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Abstract: We describe some applications of special functions of bounded variation to problems

in fracture mechanics.

1. Free Discontinuity Problems.
In the framework of Griffith’s theory of fracture mechanics, the energy necessary to

the production of a crack is proportional to the crack surface. If the medium under
consideration is hyperelastic and brittle, i.e., the elastic deformation outside the fracture
surface can be modeled by the introduction of an elastic energy independent of the crack,
then we can consider the problem of the existence of equilibria, under proper boundary
conditions, in the framework of the calculus of variations. The simplest energy functional
in the isotropic case, the study of whose minima leads to an existence result, takes the
form

(1.1) E(u,K) =
∫

Ω\K
W (∇u) dx+ λH2(K),

where u denotes the deformation, ∇u is the deformation gradient, Ω ⊂ IR3 is the reference
configuration, K is the crack surface and H2 is the (Hausdorff) surface measure. The bulk
energy density W accounts for elastic deformations outside the crack, while λ is a constant
given by Griffith’s criterion for fracture initiation (see [65], [62], [72], [20], [70], [54], [74]).
The functional E makes sense in a classical way if K is a closed set, and u ∈ C1(Ω \K); a
slightly more general approach could be to require that u belong to some Sobolev-Orlicz
space in Ω \K suitable for the bulk energy part. For non-isotropic materials the fracture
initiation energy depends also on the orientation of the crack surface. In this case we must
require that K be piecewise C1, with a normal ν defined H2-a.e., so that we can study
energies of the form

(1.2) E′(u,K) =
∫

Ω\K
W (∇u) dx+

∫
K

ϕ(ν) dH2 ,
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with 0 < α ≤ ϕ ≤ β. Note that if E(u,K) < +∞ then the Lebesgue measure of K is zero,
u can be regarded as a measurable function defined on Ω, and the set K can be thought of
as (a set containing) the set of discontinuity points for u. This explains why problems of
this type are often called “free discontinuity problems”. Note that in general K will not
be the boundary of a set (in which case we talk of free boundary problems).

At a glance it is clear that the application of the direct methods of the calculus of
variations to problems involving functionals of the form E or E′ presents many difficulties,
as no topology on closed sets is available that provides compactness for sequences of pairs
(uj ,Kj) under the condition supj E(uj ,Kj) < +∞. It is therefore necessary to formulate
a weak version of this kind of problems. The idea of De Giorgi and Ambrosio [50] has been
to introduce a class of discontinuous functions and to replace the free surface K by the set
of “discontinuity points” of these functions, which turns out to be “sufficiently regular”
so that weak notions of surface area, orientation and traces can be given. We say that a
function u ∈ BV (Ω; IRm) belongs to SBV (Ω; IRm) if its distributional derivative measure
Du can be written as

(1.3) Du = ∇uLn Ω + (u+ − u−)⊗ νuHn−1 S(u),

where ∇u is now the approximate gradient of u, S(u) is the complement of the set of
Lebesgue points of u, νu is the unit normal to S(u), u+, u− are the approximate trace
values of u on both sides of S(u), the measures Ln and Hn−1 are the n-dimensional Lebes-
gue measure and the (n−1)-dimensional Hausdorff measure, respectively. In this notation
µ A is the restriction of the measure µ to A; i.e., µ A(B) = µ(A ∩ B). If u is an
arbitrary function in BV (Ω; IRm) all the quantities above are well-defined; in general we
have

(1.4) Du = ∇uLn Ω + (u+ − u−)⊗ νuHn−1 S(u) + Cu,

where Cu is a measure which is singular with respect to the Lebesgue measure and does not
charge sets of finite Hn−1 measure. Hence, the requirement u ∈ SBV (Ω; IRm) corresponds
simply to forbid singular behaviour of the derivative of u outside of the set of discontinuity
points. A precise definition of all the quantities above is given in Section 2 together with
other (equivalent) definitions of SBV -spaces.

