flows [23,24,36,45].

Without loss of generality, we may assume «(t) = 2 in (1.4); thus, we
consider the following RHF":

Org(t) = —2Ricyy) + 4V d(t) @ Ve o(t), 0sd(t) = Dgyo(t),  (1.5)

For general a(t), the same results also hold (see [26-28,32,34]).

Throughout this paper, we fix a closed manifold M of dimension n. For any
Riemannian metric g on M, let V, denote the Levi-Civita connection induced
by g. The Riemann curvature tensor Rmg, Ricy, and scalar curvature R, are,
respectively, defined by

Rmy(X,Y)Z :=VxVyZ - VyVxZ - Vixy|Z,

0 g 0 0
4 — R
Riji oxt RmQ(@xi’ 8xj> Oxk’ Fijke = gepR?jk’
. o 0
Rij = ];‘)LICL(]<({_)Q;ZA7 83;]) = Z Rm]k

1<k<m

The volume element of g is denoted by dV,.
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2 Perelman-type functionals
As in [27], we define

Sicg := Ricg — 2V40 ® Vyo, Sy 1= Ry — a|Vyol2. (2.1)

For any Riemannian metric g and any smooth functions ¢, f on M, we have a
number of Perelman-type functionals:

Flg.6,f) = /M<Rg+|vgf|§—2|vg¢|§>e—fdvg,, (2.2)
(9,6, f) = / (R, — 2|V ,02)e 1V, (2.3)

M
Fulg.6.0) = [ By + (9,1~ 2V 0)e AV, 24

List [27] and Miiller [34] showed that, under the system of evolution equations

Org(t) = —2Ricy(y) + 4V 0(t) ® Vg d(t),
at¢(t) = Ag(t)¢(t)7 (25)
Ouf () = =Dy f(£) = Ryqry + [V SO0y + 2V g0 (1) 5

the evolution equation for .% is
d o
P (g(1), (1), (1)
+4/M |A gy d(t) — <vg(t)¢(t)aVg(t)f(t)>g(t)|§(t)e7f(t)dvg(t)a (2.6)

which is nonnegative. The evolution equations for other two functionals are
derived in [25].

Theorem 2.1 Under (2.5), one has

¢

< ol 0(1), £(1)

(9(t), o(1),
. _ 2 _
=2 [ St e Voo 44 18000050 Vi, 27
d

Fr(g(t), ¢(t), £(1))

d d

L E0,00), F0) + | Fla), 00, /1), (28)

dt
— (k—1)



1316 Yi LI

As a consequence, we give a new proof of the following result (see also
[27,28,32,34]): there is no compact steady Ricci-harmonic breather unless the
manifold (M, g(t)) is Ricci-flat and ¢(t) is a constant. Recall that a solution
(g9(t),o(t)) of RHF is called a Ricci-harmonic breather if there exist t1 < t2, a
diffeomorphism ¥: M — M, and a constant o > 0 such that

g(t2) = aWg(t1), ¢(ta) = Vo(t1).

The cases @ < 1, « = 1, and a > 1, correspond to shrinking, steady, and
expanding Ricci-harmonic breathers, respectively.

To deal with the expanding Ricci-harmonic breather, we need the following
functionals (see [25,27,34]):

L6, f) =1 /M (Bot o +20f =20Vy0l2)e v, (29)

Ly wlgipy 7, f) =72 /M [k; (Rg n ;) +Af - 2k|vg¢|§] e fdv,.  (2.10)

Here, g, ¢, f are as above, and 7 is a constant. Under the system of evolution
equations

dg(t) = —2Ricy(py + 4V gy 9(t) @ V gy 9(1),
AP(t) = Ay (1),

O (t) = =Dy () + Vo) f <t>|g@ — Ry +2lV,90 ()P, 21
((11t () =1,
we have the following result.
Theorem 2.2 Under (2.11), one has
(1), 0(0),7(0), F(1)
= 27(t)? / Sicg() + Vi £(£) + 27-1(t) g(t) Z(t)e—f DAV,
+4r(t / 1A g Vo @(1), Vo F () g [2ye ™ P dVy, (2.12)
& 2, wlgt), 60), 7(0), (1))
= 1 20,000, 7(0), F(1)
+2(k — 1)7(t)? /M Sicg() + o 0 g(t) z(t)e—f@)dx@(t)

+4(k — 1)7(t)? /M Ay d(0)2e TPV, (2.13)
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As a corollary, we obtain a new proof of the following result (see also [27,28,
32,34]): there is no expanding Ricci-harmonic breather on compact Riemannian
manifolds unless the manifold is an Einstein manifold and ¢(¢) is a constant.
For the proof, see [25,27].

Let us consider

w(g, @) := inf {9(9, o, f): f€ COO(M),/M e_deg = 1}, (2.14)

which is the smallest eigenvalue of the operator
Agyi=—40g+ Ry — 2|ngz5|3.

For the related eigenvalue problems, see [19,25].

