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Abstract

The Lott–Sturm–Villani Curvature-Dimension condition provides a synthetic notion for a metric-
measure space to have Ricci-curvature bounded from below and dimension bounded from above.
We prove that it is enough to verify this condition locally: an essentially non-branching metric-
measure space (X, d,m) (so that (supp(m), d) is a length-space and m(X) <∞) verifying the local
Curvature-Dimension condition CDloc(K,N) with parameters K ∈ R and N ∈ (1,∞), also verifies
the global Curvature-Dimension condition CD(K,N). In other words, the Curvature-Dimension
condition enjoys the globalization (or local-to-global) property, answering a question which had re-
mained open since the beginning of the theory. For the proof, we establish an equivalence between
L1 and L2 optimal-transport–based interpolation. The challenge is not merely a technical one,
and several new conceptual ingredients which are of independent interest are developed: an explicit
change-of-variables formula for densities of Wasserstein geodesics depending on a second-order tem-
poral derivative of associated Kantorovich potentials; a surprising third-order theory for the latter
Kantorovich potentials, which holds in complete generality on any proper geodesic space; and a
certain rigidity property of the change-of-variables formula, allowing us to bootstrap the a-priori
available regularity. As a consequence, numerous variants of the Curvature-Dimension condition
proposed by various authors throughout the years are shown to, in fact, all be equivalent in the
above setting, thereby unifying the theory.
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1 Introduction

The Curvature-Dimension condition CD(K,N) was first introduced in the 1980’s by Bakry and Émery
[16, 15] in the context of diffusion generators, having in mind primarily the setting of weighted Rieman-
nian manifolds, namely smooth Riemannian manifolds endowed with a smooth density with respect
to the Riemannian volume. The CD(K,N) condition serves as a generalization of the classical con-
dition in the non-weighted Riemannian setting of having Ricci curvature bounded below by K ∈ R
and dimension bounded above by N ∈ [1,∞] (see e.g. [56, 60] for further possible extensions). Nu-
merous consequences of this condition have been obtained over the past decades, extending results
from the classical non-weighted setting and at times establishing new ones directly in the weighted
one. These include diameter bounds, volume comparison theorems, heat-kernel and spectral estimates,
Harnack inequalities, topological implications, Brunn–Minkowski-type inequalities, and isoperimetric,
functional and concentration inequalities – see e.g. [48, 17, 77] and the references therein.

Being a differential and Hilbertian condition, it was for many years unclear how to extend the
Bakry–Émery definition beyond the smooth Riemannian setting, as interest in (measured) Gromov-
Hausdorff limits of Riemannian manifolds and other non-Hilbertian singular spaces steadily grew.
In parallel, and apparently unrelatedly, the theory of Optimal-Transport was being developed in
increasing generality following the influential work of Brenier [21] (see e.g. [2, 36, 53, 65, 75, 76, 77]).
Given two probability measures µ0, µ1 on a common geodesic space (X, d) and a prescribed cost of
transporting a single mass from point x to y, the Monge-Kantorovich idea is to optimally couple µ0

and µ1 by minimizing the total transportation cost, and as a byproduct obtain a Wasserstein geodesic
[0, 1] 3 t 7→ µt connecting µ0 and µ1 in the space of probability measures P(X). This gives rise to the
notion of displacement convexity of a given functional on P(X) along Wasserstein geodesics, introduced
and studied by McCann [52]. Following the works of Cordero-Erausquin–McCann–Schmuckenschläger
[33], Otto–Villani [62] and von Renesse–Sturm [70], it was realized that the CD(K,∞) condition in
the smooth setting may be equivalently formulated synthetically as a certain convexity property of
an entropy functional along W2 Wasserstein geodesics (associated to L2-Optimal-Transport, when the
transport-cost is given by the squared-distance function).

This idea culminated in the seminal works of Lott–Villani [51] and Sturm [73, 74], where a synthetic
definition of CD(K,N) was proposed on a general (complete, separable) metric space (X, d) endowed
with a (locally-finite Borel) reference measure m (“metric-measure space”, or m.m.s.); it was moreover
shown that the latter definition coincides with the Bakry–Émery one in the smooth Riemannian
setting (and in particular in the classical non-weighted one), that it is stable under measured Gromov-
Hausdorff convergence of m.m.s.’s, and that it implies various geometric and analytic inequalities
relating metric and measure, in complete analogy with the smooth setting. It was subsequently
also shown [58, 64] that Finsler manifolds and Alexandrov spaces satisfy the Curvature-Dimension
condition. Thus emerged an overwhelmingly convincing notion of Ricci curvature lower bound K and
dimension upper bound N for a general (geodesic) m.m.s. (X, d,m), leading to a rich and fruitful
theory exploring the geometry of m.m.s.’s by means of Optimal-Transport.

One of the most important and longstanding open problems in the Lott–Sturm–Villani theory (see
[73, 74] and [77, pp. 888, 907]) is whether the Curvature-Dimension condition on a general geodesic
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m.m.s. (say, having full-support supp(m) = X) enjoys the globalization (or local-to-global) property:
if the CD(K,N) condition is known to hold on a neighborhood Xo of any given point o ∈ X (a property
henceforth denoted by CDloc(K,N)), does it also necessarily hold on the entire space? Clearly this is
indeed the case in the smooth setting, as both curvature and dimension may be computed locally (by
equivalence with the differential CD definition). However, for reasons which we will expand on shortly,
this is not at all clear and in some cases is actually false on general m.m.s.’s. An affirmative answer
to this question would immensely facilitate the verification of the CD condition, which at present
requires testing all possible W2-geodesics on X, instead of locally on each Xo. The analogous question
for sectional curvature on Alexandrov spaces (where the dimension N is absent) does indeed have an
affirmative answer, as shown by Topogonov, and in full generality, by Perelman (see [22]).

Several partial answers to the local-to-global problem have already been obtained in the literature.
A geodesic space (X, d) is called non-branching if geodesics are forbidden to branch at an interior-point
into two separate geodesics. On a non-branching geodesic m.m.s. (X, d,m) having full support, it was
shown by Sturm in [73, Theorem 4.17] that the local-to-global property is satisfied when N = ∞
(assuming that the space of probability measures with finite m-relative entropy is geodesically convex;
see also [77, Theorem 30.42] where the same globalization result was proved under a different condition
involving the existence of a full-measure totally-convex subset of X of finite-dimensional points). Still
for non-branching geodesic m.m.s.’s having full support, a positive answer was also obtained by Villani
in [77, Theorem 30.37] for the case K = 0 and N ∈ [1,∞).

We stress that in these results, the restriction to non-branching spaces is not merely a technical
assumption - an example of a heavily-branching m.m.s. verifying CDloc(0, 4) which does not verify
CD(K,N) for any fixed K ∈ R and N ∈ [1,∞] was constructed by Rajala in [67]. Consequently,
a natural assumption is to require that (X, d) be non-branching, or more generally, to require that
the L2-Optimal-Transport on (X, d,m) be concentrated (i.e. up to a null-set) on a non-branching
subset of geodesics, an assumption introduced by Rajala and Sturm in [68] under the name essen-
tially non-branching (see Section 6 for precise definitions). For instance, it is known [68] that mea-
sured Gromov-Hausdorff limits of Riemannian manifolds satisfying CD(K,∞), and more generally,
RCD(K,∞) spaces, always satisfy the essentially non-branching assumption (see Section 13).

In this work, we provide an affirmative answer to the globalization problem in the remaining
range of parameters: for N ∈ (1,∞) and K ∈ R, the CD(K,N) condition verifies the local-to-global
property on an essentially non-branching geodesic m.m.s. (X, d,m) having finite total-measure and
full support. The exclusion of the case N = 1 is to avoid unnecessary pathologies, and is not essential.
Our assumption that m has finite total-measure (or equivalently, by scaling, that it is a probability
measure) is most probably technical, but we did not verify it can be removed so as to avoid overloading
the paper even further. This result is new even under the additional assumption that the space is
infinitesimally Hilbertian (see [40]) – we will say that such spaces verify RCD(K,N) – in which case
the assumption of being (globally) essentially non-branching is in fact superfluous.

To better explain the difference between the previously known cases when K
N = 0 and the con-

ceptual challenge which the newly treated case K
N 6= 0 poses, as well as to sketch our solution and

its main new ingredients, which we believe are of independent interest, we provide some additional
details below and refer to Section 6 for precise definitions.

1.1 Disentangling volume-distortion coefficients

Roughly speaking, the CD(K,N) condition prescribes a synthetic second-order bound on how an
infinitesimal volume changes when it is moved along aW 2-geodesic: the volume distortion (or transport
Jacobian) J along the geodesic should satisfy the following interpolation inequality for t0 = 0 and
t1 = 1:

J
1
N (αt1 + (1− α)t0) ≥ τ (α)

K,N (|t1 − t0| θ)J
1
N (t1) + τ

(1−α)
K,N (|t1 − t0| θ)J

1
N (t0) ∀α ∈ [0, 1], (1.1)

where τ
(t)
K,N (θ) is an explicit coefficient depending on the curvature K ∈ R, dimension N ∈ [1,∞],

the interpolating time parameter t ∈ [0, 1] and the total length of the geodesic θ ∈ [0,∞) (with an
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appropriate interpretation of (1.1) when N =∞). When N <∞, the latter coefficient is obtained by
geometrically averaging two different volume distortion coefficients:

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)

N−1
N , (1.2)

where the σ
(t)
K,N−1(θ) term encodes an (N − 1)-dimensional evolution orthogonal to the transport and

thus affected by the curvature, and the linear term t represents a one dimensional evolution tangential
to the transport and thus independent of any curvature information. As with the Jacobi equation in

the usual Riemannian setting, the function [0, 1] 3 t 7→ σ(t) := σ
(t)
K,N−1(θ) is explicitly obtained by

solving the second-order differential equation:

σ′′(t) + θ2 K

N − 1
σ(t) = 0 on t ∈ [0, 1] , σ(0) = 0 , σ(1) = 1. (1.3)

The common feature of the previously known cases K
N = 0 for the local-to-global problem is the

linear behaviour in time of the distortion coefficient: τ
(t)
K,N (θ) = t. A major obstacle with the remaining

cases K
N 6= 0 is that the function [0, 1] 3 t 7→ τ

(t)
K,N (θ) does not satisfy a second-order differential

characterization such as (1.3). If it did, it would be possible to express the interpolation inequality

(1.1) on [t0, t1] ⊂ [0, 1] as a second-order differential inequality for J
1
N on [t0, t1] (see Lemmas A.5 and

A.6), and so if (1.1) were known to hold for all
{

[ti0, t
i
1]
}
i=1...k

so that ∪ki=1(ti0, t
i
1) = (0, 1), it would

follow that (1.1) also holds for [t0, t1] = [0, 1]. However, a counterexample to the latter implication
was constructed by Deng and Sturm in [34], thereby showing that:

the local-to-global property for K
N 6= 0, if true, cannot be obtained by a one-dimensional

bootstrap argument on a single W2-geodesic as above, and must follow from a deeper
reason involving a family of W2-geodesics simultaneously.

(1.4)

On the other hand, the above argument does work if we were to replace τ by the slightly smaller
σ coefficients. This motivated Bacher and Sturm in [14] to define for K ∈ R and N ∈ (1,∞)
the slightly weaker “reduced” Curvature-Dimension condition, denoted by CD∗(K,N), where the

distortion coefficients τ
(t)
K,N (θ) are indeed replaced by σ

(t)
K,N (θ). Using the above gluing argument (after

resolving numerous technicalities), the local-to-global property for CD∗(K,N) was established in [14]
on non-branching spaces (see also the work of Erbar–Kuwada–Sturm [35, Corollary 3.13, Theorem
3.14 and Remark 3.26] for an extension to the essentially non-branching setting, cf. [68, 29]). Let
us also mention here the work of Ambrosio–Mondino–Savaré [10], who independently of a similar
result in [35], established the local-to-global property for RCD∗(K,N) proper spaces, K ∈ R and
N ∈ [1,∞], without a-priori assuming any non-branching assumptions (but a-posteriori, such spaces
must be essentially non-branching by [68]).

Without requiring any non-branching assumptions, the CD∗(K,N) condition was shown in [14]
to imply the same geometric and analytic inequalities as the CD(K,N) condition, but with slightly
worse constants (typically missing the sharp constant by a factor of N−1

N ), suggesting that the latter
is still the “right” notion of Curvature-Dimension. We conclude that the local-to-global challenge is
to properly disentangle between the orthogonal and tangential components of the volume distortion J
before attempting to individually integrate them as above. This also highlights the geometric nature
of the globalization problem, and demonstrates that it is not merely a technical challenge.

1.2 Comparing L2 and L1 Optimal-Transport and Main result

There have been a couple of prior attempts to disentangle the volume distortion into its orthogonal
and tangential components, by comparing between W2 and W1 Wasserstein geodesics (associated to L2

and L1 Optimal-Transport, respectively). In [30], this strategy was implicitly employed by Cavalletti
and Sturm to show that CDloc(K,N) implies the measure-contraction property MCP(K,N), which
in a sense is a particular case of CD(K,N) when one end of the W2-geodesic is a Dirac delta at a
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point o ∈ X (see [74, 57]). In that case, all of the transport-geodesics have o as a common end
point, so by considering a disintegration of m on the family of spheres centered at o, and restricting
the W2-geodesic to these spheres, the desired disentanglement was obtained. In the subsequent work
[24], Cavalletti generalized this approach to a particular family of W2-geodesics, having the property
that for a.e. transport-geodesic γ, its length `(γ) is a function of ϕ(γ0), where ϕ is a Kantorovich
potential associated to the corresponding L2-Optimal-Transport problem. Here the disintegration was
with respect to the individual level sets of ϕ, and again the restriction of the W2-geodesic enjoying
the latter property to these level sets (formally of co-dimension one) induced a W1-geodesic, enabling
disentanglement.

Another application of L1-Optimal-Transport, seemingly unrelated to disentanglement of W2-
geodesics, appeared in the recent breakthrough work of Klartag [47] on localization in the smooth Rie-
mannian setting. The localization paradigm, developed by Payne–Weinberger [63], Gromov–Milman
[44] and Kannan–Lovász–Simonovits [46], is a powerful tool to reduce various analytic and geometric
inequalities on the space (Rn, d,m) to appropriate one-dimensional counterparts. The original ap-
proach by these authors was based on a bisection method, and thus inherently confined to Rn. In [47],
Klartag extended the localization paradigm to the weighted Riemannian setting, by disintegrating
the reference measure m on L1-Optimal-Transport geodesics (or “rays”) associated to the inequality
under study (cf. Feldman–McCann [38]), and proving that the resulting conditional one-dimensional
measures inherit the Curvature-Dimension properties of the underlying manifold.

Klartag’s idea is quite robust, and permitted Cavalletti and Mondino in [27] to avoid the smooth
techniques used in [47] and to extend the localization paradigm to the framework of essentially non-
branching geodesic m.m.s.’s (X, d,m) of full-support verifying CDloc(K,N), N ∈ (1,∞). By a careful
study of the structure of W1-geodesics, Cavalletti and Mondino were able to transfer the Curvature-
Dimension information encoded in the W2-geodesics to the individual rays along which a given W1-
geodesic evolves, thereby proving that on such spaces,

the conditional one-dimensional measures obtained by disintegration of m
on L1-Optimal-Transport rays satisfy CD(K,N).

(1.5)

Note that the densities of one-dimensional CD(K,N) spaces are characterized via the σ (as opposed
to τ) volume-distortion coefficients (see the Appendix), so by applying the gluing argument described
in the previous subsection, only local CDloc(K,N) information was required in [27] to obtain global
control over the entire one-dimensional transport ray.

This allowed Cavalletti and Mondino (see [27, 28]) to obtain a series of sharp geometric and analytic
inequalities for CDloc(K,N) spaces as above, in particular extending from the smooth Riemannian
setting the sharp Lévy-Gromov [42] and Milman [55] isoperimetric inequalities, as well as the sharp
Brunn-Minkowski inequality of Cordero-Erausquin–McCann–Schmuckenschläger [33] and Sturm [74],
all in global form (see also Ohta [59]).

We would like to address at this point a certain general belief shared by some in the Optimal-
Transport community, stating that the property BM(K,N) of satisfying the Brunn-Minkowski in-
equality (with sharp coefficients correctly depending on K,N), should be morally equivalent to the
CD(K,N) condition. Rigorously establishing such an equivalence would immediately yield the local-
to-global property of CD(K,N), by the Cavalletti–Mondino localization proof that CDloc(K,N) ⇒
BM(K,N). However, we were unsuccessful in establishing the missing implication BM(K,N) ⇒
CD(K,N), and in fact a careful attempt in this direction seems to lead back to the circle of ideas we
were ultimately able to successfully develop in this work.

Instead of starting our investigation from BM(K,N), our strategy is to directly start from a
suitable modification of the property (1.5), which we dub CD1(K,N), when (1.5) is required to hold
for transport rays associated to (signed) distance functions from level sets of continuous functions.
A stronger condition, when (1.5) is required to hold for transport rays associated to all 1-Lipschitz
functions, is denoted by CD1

Lip(K,N) – see Section 8 for precise definitions. The main result of this

work consists of showing that CD1(K,N)⇒ CD(K,N), by means of transferring the one-dimensional
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CD(K,N) information encoded in a family of suitably constructed L1-Optimal-Transport rays, onto a
given W2-geodesic, thereby obtaining the correct disentanglement between tangential and orthogonal
distortions. This goes in exactly the opposite direction to the one studied by Cavalletti and Mondino
in [27], and completes the cycle:

CDloc(K,N)⇒ CD1
Lip(K,N)⇒ CD1(K,N)⇒ CD(K,N).

To the best of our knowledge, this decisive feature of our work – deducing CD(K,N) for a given
W2-geodesic by considering the CDloc(K,N) information encoded in family (in accordance with (1.4))
of different associated W2-geodesics (manifesting itself in the CD1(K,N) information along a family
of different L1-Optimal-Transport rays) – has not been previously explored.

Main Theorem 1.1. Let (X, d,m) be an essentially non-branching m.m.s. with m(X) <∞, and let
K ∈ R and N ∈ (1,∞). Then the following statements are equivalent:

(1) (X, d,m) verifies CD(K,N).

(2) (X, d,m) verifies CD∗(K,N).

(3) (X, d,m) verifies CD1
Lip(K,N).

(4) (X, d,m) verifies CD1(K,N).

If in addition (supp(m), d) is a length-space, the above statements are equivalent to:

(5) (X, d,m) verifies CDloc(K,N).

To this list one can also add the entropic Curvature-Dimension condition CDe(K,N) of Erbar–
Kuwada–Sturm [35], which is known to be equivalent to CD∗(K,N) for essentially non-branching
spaces. In other words, all synthetic definitions of Curvature-Dimension are equivalent for essentially
non-branching m.m.s.’s, and in particular, the local-to-global property holds for such spaces (recall
that this is known to be false on m.m.s.’s where branching is allowed by [67]). The equivalence with
CDloc(K,N) is clearly false without some global assumption ultimately ensuring that (supp(m), d) is
a geodesic-space, see Remark 13.4.

As already mentioned, and being slightly imprecise (see Section 13 for precise statements), the
implications CD(K,N)⇒ CD∗(K,N)⇒ CDloc(K,N) follow from the work of Bacher and Sturm [14],
and the implication CDloc(K,N)⇒ CD1

Lip(K,N) follows by adapting to the present framework what
was already proved by Cavalletti and Mondino in [27] (after taking care of the important maximality
requirement of transport-rays, see Theorem 7.10). So almost all of our effort goes into proving that
CD1(K,N) ⇒ CD(K,N). For a smooth weighted Riemannian manifold (M, d,m), it is an easy exer-
cise to show the latter implication using the Bakry–Émery differential characterization of CD(K,N)
– simply use an appropriate umbilic hypersurface H passing through a given point p ∈ M and per-
pendicular to a given direction ξ ∈ TpM , and apply the CD1(K,N) definition to the distance function
from H. Of course, this provides no insight towards how to proceed in the m.m.s. setting, so it is
natural to try and obtain an alternative synthetic proof, still in the smooth setting. While this is
possible, it already poses a much greater challenge, which in some sense provided the required insight
leading to the strategy we ultimately employ in this work.

1.3 Main new ingredients of proof

To achieve the right disentanglement, we are required to develop several new ingredients beyond the
present state-of-the-art, which, being conceptual in nature, are in our opinion of independent interest.

(1) The first is a change-of-variables formula for the density of an L2-Optimal-Transport geodesic
in X (see Theorem 11.4), which depends on a second-order derivative of associated interpolating
Kantorovich potentials.
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Let Geo(X) denote the collection of constant speed geodesics on X parametrized on the interval
[0, 1], and let et : Geo(X) 3 γ 7→ γt ∈ X denote the evaluation map at time t ∈ [0, 1]. Given
two Borel probability measures µ0, µ1 ∈ P(X) with finite second moments, any W2-geodesic
[0, 1] 3 t 7→ µt ∈ P(X) can be lifted to an optimal dynamical plan ν ∈ P(Geo(X)), so that
(et)]ν = µt for all t ∈ [0, 1]. Let ϕ denote a Kantorovich potential associated to the L2-transport
problem between µ0 and µ1. Given s, t ∈ (0, 1), we introduce the time-propagated intermediate
Kantorovich potential Φt

s by pushing forward ϕs via et ◦ e−1
s , where {ϕt}t∈[0,1] is the family of

interpolating Kantorovich potentials obtained via the Hopf–Lax semi-group applied to ϕ. While
e−1
t may be multi-valued, Theorem 3.11 ensures that Φt

s = ϕs ◦ es ◦ e−1
t is well-defined on et(Gϕ),

the set of t-mid-points of transport geodesics.

Theorem 11.4 states that if (X, d,m) is an essentially non-branching m.m.s. verifying CD1(K,N)
(m(X) <∞ and N ∈ (1,∞)), and if µ0, µ1 � m, then for ν-a.e. transport-geodesic γ ∈ Geo(X)
of positive length:

ρs(γs)

ρt(γt)
=

`2(γ)

∂τ |τ=tΦτ
s(γt)

· hγs (t) for a.e. t, s ∈ (0, 1), (1.6)

where ρt are appropriate versions of the densities dµt/dm, and for every s ∈ (0, 1), hγs is a
CD(`(γ)2K,N) density on [0, 1] so that hγs (s) = 1. In particular, for a.e. t, s ∈ (0, 1), ∂τ |τ=tΦ

τ
s(γt)

exists and is positive. Here hγs is obtained from the CD1(K,N) condition applied to the transport-
ray associated to the (signed) distance function from the level set {ϕs = ϕs(γs)}.

Theorem 11.4 constitutes the culmination of Part II of this work, which is mostly dedicated to
introducing the CD1(K,N) condition and rigorously establishing the change-of-variables formula
(1.6). Note that we refrain from making any assumptions on (the challenging) spatial regularity
of Φt

s when t 6= s, so we are precluded from invoking the coarea formula in our derivation.
Our main tool for deriving (1.6) is a comparison between two disintegrations of appropriate
measures, one encoding W2 information and another encoding W1 information – see Section 11
for a heuristic derivation.

(2) To obtain disentanglement of the “Jacobian” t 7→ 1/ρt(γt) into its orthogonal and tangential
components, we need to understand the first-order variation of the change-of-variables formula
(1.6) at t = s, i.e. the second-order variation of t 7→ Φt

s at t = s, which amounts to a third-order
variation of t 7→ ϕt. Our second main new ingredient in this work is a surprising third-order
bound on the variation of t 7→ ϕt along the Hopf–Lax semi-group (Theorem 5.5), which holds in
complete generality on any proper geodesic space.

To this end, we develop in Part I of this work a first, second, and finally third order temporal
theory of intermediate Kantorovich potentials in a purely metric setting (X, d), without specify-
ing any reference measure m and without assuming any non-branching assumptions. This part,
which may be read independently of the other components of this work, is presented first (in
Sections 2-5), since its results are constantly used throughout the rest of this work.

Our starting point here is the pioneering work by Ambrosio–Gigli–Savaré [5],[6, Section 3], who
already investigated in a very general (extended) metric space setting the first and second order
temporal behaviour of the Hopf-Lax semi-group Qt applied to a general function f : X →
R ∪ {+∞}. However, the essential point we observe in our treatment is that when f is itself a
Kantorovich potential ϕ, characterized by the property that ϕ = Q1(−ϕc) and ϕc = Q1(−ϕ),
much more may be said regarding the behaviour of t 7→ ϕt := −Qt(−ϕ), even in first and second
order. This is due to the fact that if we reverse time and define ϕ̄t := Q1−t(−ϕc), then we obtain
two-sided control over ϕt on the set {ϕt = ϕ̄t}, which turns out to coincide with the set et(Gϕ).
So for instance, two apparently novel observations which we constantly use throughout this work
are that for all t ∈ (0, 1), `2t /2 := ∂tϕt exists on et(Gϕ), and that transport geodesics having
a given x ∈ X as their t-midpoint all have the same length `t(x). In Section 3, we establish
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Lipschitz regularity properties of t 7→ `2t (x) for all x ∈ X, as well as upper and lower derivative
estimates, both pointwise and a.e., for appropriate times t. These are then transferred in Section
4 to corresponding estimates for the function Φt

s.

Part I culminates in Section 5, whose goal is to prove a quantitative version of the following
(somewhat oversimplified) statement, which crucially provides second order information on `t,
or equivalently, third order information on ϕt, along γt:

If 1
`(γ)2

∂τ |τ=t
`2τ
2 (γt) exists a.e. in t ∈ (0, 1) and coincides with an absolutely

continuous function z, then z′(t) ≥ z(t)2 for a.e. t ∈ (0, 1).
(1.7)

Equivalently, this amounts to the statement that:

(0, 1) 3 r 7→ L(r) := exp

(
− 1

`(γ)2

∫ r

r0

∂τ |τ=t
`2τ
2

(γt)dt

)
is concave , (1.8)

since (formally):
L′′

L
= (logL)′′ + ((logL)′)2 = −z′ + z2 ≤ 0.

It turns out that L(t) precisely corresponds to the tangential component of 1/ρt(γt), and its
concavity ensures that it is synthetically controlled by the linear term appearing in the definition

of τ
(t)
K,N (θ) in (1.2). The novel observation that it is possible to extract in a general metric setting

third order information from the Hopf-Lax semi-group, which formally solves the first-order
Hamilton-Jacobi equation, is in our opinion one of the most surprising parts of this work. Even
in the smooth Riemannian setting, we were not able to find a synthetic proof which is easier than
the one in the general metric setting; a formal differential proof of (1.7) assuming both temporal
and (more challenging) spatial higher-order regularity of ϕt is provided in Subsection 5.1, but the
latter seems to wrongly suggest that it would not be possible to extend (1.7) beyond a Hilbertian
setting. Our proof in the general metric setting (Theorem 5.2) is based on a careful comparison
of second order expansions of ε 7→ ϕτ+ε(γτ ) at τ = t, s, and subtle differences between the usual
second derivative and the second Peano derivative (see Section 2) come into play.

(3) Our third main new ingredient, described in Part III, is a certain rigidity property of the change-
of-variables formula (1.6), which allows us to bootstrap the a-priori available temporal regularity,
and which in combination with the first and second ingredients, enables us to achieve disentan-
glement.

Indeed, the definition of Φt
s may be naturally extended to an appropriate domain beyond et(Gϕ)

as follows, allowing to easily (formally) calculate its partial derivative:

Φt
s = ϕt + (t− s)`

2
t

2
, ∂tΦ

t
s = `2t + (t− s)∂t

`2t
2
.

Evaluating at x = γt and plugging this into the change-of-variables formula (1.6), it follows that
for ν-a.e. geodesic γ:

ρs(γs)

ρt(γt)
=

hγs (t)

1 + (t− s)∂τ |τ=t`
2
τ/2(γt)

`2(γ)

for a.e. t, s ∈ (0, 1). (1.9)

Thanks to the idea of considering together both initial-point s and end-point t, the latter formula
takes on a very rigid structure: note that on the left-hand-side the s and t variables are separated,
and the denominator on the right-hand-side depends linearly is s. Consequently, we can easily
bootstrap the a-priori available regularity in s and t of all terms involved. It follows that

1
`2(γ)

∂τ |τ=t`
2
τ/2(γt) must coincide for a.e. t ∈ (0, 1) with a locally-Lipschitz function z(t), so that

(1.7) applies. In addition, by redefining {hγs} for s in a null subset of (0, 1), we can guarantee
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that (0, 1) 3 s 7→ hγs (t) is locally Lipschitz (for any given t ∈ (0, 1)), even though there is a-priori
no relation between the different densities {hγs}s∈(0,1).

At this point, if ρt(γt) and z(t) were known to be C2 smooth, and equality were to hold in (1.9)
for all s, t ∈ (0, 1), we could then define:

Y (r) := exp

(∫ r

r0

∂t|t=s log hγs (t)ds

)
, (1.10)

and as ∂t|t=s log(1 + (t− s)z(t)) = z(s), it would follow, recalling the definition (1.8) of L, that:

ρr0(γr0)

ρr(γr)
= L(r)Y (r) ∀r ∈ (0, 1). (1.11)

Using the fact that all {hγs}s∈(0,1) are CD(`(γ)2K,N) densities to control ∂2
t |t=r log hr(t), and sur-

prisingly, also the concavity of L (again!) to control the mixed partial derivatives ∂s∂t|t=s=r log hγs (t),
a formal computation described in Subsection 12.2 then verifies that Y is a CD(`(γ)2K,N) den-
sity itself. A rigorous justification without all of the above non-realistic assumptions turns out
to be extremely tedious, due to the difficulty in applying an approximation argument while
preserving the rigidity of the equation – this is worked out in Section 12 and the Appendix.

After taking care of all these details, we finally obtain the desired disentanglement (1.11) of the
Jacobian: L is concave and so controlled synthetically by a linear distortion coefficient, whereas Y is a

CD(`(γ)2K,N) density and so (by definition) Y 1/(N−1) is controlled synthetically by the σ
(t)
K,N−1(`(γ))

coefficient. A standard application of Hölder’s inequality then verifies that J1/N (r) = ρr(γr)
−1/N is

controlled by the τ
(t)
K,N (`(γ)) distortion coefficient, i.e. satisfies (1.1) – in fact for all t0, t1 ∈ [0, 1] –

thereby establishing CD(K,N), see Theorem 13.2.

The definition (1.10) of Y finally sheds light on the crucial role which the parameter s ∈ (0, 1) plays
in our strategy – its role is to vary between the different W2-geodesics from which the CDloc(K,N)
information is extracted into the CD1(K,N) information on the disintegration into transport-rays
from the (signed) distance functions from level sets {ϕs = ϕs(γs)}, thereby coming full circle with the
observation of (1.4).

Besides establishing the local-to-global property of CD(K,N) and the equivalence of its various
variants (in our setting), we emphasize that as a by product of our proof, we obtain a remarkable
new self-improvement property of CD(K,N): the τK,N -concavity (1.1) of the transport Jacobian Jt(γt)
along all W2-geodesics implies the (a-priori) stronger “L-Y” decomposition Jt(γt) = Lγ(t)Yγ(t), where
Lγ is concave and Yγ is a CD(`(γ)2K,N) density on (0, 1). As already mentioned above, this self-
improvement is false for a single W2-geodesic. We believe that the stronger “L-Y” information will
prove to be of further use in the study of CD(K,N) essentially non-branching spaces.

We refer to Section 13 for the final details and for additional immediate corollaries of the Main
Theorem 1.1 pertaining to RCD(K,N) and strong CD(K,N) spaces. We also provide there several
concluding remarks and suggestions for further investigation.

Acknowledgment. We would like to thank Theo Sturm and Cédric Villani for numerous discussions
and for encouraging us to pursue the globalization problem. We also thank the referees for their
careful reading of the manuscript and helpful comments.
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Part I

Temporal Theory of Optimal Transport

2 Preliminaries

2.1 Geodesics

A metric space (X, d) is called a length space if for all x, y ∈ X, d(x, y) = inf `(σ), where the infimum
is over all (continuous) curves σ : I → X connecting x and y, and `(σ) := sup

∑k
i=1 d(σ(ti−1), σ(ti))

denotes the curve’s length, where the latter supremum is over all k ∈ N and t0 ≤ . . . ≤ tk in the
interval I ⊂ R. A curve γ is called a geodesic if `(γ|[t0,t1]) = d(γ(t0), γ(t1)) for all [t0, t1] ⊂ I. If
`(γ) = 0 we will say that γ is a null geodesic. The metric space is called a geodesic space if for all
x, y ∈ X there exists a geodesic in X connecting x and y. We denote by Geo(X) the set of all closed
directed constant-speed geodesics parametrized on the interval [0, 1]:

Geo(X) := {γ : [0, 1]→ X ; d(γ(s), γ(t)) = |s− t|d(γ(0), γ(1)) ∀s, t ∈ [0, 1]} .

We regard Geo(X) as a subset of all Lipschitz maps Lip([0, 1], X) endowed with the uniform topology.
We will frequently use γt := γ(t).

The metric space is called proper if every closed ball (of finite radius) is compact. It follows from
the metric version of the Hopf-Rinow Theorem (e.g. [22, Theorem 2.5.28]) that for complete length
spaces, local compactness is equivalent to properness, and that complete proper length spaces are in
fact geodesic.

Given a subset D ⊂ X × R, we denote its sections by:

D(t) := {x ∈ X ; (x, t) ∈ D} , D(x) := {t ∈ R ; (x, t) ∈ D} .

Given a subset G ⊂ Geo(X), we denote by G̊ :=
{
γ|(0,1) ; γ ∈ G

}
the corresponding open-ended

geodesics on (0, 1). For a subset of (closed or open) geodesics G̃, we denote:

D(G̃) :=
{

(x, t) ∈ X × R ; ∃γ ∈ G̃ , t ∈ Dom(γ) , x = γt

}
.

We denote by et : Geo(X) 3 γ 7→ γt ∈ X the (continuous) evaluation map at t ∈ [0, 1], and abbreviate
given I ⊂ [0, 1] as follows:

et(G̃) = G̃(t) := D(G̃)(t) =
{
γt ; γ ∈ G̃

}
, eI(G̃) := ∪t∈Iet(G̃) ,

G̃(x) := D(G̃)(x) =
{
t ∈ [0, 1] ; ∃γ ∈ G̃ , t ∈ Dom(γ) , γt = x

}
.

2.2 Derivatives

For a function g : A→ R on a subset A ⊂ R, denote its upper and lower derivatives at a point t0 ∈ A
which is an accumulation point of A by:

d

dt
g(t0) = lim sup

A3t→t0

g(t)− g(t0)

t− t0
,
d

dt
g(t0) = lim inf

A3t→t0

g(t)− g(t0)

t− t0
.

We will say that g is differentiable at t0 iff d
dtg(t0) := d

dtg(t0) = d
dtg(t0) < ∞. This is a slightly more

general definition of differentiability than the traditional one which requires that t0 be an interior
point of A.

Remark 2.1. Note that there are only a countable number of isolated points in A, so a.e. point in A
is an accumulation point. In addition, it is clear that if t0 ∈ B ⊂ A is an accumulation point of B and
g is differentiable at t0, then g|B is also differentiable at t0 with the same derivative. In particular, if
g is a.e. differentiable on A then g|B is also a.e. differentiable on B and the derivatives coincide.
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Remark 2.2. Denote by A1 ⊂ A the subset of density one points of A (which are in particular
accumulation points of A). By Lebesgue’s Density Theorem L1(A \ A1) = 0, where we denote by L1

the Lebesgue measure on R throughout this work. If g : A → R is locally Lipschitz, consider any
locally Lipschitz extension ĝ : R→ R of g. Then it is easy to check that for t0 ∈ A1, g is differentiable
in the above sense at t0 if and only if ĝ is differentiable at t0 in the usual sense, in which case the
derivatives coincide. In particular, as ĝ is a.e. differentiable on R, it follows that g is a.e. differentiable
on A1 and hence on A, and it holds that d

dtg = d
dt ĝ a.e. on A.

Let f : I → R denote a convex function on an open interval I ⊂ R. It is well-known that the left
and right derivatives f ′,− and f ′,+ exist at every point in I and that f is locally Lipschitz there; in
particular, f is differentiable at a given point iff the left and right derivatives coincide there. Denoting
by D ⊂ I the differentiability points of f in I, it is also well-known that I \D is at most countable.
Consequently, any point in D is an accumulation point, and we may consider the differentiability in
D of f ′ : D → R as defined above. We will require the following elementary one-dimensional version
(probably due to Jessen) of the well-known Aleksandrov’s theorem about twice differentiability a.e.
of convex functions on Rn (see [45, Theorem 5.2.1] or [20, Section 2.6], and [71, p. 31] for historical
comments). Clearly, all of these results extend to locally semi-convex and semi-concave functions as
well; recall that a function f : I → R is called semi-convex (semi-concave) if there exists C ∈ R so
that I 3 x 7→ f(x) + Cx2 is convex (concave).

Lemma 2.3 (Second Order Differentiability of Convex Function). Let f : I → R be a convex function
on an open interval I ⊂ R, and let τ0 ∈ I and ∆ ∈ R. Then the following statements are equivalent:

(1) f is differentiable at τ0, and if D ⊂ I denotes the subset of differentiability points of f in I, then
f ′ : D → R is differentiable at τ0 with:

(f ′)′(τ0) := lim
D3τ→τ0

f ′(τ)− f ′(τ0)

τ − τ0
= ∆.

(2) The right derivative f ′,+ : I → R is differentiable at τ0 with (f ′,+)′(τ0) = ∆.

(3) The left derivative f ′,− : I → R is differentiable at τ0 with (f ′,−)′(τ0) = ∆.

(4) f is differentiable at τ0 and has the following second order expansion there:

f(τ0 + ε) = f(τ0) + f ′(τ0)ε+ ∆
ε2

2
+ o(ε2) as ε→ 0.

In this case, f is said to have a second Peano derivative at τ0.

We remark that even for a differentiable function f , while the implication (1) ⇒ (4) follows by
Taylor’s theorem (existence of the second derivative at a point implies existence of the second Peano
derivative there), the converse implication is in general false (see e.g. [61] for a nice discussion). For
a locally semi-convex or semi-concave function f , we will say that f is twice differentiable at τ0 if any
(all) of the above equivalent conditions hold for some ∆ ∈ R, and write ( d

dτ )2|τ=τ0f(τ) = ∆.

Finally, we will require the following slightly more refined notation.

Definition. Given an open interval I ⊂ R and a function f : I → R which is differentiable at
τ0 ∈ I, we define its upper and lower second Peano derivatives at τ0, denoted P2f(τ0) and P2f(τ0)
respectively, by:

P2f(τ0) := lim sup
ε→0

h(ε)

ε2
≥ lim inf

ε→0

h(ε)

ε2
=: P2f(τ0),

where:
h(ε) := 2(f(τ0 + ε)− f(τ0)− εf ′(τ0)).

Clearly f has a second Peano derivative at τ0 iff P2f(τ0) = P2f(τ0) <∞.

12



The following is a type of Stolz–Cesàro lemma:

Lemma 2.4. Given an open interval I ⊂ R and a locally absolutely continuous function f : I → R
which is differentiable at τ0 ∈ I, we have:

d

dt
f ′(τ0) ≤ P2f(τ0) ≤ P2f(τ0) ≤ d

dt
f ′(τ0).

Proof. By local absolute continuity, f is differentiable a.e. in I and we have for small enough |ε|:

1

2
h(ε) = f(τ0 + ε)− f(τ0)− εf ′(τ0) =

∫ ε

0
(f ′(τ0 + δ)− f ′(τ0))dδ,

and hence:
h(ε)

ε2
=

1

ε2

∫ ε

0
2δ
f ′(τ0 + δ)− f ′(τ0)

δ
dδ.

Taking appropriate subsequential limits as ε→ 0, the asserted inequalities readily follow.