In the framework of the theory of SBV functions we have a weak formulation for energies
of the type (1.1) or (1.2); for example E becomes

(1.5) E(u) =
∫

Ω

W (∇u(x)) dx+ λH2(S(u)) , u ∈ SBV (Ω; IR3)

More in general we can deal with integral functionals of the form

(1.6) F(u) =
∫

Ω

f(x,∇u(x)) dx+
∫
S(u)

ϕ
(
x, u+(x)− u−(x), νu(x)

)
dHn−1 ,

with Ω ⊂ IRn, f and ϕ suitable Borel functions, and u ∈ SBV (Ω; IRm). Under natural
growth conditions on f and ϕ the functional F is coercive, while suitable “convexity”
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conditions assure its lower semicontinuity, thanks to the compactness and semicontinuity
results by Ambrosio, which are presented in Section 3. The application of the direct
methods of the calculus of variations is now possible to obtain solutions to minimum
problems in SBV (Ω; IRm).

A general regularity theory for such “weak solutions” has yet to be developed, but
important results have been obtained for some classes of integrals. De Giorgi, Carriero
and Leaci ([51], [43]) have considered some minimum problems for the analog in IRn of
the functional E in (1.5) with f(ξ) = |ξ|p, showing that the jump set S(u) of a (local)
minimizer u differs from its closure by a set of Hn−1-measure zero, and u is smooth
outside S(u). It can be shown then that the pair (u, S(u)) is a “classical” minimum point
for the corresponding problem for the functional E in (1.1). Further regularity results have
been obtained by Ambrosio, Fusco and Pallara who proved Hn−1-a.e. smoothness of S(u)
([16], [14], [15]).

2. Special functions of bounded variation.
In this section we introduce the class of SBV -functions, and present some equivalent

definitions.
Notation. Let m ≥ 1 and n ≥ 1 be fixed integers. The set Ω is a bounded open subset
of IRn. If x, y ∈ IRn then 〈x, y〉 denotes their scalar product; Bρ(x) is the open ball with
centre x and radius ρ; Mm×n is the space of the m×n real matrices. The usual product of a
matrix ξ ∈Mm×n and a vector x ∈ IRn is denoted by ξ ·x. The Lebesgue measure and the
(n− 1)-dimensional Hausdorff measure in IRn are denoted by Ln and Hn−1, respectively,
but we also write |E| in place of Ln(E). We use standard notation for the Lebesgue and
Sobolev spaces Lp(Ω; IRm) and W 1,p(Ω; IRm), with norms ‖ · ‖p and ‖ · ‖1,p, rspectively.

Let u : Ω → IRm be a Borel function. We say that z ∈ IRm is the approximate limit of
u in x and we write z = ap- limy→x u(y) if for every ε > 0

lim
ρ→0

ρ−n|{y ∈ Bρ(x) ∩ Ω : |u(y)− z| > ε}| = 0 .

We define the jump set of u S(u) as the subset of Ω where the approximate limit of u
does not exist. It turns out that S(u) is a Borel set, |S(u)| = 0 and u is approximately
continuous a.e. in Ω; more precisely, u(x) = ap- limy→x u(y) for a.e. x ∈ Ω \ S(u).
BV-functions. We recall the main definition about functions of bounded variation. For
the general theory we refer to [56], [61], [55] and [79]. We say that u = (u1, . . . , um) ∈
L1(Ω; IRm) is a function of bounded variation if its distributional first derivatives Diu

j are
(Radon) measures with finite total variation in Ω; that is, there exist finite measures µij
such that ∫

Ω

∂φ

∂xj
ui dx = −

∫
Ω

φdµij .

This space will be denoted by BV (Ω; IRm). We shall use Du to indicate the matrix-valued
measure whose entries are Diu

j . Functions of bounded variation can be introduced in
various ways as subsets of L1(Ω; IRm). By Riesz’s Theorem the requirement that Du be a
vector measure is equivalent to requiring that∣∣∣∫

Ω

∂φ

∂xj
ui dx

∣∣∣ ≤ C‖φ‖∞ φ ∈ C1
0 (Ω)
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for all i, j. Equivalently, it can be shown that u ∈ L1(Ω; IRm) belongs to BV (Ω; IRm) if
and only if there exists a sequence (uj) of C1 functions such that uj → u in L1(Ω; IRm)
and |Du|(Ω) = limj

∫
Ω
|∇uj | dx < +∞. Both these characterization are very useful; for

example the first one is stable under L1
loc-convergence of the u, while the second one often

often enables the restriction of proofs to smooth functions.
If u ∈ BV (Ω; IRm) then S(u) is countably (n− 1)-rectifiable, i.e.,