We finish this section by introducing Perelman-type # functional. For any
Riemannian metric g, any smooth functions ¢, f, and any positive number 7,
we define

Welg.o )= [ S+ IR F S0 O (219
and set
o f
//J:I:(ga b, T) := inf {W:I:(ga ¢a faT): f € COO(M)’ /M (47_‘_7_(;7‘;92 = 1}’ (216)
vi(g,¢) == sup{pu+(g,4,7): 7> 0}, (2.17)
v_(g,¢) == inf{u_(g,¢,7): 7> 0}. (2.18)

In [24], we computed the first and second variations of v4 (g, ¢). Consequently,
it #1(g,6,,-) and v4(-,-) achieve their extremum, then (M, g) is a gradient
expanding and shrinker Ricci-harmonic soliton according to the sign; if
#i(g,d,-,) achieve their minimum and (g,¢) is a critical point of vy(-,),
then (M, g) is an Einstein manifold and ¢ is a constant function.

3 Long time existence of RHF

For the RF, Hamilton [22] showed that the short-time existence and

. 2 -
T < +o00 = hr;nﬁsgp (mﬁx\ng(tﬂg@) = 400. (3.1)

Later, Sesum [41] improved Hamilton’s result as

. . 2 -
T < +oo = hrtn_>s:}1p (mﬁx \Rlcg(t)\g(t)) = 400 (3.2)
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by blow-up argument. For the integral bounds, Ye [55] and Wang [50]
independently proved that

2/(m+2)
T < 400 — < / / [Rimy | 7222, (t)dt> — . (33)
Moreover, Wang [50] proved another version for RF that
T (ms2))2 2/(m+2)
Ricyy) 2 =0, T < +o00 = </0 /Mle(t>|g(t> d‘/g(wdt) = +00.
(3.4)

Here, C' is a uniform constant. For other work on integral bounds, see, for
example, [8,31,51,54].
A well-known conjecture (see [6]) about the extension of RF states that is
it true for
hinquﬂlp (mj\f}x Ry)) = +007? (3.5)
Here, T' < +o00. This conjecture was settled for Kahler-Ricci flow by Zhang [57]
and for type-I maximal solution of RF by Enders-Miiller-Topping [10]. Cao [6]
proved the following:

either limsup (max Rg(t)) = +00, or
t—T M

lim sup (mj\f}x Rg(t)) < 400 but limsup oo = +o00,

t—T t—=T Rg(t)
(3.6)

where W) denotes the Weyl tensor of g(t).
For 4D RF, Simon [42] and Bamler-Zhang [5] independently proved

T<—|—OO |Rg(t| C :>/ |RIC |g(t)dV / |RII1 |2 dV(t) \C

(3.7)
by different methods (for earlier work, see [49]).

On the other hand, for RHF, we have the following results. When n =
dimM > 3 and T < +oo. Miiller [32,34] showed that (3.1) is also true for
RHF. Recently, Cheng and Zhu [9] extended Sesum’s result [41] to RHF, that is,
(3.2) is true for RHF. For more results about RHF, see [1-4,7,9,11-21,25,27-29,
32-35,47,48,52,53,58].

The first main result is an extension of Cao’s result [6] to RHF.

Theorem 3.1  Let (M, g(t), #(t))tco,r) be a solution to RHF (1.5) on a closed
manifold M with n =dim M > 3 and T < +oo. Fither one has
li =
1151_?:;1p ( max Rg(t)) +o00
or
2
Wala® + Vg0 9®lge

limsup ( max R < 400, limsupmax = 4o00.
nsup (max Ry, nsup ma Ry
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Here, W) is the Weyl part of Rmy)

The second main result focuses on the 4D RHF. According to Theorem 4.2
below, we can find a uniform constant C' such that Sy +C > 0forall t € [0,T').

Theorem 3.2 Let (M, g(t), #(t))scjo,r) be a solution to RHF (1.5) on a closed
manifold M with n =dim M =4 and T < +o00. Choose a uniform constant C
in Theorem 4.2 such that Sg;) + C > 0. Then

. C
/M |Slcg(s)|g(s)d‘/g(s) < 2CO(M>9(0)a ¢(O)> S) + 92 VOl(M,g(S))

+1148¢0¢ /0 /Msg(t)dvg,(t)dt, (3.8)

S ] 02 s
/0 /M|Slcg(t)|§(t)dvg(t)dt<8cO(M,g(O),¢(0),s)+ . /0 Vol(M, g(t))dt
Cs *
+4592¢0 /O /MSs(t)dVg(t)dt, (3.9)

for all s € [0,T). Here,

C(](M,Q(O), QS(O)? S)

25672 x (M < 416 A2Vol(M, g(0 s s
_ 360( ) (6360 _ 1) 1 35(6' ( )) (e350 _eC' )
|Sic, o) |2
+ 263705 A, Vol (M, g(0)) + e36C* 10O 4y o, (3.10)

M Sg(o) +C

where

A= max ‘vg(0)¢(0)‘§(0)

and x(M) is the Euler characteristic of M.

According to Theorem 4.2 below and following [42], we consider the basic
assumption (BA) for a solution (M, g(t), #(t))¢eo,r) to RHEF:

(a) M is a connected and closed 4-dimensional smooth manifold,

(b) (M,g(t),(t))icpo,r) is a solution to RHF,

(c) T < +o0,

(d) maxpsxjo,r) [Sy| < 1.

