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Abstract. The Lévy-Gromov inequality states that round spheres have the least isoperimetric profile

(normalized by total volume) among Riemannian manifolds with a fixed positive lower bound on the
Ricci tensor. In this note we study critical metrics corresponding to the Lévy-Gromov inequality and

prove that, in two-dimensions, this criticality condition is quite rigid, as it characterizes round spheres

and projective planes.

The isoperimetric problem in a closed (i.e. compact without boundary) n-dimensional Riemannian
manifold (M, g) consists in minimizing the area Ag(∂Ω) of the boundary ∂Ω of a region Ω ⊂ M with
given n-dimensional volume Vg(Ω). Minimizers are called isoperimetric regions, and the minimum value
function is called the isoperimetric profile of (M, g):

(0.1) I(M,g)(v) = inf

{
Ag(∂Ω) : Ω ⊂M,

Vg(Ω)

Vg(M)
= v

}
, v ∈ (0, 1) .

A full solution to the isoperimetric problem requires the explicit characterization of its minimizers, and
it is thus possible only in highly symmetric ambient spaces. In the case of generic ambient spaces, the
best expectation is to obtain some indirect information, for example in the form of explicit bounds on
the isoperimetric profile.

This is the spirit of the celebrated Lévy–Gromov inequality [4, Appendix C]: if Ricg ≥ K g for some
constant K > 0, then

(0.2)
I(M,g)(v)

Vg(M)
≥
I(S,gS)(v)

Vg(S)
∀v ∈ (0, 1) ,

where (S, gS) is the standard n-dimensional sphere with Ricci curvature equal to K (see also [3], [6] for
the generalization to the case K ≤ 0 and diameter bounded above, and [1] for the extension to non-
smooth spaces). Having in mind the relation between the Euclidean isoperimetric theorem (balls are the
only volume-constrained minimizers of perimeter) and Alexandrov’s rigidity theorem (balls are the only
volume-constrained critical points of perimeter), in this note we ask what can be said about critical points
in the variational problem corresponding to the Lévy-Gromov inequality, and, at least in dimension two,
we prove a full rigidity theorem.

Our terminology will be as follows. The Lévy-Gromov functional on a Riemannian manifold (M, g) at
volume fraction v ∈ (0, 1) is defined as

(0.3) Lv(M, g) =
I(M,g)(v)

Vg(M)
.

We denote withMM the space of Riemannian metrics over M and, given K ∈ R, we consider the family
MM,K metrics on M with Ricci tensor bounded below by K, and the familyMM,K,g of metrics inMM,K

that are conformal to a given metric g, i.e. we set

MM,K =
{
g ∈MM : Ricg ≥ K g

}
,(0.4)

MM,K,g =
{
ĝij := e2ugij : u ∈ C2(M), Ricĝ ≥ Kĝ

}
.(0.5)
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EndowingMM with the C2-topology, we notice that bothMM,K andMM,K,g have non-empty boundary.
A natural definition of critical point associated to the Levy-Gromov inequality is then the following: we
say that g is a critical isoperimetric metric (with constant K) if g ∈MM,K and the following holds:

(i) if g is an interior point of MM,K , then

d

dt

∣∣∣
t=0
Lv(M, g(t)) = 0

for every v ∈ (0, 1) and g(t) ∈ C1((−1, 1);MM,K) with g(0) = g;
(ii) if g is a boundary point of MM,K , then

d

dt

∣∣∣
t=0+
Lv(M, g(t)) ≥ 0

for every v ∈ (0, 1) and g(t) ∈ C1([0, 1);MM,K) with g(0) = g.

When, in the above definition, MM,K,g is considered in place of MM,K , we say that g is a conformally-
critical isoperimetric metric. The question we pose is what degree of rigidity can be expected for confor-
mally critical isoperimetric metrics.

A first remark is that no metric can be conformally-critical with constant K ≤ 0. Indeed, let us recall
that if ĝ = e2ug for some u ∈ C2(M), then

(0.6) Ricĝ = Ricg − (∆u) g − (n− 2)Hessg u+ (n− 2)(du⊗ du− |∇u|2g),

where Hessg u denotes the Hessian of u (with respect to the Levi-Civita connection of g) and ∆gu =
gij(Hessg u)ij is the Laplace-Beltrami operator with respect to g applied to u. In particular, if we pick
u = log λ for some λ > 0 and Ricg ≥ K g, then Ricĝ = Ricg ≥ K g = K λ−2 ĝ. Given that K ≤ 0,
we have Ricĝ ≥ K ĝ for every λ2 ≥ 1. Since V ĝ(Ω) = λn Vg(Ω) and Aĝ(∂Ω) = λn−1 Ag(∂Ω) for every
Ω ⊂M , we also have

Lv(M, ĝ) =
Lv(M, g)

λ
and thus, setting g(t) = (1 + t)2 g for t > 0, we find (dLv(M, g(t))/dt)|t=0+ = −Lv(M, g) < 0 for every
v ∈ (0, 1).