(2.1) S(u) = N ∪
(⋃
i∈IN

Ki

)
,

where Hn−1(N) = 0 and (Ki) is a sequence of compact sets, each contained in a C1

hypersurface Γi. Moreover, there exist Borel functions νu : S(u) → Sn−1 and u+, u− :
S(u)→ IRm such that for Hn−1-a.e. x ∈ S(u)

lim
ρ→0

ρ−n
∫
B+
ρ (x)∩Ω

|u(y)− u+(x)| dy = 0 , lim
ρ→0

ρ−n
∫
B−ρ (x)∩Ω

|u(y)− u−(x)| dy = 0 ,

where B+
ρ (x) = {y ∈ Bρ(x) : 〈y−x, νu(x)〉 > 0} and B−ρ (x) = {y ∈ Bρ(x) : 〈y−x, νu(x)〉 <

0}. Hence, for Hn−1-a.e. x ∈ S(u)

lim
ρ→0

ρ−n|{y ∈ Bρ(x) ∩ Ω : 〈y − x,±νu(x)〉 > 0 , |u(y)− u±(x)| > ε}| = 0

for every ε > 0. The triplet (u+(x), u−(x), νu(x)) is uniquely determined up to a change
of sign of νu(x) and a permutation of u+(x) and u−(x). The vector νu is normal to S(u),
in the sense that, if S(u) is represented as in (2.1) then νu(x) is normal to Γi for Hn−1-
a.e. x ∈ Ki. In particular, it follows that νu(x) = ±νv(x) for Hn−1-a.e. x ∈ S(u) ∩ S(v)
and u, v ∈ BV (Ω; IRm). If x /∈ S(u) we define u+(x) = u−(x) = ap- limy→x u(y).

We denote by ∇u the density of the absolutely continuous part of Du with respect to
the Lebesgue measure. ∇u(x) turns out to be the approximate differential of u at x for
a.e. x ∈ Ω, in the sense that

lim
ρ→0

ρ−n
∫
Bρ(x)∩Ω

|u(y)− u(x)−∇u(x) · (y − x)|
|y − x|

dy = 0 .

We point out that the approximate differential is local on Borel sets, that is, if u, v ∈
BV (Ω; IRm) then ∇u(x) = ∇v(x) for a.e. x ∈ Ω such that u(x) = v(x).
SBV-functions. We say that a function u ∈ BV (Ω; IRm) is a special function of bounded
variation if the singular part of Du is given by (u+ − u−)⊗ νuHn−1 S(u); i.e..

Du = ∇uLn + (u+ − u−)⊗ νuHn−1 S(u) .

We denote the space of the special functions of bounded variation by SBV (Ω; IRm). The
introduction of this space is due to De Giorgi & Ambrosio [50]. In order to understand the
meaning of SBV -functions it is instructive to consider the one-dimensional case n = m = 1,
where belonging to SBV means being “piecewise W 1,1”, while the Cantor-Vitali function,
which is a continuous function and whose derivative is singular with respect to the Lebesgue
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measure, does not belong to SBV . For the properties of the functions u ∈ SBV (Ω; IRm)
we refer to [4] and [5]. The following characterization of SBV (Ω; IRm) functions with
Hn−1-finite jump set has been obtained by Ambrosio [7].

Theorem 2.1 Let u ∈ BV (Ω; IRm). Then u ∈ SBV (Ω; IRm) and Hn−1(S(u)) < +∞ if
and only if there exists a constant C such that

(2.2)
∣∣∣∫

Ω

∂ϕ

∂xi
(x, u) +

m∑
j=1

∂ϕ

∂yj
(x, u)

∂uj

∂xi
dx
∣∣∣ ≤ C‖ϕ‖∞ ,

for all ϕ ∈ C1
0 (Ω× IRm) and for all i.

Remark 2.2 The statement of Theorem 2.1 is actually improved requiring only the
existence of a function a ∈ L1(Ω;Mm×n) such that

(2.3)
∣∣∣∫

Ω

∂ϕ

∂xi
(x, u) +

m∑
j=1

∂ϕ

∂yj
(x, u)aij dx

∣∣∣ ≤ C‖ϕ‖∞
holds. The equality a = ∇u can be proved as a consequence of these formulas. Further-
more, 2Hn−1(S(u)) can be taken as the constant C.