The upper bound 1 in condition (d) is not essential, since we can rescale the
pair (g(t), ¢(t)) so that condition (d) is always satisfied. Furthermore, since

Vo @) < A

(by (5.6)), it follows that condition (d) is equivalent to the uniform bound for
Ry(t)-
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Theorem 3.3 If (M, g(t), #(t))icio,r) satisfies BA, then
/ |Slcg(s ‘ g(s )dv( ) X b(Mag(O)7¢(0)7s)a

[ Isicq Vit < bL5(0).6(0). ).
for any s € [0,T). Here,
b(M, (0), ¢(0), )

= 96888/ ‘Slcg(o dV (0)
936
43

144 .
1 T — 1)

A3Vol(M, g(0))(e®8 — e2*) + 184, Vol(M, g(0))e?.

(M, g(0), $(0), T) := 9¢*" [/M |Sng(0)|§(o)dVg(o) + 72 x (M)
+ (442 + 2A4,)Vol(M, g(0))| .

Then
1b(M, g(0),$(0), T)| < (M, g(0),¢(0),T).

Theorem 3.3 now yields the following result.

Theorem 3.4 If (M, g(t), d(t))iejo,r) satisfies BA, then

sup / Sicy 2V < (M, 9(0), 6(0),T) < +o0,
tE 0 T

sup [ Sty B dVy) < 322(A) +8e(M,9(0),6(0),T)
te[0,T)
+ 52A3Vol(M, g(0))e*"
< + 00.

Yi LI

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

The proof of Theorem 3.1 is based on a “curvature pinching estimate” for
RHF (see Theorem 4.2). The new ingredient in the proof of Theorem 3.2 is
an introduction of “Riemann curvature tensor” Smy;) for RHF, so that we can

express the Weyl tensor Wy ;) in terms of Smyy).

The proofs of Theorems 3.2-3.4 follow from the method of Simon [42]. As

in [42], we define

|Slc
Sy +C

Zijk = (V,Sjk)(Sg(t) + C) — Sjk(Vng(t)), Zg(t) = (Zijk)7

|g(t)
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Analogous to [42], we can show that

2
d / / [ 1 Zg(t)l50) 2, Sy (Sicyq), Sicy()
AV = [ | -2 —2f2 44 ~ 1S,
at Ju TV =,y (Syr) +C)? / Sy() +C /

Sicy ) o2

—4|A no(t
‘ 9(t) ( )Sg(t) +C g(t

2
2 2
12O Vg0 Plote) | Vato)

The main difference is the last term on the right-hand side of the above equation.
To control the integral of |V§(t)¢(t)|§(t), we make use the evolution equation for

Vg o(t) g(t) (see (5.6)) so that

// |vg(s g(s (s d8+/ ‘V g(t dV() CtA1Vol(M,g(O)).

The above estimate not only controls the space-time integral of |V? ) qﬁ(t)
but also a uniform bound for the integral of |V ¢(t )|§

2
g(t)’
. These two estimates

play essential role in the following proof. In dimension four, the famous Gauss-
Bonnet-Chern formula (5.10) should transform to (5.13), where the terms
involving |Vg(t)¢(t)\§( ;) can be bounded by the above discussion. A modification

of [42] is now applied to the RHF.

4 Curvature pinching estimate for RHF

In this section, we give a proof of Theorem 3.1. Consider a solution

(M, g(t), d(t))iefo,r) to RHF:
ig(t) = —2Ric ) + AV, () d(t) @ Vyyd(t),  0p(t) = Dgyo(t).  (4.1)

Let
Oyt := 0k — Aggyy.-

As in [27,28,32,34], we define the following notions:

Sng(t) = Rng(t) — 4Vg(t)¢(t) & Vg(t)gb(t), (4.2)
Satt) = trg(nSice(n) = Byt = 2V 9()lg( (4.3)

Motivated by RF, we introduce a “Riemann curvature” type for RHF:
Sijke = Rijie — (95eVi9Vid + greVigV;0). (4.4)

Our notation for S;ji, implies that
Sij == g™ Sire; = Rij — 2Vi9V 6 = ¢ Shije,

which coincides with the components of Sicy(;). The corresponding tensor field
for Sijre is denoted by Smy).
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Lemma 4.1 For a solution (M, g(t), ¢(t))cjo,1), we have
Og(6)Sq() = 2ISicgw oy + 41800 ()2 1) (4.5)

Dg(t)Sng(t) = 2smg(t)(Sng(t)7 ) - 281052](15) + 4Ag(t)¢(t)v52](t)¢(t)7 (46)
where
Sichy = (SikSjed™ )i, Smg) (Sicgay,-) = (SkijeS™ ).

Proof The first equation can be found in [34, Corollary 4.5]. In the same
corollary, we also have

NSij = Dy), 55 + 48y 9(H) ViV .

Here, Ay 1, denotes the Lichnerowicz Laplacian with respect to g(t) defined
by
Ag(t),LSij = Ag(t)Sij + 2Rk,‘ngM - Riijk — Rijik.