3 Temporal Theory of Intermediate-Time Kantorovich Potentials.
First and Second Order

In the next sections, we will only consider the quadratic cost function c = d2/2 on X ×X.

Definition (c-Concavity, Kantorovich Potential). The c-transform of a function ψ : X → R ∪ {±∞}
is defined as the following (upper semi-continuous) function:

ψc(x) = inf
y∈X

d(x, y)2

2
− ψ(y).

A function ϕ : X → R∪{±∞} is called c-concave if ϕ = ψc for some ψ as above. It is well known [76,
Exercise 2.35] that ϕ is c-concave iff (ϕc)c = ϕ. In the context of optimal-transport with respect to
the quadratic cost c, a c-concave function ϕ : X → R∪ {−∞} which is not identically equal to −∞ is
also known as a Kantorovich potential, and this is how we will refer to such functions in this work. In
that case, ϕc : X → R∪ {−∞} is also a Kantorovich potential, called the dual or conjugate potential.

There is a natural way to interpolate between a Kantorovich potential and its dual by means of
the Hopf-Lax semi-group, resulting in intermediate-time Kantorovich potentials {ϕt}t∈(0,1). The goal
of the next three sections is to provide first, second and third order information on the time-behavior
t 7→ ϕt(x) at intermediate times t ∈ (0, 1). In these sections, we only assume that (X, d) is a proper
geodesic metric space.

In this section, we focus on first and second order information. The main new result is Theorem
3.11.

3.1 Hopf-Lax semi-group

We begin with several well-known definitions which we slightly modify and specialize to our setting.

Definition (Hopf-Lax Transform). Given f : X → R∪{±∞} which is not identically +∞ and t > 0,
define the Hopf-Lax transform Qtf : X → R ∪ {−∞} by:

Qtf(x) := inf
y∈X

d(x, y)2

2t
+ f(y). (3.1)

Clearly either Qtf ≡ −∞ or Qtf(x) is finite for all x ∈ X (as our metric d is finite). Consequently,
we denote:

t∗(f) := sup {t > 0 ; Qtf 6≡ −∞} ,

setting t∗(f) = 0 if the supremum is over an empty set. Finally, we set Q0f := f .
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It is not hard to check (see e.g. [49, Theorem 2.5 (i)]) that when (X, d) is a length space (and in
particular geodesic), the Hopf-Lax transform is in fact a semi-group on [0,∞):

Qs+tf = Qs ◦Qtf ∀t, s ≥ 0.

Remark 3.1. It is also possible to extend the definition of Qtf to negative times t < 0 by setting:

Qtf(x) := −Q−t(−f)(x) = sup
y∈X

d(x, y)2

2t
+ f(y) , t < 0.

This is called the backwards Hopf-Lax semi-group on (−∞, 0]. However, (R,+) 3 t 7→ (Qt, ◦) is in
general not an abelian group homomorphism, not even for t ∈ [0, 1] when applied to a Kantorovich
potential ϕ (characterized by Q−1◦Q1(−ϕ) = −ϕ) - see Subsection 3.3. This will be a rather significant
nuisance we will need to cope with in this work.

Clearly (0,∞) × X 3 (t, x) 7→ Qtf(x) is upper semi-continuous as the infimum of continuous
functions in (t, x), and by definition [0,∞) 3 t 7→ Qtf(x) is monotone non-increasing for each x ∈ X.
Consequently, (0,∞) 3 t 7→ Qtf(x) must be continuous from the left.

It may also be shown (see [5, Lemma 3.1.2]) that X × (0, t∗(f)) 3 (x, t) 7→ Qtf(x) is continuous
(and in fact locally Lipschitz, see Theorem 3.4 below). Together with the left-continuity, we deduce
that for every x ∈ X, (0, t∗(f)] 3 t 7→ Qtf(x) is continuous.

Note that by definition f c = Q1(−f), and that a Kantorovich pair of conjugate potentials ϕ,ϕc :
X → R ∪ {−∞} are characterized by not being identically equal to −∞ and satisfying:

ϕ = Q1(−ϕc) , ϕc = Q1(−ϕ).

In particular, t∗(ϕ), t∗(ϕ
c) ≥ 1, and we a-posteriori deduce that ϕ,ϕc are both finite on the entire

space X (we have used above the fact that the metric d is finite, which differs from other more general
treatments).

Definition (Interpolating Intermediate-Time Kantorovich Potentials). Given a Kantorovich potential
ϕ : X → R, the interpolating Kantorovich potential at time t ∈ [0, 1], ϕt : X → R, is defined for all
t ∈ [0, 1] by:

ϕt(x) := Q−t(ϕ) = −Qt(−ϕ).

Note that ϕ0 = ϕ, ϕ1 = −ϕc, and:

−ϕt(x) = inf
y∈X

d2(x, y)

2t
− ϕ(y) ∀t ∈ (0, 1].

Applying the above mentioned general properties of the Hopf-Lax semi-group to ϕt, it will be
useful to record:

Lemma 3.2.

(1) (x, t) 7→ ϕt(x) is lower semi-continuous on X × (0, 1] and continuous on X × (0, 1).

(2) For every x ∈ X, [0, 1] 3 t 7→ ϕt(x) is monotone non-decreasing and continuous on (0, 1].

Definition (Kantorovich Geodesic). Given a Kantorovich potential ϕ : X → R, a geodesic γ ∈
Geo(X) is called a ϕ-Kantorovich (or optimal) geodesic if:

ϕ(γ0) + ϕc(γ1) =
d(γ0, γ1)2

2
=
`(γ)2

2
.

We denote all ϕ-Kantorovich geodesics by Gϕ. Note that γ ∈ Gϕ iff γc ∈ Gϕc , where γc(t) := γ(1− t)
is the time-reversed geodesic. By upper semi-continuity of ϕ and ϕc, it follows that Gϕ is a closed
subset of Geo(X).
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The following is not hard to check (see e.g. [24, Corollary 2.16]):

Lemma 3.3. Let γ be a ϕ-Kantorovich geodesic. Then:

ϕs(γs)− ϕr(γr) =
d(γs, γr)

2

2(r − s)
= (r − s)`(γ)2

2
∀s, r ∈ [0, 1].

3.2 Distance functions

The following important definition was given by Ambrosio–Gigli–Savaré [5, 6]:

Definition (Distance functions D±f ). Given f : X → R∪{+∞} which is not identically +∞, denote:

D+
f (x, t) := sup lim sup

n→∞
d(x, yn) ≥ inf lim inf

n→∞
d(x, yn) =: D−f (x, t),

where the supremum and infimum above run over the set of minimizing sequences {yn} in the definition
of the Hopf-Lax transform (3.1). A simple diagonal argument shows that the (outer) supremum and
infimum above are in fact attained.

The following properties were established in [5],[6, Chapter 3]:

Theorem 3.4 (Ambrosio–Gigli–Savaré). For any metric space (X, d) (not necessarily proper, complete
nor geodesic):

(1) Both functions D±f (x, t) are locally finite on X×(0, t∗(f)), and (x, t) 7→ Qtf(x) is locally Lipschitz
there.

(2) (x, t) 7→ D±f (x, t) is upper (D+
f (x, t)) / lower (D−f (x, t)) semi-continuous on X × (0, t∗(f)).

(3) For every x ∈ X, both functions (0, t∗(f)) 3 t 7→ D±f (x, t) are monotone non-decreasing and
coincide except where they have (at most countably many) jump discontinuities.

(4) For every x ∈ X, ∂±t Qtf(x) = − (D±f (x,t))2

2t2
for all t ∈ (0, t∗(f)), where ∂−t and ∂+

t denote the left
and right partial derivatives, respectively. In particular, the map (0, t∗(f)) 3 t 7→ Qtf(x) is locally
Lipschitz and locally semi-concave, and differentiable at t ∈ (0, t∗(f)) iff D+

f (x, t) = D−f (x, t).

It may be instructive to recall the proof of property (3) above, which is related to some ensuing
properties, so for completeness, we present it below. For simplicity, we restrict to the case of interest
for us, and first record:

Lemma 3.5. Given a proper metric space X, a lower semi-continuous f : X → R, x ∈ X and
t ∈ (0, t∗(f)), there exist y±t ∈ X so that:

Qtf(x) =
d(x, y±t )2

2t
+ f(y±t ) and d(x, y±t ) = D±f (x, t).

Recall that −ϕ is indeed lower semi-continuous for any Kantorovich potential ϕ.

Proof of Lemma 3.5. Let {y±,nt } denote a minimizing sequence so that:

Qtf(x) = lim
n→∞

d(x, y±,nt )2

2t
+ f(y±,nt ) and D±f (x, t) = lim

n→∞
d(x, y±,nt ).

By property (1) we know that D±f (x, t) < R <∞, and the properness implies that the closed geodesic

ball BR(x) is compact. Consequently {y±,nt } has a converging subsequence to y±t , and the lower
semi-continuity of f implies that:

Qtf(x) = inf
y∈X

d(x, y)2

2t
+ f(y) = min

y∈BR(x)

d(x, y)2

2t
+ f(y) =

d(x, y±t )2

2t
+ f(y±t ),

as asserted.
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Proof of (3) for proper X and lower semi-continuous f . The assertion will follow immediately after
establishing:

D+
f (x, s) ≤ D−f (x, t) ∀0 < s < t < t∗(f),

since trivially D−f ≤ D+
f and since a monotone function can only have a countable number of jump

discontinuities. By Lemma 3.5, there exist y+
s and y−t so that:

Qsf(x) = inf
y∈X

d(x, y)2

2s
+ f(y) =

d(x, y+
s )2

2s
+ f(y+

s ) and d(x, y+
s ) = D+

f (x, s),

and:

Qtf(x) = inf
y∈X

d(x, y)2

2t
+ f(y) =

d(x, y−t )2

2t
+ f(y−t ) and d(x, y−t ) = D−f (x, t).

It follows that:

d(x, y+
s )2

2s
+ f(y+

s ) ≤ d(x, y−t )2

2s
+ f(y−t ),

d(x, y−t )2

2t
+ f(y−t ) ≤ d(x, y+

s )2

2t
+ f(y+

s ).

Summing these two inequalities and rearranging terms, one deduces:

D+
f (x, s)

(
1

s
− 1

t

)
≤ D−f (x, t)

(
1

s
− 1

t

)
,

as required.

3.3 Intermediate-time duality and time-reversed potential

It is immediate to show by inspecting the definitions that we always have (e.g. [77, Theorem 7.34 (iii)]
or [3, Proposition 2.17 (ii)]):

Q−s ◦Qsf ≤ f on X ∀s > 0;

this is an inherent group-structure incompatibility of the Hopf-Lax forward and backward semi-groups.
Note that for f = −ϕ where ϕ is a Kantorovich potential, we do have equality for s = 1, and in fact
for all s ∈ [0, 1]. However, for f = Qt(−ϕ), t ∈ (0, 1) and s = 1 − t, we can only assert an inequality
above ([77, Theorem 7.36],[3, Corollary 2.23 (i)]):

(ϕc)1−t = Q−(1−t) ◦Q1(−ϕ) ≤ Qt(−ϕ) = −ϕt on X, (3.2)

and equality may not hold at every point of X (cf. [77, Remark 7.37]). Nevertheless, in our setting, the
subset where equality is attained may be characterized as in the next proposition. We first introduce
the following very convenient:

Definition (Time-Reversed Interpolating Potential). Given a Kantorovich potential ϕ : X → R,
define the time-reversed interpolating Kantorovich potential at time t ∈ [0, 1], ϕ̄t : X → R, as:

ϕ̄t := −(ϕc)1−t = Q1−t(−ϕc) = −Q−(1−t) ◦Q1−t(−ϕt).

Note that ϕ̄0 = ϕ, ϕ̄1 = −ϕc, and:

ϕ̄t(x) = inf
y∈X

d2(x, y)

2(1− t)
− ϕc(y) ∀t ∈ [0, 1).

Proposition 3.6.
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(1) ϕ0 = ϕ̄0 = ϕ and ϕ1 = ϕ̄1 = −ϕc.

(2) For all t ∈ [0, 1], ϕt ≤ ϕ̄t.

(3) For any t ∈ (0, 1), ϕt(x) = ϕ̄t(x) if and only if x ∈ et(Gϕ). In other words:

D(G̊ϕ) = {(x, t) ∈ X × (0, 1) ; ϕt(x) = ϕ̄t(x)} . (3.3)

(1) is immediate by c-concavity, and (2) is a reformulation of (3.2), so the only assertion requiring
proof is (3). The if direction is well-known (e.g. [77, Theorem 7.36], [3, Corollary 2.23 (ii)]), but the
other direction appears to be new. It is based on the following simple lemma, which we will use again
later on:

Lemma 3.7. Assume that for some x, y, z ∈ X and t ∈ (0, 1):

d(x, y)2

2t
− ϕ(y) = ϕc(z)− d(x, z)2

2(1− t)
.

Then x is a t-intermediate point between y and z:

d(y, z) =
d(x, y)

t
=

d(x, z)

1− t
, (3.4)

and there exists a ϕ-Kantorovich geodesic γ : [0, 1]→ X with γ(0) = y, γ(t) = x and γ(1) = z.

Proof. Using that:

ϕ(y) + ϕc(z) ≤ d(y, z)2

2
, (3.5)

our assumption yields:
d(x, y)2

2t
+

d(x, z)2

2(1− t)
≤ d(y, z)2

2
.

On the other hand, the reverse inequality is always valid by the triangle and Cauchy–Schwarz inequal-
ities:

d(y, z)2

2
≤ (d(x, y) + d(x, z))2

2
≤ d(x, y)2

2t
+

d(x, z)2

2(1− t)
.

It follows that we must have equality everywhere above, and (3.4) amounts to the equality case in
the Cauchy–Schwarz inequality. Consequently, the concatenation γ : [0, 1]→ X of any constant speed
geodesic γ1 : [0, t] → X between y and x, with any constant speed geodesic γ2 : [t, 1] → X between
x and z, so that γ(0) = y, γ(t) = x and γ(1) = z, must be a constant speed geodesic itself (by
the triangle inequality). Lastly, the equality in (3.5) implies that γ ∈ Gϕ, thereby concluding the
proof.

Proof of Proposition 3.6 (3). We begin with the known direction. Let x = γt with γ ∈ Gϕ. Apply
Lemma 3.3 to γ with s = 0 and r = t:

ϕ(γ0)− ϕt(γt) = ϕ0(γ0)− ϕt(γt) = t
len(γ)2

2
,

and to γc ∈ Gϕc with s = 1 and r = 1− t:

−ϕ(γ0)− (ϕc)1−t(γt) = (ϕc)1(γc1)− (ϕc)1−t(γ
c
1−t) = −t len(γc)2

2
= −t len(γ)2

2
,

where we used that (ϕc)1 = −(ϕc)c = −ϕ. Summing these two identities, we obtain:

ϕt(γt) = −(ϕc)1−t(γt),
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as asserted.
For the other direction, assume that ϕt(x) = −(ϕc)1−t(x) for some x ∈ X and t ∈ (0, 1). By

Lemma 3.5 applied to the lower semi-continuous functions −ϕ and −ϕc, there exist yt, zt ∈ X so that:

−ϕt(x) = Qt(−ϕ)(x) =
d(x, yt)

2

2t
− ϕ(yt),

ϕt(x) = −(ϕc)1−t(x) = Q1−t(−ϕc)(x) =
d(x, zt)

2

2(1− t)
− ϕc(zt).

Summing the two equations, the assertion follows immediately from Lemma 3.7.

We also record the following immediate corollary of Lemma 3.2:

Corollary 3.8.

(1) (x, t) 7→ ϕ̄t(x) is upper semi-continuous on X × [0, 1) and continuous on X × (0, 1).

(2) For every x ∈ X, [0, 1] 3 t 7→ ϕ̄t(x) is monotone non-decreasing and continuous on [0, 1).

Finally, in view of (3.3), we deduce for free:

Corollary 3.9. D(G̊ϕ) is a closed subset of X × (0, 1).

Proof. Immediate from (3.3) by the continuity of ϕt(x) and ϕ̄t(x) on X × (0, 1).

3.4 Length functions `±t and ¯̀±
t

Definition (Length functions `±t ,
¯̀±
t ). Given a Kantorovich potential ϕ : X → R, denote:

`±t (x) :=
D±−ϕ(x, t)

t
, ¯̀±

t (x) :=
D±−ϕc(x, 1− t)

1− t
, (x, t) ∈ X × (0, 1).

To provide motivation for these definitions, let us mention that we will shortly see that if x = γt
with γ ∈ Gϕ and t ∈ (0, 1), then:

`+t (x) = `−t (x) = ¯̀+
t (x) = ¯̀−

t (x) = `(γ).

In particular, all ϕ-Kantorovich geodesics having x as their t-mid-point have the same length. These
facts seem to not have been previously noted in the literature, and they will be crucially exploited in
this work.

Definition. For ˜̀= `, ¯̀, introduce the following set:

D˜̀ :=
{

(x, t) ∈ X × (0, 1) ; ˜̀+
t (x) = ˜̀−

t (x)
}
,

and on it define ˜̀
t(x) as the common value ˜̀+

t (x) = ˜̀−
t (x).

Recalling that ϕt = −Qt(−ϕ) and ϕ̄t = Q1−t(−ϕc), we begin by translating Theorem 3.4 into the
following corollary. We freely use standard properties of semi-convex (semi-concave) functions, like
twice a.e. differentiability, non-negativity (non-positivity) of the singular part of the distributional
second derivative (see e.g. Lemma A.11), etc...

Corollary 3.10. Let ϕ : X → R denote a Kantorovich potential. Then:

(1) For ˜̀ = `, ¯̀ and ϕ̃ = ϕ, ϕ̄, ˜̀±
t (x) are locally finite on X × (0, 1), and (x, t) 7→ ϕ̃t(x) is locally

Lipschitz there.
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(2) For ˜̀ = `, ¯̀, (x, t) 7→ ˜̀±
t (x) is upper (˜̀+

t (x)) / lower (˜̀−
t (x)) semi-continuous on X × (0, 1). In

particular, the subset D˜̀⊂ X × (0, 1) is Borel and (x, t) 7→ ˜̀
t(x) is continuous on D˜̀.

(3) For every x ∈ X we have:

∂±t ϕt(x) =
`±t (x)2

2
, ∂±t ϕ̄t(x) =

¯̀∓
t (x)2

2
∀t ∈ (0, 1).

In particular, for ˜̀ = `, ¯̀ and ϕ̃ = ϕ, ϕ̄, respectively, the map (0, 1) 3 t 7→ ϕ̃t(x) is locally
Lipschitz, and it is differentiable at t ∈ (0, 1) iff t ∈ D˜̀(x), the set on which both maps (0, 1) 3
t 7→ ˜̀±

t (x) coincide. D˜̀(x) is precisely the set of continuity points of both maps, and thus
coincides with (0, 1) with at most countably exceptions. In particular:

ϕ̃t2(x)− ϕ̃t1(x) =

∫ t2

t1

˜̀2
τ (x)

2
dτ ∀t1, t2 ∈ (0, 1).

(4) For every x ∈ X:

(a) Both maps (0, 1) 3 t 7→ t`±t (x) are monotone non-decreasing. In particular, D`(x) 3 t 7→
`2t (x) is differentiable a.e., the singular part of its distributional derivative is non-negative,
(0, 1) 3 t 7→ ϕt(x) is locally semi-convex, and:

∂t
`2t (x)

2
≥ −1

t
`2t (x) ∀t ∈ D`(x). (3.6)

(b) Both maps (0, 1) 3 t 7→ (1 − t)¯̀±
t (x) are monotone non-increasing. In particular, D¯̀(x) 3

t 7→ ¯̀2
t (x) is differentiable a.e., the singular part of its distributional derivative is non-

positive, (0, 1) 3 t 7→ ϕ̄t(x) is locally semi-concave, and:

∂t
¯̀2
t (x)

2
≤ 1

1− t
¯̀2
t (x) ∀t ∈ D¯̀(x). (3.7)

Proof. The only point requiring verification is that monotonicity of t 7→ t`t(x) in (4a) and t 7→ (1−t)¯̀
t

in (4b) implies (3.6) and (3.7), respectively. For instance, using the continuity of t 7→ `t(x) on D`(x),
(3.6) is clearly equivalent to:

∂t`t(x) ≥ −1

t
`t(x) ∀t ∈ D`(x). (3.8)

Now, if `t(x) = 0 the monotonicity directly implies ∂t`t(x) ≥ 0 and establishes (3.8), whereas other-
wise, (3.8) is equivalent by the chain-rule (and again the continuity of t 7→ `t(x) on D`(x)) to:

∂t log(t`t(x)) =
1

t
+ ∂t log(`t(x)) ≥ 0 ∀t ∈ D`(x),

which in turn is a consequence of the aforementioned monotonicity. The proof of (3.7) follows identi-
cally.

We now arrive to the main new result of this section, which will be constantly and crucially used
in this work:

Theorem 3.11. Let ϕ : X → R denote a Kantorovich potential.

(1) For all x ∈ et(Gϕ) with t ∈ (0, 1), we have:

`+t (x) = `−t (x) = ¯̀+
t (x) = ¯̀−

t (x) = `(γ),

for any γ ∈ Gϕ so that γt = x. In other words:

D(G̊ϕ) = {(x, t) ∈ X × (0, 1) ; x = γt , γ ∈ Gϕ} ⊂ D` ∩D¯̀,

and moreover `t(x) = ¯̀
t(x) there.
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(2) For all x ∈ X, G̊ϕ(x) 3 t 7→ `t(x) = ¯̀
t(x) is locally Lipschitz:∣∣∣√t(1− t)`t(x)−

√
s(1− s)`s(x)

∣∣∣
≤
√
`t(x)`s(x)

∣∣∣√t(1− s)−√s(1− t)∣∣∣ ∀t, s ∈ G̊ϕ(x). (3.9)

(3) For all (x, t) ∈ D(G̊ϕ) ⊂ D` ∩D¯̀ we have for both ∗ = P2ϕ̄t(x),P2ϕt(x):

−1

t
`2t (x) ≤ ∂t

`2t (x)

2
≤ P2ϕt(x) ≤ ∗ ≤ P2ϕ̄t(x) ≤ ∂t

¯̀2
t (x)

2
≤ 1

1− t
`2t (x),

where the Peano (partial) derivatives are with respect to the t variable.

(4) For all (x, t) ∈ D(G̊ϕ) ⊂ D` ∩D¯̀ we have:

∂t
`2t (x)

2
≤ ∂t

¯̀2
t (x)

2
+

(
1

1− t
+

1

t

)
`2t (x) ≤

(
2

1− t
+

1

t

)
`2t (x)

∂t
¯̀2
t (x)

2
≥ ∂t

`2t (x)

2
−
(

1

t
+

1

1− t

)
`2t (x) ≥ −

(
2

t
+

1

1− t

)
`2t (x).

In particular, for every x ∈ X, we have:

∂tϕt(x) = ∂tϕ̄t(x) =
`2t (x)

2
=

¯̀2
t (x)

2
∀t ∈ G̊ϕ(x),

with t 7→ `2t (x)
2 and t 7→

¯̀2
t (x)
2 continuous on D`(x)∩D¯̀(x), differentiable a.e. there, and having locally

bounded lower and upper derivatives on G̊ϕ(x) ⊂ D`(x) ∩D¯̀(x) as in (3) and (4).

Proof. To see (1), let (x, t) ∈ D(G̊ϕ). Equivalently, by Proposition 3.6 (3), we know that ϕt(x) = ϕ̄t(x).
In addition, Lemma 3.5 assures the existence of y± and z± in X so that:

−ϕt(x) =
d(x, y±)2

2t
− ϕ(y±) , d(x, y±) = t`±t (x)

−ϕ̄t(x) = −d(x, z±)2

2(1− t)
+ ϕc(z±) , d(x, z±) = (1− t)¯̀±

t (x).

Equating both expressions and applying Lemma 3.7, we deduce that x is the t-midpoint of a geodesic
connecting y± and z± (for all 4 possibilities), and that:

`±t (x) =
d(x, y±)

t
=

d(x, z±)

1− t
= ¯̀±

t (x), (3.10)

so that all 4 possibilities above coincide. We remark in passing that this already implies in a non-
branching setting that necessarily y+ = y− and z+ = z−, i.e. the uniqueness of a ϕ-Kantorovich
geodesic with t-mid point x.

Furthermore, if x = γt for some γ ∈ Gϕ, then by Lemma 3.3:

−ϕt(x) =
d(x, γ0)2

2t
− ϕ(γ0).

It follows by definition of D±−ϕ(x, t) that:

t`−t (x) = D−−ϕ(x, t) ≤ d(x, γ0) = t`(γ) ≤ D+
−ϕ(x, t) = t`+t (x),

which together with (3.10) establishes that `(γ) = `t(x) = ¯̀
t(x).
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To see (2), let γt, γs ∈ Gϕ be so that γtt = γss = x, for some t, s ∈ (0, 1). Then:

ϕc(γp1) =
`(γp)2

2
− ϕ(γp0) ≤ d(γp1 , γ

q
0)2

2
− ϕ(γq0),

for (p, q) = (t, s) and (p, q) = (s, t). Summing these two inequalities, we obtain the well-known c-cyclic
monotonicity of the set

{
(γt0, γ

t
1), (γs0, γ

s
1)
}

:

`(γt)2 + `(γs)2 ≤ d(γt0, γ
s
1)2 + d(γs0, γ

t
1)2.

To evaluate the right-hand-side, we simply pass through x and employ the triangle inequality:

d(γp0 , γ
q
1) ≤ d(γp0 , x) + d(x, γq1) = p `(γp) + (1− q) `(γq).

Plugging this above and rearranging terms, we obtain:

t(1− t)`(γt)2 + s(1− s)`(γs)2 ≤ (t(1− s) + s(1− t)) `(γt)`(γs).

Completing the square by subtracting 2
√
t(1− t)s(1− s)`(γt)`(γs) from both sides, and recalling that

`(γp) = `p(x) for p = t, s, we readily obtain (3.9). In particular, using t = s, the above argument
recovers the last assertion of (1) that `(γ) is the same for all γ ∈ Gϕ so that γt = x.

To see (3), recall that given x ∈ X, we know by Proposition 3.6 that ϕt(x) ≤ ϕ̄t(x) for all t ∈ (0, 1)
with equality iff t ∈ G̊ϕ(x). Since G̊ϕ(x) ⊂ D`(x) ∩D¯̀(x) by (1), we know that both maps t 7→ ϕ̃t(x)

are differentiable at t0 ∈ G̊ϕ(x), and we see again that
`2t0

(x)

2 = ∂tϕt0(x) = ∂tϕ̄t0(x) =
¯̀2
t0

(x)

2 , since the
derivatives of a function and its majorant must coincide at a mutual point of differentiability where
they touch. Moreover, defining h̃ = h, h̄ as:

h̃(ε) := 2 (ϕ̃t0+ε(x)− ϕ̃t0(x)− ε∂tϕ̃t0(x)) ,

it follows that h ≤ h̄ (on (−t0, 1− t0)). Diving by ε2 and taking appropriate subsequential limits, we
obviously obtain:

P2ϕt(x) ≤ P2ϕ̄t(x) , P2ϕt(x) ≤ P2ϕ̄t(x).

Combining these inequalities with those of Lemma 2.4, (3.6) and (3.7), the chain of inequalities in (3)
readily follows.

To see (4), let t0 ∈ G̊ϕ(x). Consider the function f(t) := ϕ̄t(x) − ϕt(x) on (0, 1), which is locally
semi-concave by Corollary 3.10. By Proposition 3.6, we know that f ≥ 0 with f(t0) = 0. The function

f is differentiable on D`(x) ∩D¯̀(x) and satisfies f ′(t) =
¯̀2
t (x)
2 − `2t (x)

2 there. In particular, this holds

at t0 ∈ G̊ϕ(x) ⊂ D`(x) ∩D¯̀(x) by (1) and f ′(t0) = 0. Note that by Corollary 3.10:

∂tf
′(t) ≤ ∂t

¯̀2
t (x)

2
− ∂t

`2t (x)

2
≤ 1

1− t
¯̀2
t (x) +

1

t
`2t (x).

In particular, since both D˜̀(x) 3 t 7→ ˜̀
t(x) are continuous at t = t0 ∈ D`(x) ∩D¯̀(x), for ˜̀ = `, ¯̀, it

follows that:

∀ε > 0 ∃δ > 0 ∀t ∈ (t0 − δ, t0 + δ) ∩D`(x) ∩D¯̀(x) ∂tf
′(t) ≤ 1

1− t0
`2t0(x) +

1

t0
`2t0(x) + ε.

It follows that on the open interval Iδ := (t0 − δ, t0 + δ) ∩ (0, 1), f − Cε t
2

2 is concave with Cε defined
as the constant on the right-hand-side above. Applying Lemma 3.12 below to the translated function
f(·+ t0) on the interval Iδ − t0, it follows that:

1

t− t0

( ¯̀2
t (x)

2
− `2t (x)

2

)
=
f ′(t)− f ′(0)

t− t0
≥ −Cε ∀t ∈ (t0 −

δ

2
, t0 +

δ

2
) ∩D`(x) ∩D¯̀(x).
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As ¯̀
t0(x) = `t0(x) by (1), we obtain:

`2t (x)
2 −

`2t0
(x)

2

t− t0
≤

¯̀2
t (x)
2 −

¯̀2
t0

(x)

2

t− t0
+ Cε ∀t ∈ (t0 −

δ

2
, t0 +

δ

2
) ∩D`(x) ∩D¯̀(x).

The assertion of (4) now follows by taking appropriate subsequential limits as t → t0 and using the
fact that ε > 0 was arbitrary.

Lemma 3.12. Given I ⊂ R an open interval containing 0, let f : I → R denote a C-semi-concave
function, so that I 3 t 7→ f −C t2

2 is concave, C ≥ 0. Assume that f ≥ 0 on I, that f is differentiable

at 0 and that f(0) = f ′(0) = 0. Then ∂t|t=0f
′(t) ≥ −C, and moreover, f ′(t)

t ≥ −C for all t ∈ D∩ I/2,
where D ⊂ I denotes the subset (of full measure) of differentiability points of f .

Note that the C-semi-concavity is equivalent to ∂t|t=0f
′(t) ≤ C, while the conclusion is from the

opposite direction. It is not hard to verify that the asserted lower bound is in fact best possible.

Proof of Lemma 3.12. Set g = f ′ on D. The C-semi-concavity is equivalent to the statement that
g(t)− Ct is non-increasing on D, so that g(t2) ≤ g(t1) + C(t2 − t1) for all t1, t2 ∈ D with t1 < t2. It
follows that necessarily g(t) ≥ −Ct for all t ∈ D ∩ I/2 with t ≥ 0, since:

0 ≤ f(2t)− f(0) =

∫ 2t

0
g(s)ds ≤

∫ t

0
(g(0) + Cs) +

∫ 2t

t
(g(t) + C(s− t))ds = C

t2

2
+ tg(t) + C

t2

2
.

Repeating the same argument for t 7→ f(−t), we see that −g(t) ≥ Ct for all t ∈ D ∩ I/2 with t ≤ 0.
This concludes the proof.

In a sense, Theorem 3.11 (2) is the temporal analogue of the spatial 1/2-Hölder regularity proved
by Villani in [77, Theorem 8.22]. Formally taking s → t in (3.9), it is easy to check that one obtains
(for both ˜̀= `, ¯̀) stronger bounds than in Theorem 3.11 (3) and (4):

−1

t
`2t (x) ≤ ∂t

˜̀2
t (x)|G̊ϕ(x)

2
≤ ∂t

˜̀2
t (x)|G̊ϕ(x)

2
≤ 1

1− t
`2t (x) ∀t ∈ G̊ϕ(x). (3.11)

However, we do not know how to rigorously pass from (3.9) to (3.11) or vice versa (by differentiation or
integration, respectively), since we cannot exclude the possibility that the (relatively closed in (0, 1))
set G̊ϕ(x) has isolated points, nor that it is disconnected. Instead, we can obtain the following stronger
version of (3.11) which only holds for a.e. t ∈ G̊ϕ(x), but will prove to be very useful later on.

Corollary 3.13. For all x ∈ X, for a.e. t ∈ G̊ϕ(x), ∂t`
2
t (x) and ∂t ¯̀

2
t (x) exist, coincide, and satisfy:

−1

t
`2t (x) ≤ ∂t

`2t (x)

2
= ∂t

`2t (x)|G̊ϕ(x)

2
= ∂t

¯̀2
t (x)|G̊ϕ(x)

2
= ∂t

¯̀2
t (x)

2
≤ 1

1− t
`2t (x). (3.12)

Proof. By Corollary 3.10, for all x ∈ X and ˜̀ = `, ¯̀, t 7→ ˜̀2
t (x) is differentiable a.e. on D˜̀(x).

Consequently, the first and third equalities in (3.12) follow for a.e. t ∈ G̊ϕ(x) ⊂ D`(x) ∩ D¯̀(x) by
Remark 2.1. The second equality follows since `t(x) = ¯̀

t(x) for t ∈ G̊ϕ(x) by Theorem 3.11. The
lower and upper bounds in (3.12) then follow from Theorem 3.11 (3) (or as in (3.11), by taking the
limit as s→ t in Theorem 3.11 (2)).
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3.5 Null-Geodesics

Definition 3.14 (Null-Geodesics and Null-Geodesic Points). Given a Kantorovich potential ϕ : X →
R, denote the subset of null ϕ-Kantorovich geodesics by:

G0
ϕ := {γ ∈ Gϕ ; `(γ) = 0} .

Its complement in Gϕ will be denoted by G+
ϕ . The subset of X of null ϕ-Kantorovich geodesic points

is denoted by:

X0 :=
{
x ∈ X ; ∃γ ∈ G0

ϕ γ ≡ x
}

= {x ∈ X ; ϕ(x) + ϕc(x) = 0} .

Its complement in X will be denoted by X+.

The following provides a convenient equivalent characterization of X0 and X+:

Lemma 3.15. Given x ∈ X, the following statements are equivalent:

(1) x ∈ X0, i.e. ϕ(x) + ϕc(x) = 0.

(2) ∀t ∈ (0, 1), ϕt(x) = ϕ̄t(x) = ϕ(x) = −ϕc(x).

(3) ∀t ∈ (0, 1), ϕt(x) = c and ϕ̄t(x) = c̄ for some c, c̄ ∈ R.

(4) D`(x) = D¯̀(x) = (0, 1) and ∀t ∈ (0, 1) `t(x) = ¯̀
t(x) = 0.

(5) ∃t0 ∈ G̊ϕ(x) so that ϕt0(x) = ϕ(x) or ϕ̄t0(x) = ϕ(x) or ϕt0(x) = −ϕc(x) or ϕ̄t0(x) = −ϕc(x).

(6) ∃t0 ∈ G̊ϕ(x) so that `−t0(x) = 0 or `+t0(x) = 0 or ¯̀−
t0

(x) = 0 or ¯̀+
t0

(x) = 0.

In other words, we have the following dichotomy: all ϕ-Kantorovich geodesics having x ∈ X as some
interior mid-point have either strictly positive length (iff x ∈ X+) or zero length (iff x ∈ X0).

Remark 3.16. In fact, we always have ϕt(x) = ϕ̄t(x) and `t(x) = ¯̀
t(x) for t ∈ G̊ϕ(x) ⊂ D`(x)∩D¯̀(x)

by Theorem 3.11, so we may simply write “ϕt0(x) = ϕ(x) or ϕt0(x) = −ϕc(x)” and “`t0(x) = ¯̀
t0(x) =

0” in statements (5) and (6), respectively. However, we chose to formulate these statements with the
(a-priori) minimal requirements.

Proof of Lemma 3.15. (1) ⇒ (2) is straightforward: for instance, (1) is by definition identical to
ϕ1(x) = ϕ0(x) and (2) follows by the monotonicity of [0, 1] 3 t 7→ ϕ̃t(x) for both ϕ̃ = ϕ, ϕ̄; alternatively,
apply Lemma 3.3 to the null geodesic γ0 ≡ x with respect to both Kantorovich potentials ϕ and ϕc.
(2)⇒ (3) is trivial.
(3) ⇔ (4) follows by using that D˜̀(x) is characterized as the subset of t-differentiability points of

ϕt(x) on (0, 1) with ∂tϕ̃t(x) = ˜̀2
t (x)/2 there.

(3) ⇒ (1): by the continuity of t 7→ ϕt(x) from the left at t = 1 it follows that c = ϕ1(x), and
similarly the continuity of t 7→ ϕ̄t(x) from the right at t = 0 yields that c̄ = ϕ̄0(x) = ϕ(x). Since
always ϕ ≤ ϕ̄, we deduce ϕ1(x) = c ≤ c̄ = ϕ(x). On the other hand, we always have ϕ(x) ≤ ϕ1(x) by
monotonicity, so we conclude that ϕ(x) = ϕ1(x), establishing statement (1). This concludes the proof
of the equivalence (1)⇔ (2)⇔ (3)⇔ (4).
(2)⇒ (5) and (4)⇒ (6) are trivial.
(5)⇒ (6) is straightforward: for instance, if ϕ̃t0(x) = ϕ̃0(x) = ϕ(x) for some t0 ∈ (0, 1) and ϕ̃ ∈ {ϕ, ϕ̄},
then by monotonicity, ϕ̃t(x) = ϕ(x) for all t ∈ [0, t0], and hence the left derivative at t = t0 satisfies
`−t0(x) = ∂−t |t=t0ϕt(x) = 0 if ϕ̃ = ϕ and ¯̀+

t0
(x) = ∂−t |t=t0ϕ̄t(x) = 0 if ϕ̃ = ϕ̄. If ϕ̃t0(x) = ϕ̃1(x) =

−ϕc(x), repeat the argument using the right derivative.
The only direction requiring second-order information on ϕt is (6) ⇒ (3). By Corollary 3.10, t 7→
t`±t (x) and t 7→ (1 − t)¯̀±

t (x) are monotone non-decreasing and non-increasing on (0, 1), respectively.
Since t0 ∈ G̊ϕ, in view of Remark 3.16, (5) is equivalent to `±t0(x) = ¯̀±

t0
(x) = 0. The monotonicity

implies that `±t (x) = 0 for all t ∈ (0, t0] and that ¯̀±
t (x) = 0 for all t ∈ [t0, 1). It follows that ϕt(x) is

constant on (0, t0] and ϕ̄t(x) is constant on [t0, 1). As ϕt0(x) = ϕ̄t0(x), the monotonicity of t 7→ ϕ̃t(x)
and the majoration ϕt ≤ ϕ̄t forces both t 7→ ϕt(x) and t 7→ ϕ̄t(x) to be constant on (0, 1), establishing
(3) (in fact with c = c̄).
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Corollary 3.17. If x ∈ X+ then `t(x) > 0 for all t ∈ [inf G̊ϕ(x), 1) ∩ D`(x) and ¯̀
t(x) > 0 for all

t ∈ (0, sup G̊ϕ(x)] ∩D¯̀(x).

Proof. Immediate by (6) and the monotonicity of D`(x) 3 t 7→ t`t(x) and D¯̀(x) 3 t 7→ (1 − t)¯̀
t(x),

together with the fact that G̊ϕ(x) is relatively closed in (0, 1) by Corollary 3.9.

Corollary 3.18. Given x ∈ X, assume that ∃t1, t2 ∈ G̊ϕ(x) with t1 6= t2. Then x ∈ X0 iff ϕt1(x) =
ϕt2(x) (or equivalently, ϕ̄t1(x) = ϕ̄t2(x)).

Proof. The “only if” direction follows immediately by Lemma 3.15, whereas the “if” direction follows

by Corollary 3.17, after recalling that ϕt2(x) − ϕt1(x) =
∫ t2
t1

`2τ (x)
2 dτ by Corollary 3.10. As usual, the

equivalent condition follows by Theorem 3.11.