From now on we shall thus take K > 0. In dimension n = 2 (where one simply has Ricg = Kg g, Kg

denoting the Gauss curvature of g) it turns out that the apparently very weak notion of conformally-
critical isoperimetric metric implies the maximal degree of rigidity one could expect:

Theorem 1 (Rigidity of conformally-critical isoperimetric metrics in dimension 2). If (M, g) is a two-
dimensional closed Riemannian manifold and K > 0, then g is a conformally-critical isoperimetric metric
with constant K if and only if (M, g) is either a sphere or the real projective plane with Kg = K.

We now present the proof of Theorem 1. For the sake of clarity we work in dimension n until the
last step of the argument. We also notice that we shall use conformal-criticality only on a sequence of
volumes vh → 0+, and thus that we end up proving a slightly stronger statement than Theorem 1.

Proof of Theorem 1. Step one: We start recalling that sinceM is compact, by the direct method, for every
v ∈ (0, 1) there exists an isoperimetric region Ω with Vg(Ω) = v Vg(M). By standard density estimates,
Ω is an open set of finite perimeter whose topological boundary ∂Ω is a closed (n − 1)-rectifiable set,
characterized by the property that x ∈ ∂Ω if and only if Vg(Ω∩Br(x)) ∈ (0,Vg(Br(x))) for every r > 0.
(Here and in the following, Br(x) stands of course for the geodesic ball of center x and radius r in M .)
Let us denote by Σ the isoperimetric sweep of (M, g), defined as

Σ =
⋃{

∂Ω : Ω is an isoperimetric region in (M, g) for some v ∈ (0, 1)
}
.

In this step we prove that for every x ∈ Σ and every r > 0 small enough, there exists u ∈ C2
c (B2r(x))

such that

(0.7) lim sup
t→0+

Lv(M, ĝt,u)− Lv(M, g)

t
≤ − n− 1

Vg(M)
,
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where we have set

(0.8) ĝt,uij := e2tugij , |t| < ε .

We first notice that, by the area formula,

(0.9)
d

dt

∣∣∣
t=0
V ĝt,u(Ω) = n

ˆ
Ω

u dvolg ,
d

dt

∣∣∣
t=0
Aĝt,u(∂Ω) = (n− 1)

ˆ
∂Ω

u dvolg|∂Ω
,

where dvolg|∂Ω
is the (n−1)-dimensional volume form induced by g on ∂Ω. Similarly, if we let (ΦX

s )s∈(−ε,ε)

denote the flow with initial velocity given by a smooth vector-field X on M , and set ϕX := g(ν∂Ω, X)
(where the inner unit normal ν∂Ω to Ω is defined on the reduced boundary of Ω, thus volg|∂Ω

-a.e. on ∂Ω),

then, by a classical first variation argument, see [5, Theorem 17.20], there exists a constant λ ∈ R such
that

(0.10)
d

ds

∣∣∣
s=0
Vg(ΦX

s (Ω)) = −
ˆ
∂Ω

ϕX dvolg|∂Ω
,

d

dt

∣∣∣
t=0
Ag(ΦX

s (∂Ω)) = −λ
ˆ
∂Ω

ϕX dvolg|∂Ω
.

(The constant λ is the (distributional) mean curvature of ∂Ω computed in the metric g with respect to
inner normal ν∂Ω.) The combination of (0.9) and (0.10) thus gives

V ĝt,u(ΦX
s (Ω)) = Vg(Ω) + nt

ˆ
Ω

u dvolg − s
ˆ
∂Ω

ϕX dvolg|∂Ω
+O(t2) +O(s2),(0.11)

Aĝt,u(ΦX
s (∂Ω)) = Ag(∂Ω) + (n− 1)t

ˆ
∂Ω

u dvolg|∂Ω
− sλ

ˆ
∂Ω

ϕX dvolg|∂Ω
+O(t2) +O(s2) .(0.12)

Let us now fix x ∈ ∂Ω for some isoperimetric region Ω. For every r > 0 we can find a smooth vector field
X supported in the geodesic ball Br(x) such thatˆ

∂Ω

ϕX dvolg|∂Ω
= 1 ,

(see [5, Lemma 17.21]). Moreover, if r is small enough, then we can pick u ∈ C2
c (B2r(x)) such thatˆ

∂Ω

u dvolg|∂Ω
= −1 ,

ˆ
Ω

u dvolg = 0 ,

ˆ
M

u dvolg = 0 .