Then
Do) Sij = 2RiijeS* — RinS;i* — RS + 40,1y d(£) ViV 6.
Plugging
Sij = Rij —2VigV ;¢
into the above equation yields the second desired equation. U

As a corollary of Lemma 4.1, we have (see [34, Corollary 5.2])

nj}/ijn Sy(t) = nj}/ijn Sy(0)- (4.7)

Theorem 4.2 (Curvature pinching estimate) Let (M, g(t), ¢(t))icjo,r) be a
solution to RHF on a closed manifold M with n = dimM > 3 and T < +oo.
Then there exist uniform constants Cy,Cq,C, depending only on n,g(0),$(0)
such that

.
|glﬂy<t>|g<t> <Oy +Cy max

g OO0 ‘Wg(s)|g(s) + |v§(s)¢(3)‘§(s)
9(t) ’ 9t +C Mx[0,4]

Sg(S) +C ’
(4.8)

where

S
Sing(t) = Sng(t) - L(’I]’L(t) g(t)

is the trace-free part of Sicy) and Wy is the Weyl tensor field of g(t).

Proof We give some critical steps of the proof and the entire detail can be
found in [26]. The first inequality follows from (4.7). The quantity
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can be written as

_ |Sicg(t) + gg(t) g(t) 1

— 2—y
(Sy(ry +C) p o + O

In the following, we always omit the subscripts ¢ and g(t), and set

C

Sic;(t) := Sicg(y + n g(t), S;(t) =Sy +C = trg(t)SiC/g(t).

A direct computation shows that

2(y—1)
af= o (Vf, VS — (52 |S'ViS, — S5 VS
2— -1
= ZS)/()Z ) IVS'Pf+ 21+ 25+ 2s,
where
o _2(2_’}’) 1=y Qs 2 4 VRN 2|Sic’|*
2 = " (S 7|Sic|F 4+ (') Sm(Sic’, Sic’) (8117
9 4C 1C(S" - 20) B (1+~)S" —27yC Sic/|? 22—~ 0—25’]
T on L on9)? (§/)rH o (St )
. 20| Ag|? ) 2—7
— / 2 _ /12 N2
93 = (') (Sic’, 4ApV =) (51 [’7|SIC| + 5 (S }

We can show that the above evolution equation can be written as

2
Df = 2('7 - 1)(Vf,V10g S,> - (S/),y |VZS;k - S;kvl 10g S/|2
— 2=y =D)|Vieg S'|*f + %1 + o + Fs,
where
2 a2y g2 2n—4 Y\, e _45’4 Sin?
%1_(5’)’”1 { V()7 +<n(n—l) n)(s) ! n—2 53

1323

(4.10)

(4.11)

(4.12)

(4.13)

+2(S/)3W<Sin Sin) 2 (C N 2|ng5|2) (n; Lo (S’)'”lf)

S g n—1\n n—2
‘o i ) <5’2Sic’ - Z S'Sic’2, Vo ® V¢>],
e R |
By = (52/)7 (Sic', 4AGV2 ) — é'ﬁf ﬁ sy + 275;2}-
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In particular, when v = 2, we have

_[Sin]? _ [Sid/|?

f 5/2 5/2
and
, Sin\ |2
Of =2AV£.Vilogs) =2V (7)) + A+ A+ A4, (4.14)
where
2 W
A== T DI G g o,
2 112
S <ASCo1+ f), F5 <aS'Co(1+ |VS?| 1),
where

C,=C(n)>0, Cy=C(n,g(0),4(0)) > 0.

Without loss of generality, we may assume that f > 1. In this case, we have

Of <2(V/, Vg ')

el g 1 2 1/2
+45f[ I 1) *n_af P+ Co+Co

W Z‘IVQW] (4.15)

Applying the maximum principle to (4.15) yields (4.8). O

As an immediate consequently of Theorem 4.2, we can give a proof of
Theorem 3.1.

Proof of Theorem 3.1 Suppose now that

Wow oo + Vool
lim sup (mj\é}x Rg(t)) < 400, limsupmax 9@le®) 9(t) 90 - 1o

=T t-17 M Ry

In this case, both Ry« and [Wyelge) + |V§(t)¢(t)\§(t) are uniformly bounded.

Theorem 4.2 then implies that [Sing )|y is uniformly bounded. Since Sing ) =
Sicgyy — Sgét) g(t), it follows that Sicy) is uniformly bounded. However, the
assumption on «(t) tells us that |Vg(t)¢(t)|§(t) is uniformly bounded (e.g., [34,
Proposition 5.5]). Thus, Ricy(y) is uniformly bounded, contradicting with the
fact (3.2). Therefore, we prove the theorem. O

5 4D Ricci-harmonic flow with bounded Sy ;)

Let the constant C' be given in Theorem 4.2 and we assume that n = dim M = 4.
As in [42], we define

Zijk = (VZS]k)(Sg(t) + C) - Sjk(Vng(t)), Zg(t) = (ZZ]k) (51)
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In the proof of Theorem 4.2, we actually have proved

0 |Sic[* 5 |Z|? _9 |Sic|* 4Sm(Sic, Sic)
S+C  T(S+C)P3 T(S+0)? S+C
_ 1 2 Qa2 _ : 2
(S + O [4]Ag|” [Sic|® — 2(S + C)(Sic, 4A¢V=9)]. (5.2)

The bracket in the right-hand side of (5.2) can be expressed as
4[|SicA¢ — (S + C)V?¢|> — (5 + C)*|V?¢[7].