4 Temporal Theory of Intermediate-Time Kantorovich Potentials.
Time-Propagation

The goal of this section is to introduce and study the following function(s):

Definition (Time-Propagated Intermediate Kantorovich Potentials). Given a Kantorovich potential
ϕ : X → R and s, t ∈ (0, 1), define the t-propagated s-Kantorovich potential Φt

s on D`(t), and its
time-reversed version Φ̄t

s on D¯̀(t), by:

Φt
s := ϕt + (t− s)`

2
t

2
on D`(t) , Φ̄t

s := ϕ̄t + (t− s)
¯̀2
t

2
on D¯̀(t).

Observe that for all s, t ∈ (0, 1):

Φt
s = Φ̄t

s = ϕs ◦ es ◦ e−1
t on et(Gϕ);

indeed, while e−1
t : et(Gϕ)→ Gϕ may be multi-valued, Theorem 3.11 implies that `(γ) = `t(x) = ¯̀

t(x)
for any γ ∈ Gϕ with γt = x, and consequently Lemma 3.3 yields that ϕs ◦ es is single-valued for all
such γ and (also recalling Proposition 3.6):

Φt
s(γt) = Φ̄t

s(γt) = ϕs(γs) ∀γ ∈ Gϕ.

Consequently, on et(Gϕ), Φt
s = Φ̄t

s is identified as the push-forward of ϕs via et◦e−1
s , i.e. its propagation

along Gϕ from time s to time t.

We will use the following short-hand notation. Given s ∈ [0, 1] and as ∈ R, we denote:

Gas := {γ ∈ Gϕ ; ϕs(γ(s)) = as} ,

suppressing the implicit dependence of Gas on s. The above argument about why ϕs ◦ es ◦ e−1
t is

well-defined can be rewritten as:

Corollary 4.1 (Inter Level-Set Propagation). For all s, t ∈ (0, 1), as, bs ∈ R, as 6= bs, we have:

et(Gϕ) ∩
{

Φt
s = as

}
∩
{

Φt
s = bs

}
= et(Gas) ∩ et(Gbs) = ∅.

Note that while typically disjoint sets remain disjoint under optimal-transport only under some addi-
tional non-branching assumptions, Corollary 4.1 holds true in general.
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4.1 Monotonicity

Lemma 4.2. Let x = γ1
t1 = γ2

t2 with γ1, γ2 ∈ Gϕ and 0 < t1 < t2 < 1. Then for any s ∈ (0, 1):

ϕs(γ
2
s )− ϕs(γ1

s ) ≥ 2 min

(
s

t2
,

1− s
1− t1

)
(ϕt2(x)− ϕt1(x)) ≥ 0. (4.1)

Moreover, the left-hand-side is in fact strictly positive iff x ∈ X+.

Proof. We know by Lemma 3.3 and Theorem 3.11 that:

ϕs(γ
i
s) = ϕti(γ

i
ti) + (ti − s)

`2(γi)

2
= ϕti(x) + (ti − s)

`2ti(x)

2
, i = 1, 2.

Recall that ϕti(x) = ϕ̄ti(x) and `ti(x) = ¯̀
ti(x) by Proposition 3.6 and Theorem 3.11, as x = γiti . Now

set s̄ := (s ∨ t1) ∧ t2. Since s̄ ∈ {t1, t2, s}, it follows that:

ϕs(γ
2
s )− ϕs(γ1

s )− (ϕt2(x)− ϕt1(x))

= (t2 − s)
`2t2(x)

2
− (s̄− s)`

2
s̄(x)

2
+ (s̄− s)

¯̀2
s̄(x)

2
− (t1 − s)

¯̀2
t1(x)

2
.

By Corollary 3.10, we know for ˜̀ = `, ¯̀ that D˜̀(x) 3 t 7→ ˜̀2
t (x) is differentiable a.e., and that the

singular part of its distributional derivative is non-negative for ˜̀ = ` and non-positive for ˜̀ = ¯̀.
Consequently, we may proceed as follows:

≥
∫ t2

s̄
∂τ

(
(τ − s)`

2
τ (x)

2

)
dτ +

∫ s̄

t1

∂τ

(
(τ − s)

¯̀2
τ (x)

2

)
dτ,

where we used that τ − s ≥ 0 when s̄ ≤ τ < t2 and that τ − s ≤ 0 when s̄ ≥ τ > t1. Using (3.6)
and (3.7) to bound the above lower and upper derivatives on the sets (having full measure) D`(x) and
D¯̀(x), respectively, we obtain:

≥
∫ t2

s̄

(
1− 2

τ − s
τ

)
`2τ (x)

2
dτ +

∫ s̄

t1

(
1 + 2

τ − s
1− τ

) ¯̀2
τ (x)

2
dτ

=

∫ t2

s̄

(
2
s

τ
− 1
) `2τ (x)

2
dτ +

∫ s̄

t1

(
2

1− s
1− τ

− 1

) ¯̀2
τ (x)

2
dτ

≥
(

2
s

t2
− 1

)∫ t2

s̄

`2τ (x)

2
dτ +

(
2

1− s
1− t1

− 1

)∫ s̄

t1

¯̀2
τ (x)

2
dτ

=

(
2
s

t2
− 1

)
(ϕt2(x)− ϕs̄(x)) +

(
2

1− s
1− t1

− 1

)
(ϕ̄s̄(x)− ϕ̄t1(x)) .

Summarizing, we have obtained:

ϕs(γ
2
s )− ϕs(γ1

s ) ≥
(

2
s

t2
− 1

)
(ϕt2(x)− ϕs̄(x)) + ϕt2(x)

+

(
2

1− s
1− t1

− 1

)
(ϕ̄s̄(x)− ϕt1(x))− ϕt1(x).

We now use the inequality ϕs̄(x) ≤ ϕ̄s̄(x) in the first line above when 2 s
t2
− 1 ≥ 0, and in the second

line when 2 1−s
1−t1 − 1 ≥ 0, yielding:

≥

{
2 s
t2

(ϕ̄t2(x)− ϕ̄s̄(x)) + 2 1−s
1−t1 (ϕ̄s̄(x)− ϕ̄t1(x)) s ≥ t2

2

2 s
t2

(ϕt2(x)− ϕs̄(x)) + 2 1−s
1−t1 (ϕs̄(x)− ϕt1(x)) 1− s ≥ 1−t1

2

.

In particular, the first estimate applies whenever s ≥ 1
2 and the second one whenever s ≤ 1

2 . Using
that [0, 1] 3 τ 7→ ϕ̃τ (x) is monotone non-decreasing, the asserted (4.1) is established in either case.
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Moreover, (4.1) implies that if ϕs(γ
2
s )−ϕs(γ1

s ) = 0 then ϕt1(x) = ϕt2(x), and hence by Corollary 3.18
that x ∈ X0; and vice-versa, if x ∈ X0 then all geodesics having x as an interior point are null by
Lemma 3.15, and hence γ1

s = γ2
s = x and ϕs(γ

2
s )− ϕs(γ1

s ) = 0.

We can already deduce the following important consequence, complementing Corollary 4.1, which
holds for any proper geodesic space (X, d), independently of any additional assumptions like various
forms of non-branching:

Corollary 4.3 (Intra Level-Set Propagation). For any s ∈ (0, 1), as ∈ R, and t1, t2 ∈ (0, 1) with
t1 6= t2:

et1(Gas \G0
ϕ) ∩ et2(Gas \G0

ϕ) = et1(Gas) ∩ et2(Gas) ∩X+ = ∅.

In other words, for each x ∈ e(0,1)(Gas) ∩X+, there exists a unique t ∈ (0, 1) so that x ∈ et(Gas).

Proof. If x = γ1
t1 = γ2

t2 ∈ X+, 0 < t1 < t2 < 1, then Lemma 4.2 yields ϕs(γ
2(s)) > ϕs(γ

1(s)),
establishing the assertion.

4.2 Properties of Φt
s

The following information will be crucially used when deriving the Change-Of-Variables formula in
Section 11:

Proposition 4.4. For any s ∈ (0, 1), the following properties of Φt
s and Φ̄t

s hold:

(1) The maps (x, t) 7→ Φt
s(x) and (x, t) 7→ Φ̄t

s(x) are continuous on D` and D¯̀, respectively.

(2) For each x ∈ X, Φ̃ = Φ, Φ̄ and ˜̀ = `, ¯̀, respectively, D˜̀(x) 3 t 7→ Φ̃t
s(x) is differentiable at t iff

D˜̀(x) 3 t 7→ ˜̀2
t (x) is differentiable at t or if t = s ∈ D˜̀(x), so in particular t 7→ Φ̃t

s(x) is a.e.
differentiable. At points t of differentiability:

∂tΦ̃
t
s(x) = ˜̀2

t (x) + (t− s)∂t
˜̀2
t (x)

2
. (4.2)

In particular, if s ∈ D˜̀(x) then ∃∂t|t=sΦ̃t
s(x) = ˜̀2

s(x).

(3) For each x ∈ X, the map G̊ϕ(x) 3 t 7→ Φt
s(x) = Φ̄t

s(x) is locally Lipschitz and non-decreasing (if
#G̊ϕ(x) ≥ 2, it is strictly increasing iff x ∈ X+).

(4) For all t ∈ (0, 1):{
∂tΦ

t
s(x) ≥ s

t `
2
t (x) t ≥ s

∂tΦ
t
s(x) ≤ s

t `
2
t (x) t ≤ s

∀x ∈ D`(t) ;

{
∂tΦ̄

t
s(x) ≤ 1−s

1−t
¯̀2
t (x) t ≥ s

∂tΦ̄
t
s(x) ≥ 1−s

1−t
¯̀2
t (x) t ≤ s

∀x ∈ D¯̀(t).

(5) For all (x, t) ∈ D(G̊ϕ):

min

(
s

t
,
1− s
1− t

+
t− s
t(1− t)

)
`2t (x) ≤ ∂tΦt

s(x) ≤ ∂tΦt
s(x) ≤ max

(
s

t
,
1− s
1− t

+
t− s
t(1− t)

)
`2t (x),

min

(
1− s
1− t

,
s

t
− t− s
t(1− t)

)
`2t (x) ≤ ∂tΦ̄t

s(x) ≤ ∂tΦ̄t
s(x) ≤ max

(
1− s
1− t

,
s

t
− t− s
t(1− t)

)
`2t (x).

Proof. Recall that:

Φ̃t
s := ϕ̃t(x) + (t− s)

˜̀2
t (x)

2
on D˜̀.

The first and second statements follow by Lemma 3.2 and Corollary 3.10. As t 7→ ϕ̃t(x) is differentiable

on D˜̀(x) with derivative
˜̀2
t (x)
2 , the points of differentiability of t 7→ Φ̃t

s(x) must coincide with those
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of t 7→ ˜̀2
t (x) and (4.2) follows immediately, with the only possible exception being the point t = s

if s ∈ D˜̀(x), where direct inspection and continuity of t 7→ ˜̀2
t (x) on D˜̀(x) verifies (4.2). The local

Lipschitzness follows by Theorem 3.11 (2). The monotonicity follows by Lemma 4.2, since if γt ∈ Gϕ
is such that γtt = x, then Φt

s(γ
t
t) = Φ̄t

s(γ
t
t) = ϕs(γ

t
s). The last two assertions follow as in the proof of

Lemma 4.2, after noting that:{
∂tΦ̃

t
s(x) = ˜̀2

t (x) + (t− s)∂t
˜̀2
t (x)
2 t ≥ s

∂tΦ̃
t
s(x) = ˜̀2

t (x) + (t− s)∂t
˜̀2
t (x)
2 t ≤ s

∀x ∈ D˜̀(t),

and similarly for ∂t. Indeed, the estimates (3.6) and (3.7) of Corollary 3.10 yield (4), which already
yields half of the inequalities in (5) for all (x, t) ∈ D` ∩D¯̀. To get the other half, we must restrict to
D(G̊ϕ) and use the estimates of Theorem 3.11 (4), thereby concluding the proof.

As an immediate corollary of Proposition 4.4, Corollary 3.13 and Lemma 3.15, we obtain:

Corollary 4.5. For all x ∈ X, for a.e. t ∈ G̊ϕ(x), ∂tΦ
t
s(x) and ∂tΦ̄

t
s(x) exist, coincide, and satisfy:

min

(
s

t
,
1− s
1− t

)
`2t (x) ≤ ∂tΦt

s(x) = ∂tΦ
t
s(x)|G̊ϕ(x)

= ∂tΦ̄
t
s(x)|G̊ϕ(x) = ∂tΦ̄

t
s(x) ≤ max

(
s

t
,
1− s
1− t

)
`2t (x).

In particular, if x ∈ X+ then ∂tΦ
t
s(x) > 0 for a.e. t ∈ G̊ϕ(x).

We will also require the following consequence of Proposition 4.4 and Theorem 3.11:

Lemma 4.6. For any x ∈ X, s ∈ (0, 1), and Φ̃ = Φ, Φ̄ and ˜̀= `, ¯̀, respectively:

lim
ε→0

1

2ε

∫
(s−ε,s+ε)∩G̊ϕ(x)

(
∂tΦ̃

t
s(x)− ˜̀2

s(x)
)
dt = 0.

Proof. By (4.2), the claim boils down to proving:

lim
ε→0

1

2ε

∫
(s−ε,s+ε)∩G̊ϕ(x)

(t− s)∂t ˜̀2
t (x)dt = 0.

Using Corollary 3.13, it follows that:

lim
ε→0

1

2ε

∣∣∣∣∣
∫

(s−ε,s+ε)∩G̊ϕ(x)
(t− s)∂t ˜̀2

t (x)dt

∣∣∣∣∣ ≤ lim
ε→0

∫
(s−ε,s+ε)∩G̊ϕ(x)

∣∣∣∣∣∂t ˜̀2
t (x)

2

∣∣∣∣∣ dt
≤ 1

min(s, 1− s)
lim
ε→0

∫
(s−ε,s+ε)∩G̊ϕ(x)

˜̀2
t (x)dt.

But the latter limit is clearly 0 (e.g. by Corollary 3.10 (1)).

5 Temporal Theory of Intermediate-Time Kantorovich Potentials.
Third Order

Fix a non-null Kantorovich geodesic γ ∈ G+
ϕ , and denote for short ` := `(γ) > 0. Recall by the results

of Section 3 that for all t ∈ (0, 1), `t(γt) = ¯̀
t(γt) = ` and that ∂tϕt(x) = ∂tϕ̄t(x) = `2t (x)/2 for all

x ∈ et(Gϕ). Also, recall that given x ∈ X and ˜̀ = `, ¯̀, the function D˜̀(x) 3 t 7→ ˜̀
t(x) is only a.e.
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differentiable, and even on G̊ϕ(x) ⊂ D`(x) ∩ D¯̀(x), we only have at the moment upper and lower
bounds on ∂t ˜̀

2
t (x)/2 and ∂t ˜̀

2
t (x)/2, i.e. second order information on ϕ̃t(x).

The goal of this section is to rigorously make sense and prove the following formal statement,
which provides second order information on `t, or equivalently, third order information on ϕt, along
γt:

z(t) := ∂τ |τ=t
`2τ
2

(γt) ⇒ z′(t) ≥ z(t)2

`2
. (5.1)

Equivalently, this amounts to the statement that the function:

L(r) = exp

(
− 1

`2

∫ r

r0

∂τ |τ=t
`2τ
2

(γt)dt

)
is concave in r ∈ (0, 1), since formally:

L′′

L
= (logL)′′ + ((logL)′)2 = − z

′

`2
+
z2

`4
≤ 0.

5.1 Formal Argument

We start by providing a formal proof of (5.1) in an infinitesimally Hilbertian setting, which is rigorously
justified on a Riemannian manifold if all involved functions are smooth (in time and space).

Recall that the Hopf-Lax semi-group solves the Hamilton-Jacobi equation (e.g. [6]):

∂tϕt =
1

2
`2t =

1

2
|∇ϕt|2 . (5.2)

We evaluate all subsequent functions at x = γt. Since:

z(t) = ∂2
t ϕt(γ(t)) = 〈∇∂tϕt,∇ϕt〉 ,

and since γ′(t) = −∇ϕt (see e.g. [6] or Lemma 10.3),

z′(t) = ∂3
t ϕt −

〈
∇∂2

t ϕt,∇ϕt
〉
.

But taking two time derivatives in (5.2), we know that:

∂3
t ϕt =

〈
∇∂2

t ϕt,∇ϕt
〉

+ 〈∇∂tϕt,∇∂tϕt〉 ,

and so we conclude that:
z′(t) = |∇∂tϕt|2 .

It remains to apply Cauchy–Schwarz and deduce:

z′(t) ≥
〈
∇∂tϕt,

∇ϕt
|∇ϕt|

〉2

=
z(t)2

`2
,

as asserted. Note that in a general setting, we can try and interpret z(t) as minus the directional

derivative of `2t /2 = ∂tϕt in the direction of γ′(t) (by taking derivative of the identity
`2t
2 (γ(t)) ≡ `2

2 ),
and thus hope to justify the Cauchy–Schwarz inequality as the statement that the local Lipschitz
constant of ∂tϕt is greater than any unit-directional derivative. However, a crucial point in the above
argument of identifying z′(t) with |∇∂tϕt|2 was to use the linearity of 〈·, ·〉 in both of its arguments,
and so ultimately this formal proof is genuinely restricted to an infinitesimally Hilbertian setting.

The above discussion seems to suggest that there is no hope of proving (5.1) beyond the Hilbertian
setting. Furthermore, it seems that the spatial regularity of ϕt and ∂tϕt = 1

2`
2
t should play an essential

role in any rigorous justification. Remarkably, we will see that this is not the case on both counts,
and that an appropriate interpretation of (5.1) holds true on a general proper geodesic space (X, d).
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5.2 Notation

Recall that by the results of Section 3, τ 7→ ϕτ (x) and τ 7→ ϕ̄τ (x) are locally semi-convex and semi-
concave on (0, 1), respectively, and that ∂±t ϕt(x) = `±t (x)2/2, ∂±t ϕ̄t(x) = ¯̀∓

t (x)2/2 and `±t (γt) =
¯̀±
t (γt) = ` for all t ∈ (0, 1). We respectively introduce p̃ = p, p̄ by defining at t ∈ (0, 1):

p̃γ+(t) = p̃+(t) := ∂τ |τ=t
˜̀2
τ (γt)/2 = ` · ∂τ |τ=t

˜̀
τ (γt) = ` · ∂τ |τ=t

˜̀±
τ (γt) ,

p̃γ−(t) = p̃−(t) := ∂τ |τ=t
˜̀2
τ (γt)/2 = ` · ∂τ |τ=t

˜̀
τ (γt) = ` · ∂τ |τ=t

˜̀±
τ (γt) ,

where the penultimate equalities in each of the lines above follow from the continuity of D˜̀(γt) 3
τ 7→ ˜̀

τ (γt) at τ = t ∈ Gϕ(γt) ⊂ D˜̀(γt), and the last ones by the monotonicity of τ 7→ τ`±τ (γt) and
τ 7→ (1− τ)¯̀±

τ (γt) and the density of D˜̀ in (0, 1). Clearly p̃−(t) ≤ p̃+(t), and p̃−(t) = p̃+(t) = p̃ ∈ R
iff D˜̀(γt) 3 τ 7→ ˜̀2

τ/2(γt) is differentiable at τ = t with derivative p̃. In addition, for q̃ = q, q̄, set:

q̃+(t) := P2ϕ̃t(x)|x=γt ≥ P2ϕ̃t(x)|x=γt =: q̃−(t),

where the Peano (partial) derivatives are with respect to the t variable. It will be useful to recall that
if we define h̃ = h, h̄ by:

h̃(t, ε) := 2 (ϕ̃t+ε(γt)− ϕ̃t(γt)− ε∂tϕ̃t(γt))
= 2

(
ϕ̃t+ε(γt)− ϕt(γt)− ε`2/2

)
,

then:

q̃+(t) = lim sup
ε→0

h̃(t, ε)

ε2
≥ lim inf

ε→0

h̃(t, ε)

ε2
= q̃−(t).

By definition, q̃−(t) = q̃+(t) = q̃ ∈ R if and only if τ 7→ ϕ̃τ (γt) has second order Peano derivative at
τ = t equal to q̃, and hence by Lemma 2.3, iff p̃−(t) = p̃+(t) = q̃, or equivalently, iff any of the other
equivalent conditions for the second order differentiability of (0, 1) 3 τ 7→ ϕ̃τ (γt) at τ = t are satisfied.
Moreover, Lemma 2.4 implies:

p̃−(t) ≤ q̃−(t) ≤ q̃+(t) ≤ p̃+(t) ∀t ∈ (0, 1),

but we will not require this here. We summarize the above discussion in:

Corollary 5.1. The following statements are equivalent for a given t ∈ (0, 1):

(1) p̃−(t) = p̃+(t) = p̃ ∈ R, i.e. D˜̀(γt) 3 τ 7→
˜̀2
τ
2 (γt) is differentiable at τ = t with derivative p̃.

(2) q̃−(t) = q̃+(t) = q̃ ∈ R, i.e. (0, 1) 3 τ 7→ ϕ̃τ (γt) has a second Peano derivative at τ = t equal to
q̃.

In any of these cases (0, 1) 3 τ 7→ ϕ̃τ (γt) is twice differentiable at τ = t, and we have:

∂2
τ |τ=tϕ̃τ (γt) := ∂τ |τ=t

˜̀2
τ

2
(γt) = ` · ∂τ |τ=t

˜̀
t(γt) = p̃ = q̃.

5.3 Main Inequality

The following inequality and its consequences are the main results of this section.

Theorem 5.2. For all s < t and ε so that s, t, s+ ε, t+ ε ∈ (0, 1), we have (for both possibilities for
±):

h(t, ε)− h(s, ε)

t− s
≥ s+ ε

t+ ε
(`±s+ε(γs)− `s(γs))2,

and:
h̄(t, ε)− h̄(s, ε)

t− s
≥ 1− t− ε

1− s− ε
(¯̀±
t+ε(γt)− ¯̀

t(γt))
2.
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Proof. By Lemma 3.5, there exist y±ε ∈ X so that:

−ϕs+ε(γs) =
d2(y±ε , γs)

2(s+ ε)
− ϕ(y±ε ),

with d(y±ε , γs) = D±−ϕ(γs, s+ ε) = (s+ ε)`±s+ε(γs) =: D±s+ε. By definition, note that:

−ϕt+ε(γt) ≤
d2(y±ε , γt)

2(t+ ε)
− ϕ(y±ε ).

We abbreviate Dr := r` = d(γr, γ0), r = s, t. The proof consists of subtracting the above two
expressions and applying the triangle inequality:

d(y±ε , γt) ≤ d(y±ε , γs) + d(γs, γt) = D±s+ε + (Dt −Ds) = Dt + (D±s+ε −Ds).

Indeed, we obtain after subtraction, recalling the definition of h, and an application of Lemma 3.3:

0 ≤ ϕt+ε(γt)− ϕs+ε(γs) +
d2(y±ε , γt)

2(t+ ε)
− d2(y±ε , γs)

2(s+ ε)

=
1

2
(h(t, ε)− h(s, ε)) + ϕt(γt)− ϕs(γs) +

d2(y±ε , γt)

2(t+ ε)
−

(D±s+ε)
2

2(s+ ε)

≤ 1

2
(h(t, ε)− h(s, ε))− `2

2
(t− s)−

(D±s+ε)
2

2(s+ ε)

+
(D±s+ε −Ds)

2 +D2
t + 2(D±s+ε −Ds)Dt

2(t+ ε)
.

Carefully rearranging terms, we obtain:

1

2
(h(t, ε)− h(s, ε)) ≥

(D±s+ε)
2

2(s+ ε)
− D2

s

2s
+
D2
t

2

(
1

t
− 1

t+ ε

)
−

(D±s+ε −Ds)
2 + 2(D±s+ε −Ds)Dt

2(t+ ε)

=
1

2(s+ ε)
((D±s+ε)

2 −D2
s) +

D2
s

2

(
1

s+ ε
− 1

s

)
+
D2
t

2

(
1

t
− 1

t+ ε

)
−

(D±s+ε −Ds)
2 + 2(D±s+ε −Ds)Dt

2(t+ ε)

= (D±s+ε −Ds)

(
D±s+ε +Ds

2(s+ ε)
− Dt

t+ ε

)
+
`2

2

(
εt

t+ ε
− εs

s+ ε

)
−

(D±s+ε −Ds)
2

2(t+ ε)

= (D±s+ε −Ds)

(
D±s+ε −Ds + 2Ds − 2(s+ ε)`

2(s+ ε)
+Dt

(
1

t
− 1

t+ ε

))

+ ε2 `
2

2

(
1

s+ ε
− 1

t+ ε

)
−

(D±s+ε −Ds)
2

2(t+ ε)

=
(D±s+ε −Ds)

2

2

(
1

s+ ε
− 1

t+ ε

)
− ε

D±s+ε −Ds

s+ ε
`

+ (D±s+ε −Ds)Dt

(
1

t
− 1

t+ ε

)
+ ε2 `

2

2

(
1

s+ ε
− 1

t+ ε

)
=

(
1

s+ ε
− 1

t+ ε

)(
(D±s+ε −Ds)

2

2
− ε`(D±s+ε −Ds) + ε2 `

2

2

)

=
1

2

(
1

s+ ε
− 1

t+ ε

)(
D±s+ε −Ds − ε`

)2
=

1

2

(
1

s+ ε
− 1

t+ ε

)
(s+ ε)2(`±s+ε(γs)− `)2
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=
t− s

2

s+ ε

t+ ε
(`±s+ε(γs)− `)2,

and the first claim follows.
The second claim follows by the duality between ϕ and ϕc. Indeed, exchange ϕ, γ, ε, s, t with

ϕc, γc,−ε, 1 − t, 1 − s, and recall that ϕ̄t = −ϕc1−t. A straightforward inspection of the definitions
verifies:

hϕ
c
(1− r,−ε) = −h̄ϕ(r, ε),

and:
(`ϕ

c,±
1−t−ε(γ

c
1−t))

2

2
= −∂∓t ϕc1−t−ε(γc1−t) = ∂∓t ϕ̄t+ε(γt) =

(¯̀ϕ,±
t+ε (γt))

2

2
,

and so the second claim follows from the first one. Alternatively, one may repeat the above argument
by subtracting the following two expressions:

ϕ̄t+ε(γt) =
d2(z±ε , γt)

2(1− t− ε)
− ϕc(z±ε ),

ϕ̄s+ε(γs) ≤
d2(z±ε , γs)

2(1− s− ε)
− ϕc(z±ε ),

with d(z±ε , γt) = D±−ϕc(γt, 1−t−ε) = (1−t−ε)`±t+ε(γt) and applying the triangle inequality d(zε, γs) ≤
d(zε, γt) + d(γt, γs).

5.4 Consequences

As immediate corollaries of Theorem 5.2, we obtain after diving both sides by ε2 and taking appropriate
subsequential limits as ε→ 0:

Corollary 5.3. For both q̃ = q, q̄, the functions t 7→ q̃−(t) and t 7→ q̃+(t) are monotone non-decreasing
on (0, 1).

Corollary 5.4. For all 0 < s < t < 1 (and both possibilities for ±):

q+(t)− q−(s)

t− s
≥ s

t

(
p±(s)

`

)2

, (5.3)

and:
q̄+(t)− q̄−(s)

t− s
≥ 1− t

1− s

(
p̄±(t)

`

)2

. (5.4)

It will be convenient to use the above information in the following form:

Theorem 5.5. Assume that for a.e. t ∈ (0, 1):

(0, 1) 3 τ 7→ ϕ̃τ (γt) is twice differentiable at τ = t for both ϕ̃ = ϕ, ϕ̄ (5.5)

in any of the equivalent senses given by Corollary 5.1, and that moreover:

∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) for a.e. t ∈ (0, 1). (5.6)

Furthermore, assume that the latter joint value coincides a.e. on (0, 1) with some continuous function
zc:

∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) = zc(t) for a.e. t ∈ (0, 1). (5.7)

Then (5.5) holds for all t ∈ (0, 1), and we have:

∂2
τ |τ=tϕτ (γt) = ∂2

τ |τ=tϕ̄τ (γt) = ∂τ |τ=t
`2τ
2

(γt) = ∂τ |τ=t

¯̀2
τ

2
(γt) = zc(t) ∀t ∈ (0, 1). (5.8)
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Moreover, we have the following third order information on ϕt(x) at x = γt:

zc(t)− zc(s)
t− s

≥
√
s

t

1− t
1− s

|zc(s)| |zc(t)|
`2

∀0 < s < t < 1. (5.9)

In particular, for any point t ∈ (0, 1) where zc(t) is differentiable:

z′c(t) ≥
zc(t)

2

`2
.

Proof. The assumptions imply by Corollary 5.1 that q̃−(t) = q̃+(t) = zc(t) for a.e. t ∈ (0, 1). It
follows that the same is true for every t ∈ (0, 1) by monotonicity of q̃± and the assumption that zc
is continuous, yielding (5.8). Furthermore, Corollary 5.1 implies that p̃−(t) = p̃+(t) = zc(t) for both
p̃ = p, p̄ and for all t ∈ (0, 1), and we obtain (5.9) by taking geometric mean of (5.3) and (5.4). The
final assertion obviously follows by taking the limit in (5.9) as s→ t.

We do not know whether all three assumptions (5.5), (5.6) and (5.7) hold for a.e. t ∈ (0, 1) for
a fixed Kantorovich geodesic γ. However, we can guarantee the first two assumptions, at least for
almost all Kantorovich geodesics, in the following sense:

Lemma 5.6. Let ν denote any σ-finite Borel measure concentrated on Gϕ, so that for a.e. t ∈ (0, 1),
µt := (et)](ν) � m for some σ-finite Borel measure m on X. Then for ν-a.e. geodesic γ, (5.5) and
(5.6) hold for a.e. t ∈ (0, 1).

Proof. Recall that D(G̊ϕ) is closed in X × (0, 1) by Corollary 3.9. Denote the following Borel subsets:

P :=
{

(x, t) ∈ D(G̊ϕ) ; ∃∂t`2t (x) , ∃∂t ¯̀2
t (x) , ∂t`

2
t (x)/2 = ∂t ¯̀

2
t (x)/2

}
, B := D(G̊ϕ) \ P.

By Corollary 3.13, we know that L1(B(x)) = 0 for all x ∈ X. By Fubini:

0 =

∫
L1(B(x))m(dx) =

∫ 1

0
m(B(t))L1(dt),

and so for a.e. t ∈ (0, 1), m(B(t)) = 0. Since µt � m for a.e. t ∈ (0, 1), it follows that for a.e. t ∈ (0, 1),
ν(e−1

t B(t)) = µt(B(t)) = 0. In other words, for a.e. t ∈ (0, 1), the Borel set {γ ∈ Gϕ ; γt ∈ B(t)} has
zero ν-measure. Applying Fubini again as before:

0 =

∫
ν({γ ∈ Gϕ ; γt ∈ B(t)})L1(dt) =

∫
L1({t ∈ (0, 1) ; γt ∈ B(t)})ν(dγ),

we conclude that for ν-a.e. γ ∈ Gϕ, the set {t ∈ (0, 1) ; γt ∈ B(t)} has zero Lebesgue measure, or
equivalently, the set:{

t ∈ (0, 1) ; ∃∂τ |τ=t`
2
τ (γt) , ∃∂τ |τ=t

¯̀2
τ (γt) , ∂τ |τ=t`

2
τ (γt)/2 = ∂τ |τ=t

¯̀2
τ (γt)/2

}
has full Lebesgue measure. The asserted (5.5) and (5.6) now directly follow from an application of
Corollary 5.1.

Finally, we obtain the following concise interpretation of the 3rd order information on τ 7→ ϕτ
along γt, which will play a crucial role in this work:

Lemma 5.7. Assume that for some locally absolutely continuous function zac on (0, 1) we have:

∃∂τ |τ=t
`2τ
2

(γt) = zac(t) for a.e. t ∈ (0, 1).

Then for any fixed r0 ∈ (0, 1), the function:

L(r) = exp

(
− 1

`2

∫ r

r0

∂τ |τ=t
`2τ
2

(γt)dt

)
= exp

(
− 1

`2

∫ r

r0

zac(t)dt

)
,

is concave on (0, 1).
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Proof. Since L ∈ C1(0, 1), concavity of L is equivalent to showing that the function:

W (r) := −`2L′(r) = L(r)zac(r)

is monotone non-decreasing. But as this function is locally absolutely continuous, this is equivalent
to showing that W ′(r) ≥ 0 for a.e. r ∈ (0, 1). Note that the points of differentiability of W and zac
coincide. At these points (of full Lebesgue measure), we indeed have:

W ′(r) = L′(r)zac(r) + L(r)z′ac(r) = L(r)(z′ac(r)− zac(r)2/`2) ≥ 0,

where the last inequality follows from Theorem 5.5. This concludes the proof.

We will subsequently show that under synthetic curvature conditions, the above assumption is
indeed satisfied for ν-a.e. geodesic γ.

Part II

Disintegration Theory of Optimal Transport

6 Preliminaries

So far we have worked without considering any reference measure over our metric space (X, d). A triple
(X, d,m) is called a metric measure space, m.m.s. for short, if (X, d) is a complete and separable metric
space and m is a non-negative Borel measure over X. In this work we will only be concerned
with the case that m is a probability measure, that is m(X) = 1, and hence m is automatically
a Radon measure (i.e. inner-regular). We refer to [3, 5, 43, 76, 77] for background on metric measure
spaces in general, and the theory of optimal transport on such spaces in particular.

6.1 Geometry of Optimal Transport on Metric Measure Spaces

The space of all Borel probability measures over X will be denoted by P(X). It is naturally equipped
with its weak topology, in duality with bounded continuous functions Cb(X) over X. The subspace of
those measures having finite second moment will be denoted by P2(X), and the subspace of P2(X) of
those measures absolutely continuous with respect to m is denoted by P2(X, d,m). The weak topology
on P2(X) is metrized by the L2-Wasserstein distance W2, defined as follows for any µ0, µ1 ∈ P(X):

W 2
2 (µ0, µ1) := inf

π

∫
X×X

d2(x, y)π(dx, dy), (6.1)

where the infimum is taken over all π ∈ P(X × X) having µ0 and µ1 as the first and the second
marginals, respectively; such candidates π are called transference plans. It is known that the infimum
in (6.1) is always attained for any µ0, µ1 ∈ P(X), and the transference plans realizing this minimum
are called optimal transference plans between µ0 and µ1. When W2(µ0, µ1) <∞, it is known that given
an optimal transference plan π between µ0 and µ1, there exists a Kantorovich potential ϕ : X → R
(see Section 3), which is associated to π, meaning that:

ϕ(x) + ϕc(y) =
d(x, y)2

2
for π-a.e. (x, y) ∈ X ×X. (6.2)

In particular, when µ0, µ1 ∈ P2(X), then necessarily W2(µ0, µ1) < ∞ and the above discussion
applies. Moreover, in this case, it is known that for any Kantorovich potential ϕ associated to an
optimal transference plan between µ0 and µ1, (6.2) in fact holds for all optimal transference plans π
between µ0 and µ1. In addition, in this case a transference plan π is optimal iff it is supported on a
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d2-cyclically monotone set. A set Λ ⊂ X ×X is said to be c-cyclically monotone if for any finite set
of points {(xi, yi)}i=1,...,N ⊂ Λ it holds

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1),

with the convention that yN+1 = y1.

As (X, d) is a complete and separable metric space then so is (P2(X),W2). Under these assump-
tions, it is known that (X, d) is geodesic if and only if (P2(X),W2) is geodesic. Recall that et denotes
the (continuous) evaluation map at t ∈ [0, 1]:

et : Geo(X) 3 γ 7→ γt ∈ X.

A measure ν ∈ P(Geo(X)) is called an optimal dynamical plan if (e0, e1)]ν is an optimal transference
plan; it easily follows in that case that [0, 1] 3 t 7→ (et)]ν is a geodesic in (P2(X),W2). It is known
that any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to an optimal dynamical plan ν so that
(et)] ν = µt for all t ∈ [0, 1] (see for instance [3, Theorem 2.10]). We denote by OptGeo(µ0, µ1) the
space of all optimal dynamical plans ν so that (ei)] ν = µi, i = 0, 1. Consequently, whenever (X, d)
is geodesic, the set OptGeo(µ0, µ1) is non-empty for all µ0, µ1 ∈ P2(X), and for any Kantorovich
potential ϕ associated to an optimal transference plan between µ0 and µ1, we have ν(Gϕ) = 1 for all
ν ∈ OptGeo(µ0, µ1).

In order to consider restrictions of optimal dynamical plans, for any s, t ∈ [0, 1] with s ≤ t we
consider the restriction map

restrts : C([0, 1];X) 3 γ 7→ γ ◦ f ts ∈ C([0, 1];X),

where f ts : [0, 1]→ [s, t] is defined by f ts(τ) = s+ (t− s)τ . During this work we will use the following
facts: if ν ∈ OptGeo(µ0, µ1) then the restriction (restrts)]ν is still an optimal dynamical plan, now
between µs and µt where µr := (er)]ν. Moreover, any probability measure ν ′ ∈ P(Geo(X)) with
supp(ν ′) ⊂ supp(ν)(⊂ Gϕ) is also an optimal dynamical plan, between (e0)]ν

′ and (e1)]ν
′.

On several occasions we will use the following standard lemma (whose proof is a straightforward
adaptation of e.g. [29, Lemma 4.4], relying on the Arzelà–Ascoli and Prokhorov theorems):

Lemma 6.1. Assume that (X, d) is a Polish and proper space. Let
{
µi0
}
,
{
µi1
}
⊂ P2(X) denote two se-

quences of probability measures weakly converging to µ∞0 , µ
∞
1 ∈ P2(X), respectively. Assume that νi ∈

OptGeo(µi0, µ
i
1). Then there exists a subsequence

{
νij
}

weakly converging to ν∞ ∈ OptGeo(µ∞0 , µ
∞
1 ).

Definition (Essentially Non-Branching m.m.s.). A subset G ⊂ Geo(X) of geodesics is called non-
branching if for any γ1, γ2 ∈ G the following holds:

∃t ∈ (0, 1) γ1
s = γ2

s ∀s ∈ [0, t] =⇒ γ1
s = γ2

s ∀s ∈ [0, 1].

(X, d) is called non-branching if Geo(X) is non-branching. (X, d,m) is called essentially non-branching
[68] if for all µ0, µ1 ∈ P2(X, d,m), any ν ∈ OptGeo(µ0, µ1) is concentrated on a Borel non-branching
set G ⊂ Geo(X).

Recall that a measure ν on a measurable space (Ω,F) is said to be concentrated on A ⊂ Ω if ∃B ⊂ A
with B ∈ F so that ν(Ω \B) = 0.

6.2 Curvature-Dimension Conditions

We now turn to describe various synthetic conditions encapsulating generalized Ricci curvature lower
bounds coupled with generalized dimension upper bounds.
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Definition 6.2 (σK,N -coefficients). Given K ∈ R and N ∈ (0,∞], define:

DK,N :=


π√
K/N

K > 0 , N <∞

+∞ otherwise
.

In addition, given t ∈ [0, 1] and 0 < θ < DK,N , define:

σ
(t)
K,N (θ) :=

sin(tθ
√

K
N )

sin(θ
√

K
N )

=



sin(tθ
√

K
N )

sin(θ
√

K
N )

K > 0 , N <∞

t K = 0 or N =∞
sinh(tθ

√
−K
N )

sinh(θ
√
−K
N )

K < 0 , N <∞

,

and set σ
(t)
K,N (0) = t and σ

(t)
K,N (θ) = +∞ for θ ≥ DK,N .

Definition 6.3 (τK,N -coefficients). Given K ∈ R and N ∈ (1,∞], define:

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N .

When N = 1, set τ
(t)
K,1(θ) = t if K ≤ 0 and τ

(t)
K,1(θ) = +∞ if K > 0.