Indeed, Br(x) ∩ ∂Ω has positive area, thus there exists v ∈ C0
c (Br(x) ∩ ∂Ω) with

´
∂Ω
v dvolg|∂Ω

< 0. We

can thus construct w1 ∈ C2
c (Br(x)), w2 ∈ C2

c (Ω ∩ B2r(x) \ Br(x)) and w3 ∈ C2
c (B2r(x) \ Ω ∪Br(x)) in

such a way thatˆ
∂Ω

w1 dvolg|∂Ω
= −1 ,

ˆ
M

w2dvolg = −
ˆ

Ω

w1dvolg

ˆ
M

w3dvolg = −
ˆ
M\Ω

w1dvolg ,

and then set u = w1 + w2 + w3. We now apply (0.11) and (0.12) with these choices of u and X, to find

V ĝt,u(M) = Vg(M) +O(t2) +O(s2) ,

V ĝt,u(ΦX
s (Ω)) = Vg(Ω)− s+O(t2) +O(s2) ,

Aĝt,u(ΦX
s (∂Ω)) = Ag(∂Ω)− (n− 1)t− sλ+O(t2) +O(s2) .

Let us consider the function F ∈ C2((−ε, ε)× (−ε, ε)) defined by

F (s, t) =
V ĝt,u(ΦX

s (Ω))

V ĝt,u(M)
|t|, |s| < ε .

Since F (0, 0) = v and ∂F/∂s(0, 0) = −1/Vg(M), up to decrease the value of ε, there exists a C2-function
s = s(t) such that F (s(t), t) = v for every |t| < ε, i.e.

V ĝt,u(ΦX
s(t)(Ω))

V ĝt,u(M)
= v ∀|t| < ε .
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Moreover, ∂F/∂t(0, 0) = 0 implies s′(0) = 0, and thus s(t) = O(t2). Hence,

Aĝt,u(ΦX
s(t)(∂Ω))

V ĝt,u(M)
=
Ag(∂Ω)

Vg(M)
− (n− 1)

Vg(M)
t+O(t2) , as t→ 0 ,

so that

I(M,ĝt,u)(v) ≤ I(M,g)(v)− (n− 1)

Vg(M)
t+O(t2) as t→ 0 ,

and (0.7) is proved.

Step two: Now assuming that g is a conformally critical isoperimetric metric with constant K > 0, we
show that for every x ∈ Σ (the isoperimetric sweep of M), there exists ξ ∈ TxM such that

Ricg,x(ξ, ξ) = K gx(ξ, ξ) .

Indeed, if this is not the case, then we can find an isoperimetric region Ω and x ∈ ∂Ω such that

(0.13) Ricg,y(ξ, ξ) > K gy(ξ, ξ) , ∀ξ ∈ TyM, y ∈ B2r(x) .

Depending on x and Ω, we pick r, X and u as in step one. Recall that, in step one, we constructed u so
that it was supported in B2r(x). Therefore, by (0.13), we can entail that for every |t| < ε

Ricĝt,u ≥ K ĝt,u on M .

By definition of conformally-critical isoperimetric metric we find a contradiction with (0.7).

Step three: We now let n = 2. By step two, Kg ≡ K on the closure of the isoperimetric sweep of M .
However, it is well-known (see for example [7, 9, 2, 8]) that if {Ωh}h∈N is a sequence of isoperimetric
regions corresponding to volume fractions vh → 0+ as h → ∞, then {Ωh}h∈N converges in Hausdorff
distance to a point x such that

Kg(x) = max
M

Kg .

By continuity of Kg we thus conclude that K = maxM Kg, and thus Kg is constantly equal to K on M .
We have thus proved that if g is conformally-critical with constant K, then Kg ≡ K, and thus, since
K > 0, that either (M, g) is the sphere or the real projective plane.

Step four: We are now left to show that both the sphere and the real projective plane are conformally-
critical. In the case of the sphere this is immediate from the Levy-Gromov inequality, so that we are left
to check the case of the real projective plane.