Therefore, identity (5.2) is equal to

|Z|2 5 . Sm(Sic, Sic) Sic 9,12 9,19
Of =-2 -2 4 —4|A — 4 5.
F= =2 a2t O e T -l w653
where si ‘2
ic
= 5.4
d S+C’ (5:4)

which differs from the previous one in the proof of Theorem 4.2. Integrating
(5.3) over M yields

d Z|? Sm(Sic, Sic
M M (

S+C)3 S+C
Sic 9,12 9,12
—4‘A¢S+C v ¢‘ +4V2g| }dvg,(t). (5.5)

To control the integral of |[V2¢|?, we recall the evolution equation for [Vé|? (see
[34, Proposition 4.3]):

O|Ve|* = —4|Ve @ Vo[ — 2|V3¢[*. (5.6)
In particular, we see that

Vo[* < max(|V||i=0) = Ar. (5.7)
Moreover, we have
d
3 | I96PV < [ (-5 + OVP — 21V + CIVoPIaVy,
M M
which shows that
t
2 /0 /M V22 dV,(5)ds + /M V3|2V, ;) < e A1Vol(M, g(0)). (5.8)

Define
Ax(t)i= [ V6PV,
M
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Plugging (5.8) into (5.5), we arrive at

S+C

In the following, we restrict ourself in 4D RHF, i.e., n = dim M = 4. In the
case, the famous Gauss-Bonnet-Chern formula says that

d Sm(Sic, Sic
M M

P2y (M) = /M[|Rm|2 — 4[Ric? + R*|dV,( (5.10)

for any ¢ € [0,7]. In order to use formula (5.10), we should translate the
integrand in (5.10) into a function in terms of ;.

Lemma 5.1 For any m-dimensional manifold M, one has

IRm|? — 4[Ric|? + R* = |Sm|* — 4/Sic|? + S — 2(n + 9)|Ve[*
—18Sic(V¢, Vo) + 4S|Vo|2. (5.11)

Proof Using

Sijke = Rijre — (95¢VidVid + gueVidV o),
we obtain
|Rm|2 — RiijRijkE
= (Sijke + (95¢VioVid + greVid Vo))
(ST (VIOV R + gH VIOV )
= [Sm[* 4+ 2(n + 1)|Vo|* + 2(Sijreg’ V'V ¢ + Sijneg™ V' oV ).
Compute
Sijkeg’t = —Rip — (n + 1)Vi¢Vid = —Sip, — (n + 3)V;6V 1.0,
Siieeg™ = ¥ Rijre — (n+ 1)Vi9V ;6 = —(n + 1)V;¢V 59,
because of the first Bianchi identity
9" Rijee = —9" (Rjrie + Ruije) = —(—Rji + Rij) = 0.
Consequently,
Rm|? = [Sm|* + 2(n + 1)|Ve|*
+2[=Sic(V, V) — (n+3)|Vel* — (n+1)|Ve[]
= |Sm|? — 2Sic(V¢, V) — 2(n + 3)|Vo|*.
Similarly, we can show that

[Ric|? = [Sic|? + 4Sic(Vp, Vo) + 4|Vo|*, R* = S% 4+ 4|Ve|* +45|Ve|>.
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Combining these identities, we obtain (5.11).

From (5.10) and (5.11), one has, in dimension n = 4,
[ (5w —aisicP + $%1av;y
M

118 / Sic(Ve, Vo)V, — 4 / S|V dVy .-
M M

Using the inequality
Vol* 9
Sic(Vo, Vo) < elsicP + 1V <
we obtain from (5.12) that, in dimension n = 4,
/ [ISm|* — 4[Sic|* + S*]d V)
M
< 2°m°x (M) + 52 /M IV dV,

81 -
+26/ |Slc\2dvg(t)—4/ S|V[*dVy.
M M

For any € > 0, we have

Sm(Sic, Sic) _ 5 9 4[Sic|? 4o 21q 2
4 < =
§ .4 £%|Sm| +52(S+C)2 ng + &%[Sm|
so that
Py +4Sm(Sic, Sic) 1

S+C
4
<—2f%+ 2 f2+e4Sm|? - fS

4
= — 212 4+ 22(|Sm|? — 4|Sic|> 4+ 5?) + 4£?|Sic|* — £25% + 2 f2—fs

1327

(5.12)

(5.13)

4
= 2(|Smf? — 4iSic]? + §%) + (42 ~1)fS - (2= |, ) 2+ 4CE2f — 252,

Using estimate (5.13), we have

Sm(Sic, Sic)
/M[ 22 447 fS]dVg(t)

81

< & [32772)((M) + 52A7Vol(M, g(0))e”" + 26 / S+ C)d%(”]
M
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—52/ f2qut +(452—1)/ f5dVy
/deV ~|—4C’5/fd

= [327r X(M) + 52A2Vol(M, ¢(0)) ]
Jr/M [_ (2 B 52>f2 + (26 +452)fS+ <2(13 Jr452)0]‘?_‘5252](1‘/54(0-

For any n > 0, we have

1S2

S <nf?+
4n

and then

/M [-2r2+ 4smésf’§ic) ~ 15|,

<2320y (M) + 52A2Vol(M, g(0))eCt] + /M [— (2 - ;‘2 - (22 + 452>77> &

55 4 452

81 26 2\ o2
+<26+4€ )Cf+< 477 6)5](1‘/9(0
If we choose /2
4/e
= , > 2, 5.14
T © (5.14)

then

Sm(Sic, Sic)
/M[ 22 447 fS]dVg(t)