The synthetic Curvature-Dimension condition CD(K,N) has been defined on a general m.m.s. in-
dependently in several seminal works by Sturm and Lott–Villani: the case N = ∞ and K ∈ R was
defined in [73] and [51], the case N ∈ [1,∞) in [74] for K ∈ R and in [51] for K = 0 (and subsequently
for K ∈ R in [50]). Our treatment in this work excludes the case N =∞ (for which the globalization
result we are after is in any case known [73]). To exclude possible pathological behavior when N = 1,
we will always assume, unless otherwise stated, that K ∈ R and N ∈ (1,∞).

We will use the following definition introduced in [74]. Recall that given N ∈ (1,∞), the N -Rényi
relative-entropy functional EN : P(X)→ [0, 1] (since m(X) = 1) is defined as:

EN (µ) :=

∫
ρ1− 1

N dm,

where µ = ρm + µsing is the Lebesgue decomposition of µ with µsing ⊥ m. It is known [74] that EN is
upper semi-continuous with respect to the weak topology on P(X).

Definition 6.4 (CD(K,N)). A m.m.s. (X, d,m) is said to satisfy CD(K,N) if for all µ0, µ1 ∈
P2(X, d,m), there exists ν ∈ OptGeo(µ0, µ1) so that for all t ∈ [0, 1], µt := (et)#ν � m, and for
all N ′ ≥ N :

EN ′(µt) ≥
∫
X×X

(
τ

(1−t)
K,N ′ (d(x0, x1))ρ

−1/N ′

0 (x0) + τ
(t)
K,N ′(d(x0, x1))ρ

−1/N ′

1 (x1)
)
π(dx0, dx1), (6.3)

where π = (e0, e1)](ν) and µi = ρim, i = 0, 1.

Remark 6.5. When m(X) <∞ as in our setting, it is known [74, Proposition 1.6 (ii)] that CD(K,N)
implies CD(K,∞), and hence the requirement µt � m for all intermediate times t ∈ (0, 1) is in fact
superfluous, as it must hold automatically by finiteness of the Shannon entropy (see [73, 74]).

The following is a local version of CD(K,N):

Definition 6.6 (CDloc(K,N)). A m.m.s. (X, d,m) is said to satisfy CDloc(K,N) if for any o ∈ supp(m),
there exists a neighborhood Xo ⊂ X of o, so that for all µ0, µ1 ∈ P2(X, d,m) supported in Xo, there
exists ν ∈ OptGeo(µ0, µ1) so that for all t ∈ [0, 1], µt := (et)#ν � m, and for all N ′ ≥ N , (6.3) holds.
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Note that (et)]ν is not required to be supported in Xo for intermediate times t ∈ (0, 1) in the latter
definition.

The following pointwise density inequality is a known equivalent definition of CD(K,N) on essen-
tially non-branching spaces (the equivalence follows by combining the results of [29] and [41], see the
proof of Proposition 9.1):

Definition 6.7 (CD(K,N) for essentially non-branching spaces). An essentially non-branching m.m.s. (X, d,m)
satisfies CD(K,N) if and only if for all µ0, µ1 ∈ P2(X, d,m), there exists a unique ν ∈ OptGeo(µ0, µ1),
ν is induced by a map (i.e. ν = S](µ0) for some map S : X → Geo(X)), µt := (et)#ν � m for all
t ∈ [0, 1], and writing µt = ρtm, we have for all t ∈ [0, 1]:

ρ
−1/N
t (γt) ≥ τ (1−t)

K,N (d(γ0, γ1))ρ
−1/N
0 (γ0) + τ

(t)
K,N (d(γ0, γ1))ρ

−1/N
1 (γ1) for ν-a.e. γ ∈ Geo(X).

The Measure Contraction Property MCP(K,N) was introduced independently by Ohta in [57] and
Sturm in [74]. The idea is to only require the CD(K,N) condition to hold when µ1 degenerates to δo,
a delta-measure at o ∈ supp(m). However, there are several possible implementations of this idea. We
start with the following one, which is a variation of the one used in [29]:

Definition 6.8 (MCPε(K,N)). A m.m.s. (X, d,m) is said to satisfy MCPε(K,N) if for any o ∈ supp(m)
and µ0 ∈ P2(X, d,m) with bounded support, there exists ν ∈ OptGeo(µ0, δo), such that for all t ∈ [0, 1),
if µt := (et)#ν then supp(µt) ⊂ supp(m), and:

EN (µt) ≥
∫
X
τ

(1−t)
K,N (d(x0, o))ρ

1− 1
N

0 (x0)m(dx0), (6.4)

where µ0 = ρ0m.

The variant proposed in [57] is as follows:

Definition 6.9 (MCP(K,N)). A m.m.s. (X, d,m) is said to satisfy MCP(K,N) if for any o ∈ supp(m)
and µ0 ∈ P2(X, d,m) of the form µ0 = 1

m(A)mxA for some Borel set A ⊂ X with 0 < m(A) <∞, there

exists ν ∈ OptGeo(µ0, δo) such that:

1

m(A)
m ≥ (et)]

(
τ

(1−t)
K,N (d(γ0, γ1))Nν(dγ)

)
∀t ∈ [0, 1]. (6.5)

Remark 6.10. Note that in [57] it was assumed in addition that supp(m) = X and that (X, d) is a
length-space, but (6.5) was only required to hold for A ⊂ B(o,DK,N−1) if K > 0; both our version
and the one from [57] imply that the diameter of supp(m) is bounded above by DK,N−1 (this follows
in our version since τK,N (θ) = +∞ if θ ≥ DK,N−1, and by [57, Theorem 4.3] in the version from [57]),
and also that supp(m) is a geodesic-space (see Lemma 6.12 below), and therefore both versions are
ultimately equivalent.

When either the MCP(K,N) or MCPε(K,N) conditions hold for a given o ∈ supp(m), we will say
that the space satisfies the corresponding condition with respect to o.

Remark 6.11. The CD(K,N), CDloc(K,N), MCPε(K,N) and MCP(K,N) conditions all ensure
that for all t ∈ [0, 1], supp((et)]ν) ⊂ supp(m) for the appropriate ν ∈ OptGeo(µ0, µ1) appearing
in the corresponding definition. Consequently, for a fixed dense countable set of times t ∈ (0, 1),
γt ∈ supp(m) for ν-a.e. γ ∈ Geo(X); since supp(m) is closed, this in fact holds for all t ∈ [0, 1],
and hence γ ∈ Geo(supp(m)) for ν-a.e. γ ∈ Geo(X), i.e. supp(ν) ⊂ Geo(supp(m)). It follows that
(X, d,m) satisfies CD(K,N), CDloc(K,N), MCPε(K,N) or MCP(K,N) iff (supp(m), d,m) does.

The following simple lemma will be useful for quickly establishing that (supp(m), d) is proper and
geodesic:
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Lemma 6.12. Let (X, d,m) be a m.m.s. verifying CD(K,N), MCPε(K,N) or MCP(K,N). Then
(supp(m), d) is a Polish, proper and geodesic space. The same holds for CDloc(K,N) if (supp(m), d)
is assumed to be a length space.

Proof. As supp(m) ⊂ X is closed, (supp(m), d) is Polish. It was shown in [57, Lemma 2.5, Theorem 5.1]
for MCP(K,N) (and hence MCPε(K,N)) and in [74, Corollary 2.4] for CD(K,N) that these conditions
imply a doubling condition, so that every closed bounded ball in (supp(m), d) is totally bounded.
Together with completeness, this already implies that the latter space is proper. By Remark 6.11,
(supp(m), d,m) verifies the same corresponding condition as (X, d,m). In particular, if (X, d,m) and
hence (supp(m), d,m) verifies CD(K,N), MCPε(K,N) or MCP(K,N), then for any x, y ∈ supp(m),
there is at least one geodesic in supp(m) from B(y, ε) ∩ supp(m) to x; together with properness and
completeness, this already implies that (supp(m), d) is geodesic. On the other hand, if (X, d,m) and
hence (supp(m), d,m) verifies CDloc(K,N), the above argument shows that (supp(m), d) is complete
and locally compact. Together with the assumption that the latter space is a length-space, the Hopf-
Rinow theorem implies that it is proper and geodesic.

Lemma 6.13. The following chain of implications is known:

CD(K,N)⇒ MCPε(K,N)⇒ MCP(K,N).

Proof. By Remark 6.11, we may reduce to the case supp(m) = X. Fixing µ0 � m with bounded
support and o ∈ X, let νε be an element of OptGeo(µ0, µ

ε
1) satisfying the CD(K,N) condition for

µε1 = m(B(o, ε))−1mxB(o,ε). By Lemma 6.1 (which applies since the space is proper by Lemma 6.12),
{νε} has a converging subsequence to ν0 ∈ OptGeo(µ0, δo) as ε→ 0. The upper semi-continuity of EN
and the continuity of the evaluation map et ensure that ν0 satisfies the MCPε(K,N) condition (6.4).
The second implication follows by the arguments of [66, Section 5] (without any types of essential
non-branching assumptions).

Remark 6.14. We will show in Proposition 9.1 that for essentially non-branching spaces, MCP(K,N)
implies back MCPε(K,N). We remark that for non-branching spaces, the implication CD(K,N) ⇒
MCP(K,N) was first proved in [74].

Many additional useful results on the structure of W2-geodesics can be obtained just from the MCP
condition. The following has been shown in [29, Theorem 1.1 and Appendix] (when supp(m) = X;
the formulation below is immediately obtained from Remark 6.11):

Theorem 6.15 ([29]). Let (X, d,m) be an essentially non-branching m.m.s. satisfying MCP(K,N).
Given any pair µ0, µ1 ∈ P2(X) with µ0 � m and supp(µ1) ⊂ supp(m), the following holds:

- there exists a unique ν ∈ OptGeo(µ0, µ1) and hence a unique optimal transference plan between
µ0 and µ1;

- there exists a map S : X ⊃ Dom (S)→ Geo(X) such that ν = S]µ0;

- for any t ∈ [0, 1) the measure (et)]ν is absolutely continuous with respect to m.

The following is a standard corollary of the fact that the optimal dynamical plan is induced by a
map (see e.g. the comments after [41, Theorem 1.1]); as we could not find a reference, we sketch the
proof for completeness.

Corollary 6.16. With the same assumptions as in Theorem 6.15, the unique optimal transference
plan ν is concentrated on a (Borel) set G ⊂ Geo(X), so that for all t ∈ [0, 1), the evaluation map
et|G : G→ X is injective. In particular, for any Borel subset H ⊂ G:

(et)](νxH) = (et)](ν)xet(H) ∀t ∈ [0, 1).
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Sketch of proof. First, we claim the existence of X1 ⊂ X with µ0(X1) = 1, so the for all x ∈ X1,
there exists a unique γ ∈ Gϕ with γ0 = x. Otherwise, if A ⊂ X is a set of positive µ0-measure where
this is violated, there are at least two distinct geodesics in Gϕ emanating from every x ∈ A. As
these geodesics must be different at some rational time in (0, 1), it follows that there exists a rational
t̄ ∈ (0, 1) and B ⊂ A still of positive µ0-measure so that both pairs of geodesics emanating from x are
different at time t̄ for all x ∈ B. Consider µ̄0 = µ0xB/µ0(B)� m, and transport to time t̄ half of its
mass along one geodesic and the second half along the other one (see e.g. the proof of [29, Theorem
5.1]). The latter transference plan is optimal but is not induced by a map, yielding a contradiction.

Now denote G := S(X1) (and hence ν(G) = 1), so that the injectivity of e0|G is already guaranteed.
To see the injectivity of et|G for all t ∈ (0, 1), suppose in the contrapositive the existence of γ1, γ2 ∈ G
with γ1

t = γ2
t . Denoting by η the gluing of γ1 restricted to [0, t] with γ2 restricted to [t, 1], it follows

by d2-cyclic monotonicity (see e.g. the proof of [14, Lemma 2.6] or that of Lemma 3.7) that η ∈ Gϕ
with η0 = γ1

0 and η 6= γ1. But this is in contradiction to the definition of X1, thereby concluding the
proof.

6.3 Disintegration Theorem

We include here a version of the Disintegration Theorem that we will use. We will follow [18, Appendix
A] where a self-contained approach (and a proof) of the Disintegration Theorem in countably generated
measure spaces can be found. An even more general version of the Disintegration Theorem can be
found in [39, Section 452].

Recall that given a measure space (X,X ,m), a set A ⊂ X is called m-measurable if A belongs to
the completion of the σ-algebra X , generated by adding to it all subsets of null m-sets; similarly, a
function f : (X,X ,m)→ R is called m-measurable if all of its sub-level sets are m-measurable.

Definition 6.17 (Disintegation on sets). Let (X,X ,m) denote a measure space. Given any family
{Xα}α∈Q of subsets of X, a disintegration of m on {Xα}α∈Q is a measure-space structure (Q,Q, q)
and a map

Q 3 α 7−→ mα ∈ P(X,X )

so that:

(1) for q-a.e. α ∈ Q, mα is concentrated on Xα;

(2) for all B ∈X , the map α 7→ mα(B) is q-measurable;

(3) for all B ∈X , m(B) =
∫
mα(B) q(dα).

The measures mα are referred to as conditional probabilities.

Given a measurable space (X,X ) and a function Q : X → Q, with Q a general set, we endow Q
with the push forward σ-algebra Q of X :

C ∈ Q ⇐⇒ Q−1(C) ∈X ,

i.e. the biggest σ-algebra on Q such that Q is measurable. Moreover, given a measure m on (X,X ),
define a measure q on (Q,Q) by pushing forward m via Q, i.e. q := Q]m.

Definition 6.18 (Consistent and Strongly Consistent Disintegation). A disintegration of m consistent
with Q : X → Q is a map:

Q 3 α 7−→ mα ∈ P(X,X )

such that the following requirements hold:

(1) for all B ∈X , the map α 7→ mα(B) is q-measurable;
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(2) for all B ∈X and C ∈ Q, the following consistency condition holds:

m
(
B ∩Q−1(C)

)
=

∫
C
mα(B) q(dα).

A disintegration of m is called strongly consistent with respect to Q if in addition:

(3) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α);

The above general scheme fits with the following situation: given a measure space (X,X ,m),
suppose a partition of X is given into disjoint sets {Xα}α∈Q so that X = ∪α∈QXα. Here Q is the set
of indices and Q : X → Q is the quotient map, i.e.

α = Q(x) ⇐⇒ x ∈ Xα.

We endow Q with the quotient σ-algebra Q and the quotient measure q as described above, obtaining
the quotient measure space (Q,Q, q). When a disintegration α 7→ mα of m is (strongly) consistent
with the quotient map Q, we will simply say that it is (strongly) consistent with the partition. Note
that any disintegration α 7→ mα of m on a partition {Xα}α∈Q (as in Definition 6.17) is automatically
strongly consistent with the partition (as in Definition 6.18), and vice versa.

We now formulate the Disintegration Theorem (it is formulated for probability measures but clearly
holds for any finite non-zero measure):

Theorem 6.19 (Theorem A.7, Proposition A.9 of [18]). Assume that (X,X ,m) is a countably gen-
erated probability space and that {Xα}α∈Q is a partition of X.

Then the quotient probability space (Q,Q, q) is essentially countably generated and there exists an
essentially unique disintegration α 7→ mα consistent with the partition.

If in addition X contains all singletons, then the disintegration is strongly consistent if and only
if there exists a m-section Sm ∈ X of the partition such that the σ-algebra on Sm induced by the
quotient-map contains the trace σ-algebra X ∩ Sm := {A ∩ Sm;A ∈X }.

Let us expand on the statement of Theorem 6.19. Recall that a σ-algebra A is countably generated
if there exists a countable family of sets so that A coincides with the smallest σ-algebra containing
them. On the measure space (Q,Q, q), the σ-algebra Q is called essentially countably generated if
there exists a countable family of sets Qn ⊂ Q such that for any C ∈ Q there exists Ĉ ∈ Q̂, where Q̂
is the σ-algebra generated by {Qn}n∈N, such that q(C ∆ Ĉ) = 0.

Essential uniqueness is understood above in the following sense: if α 7→ m1
α and α 7→ m2

α are two
consistent disintegrations with the partition then m1

α = m2
α for q-a.e. α ∈ Q.

Finally, a set S ⊂ X is a section for the partition X = ∪α∈QXα if for any α ∈ Q, S ∩ Xα is a
singleton {xα}. By the axiom of choice, a section S always exists, and we may identify Q with S
via the map Q 3 α 7→ xα ∈ S. A set Sm is an m-section if there exists Y ∈ X with m(X \ Y ) = 0
such that the partition Y = ∪α∈Qm(Xα ∩ Y ) has section Sm, where Qm = {α ∈ Q;Xα ∩ Y 6= ∅}.
As q = Q]m, clearly q(Q \ Qm) = 0. As usual, we identify between Qm and Sm, so that now Qm

carries two measurable structures: Q ∩ Qm (the push-forward of X ∩ Y via Q), and also X ∩ Sm
via our identification. The last condition of Theorem 6.19 is that Q ∩ Qm ⊃ X ∩ Sm, i.e. that the
restricted quotient-map Q|Y : (Y,X ∩Y )→ (Sm,X ∩Sm) is measurable, so that the full quotient-map
Q : (X,X )→ (S,X ∩ S) is m-measurable.

We will typically apply the Disintegration Theorem to (E,B(E),mxE), where E ⊂ X is an m-
measurable subset (with m(E) > 0) of the m.m.s. (X, d,m). As our metric space is separable, B(E) is
countably generated, and so Theorem 6.19 applies. In particular, when Q ⊂ R, E is a closed subset
of X, the partition elements Xα are closed and the quotient-map Q : E → Q is known to be Borel
(for instance, this is the case when Q is continuous), [72, Theorem 5.4.3] guarantees the existence of
a Borel section S for the partition so that Q : E → S is Borel measurable, thereby guaranteeing by
Theorem 6.19 the existence of an essentially unique disintegration strongly consistent with Q.
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7 L1 Optimal Transportation Theory

In this section we recall various results from the theory of L1 optimal-transport which are relevant to
this work, and add some new information we will subsequently require. We refer to [2, 13, 19, 23, 37,
38, 47, 76] for more details.

7.1 Preliminaries

To any 1-Lipschitz function u : X → R there is a naturally associated d-cyclically monotone set:

Γu := {(x, y) ∈ X ×X : u(x)− u(y) = d(x, y)}. (7.1)

Its transpose is given by Γ−1
u = {(x, y) ∈ X ×X : (y, x) ∈ Γu}. We define the transport relation Ru

and the transport set Tu, as:

Ru := Γu ∪ Γ−1
u , Tu := P1(Ru \ {x = y}), (7.2)

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y} and Pi the projection onto the i-th
component. Recall that Γu(x) = {y ∈ X ; (x, y) ∈ Γu} denotes the section of Γu through x in the first
coordinate, and similarly for Ru(x) (through either coordinates by symmetry). Since u is 1-Lipschitz,
Γu,Γ

−1
u and Ru are closed sets, and so are Γu(x) and Ru(x). Consequently Tu is a projection of a Borel

set and hence analytic; it follows that it is universally measurable, and in particular, m-measurable
[72].

The following is immediate to verify (see [2, Proposition 4.2]):

Lemma 7.1. Let (γ0, γ1) ∈ Γu for some γ ∈ Geo(X). Then (γs, γt) ∈ Γu for all 0 ≤ s ≤ t ≤ 1.

Also recall the following definitions, introduced in [23]:

A+ := {x ∈ Tu : ∃z, w ∈ Γu(x), (z, w) /∈ Ru},
A− := {x ∈ Tu : ∃z, w ∈ Γ−1

u (x), (z, w) /∈ Ru}.

A± are called the sets of forward and backward branching points, respectively. Note that both A±
are analytic sets; for instance:

A+ = P1({(x, z, w) ∈ Tu ×X ×X : (x, z), (x,w) ∈ Γu, (z, w) /∈ Ru}),

showing that A+ is a projection of an analytic set and therefore analytic. If x ∈ A+ and (y, x) ∈ Γu
necessarily also y ∈ A+ (as Γu(y) ⊃ Γu(x) by the triangle inequality); similarly, if x ∈ A− and
(x, y) ∈ Γu then necessarily y ∈ A−.

Consider the non-branched transport set

T bu := Tu \ (A+ ∪A−),

which belongs to the sigma-algebra σ(A) generated by analytic sets and is therefore m-measurable.
Define the non-branched transport relation:

Rbu := Ru ∩ (T bu × T bu ).

In was shown in [23] (cf. [19]) that Rbu is an equivalence relation over T bu and that for any x ∈ T bu ,
Ru(x) ⊂ (X, d) is isometric to a closed interval in (R, |·|).

Remark 7.2. Note that even if x ∈ T bu , the transport ray Ru(x) need not be entirely contained in T bu .
However, we will soon prove that almost every transport ray (with respect to an appropriate measure)
has interior part contained in T bu .
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It will be very useful to note that whenever the space (X, d) is proper (for instance when (X, d,m)
verifies MCP(K,N) and supp(m) = X), Tu and A± are σ-compact sets: indeed writing Ru \{x = y} =
∪ε>0Ru \ {d(x, y) > ε} it follows that Ru \ {x = y} is σ-compact. Hence Tu is σ-compact. Moreover:

A+ = P1

(
{(x, z, w) ∈ Tu × (Ru)c : (x, z), (x,w) ∈ Γu}

)
;

since (Ru)c is open and open sets are Fσ in metric spaces, it follows that {(x, z, w) ∈ Tu×(Ru)c : (x, z), (x,w) ∈
Γu} is σ-compact and therefore A+ is σ-compact; the same applies to A−. Consequently, T bu and Rbu
are Borel.

Now, from the first part of the Disintegration Theorem 6.19 applied to (T bu ,B(T bu ),mxT bu ), we

obtain an essentially unique disintegration of mxT bu consistent with the partition of T bu given by the

equivalence classes
{
Rbu(α)

}
α∈Q of Rbu:

mxT bu=

∫
Q
mα q(dα),

with corresponding quotient space (Q,Q, q) (Q ⊂ T bu may be chosen to be any section of the above
partition). The next step is to show that the disintegration is strongly consistent. By the Disintegration
Theorem, this is equivalent to the existence of a mxT bu -section Q̄ ∈ B(T bu ) (which by a mild abuse of
notation we will call m-section), such that the quotient map associated to the partition is m-measurable,
where we endow Q̄ with the trace σ-algebra. This has already been shown in [19, Proposition 4.4]
in the framework of non-branching metric spaces; since its proof does not use any non-branching
assumption, we can conclude that:

mxT bu=

∫
Q
mα q(dα), and for q− a.e. α ∈ Q, mα(Rbu(α)) = 1,

where now Q ⊃ Q̄ ∈ B(T bu ) with Q̄ an m-section for the above partition (and hence q is concentrated
on Q̄). For a more constructive approach under the additional assumption of properness of the space,
see also [25, Proposition 4.8].

A-priori the non-branched transport set T bu can be much smaller than Tu. However, under fairly
general assumptions one can prove that the sets A± of forward and backward branching are both
m-negligible. In [23] this was shown for a m.m.s. (X, d,m) verifying RCD(K,N) and supp(m) = X.
The proof only relies on the following two properties which hold for the latter spaces (see also [25]):

- supp(m) = X.

- Given µ0, µ1 ∈ P2(X) with µ0 � m, there exists a unique optimal transference plan for the
W2-distance and it is induced by an optimal transport map .

By Theorem 6.15 these properties are also verified for an essentially non-branching m.m.s. (X, d,m)
satisfying MCP(K,N) and supp(m) = X. We summarize the above discussion in:

Corollary 7.3. Let (X, d,m) be an essentially non-branching m.m.s. satisfying MCP(K,N) and
supp(X) = m. Then for any 1-Lipschitz function u : X → R, we have m(Tu \ T bu ) = 0. In par-
ticular, we obtain the following essentially unique disintegration (Q,Q, q) of mxTu= mxT bu strongly

consistent with the partition of T bu given by the equivalence classes
{
Rbu(α)

}
α∈Q of Rbu:

mxTu=

∫
Q
mα q(dα), and for q− a.e. α ∈ Q, mα(Rbu(α)) = 1. (7.3)

Here Q may be chosen to be a section of the above partition so that Q ⊃ Q̄ ∈ B(T bu ) with Q̄ an
m-section with m-measurable quotient map. In particular, Q ⊃ B(Q̄) and q is concentrated on Q̄.
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Remark 7.4. By modifying the definitions of A+, A− to only reflect branching inside supp(m), it is
possible to remove the assumption that supp(X) = m, but we refrain from this extraneous generality
here.

Remark 7.5. If we consider u = d(·, o), it is easy to check that the set A+ coincides with the cut locus
Co, i.e. the set of those z ∈ X such that there exists at least two distinct geodesics starting at z and
ending in o. Hence the previous corollary implies that for any o ∈ X, the cut locus has m-measure zero:
m(Co) = 0. This in particular implies that an essentially non-branching m.m.s. verifying MCP(K,N)
and supp(m) = X also supports a local (1, 1)-weak Poincaré inequality, see [69].

7.2 Maximality of transport rays on non-branched transport-set

It is elementary to check that Γu induces a partial order relation on X:

y ≤u x ⇔ (x, y) ∈ Γu.

Note that by definition:

x ∈ A+ , y ≥u x ⇒ y ∈ A+ ,

x ∈ A− , y ≤u x ⇒ y ∈ A− .

Recall that for any x ∈ T bu , (Ru(x), d) is isometric to a closed interval in (R, |·|). This isometry induces
a total ordering on Ru(x) which must coincide with either ≤u or ≥u, implying that (Ru(x),≤u) is
totally ordered.

Lemma 7.6. For any x ∈ T bu , (Rbu(x) = Ru(x) ∩ T bu , d) is isometric to an interval in (R, | · |).

Proof. Consider z, w ∈ Ru(x)∩T bu ; as (Ru(x),≤u) is totally ordered, assume without loss of generality
that z ≤u w. Given y ∈ Ru(x) with z ≤u y ≤u w, we must prove that y ∈ T bu . Indeed, since w ≥u y
and w /∈ A+, necessarily y /∈ A+, and since z ≤u y and z /∈ A−, necessarily y /∈ A−. Hence y ∈ T bu
and the claim follows.

Recall that given a partially ordered set, a chain is a totally ordered subset. A chain is called
maximal if it is maximal with respect to inclusion. We introduce the following:

Definition 7.7 (Transport Ray). A maximal chain R in (X, d,≤u) is called a transport ray if it is
isometric to a closed interval I in (R, |·|) of positive (possibly infinite) length.

In other words, a transport ray R is the image of a closed non-null geodesic γ parametrized by
arclength on I so that the function u ◦ γ is affine with slope 1 on I, and so that R is maximal with
respect to inclusion.

Lemma 7.8. Given x ∈ T bu , R is a transport ray passing through x if and only if R = Ru(x).

Proof. Recall that for any x ∈ T bu , (Ru(x), d,≤u) is order isometric to a closed interval in (R, |·|). As
Ru(x) is by definition maximal in X with respect to inclusion, it follows that it must be a transport
ray.
Conversely, note that for any transport ray R we always have R ⊂ ∩w∈RRu(w). Indeed, for any
w, z ∈ R, we have z ≤u w or z ≥u w, and hence by definition (w, z) ∈ Ru so that z ∈ Ru(w). If
x ∈ R∩T bu , we already showed above that Ru(x) is a transport ray. Since R ⊂ Ru(x) and R is assumed
to be maximal with respect to inclusion, it follows that necessarily R = Ru(x).

Corollary 7.9. If R1 and R2 are two transport rays which intersect in T bu then they must coincide.
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In this subsection, we reconcile between the crucial maximality property of Ru(α) which we will
require for the definition of CD1 in the next section, and the fact that the disintegration in (7.3) is
with respect to (the possibly non-maximal) Rbu(α) = Ru(α) ∩ T bu . We will show that under MCP, for
q-a.e. α, the only parts of Ru(α) which are possibly not contained in T bu are its end points – this fact
is the main new result of this section.

To rigorously state this new observation, we recall the classical definition of initial and final points,
a and b, respectively:

a := {x ∈ Tu : @y ∈ Tu, (y, x) ∈ Γu, y 6= x},
b := {x ∈ Tu : @y ∈ Tu, (x, y) ∈ Γu, y 6= x}.

Note that:
a = Tu \ P1

(
{Γu \ {x = y}}),

so a is the difference of analytic sets and consequently belongs to σ(A); similarly for b. As in the
previous subsection, whenever (X, d) is proper, a, b are in fact Borel sets.

Theorem 7.10 (Maximality of transport rays on non-branched transport-set). Let (X, d,m) be an
essentially non-branching m.m.s. verifying MCP(K,N) and supp(m) = X. Let u : (X, d)→ R be any
1-Lipschitz function, with (7.3) the associated disintegration of mxTu.
Then there exists Q̂ ⊂ Q such that q(Q \ Q̂) = 0 and for any α ∈ Q̂ it holds:

Ru(α) \ T bu ⊂ a ∪ b.

In particular, for every α ∈ Q̂:

Ru(α) = Rbu(α) ⊃ Rbu(α) ⊃ R̊u(α),

(with the latter interpreted as the relative interior).

Proof.

Step 1. Consider the m-section Q̄ from Corollary 7.3 so that Q ⊃ Q̄ ∈ B(T bu ), Q ⊃ B(Q̄) and
q(Q \ Q̄) = 0. Consider the set:

Q1 := {α ∈ Q̄ : Ru(α) \ T bu * a ∪ b}.

The claim will be proved once we show that q(Q1) = 0. First, observe that

Q1 = Q̄ ∩ P1

(
Ru ∩

(
T bu × ((A+ \ a) ∪ (A− \ b))

))
,

and therefore Q1 ⊂ Q̄ is analytic; since Q ⊃ B(Q̄), it follows that Q1 is q-measurable. Now suppose
by contradiction that q(Q1) > 0.

We can divide Q1 into two sets:

Q+
1 := {α ∈ Q1 : Γu(α) \ T bu * b}, Q−1 := {α ∈ Q1 : Γ−1

u (α) \ T bu * a}.

Since Q1 = Q+
1 ∪Q

−
1 , without any loss in generality let us assume q(Q+

1 ) > 0, and for ease of notation
assume further that Q+

1 = Q1.
Hence, for any α ∈ Q1, there exists z ∈ Γu(α) such that z /∈ T bu and z /∈ b; note that necessarily

z ∈ A−. Recall that for all α ∈ Q, Ru(α) and hence Γu(α) are isometric via the map u to closed
intervals, and hence Γu(α)\ ({α}∪b) is isometric to an open interval. Since Γu(α)∩T bu is isometric to
an interval and contains α, it follows that for α ∈ Q1, there exist distinct aα, bα ∈ Γu(α) \ T bu so that:

(u(bα), u(aα)) ⊂ u(Γu(α) \ T bu )
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is a non-empty open interval. Moreover, we may select aα and bα to be q-measurable functions of Q1.
To see this, consider the set Σ := {(α, x, y) ∈ Q1×Γu : x ∈ A−, (α, x) ∈ Γu, d(x, y) > 0}, and observe
that it is analytic (being the intersection of analytic sets), and that P1(Σ) = Q1. By von Neumann’s
selection Theorem (see [72, Theorem 5.5.2]), there exists a σ(A)-measurable selection of Σ:

Q1 3 α→ (aα, bα),

and so in particular these functions are q-measurable. It follows that

Q1 3 α→ u(aα), Q1 3 α→ u(bα),

are also σ(A)-measurable and hence q-measurable. Possibly restricting Q1, by Lusin’s Theorem we
can also assume that the above functions are continuous.

Step 2. By Fubini’s Theorem

0 <

∫
Q1

(u(aα)− u(bα)) q(dα) =

∫
R
q
(
{α ∈ Q1 : u(bα) < t < u(aα)}

)
dt.

Hence there exists c ∈ R and Q1,c ⊂ Q1 with q(Q1,c) > 0, such that for any α ∈ Q1,c it holds
c ∈ (u(bα), u(aα)); in particular for any α ∈ Q1,c there exists a unique zα ∈ Γu(α) such that u(zα) = c.
Furthermore, we can assume that Q1,c is compact, and hence by continuity of u(aα) it follows that:

∃ε > 0 ∀α ∈ Q1,c u(aα)− c > ε.

Then define the following set:

Λ := {(α, x, z) ∈ Q1,c × Γu : (α, x) ∈ Rbu, u(z) = c}.

Recall that Rbu is Borel since (X, d) is proper, and therefore Λ is Borel. Note by the aforemen-
tioned discussion that P1(Λ) = Q1,c. Also note that for (α, x, z) ∈ Λ, since Ru(α) is isometric to
a closed interval, necessarily z = zα. Finally, we claim that P2,3(Λ) is d2-cyclically monotone: for
(x1, z1), (x2, z2) ∈ P2,3(Λ) observe that

d(x1, z1) = u(x1)− u(z1) = u(x1)− c = u(x1)− u(z2) ≤ d(x1, z2).

Hence for {(xi, zi)}i≤n ⊂ P2,3(Λ), setting zn+1 = z1,∑
i≤n

d2(xi, zi) ≤
∑
i≤n

d2(xi, zi+1),

and the monotonicity follows. We can then define a function T by imposing graph(T ) = P2,3(Λ); note
that P2,3(Λ) is analytic and therefore T is Borel measurable (see [72, Theorem 4.5.2]).

Step 3. Consider now the measure

η0 :=

∫
Q1,c

mα q(dα),

and since q(Q1,c) > 0 it follows that η0(X) > 0; note that η0 is concentrated on Dom (T ) =
∪α∈Q1,cR

b
u(α). Hence there exists x ∈ X and r > 0 such that η0(Br(x)) > 0, and we redefine η0

to be the probability measure obtained by conditioning η0 to Br(x). Clearly η0 � m. Finally we
define η1 := T] η0. By Step 2 and Theorem 6.15, the map T is the unique optimal transport map
between η0 and η1 for the W2-distance (as it is supported on a d2-cyclically monotone set). Consider
moreover ν the unique element of OptGeo(η0, η1) – then ν-a.e. γ it holds that:

γ0 ∈ Dom (T ) ∩Br(x) ⊂ T bu , u(γ1) = c , (γ0, γ1) ∈ Γu.

It follows in particular by Lemma 7.1 that γs ∈ Γu(γ0) for all s ∈ [0, 1].
Recalling that u(aα) − c > ε for all α ∈ Q1,c, that aα ≤ M by continuity on Q1,c, and that the

support of η0 is bounded, it follows that there exists t̄ ∈ (0, 1) such that ν-a.e. γt̄ ∈ Tu \T bu ⊂ A+∪A−.
Since m(A+∪A−) = 0, necessarily (et̄)]ν ⊥ m, but this is in contradiction with the assertion of Theorem
6.15 that (et̄)]ν � m since η0 � m and t̄ < 1. The claim follows.
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8 The CD1 Condition

In this section we introduce the CD1(K,N) condition, which plays a cardinal role in this work. As
a first step towards understanding this new condition, we show that it always implies MCPε(K,N)
(and MCP(K,N)), without requiring any types of non-branching assumptions. By analogy, we also
introduce the MCP1(K,N) condition, which may be of independent interest.

8.1 Definitions of CD1 and MCP1

We first assume that supp(m) = X. Note that we do not assume that the transport rays {Xα}α∈Q
below are disjoint or have disjoint relative interiors, in an attempt to obtain a useful definition also
for m.m.s.’s which may have significant branching. However, throughout most of this work, we will
typically assume in addition that the space is essentially non-branching, in which case an equivalent
definition will be presented in Proposition 8.13 below.

Definition 8.1 (CD1
u(K,N) when supp(m) = X). Let (X, d,m) denote a m.m.s. with supp(m) = X,

let K ∈ R and N ∈ [1,∞], and let u : (X, d) → R denote a 1-Lipschitz function. (X, d,m) is said to
verify the CD1

u(K,N) condition if there exists a family {Xα}α∈Q ⊂ X, such that:

(1) There exists a disintegration of mxTu on {Xα}α∈Q:

mxTu=

∫
Q
mα q(dα), with mα(Xα) = 1, for q-a.e. α ∈ Q. (8.1)

(2) For q-a.e. α ∈ Q, Xα is a transport ray for Γu (recall Definition 7.7).

(3) For q-a.e. α ∈ Q, mα is supported on Xα.

(4) For q-a.e. α ∈ Q, the m.m.s. (Xα, d,mα) verifies CD(K,N).

We take this opportunity to define an analogous variant of MCP:

Definition 8.2 (MCP1
u(K,N) when supp(m) = X). Let (X, d,m) denote a m.m.s. with supp(m) = X,

let K ∈ R and N ∈ [1,∞], let o ∈ X and denote the 1-Lipschitz function u := d(·, o). (X, d,m) is
said to verify the MCP1

u(K,N) condition if there exists a family {Xα}α∈Q ⊂ X, such that conditions
(1)-(3) above hold, together with:

(4’) For q-a.e. α ∈ Q, the m.m.s. (Xα, d,mα) verifies MCP(K,N) with respect to o ∈ Xα.

Remark 8.3. Note that when u = d(·, o) then necessarily Tu = X (if X is not a singleton). In
addition (x, o) ∈ Γu for any x ∈ X, and hence by maximality of a transport ray, we must have o ∈ Xα

for q-a.e. α ∈ Q, and by condition (3) we deduce that o ∈ supp(mα) for q-a.e. α ∈ Q. As CD(K,N)
implies MCP(K,N) (in the one-dimensional case this is a triviality), we obviously see that CD1

u(K,N)
implies MCP1

u(K,N) for all u = d(·, o).

We will focus on a particular class of 1-Lipschitz functions.

Definition (Signed Distance Function). Given a continuous function f : (X, d)→ R so that {f = 0} 6=
∅, the function:

df : X → R, df (x) := dist(x, {f = 0})sgn(f), (8.2)

is called the signed distance function (from the zero-level set of f).

Lemma 8.4. df is 1-Lipschitz on {f ≥ 0} and {f ≤ 0}. If (X, d) is a length space, then df is 1-
Lipschitz on the entire X.
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Proof. Given x, y ∈ X with f(x)f(y) ≥ 0, the assertion follows by the usual triangle inequality, valid
for any metric space:

|df (x)− df (y)| = |dist(x, {f = 0})− dist(y, {f = 0})| ≤ d(x, y).

When f(x)f(y) < 0, and given ε > 0, let γ : [0, 1]→ X denote a continuous path with γ0 = x, γ1 = y
and `(γ) ≤ d(x, y)+ε. By continuity, it follows that there exists t ∈ (0, 1) so that f(γt) = 0. It follows
that:

|df (x)− df (y)| = dist(x, {f = 0}) + dist(y, {f = 0}) ≤ d(x, γt) + d(y, γt) ≤ `(γ) ≤ d(x, y) + ε.

As ε > 0 was arbitrary, the assertion is proved.

Remark 8.5. To extend Remark 8.3 to more general signed distance functions, we will need to require
that (X, d) is proper, and in that case Tdf ⊃ X \ {f = 0}. Indeed, given x ∈ X \ {f = 0}, consider the
distance minimizing z ∈ {f = 0} (by compactness of bounded sets). Then (x, z) ∈ Rdf and as x 6= z
it follows that x ∈ Tdf .

We now remove the restriction that supp(m) = X and introduce the main new definitions of this
work:

Definition 8.6 (CD1
Lip(K,N), CD1(K,N) and MCP1(K,N)). Let (X, d,m) denote a m.m.s. and let

K ∈ R and N ∈ [1,∞].

- (X, d,m) is said to verify the CD1
Lip(K,N) condition if (supp(m), d,m) verifies CD1

u(K,N) for all
1-Lipschitz functions u : (supp(m), d)→ R.

- (X, d,m) is said to verify the CD1(K,N) condition if (supp(m), d,m) verifies CD1
df

(K,N) for all

continuous functions f : (supp(m), d) → R so that {f = 0} 6= ∅ and df : (supp(m), d) → R is
1-Lipschitz.

- (X, d,m) is said to verify MCP1(K,N) if (supp(m), d,m) verifies MCP1
u(K,N) for all functions

u(x) = d(x, o) with o ∈ supp(m).