Without loss of generality we consider the standard projective plane RP2 endowed with the metric g0

of constant curvature K = 1 defined as the quotient of the round sphere (S2, g̃0) of unit radius in R3

under the antipodal equivalence relation. We denote by Π : S2 → RP2 the projection map.
Let us first recall that on a general compact Riemannian surface (M2, g) without boundary, just by

considering the complement of each competitor, the isoperimetric profile I(M2,g) is symmetric with respect
to v = 1/2. In particular, we shall restrict v to the range v ∈ (0, 1/2]. Moreover, by direct methods and
first variation arguments, for every v there exist isoperimetric regions which are necessarily bounded by
finitely many curves with constant geodesic curvature.

By direct computation, in the case when (M2, g) = (RP2, g0) and v ∈ [0, 1/2], isoperimetric regions
are metric balls which lift into S2 as pairs of antipodal spherical cups, each spherical cup having volume
2vπ in S2.

Now assume by contradiction that there exists v0 ∈ (0, 1/2] and a curve g(·) : [0, 1]→MRP2,1 starting

from the round metric g0 on RP2, such that

lim sup
t→0+

Lv0(RP2, gt)− Lv0(RP2, g0)

t
< 0.

Thus we can find tn → 0+ as n→∞ and isoperimetric regions Ωtn in (RP2, gtn) such that

(0.14) lim sup
n→∞

1

tn

[
Agtn

(∂Ωtn)

Vgtn
(RP2)

− Ag0
(∂Ω0)

2π

]
< 0,

Vgtn
(Ωtn)

Vgt(RP
2)

= v0 ∀n ∈ N ,



RIGIDITY FOR CRITICAL POINTS IN THE LÉVY-GROMOV INEQUALITY 5

where Ω0 ⊂ RP2 is a metric ball in metric g0 with Vg0
(Ω0) = 2v0π. Up to extracting a subsequence and

up to translations, by standard density estimates, one can assume that Ωtn converges to Ω0 in Hausdorff
distance with respect to the metric g0. (In fact, the convergence is smooth, but this is not needed here.)

Consider now the lifted metrics on S2 defined by g̃t := Π∗(gt) and observe that g̃t ∈ MS2,1, as g̃t is
locally isometric to gt. Moreover, by construction, g̃t is invariant under the antipodal map and V g̃t(S2) =

2Vgt(RP
2). Since v0 ∈ (0, 1/2] and Ωtn is Hausdorff close to Ω0, the lifted set Ω̃tn := Π−1(Ωtn) ⊂ S2 can

be written as Ω̃tn = Ω̃1
tn ∪ Ω̃2

tn where Ω̃1
tn , Ω̃

2
tn ⊂ S2 are g̃t-isometric sets at positive Hausdorff distance.

In particular

(0.15)
V g̃tn

(Ω̃1
tn)

V g̃tn
(S2)

=
V g̃tn

(Ω̃2
tn)

V g̃tn
(S2)

=
1

2

Vgtn
(Ωtn)

Vgtn
(RP2)

=
v0

2
, Ag̃tn

(∂Ω̃1
tn) = Ag̃tn

(∂Ω̃2
tn) = Agtn

(∂Ωtn).

Notice that for t = 0 one has that Ω̃0 := Π−1(Ω0) can be written as Ω̃0 = Ω̃1
0 ∪ Ω̃2

0, where Ω̃1
0 and Ω̃2

0 are

antipodal spherical caps with V g̃0
(Ω̃1

0) = V g̃0
(Ω̃2

0) = 2πv0. Note that such spherical caps are disjoint and
isoperimetric for their own volume in (S2, g̃0).

The combination of (0.14) and (0.15) then yields

lim inf
t→0+

Lv0/2(S2, g̃t)− Lv0/2(S2, g̃0)

t
≤ lim sup

n→∞

1

tn

[
Ag̃tn

(∂Ω̃1
tn)

V g̃tn
(S2)

− Ag̃0(∂Ω̃1
0)

4π

]

=
1

2
lim sup
n→∞

1

tn

[
Agtn

(∂Ωtn)

Vgtn
(RP2)

− Ag0(∂Ω0)

2π

]
< 0,

contradicting the classical Levy-Gromov inequality for v = v0/2 and K = 1. The proof of step four and
then of Theorem 1 is thus complete. �

Remark 2. The above argument actually shows more than what is claimed in Theorem 1, and namely
that, if n = 2 and g is conformally-critical for Lv just for a sequence of values v = vh → 0+ as h → ∞,
then Kg is constant. Similarly, in step four, we have proved that (RP2, g0) is a critical, and not just
conformally critical.
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