< e[32n% (M) + 52A2Vol(M, g(0))e“!] + /M [— (2 - 582>f2

81 2 (32"‘452)2 2 a2
+<26+4E )Cf+< 16 —1 e S dVg(t)

In particular, when € = 2v/2 in (5.14), we arrive at

Sm(Sic, Sic)
—9f2 .14 ) _ Vv
/M { 2f7+ S+C fS}d t

< / (—f? 4 36C f + 5745%)d V)
M
+ 8[327%x (M) + 52A2Vol(M, g(0))e®]. (5.15)
Plugging (5.15) into (5.9) implies
d
by /M FdVy < /M(— f? 4360 f +5745%)dV,(
+[2567%x (M) + 416 AZVol(M, g(0))e“t + 445(t)].  (5.16)
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As a consequence, we can prove (see [26]) Theorem 3.2 and the following result.

Theorem 5.2 Let (M,g(t), d(t))icio,r) be a solution to RHEF on a closed
manifold M with n = dimM = 4 and T < +oo. Suppose minps Sgp) > 0.
Then

/M |Sicg(s)|g(s)dVg(s) < 2a0(M,g(O), gb(O + 1148/ / 9(t) dV dt (5.17)

0 JM

) 518)
/ / [Smg(e) [ Ve dt
0 JM

<3272y (M)s + 13(aA1)?Vol(M, g(0))s

881 1011469 (¢
+ Gy w0009 + U [ shavga (519)

for all s € [0,T). Here,

ao(M, g(0), 6(0), s) := 2567%x(M)s + 416 A2Vol(M, g(0))s

‘SICg(O ‘

+2A,Vol(M, g(0)) + / dVg(Q) (5.20)

M 59(0)

Finally, we give proofs of Theorems 3.3 and 3.4. Recall the quantity

_ |Sicg(t)|§(t)
Soy 2

Theorem 5.3 If (M, g(t), #(t))icio,1) satisfies BA, then

d
it L PV < [ (P 488DV + 1285 (0)
+ 208 A3Vol(M, g(0))e? + 4A5(t)]. (5.21)
Proof Recall the estimate (see [26])

Sm(Sic, Sic)
4
S+2

Since —1 < 5 < 1, it follows that

4
< f2 4 &%(|Sm|* — 4[Sic|® + S?) + 4%(S + 2)f.

e2(S +2)f < 1262 f.
Hence,

Sm(Sic, Sic)

4
S+2

4
< 24 22(|Sm|? — 4|Sic|? 4+ 5?) + 122 f.
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Using the inequality
—fS=—f(s+2)+2f <2f
and (5.13), we arrive at

Sm(Sic, Sic)
/ [ 2f +4 S+2 fS}d[/g(t)

: 4
< / — 224, £+ X(|Sml? - 4fSicf? + 5) + 12%f fs} dv,
M L

Yi LI

®)

r 4
_ / = (2= )12+ (22 4 2)f + 2 (SmP? — 4fsicl? + 8)] vy
M L

< /M - (2- ;;)ﬂ + (122 4+ 2) ] AV,

243
+ e2[32n% x (M) + 522 A2Vol (M, g(0))e*] + o6 £ /M fdVy

- /M - (- fz)fQ * (52565 =+ 2) 14V
+ e2[32m% (M) + 522 A3Vol (M, g(0))e?].

From (5.9), we get (5.21) (compare with (5.16) when C = 2).
Theorem 5.4 If (M, g(t), p(t))ico,r) satisfies BA, then

/M Sicy(o) % AVi(s) < DM, 9(0), 6(0), 5),

/M |Smg(s)|§(s)dVg(s) < 3202y (M) + 676 A3Vol(M, g(0))e*

1001, (0), 6(0), 5),

26
[ Isicq Vit < b1, 5(0),600),5).

T
[ il dVigde < b1 5(0).600). TP AT
- [Vol(M, g(0))]4=P/4(T — )P4,
for any s € [0,T) and 0 < p < 4. Here,

b(M, g(0), $(0), s)
. 144 .
= 9e™® /M |Slcg(0)|§(0)dvg(o) + 1 2 (M)(e%85 — 1)

n 936
43

Proof Write

A3Vol(M, g(0))(e®8 — e2*) + 184, Vol(M, g(0))es.

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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As(t) == 1287%x (M) + 208 A3Vol (M, g(0))e** + 4A5(t).
The inequality (5.21) implies

d
dt / deg(t) < AS(t) +/ (—f2 + 88f)dVg(t),
M M

and then

d <688t/ fd‘/g(t)> < —888t/ f2d%(t) +e*88tA3(t)‘
dt M M

Therefore,

e—885 / / de%(t) dt + e—885 / fd‘/;](s)
0 JM M

1331

< / FdVy0) + / e 812872\ (M) + 208 A2Vol(M, g(0))e* 4 4A,(t)]dt
M 0

16 104

= [ 1V + ) PO =) 4 LAV g(0) (1 - )

+4// V22 AV, dt
0o JM

16 aser 104
< [ 1V + RO - e
M

+ 24, Vol(M, g(0))e*
by (5.8). Because |S| < 1, we have

1
3 |Sic|2 < f< \Sic|2,

and hence,

e7883 s - 67883 1o
9 / / |Sic|*dVy ) dt + 3 / |Sic|“d V()
0 JM M

, 16 s

< [ ISl + ) w0 - e )
M

n 104

43

This estimate yields (5.22) and (5.24).
For (5.23), we use (5.13) to get

A2Vol(M, g(0))(1 — e73%%) 4+ 24, Vol (M, g(0))e*.