Remark 8.7. Clearly CD1
Lip(K,N)⇒ CD1(K,N)⇒ MCP1(K,N) in view of Remark 8.3. Note that

we do not a-priori know that df is 1-Lipschitz, since we do not know that (supp(m), d) is a length-
space (see Lemma 8.4); nevertheless, we will shortly see that the CD1(K,N) condition implies that
(supp(m), d) must be a geodesic space, and hence the sentence “so that df is 1-Lipschitz” is in fact
redundant.

Remark 8.8. By definition, the CD1
Lip, CD1 and MCP1 conditions hold for (X, d,m) iff they hold

for (supp(m), d,m). It is also possible to introduce a definition of CD1
u and MCP1

u which applies
to (X, d,m) directly, without passing through (supp(m), d,m) - this would involve requiring that the
transport rays {Xα} are maximal inside supp(m), and in the case of CD1

u would only apply to functions
u which are 1-Lipschitz on supp(m) (these may be extended to the entire X by McShane’s theorem).
Our choice to use a tautological approach is motivated by the analogous situation for the more classical
W2 definitions of curvature-dimension (see Remark 6.11) and is purely for convenience, so as not to
overload the definitions.

8.2 MCP1 implies MCPε

Proposition 8.9. Let (X, d,m) be a m.m.s. verifying MCP1(K,N) with K ∈ R and N ∈ (1,∞) (in
particular, this holds if it verifies CD1

Lip(K,N) or CD1(K,N)). Then it verifies MCPε(K,N).
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Proof. We will show that (supp(m), d,m) satisfies MCPε(K,N), and consequently so will (X, d,m).
By Remark 8.8, we may therefore assume that supp(m) = X. Fix any o ∈ X and consider the 1-
Lipschitz function u(x) := d(x, o). From MCP1(K,N) and Remark 8.5 we deduce the existence of a
disintegration of m on Tu = X along a family of Borel sets {Xα}α∈Q:

m =

∫
Q
mα q(dα), mα(Xα) = 1, for q− a.e. α ∈ Q,

so that Xα is a transport ray for Γu, mα is supported on Xα and (Xα, d,mα) verifies MCP(K,N) with
respect to o ∈ Xα, for q-a.e. α ∈ Q.

Now consider any µ0 ∈ P(X) with µ0 � m, so that ρ0 := dµ0
dm has bounded support. By measur-

ability of the disintegration, the function Q 3 α 7→ zα :=
∫
ρ0(x)mα(dx) is q-measurable, and hence

Q̄ := {α ∈ Q ; zα ∈ (0,∞)} is q-measurable. Clearly
∫
Q̄ zαq(dα) =

∫
Q zαq(dα) = 1 since zα < ∞ for

q-a.e. α ∈ Q.
Define µα0 := 1

zα
ρ0mα ∈ P(Xα) for all α ∈ Q̄. Since for q-a.e. α ∈ Q̄, the one-dimensional (non-

branching) (Xα, d) contains o, there exists a unique element να of OptGeo(µα0 , δo)∩P(Geo(Xα)) where
Geo(Xα) denotes the space of geodesics in Xα. Define then:

ν :=

∫
Q̄
ναzα q(dα), (8.3)

and observe that (e0)]ν = ρ0m = µ0 and (e1)]ν = δo. To conclude that ν ∈ OptGeo(µ0, δo) we must
show that t 7→ (et)]ν =: µt is a W2-geodesic. Indeed, for any 0 ≤ s < t ≤ 1, consider the transference
plan (es, et)]ν between µs and µt, yielding:

W 2
2 (µs, µt) ≤

∫
Q̄

∫
Xα×Xα

d2(x, y)(es, et)]ν
α(dxdy)zα q(dα)

=

∫
Q̄

(t− s)2

∫
Xα×Xα

d2(x, y)(e0, e1)]ν
α(dxdy)zα q(dα)

= (t− s)2

∫
Q̄

∫
Xα

d2(x, o)µα0 (dx)zα q(dα)

= (t− s)2

∫
Q

∫
Xα

d2(x, o)ρ0(x)mα(dx) q(dα)

= (t− s)2

∫
X
d2(x, o)ρ0(x)m(dx)

= (t− s)2W 2
2 (µ0, δo).

By the triangle inequality, it follows that t 7→ µt must indeed be a geodesic in (P2(X),W2). Note that
this property is particular to transportation to a delta measure.

It remains to establish the MCPε inequality of Definition 6.8. Fix t ∈ (0, 1), and recall that
for q-a.e. α ∈ Q̄, the (one-dimensional, non-branching) (Xα, d,mα) verifies MCP(K,N) (and hence
MCPε(K,N)), and as µα0 � mα and o ∈ supp(mα), in particular µαt := (et)](ν

α) � mα. Applying et
to both sides of (8.3), it follows that µt = (et)](ν) � m. Writing µt = ρtm and µαt = ραt mα for q-a.e.
α ∈ Q̄, the MCPε condition implies that:∫

X
(ραt (x))1− 1

Nmα(dx) ≥
∫
X
τ

(1−t)
K,N (d(x, o))

(
ρ0(x)

zα

)1− 1
N

mα(dx) ∀q− a.e. α ∈ Q̄. (8.4)

In addition, the application of et to both sides of (8.3) yields the following disintegration:

ρtm =

∫
Q̄
ραt zαmαq(dα). (8.5)
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Now consider the set Y = {ρt > 0}, and note that by (8.5):∫
X\Y

ραt (x)mα(dx) = 0 ∀q− a.e. α ∈ Q̄. (8.6)

Integrating (8.5) against ρ
− 1
N

t on Y = {ρt > 0}, applying Hölder’s inequality on the interior integral
for q-a.e. α ∈ Q̄, using (8.6), employing the one-dimensional MCPε inequality (8.4) and canceling zα,
and finally applying Hölder’s inequality again on the exterior integral, we obtain:∫

X
ρt(x)1− 1

Nm(dx) =

∫
Y
ρt(x)1− 1

Nm(dx) =

∫
Q̄

∫
Y
ραt (x)ρt(x)−

1
Nmα(dx)zαq(dα)

≥
∫
Q̄

(∫
Y

(ραt (x))1− 1
Nmα(dx)

) N
N−1

(∫
Y
ρt(x)

N−1
N mα(dx)

)− 1
N−1

zαq(dα)

=

∫
Q̄

(∫
X

(ραt (x))1− 1
Nmα(dx)

) N
N−1

(∫
X
ρt(x)

N−1
N mα(dx)

)− 1
N−1

zαq(dα)

≥
∫
Q̄

(∫
X
τ

(1−t)
K,N (d(x, o))ρ0(x)1− 1

Nmα(dx)

) N
N−1

(∫
X
ρt(x)

N−1
N mα(dx)

)− 1
N−1

q(dα)

≥
(∫

Q̄

∫
X
τ

(1−t)
K,N (d(x, o))ρ0(x)1− 1

Nmα(dx)q(dα)

) N
N−1

(∫
Q̄

∫
X
ρt(x)

N−1
N mα(dx)q(dα)

)− 1
N−1

≥
(∫

Q

∫
X
τ

(1−t)
K,N (d(x, o))ρ0(x)1− 1

Nmα(dx)q(dα)

) N
N−1

(∫
Q

∫
X
ρt(x)

N−1
N mα(dx)q(dα)

)− 1
N−1

=

(∫
X
τ

(1−t)
K,N (d(x, o))ρ0(x)1− 1

Nm(dx)

) N
N−1

(∫
X
ρt(x)1− 1

Nm(dx)

)− 1
N−1

,

where the last inequality above follows since ρ0mα = 0 for α ∈ Q \ Q̄ and since the exponent on the
second term is negative. Note that we applied Hölder’s inequality above in reverse form:∫

|f |α |g|β dω ≥ (

∫
|f | dω)α(

∫
|g| dω)β,

which is valid as soon as α+ β = 1, β < 0, regardless of whether or not |g| > 0 ω-a.e..
Rearranging terms above and raising to the power of N−1

N , the desired inequality follows:∫
X
ρt(x)1− 1

Nm(dx) ≥
∫
X
τ

(1−t)
K,N (d(x, o))ρ0(x)1− 1

Nm(dx).

Remark 8.10. Note that the above proof shows that, not only does it hold that supp(µt) ⊂ supp(m)
for all t ∈ [0, 1), as required in the definition of MCPε(K,N), but in fact µt � m.

Remark 8.11. Recalling that MCPε(K,N) always implies MCP(K,N), we deduce that MCP1(K,N)
implies MCP(K,N). In fact, a direct proof of the latter implication is elementary. Indeed, let A ⊂ X
be any Borel set with 0 < m(A) < ∞, and denote µ0 = 1

m(A)mxA. Recall that for q-a.e. α ∈ Q̄,

o ∈ Xα, supp(mα) = Xα and (Xα, d,mα) verifies MCP(K,N). Defining ν as in (8.3) and continuing
with the notation used there, it follows by uniqueness of να and the MCP condition with respect to
the point o ∈ Xα, that for any Borel set B ⊂ X:

mα(B) ≥
∫

e−1
t (B)

τ
(1−t)
K,N (d(γ0, γ1))Nmα(A)να(dγ),
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for q-a.e. α ∈ Q̄. Integrating over Q̄ we obtain

m(B) ≥
∫
Q̄
mα(B)q(dα)

≥
∫

e−1
t (B)

∫
Q̄
τ

(1−t)
K,N (d(γ0, γ1))Nmα(A)να(dγ) q(dα)

=

∫
e−1
t (B)

τ
(1−t)
K,N (d(γ0, γ1))Nm(A)ν(dγ),

and the claim follows.

As a consequence, we immediately obtain from Lemmas 6.12 and 8.4:

Corollary 8.12. Let (X, d,m) be a m.m.s. verifying CD1(K,N) with K ∈ R and N ∈ (1,∞). Then
(supp(m), d) is a Polish, proper and geodesic space. In particular, for any continuous function f :
(supp(m), d)→ R with {f = 0} 6= ∅, the function df : (supp(m), d)→ R is 1-Lipschitz.

8.3 On Essentially Non-Branching Spaces

Having at our disposal MCP(K,N), we can now invoke the results of Section 7 concerning L1 Optimal
Transportation theory, and obtain the following important equivalent definitions of CD1

Lip(K,N),

CD1(K,N) and MCP1(K,N) assuming that (X, d,m) is essentially non-branching.

Proposition 8.13. Let (X, d,m) be an essentially non-branching m.m.s. with supp(m) = X. Given
K ∈ R and N ∈ (1,∞), the following statements are equivalent:

(1) (X, d,m) verifies CD1
Lip(K,N).

(2) For any 1-Lipschitz function u : (X, d)→ R, let
{
Rbu(α)

}
α∈Q denote the partition of T bu given by

the equivalence classes of Rbu. Denote by Xα the closure Rbu(α). Then all the conditions (1)-(4)
of Definition 8.1 hold for the family {Xα}α∈Q. In particular, Xα = Ru(α) is a transport-ray for
q-a.e. α ∈ Q.
Moreover, the sets {Xα}α∈Q have disjoint interiors {R̊bu(α)}α∈Q contained in T bu , and the dis-
integration (Q,Q, q) of mxTu on {Xα}α∈Q given by (8.1) is essentially unique.

Furthermore, Q may be chosen to be a section of the above partition so that Q ⊃ Q̄ ∈ B(T bu )
with Q̄ an m-section with m-measurable quotient map, so that in particular Q ⊃ B(Q̄) and q is
concentrated on Q̄.

An identical statement holds for CD1(K,N) when only considering signed distance functions u = df .
An identical statement also holds for MCP1(K,N) when only considering the functions u = d(·, o),
after replacing above condition (4) of Definition 8.1 with condition (4’) of Definition 8.2.

Proof. The only direction requiring proof is (1) ⇒ (2). Given a 1-Lipschitz function u as above, we
may assume that m(Tu) > 0, otherwise there is nothing to prove. The CD1

u(K,N) condition ensures
there exists a family {Yβ}β∈P of sets and a disintegration:

mxTu=

∫
P
mP
β p(dβ) , with mP

β (Yβ) = 1, for p-a.e. β ∈ P,

so that for p-a.e. β ∈ P , Yβ is a transport ray for Γu, (Yβ, d,m
P
β ) satisfies CD(K,N) and supp(mP

β ) =
Yβ. By removing a p-null-set from P , let us assume without loss of generality that the above properties
hold for all β ∈ P .

As CD1
Lip(K,N) ⇒ CD1(K,N) ⇒ MCP1(K,N) ⇒ MCP(K,N), and as our space is essentially

non-branching with full-support, Corollary 7.3 implies that m(A+ ∪A−) = 0 and that there exists an
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essentially unique disintegration (Q,Q, q) of mxTu= mxT bu strongly consistent with the partition of T bu
given by

{
Rbu(α)

}
α∈Q:

mxTu=

∫
Q
mα q(dα), with mα(Rbu(α)) = 1, for q-a.e. α ∈ Q. (8.7)

By Corollary 7.3, Q may be chosen to be a section of the above partition satisfying the statement
appearing in the formulation of Proposition 8.13. Again, let us assume without loss of generality that
mα(Rbu(α)) = 1 for all α ∈ Q.

By Theorem 7.10, there exists Q1 ⊂ Q of full q-measure so that Ru(α) = Rbu(α) ⊃ Rbu(α) ⊃ R̊u(α)
for all α ∈ Q1. In addition, since m(Tu \ T bu ) = 0, there exists P1 ⊂ P of full p-measure so that
mP
β (T bu ) = 1 for all β ∈ P1. By Lemmas 7.6 and 7.8, (Yβ ∩ T bu , d) is isometric to an interval in

(R, |·|), and therefore (Yβ ∩ T bu , d, (mP
β )xT bu ) still satisfies CD(K,N), is of total measure 1 and satisfies

supp((mP
β )xT bu ) = Yβ ∩ T bu , for all β ∈ P1.

Now by Lemma 7.8, since Yβ ∩T bu 6= ∅ for all β ∈ P1, Yβ = Ru(x) for all x ∈ Yβ ∩T bu . In particular,
for all β ∈ P1, there exists a unique (since Rbu is an equivalence relation on T bu and by uniqueness of
the section map) α = α(β) ∈ Q so that Yβ = Ru(α). Denoting by Q̃ ⊂ Q the set of indices α obtained
in this way, it is clear that Q̃ if of full q-measure, since:

0 = p(P \ P1) = m

T bu \ ⋃
β∈P1

Yβ

 = m

T bu \ ⋃
α(β) : β∈P1

Ru(α(β))

 = q(Q \ Q̃).

Consequently, Q2 := Q̃ ∩ Q1 is of full q-measure as well. Denoting P2 := α−1(Q2) and repeating
the above argument, it follows that P2 ⊂ P1 is of full p-measure and satisfies that for all β ∈ P2,
Yβ = Ru(α) for α = α(β) ∈ Q2.

We conclude that there is a one-to-one correspondence:

η : P2 3 β ↔ α ∈ Q2 whenever Yβ ∩ T bu = Rbu(α)(= Ru(α) ∩ T bu ),

so both of these representations yield an identical partition (up to relabeling) of the set:

C :=
⋃
β∈P2

(Yβ ∩ T bu ) =
⋃
α∈Q2

Rbu(α).

Clearly m(T bu \C) = 0 and so C is m-measurable. Therefore, by the above two disintegration formulae:

mxTu= mxC=

∫
P2

(mP
β )xT bu p(dβ) =

∫
Q2

mαq(dα).

After identifying between P2 and Q2 via η, it follows necessarily that qxQ2= pxP2 as they are both the
push-forward of mxC under the partition map (since (mP

β )xT bu and mα are both probability measures
on Tu). Applying the Disintegration Theorem 6.19 to (C,B(C),mxC), we conclude that there is an
essentially unique disintegration of mxC on the above partition of C. Consequently, there exist P3 ⊂ P2

of full p-measure and Q3 = η(P3) ⊂ Q2 of full q-measure so that:

(mP
β )xT bu= mα

for all pairs (β, α) ∈ P3 ×Q3 related by the correspondence η.

Recall that Xα := Rbu(α). It follows that for all α ∈ Q3 (with corresponding β ∈ P3):

(1) Xα = Rbu(α) = Ru(α) is a transport ray.

(2) (Yβ ∩ T bu , d, (mP
β )xT bu ) = (Rbu(α) = Xα, d,mα) satisfies CD(K,N) with total measure 1.
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(3) Consequently:

mxTu=

∫
Q
mα q(dα), (8.8)

is a disintegration on {Xα}α∈Q.

(4) mα = (mP
β )xT bu is supported on Yβ ∩ T bu = Rbu(α) = Xα.

This confirms the 4 conditions of Definition 8.1, and the essential uniqueness of the disintegration
(8.8) readily follows from that of the disintegration (8.7) and the arguments above.

Finally, by Lemma 7.6, since (Rbu(α) = Ru(α) ∩ T bu , d) is isometric to an interval in (R, |·|), then
X̊α = R̊bu(α) for all α ∈ Q. As

{
Rbu(α)

}
α∈Q are equivalence classes, it follows that {X̊α}α∈Q is a

family of disjoint subsets of T bu . This concludes the proof for the case of CD1
Lip and CD1.

For MCP1, one just needs to note that if u = d(·, o) then o ∈ Yβ for all β ∈ P (by Remark 8.3,
since Yβ is a transport ray). Recalling the definition of P1 ⊂ P , since (Yβ ∩ T bu , d) is isometric to an

interval and mP
β (Yβ ∩ T bu ) = 1 for all β ∈ P1, it follows necessarily that for those β, o ∈ Yβ ∩ T bu and

(Yβ ∩ T bu , d, (mP
β )xT bu ) still satisfies MCP(K,N) with respect to o and is of full support. The rest of

the the argument is identical to the one presented above, concluding the proof.

Recall moreover that we already derived several properties of W2-geodesics in essentially non-
branching m.m.s.’s verifying MCP(K,N). Hence from Proposition 8.9 we also obtain all the claims
of Theorem 6.15 and Corollary 6.16, as well as all of the results of the next section, provided the
m.m.s. is essentially non-branching and verifies CD1(K,N) for N ∈ (1,∞).

9 Temporal-Regularity under MCP

In this section we deduce from the Measure Contraction and essentially non-branching properties
various temporal-regularity results for the map t 7→ ρt(γt) and related objects, which we will require
for this work. By Proposition 8.9, these results also apply under the CD1 condition. While these
properties are essentially standard consequences of recently available results and tools, they appear to
be new and may be of independent interest.

As usual, we assume that K ∈ R and N ∈ (1,∞). We begin with:

Proposition 9.1. Let (X, d,m) denote an essentially non-branching m.m.s. Then the following are
equivalent:

(1) (X, d,m) verifies MCP(K,N).

(2) (X, d,m) verifies MCPε(K,N).

(3) For all µ0, µ1 ∈ P2(X) with µ0 � m and supp(µ1) ⊂ supp(m), there exists a unique ν ∈
OptGeo(µ0, µ1), ν is induced by a map (i.e. ν = S](µ0) for some map S : X → Geo(X)),
µt := (et)#ν � m for all t ∈ [0, 1), and writing µt = ρtm, we have for all t ∈ [0, 1):

ρ
− 1
N

t (γt) ≥ τ (1−t)
K,N (d(γ0, γ1))ρ

− 1
N

0 (γ0) for ν-a.e. γ ∈ Geo(X), (9.1)

and (integrating with respect to ν):

EN (µt) ≥
∫
τ

(1−t)
K,N (d(γ0, γ1))ρ

− 1
N

0 (γ0)ν(dγ). (9.2)

(4) For all µ0, µ1 ∈ P2(X) of the form µ1 = δo for some o ∈ supp(m) and µ0 = 1
m(A)mxA for some

Borel set A ⊂ X with 0 < m(A) <∞, there exists a ν ∈ OptGeo(µ0, µ1) so that for all t ∈ [0, 1),
µt := (et)#ν � m and (9.1), (9.2) hold.
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Moreover, the equivalence (1)⇔ (4) does not require the essentially non-branching assumption.

Remark 9.2. In fact, for essentially non-branching spaces, it is also possible to add the MCP1(K,N)
condition to the above list of equivalent statements. Indeed, we have already seen in the previ-
ous section that MCP1(K,N) ⇒ MCPε(K,N) without any non-branching assumptions. The con-
verse implication for non-branching spaces follows from [19, Proposition 9.5] (without identifying the
MCP1(K,N) condition by this name), and it is possible to extend this to essentially non-branching
spaces by following the arguments of [23, Proposition A.1].

Remark 9.3. Note that in (3), one is allowed to test any µ1 with supp(µ1) ⊂ supp(m), not only
µ1 = δo as in the other statements. By Theorem 6.15 (recall that MCPε(K,N) implies MCP(K,N)),
note that the MCPε(K,N) condition is precisely equivalent to the validity of (9.2) for all measures
µ0, µ1 ∈ P2(X) of the form µ1 = δo with o ∈ supp(m) and µ0 � m with bounded support.

Remark 9.4. While the equivalence (1) ⇔ (4) will not be directly used in this work, it is worth-
while remarking that this is the only instance we are aware of, where one can obtain information on
the density along geodesics without assuming or a-posteriori concluding some type of non-branching
assumption. Indeed, the proof of (1)⇒ (4) relies on the (newly available) Theorem 3.11.

Proof of Proposition 9.1.
(1) ⇒ (4). (supp(m), d) is proper and geodesic by Lemma 6.12. Given µ0 and µ1 = δo as in (4),

any ν ∈ OptGeo(µ0, µ1) is concentrated on Gϕ (where ϕ is the associated Kantorovich potential),
and so Theorem 3.11 implies that d(γ0, γ1) = `t(γt) for ν-a.e. γ. It follows that with the notation of
Section 3:

1

m(A)
m ≥ (et)]

(
τ

(1−t)
K,N (d(γ0, γ1))Nν(dγ)

)
= ρt(x)τ

(1−t)
K,N (`t(x))Nm(dx).

The pointwise inequality between densities follows for m-a.e. x, and since `t < ∞ (and hence

τ
(1−t)
K,N (`t(x)) > 0) for t ∈ (0, 1), this in fact implies that (et)](ν) � m (without relying on Theorem

6.15, which is unavailable without the essentially non-branching assumption). Since (et)](ν)� m, the
inequality between densities is verified at x = γt for ν-a.e. γ. Noting that 1

m(A) = ρ0(γ0) for ν-a.e. γ,

(9.1) and hence (9.2) are established for µ0, µ1 as above.
(4) ⇒ (1). This follows by applying (9.1) to µ0 = 1

m(A)mxA and µ1 = δo, raising the resulting

inequality to the power of N , and integrating it against νx{γt∈B} for all Borel sets B ⊂ supp(µt),
thereby verifying the MCP(K,N) inequality (6.5).

(4) ⇒ (2). Let o ∈ supp(m) and let µ0 = ρ0m ∈ P(X) with bounded support. As (4) ⇒ (1),
Lemma 6.12 implies that (supp(m), d) is proper, and in addition the assertions of Theorem 6.15 and
Corollary 6.16 are in force.

Now, there exists an non-decreasing sequence {f i}i∈N of simple functions, that is

f i =
∑
k≤n(i)

αikχAik
, αik > 0, m(Aik) > 0, Aik ∩Aij = ∅, if k 6= j,

such that µi0 := ρi0m := 1
zi
f im ∈ P(X) is of bounded support, zi :=

∫
f idm ↗ 1, f i ↗ ρ0 pointwise,

and µi0 ⇀ µ0 weakly, as i → ∞. By Theorem 6.15 there exists a unique νi ∈ OptGeo(µi0, δo), it is
induced by a map, and can be written as:

νi =
∑
k≤n(i)

1

zi
αikm(Aik)ν

i
k,

with each νik the unique optimal dynamical plan between µi0,k := ρi0,km := 1
m(Aik)

mxAik and δo. More-

over, (et)#ν
i
k ⊥ (et)#ν

i
j whenever k 6= j, for all t ∈ [0, 1) by Corollary 6.16. Lastly, supp(νi) ⊂

Geo(supp(m)) by Remark 6.11. It follows by (9.2) applied to νik that:

EN ((et)#ν
i
k) ≥

∫
τ

(1−t)
K,N (d(x, o))

(
ρi0,k(x)

)1− 1
N m(dx).

52



Multiplying by
(

1
zi
αikm(Aik)

)1− 1
N , summing over k, and using the mutual singularity of all correspond-

ing measures, we obtain:

EN ((et)#ν
i) ≥

∫
τ

(1−t)
K,N (d(x, o))

(
ρi0(x)

)1− 1
N m(dx). (9.3)

Passing to a subsequence if necessary, Lemma 6.1 implies that νi ⇀ ν∞ ∈ OptGeo(µ0, δo), and hence
(et)#ν

i ⇀ (et)#ν
∞. It follows by upper semi-continuity of EN on the left-hand side of (9.3), and

monotone convergence (and zi → 1) on the right hand side, that taking i→∞ yields the MCPε(K,N)
inequality (6.4). (2) ⇒ (3). By Remark 6.11, we may reduce to the case supp(m) = X. In view
of Remark 9.3, we first extend the validity of (9.2) by removing the (immaterial) restriction that µ0

has bounded support. When K > 0, supp(µ0) is automatically bounded since MCPε(K,N) implies
MCP(K,N) which by Remark 6.10 implies a Bonnet-Myers diameter estimate. When K ≤ 0, we may
weakly approximate a general µ0 ∈ P2(X, d,m) by measures µi0 � m having bounded support and
repeat the argument presented above in the proof of (4)⇒ (2).

The case of a general µ1 ∈ P2(X) with supp(µ1) ⊂ supp(m) follows by approximating µ1 by a
convex combination of delta-measures:

µi1 =
∑
k≤n(i)

aikδoik
, oik ∈ supp(m) for k ≤ n(i), and

∑
k≤n(i)

aik = 1;

with W2(µi1, µ1)→ 0 as i→∞. By Theorem 6.15 (recall again that MCPε(K,N) implies MCP(K,N)),
for each i there exists a unique νi ∈ OptGeo(µ0, µ

i
1), and we may write νi =

∑
k≤n(i) α

i
kν

i
k so that:

νik ∈ OptGeo((e0)#ν
i
k, δoik

).

Moreover, as explained above, (et)#ν
i
k ⊥ (et)#ν

i
j whenever k 6= j, for all t ∈ [0, 1). Furthermore,

as (e0)#ν
i
k � m (since (e0)#ν

i = µ0 = ρ0m � m), Theorem 6.15 implies that (et)#ν
i
k � m for all

t ∈ [0, 1). Writing (et)#ν
i
k = ρik,tm, the MCPε(K,N) condition implies for all t ∈ [0, 1):∫

(ρik,t)
1− 1

N (x)m(dx) ≥
∫
τ

(1−t)
K,N (d(x, oik))(ρ

i
0,k)

1− 1
N (x)m(dx);

Multiplying by (αik)
1−1/N , summing over k and using the mutual singularity of the corresponding

measures, we obtain:

EN ((et)#ν
i) ≥

∫
X
τ

(1−t)
K,N (d(x, y))ρ

− 1
N

0 (x) (e0, e1)#ν
i(dxdy).

Passing as usual to a subsequence if necessary, Lemma 6.1 implies that νi ⇀ ν∞ ∈ OptGeo(µ0, µ1),
and hence (et)#ν

i ⇀ (et)#ν
∞. Invoking the upper semi-continuity of EN on the left-hand-side, and

lower semi-continuity of the right-hand-side (see [74, Lemma 3.3], noting that the first marginal of νi

is fixed to be µ0 = ρ0m), (9.2) finally follows in full generality.
The density estimate (9.1) then follows using a straightforward variation of [41, Proposition 3.1],

where it was shown how the existence of (a necessarily unique) transport map S may be used to obtain
a pointwise density inequality such as (9.1) from an integral inequality such as (9.2) (the statement of
[41, Proposition 3.1] involves an assumption on infinitesimal Hilbertianity of the space, but the only
property used in the proof is the existence of a transport map S inducing a unique optimal dynamical
plan).

Finally, (3)⇒ (4) is trivial. This concludes the proof.

Corollary 9.5. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(K,N). Then
with the same assumptions and notation as in Proposition 9.1 (3), there exist versions of the densities
ρt = dµt

dm , t ∈ [0, 1), so that for ν-a.e. γ ∈ Geo(X), for all 0 ≤ s ≤ t < 1:

ρs(γs) > 0 ,
(
τ

( s
t
)

K,N (d(γ0, γt))
)N
≤ ρt(γt)

ρs(γs)
≤
(
τ

( 1−t
1−s )

K,N (d(γs, γ1))

)−N
(9.4)
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(with s
t = 0

0 interpreted as 1 above). In particular, for ν-a.e. γ, the map t 7→ ρt(γt) is locally Lipschitz
on (0, 1) and upper semi-continuous at t = 0.

Proof.

Step 1. Given 0 ≤ s ≤ t < 1, observe that (restrts)]ν is the unique element of OptGeo(µs, µt);
indeed µs is absolutely continuous with respect to m and so Theorem 6.15 applies. In particular, we
deduce that for each 0 ≤ s ≤ t < 1 and ν-a.e. γ:

ρt(γt)
−1/N ≥ ρs(γs)−1/Nτ

( 1−t
1−s )

K,N (d(γs, γ1)),

with the exceptional set depending on s and t. Reversing time and the roles of µs, µt, we similarly
obtain for each 0 ≤ s ≤ t < 1 and ν-a.e. γ that:

ρs(γs)
−1/N ≥ ρt(γt)−1/Nτ

( s
t
)

K,N (d(γ0, γt)),

with the exceptional set depending on s and t (the case s = 0 is also included as the conclusion is
then trivial). Note that given s ∈ [0, 1), as ρs(x) > 0 for µs-a.e. x, we have that ρs(γs) > 0 for ν-a.e.
γ. Altogether, we see that for each 0 ≤ s ≤ t < 1, for ν-a.e. γ:

ρs(γs) > 0 , ρs(γs)
(
τ

( s
t
)

K,N (d(γ0, γt))
)N
≤ ρt(γt) ≤ ρs(γs)

(
τ

( 1−t
1−s )

K,N (d(γs, γ1))

)−N
, (9.5)

with the exceptional set depending on s and t.
Together with an application of Corollary 6.16, we deduce the existence of a Borel set H ⊂ Geo(X)

with ν(H) = 1 such that et|H : H → X is injective for all t ∈ [0, 1), and such that for every γ ∈ H,
the double sided estimate (9.5) holds for all s, t ∈ [0, 1) ∩Q. We then define for t ∈ [0, 1) and γ ∈ H:

ρ̂t(γt) :=

{
lim(0,1)∩Q3s→t ρs(γs) t ∈ (0, 1)

ρ0(γ0) t = 0
,

and ρ̂t = 0 outside of et(H). By (9.5) we see that for any γ ∈ H and t ∈ (0, 1) the above limit always
exists, and so by injectivity of et|H , ρ̂t is well-defined. Furthermore, (9.5) implies that for all γ ∈ H,
ρ̂·(γ·) satisfies (9.5) itself for all 0 ≤ s ≤ t < 1. Finally, for each t ∈ [0, 1) consider any sequence
{sn} ⊂ Q converging to t; then (9.5) is valid for ν-a.e. γ at t and sn, with the exceptional set not
depending on n. Taking the limit as n→∞ implies ρt(γt) = ρ̂t(γt). Hence we have obtained that for
each t ∈ [0, 1), for ν-a.e. γ:

ρt(γt) = ρ̂t(γt),

with the exceptional set depending only on t.
It follows that for all t ∈ [0, 1), ρt(x) = ρ̂t(x) for µt-a.e. x. As µt and m are mutually absolutely

continuous on {ρt > 0}, it follows that ρtm = ρ̂t1{ρt>0}m for all t ∈ [0, 1).

Step 2. We now claim that for all t ∈ [0, 1), m({ρt = 0} ∩ et(H)) = 0. This will establish that
µt = ρtm = ρ̂tm, so that ρ̂t is indeed a density of µt, thereby concluding the proof.

Suppose in the contrapositive that the above is false, so that there exists t ∈ [0, 1) with m({ρt =
0} ∩ et(H)) > 0. As et|H is injective, there exist K ⊂ H such that Kt := et(K) = {ρt = 0} ∩ et(H).

Set Ks := es(K) for all s ∈ [0, 1). We claim that m(Ks) > 0 for all s ∈ (0, 1). Indeed, define
ηt := mxKt/m(Kt) and set ν̄ := (et|H)−1

# ηt and ηs := (es)]ν̄. As ν̄ is concentrated onK ⊂ H ⊂ supp(ν),

it follows that (restr1
t )]ν̄ must be an optimal dynamical plan between ηt and η1. As ηt � m, Theorem

6.15 implies that the latter plan is in fact the unique element of OptGeo(ηt, η1), and that ηs � m for
all s ∈ [t, 1). As ηs(Ks) = 1, it follows that m(Ks) > 0. If t > 0, a similar argument applies to the
range s ∈ (0, t].

However, by definition, for all s ∈ [0, 1) ∩ Q we have 0 < ρ̂s = ρs on es(H), and in particular on
es(K) = Ks. Choosing any s ∈ (0, 1) ∩Q, we obtain the desired contradiction:

0 <

∫
Ks

ρsm = µs(Ks) = µt(Kt) =

∫
Kt

ρtm = 0.

This concludes the proof.
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Proposition 9.6. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(K,N). Con-
sider any µ0, µ1 ∈ P2(X) with µ0 � m and supp(µ1) ⊂ supp(m), and let ν denote the unique element
of OptGeo(µ0, µ1). Then for any compact set G ⊂ Geo(X) with ν(G) > 0, such that (9.4) holds for
all γ ∈ G and 0 ≤ s ≤ t < 1, we have for all s ∈ [0, 1), m(es(G)) > 0, and for all 0 ≤ s ≤ t < 1:(

1− t
1− s

)N
e−d(G)(t−s)

√
(N−1)K− ≤ m(et(G))

m(es(G))
≤
(
t

s

)N
ed(G)(t−s)

√
(N−1)K− , (9.6)

where d(G) = sup{`(γ) : γ ∈ G} < ∞ and K− = max{0,−K} (and with t
s = 0

0 interpreted as 1
above). In particular, the map t 7→ m(et(G)) is locally Lipschitz on (0, 1) and lower semi-continuous
at t = 0.

Proof. We proceed with the usual notation repeatedly used above. Fix s ∈ [0, 1). Since µs(es(G)) ≥
ν(G) > 0 and µs � m, it follows that m(es(G)) > 0. Define µ̄0 := mxes(G)/m(es(G)).

By Corollary 6.16, there exists a Borel set H ⊂ G such that e−1
s : es(H) → G is a single valued

map and:
ν(G \H) = 0 , m(es(G) \ es(H)) = 0, (9.7)

where the second assertion above follows since m and µs are mutually absolutely continuous on
{ρs > 0}, and since our assumption (9.4) guarantees that es(G) ⊂ {ρs > 0}. Now consider:

ν̄ := (rest1
s ◦ e−1

s )](µ̄0xes(H)) =

∫
es(H)

δrestr1s(e
−1
s (x))µ̄0(dx) ∈ P(Geo(X)).

By construction and (9.7), (e0)]ν̄ = µ̄0; define µ̄1 := (e1)]ν̄ and note that necessarily ν̄ ∈ OptGeo(µ̄0, µ̄1)
(since ν̄ is still supported on a d2/2-cyclically monotone set) and that it is induced by the map
T := e1 ◦ e−1

s . Theorem 6.15 then implies that µ̄r = ρ̄rm � m for all r ∈ [0, 1). Note that µ̄r is
concentrated on the compact set et(G) with t := s+ r(1− s), and therefore m(supp(µ̄r)) ≤ m(et(G)).
It follows by Jensen’s inequality together with the MCP(K,N) assumption that:

m(et(G))1/N ≥ m(supp(µ̄r))
1/N ≥

∫
ρ̄1−1/N
r (x)m(dx)

≥ m(es(G))1/N−1

∫
es(G)

τ
(1−r)
K,N (d(x, T (x)))m(dx)

≥ m(es(G))1/N (1− r)e−(1−s)d(G)r
√

(N−1)K−/N ,

where the last inequality follows from the lower bound (see e.g. [29, Remark 2.3]):

τ
(1−r)
K,N (θ) = (1− r)

σ(1−r)
K,N−1(θ)

1− r

N−1
N

≥ (1− r)e−θr
√

(N−1)K−/N .

Substituting r = t−s
1−s , the left-hand side of (9.6) is established. Reversing the time, the right-hand

side of (9.6) immediately follows, thereby concluding the proof.

The following two consequences of Proposition 9.6 will be required for the proof of the change-of-
variables formula in Section 11. Recall that for any G ⊂ Geo(X),

D(G) := {(x, t) ∈ X × [0, 1] : x = γt, γ ∈ G},

and that D(G)(x) = {t ∈ [0, 1] : x = γt, γ ∈ G} and D(G)(t) = {x ∈ X : x = γt, γ ∈ G} = et(G). To
simplify the notation, we directly write G(x) instead of D(G)(x).
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Proposition 9.7. With the same assumptions as in Proposition 9.6, we have for any t ∈ (0, 1):

lim
ε→0+

L1
(
G(x) ∩ (t− ε, t+ ε)

)
2ε

= 1 in L1(et(G),m).

The same result also holds for t = 0 if we dispense with the factor of 2 in the denominator.

The proof follows the same line as the proof of [26, Theorem 2.1]. We include it for the reader’s
convenience.

Proof. Fix t ∈ (0, 1). Suppose in the contrapositive that the claim is false:

lim sup
ε→0

∫
et(G)

∣∣∣∣1− L1(G(x) ∩ (t− ε, t+ ε))

2ε

∣∣∣∣ m(dx) > 0.

Consider the complement G(x)c = {t ∈ [0, 1] : x /∈ et(G)}, and deduce the existence of a sequence
εn → 0 such that

lim
n→∞

∫
et(G)

L1(G(x)c ∩ (t− εn, t+ εn))

2εn
m(dx) > 0. (9.8)

Now let:
E := {(x, s) ∈ et(G)× (0, 1) ; s ∈ G(x)c}

with E(x), E(s) the corresponding sections. By Fubini’s Theorem and (9.8) we obtain that:

lim
n→∞

1

2εn

∫
(t−εn,t+εn)

m(E(s))L1(ds)

= lim
n→∞

1

2εn
m⊗ L1 (E ∩ (et(G)× (t− εn, t+ εn)))

= lim
n→∞

1

2εn

∫
et(G)

L1(G(x)c ∩ (t− εn, t+ εn))m(dx) > 0,

so there must be a sequence of {sn}n∈N converging to t so that m(E(sn)) ≥ κ, for some κ > 0.
Repeating the above argument for the case t = 0 with the appropriate obvious modifications, the
latter conclusion also holds in that case as well. Note that:

E(sn) = {x ∈ et(G) : x /∈ esn(G)} = et(G) \ esn(G).

The compact sets esn(G) converge to et(G) in Hausdorff distance: indeed, d(γt, γsn) ≤ C|t− sn| where
C := supγ∈G `(γ) < ∞ by compactness of G. Hence, for each ε > 0 there exists n(ε) such that for
all n ≥ n(ε) it holds et(G)ε ⊃ esn(G) (and vice-versa), where Aε := {y ∈ X ; d(y,A) ≤ ε}. It follows
that:

m(et(G)ε) ≥ m
(
et(G) \ esn(G)

)
+ m(esn(G)) ≥ κ+ m(esn(G)).

Taking the limit as n→∞, the continuity property of Proposition 9.6 (lower semi-continuity if t = 0)
implies that for each ε > 0:

m(et(G)ε) ≥ κ+ m(et(G)),

with κ independent of ε. Since m(et(G)) = limε→0 m(et(G)ε) we obtain a contradiction, and the claim
is proved.

Corollary 9.8. With the same assumptions as in Proposition 9.6, and assuming that supp(m) = X,
we have:

ν(e−1
0 (X0) ∩G+

ϕ ) = 0,

where ϕ is an associated Kantorovich potential to the c-optimal-transport problem from µ0 to µ1 with
c = d2/2. In particular:

µtxX0= µ0xX0 ∀t ∈ [0, 1).
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Recall from Section 3 that Gϕ ⊂ Geo(X) denotes the set of ϕ-Kantorovich geodesics, G+
ϕ denotes

the subset of geodesics in Gϕ having positive length, and X0 = e[0,1](G
0
ϕ) denotes the subset of null

geodesic points in X. Necessarily ν(Gϕ) = 1. The assumption supp(m) = X guarantees by Lemma
6.12 that (X, d) is proper and geodesic, so that the results of Part I are in force; by Remark 6.11 this
poses no loss in generality.

Proof of Corollary 9.8. Suppose by contradiction that ν(e−1
0 (X0)∩G+

ϕ ) > 0. By inner regularity, there

exists a compact G ⊂ e−1
0 (X0) ∩ G+

ϕ with ν(G) > 0 verifying the hypothesis of Proposition 9.6 and
therefore also the conclusion of Proposition 9.7 for t = 0. In particular, for m-a.e. x ∈ e0(G) ⊂ X0

there exists γ ∈ G ⊂ G+
ϕ and t ∈ (0, 1) (sufficiently small) such that x = γt. But µ0(e0(G)) =

ν(e−1
0 (e0(G))) ≥ ν(G) > 0, and hence m(e0(G)) > 0 as µ0 � m. It follows that there exists at least

one x ∈ e0(G) as above, in direct contradiction to the characterization of X0 given in Lemma 3.15.
Hence we can conclude that ν-almost-surely, e−1

t (X0) is contained in the set of null geodesics G0
ϕ. For

t ∈ (0, 1), e−1
t (X0) ⊂ G0

ϕ by Lemma 3.15, and so we conclude that µtxX0= µ0xX0 for all t ∈ [0, 1).

Remark 9.9. When applying the results of this section, note that when both µ0, µ1 � m, then by
reversing the roles of µ0 and µ1, we in fact obtain all the above results also at the right end-point
t = 1.

10 Two families of conditional measures

The next two sections will be devoted to the study of W2-geodesics over (X, d,m), when (X, d,m)
is assumed to be essentially non-branching and verifies CD1(K,N). By Remark 8.8, we also assume
supp(m) = X. We will use Proposition 8.13 as an equivalent definition for CD1(K,N). By Proposition
8.9 and Remark 8.11, X also verifies MCP(K,N), and so Theorem 6.15 applies. In addition, it follows
by Lemma 6.12 that (X, d) is geodesic and proper, and so the results of Part I apply.

Fix µ0, µ1 ∈ P2(X, d,m), and denote by ν the unique element of OptGeo(µ0, µ1). As usual, we
denote µt := (et)]ν � m for all t ∈ [0, 1], and set:

µt =: ρtm ∀t ∈ [0, 1].

Fix also an associated Kantorovich potential ϕ : X → R for the c-optimal transport problem from µ0

to µ1, with c = d2/2. Recall that Gϕ ⊂ Geo(X) denotes the set of ϕ-Kantorovich geodesics and that
necessarily ν(Gϕ) = 1. We further recall from Section 3 that the interpolating Kantorovich potential
and its time-reversed version at time t ∈ (0, 1) are defined for any x ∈ X as:

−ϕt(x) = inf
y∈X

d2(x, y)

2t
− ϕ(y) , ϕ̄t(x) = inf

y∈X

d2(x, y)

2(1− t)
− ϕc(y) ∀t ∈ (0, 1),

with ϕ0 = ϕ̄0 = ϕ and ϕ1 = ϕ̄1 = −ϕc. By Proposition 3.6 we have, for all t ∈ (0, 1), ϕt(x) ≤ ϕ̄t(x),
with equality iff x ∈ et(Gϕ).

It will be convenient from a technical perspective to first restrict ν, by inner regularity of Radon
measures, Corollary 9.5 (applied to both pairs µ0, µ1 and µ1, µ0), Proposition 9.7 and Corollary 6.16,
to a suitable good compact subset G ⊂ G+

ϕ with ν(G) ≥ ν(G+
ϕ ) − ε. Recall that G+

ϕ was defined in
Section 3 as the subset of geodesics in Gϕ having positive length, and note that the length function
` : Geo(X)→ [0,∞) is continuous and hence is bounded away from 0 and ∞ on a compact G ⊂ G+

ϕ .

Definition 10.1 (Good Subset of Geodesics). A subset G ⊂ G+
ϕ is called good if the following

properties hold:

- G is compact;

- there exists c > 0 so that for every γ ∈ G:

c ≤ `(γ) ≤ 1/c ; (10.1)
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- for every γ ∈ G, ρs(γs) > 0 for all s ∈ [0, 1] and (0, 1) 3 s 7→ ρs(γs) is continuous;

- the claim of Proposition 9.7 holds true for G;

- The map et|G : G→ X is injective (and we will henceforth restrict et to G or its subsets).

Assumption 10.2. We will assume in this section and in Subsection 11.1 that:

ν is concentrated on a good G ⊂ G+
ϕ .

We will dispose of this assumption in the Change-of-Variables Theorem 11.4.

10.1 L1 partition

For s ∈ [0, 1] and as ∈ R, we recall the following notation (introduced in Section 4 for G = Gϕ, but
now we treat a general G ⊂ Gϕ as above):

Gas = Gas,s := {γ ∈ G : ϕs(γs) = as}.

As G is compact and es : G → X is continuous, es(G) is compact. When s ∈ (0, 1), ϕs : X → R is
continuous by Lemma 3.2, and hence Gas is compact as well.

The structure of the evolution of Gas , i.e. e[0,1](Gas) = {γt : t ∈ [0, 1], γ ∈ Gas}, will be the
topic of this subsection, so the properties we prove below are only meaningful for as ∈ ϕs(es(G)) (and
moreover typically when m(e[0,1](Gas)) > 0). It will be convenient to use a short-hand notation for
the signed-distance function from a level set of ϕs, das := dϕs−as (see (8.2)).

Lemma 10.3. For any s ∈ [0, 1] and as ∈ ϕs(es(G)) the following holds: for each γ ∈ Gas and
0 ≤ r ≤ t ≤ 1, (γr, γt) ∈ Γdas . In particular, the evolution of Gas is a subset of the transport set
associated to das:

e[0,1](Gas) ⊂ Tdas .

Proof. Fix γ ∈ Gas . If s ∈ [0, 1) then for any p ∈ {ϕs = as}:

d2(γs, γ1)

2(1− s)
= ϕs(γs) + ϕc(γ1) = ϕs(p) + ϕc(γ1) ≤ ϕ̄s(p) + ϕc(γ1) ≤ d2(p, γ1)

2(1− s)

by Lemma 3.3 and Proposition 3.6 (2), and hence d(γs, γ1) ≤ d(p, γ1); the latter also holds for s = 1
trivially. Similarly, if s ∈ (0, 1] then for any q ∈ {ϕs = as}:

d2(γ0, γs)

2s
= ϕ(γ0)− ϕs(γs) = ϕ(γ0)− ϕs(q) ≤

d2(γ0, q)

2s
,

and therefore d(γ0, γs) ≤ d(γ0, q), with the latter also holding for s = 0 trivially. Consequently, for
any p, q ∈ {ϕs = as}:

d(γ0, γ1) ≤ d(γ0, p) + d(q, γ1).

Taking infimum over p and q it follows that:

d(γ0, γ1) ≤ das(γ0)− das(γ1),

where the sign of das was determined by the fact that s 7→ ϕs(γs) is decreasing (e.g. by Lemma 3.3).
On the other hand:

das(γ0)− das(γ1) ≤ d(γ0, γ1),

thanks to the 1-Lipschitz regularity of das ensured by Lemma 8.4 since (X, d) is geodesic. Therefore
equality holds and (γ0, γ1) ∈ Γdas . The assertion then follows by Lemma 7.1.
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Next, recall by Proposition 8.13 applied to the function u = das , that according to the equivalent
characterization of CD1

u(K,N), the following disintegration formula holds:

mxTdas =

∫
Q
m̂as
α q̂as(dα), (10.2)

where Q is a section of the partition of T bdas given by the equivalence classes {Rbdas (α)}α∈Q, and for q̂as-

a.e. α ∈ Q, the probability measure m̂as
α is supported on the transport ray Xα = Rbdas

(α) = Rdas (α)

and (Xα, d, m̂
as
α ) verifies CD(K,N). It follows by Lemma 10.3 that:

mxe[0,1](Gas )=

∫
Q
m̂as
α xe[0,1](Gas ) q̂

as(dα). (10.3)

It will be convenient to make the previous disintegration formula a bit more explicit. We refer to
the Appendix for the definition of CD(K,N) density and the (suggestive) relation to one-dimensional
CD(K,N) spaces. Recall that `s(γs) = `(γ) for all γ ∈ G.

Proposition 10.4. For any s ∈ (0, 1) and as ∈ ϕs(es(G)), the following disintegration formula holds:

mxe[0,1](Gas )=

∫
es(Gas )

gas(β, ·)#

(
hasβ · L

1x[0,1]

)
qas(dβ), (10.4)

with qas a Borel measure concentrated on es(Gas) of mass m(e[0,1](Gas)), g
as : es(Gas) × [0, 1] → X

is defined by gas(β, t) = et(e
−1
s (β)) and is Borel measurable, for qas-a.e. β ∈ es(Gas), h

as
β is a

CD(`s(β)2K,N) probability density on [0, 1] vanishing at the end-points, and the map es(Gas)× [0, 1] 3
(β, t) 7→ hasβ (t) is qas ⊗ L1x[0,1]-measurable.

Proof. We will abbreviate u = das .

Step 1. We claim that:

∀γ ∈ Gas ∀α ∈ Q , e[0,1](γ) ∩Rbu(α) 6= ∅ ⇒ Ru(α) ⊃ e[0,1](γ).

Indeed, if x ∈ e[0,1](γ), then Ru(x) ⊃ e[0,1](γ) by Lemma 10.3. But on the other hand, Ru(x) = Ru(α)

for all x ∈ Rbu(α), since any two transport rays intersecting in T bu must coincide by Corollary 7.9.
Hence, if ∃x ∈ e[0,1](γ) ∩Rbu(α), the assertion follows.

Step 2. We also claim that:

∀γ1, γ2 ∈ Gas ∀α ∈ Q , e[0,1](γ
i) ∩Rbu(α) 6= ∅ , i = 1, 2 ⇒ γ1 = γ2.

Indeed, since α ∈ Q ⊂ T bu then Ru(α) is a transport ray by Lemma 7.8, and since u = das is affine
(with slope 1) on a transport ray, Ru(α) must intersect {das = 0} = {ϕs = as}, and hence es(Gas), at
most once. It follows by Step 1 that γ1

s = γ2
s , and so by injectivity of es|G : G→ X, that γ1 = γ2.

Step 3. Denote:

G1
as :=

{
γ ∈ Gas ; T bu ∩ e[0,1](γ) 6= ∅

}
, Q1 :=

{
α ∈ Q ; Rbu(α) ∩ e[0,1](Gas) 6= ∅

}
.

We claim that there exists a bijective map:

η : Q1 3 α 7→ γα ∈ G1
as ,

for which:
Rbu(α) ∩ e[0,1](Gas) = T bu ∩ e[0,1](γ

α) = Rbu(α) ∩ e[0,1](γ
α).

Indeed, for all α ∈ Q1, there exists precisely one γ ∈ Gas (and hence γ ∈ G1
as) so that Rbu(α)∩e[0,1](γ) 6=

∅ by Step 2. And vice versa, given any γ ∈ G1
as , there is at least one α ∈ Q (and hence α ∈ Q1) so that

Rbu(α)∩ e[0,1](γ) 6= ∅, and it follows by Step 1 that e[0,1](γ) ⊂ Ru(α) and hence T bu ∩ e[0,1](γ) ⊂ Rbu(α);
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but this means that for all α 6= β ∈ Q, Rbu(β) ∩ e[0,1](γ) = ∅, since
{
Rbu(β)

}
β∈Q is a partition of T bu ,

implying the uniqueness of α ∈ Q1.
Moreover, we claim that the map η : (Q1,B(Q1)) → (G1

as ,B(G1
as)) is measurable. Indeed, recall

that Gas is compact, and since (X, d) is proper, T bu and Rbu are Borel, and hence G1
as is analytic. Then

write:
Λ := P1,2({(y, γ, x, t) ∈ T bu ×Gas ×X × [0, 1] ; (y, x) ∈ Rbu , x = γt}),

and:
graph(η) = Λ ∩ (Q1 ×Gas) = Λ ∩ (Q1 ×G1

as).

Note that Λ is analytic and that Λ(x) is either an empty set or a singleton for all x ∈ T bu by Step 2
(and the fact that Rbu is an equivalence relation on T bu ). It follows that for any B ∈ B(Gas), both A1 =
P1(Λ∩(T bu×B)) and A2 = P1(Λ∩(T bu×(Gas\B))) are analytic, disjoint and Q1 = (Q1∩A1)∪(Q1∩A2).
By the Lusin separability principle [72, Theorem 4.4.1], there exists a Borel subset B1 ⊂ T bu containing
A1 which is still disjoint from A2. Consequently η−1(B∩G1

as) = η−1(B) = Q1∩A1 = Q1∩B1 ∈ B(Q1),
concluding the proof that η is Borel measurable on Q1.

Step 4. Recall that for all α ∈ Q̄ of full q̂as measure, m̂as
α is supported on the transport ray

Ru(α) = Rbu(α) and (Ru(α), d, m̂as
α ) verifies CD(K,N). Consequently, for such α’s, m̂as

α gives positive
mass to any relatively open subset of Ru(α) and does not charge points. It follows that for α ∈ Q̄,
since e[0,1](γ

α) ⊂ Ru(α) has non-empty relative interior, it holds that:

Rbu(α) ∩ e[0,1](Gas) 6= ∅ ⇔
m̂as
α (e[0,1](Gas)) = m̂as

α (Rbu(α) ∩ e[0,1](Gas)) = m̂as
α (Rbu(α) ∩ e[0,1](γ

α)) = m̂as
α (e[0,1](γ

α)) > 0.

In particular, Q1 coincides up to a q̂as-null set with the q̂as-measurable setQ2 := {α ∈ Q ; m̂as
α (e[0,1](Gas)) >

0}, and thus Q1 is itself q̂as-measurable. In fact, it is easy to see that Q1 coincides with an analytic
set up to a q̂as-null-set.

Step 5. Recalling that e[0,1](Gas) ⊂ Tu by Lemma 10.3 and that m(Tu \ T bu ) = 0 by Corollary 7.3,
we obtain from (10.2) the following disintegration of mxe[0,1](Gas ):

mxe[0,1](Gas )= mxT bu∩e[0,1](Gas )=

∫
Q
m̂as
α xT bu∩e[0,1](Gas ) q̂

as(dα)

=

∫
Q̄∩Q1

m̂as
α xe[0,1](γ

α)q̂
as(dα) =

∫
Q̄∩Q1

m̂as
α xe[0,1](γ

α)

m̂as
α (e[0,1](γα))

m̂as
α (e[0,1](γ

α))q̂as(dα),

where the last two transitions and the measurability of α 7→ m̂as
α (e[0,1](γ

α)) > 0 follow from Step 4.
For all α ∈ Q̄ ∩Q1, define the probability measure:

m̄as
α :=

m̂as
α xe[0,1](γ

α)

m̂as
α (e[0,1](γα))

.

Since e[0,1](γ
α) is a convex subset ofRu(α), it follows that the one-dimensional m.m.s. (e[0,1](γ

α), d, m̄as
α )

verifies CD(K,N) and is of full support for all α ∈ Q̄ ∩Q1. Similarly, define:

q̄as := m̂as
α (e[0,1](γ

α))q̂asxQ1(dα).

Step 6. Recall that our original disintegration (10.2) was on (Q,Q, q̂as), so that there exists Q̃ ⊂ Q
of full q̂as measure so that Q̃ ∈ B(T bu ) and Q ⊃ B(Q̃). It follows that we may find Q 3 Q̃1 ⊂ Q1 with
q̂as(Q1 \ Q̃1) = 0 so that Q ⊃ B(Q̃1). Let us now push-forward the measure space (Q1,Q ∩Q1, q̄as)
via the Borel measurable map es ◦ η (by Step 3), yielding the measure space (es(G

1
as),S , qas), which

is thus guaranteed to satisfy S ⊃ B(S̃), where S̃ := es ◦ η(Q̃1) is of full qas measure. Restricting
the space to S̃ and abusing notation, we obtain (S̃,S , qas) with S ⊃ B(S̃), implying that qas is a
Borel measure concentrated on S̃ ⊂ es(G

1
as) ⊂ es(Gas). Note that q̂as , q̄as and qas all have total mass

m(e[0,1](Gas)).
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Denoting mas
γαs

:= m̄as
α , the disintegration from Step 5 translates to:

mxe[0,1](Gas )=

∫
es(Gas )

mas
β qas(dβ).

Furthermore, for qas-a.e. β, the m.m.s. (e[0,1](e
−1
s (β)), d,mas

β ) verifies CD(K,N) and is of full support,

and is therefore isometric to (Iasβ , |·| , ĥ
as
β L

1xIasβ ), where Iasβ := [0, `s(β)] and ĥasβ is a CD(K,N) proba-

bility density on Iasβ (see Definition A.1). To prevent measurability issues, we will use the convention

that ĥasβ vanishes at the end-points of Iasβ .

Step 7. Next, we observe that gas is Borel. Indeed, note that by injectivity of es:

graph(gas) = P1,2,3({(β, t, x, γ) ∈ es(Gas)× [0, 1]×X ×Gas ; γs = β , γt = x}).

As Gas is compact, it follows that graph(gas) is analytic, and hence (see [72, Theorem 4.5.2]) gas is
Borel measurable.

Step 8. It follows that mas
β = gas(β, ·)](hasβ L

1x[0,1]), where:

[0, 1] 3 t 7→ hasβ (t) := `s(β)ĥasβ (t`s(β)).

Clearly hasβ is now a CD(`s(β)2K,N) probability density on the interval [0, 1]. The only remaining task

is to prove that the map es(Gas)×[0, 1] 3 (β, t) 7→ hasβ (t) is qas⊗L1x[0,1]-measurable. By measurability
of the disintegration (10.3) (recall Definition 6.18), the map Q 3 α 7→ m̂as

α (B) is q̂as-measurable for
any Borel set B ⊂ X. It follows that for any compact I ⊂ (0, 1), the map:

es(Gas) ⊃ S̃ 3 β 7→ F (β) :=

∫
I
hasβ (τ)dτ =

m̂as
α(β)(eI(Gas))

m̂as
α(β)(e[0,1](Gas))

,

is qas-measurable, where α(β) := (es ◦ η)−1(β) is qas-measurable as a map (S̃,S , qas) → (Q,Q, q̂as)
by the construction from Step 6. As hasβ is continuous on (0, 1) for qas-a.e. β, we know that for such
β and all t ∈ (0, 1):

hasβ (t) = lim
ε→0

1

2ε

∫
[t−ε,t+ε]

hasβ (τ)dτ.

It follows by [72, Proposition 3.1.27] that for all t ∈ (0, 1), the map:

S̃ 3 β 7→ hasβ (t)

is qas-measurable. As for qas-a.e. β, the map (0, 1) 3 t 7→ hasβ (t) is continuous, [72, Theorem 3.1.30]
confirms the required measurability.

This concludes the proof.

It will be convenient to invert the order of integration in (10.4) using Fubini’s Theorem:

mxe[0,1](Gas )=

∫
[0,1]

gas(·, t)] (has· (t) · qas)L1(dt).

We thus define:
mas
t := gas(·, t)] (has· (t) · qas) ,

so that the final formula is:

mxe[0,1](Gas )=

∫
[0,1]

mas
t L1(dt). (10.5)
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Remark 10.5. Since for qas-a.e. β, the CD(`2s(β)K,N) density hasβ must be strictly positive on (0, 1)
(see Appendix), by multiplying and dividing qas by the positive qas-measurable function β 7→ hasβ (s)
(recall that s ∈ (0, 1)), we may always renormalize and assume that hasβ (s) = 1. Note that this does
not affect the definition of mas

t above. This normalization ensures that mas
s = qas so that:

mas
t := gas(·, t)] (has· (t) ·mas

s ) . (10.6)

Remark 10.6. Note that since qas is concentrated on es(Gas), by definition mas
t is concentrated on

et(Gas) for all t ∈ (0, 1). By Corollary 4.3, the latter sets are disjoint for different t’s in (0, 1) (recall
that s ∈ (0, 1) and that G ⊂ G+

ϕ ). Formula (10.5) can thus be seen again as a disintegration formula
over a partition. In particular, for any s ∈ (0, 1) and 0 < t, τ < 1 with t 6= τ , the measures mas

t and
mas
τ are mutually singular.

Proposition 10.7. For any s ∈ (0, 1) and as ∈ ϕs(es(G)), the map

(0, 1) 3 t 7→ mas
t

is continuous in the weak topology, we have:

m(e[0,1](Gas)) > 0 ⇒ ∀t ∈ (0, 1) mas
t (et(Gas)) > 0,

and:
∀t ∈ [0, 1] mas

t (et(Gas)) = ‖mas
t ‖ ≤ C m(e[0,1](Gas)),

for some C > 0 depending only on K, N and c > 0 from assumption (10.1).

Proof. Recall that the definition of mas
t does not depend on the last normalization we performed,

when we imposed that hasβ (s) = 1, so we revert to the normalization that hasβ is a CD(`s(β)2K,N)
probability density on [0, 1], and hence ‖qas‖ = m(e[0,1](Gas)). The second assertion follows since
whenever the latter mass is positive, by positivity of a CD(K,N) density in the interior of its support
(see Appendix):

∀t ∈ (0, 1) mas
t (et(Gas)) = ‖mas

t ‖ =

∫
hasβ (t)qas(dβ) > 0.

Similarly, it follows by Lemma A.8, the lower semi-continuity of hasβ at the end-points (see Appendix),
and assumption (10.1), that maxt∈[0,1] h

as
β (t) is uniformly bounded in as and β for qas-a.e. β by a

constant C > 0 as above, implying that:

∀t ∈ [0, 1] ‖mas
t ‖ = ‖has· (t) · qas‖ ≤ C ‖qas‖ = C m(e[0,1](Gas)),

yielding the third assertion.
Now note that the density (0, 1) 3 t 7→ hasβ (t) is continuous (see Appendix) for qas-a.e. β, and the

same trivially holds for the map [0, 1] 3 t 7→ gas(β, t). We conclude by Dominated Convergence that
for any f ∈ Cb(X) and any t ∈ (0, 1):

lim
τ→t

∫
f(x)mas

τ (dx) = lim
τ→t

∫
f(gas(α, τ))hasβ (τ) qas(dβ)

=

∫
f(gas(β, t))hasα (t) qas(dβ) =

∫
f(x)mas

t (dx),

yielding the first assertion, and concluding the proof.
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10.2 L2 partition

For each t ∈ (0, 1), we can find a natural partition of et(G) ⊂ et(Gϕ) consisting of level sets of the
time-propagated intermediate Kantorovich potentials Φt

s introduced in Section 4. Recall that the
function Φt

s (s, t ∈ (0, 1)) was defined as:

Φt
s = ϕt + (t− s)`

2
t

2
,

and interpreted on et(Gϕ) as the propagation of ϕs from time s to t along Gϕ, i.e. Φt
s = ϕs ◦ es ◦ e−1

t .
In particular, for any γ ∈ G, Φt

s(γt) = ϕs(γs), and et(Gas) ∩ et(Gbs) = ∅ as soon as as 6= bs (see
Corollary 4.1). It follows that for any s, t ∈ (0, 1), we can consider the partition of the compact set
et(G) given by its intersection with the family {Φt

s = as}as∈R; as usual, it will be sufficient to take
as ∈ Φt

s(et(G)) = ϕs(es(G)).
Since Φt

s is continuous, the Disintegration Theorem 6.19 yields the following essentially unique
disintegration of mxet(G) strongly consistent with respect to the quotient-map Φt

s:

mxet(G)=

∫
ϕs(es(G))

m̂t
as q

t
s(das), (10.7)

so that for qts-a.e. as, m̂
t
as is a probability measure concentrated on the set et(G)∩

{
Φt
s = as

}
= et(Gas).

By definition, qts = (Φt
s)#mxet(G). To make this disintegration more explicit, we show:

Proposition 10.8.

(1) For any s, t, τ ∈ (0, 1), the quotient measures qts and qτs are mutually absolutely continuous.

(2) For any s, t ∈ (0, 1), the quotient measure qts is absolutely continuous with respect to Lebesgue
measure L1 on R.

Proof. Recall that qts = (Φt
s)#mxet(G).

(1) For any Borel set I ⊂ R, note that:

qts(I) = m ({γt : ϕs(γs) ∈ I, γ ∈ G}) > 0 ⇔ µt ({γt : ϕs(γs) ∈ I, γ ∈ G}) > 0,

since µt � m and its density ρt is assumed to be positive on et(G) where µt is supported (see Definition
10.1). But µτ = (eτ ◦ e−1

t )]µt, and so:

µτ ({γτ : ϕs(γs) ∈ I, γ ∈ G}) = µt ({γt : ϕs(γs) ∈ I, γ ∈ G}) .

It follows that qts(I) > 0 iff qτs(I) > 0, thereby establishing the first assertion.

(2) Thanks to the first assertion, it is enough to only consider the case t = s in the second one.
Recall that Φs

s = ϕs. Then the claim boils down to showing that m(ϕ−1
s (I) ∩ es(G)) = 0 whenever

I ⊂ ϕs(es(G)) is a compact set with L1(I) = 0.
By compactness, we fix a ball Br(o) containing es(G). Since ϕs is Lipschitz continuous on bounded

sets (Corollary 3.10 (1)), possibly using a cut-off Lipschitz function over Br(o), we may assume that
ϕs has bounded total variation measure ‖Dϕs‖ (we refer to [54] and [9] for all missing notions and
background regarding BV-functions on metric-measure spaces). From the local Poincaré inequality
(see Remark 7.5 and [54, page 992]) and the doubling property (see Lemma 6.12 and recall that
supp(m) = X), it follows that the total variation measure of ϕt is absolutely continuous with respect
to m, and that:

∃c > 0 c|∇ϕs|m ≤ ‖Dϕs‖ ≤ |∇ϕs|m (10.8)

(see [54, page 992] or [12, Section 4]), where:

|∇ϕs|(x) := lim inf
δ→0

sup
y∈Bδ(x)

|ϕs(y)− ϕs(x)|
δ

.
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By [31, Theorem 6.1], the previous quantity in fact coincides in our setting with the pointwise Lipschitz
constant of ϕs at x, which in turn coincides with `+s (x) by [6, Theorem 3.6]; hence for x = γs we have
|∇ϕs|(x) = `s(x). By the co-area formula (see [54, Proposition 4.2]), for any Borel set A ⊂ Br(o):∫ +∞

−∞
‖∂{ϕs > τ}‖(A) dτ = ‖Dϕs‖(A), (10.9)

where ‖∂{ϕs > τ}‖ denotes the total variation measure associated to the set of finite perimeter
{ϕs > τ}. From [1, Theorem 5.3] it follows that ‖∂{ϕs > τ}‖ is concentrated on {ϕs = τ} and
therefore, for any Borel set I ⊂ ϕs(es(G)) with L1(I) = 0, it follows by (10.9) and (10.8):

‖Dϕs‖(ϕ−1
s (I)) = 0 , |∇ϕs|m(ϕ−1

s (I)) = 0.

Since |∇ϕs| = `s(x) > 0 on es(G), it follows that m(ϕ−1
s (I) ∩ es(G)) = 0, thereby concluding the

proof.

Remark 10.9. Inspecting the proof of Proposition 10.8, from the co-area formula ([54, Proposition
4.2]) and the Hausdorff representation of the perimeter measure ([1, Theorem 5.3]), it follows that
for qss-a.e. as ∈ ϕs(es(G)) the measure ms

as is absolutely continuous with respect to the Hausdorff
measure of codimension one (see [1] for more details).

Employing the previous proposition, we define:

mt
as := (dqts/dL1) · m̂t

as ,

obtaining from (10.7) the following disintegration (for every s, t ∈ (0, 1)):

mxet(G)=

∫
ϕs(es(G))

mt
as L

1(das), (10.10)

with mt
as concentrated on et(Gas), for L1-a.e. as ∈ ϕs(es(G)).

We now shed light on the relation of the above disintegration to L2-Optimal-Transport, by relating
it to another disintegration formula for ν, the unique element of OptGeo(µ0, µ1). Observe that the
family of sets {Gas}as∈R is a partition of G and that Gas = {ϕs ◦ es = as}. Since the quotient-map
ϕs ◦ es : Geo(X) → R is continuous and G is compact, the Disintegration Theorem 6.19 ensures the
existence of an essentially unique disintegration of ν strongly consistent with ϕs ◦ es:

ν =

∫
ϕs(es(G))

νas q
ν
s(das), (10.11)

so that for qνs -a.e. as ∈ ϕs(es(G)), the probability measure νas is concentrated on Gas . Clearly
qνs(ϕs(es(G))) = ‖ν‖ = 1.

Corollary 10.10.

(1) For any s ∈ (0, 1), the quotient measure qνs is mutually absolutely continuous with respect to qss,
and in particular it is absolutely continuous with respect to L1.

(2) For any s, t ∈ (0, 1) and L1-a.e. as ∈ ϕs(es(G)):

ρt ·mt
as = qνs (as) · (et)#νas , (10.12)

where qνs := dqνs/dL1. In particular, mt
as and (et)#νas are mutually absolutely-continuous for

qνs -a.e. as ∈ ϕs(es(G)).
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(3) In particular, for any s ∈ (0, 1) and qνs -a.e. as ∈ ϕs(es(G)), the map:

[0, 1] 3 t 7→ ρt ·mt
as

coincides for L1-a.e. t ∈ [0, 1] with the W2-geodesic t 7→ (et)]νas up to a positive multiplicative
constant depending only on as.

Proof. Recall that µs � m is supported on es(G) and ρs > 0 there (see Definition 10.1), so that µs and
mxes(G) are mutually absolutely-continuous. It immediately follows that the same holds for (ϕs)#µs
and qss = (ϕs)#mxes(G). But:

(ϕs)#(µs) = (ϕs)#((es)#ν) = (ϕs ◦ es)#(ν) = qνs ,

establishing (1).
Denoting the resulting probability density qνs := dqνs/dL1, (10.11) translates to:

ν =

∫
ϕs(es(G))

qνs (as)νas L1(das).

Pushing forward both sides via the evaluation map et given t ∈ (0, 1), we obtain:

ρtm =

∫
ϕs(es(G))

qνs (as) · (et)#νas L1(das),

with qνs (as) · (et)#νas concentrated on et(Gas) for L1-a.e. as ∈ ϕs(es(G)). On the other hand, multi-
plying both sides of (10.10) by ρt (which is supported on et(G)), we obtain:

ρtm =

∫
ϕs(es(G))

ρt ·mt
as L

1(das),

with ρt · mt
as concentrated on et(Gas) for L1-a.e. as ∈ ϕs(es(G)). By the essential uniqueness of

the disintegration (Theorem 6.19), noting that ϕs(es(G)) is compact, (10.12) immediately follows. As
ρt > 0 on et(G) (see Definition 10.1) and qνs (as) ∈ (0,∞) for qνs -a.e. as ∈ ϕs(es(G)), the “in particular”
part of (2) is also established.

Finally, by Fubini’s theorem, it follows that for each s ∈ (0, 1) and qνs -a.e. as ∈ ϕs(es(G)), (10.12)
holds with qνs (as) ∈ (0,∞) for L1-a.e. t ∈ (0, 1). Note that for qνs -a.e. as ∈ ϕs(es(G)), the curve
t 7→ (et)]νas is a W2-geodesic (since νas is concentrated on Gas ⊂ G). This establishes (3), thereby
concluding the proof.

11 Comparison between conditional measures

So far we have proved, under Assumption 10.2, that for each s ∈ (0, 1) we have the following two
families of disintegrations:

mxet(G)=

∫
ϕs(es(G))

mt
as L

1(das) and mxe[0,1](Gas )=

∫
[0,1]

mas
t L1(dt) (11.1)

for each t ∈ (0, 1) and each as ∈ ϕs(es(G)), respectively, corresponding to the partitions:

{et(Gas)}as∈ϕs(es(G)) and {et(Gas)}t∈(0,1).

Moreover, both mt
as and mas

t are concentrated on et(Gas), for each t ∈ (0, 1) for L1-a.e. as ∈ ϕs(es(G)),
and for each as ∈ ϕs(es(G)) and all t ∈ (0, 1), respectively, so that the above disintegrations are
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strongly consistent with respect to the corresponding partition. In addition, we have by (10.6) and
(10.12) for all s, t ∈ (0, 1) and a.e. as ∈ ϕs(Gas):

mas
t = (et ◦ e−1

s )](h
as
· (t)mas

s ) , ρtm
t
as = (et ◦ e−1

s )](ρsm
s
as). (11.2)

The goal of the first subsection, in which we retain Assumption 10.2, is to prove that mt
as and mas

t

are in fact equivalent measures. We will prove in particular that for all s ∈ (0, 1):

mas
t = ∂tΦ

t
s m

t
as for a.e. t ∈ (0, 1), as ∈ ϕs(Gas). (11.3)

A heuristic formal argument for establishing (11.3) may be seen as follows. Writing Φt
s(x) = Φs(t, x),

we have:

et(Gas) = et(G) ∩ {x ∈ X ; Φs(t, x) = as} = et(G) ∩
{
x ∈ X ; Φs(·, x)−1(as) = t

}
.

Formally applying the coarea formula (assuming spatial regularity), we have:

mas
t

mt
as

=
|∇xΦs(t, x)|

|∇xΦs(·, x)−1(as)|
= |−∂tΦs(t, x)| ,

where the last transition follows by the implicit function theorem ∇xΦs + ∂tΦs · ∇xΦ−1
s = 0.

In the second subsection, we deduce the change-of-variables formula (1.6) for the density along
geodesics, discarding Assumption 10.2. An insightful heuristic argument may be seen by combining
(11.2) and (11.3) as follows:

∂τ |τ=tΦ
τ
s(γt)

ρt(γt)
=

mas
t

ρtmt
as

∣∣∣∣
γt

=
has· (t)mas

s

ρsms
as

∣∣∣∣
γs

=
hasγs(t)

ρs(γs)
∂τ |τ=sΦ

τ
s(γs) =

hasγs(t)

ρs(γs)
`(γ)2.

11.1 Equivalence of conditional measures

Recall that Assumption 10.2 is still in force in this subsection. We start with the following auxiliary:

Lemma 11.1. For every s, t ∈ (0, 1) and as ∈ ϕs(es(G)), the following limit:

mas
t = lim

ε→0

1

2ε
mxe[t−ε,t+ε](Gas )

holds true in the weak topology. Moreover, for any f ∈ Cb(X), the map ϕs(es(G)) 3 as 7→
∫
X fm

as
t is

Borel.

Proof. By Proposition 10.7, (0, 1) 3 t 7→ mas
t is continuous in the weak topology, and so together with

(11.1), we see that for any f ∈ Cb(X):

lim
ε→0

1

2ε

∫
X
f(z)mxe[t−ε,t+ε](Gas )(dz) = lim

ε→0

1

2ε

∫ t+ε

t−ε

(∫
X
f(z)mas

τ (dz)

)
L1(dτ) =

∫
X
f(z)mas

t (dz),

thereby concluding the proof of the first assertion. For the second assertion, given a compact set
I ⊂ [0, 1], consider the compact set:

K := {(x, t, γ, as) ∈ X × I ×G× ϕs(es(G)) : x = γt, ϕs(γs) = as}.

Hence B := P14(K) = {(eI(Gas), as) : as ∈ ϕs(es(G))} is compact as well. It follows by Fubini’s
theorem that the map ϕs(es(G)) 3 as 7→

∫
eI(Gas ) f m is Borel. Taking I = [t− ε, t+ ε], employing the

first assertion, and recalling that the pointwise limit of Borel functions is Borel, the second assertion
follows.
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Remark 11.2. One may similarly show (employing an additional density argument) that for every
s, t ∈ (0, 1) and L1-a.e. as ∈ ϕs(es(G)), the following limit:

mt
as = lim

ε→0

1

2ε
mx(Φts)

−1[as−ε,as+ε]∩et(G)

holds true in the weak topology, but this will not be required.

We now find explicit expressions for the densities.

Theorem 11.3. For any s ∈ (0, 1),

mas
s = `2s ·ms

as for L1-a.e. as ∈ ϕs(es(G)) . (11.4)

Moreover, for any s ∈ (0, 1) and L1-a.e. t ∈ (0, 1) including at t = s, ∂tΦ
t
s(x) exists and is positive

for L1-a.e. as ∈ ϕs(es(G)) and mt
as-a.e. x, and we have:

mas
t = ∂tΦ

t
s ·mt

as for L1-a.e. as ∈ ϕs(es(G)). (11.5)

For the ensuing proof, it will be convenient to introduce the following notation. For all t0 ∈ R and
x0 ∈ X, denote:

ı1t0 : X 3 x 7→ (t0, x) ∈ (R, X) , ı2x0 : R 3 t 7→ (t, x0) ∈ (R, X).

Recall that G(x) denotes the section {t ∈ [0, 1] ; ∃γ ∈ G , γt = x} and G̊(x) = G(x) ∩ (0, 1).

Proof of Theorem 11.3.

Step 1. Fix s, t ∈ (0, 1). By Lemma 11.1 and the boundedness of ‖mas
τ ‖ uniformly in as and

τ ∈ [0, 1] (see Proposition 10.7), it is easy to deduce (e.g. by Dominated Convergence Theorem) the
following limit of measures on ϕs(es(G))×X in the weak topology (i.e. in duality with Cb(ϕs(es(G))×
X)): ∫

ϕs(es(G))
(ı1as)](m

as
t )L1(das) = lim

ε→0

1

2ε

∫ t+ε

t−ε

∫
ϕs(es(G))

(ı1as)](m
as
τ )L1(das)L1(dτ).

Using Fubini’s Theorem and (11.1), we proceed as follows:

= lim
ε→0

1

2ε

∫
ϕs(es(G))

(ı1as)](mxe([t−ε,t+ε])(Gas ))L1(das)

= lim
ε→0

1

2ε
(L1 ⊗m)x{(as, x) ∈ ϕs(es(G))×X ; γτ = x, γ ∈ G, ϕs(γs) = as, τ ∈ (t− ε, t+ ε)}

= lim
ε→0

1

2ε
(L1 ⊗m)x{(as, x) ∈ ϕs(es(G))×X ; as = Φτ

s(x), τ ∈ (t− ε, t+ ε) ∩ G̊(x)}

= lim
ε→0

∫
∪|τ−t|<εeτ (G)

1

2ε
(ı2x)](L1x{Φτ

s(x) ; τ ∈ (t− ε, t+ ε) ∩ G̊(x)})m(dx). (11.6)

Moreover, we claim that it is enough to integrate on et(G) above:

= lim
ε→0

∫
et(G)

1

2ε
(ı2x)](L1x{Φτ

s(x) ; τ ∈ (t− ε, t+ ε) ∩ G̊(x)})m(dx). (11.7)

To see this, recall that by Proposition 4.4 (3) (relying on Theorem 3.11 (2)), the map (t− ε, t+ ε) ∩
G̊(x) 3 τ → Φτ

s(x) is Lipschitz with Lipschitz constant bounded uniformly in ε ∈ (0, t/2 ∧ (1 − t)/2)
and x ∈ ∪|τ−t|<εeτ (G) (recall that for any γ ∈ G, `(γ) ≤ 1/c); we denote the latter Lipschitz bound
by L. Hence the family of measures

1

2ε
L1x{Φτ

s(x) ; τ ∈ (t− ε, t+ ε) ∩ G̊(x)},
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is bounded in the total-variation norm by L, uniformly in ε and x as above. But by continuity:

lim
ε→0

m(∪|τ−t|<εeτ (G) \ et(G)) = 0,

and so we can modify the domain of integration in (11.6) yielding (11.7).