/ 1Sm[*dV,, 4y < 327°x (M) + 5243 Vol (M, g(0))e*
M

81 . .
+ 26/ |Slc|2dVg(t)—|—4/ |Slc|2dVg(t)
M M
185

= 3212y (M) + 52A2Vol(M, g(0))e* + 9%

A%VOI(M, 9(0))(1 — e_865)

b(M, 9(0), $(0), 1)
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by (5.22).
For (5.25), we use

;VOI(M g(t / Sdv,

and —1 < S <1 to deduce
e TVol(M, g(0)) < Vol(M, g(t)) < el Vol(M, g(0)).

Consequently, for any 0 < s <r < T,

// ‘SiC|pdVg(t)dt
p/4 (4-p)/4

< 1b( M g( ) »(0),T )‘p/4(r_3)(4 p/4 T'(4—p)/4 [Vol(M, (0 ))](4fp)/4.

Thus, we get (5.25). O
Using ¢(M, g(0),¢(0),T") and (3.15), Theorem 5.4 now yields

sup / \Slcg(t)\ Vg < (M, g(0),6(0),T) < +oo0, (5.27)
te0,7) J M

sup / Sty 2 AVy) < 327X (M) + 8e(M, g(0), 6(0), T)
tef0,7) J M
+ 52A2Vol(M, g(0))e?T

< 400 (5.28)

Acknowledgements The main results were announced in the 2015 Chinese-German
Workshop on Metric Riemannian geometry at Shanghai Jiao Tong University from Oct. 12 to
16. The author thanks the organizers of this workshop. This work was partially supported by
the Shanghai Sailing Program (Grant No. 14YF1401400) and the National Natural Science
Foundation of China (Grant No. 11401374).

References

1. Abolarinwa A. Entropy formulas and their applications on time dependent Riemannian
metrics. Electron J Math Anal Appl, 2015, 3(1): 77-88

2. Bailesteanu M. On the heat kernel under the Ricci flow coupled with the harmonic map
flow. arXiv: 1309.0138

3. Bailesteanu M. Gradient estimates for the heat equation under the Ricci-harmonic map
flow. Adv Geom, 2015, 15(4): 445-454

4. Bailesteanu M, Tranh H. Heat kernel estimates under the Ricci-harmonic map flow.
arXiv: 1310.1619



Long time existence of Ricci-harmonic flow 1333

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bamler R H, Zhang Q S. Heat kernel and curvature bounds in Ricci flows with bounded
scalar curvature. arXiv: 1501.01291

Cao X D. Curvature pinching estimate and singularities of the Ricci flow. Comm Anal
Geom, 2011, 19(5): 975-990

Cao X D, Guo H X, Tran H. Harnack estimates for conjugate heat kernel on evolving
manifolds. Math Z, 2015, 281(1-2): 201-214

Chen X X, Wang B. On the conditions to extend Ricci flow (III). Int Math Res Not
IMRN, 2013, (10): 2349-2367

Cheng L, Zhu A Q. On the extension of the harmonic Ricci flow. Geom Dedicata, 2013,
164: 179-185

Enders J, Muller R, Topping P M. On type-I singularities in Ricci flow. Comm Anal
Geom, 2011, 19(5): 905-922

Fang S W. Differential Harnack inequalities for heat equations with potentials under
geometric flows. Arch Math (Basel), 2013, 100(2): 179-189

Fang S W. Differential Harnack estimates for backward heat equations with potentials
under an extended Ricci flow. Adv Geom, 2013, 13(4): 741-755

Fang S W, Zheng T. An upper bound of the heat kernel along the harmonic-Ricci flow.
arXiv: 1501.00639

Fang S W, Zheng T. The (logarithmic) Sobolev inequalities along geometric flow and
applications. J Math Anal Appl, 2016, 434(1): 729-764

Fang S W, Zhu P. Differential Harnack estimates for backward heat equations with
potentials under geometric flows. Comm Pure Appl Anal, 2015, 14(3): 793-809

Guo B, Huang Z J, Phong D H. Pseudo-locality for a coupled Ricci flow. arXiv:
1510.04332

Guo H X, He T T. Harnack estimates for geometric flow, applications to Ricci flow
coupled with harmonic map flow. Geom Dedicata, 2014, 169: 411418

Guo H X, Ishida M. Harnack estimates for nonlinear backward heat equations in
geometric flows. J Funct Anal, 2014, 267(8): 2638-2662

Guo H X, Philipowski R, Thalmairt A. Entropy and lowest eigenvalue on evolving
manifolds. Pacific J Math, 2013, 264(1): 61-81

Guo H X, Philipowski R, Thalmairt A. A stochastic approach to the harmonic map
heat flow on manifolds with time-dependent Riemannian metric. Stochastic Process
Appl, 2014, 124(11): 3535-3552