Step 2. Fixing x ∈ et(G), we now focus on the weak limit:

lim
ε→0

1

2ε
L1x{Φτ

s(x) ; τ ∈ (t− ε, t+ ε) ∩ G̊(x)}.

Recall that (t − ε, t + ε) ∩ G̊(x) 3 τ 7→ Φτ
s(x) has Lipschitz constant bounded by L, and moreover,

is increasing by Proposition 4.4 (3). Now extend it to the entire (0, 1) while preserving (non-strict)
monotonicity and the bound on the Lipschitz constant, e.g. Φ̂τ

s(x) := infr∈(t−ε,t+ε)∩G̊(x) Φr
s(x) +L(τ −

r)+. Then for any f ∈ Cb(R), by the change-of-variables formula for (monotone) Lipschitz functions:

1

2ε

∫
{Φτs (x) ; τ∈(t−ε,t+ε)∩G̊(x)}

f(a)L1(da)

=
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

f(Φτ
s(x))∂τ Φ̂τ

s(x)L1(dτ)

=
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

f(Φτ
s(x))∂τΦτ

s(x)L1(dτ);

the last transition follows since τ 7→ Φτ
s(x) is differentiable a.e. on D`(x) and hence ∂τΦτ

s(x) =
∂τΦτ

s(x)|(t−ε,t+ε)∩G̊(x) for a.e. τ ∈ (t−ε, t+ε)∩G̊(x) by Remark 2.1, and in addition since ∂τΦτ
s(x)|(t−ε,t+ε)∩G̊(x) =

∂τ Φ̂τ
s(x) for a.e. τ ∈ (t − ε, t + ε) ∩ G̊(x) by Remark 2.2. Recall that Proposition 4.4 ensures that

for all x ∈ X, ∂tΦ
t
s(x) exists for L1-a.e. t ∈ G̊(x), including at t = s if s ∈ G̊(x) (in which case

∂tΦ
t
s|t=s = `2s(x)). Moreover, Corollary 4.5 and our assumption that G ⊂ G+

ϕ ensure that ∂tΦ
t
s(x) > 0

for L1-a.e. t ∈ G̊(x), including at t = s. Applying Fubini’s theorem, we have:

0 =

∫
X
L1(G̊(x)\{t ∈ G̊(x) : ∃∂tΦt

s(x) > 0})m(dx) =

∫ 1

0
m(et(G)\{x ∈ et(G) : ∃∂tΦt

s(x) > 0})L1(dt).

It follows that for L1-a.e. t ∈ (0, 1), ∂tΦ
t
s(x) exists and is positive for m-a.e. x ∈ et(G) (including at

t = s for all x ∈ es(G)).

Step 3. We now claim that for L1-a.e. t ∈ (0, 1) including t = s, if f ∈ Cb(R) and Ψ ∈ Cb(X)
then:

lim
ε→0

∫
et(G)

[
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

f(Φτ
s(x))∂τΦτ

s(x)L1(dτ)− f(Φt
s(x))∂tΦ

t
s(x)

]
Ψ(x)m(dx) = 0.

To this end, we will show that for such t’s, both:

Iε(x) :=
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

(
f(Φτ

s(x))− f(Φt
s(x)

)
∂τΦτ

s(x)L1(dτ),

and:

IIε(x) := f(Φt
s(x))

[
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

∂τΦτ
s(x)L1(dτ)− ∂tΦt

s(x)

]
,

tend to 0 in L1(et(G),m) as ε→ 0.

Step 4. To see the claim about Iε, since |∂τΦτ
s(x)| ≤ L (uniformly in τ ∈ (t− ε, t+ ε)∩ G̊(x) and

x ∈ et(G)), it is clear that limε→0 Iε(x) = 0 pointwise by continuity of f and G̊(x) 3 τ 7→ Φτ
s(x) (see
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Proposition 4.4). To obtain convergence in L1(et(G),m), it is therefore enough to show by Dominated
Convergence that:

1

2ε

∫
(t−ε,t+ε)∩G̊(x)

(
f(Φτ

s(x))− f(Φt
s(x)

)
L1(dτ) ≤ C, (11.8)

uniformly in x ∈ et(G). Since f is uniformly continuous on the compact set ϕs(es(G)), the uniform
estimate (11.8) follows since G̊(x) 3 τ 7→ Φτ

s(x) is Lipschitz on [δ, 1 − δ], with Lipschitz constant
depending only on δ > 0 and an upper bound on {`(γ) ; γ ∈ G} (see Proposition 4.4 (3) and Theorem
3.11 (2)).

Step 5. To see the claim about IIε, it is clearly enough to show that:

ĨIε(x) :=
1

2ε

∫
(t−ε,t+ε)∩G̊(x)

∂τΦτ
s(x)L1(dτ)− ∂tΦt

s(x)→ 0 in L1(et(G),m). (11.9)

Step 5a. We first establish (11.9) for L1-a.e. t ∈ (0, 1) (independently of f and Ψ). Since
∂τΦτ

s(x) ≤ L uniformly in τ ∈ (t − ε, t + ε) ∩ G̊(x) and x ∈ et(G), by Dominated Convergence, it is
enough to establish pointwise convergence in (11.9) for m-a.e. x ∈ et(G).

For every x ∈ X, denote:

Leb(x) := {t ∈ G̊(x) ; t is a Lebesgue point of τ 7→ ∂τΦτ
s(x)1G̊(x)(τ)}.

By Proposition 4.4 (based on Theorem 3.11), we know that for every x ∈ X, the map τ 7→ ∂τΦτ
s(x) is

in L∞loc(G̊(x)), and so by Lebesgue’s Differentiation Theorem, L1(G̊(x) \Leb(x)) = 0. Integrating over
m and applying Fubini’s Theorem, it follows that for L1-a.e. t ∈ (0, 1):

m(et(G) \ {x ∈ et(G) ; t is a Lebesgue point of τ 7→ ∂τΦτ
s(x)1G̊(x)(τ)}) = 0,

thereby establishing (by definition) the pointwise convergence in (11.9) for m-a.e. x ∈ et(G).

Step 5b. We next establish (11.9) at t = s. Write:

ĨIε(x) =
1

2ε

∫
(s−ε,s+ε)∩G̊(x)

(
∂τΦτ

s(x)− `2s(x)
)
L1(dτ) + `2s(x)

[
1

2ε

∫
(s−ε,s+ε)∩G̊(x)

L1(dτ)− 1

]
.

The first expression tends to 0 pointwise for all x ∈ X by Lemma 4.6, and hence by Dominated
Convergence also in L1(et(G),m) (since |∂τΦτ

s(x)| ≤ L and `s(x) ≤ 1/c uniformly). The second
expression tends to 0 in L1(et(G),m) by Proposition 9.7 and the uniform boundedness of `2s(x).

Step 6. In other words, we have verified in Steps 3-5 the following weak convergence, for L1-a.e.
t ∈ (0, 1) including at t = s:

lim
ε→0

∫
et(G)

1

2ε
(ı2x)](L1x{Φτ

s(x) ; τ ∈ (t− ε, t+ ε) ∩ G̊(x)})m(dx) =

∫
et(G)

(ı2x)](δΦts(x))∂tΦ
t
s(x)m(dx),

where recall Φs
s(x) = ϕs(x) and ∂tΦ

t
s|t=s = `2s(x). Combining this with Step 1, we deduce that:∫

ϕs(es(G))
(ı1as)](m

as
t )L1(das) =

∫
et(G)

(ı2x)](δΦts(x)))∂tΦ
t
s(x)m(dx).

Integrating this identity against 1⊗ ψ with 1 ∈ Cb(R) and ψ ∈ Cb(X), we obtain:∫
ϕs(es(G))

∫
es(G)

ψ(x)mas
t (dx)L1(das) =

∫
et(G)

ψ(x)∂tΦ
t
s(x)m(dx)

=

∫
ϕs(es(G))

∫
et(G)

ψ(x) ∂tΦ
t
s(x)mt

as(dx)L1(das),
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where we used that mas
t is concentrated on et(Gas) ⊂ et(G) for all t ∈ (0, 1) and as ∈ ϕs(es(G)) in

the first expression, and the disintegration (11.1) of mxet(G) in the last transition. In other words, we
obtained for L1-a.e. t ∈ (0, 1) including at t = s:∫

ϕs(es(G))
mas
t L1(das) =

∫
ϕs(es(G))

∂tΦ
t
s m

t
asL

1(das).

Since mt
as is also concentrated on et(Gas) for all t ∈ (0, 1) and L1-a.e. as ∈ ϕs(es(G)), the assertion

follows by essential uniqueness of consistent disintegrations (Theorem 6.19). Note that by Step 2,
∂tΦ

t
s(x) exists and is positive for L1-a.e. t ∈ (0, 1) including at t = s for m-a.e. x ∈ et(G), and so by

(11.1), the same holds for L1-a.e. as ∈ ϕs(es(G)) and mt
as-a.e. x.

11.2 Change-of-Variables Formula

We now obtain the following main result of Sections 10 and 11. At this time, we dispense of Assumption
10.2.

Theorem 11.4 (Change-of-Variables). Let (X, d,m) be an essentially non-branching m.m.s. verifying
CD1(K,N) with supp(m) = X, and let µ0, µ1 ∈ P2(X, d,m). Let ν denote the unique element of
OptGeo(µ0, µ1), and set µt := (et)]ν � m for all t ∈ (0, 1).

Then there exist versions of the densities ρt := dµt/dm, t ∈ [0, 1], so that for ν-a.e. γ ∈ Geo(X),
(9.4) holds for all 0 ≤ s ≤ t ≤ 1, and in particular, for ν-a.e. γ, t 7→ ρt(γt) is positive and locally
Lipschitz on (0, 1), and upper semi-continuous at t = 0, 1.

Moreover, for any s ∈ (0, 1), for L1-a.e. t ∈ (0, 1) and ν-a.e. γ ∈ G+
ϕ , ∂τ |τ=tΦ

τ
s(γt) exists, is

positive, and the following change-of-variables formula holds:

ρt(γt)

ρs(γs)
=
∂τ |τ=tΦ

τ
s(γt)

`2(γ)
· 1

h
ϕs(γs)
γs (t)

. (11.10)

Here ϕ denotes a Kantorovich potential associated to the c-optimal-transport problem between µ0 and µ1

with cost c = d2/2, and Φt
s denotes the time-propagated intermediate Kantorovich potential introduced

in Section 4; h
ϕs(γs)
γs is the CD(`(γ)2K,N) density on [0, 1] from Proposition 10.4, after applying the

re-normalization from Remark 10.5, so that h
ϕs(γs)
γs (s) = 1. In particular, for ν-a.e. γ ∈ G+

ϕ , the above
change-of-variables formula holds for L1-a.e. t, s ∈ (0, 1).

Lastly, for all γ ∈ G0
ϕ, we have:

ρt(γt) = ρs(γs) ∀t, s ∈ [0, 1]. (11.11)

Recall that ν is concentrated on Gϕ = G+
ϕ ∪G0

ϕ, where G+
ϕ and G0

ϕ denote the subsets of positive
and zero length ϕ-Kantorovich geodesics, respectively. Note that ∂t|t=sΦt

s(γs) = `2s(γs) = `2(γ) by

Proposition 4.4, so that together with our normalization that h
ϕs(γs)
γs (s) = 1, we see that both sides of

(11.10) are indeed equal to 1 for t = s.

Proof of Theorem 11.4.

Step 0. As usual, by Proposition 8.9 and Remark 8.11, (X, d,m) also verifies MCP(K,N), and so
Theorem 6.15 and all the results of Section 9 apply. We will use the versions of the densities given
by Corollary 9.5. On X0 = e[0,1](G

0
ϕ), we know by Corollary 9.8 that µ0xX0= µ1xX0= µtxX0 for all

t ∈ [0, 1], and so if necessary, we simply redefine ρt|X0 := ρ0|X0 for all t ∈ (0, 1], so that (11.11) holds.
Note that by Lemma 3.15, this will not affect (0, 1) 3 t 7→ ρt(γt) for all γ ∈ G+

ϕ , and Corollary 9.8
(applied to the pair µ1, µ0) ensures that the same is true for ν-a.e. γ ∈ G+

ϕ at t = 1.

Step 1. As explained in the beginning of Section 10, by inner regularity of Radon measures,
Corollary 9.5 (applied to both pairs µ0, µ1 and µ1, µ0), Proposition 9.7 and Corollary 6.16, there
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exists a good compact subset Gε ⊂ G+
ϕ with ν(Gε) ≥ ν(G+

ϕ )− ε for any ε > 0 (recall Definition 10.1).
Of course, we may assume that Gε is increasing as ε decreases to 0 (say, along a fixed sequence). Fixing
ε > 0 and a good Gε, denote νε = 1

ν(Gε)νxGε and µεt := (et)]ν
ε � m, so that all of the results of Section

10 and Subsection 11.1 apply to νε. Note that by Corollary 6.16, we have that µεt = 1
ν(Gε)(µt)xet(Gε)

for all t ∈ [0, 1], and therefore:

µεt = ρεtm , ρεt :=
1

ν(Gε)
ρt|et(Gε) ∀t ∈ [0, 1].

Also note that as ν is concentrated on Gε ⊂ Gϕ, ϕ is still a Kantorovich potential for the associated
transport-problem.

Step 2. Recall that by Corollary 10.10 (3), for each s ∈ (0, 1) and qε,ss -a.e. as ∈ ϕs(es(Gε)), the
map:

[0, 1] 3 t 7→ ρt ·mε,t
as

coincides for L1-a.e. t ∈ [0, 1] with the geodesic t 7→ (et)]ν
ε
as up to a (positive) constant Cεas depending

on as, where νεas is the conditional measure from the disintegration in (10.11). Consequently, for such
s and as, for L1-a.e. t ∈ [0, 1] and any Borel H ⊂ Gεas , the quantity:∫

et(H)
ρεt (x)mε,t

as (dx) = Cεas

∫
et(H)

(et)]ν
ε
as(dx) = Cεasν

ε
as(H) (11.12)

is constant (where we used the fact that et|Gε : Gε → X is injective).
By Theorem 11.3, for L1-a.e. t ∈ (0, 1) and L1-a.e. as ∈ ϕs(Gεs) (and hence for qε,ss -a.e. as ∈ ϕs(Gεs)

by Proposition 10.8), ∂tΦ
t
s(x) exists and is positive for mε,t

as -a.e. x, and mε,as
t = ∂tΦ

t
s · m

ε,t
as . It follows

that for those t and as for which this representation and (11.12) hold true:

Cεasν
ε
as(H) =

∫
et(H)

ρεt (x)mε,t
as (dx) =

∫
et(H)

ρεt (x)(∂tΦ
t
s(x))−1 mε,as

t (dx) (11.13)

=

∫
es(H)

ρεt (g
as(β, t))(∂τ |τ=tΦ

τ
s(gas(β, t)))−1hasβ (t)mε,as

s (dβ)

=

∫
es(H)

ρεt (g
as(β, t))(∂τ |τ=tΦ

τ
s(gas(β, t)))−1hasβ (t)`2s(β)mε,s

as (dβ),

where the second transition follows from our normalization and Remark 10.5, ensuring that mε,as
t =

(gas(·, t))] (has· (t)mε,as
s ), and the last transition follows from Theorem 11.3.

Note that g and h above do not depend on ε > 0. For g, this follows by its very definition as
gas(β, t) = et(e

−1
s (β)) (and the injectivity of es|Gε for all ε > 0). For h, this immediately follows

by inspecting the proof of Proposition 10.4, where hasγs(t) was uniquely defined (for t ∈ (0, 1)) as the
continuous version of the density of m̂as

α from (10.2) after conditioning it on e[0,1](γ) and pulling it

back to the interval [0, 1], where α ∈ Q1,ε was bijectively identified with γ ∈ Gε,1as via ηε; as Q1,ε and
Gε,1as clearly increase as ε decreases to 0, with ηε|Q1,ε′ = ηε

′
for 0 < ε < ε′, we verify that h indeed

does not depend on ε > 0.

Step 3. As the left-hand-side of (11.13) does not depend on t, it follows that for all s ∈ (0, 1) and
for qε,ss -a.e. as ∈ ϕs(es(Gε)) (both of which we fix for the time being), there exists a subset T ⊂ (0, 1)
of full L1 measure, so that for all H ⊂ Gεas :

T 3 t 7→
∫

es(H)
ρεt (g

as(β, t))(∂τ |τ=tΦ
τ
s(gas(β, t)))−1hasβ (t)`2s(β)mε,s

as (dβ)

is constant. As any Borel subset of es(Gas) may be written as es(H), equality of measures follows,
and hence equality of densities for mε,s

as -a.e. β. We have therefore proved that for t, t′ ∈ T :

ρεt′(γt′)(∂τ |τ=t′Φ
τ
s(γt′))

−1hasγs(t
′) = ρεt (γt)(∂τ |τ=tΦ

τ
s(γt))

−1hasγs(t), (11.14)
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for mε,s
as -a.e. β ∈ es(G

ε
as), where γ = γβ = e−1

s (β) = gas(β, ·) ∈ Gεas , with the exceptional set depending

on t, t′. Note that given t′ ∈ T , ∂τ |τ=t′Φ
τ
s(γβt′) indeed exists for mε,s

as -a.e. β ∈ es(G
ε
as) by Corollary

10.10 (2).
It follows that for all t ∈ T , for mε,s

as -a.e. β ∈ es(G
ε
as), (11.14) holds simultaneously for a countable

sequence t′ ∈ T t ⊂ T which is dense in (0, 1). Taking the limit in (11.14) as T t 3 t′ → s, using
Proposition 4.4 (5) which entails:

lim
T t3t′→s

∂τ |τ=t′Φ
τ
s(γβt′) = `s(γ

β
s )2 = `(γβ)2,

employing the continuity of (0, 1) 3 t′ 7→ hasγs(t
′), our normalization hasγs(s) = 1, and the continuity of

(0, 1) 3 t′ 7→ ρεt′(γt′) (as Gε is good), it follows that for all s ∈ (0, 1), for qε,ss -a.e. as ∈ ϕs(es(Gε)) and
L1-a.e. t ∈ (0, 1):

ρεs(γs)`(γ)−2 = ρεt (γt)(∂τ |τ=tΦ
τ
s(γt))

−1hasγs(t) (11.15)

for mε,s
as -a.e. β ∈ es(G

ε
as), with γ = e−1

s (β) ∈ Gεas .

Step 4. Recall that by Corollary 10.10 (2), mε,s
as and (es)]ν

ε
as are mutually absolutely continuous

for qε,ss -a.e. as ∈ ϕs(es(Gε)). It follows that for all s ∈ (0, 1), for qε,ss -a.e. as ∈ ϕs(es(Gε)) and L1-a.e.
t ∈ (0, 1), (11.15) holds for νas-a.e. γ. By Corollary 10.10 (1), note that qε,ss and qε,νs are mutually
absolutely continuous, and hence the disintegration formula (10.11) implies that for all s ∈ (0, 1) and
L1-a.e. t ∈ (0, 1):

ρεs(γs)`(γ)−2 = ρεt (γt)(∂τ |τ=tΦ
τ
s(γt))

−1hϕs(γs)γs (t),

for ν-a.e. γ ∈ Gε, and in particular that ∂τ |τ=tΦ
τ
s(γt) exists and is positive for those s, t and γ. Taking

the limit as ε→ 0 along a countable sequence, it follows for all s ∈ (0, 1), L1-a.e. t ∈ (0, 1) and ν-a.e.
γ ∈ G+

ϕ , that:

ρs(γs)`(γ)−2 = ρt(γt)(∂τ |τ=tΦ
τ
s(γt))

−1hϕs(γs)γs (t),

thereby concluding the proof of (11.10). As a consequence, an application of Fubini’s Theorem verifies
that for ν-a.e. γ ∈ G+

ϕ , (11.10) holds for L1-a.e. s, t ∈ (0, 1).

Remark 11.5. Observe that all of the results of this section also equally hold for Φ̄t
s in place of

Φt
s. Indeed, recall that for all x ∈ X, Φt

s(x) = Φ̄t
s(x) for t ∈ G̊ϕ(x), and that by Corollary 4.5,

∂tΦ
t
s(x) = ∂tΦ̄

t
s(x) for a.e. t ∈ G̊ϕ(x). As these were the only two properties used in the above

derivation (in particular, in Step 2 of the proof of Theorem 11.3), the assertion follows.

Part III

Putting it all together

12 Combining Change-of-Variables Formula with Kantorovich 3rd
order information

Let (X, d,m) denote an essentially non-branching m.m.s. verifying CD1(K,N). Let µ0, µ1 ∈ P2(X, d,m),
and let ν be the unique element of OptGeo(µ0, µ1) (by Proposition 8.9, Remark 8.11 and Theorem
6.15). Recall that µt := (et)]ν � m for all t ∈ [0, 1], and we subsequently denote by ρt the versions of
the corresponding densities given by Theorem 11.4 (resulting from Corollary 9.5). Finally, denote by ϕ
a Kantorovich potential associated to the corresponding optimal transference plan, so that ν(Gϕ) = 1.
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12.1 Change-of-Variables Rigidity

Recall that by the Change-of-Variables Theorem 11.4, we know that for ν-a.e. geodesic γ ∈ G+
ϕ and

for a.e. t, s ∈ (0, 1), ∂τ |τ=tΦ
τ
s(γt) exists, is positive, and it holds that:

ρs(γs)

ρt(γt)
=

h
ϕs(γs)
γs (t)

∂τ |τ=tΦτ
s(γt)/`(γ)2

. (12.1)

In fact, by Remark 11.5, the same also holds with Φ̄ in place of Φ, so that in particular:

∂τ |τ=tΦ
τ
s(γt) = ∂τ |τ=tΦ̄

τ
s(γt) for ν-a.e. γ ∈ G+

ϕ for a.e. t, s ∈ (0, 1). (12.2)

Recall that given t, s ∈ (0, 1), for Φ̃ = Φ, Φ̄ and ˜̀= `, ¯̀, respectively, Φ̃t
s was defined on D˜̀ as:

Φ̃t
s = ϕ̃t + (t− s)

˜̀2
t

2
,

and that by Proposition 4.4 (2), the differentiability points of t 7→ Φ̃t
s(x) and t 7→ ˜̀2

t (x) coincide for
all t 6= s, and at those points:

∂tΦ̃
t
s(x) = ˜̀2

t (x) + (t− s)∂t
˜̀2
t

2
(x). (12.3)

It follows from (12.2) that for ν-a.e. geodesic γ ∈ G+
ϕ and for a.e. t ∈ (0, 1):

∃∂τ |τ=t
`2τ
2

(γt) , ∃∂τ |τ=t

¯̀2
τ

2
(γt) , ∂τ |τ=t

`2τ
2

(γt) = ∂τ |τ=t

¯̀2
τ

2
(γt). (12.4)

Alternatively, (12.4) follows directly by Lemma 5.6, in fact for ν-a.e. γ (not just γ ∈ G+
ϕ ).

Plugging (12.3) and (12.4) into (12.1), it follows that we may express the Change-of-Variables
Theorem 11.4 as the statement that for ν-a.e. geodesic γ ∈ G+

ϕ , we have:

ρs(γs)

ρt(γt)
=

h
ϕs(γs)
γs (t)

1 + (t− s)∂τ |τ=t`
2
τ/2(γt)

`(γ)2

=
h
ϕs(γs)
γs (t)

1 + (t− s)∂τ |τ=t
¯̀2
τ/2(γt)

`(γ)2

for a.e. t, s ∈ (0, 1). (12.5)

Note that the denominators on the right-hand-side of (12.5) are always positive (when defined) for
all t, s ∈ (0, 1) by Theorem 3.11 (3). Fixing the geodesic γ, we denote for brevity ρ(t) := ρt(γt),

hs(t) := h
ϕs(γs)
γs (t) and K0 := K · `(γ)2. We then have the following additional information for ν-a.e.

γ ∈ G+
ϕ , by Corollary 9.5 and Proposition 10.4, respectively:

(A) (0, 1) 3 t 7→ ρ(t) is locally Lipschitz and strictly positive.

(B) For all s ∈ (0, 1), hs is a CD(K0, N) density on [0, 1], satisfying hs(s) = 1. In particular, it is
locally Lipschitz continuous on (0, 1) and strictly positive there.

Remark 12.1. It is in fact possible to deduce (A) just from the Change-of-Variables formula (12.5) and
without referring to Corollary 9.5. This may be achieved by a careful bootstrap argument, exploiting
the separation of variables on the left-hand-side of (12.5) and the a-priori estimates of Lemma A.9 in
the Appendix on the logarithmic derivative of CD(K0, N) densities. But since we already know (A),
and since (A) was actually (mildly) used in the proof of the Change-of-Variables Theorem 11.4, we only
mention this possibility in passing. Note that Corollary 9.5 applies to all MCP(K,N) essentially non-
branching spaces, whereas the Change-of-Variables formula requires knowing the stronger CD1(K,N)
condition.
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Fix a geodesic γ ∈ G+
ϕ satisfying (12.5), (A) and (B) above. Let I ⊂ (0, 1) be the set of full

measure where (12.5) holds for all s ∈ I. It follows from (12.5) that for all s ∈ I, t 7→ ∂τ |τ=t ˜̀2τ/2(γt)
`(γ)2

coincide a.e. on (0, 1) for both ˜̀ = `, ¯̀ with the same locally Lipschitz function t 7→ zs(t) defined on
(0, 1) \ {s}:

zs(t) :=

1
ρs(γs)

h
ϕs(γs)
γs (t)ρt(γt)− 1

t− s
.

By continuity, it follows that the functions {zs}s∈I must all coincide on their entire domain of definition
with a single function t 7→ z(t) defined on (0, 1); the latter function must therefore be locally Lipschitz
continuous, and satisfy:

z(t) =
∂τ |τ=t`

2
τ/2(γt)

`(γ)2
=
∂τ |τ=t

¯̀2
τ/2(γt)

`(γ)2
for a.e. t ∈ (0, 1). (12.6)

By Theorem 5.5, which provides us with 3rd order information on intermediate-time Kantorovich
potentials, we obtain the following additional information on z:

(C) (0, 1) 3 t 7→ z(t) is locally Lipschitz.
For any δ ∈ (0, 1/2), there exists Cδ > 0 so that:

z(t)− z(s)
t− s

≥ (1− Cδ(t− s)) |z(s)| |z(t)| ∀0 < δ ≤ s < t ≤ 1− δ < 1.

In particular, z′(t) ≥ z2(t) for a.e. t ∈ (0, 1).

Remark 12.2. By Theorem 5.5, we obtain the following interpretation for z(t) – it coincides for all
t ∈ (0, 1) with the second Peano derivative of τ 7→ ϕτ (γt) and of τ 7→ ϕ̄τ (γt) at τ = t. In particular,
these second Peano derivatives are guaranteed to exist for all t ∈ (0, 1) and are a continuous function
thereof.

We have already seen above how (12.5) enabled us to deduce (12.6), thereby gaining (by Theorem
5.5) an additional order of regularity for ∂τ |τ=t`

2
τ/2(γ(t)). The purpose of this section is to show that

the combination of the Change-of-Variables Formula:

ρ(s)

ρ(t)
=

hs(t)

1 + (t− s)z(t)
for a.e. t, s ∈ (0, 1), (12.7)

together with properties (A), (B) and (C) above, forms a very rigid condition, and already implies
the following representation for 1

ρt(γt)
; we formulate this independently of the preceding discussion as

follows:

Theorem 12.3 (Change-of-Variables Rigidity). Assume that (12.7) holds, where ρ, {hs} and z satisfy
(A), (B) and (C) above. Then:

1

ρ(t)
= L(t)Y (t) ∀t ∈ (0, 1),

where L is concave and Y is a CD(K0, N) density on (0, 1).

12.2 Formal Argument

To better motivate the ensuing proof of Theorem 12.3, we begin with a formal argument.
Assume that the functions ρ and z are C2 smooth and that equality holds in (12.7) for all t, s ∈

(0, 1). It follows that the mapping (s, t) 7→ hs(t) is also C2 smooth. Fix any r0 ∈ (0, 1), and define
the functions L and Y by:

logL(r) := −
∫ r

r0

z(s)ds , log Y (r) :=

∫ r

r0

∂t|t=s log hs(t)ds.
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Note that by (12.7):

log
ρ(r0)

ρ(r)
=

∫ r

r0

∂t|t=s log
ρ(s)

ρ(t)
ds

=

∫ r

r0

∂t|t=s log hs(t)ds−
∫ r

r0

∂t|t=s log(1 + (t− s)z(t))ds = log Y (r) + logL(r).

As already noted in Lemma 5.7, the concavity of L follows from (C), since:

L′′

L
= (logL)′′ + ((logL)′)2 = −z′ + z2 ≤ 0.

The more interesting function is Y . We have for all r ∈ (0, 1):

(log Y )′(r) = ∂t|t=r log hr(t),

(log Y )′′(r) = ∂2
t |t=r log hr(t) + ∂s∂t|t=s=r log hs(t).

To handle the last term on right-hand-side above, note that by the separation of variables on the
left-hand-side of (12.7), we have by (C) again, after taking logarithms and calculating the partial
derivatives in t and s:

∂s∂t|t=s=r log hs(t) = ∂s∂t|t=s=r log(1 + (t− s)z(t)) = −z′(r) + z2(r) ≤ 0. (12.8)

We therefore conclude that for all r ∈ (0, 1):

(log Y )′′(r) +
((log Y )′(r))2

N − 1
≤ ∂2

t |t=r log hr(t) +
(∂t|t=r log hr(t))

2

N − 1
≤ −K0,

where the last inequality follows from (B) and the differential characterization of CD(K0, N) densities
(applied to hr(t) at t = r). Applying the characterization again, we deduce that Y is a (C2-smooth)
CD(K0, N) density on (0, 1). This concludes the formal proof that:

ρ(r0)

ρ(r)
= L(r)Y (r) ∀r ∈ (0, 1),

with L and Y satisfying the desired properties. In a sense, the latter argument has been tailored
to “reverse-engineer” the smooth Riemannian argument, where the separation to orthogonal and
tangential components of the Jacobian is already encoded in the Jacobi equation, (B) is a consequence
of the corresponding Riccati equation, and (C) is a consequence of Cauchy–Schwarz (cf. [74, Proof of
Theorem 1.7]).

12.3 Rigorous Argument

It is surprisingly very tedious to modify the above formal argument into a rigorous one. It seems that
an approximation argument cannot be avoided, since the definition of Y above is inherently differential,
and so on one hand we do not know how to check the CD(K0, N) condition for Y synthetically, but on
the other hand Y is not even differentiable, so it is not clear how to check the CD(K0, N) condition by
taking derivatives. The main difficulty in applying an approximation argument here stems from the
fact that we do not know how to approximate {hs} and z by smooth functions {hεs} and zε, so that
simultaneously:

- {hεs} are CD(K0 − ε,N) densities ;

- zε is a function of t only, and not of s ;

- and the separation of variables structure of (12.7) is preserved.
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Our solution is to note that the main role of the separation of variables in the above formal argument
was to ensure that (12.8) holds, and so we will replace the rigid third requirement with the following
relaxed one:

- ∂s∂t|t=s=r log hεs(t) ≤ Bδε for all r ∈ [δ, 1− δ] and δ > 0.

Proof of Theorem 12.3.
Step 1 - Redefining hs(t).
First, observe that there exists Iy ⊂ (0, 1) of full measure so that for all s ∈ Iy, (12.7) is satisfied for
a.e. t ∈ (0, 1), and hence for all t ∈ (0, 1), since all the functions ρ, {hs} and z are assumed to be
continuous on (0, 1). Unfortunately, we cannot extend this to all s ∈ (0, 1) as well, since there may be
a null set of s’s for which the densities hs(t) do not comply at all with the equation (12.7). To remedy
this, we simply force (12.7) to hold for all s, t ∈ (0, 1) by defining:

h̃s(t) :=
ρ(s)

ρ(t)
(1 + (t− s)z(t)) s, t ∈ (0, 1), (12.9)

and claim that for all s ∈ (0, 1), h̃s is a CD(K0, N) density on (0, 1). Indeed, for s ∈ Iy, h̃s = hs and
there is nothing to check. If s0 ∈ (0, 1) \ Iy, simply note that h̃s(t) is locally Lipschitz in s ∈ (0, 1)
(since ρ(s) is), and hence:

h̃s0(t) = lim
s→s0

h̃s(t) = lim
Iy3s→s0

h̃s(t) = lim
Iy3s→s0

hs(t) ∀t ∈ (0, 1).

But the family of CD(K0, N) densities on (0, 1) is clearly closed under pointwise limits (it is charac-
terized by a family of inequalities between 3 points), and so h̃s0 is a CD(K0, N) density, as asserted.

Step 2 - Properties of z and {h̃s}.
We next collect several additional observations regarding the functions z and {h̃s}. Recall that ρ (by
assumption) and h̃s (as CD(K0, N) densities) are strictly positive in (0, 1). Together with (12.9) (or
directly from (12.7)), this implies that 1 + (t− s)z(t) > 0 for all t, s ∈ (0, 1), and hence:

(D) −1
t ≤ z(t) ≤

1
1−t ∀t ∈ (0, 1).

In fact, we already knew this by Theorem 3.11 (3) but refrained from including this into our assumption
(C) since this is a consequence of the other assumptions. Furthermore:

(E) Ix := {t ∈ (0, 1) ; τ 7→ h̃s(τ) is differentiable at τ = t for all s ∈ (0, 1)} is of full measure.

Indeed, this follows directly from the definition (12.9) by considering the set all points t where ρ(t)
and z(t) are differentiable. In addition, we clearly have:

(F) ∀t ∈ Ix, (0, 1) 3 s 7→ ∂th̃s(t) is continuous.

Step 3 - Defining L and Y .
Now fix r0 ∈ (0, 1), and define the functions L, Y on (0, 1) as follows:

logL(r) := −
∫ r

r0

z(s)ds , log Y (r) :=

∫ r

r0

∂t|t=s log h̃s(t)ds.

Clearly, the function L is well defined for all r ∈ (0, 1) as z is assumed locally Lipschitz. As for
the function Y , (E) implies that ∂t|t=s log h̃s(t) exists for a.e. s ∈ (0, 1), and the fact that the
latter integrand is locally integrable on (0, 1) is a consequence of Lemma A.9 in the Appendix, which
guarantees a-priori locally-integrable estimates on the logarithmic derivative of CD(K0, N) densities.

Consequently, as in our formal argument, we may write (since log ρ is locally absolutely continuous
on (0, 1)):

log
ρ(r0)

ρ(r)
=

∫ r

r0

∂t|t=s log
ρ(s)

ρ(t)
ds
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=

∫ r

r0

∂t|t=s log h̃s(t)ds−
∫ r

r0

∂t|t=s log(1 + (t− s)z(t))ds = log Y (r) + logL(r),

and hence:
ρ(r0)

ρ(r)
= L(r)Y (r) ∀r ∈ (0, 1).

We have already verified in Lemma 5.7 that the property z′(s) ≥ z2(s) a.e. in s ∈ (0, 1) implies that
L is concave on (0, 1), so it remains to show that Y is a CD(K0, N) density on (0, 1).

Step 4 - Approximation argument.
We now arrive to our approximation argument. Given ε1, ε2 > 0, t ∈ (ε1, 1− ε1) and s ∈ (ε2, 1− ε2),
define the double logarithmic mollification of h̃s(t) by:

log h̃ε1,ε2s (t) :=

∫ ∫
log h̃y(x)ψε1(t− x)ψε2(s− y)dxdy,

where ψε(x) = 1
εψ(x/ε) and ψ is a C2-smooth non-negative function on R supported on [−1, 1] and

integrating to 1. Since for all η ∈ (0, 1/2), we clearly have by (12.9) (and, say, (D)):∫ 1−η

η

∫ 1−η

η

∣∣∣log h̃y(x)
∣∣∣ dxdy <∞,

it follows by Proposition A.12 in the Appendix on logarithmic convolutions that {h̃ε1,ε2s (t)}s∈(ε2,1−ε2)

is a C2-smooth (in (t, s)) family of CD(K0, N) densities on (ε1, 1− ε1).

Step 5 - Concluding the proof assuming (H1) and (H2).
We will subsequently show the following two additional properties of the family {hε1,ε2s (t)}:

(H1) limε2→0 limε1→0 ∂t|t=s log h̃ε1,ε2s (t) = ∂t|t=s log h̃s(t) for a.e. s ∈ (0, 1).

(H2) ∀δ ∈ (0, 1/2) ∃Cδ > 0 ∀ε ∈ (0, δ8 ] ∀ε1, ε2 ∈ (0, ε]:

∂s∂t|t=s=r log h̃ε1,ε2s (t) ≤ 2Cδε ∀r ∈ [δ, 1− δ].

Assuming these additional properties, let us show how to conclude the proof of Theorem 12.3. Set
ε = max(ε1, ε2), and assuming that ε < min(r0, 1 − r0), define the function Y ε1,ε2 on (ε, 1 − ε) given
by:

log Y ε1,ε2(r) :=

∫ r

r0

∂t|t=s log h̃ε1,ε2s (t)ds.

First, we claim to have the following pointwise convergence for all r ∈ (0, 1):

lim
ε2→0

lim
ε1→0

log Y ε1,ε2(r) = lim
ε2→0

lim
ε1→0

∫ r

r0

∂t|t=s log h̃ε1,ε2s (t)ds =

∫ r

r0

∂t|t=s log h̃s(t)ds = log Y (r).

(12.10)
Indeed, the pointwise convergence of the integrands is ensured by property (H1), and as soon as
r0, r ∈ (η, 1 − η) for some η > 0, we obtain by the a-priori estimates of Lemma A.9 in the Appendix
(since h̃ε1,ε2s is a CD(K0, N) density on (η, 1− η) for all ε1, ε2 ∈ (0, η] and s ∈ (η, 1− η)):

∀t, s ∈ [r0, r] ∀ε1, ε2 ∈ (0, η]
∣∣∣∂t log h̃ε1,ε2s (t)

∣∣∣ ≤ C(r, r0, η,K0, N).

Consequently, (12.10) follows by Lebesgue’s Dominated Convergence theorem.

Now Y ε1,ε2 is C2-smooth, and so as in our formal argument, we have for all r ∈ (ε, 1− ε):

(log Y ε1,ε2)′(r) = ∂t|t=r log h̃ε1,ε2r (t),

(log Y ε1,ε2)′′(r) = ∂2
t |t=r log h̃ε1,ε2r (t) + ∂s∂t|t=s=r log h̃ε1,ε2s (t).
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As h̃ε1,ε2r is a CD(K0, N) density on (ε, 1 − ε), we know by the differential characterization of such
densities that:

∂2
t |t=r log h̃ε1,ε2r (t) +

1

N − 1
(∂t|t=r log h̃ε1,ε2r (t))2 ≤ −K0.

Combining this with property (H2), we conclude that for any δ ∈ (0, 1/2), whenever ε = max(ε1, ε2) ∈
(0,min(r0, 1− r0,

δ
8)):

(log Y ε1,ε2)′′(r) +
1

N − 1
((log Y ε1,ε2)′(r))2 ≤ −K0 + 2Cδε ∀r ∈ [δ, 1− δ],

and hence Y ε1,ε2 is a C2-smooth CD(K0 − 2Cδε,N) density on [δ, 1− δ].
Combining all of the preceding information, since (as before) the family of CD(K ′0, N) densities

is closed under pointwise limits, we conclude from (12.10) that Y is a CD(K0 − 2Cδε,N) density on
[δ, 1 − δ], for any δ ∈ (0, 1/2) and ε ∈ (0,min(r0, 1 − r0,

δ
8)). Taking the limit as ε → 0 and then as

δ → 0, we confirm that Y must be a CD(K0, N) density on (0, 1), concluding the proof.

It remains to establish properties (H1) and (H2).

Step 6 - proof of (H1).
Given y ∈ (0, 1) and t ∈ (ε1, 1− ε1), denote:

log h̃ε1y (t) :=

∫
log h̃y(x)ψε1(t− x)dx,

so that for every s ∈ (ε2, 1− ε2):

log h̃ε1,ε2s (t) =

∫
log h̃ε1y (t)ψε2(s− y)dy. (12.11)

By Proposition A.10 in the Appendix, h̃ε1y is a CD(K0, N) density on (ε1, 1 − ε1) for all y ∈ (0, 1).

Consequently, Lemma A.9 implies that t 7→ log h̃ε1y (t) is locally Lipschitz on (ε1, 1− ε1), uniformly in
y ∈ (0, 1):

sup
y∈(0,1)

∣∣∣∂t log h̃ε1y (t)
∣∣∣ ≤ C(t, ε1,K0, N). (12.12)

In particular, it follows that we may differentiate in t under the integral in (12.11) at any t0 ∈
(ε1, 1− ε1):

∂t|t=t0 log h̃ε1,ε2s (t) =

∫
∂t|t=t0 log h̃ε1y (t)ψε2(s− y)dy. (12.13)

Now, by a standard argument (see Lemma 12.5 at the end of this section), we know that the
derivative of an ε-mollification of a Lipschitz function converges to the derivative itself, at all points
where the derivative exists, namely:

∀t0 ∈ Ix ∀y ∈ (0, 1) lim
ε1→0

∂t|t=t0 log h̃ε1y (t) = ∂t|t=t0 log h̃y(t).

Together with (12.12) and (12.13), it follows by Dominated Convergence theorem that:

∀t0 ∈ Ix ∀s ∈ (ε2, 1− ε2) lim
ε1→0

∂t|t=t0 log h̃ε1,ε2s (t) =

∫
∂t|t=t0 log h̃y(t)ψε2(s− y)dy.

But by property (F), we know that (0, 1) 3 y 7→ ∂t|t=t0 log h̃y(t) is continuous for all t0 ∈ Ix, and
therefore taking the limit as ε2 → 0:

∀t0 ∈ Ix ∀s ∈ (0, 1) lim
ε2→0

lim
ε1→0

∂t|t=t0 log h̃ε1,ε2s (t) = ∂t|t=t0 log h̃s(t).

By property (E), Ix has full measure, thereby concluding the proof of (an extension of) property (H1).

Step 7 - proof of (H2).
We will require the following:
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Lemma 12.4. Let z satisfy (C) and (D). Then for all δ ∈ (0, 1/2), there exists Cδ > 0, so that for
all ε ∈ (0, δ4 ], r ∈ [δ, 1− δ], r − ε ≤ t1 < t2 ≤ r + ε and r − ε ≤ s1 < s2 ≤ r + ε, we have:

(1 + (t1 − s1)z(t1))(1 + (t2 − s2)z(t2))

≤ (1 + Cδε(t2 − t1)(s2 − s1))(1 + (t2 − s1)z(t2))(1 + (t1 − s2)z(t1)).

Proof. Opening the various brackets, the assertion is equivalent to the statement:

z(t1)(s2 − s1)− z(t2)(s2 − s1) + z(t1)z(t2)(t2 − t1)(s2 − s1)

≤ Cδε(t2 − t1)(s2 − s1)(1 + (t2 − s1)z(t2))(1 + (t1 − s2)z(t1)),

and after dividing by (t2 − t1)(s2 − s1), we see that our goal is to establish:

z(t1)z(t2)− z(t2)− z(t1)

t2 − t1
≤ Cδε(1 + (t2 − s1)z(t2))(1 + (t1 − s2)z(t1)), (12.14)

for an appropriate Cδ. Note that the right-hand-side of (12.14) is always positive by (D). As min(ti, 1−
ti) ≥ δ − ε ≥ 3

4δ, by our assumption (C), (12.14) would follow from:

|z(t1)| |z(t2)|B 3
4
δ2ε ≤ Cδε(1− 2ε |z(t2)|)(1− 2ε |z(t1)|),

or equivalently (assuming |z(t1)| |z(t2)| > 0, otherwise there is nothing to prove):

2B 3
4
δ ≤ Cδ

(
1

|z(t1)|
− 2ε

)(
1

|z(t2)|
− 2ε

)
. (12.15)

But 1
|z(ti)| ≥ min(ti, 1− ti) ≥ 3

4δ by (D), and as ε ∈ (0, δ4 ], we see that (12.15) is ensured by setting:

Cδ :=
32

δ2
B 3

4
δ.

Translating the statement of Lemma 12.4 into a statement for h̃s(t) using (12.9), we obtain that
for all δ ∈ (0, 1/2), there exists Cδ > 0, so that for all ε ∈ (0, δ8 ], r ∈ [δ, 1− δ], r − ε ≤ t, s ≤ r + ε and
∆t,∆s ∈ [0, ε], we have:

log h̃s(t) + log h̃s+∆s(t+ ∆t) ≤ log h̃s(t+ ∆t) + log h̃s+∆s(t) + 2Cδε ∆t ∆s.

Integrating the above in t against ψε1(r− t) and in s against ψε2(r− s) with ε1, ε2 ∈ (0, ε], we obtain
that under the same assumptions as above:

log h̃ε1,ε2r (r) + log h̃ε1,ε2r+∆s(r + ∆t) ≤ log h̃ε1,ε2r (r + ∆t) + log h̃ε1,ε2r+∆s(r) + Cδε ∆t ∆s.

Exchanging sides, dividing by ∆t > 0 and taking limit as ∆t → 0, and then dividing by ∆s > 0 and
taking limit as ∆s→ 0, we obtain precisely:

∂s∂t|t=s=r log h̃ε1,ε2s (t) ≤ 2Cδε,

thereby confirming (H2).

For completeness, we provide a proof of the following lemma, used in Step 6 above.

Lemma 12.5. Let f be a locally Lipschitz function on an open interval I ⊂ R. Let ψ denote a C1-
smooth compactly supported function on R which integrates to 1. Denote by ψε(x) = 1

εψ(x/ε), ε > 0,
the corresponding family of mollifiers. Then:

lim
ε→0

(f ∗ ψε)′(x) = f ′(x),

at all points x ∈ I where f is differentiable.
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Proof. Without loss of generality, assume that 0 ∈ I, that f is differentiable at 0 and that f(0) = 0.
Assume that ψ is supported in [−M,M ], and let ε > 0 be small enough so that [−Mε,Mε] ⊂ I. Then:

(f ∗ ψε)′(0) =
d

dx

∣∣∣∣
x=0

∫
f(x+ y)ψε(y)dy =

∫
f ′(y)ψε(y)dy,

where the differentiation under the integral is justified since f is locally Lipschitz. Integrating by parts
(which is justified as fψε is absolutely continuous), we obtain:

(f ∗ ψε)′(0) = −
∫ Mε

−Mε
f(y)ψ′ε(y)dy = −

∫ M

−M

f(εz)

εz
zψ′(z)dz.

But for each z ∈ [−M,M ] \ {0}, limε→0
f(εz)
εz = f ′(0), and since f is Lipschitz on [−εM, εM ], we

obtain by Lebesgue’s Dominated Convergence Theorem that:

lim
ε→0

(f ∗ ψε)′(0) = −
∫ M

−M
f ′(0)zψ′(z)dz = f ′(0)

∫ M

−M
ψ(z)dz = f ′(0),

as asserted.

13 Final Results

In this final section, we combine the results obtained in Parts I, II and the previous section, establishing
at last the Main Theorem 1.1 and the globalization theorem for the CD(K,N) condition. We also
treat the case of an infinitesimally Hilbertian space.

Throughout this section, recall that we assume K ∈ R and N ∈ (1,∞).

13.1 Proof of the Main Theorem 1.1

Theorem 13.1. Let (X, d,m) be an essentially non-branching m.m.s. , so that (supp(m), d) is a length
space. Then:

CDloc(K,N)⇒ CD1
Lip(K,N).

Proof. By Remark 6.11, (X, d,m) satisfies CDloc(K,N) if and only if (supp(m), d,m) does. By Remark
8.8, the same is true for CD1

Lip(K,N). Consequently, we may assume that supp(m) = X. By Lemma
6.12 we deduce that (X, d) is proper and geodesic (note that this would be false without the length
space assumption above). Note that for geodesic essentially non-branching spaces, it is known that
CDloc(K,N) implies MCP(K,N) – see [30] for a proof assuming non-branching, but the same proof
works under essentially non-branching, see the comments after [29, Corollary 5.4]. Consequently, the
results of Section 7 apply.

Recall that given a 1-Lipschitz function u : X → R, the equivalence relation Rbu on the transport
set T bu induces a partition {Rbu(α)}α∈Q of T bu . By Corollary 7.3, we know that m(Tu \ T bu ) = 0 with
associated strongly consistent disintegration:

mxTu= mxT bu=

∫
Q
mα q(dα), with mα(Rbu(α)) = 1, for q-a.e. α ∈ Q.

It was proved in [27] that the CDloc(K,N) condition ensures that for q-a.e. α ∈ Q, (Rbu(α), d,mα)

verifies CD(K,N) with supp(mα) = Rbu(α). Denoting by Xα the closure Rbu(α), Theorem 7.10 ensures
that Xα coincides with the transport ray Ru(α) for q-a.e. α ∈ Q. Consequently, all 4 conditions of
the CD1

u(K,N) Definition 8.1 are verified, and the assertion follows.
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Theorem 13.2. Let (X, d,m) be an essentially non-branching m.m.s. Then:

CD1(K,N)⇒ CD(K,N).

Proof. By Remark 8.8, (X, d,m) satisfies CD1(K,N) if and only if (supp(m), d,m) does. By Remark
6.11, the same is true for CD(K,N). Consequently, we may assume that supp(m) = X.

By Proposition 8.9 and Remark 8.11, X also verifies MCP(K,N), and so Theorem 6.15 applies.
Given µ0, µ1 ∈ P2(X, d,m), consider the unique ν ∈ OptGeo(µ0, µ1), and denote µt := (et)](ν) � m
for all t ∈ [0, 1]. Let ρt := dµt/dm denote the versions of the densities guaranteed by Corollary 9.5.

Denote an associated Kantorovich potential by ϕ, and recall that ν is concentrated on Gϕ =
G+
ϕ ∪G0

ϕ, where G+
ϕ and G0

ϕ denote the subsets of positive and zero length ϕ-Kantorovich geodesics,
respectively. The change-of-variables Theorem 11.4 and Proposition 4.4 yield that for ν-a.e. geodesic
γ ∈ G+

ϕ :

ρs(γs)

ρt(γt)
=

h
ϕs(γs)
γs (t)

1 + (t− s)∂τ |τ=t`
2
τ/2(γt)

`(γ)2

=
h
ϕs(γs)
γs (t)

1 + (t− s)∂τ |τ=t
¯̀2
τ/2(γt)

`(γ)2

for a.e. t, s ∈ (0, 1). (13.1)

where for all s ∈ (0, 1), hs = h
ϕs(γs)
γs is a CD(K0, N) density, with K0 = `2(γ)K and hs(s) = 1.

Together with Corollary 9.5, which ensures the Lipschitz regularity (and positivity) of (0, 1) 3 t 7→
ρt(γt), this verifies assumptions (A) and (B) of Theorem 12.3. As explained in Section 12, the 3rd
order information on the Kantorovich potential ϕ asserted by Theorem 5.5 verifies assumption (C) of
Theorem 12.3. It follows by Theorem 12.3 (and the discussion preceding it) that the rigidity of (13.1)
necessarily implies that for those γ ∈ G+

ϕ satisfying (13.1), it holds:

1

ρt(γt)
= L(t)Y (t) ∀t ∈ (0, 1),

where L is concave and Y is a CD(K0, N) density on (0, 1). Noting that σ
(α)
K0,N

(θ) = σ
(α)
K,N (θ`(γ)),

we obtain by a standard application of Hölder’s inequality that for any t0, t1 ∈ (0, 1), α ∈ [0, 1] and
tα = αt1 + (1− α)t0:

ρ
− 1
N

tα (γtα) = L
1
N (tα)Y

1
N (tα)

≥
(
αL(t1) + (1− α)L(t0)

) 1
N ·
(
σ

(α)
K0,N−1(|t1 − t0|)Y

1
N−1 (t1) + σ

(1−α)
K0,N−1(|t1 − t0|)Y

1
N−1 (t0)

)N−1
N

≥ α
1
N σ

(α)
K0,N−1(|t1 − t0|)

N−1
N L

1
N (t1)Y

1
N (t1) + (1− α)

1
N σ

(1−α)
K0,N−1(|t1 − t0|)

N−1
N L

1
N (t0)Y

1
N (t0)

= α
1
N σ

(α)
K,N−1(|t1 − t0| `(γ))

N−1
N ρ

− 1
N

t1
(γt1) + (1− α)

1
N σ

(1−α)
K,N−1(|t1 − t0| `(γ))

N−1
N ρ

− 1
N

t0
(γt0)

= τ
(α)
K,N (d(γt0 , γt1))ρ

− 1
N

t1
(γt1) + τ

(1−α)
K,N (d(γt0 , γt1))ρ

− 1
N

t0
(γt0). (13.2)

Using the upper semi-continuity of t 7→ ρt(γt) at the end-points t = 0, 1 ensured by Corollary 9.5 (as
both µ0, µ1 � m), we conclude that for ν-a.e. γ ∈ G+

ϕ , the previous inequality in fact holds for all
t0, t1 ∈ [0, 1]. In particular, for t0 = 0, t1 = 1 and all α ∈ [0, 1]:

ρ−1/N
α (γα) ≥ τ (α)

K,N (d(γ0, γ1))ρ
− 1
N

1 (γ1) + τ
(1−α)
K,N (d(γ0, γ1))ρ

− 1
N

0 (γ0). (13.3)

As for null-geodesics γ ∈ G0
ϕ (having zero length), note that τ

(s)
K,N (0) = s and that [0, 1] 3 t 7→ ρt(γt)

remains constant by Theorem 11.4, and therefore (13.3) holds trivially with equality for all γ ∈ G0
ϕ.

In conclusion, (13.3) holds for ν-a.e. geodesic γ, thereby confirming the validity of Definition 6.7 and
verifying CD(K,N).

As an immediate consequence of the previous two theorems, we obtain the Local-to-Global Theo-
rem for the Curvature-Dimension condition.
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Theorem 13.3. Let (X, d,m) be an essentially non-branching m.m.s. so that (supp(m), d) is a length
space. Then:

CDloc(K,N) ⇐⇒ CD(K,N).

Remark 13.4. It is clear that the above globalization theorem is false without some global assumption
ultimately ensuring that (supp(m), d) is geodesic. Indeed, simply consider a CD(K,N) space, and
restrict it to two disjoint geodesically-convex closed subsets of (supp(m), d) (each having positive
measure) – the resulting space clearly satisfies CDloc(K,N) but not CD(K,N); it is also easy to
construct similar examples where (supp(m), d) is connected. In addition, as already mentioned in
the Introduction, the globalization theorem is known to be false without some type of non-branching
assumption (see [67]).

As an interesting byproduct, we also obtain that CD1 and CD1
Lip are equivalent conditions on

essentially non-branching spaces:

Corollary 13.5. Let (X, d,m) be an essentially non-branching m.m.s. Then:

CD(K,N) ⇐⇒ CD1(K,N) ⇐⇒ CD1
Lip(K,N).

Proof. CD1
Lip(K,N) is by definition stronger than CD1(K,N), which in turn implies CD(K,N) by

Theorem 13.2. But CD(K,N) implies its local version CDloc(K,N), as well as that (supp(m), d) is
geodesic by Lemma 6.12. The cycle is then closed by Theorem 13.1.

Finally, we deduce a complete equivalence between the reduced and the classic Curvature-Dimension
conditions on essentially non-branching spaces. Recall that the reduced version CD∗(K,N), introduced
in [14] (in the non-branching setting), is defined exactly in the same manner as CD(K,N), with the

only (crucial) difference being that one employs the slightly smaller σ
(t)
K,N (θ) coefficients instead of the

τ
(t)
K,N (θ) ones in Definition 6.4.

Corollary 13.6. Let (X, d,m) be an essentially non-branching m.m.s. Then:

CD∗(K,N) ⇐⇒ CD(K,N).

Proof. By definition CD(K,N) is stronger than CD∗(K,N) (see [14, Proposition 2.5 (i)]). For the
converse implication, note that CD∗(K,N) implies that (supp(m), d) is proper and geodesic, by ver-
batim repeating the proof of Lemma 6.12. Then we observe that CD∗(K,N)⇒ CDloc(K

−, N), where
CDloc(K

−, N) denotes that (X, d,m) verifies CDloc(K
′, N) for every K ′ < K (with the open neighbor-

hoods possibly depending on K ′). For non-branching spaces, this was proved in [14, Proposition 5.5]
(see also [34, Lemma 2.1]), but the proof does not rely on any non-branching assumptions. Then, by
Theorem 13.3, we obtain CD(K ′, N) for any K ′ < K. Finally, by uniqueness of dynamical plans (see

Theorem 6.15 and Lemma 6.13) and continuity of τ
(t)
K′,N (θ) in K ′, the claim follows.

13.2 RCD(K,N) spaces

We also mention the more recent Riemannian Curvature Dimension condition RCD∗(K,N). In the
infinite dimensional case N =∞, it was introduced in [7] for finite measures m and in [4] for σ-finite
ones. The class RCD∗(K,N) with N < ∞ has been proposed in [40] and extensively investigated in
[8, 35, 11]. We refer to these papers and references therein for a general account on the synthetic
formulation of the latter Riemannian-type Ricci curvature lower bounds. Here we only briefly recall
that it is a strengthening of the reduced Curvature Dimension condition: a m.m.s. verifies RCD∗(K,N)
if and only if it satisfies CD∗(K,N) and is infinitesimally Hilbertian [40, Definition 4.19 and Proposition
4.22], meaning that the Sobolev spaceW 1,2(X,m) is a Hilbert space (with the Hilbert structure induced
by the Cheeger energy). Recall also that the local-to-global property for the RCD∗(K,N) condition
(say for length spaces of full support) has already been established for N = ∞ in [7, Theorem 6.22]
for non-branching spaces with finite second moment, for N < ∞ in [35, Theorems 3.17 and 3.25] for
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strong RCD∗(K,N) spaces, and for all N ∈ [1,∞] in [10, Theorems 7.2 and 7.8] for proper spaces
without any non-branching assumptions.

We are now in a position to introduce the following (expected) definition:

Definition. We will say that a m.m.s. (X, d,m) satisfies RCD(K,N) if it verifies CD(K,N) and is
infinitesimally Hilbertian.

We can now immediately deduce:

Corollary 13.7.
RCD(K,N) ⇐⇒ RCD∗(K,N).

Note that CD∗(K,∞) and CD(K,∞) are the same condition, so the above also holds for N =∞.

Proof. Since CD(K,N) is stronger than CD∗(K,N), one implication is straightforward. For the other
implication, recall that RCD∗(K,N) forces the space to be essentially non-branching (see [68, Corollary
1.2]), and so the assertion follows by Corollary 13.6.

Corollary 13.8. Let (X, d,m) be an m.m.s. so that (supp(m), d) is a length space. Then:

RCDloc(K,N) ⇐⇒ RCD(K,N).

Proof. One implication is trivial. For the converse, as usual, we may assume that supp(m) = X by
Remark 6.11. By Lemma 6.12, we know that (X, d) is proper and geodesic (as usual, this would be
false without the length space assumption above). As the local-to-global property has been proved for
proper geodesic RCD∗(K,N) spaces without any non-branching assumptions in [10], it follows that:

RCDloc(K,N)⇒ RCD∗loc(K,N)⇒ RCD∗(K,N)⇒ RCD(K,N),

where the last implication follows by Corollary 13.7.

13.3 Concluding remarks

We conclude this work with several brief remarks and suggestions for further investigation.

- Note that the proof of Theorem 13.2 in fact yields more than stated: not only does the synthetic
inequality (13.2) hold (for all t0, t1 ∈ [0, 1]), but in fact we obtain for ν-a.e. geodesic γ the
a-priori stronger disentanglement (or “L-Y” decomposition):

1

ρt(γt)
= Lγ(t)Yγ(t) ∀t ∈ (0, 1), (13.4)

where Lγ is concave and Yγ is a CD(`(γ)2K,N) density on (0, 1). As explained in the Intro-
duction, it follows from [34] that for a fixed γ, (13.4) is indeed strictly stronger than (13.2). In
view of Main Theorem 1.1, this constitutes a new characterization of essentially non-branching
CD(K,N) spaces.

- According to [35, p. 1026], it is possible to localize the argument of [68] and deduce from a strong
CDloc(K,∞) condition (when K-convexity of the entropy is assumed along any W2-geodesic with
end-points inside the local neighborhood), that the space is globally essentially non-branching.
In combination with our results, it follows that the strong CD(K,N) condition enjoys the local-
to-global property, without a-priori requiring any additional non-branching assumptions.

- It would still be interesting to clarify the relation between the CD(K,N) condition and the
property BM(K,N) of satisfying a Brunn-Minkowski inequality (with sharp dependence on K,N
as in [74]). Note that by Main Theorem 1.1, it is enough to understand this locally on essentially
non-branching spaces.
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- It would also be interesting to study the CD1(K,N) condition on its own, when no non-branching
assumptions are assumed, and to verify the usual list of properties desired by a notion of
Curvature-Dimension (see [51, 74, 28]).

- A natural counterpart of RCD(K,N) would be RCD1(K,N): we will say that a m.m.s. ver-
ifies RCD1(K,N) if it verifies CD1(K,N) and it is infinitesimally Hilbertian. Recall that an
RCD(K,N) space is always essentially non-branching [68], and hence Main Theorem 1.1 imme-
diately yields:

RCD(K,N)⇒ RCD1(K,N).

The converse implication would be implied by the following claim which we leave for a future
investigation: an RCD1(K,N)-space is always essentially non-branching.

- In regards to the novel third order temporal information on the intermediate-time Kantorovich
potentials ϕt we obtain in this work – it would be interesting to explore whether it has any
additional consequences pertaining to the spatial regularity of solutions to the Hamilton-Jacobi
equation in general, and of the transport map Ts,t = et◦es|−1

G from an intermediate time s ∈ (0, 1)
in particular (where G ⊂ Gϕ is the subset of injectivity guaranteed by Corollary 6.16). In the
smooth Riemannian setting, the map Ts,t is known to be locally Lipschitz by Mather’s regularity
theory (see [77, Chapter 8] and cf. [77, Theorem 8.22]). A starting point for this investigation
could be the following bound on the (formal) Jacobian of Ts,t, which follows immediately from
(12.5), Theorem 3.11 (3) and Lemma A.9: for µs-a.e. x, the Jacobian is bounded above by a
function of s, t,K,N, ls(x) only.

A Appendix - One Dimensional CD(K,N) Densities

Definition A.1. A non-negative function h defined on an interval I ⊂ R is called a CD(K,N) density
on I, for K ∈ R and N ∈ (1,∞), if for all x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1− t)x0)
1

N−1 ≥ σ(t)
K,N−1(|x1 − x0|)h(x1)

1
N−1 + σ

(1−t)
K,N−1(|x1 − x0|)h(x0)

1
N−1 ,

(recalling the coefficients σ from Definition 6.2). While we avoid in this work the case N =∞, it will
be useful in this section to also treat the case N = ∞, whence the latter condition is interpreted by
subtracting 1 from both sides, multiplying by N − 1, and taking the limit as N →∞, namely:

log h(tx1 + (1− t)x0) ≥ t log h(x1) + (1− t) log h(x0) +
K

2
t(1− t)(x1 − x0)2.

For completeness, we will say that h is a CD(K, 1) density on I iff K ≤ 0 and h is constant on the
interior of I.

Unless otherwise stated, we assume in this appendix that K ∈ R and N ∈ (1,∞]. The following is
a specialization to dimension one of a well-known result in the theory of CD(K,N) mm-spaces, which
explains the terminology above. Here we do not assume that a m.m.s. is necessarily equipped with a
probability measure.

Theorem A.2. If h is a CD(K,N) density on an interval I ⊂ R then the m.m.s. (I, |·| , h(t)dt) verifies
CD(K,N). Conversely, if the m.m.s. (R, |·| , µ) verifies CD(K,N) and I = supp(µ) is not a point,
then µ� L1 and there exists a version of the density h = dµ/dL1 which is a CD(K,N) density on I.

Proof. The first assertion follows from e.g. [74, Theorem 1.7 (ii)], and the second follows by considering
the CD(K,N) condition for uniform measures µ0, µ1 on intervals of length ε and αε, respectively, letting
ε→ 0, employing Lebesgue’s differentiation theorem, and optimizing on α > 0 (e.g. as in the proof of
[30, Theorem 4.3]).

Let h be a CD(K,N) density on an interval I ⊂ R. A few standard and easy consequences of
Definition A.1 are:
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• h is also a CD(K2, N2) density for all K2 ≤ K and N2 ∈ [N,∞] (this follows from the corre-

sponding monotonicity of the coefficients σ
(t)
K,N−1(θ) in K and N , see e.g. [74, 51]).

• h is lower semi-continuous on I and locally Lipschitz continuous in its interior (this is easily
reduced to a standard identical statement for concave functions on I).

• h is strictly positive in the interior whenever it does not identically vanish (follows immediately
from the definition).

• h is locally semi-concave in the interior, i.e. for all x0 in the interior of I, there exists Cx0 ∈ R
so that h(x)−Cx0x2 is concave in a neighborhood of x0 (easily checked for CD(K,∞) densities).
In particular, it is twice differentiable (in the sense of Lemma 2.3) a.e. in I.

A.1 Differential Characterization

The following is a well-known differential characterization of C2-smooth CD(K,N) densities:

Lemma A.3. Let h ∈ C2
loc(I) on some open interval I ⊂ R. The following are equivalent:

(1) h is a CD(K,N) density on I.

(2) For all x ∈ I:

(log h)′′(x) +
1

N − 1
((log h)′(x))2 = (N − 1)

(h
1

N−1 )′′(x)

h
1

N−1 (x)
≤ −K. (A.1)

where the left hand side is interpreted as (log h)′′(x) when N =∞.

Remark A.4. The equality in (A.1) holds for any N ∈ (1,∞) by the Leibniz and chain rules at

any point x where h(x) is positive and twice differentiable (and in particular, h
1

N−1 and log h are also
twice differentiable at such a point x). The condition (A.1) is the one-dimensional specialization of
the Bakry–Émery CD(K,N) condition for smooth weighted Riemannian manifolds [16, 15].

In fact, we will require a couple of extensions of the above standard claim, which in particular,
together imply Lemma A.3; to avoid unnecessary generality, we only treat the case N ∈ (1,∞).

Lemma A.5. Let h denote a CD(K,N) density on an interval I ⊂ R, N ∈ (1,∞). Then h satisfies
(A.1) at any point x in the interior where it is twice differentiable (in particular, (A.1) holds for a.e.
x ∈ I).

Proof. Let x be a point as above. Observe that:

σ
(1/2)
K,N−1(θ) =

1

2
+
θ2

16

K

N − 1
+ o(θ2) as θ → 0,

and so denoting g = h
1

N−1 , the CD(K,N) condition with x0 = x− ε, x1 = x+ ε and t = 1/2 implies:

2g(x) ≥
(

1 +
ε2

2

K

N − 1
+ o(ε2)

)
(g(x+ ε) + g(x− ε)) as ε→ 0.

It follows by Taylor’s theorem and continuity of g in the interior of I that:

g′′(x) = lim
ε→0

g(x+ ε) + g(x− ε)− 2g(x)

ε2
≤ lim

ε→0
− K

N − 1

g(x+ ε) + g(x− ε)
2

= − K

N − 1
g(x),

confirming (A.1) and concluding the proof.
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Lemma A.6. Let h be a positive differentiable function on an open interval I ⊂ R whose derivative is
locally absolutely continuous there (and hence h is twice differentiable a.e. in I). If h satisfies (A.1)
for a.e. x ∈ I and N ∈ (1,∞), then `(I) ≤ DK,N−1 and h is a CD(K,N) density on I.

Remark A.7. The differentiability assumption at every point cannot be relaxed, as witnessed by the
convex function h(x) = |x|, which satisfies h′′(x) = 0 for a.e. x but nevertheless is not concave.

Proof. Given x0, x1 ∈ I with |x1 − x0| < DK,N−1, consider the function ∆ on [0, 1] given by:

∆(t) := h(tx1 + (1− t)x0)
1

N−1 − σ(t)
K,N−1(|x1 − x0|)h(x1)

1
N−1 − σ(1−t)

K,N−1(|x1 − x0|)h(x0)
1

N−1 .

As ∆ is positive and bounded away from zero on [0, 1], and since y
1

N−1 is Lipschitz on compact sub-
intervals of (0,∞), it follows that ∆ is differentiable with absolutely continuous derivative on [0, 1]. In

addition, clearly ∆(0) = ∆(1) = 0. Abbreviating σ(t) = σ
(t)
K,N−1(|x1 − x0|), it is immediate to verify

that:
d2

(dt)2
σ(t) = − K

N − 1
(x1 − x0)2σ(t), (A.2)

and therefore our assumption (A.1) for a.e. x ∈ I implies:

d2

(dt)2
∆(t) ≤ − K

N − 1
(x1 − x0)2∆(t) for a.e. t ∈ [0, 1]. (A.3)

Now set ∆0(t) = ∆(t) and ∆1(t) = ∆(1 − t), and for each i ∈ {0, 1}, denote by βi the absolutely
continuous function on [0, 1] given by:

βi(t) := ∆′i(t)σ(t)−∆i(t)σ
′(t). (A.4)

It follows by the Leibniz rule that for any i ∈ {0, 1}:

β′i(t) = ∆′′i (t)σ(t)−∆i(t)σ
′′(t) ≤ 0 for a.e. t ∈ [0, 1],

and since σ(0) = 0 we also have βi(0) = 0. The absolute continuity implies that βi is monotone
non-increasing, and hence βi(t) ≤ 0 for all t ∈ [0, 1].

We are ready to conclude that ∆ ≥ 0 on [0, 1], by showing that ∆(t0) ≥ 0 for any local extremum
point t0 ∈ (0, 1) of ∆. Indeed, when K ≤ 0, this is immediate, since σ′ > 0 and:

0 ≥ β0(t0) = ∆′0(t0)σ(t0)−∆0(t0)σ′(t0) = −∆(t0)σ′(t0).

When K > 0, set t1 = 1− t0 which is a local extremal point of ∆1 in (0, 1), and note that ti∗ ∈ (0, 1/2]
for some i∗ ∈ {0, 1}. Since |x1 − x0| < DK,N−1, it follows that σ′ > 0 on [0, 1/2], and so the same
argument as for the case K ≤ 0 but applied to ∆i∗ yields that ∆(t0) = ∆i∗(ti∗) ≥ 0, as asserted.

Finally, when K > 0, assume in the contrapositive that there exist x0, x1 ∈ I with x1 − x0 =
DK,N−1. Denote ∆0(t) = ∆(t) := h(tx1 + (1− t)x0) and set σ(t) := sin(πt) for t ∈ [0, 1]. Note that as
before, (A.2) and (A.3) are satisfied, and so defining the function β0 by (A.4), β0 is again monotone
non-increasing on [0, 1]. But:

β0(0) = −∆0(0)σ′(0) = −πh(x0) < πh(x1) = −∆0(1)σ′(1) = β0(1),

yielding a contradiction to the monotonicity, and concluding the proof.

A.2 A-priori estimates

We will also require the following a-priori estimates on the supremum and logarithmic derivative of
CD(K,N) densities. Here it is crucial that N ∈ (1,∞).
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Lemma A.8. Let h denote a CD(K,N) density on a finite interval (a, b), N ∈ (1,∞), which integrates
to 1. Then:

sup
x0∈(a,b)

h(x0) ≤ 1

b− a

{
N K ≥ 0

(
∫ 1

0 (σ
(t)
K,N−1(b− a))N−1dt)−1 K < 0

.

In particular, for fixed K and N , h is uniformly bounded from above as long as b − a is uniformly
bounded away from 0 (and from above if K < 0).

Proof. Given x0 ∈ (a, b), we have by the CD(K,N) condition:

1 = (x0 − a)

∫ 1

0
h(tx0 + (1− t)a)dt+ (b− x0)

∫ 1

0
h((1− t)b+ tx0)dt

≥ h(x0)

(
(x0 − a)

∫ 1

0
(σ

(t)
K,N−1(x0 − a))N−1dt+ (b− x0)

∫ 1

0
(σ

(t)
K,N−1(b− x0))N−1dt

)
.

When K ≥ 0, the monotonicity of K 7→ σ
(t)
K,N−1(θ) implies that σ

(t)
K,N−1(θ) ≥ σ

(t)
0,N−1(θ) = t, and we

obtain:

1 ≥ h(x0)
b− a
N

.

When K < 0, one may show that the function θ 7→ σ
(t)
K,N−1(θ) is decreasing on R+, as this is equivalent

to showing that the function x 7→ log sinh exp(x) is convex on R+, and the latter may be verified by
direct differentiation (and using that sinh(x) cosh(x) ≥ x). Consequently, we obtain:

1 ≥ h(x0)(b− a)

∫ 1

0
(σ

(t)
K,N−1(b− a))N−1dt,

as asserted. We remark that when K > 0, one may similarly show that the function θ 7→ σ
(t)
K,N−1(θ) is

increasing on [0, DK,N−1), and since σ
(t)
K,N−1(0) = t, we obtain the previous estimate we employed.

Lemma A.9. Let h denote a CD(K,N) density on a finite interval (a, b), N ∈ (1,∞). Then:

−
√
K(N − 1) cot((b− x)

√
K/(N − 1)) ≤ (log h)′(x) ≤

√
K(N − 1) cot((x− a)

√
K/(N − 1)),

for any point x ∈ (a, b) where h is differentiable. In particular, log h(x) is locally Lipschitz on x ∈ (a, b)
with estimates depending continuously only on x, a, b,K,N .

Proof. Denote Ψ = h
1

N−1 . The inequality on the right-hand-side follows since:

Ψ(tx+ (1− t)a) ≥ σ(t)
K,N−1(x− a)Ψ(x) ∀t ∈ [0, 1]

with equality at t = 1, and hence we may compare derivatives at t = 1:

(x− a)Ψ′(x) ≤ ∂t|t=1σ
(t)
K,N−1(x− a)Ψ(x),

whenever Ψ is differentiable at x. The inequality on the left-hand-side follows similarly.

A.3 Logarithmic Convolutions

We will require the following:

Proposition A.10. Let h denote a CD(K,N) density on an interval (a, b). Let ψε denote a non-
negative C2 function supported on [−ε, ε] with

∫
ψε = 1. For any ε ∈ (0, b−a2 ), define the function hε

on (a+ ε, b− ε) by:
log hε := log h ∗ ψε.

Then hε is a C2-smooth CD(K,N) density on (a+ ε, b− ε).
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For the proof, we will require the following general:

Lemma A.11. Let g denote a semi-concave function on an open interval I (i.e. g(x) − M x2

2 is
concave for some M ≥ 0). Let ψ denote a C2-smooth non-negative test function with compact support
in I. Then: ∫

I
g(x)ψ′′(x)dx ≤

∫
I
g′′(x)ψ(x)dx.

In other words, the singular part of g’s distributional second derivative is non-positive.

The argument is identical to the one used by D. Cordero–Erausquin in the proof of [32, Lemma
1]. For completeness, we present the proof.

Proof. Extend g and ψ to the entire R by defining them as equal to zero outside of I. Given ε > 0
and x ∈ I, denote:

D2
εg(x) :=

g(x+ ε) + g(x− ε)− 2g(x)

ε2
,

and similarly for D2
εψ(x). By Taylor’s theorem, for any point x ∈ I where g is twice differentiable we

have limε→0D
2
εg(x) = g′′(x). In fact, this holds at any point where g has a second Peano derivative,

see Subsection 2.2; in the context of convex functions on Rn, such points are called points possessing
a Hessian in the sense of Aleksandrov. Now since for small enough ε > 0, D2

εg ≤M on the support of
ψ by semi-concavity (and since ψ ≥ 0), we obtain by Fatou’s lemma:∫

I
g′′(x)ψ(x)dx ≥ lim sup

ε→0

∫
I
D2
εg(x)ψ(x)dx = lim sup

ε→0

∫
I
g(x)D2

εψ(x)dx =

∫
I
g(x)ψ′′(x)dx,

where the last equality follows by Lebesgue’s Dominated Convergence theorem using the fact that∣∣D2
εψ(x)

∣∣ ≤ max |ψ′′| for all x ∈ I, ε > 0, and the fact that g is locally integrable.

Proof of Proposition A.10. Note that log h is locally integrable on (a, b), so that the integral:

log hε(x) =

∫
log h(y)ψε(x− y)dy,

is well-defined for all x ∈ (a+ε, b−ε), and we may take two derivatives in x under the integral (as ψε is
C2-smooth with bounded corresponding derivatives), implying the asserted smoothness. In addition:

(log hε)′(x) =

∫
log h(y)

d

dx
ψε(x− y)dy = −

∫
log h(y)

d

dy
ψε(x− y)dx =

∫
(log h)′(y)ψε(x− y)dy,

where the last equality follows from the usual integration by parts formula and Leibniz rule since
(log h(y))ψε(x− y) is absolutely continuous. Furthermore:

(log hε)′′(x) =

∫
log h(y)

d2

(dx)2
ψε(x− y)dy =

∫
log h(y)

d2

(dy)2
ψε(x− y)dy ≤

∫
(log h)′′(y)ψε(x− y)dy,

where the last inequality follows by Lemma A.11 applied to g = log h, since h is a CD(K,∞) density

(by monotonicity in N), and hence log h(x) +K x2

2 is concave on (a, b).
Putting everything together and applying Jensen’s inequality, we obtain:

(log hε)′′(x) +
1

N − 1
((log hε)′(x))2

≤
∫

(log h)′′(y)ψε(x− y)dy +
1

N − 1

(∫
(log h)′(y)ψε(x− y)dy

)2

≤
∫ (

(log h)′′(y) +
1

N − 1
((log h)′(y))2

)
ψε(x− y)dy ≤ 0,

where the last inequality follows since the integrand is non-positive (where it is defined) by Lemma
A.5. A final application of Lemma A.3 concludes the proof.
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We will use Proposition A.10 in the following form:

Proposition A.12. Let {hs(t)}s∈(c,d) denote a Borel measurable family of CD(K,N) densities on
(a, b) (so that for every t ∈ (a, b), (c, d) 3 s 7→ hs(t) is Borel measurable). Assume in addition that:∫ d

c

∫ b

a
|log hy(x)| dxdy <∞. (A.5)

Given ε1, ε2 > 0 and s ∈ (c+ ε2, d− ε2), denote the following function:

log hε1,ε2s (t) :=

∫ ∫
log hy(x)ψε1(t− x)ψε2(s− y)dxdy , t ∈ (a+ ε1, b− ε1), (A.6)

where as usual, ψεi denotes a non-negative C2 function supported on [−εi, εi] with
∫
ψεi = 1. Then

{hε1,ε2s (t)}s∈(c+ε2,d−ε2) is a C2-smooth (in (s, t)) family of CD(K,N) densities on (a+ ε1, b− ε1).

Proof. The proof is a repetition of the proof of the previous proposition, so we will be brief. Our
assumption (A.5) implies that (A.6) is well-defined, and justifies taking two derivatives in t and s under
the integral, implying the assertion on smoothness. The first derivative in t under the integral may
be integrated by parts, whereas for the second derivative we apply Lemma A.11. A final application
of Jensen’s inequality as in Proposition A.10 establishes the asserted differential characterization of
CD(K,N), concluding the proof.
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