Guo H X, Philipowski R, Thalmairt A. An entropy formula for the heat equation on
manifolds with time-dependent metric, application to ancient solutions. Potential Anal,
2015, 42(2): 483-497

Hamilton R S. Three-manifolds with positive Ricci curvature. J Differential Geom,
1982, 17(2): 255-306

He C -L, Hu S, Kong D -X, Liu K F. Generalized Ricci flow. I. Local existence and
uniqueness. In: Topology and Physics. Nankai Tracts Math, Vol 12. Hackensack:
World Sci Publ, 2008, 151-171

Li Y. Generalized Ricci flow I: higher derivative estimates for compact manifolds. Anal
PDE, 2012, 5(4): 747-775

Li Y. Eigenvalues and entropies under the harmonic-Ricci flow. Pacific J Math, 2014,
267(1): 141-184

Li Y. Long time existence and bounded scalar curvature in the Ricci-harmonic flow.
arXiv: 1510.05788v2

List B. Evolution of an Extended Ricci Flow System. Ph D Thesis. Fachbereich
Mathematik und Informatik der Freie Universitat Berlin, 2006,

http: //www.diss.fu-berlin.de/2006/180/index.html

List B. Evolution of an extended Ricci flow system. Comm Anal Geom, 2008, 16(5):
1007-1048

Liu X -G, Wang K. A Gaussian upper bound of the conjugate heat equation along an
extended Ricci flow. arXiv: 1412.3200



1334

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.
43.

44.

45.

46.
47.

48.
49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

Yi LI

Lott J, Sesum N. Ricci flow on three-dimensional manifolds with symmetry. Comment
Math Helv, 2014, 89(1): 1-32

Ma L, Cheng L. On the conditions to control curvature tensors of Ricci flow. Ann
Global Anal Geom, 2010, 37(4): 403411

Miiller R. The Ricci Flow Coupled with Harmonic Map Flow. Ph D Thesis. ETH
Ziirich, 2009, DOI: 10.3929/ethz-a-005842361

Miiller R. Monotone volume formulas for geometric flow. J Reine Angew Math, 2010,
643: 39-57

Miiller R. Ricci flow coupled with harmonic map flow. Ann Sci Ec Norm Supér (4),
2012, 45(1): 101-142

Miiller R, Rupflin M. Smooth long-time existence of harmonic Ricci flow on surfaces.
arXiv: 1510.03643

Oliynyk T, Suneeta V, Woolgar E. A gradient flow for worldsheet nonlinear sigma
models. Nuclear Phys B, 2006, 739(3): 441-458

Perelman G. The entropy formula for the Ricci flow and its geometric applications.
arXiv: math/0211159

Perelman G. Ricci flow with surgery on three-manifolds. arXiv: math/0303109
Perelman G. Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds. arXiv: math/0307245

Ringstrém H. The Cauchy Problem in General Relativity. ESI Lect Math Phys. Ziirich:
Eur Math Soc, 2009

Sesum N. Curvature tensor under the Ricci flow. Amer J Math, 2005, 127(6): 1315-
1324

Simon M. 4D Ricci flows with bounded scalar curvature. arXiv: 1504.02623v1

Streets J D. Ricci Yang-Mills Flow. Ph D Thesis. Duke University, 2007,
http://www.math.uci.edu/ jstreets/papers/StreetsThesis.pdf

Streets J D. Regularity and expanding entropy for connection Ricci flow. J Geom Phys,
2008, 58(7): 900-912

Streets J D. Singularities of renormalization group flows. J Geom Phys, 2009, 59(1):
8-16

Streets J D. Ricci Yang-Mills flow on surfaces. Adv Math, 2010, 223(2): 454-475
Tadano H. A lower diameter bound for compact domain manifolds of shrinking Ricci-
harmonic solitons. Kodai Math J, 2015, 38(2): 302-309

Tadano H. Gap theorems for Ricci-harmonic solitons. arXiv: 1505.03194

Tian G, Zhang Z L. Regularity of Kahler-Ricci flows on Fano manifolds. Acta Math,
2016, 216(1): 127-176

Wang B. On the conditions to extend Ricci flow. Int Math Res Not IMRN, 2008, (8):
Art ID rnn012

Wang B. On the conditions to extend Ricci flow (II). Int Math Res Not IMRN, 2012,
(14): 3192-3223

Wang L F. Differential Harnack inequalities under a coupled Ricci flow. Math Phys
Anal Geom, 2012, 15(4): 343-360

Williams M B. Results on coupled Ricci and harmonic map flows. Adv Geom, 2015,
15(1): 7-25

Ye R G. Curvature estimates for the Ricci flow. I. Calc Var Partial Differential
Equations, 2008, 31(4): 417437

Ye R G. Curvature estimates for the Ricci flow. II. Calc Var Partial Differential
Equations, 2008, 31(4): 439-466

Young A. Modified Ricci Flow on a Principal Bundle. Ph D Thesis. The University of
Texas at Austin, 2008, http://search.proquest.com/docview/193674070

Zhang 7. Scalar curvature behavior for finite-time singularity of Ké&hler-Ricci flow.
Michigan Math J, 2010, 59(2): 419-433

Zhu A Q. Differential Harnack inequalities for the backward heat equation with
potential under the harmonic-Ricci flow. J Math Anal Appl, 2013, 406(2): 502-510