Subspaces of SBV (Ω; IRm) of particular importance are the domains of functionals of
the form (1.5). If the bulk energy density W is of p-growth, then this space is given by

SBV p(Ω; IRm) =
{
u ∈ SBV (Ω; IRm) : Hn−1(S(u)) < +∞,

∫
Ω

|∇u|p dx < +∞
}
,

which is roughly speaking the space of functions which are W 1,p outside S(u). For such
functions it is possible to give a characterization which states that they can be approxi-
mated in a strong sense by piecewise smooth functions. The following result is by Braides
and Chiadò Piat [35].

Theorem 2.3 If u ∈ SBV p(Ω; IRm) ∩ L∞(Ω; IRm) then there exists a sequence (uj) in
SBV p(Ω; IRm) ∩ L∞(Ω; IRm) with ‖uj‖∞ ≤ ‖u‖∞, such that for each j ∈ IN there exists
a closed countably (n− 1)-rectifiable set Rj such that uj ∈ C1(Ω \Rj ; IRm), Hn−1(Rj)→
Hn−1(S(u)) and

uj → u in L1(Ω; IRm), ∇uj → ∇u strongly in Lp(Ω;Mm×n),

Hn−1(S(uj)4S(u))→ 0,
∫
S(uj)∩S(u)

(|u+
j − u

+|+ |u−j − u
−|)dHn−1 → 0

(we choose the orientation νuj = νu Hn−1-a.e. on S(uj) ∩ S(u)).
Such a characterization is useful when dealing with general functionals of the form (1.6)

with discontinuous integrands, which may be very sensitive to variations of S(u).
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3. Compactness, lower semicontinuity and existence results.
The main property of SBV functions is the following compactness theorem due to

L. Ambrosio (see [3], [7])
Theorem 3.1 (SBV Compactness Theorem) Let (uj) be a sequence in SBV (Ω; IRm)

such that

(3.1) sup
j

(∫
Ω

|∇uj |p dx+Hn−1(S(uj)) + ‖uj‖∞
)
< +∞

for some p > 1; then there exists a subsequence uj(k) which converges in L1
loc(Ω; IRm) to

u ∈ SBV (Ω; IRm). Moreover ∇uj(k) weakly converges to ∇u in Lp(Ω;Mm×n).

Proof: the proof of this theorem is particularly simple after Theorem 2.1 and Remark 2.2.
In fact, by (3.1) (uj) is bounded in BV (Ω; IRm) so that we may suppose without loss of
generality that uj → u weakly in BV , and in particular that uj → u strongly in L1

loc

(actually, by the boundedness assumption of uj and Ω, in any Lq), so that

∂ϕ

∂xi
(x, uj)→

∂ϕ

∂xi
(x, u),

∂ϕ

∂yj
(x, uj)→

∂ϕ

∂yj
(x, u)

strongly in all Lq. We may suppose also that ∇uj → a weakly in Lp(Ω;Mm×n). By
Remark 2.2, (2.2) holds for all (uj) with C = 2 supj Hn−1(S(uj)), and hence, passing to
the limit (2.3) holds with the same constant, so that u ∈ SBV (Ω; IRm) and a = ∇u.

From the weak convergence of approximate gradients we immediately deduce the lower
semicontinuity of convex integrals of the approximate gradients along sequences satisfying
the thesis of Theorem 3.1 (and in particular along sequences satisfying (3.1) and con-
verging to some function u in L1

loc). We also have a lower semicontinuity result valid for
quasiconvex integrals as follows (see [6]). For the definition and properties of quasiconvex
and polyconvex energies we refer to Ball [21], Acerbi and Fusco [1] and Dacorogna [45].

Theorem 3.2 (SBV Lower Semicontinuity Theorem - Bulk Integrals) Let (uj) ⊂
SBV (Ω; IRm) be a sequence converging to u ∈ SBV (Ω; IRm) in L1

loc(Ω; IRm) such that
supj Hn−1(S(uj)) < +∞, and let f : Ω ×Mm×n → [0,+∞) be a Carathéodory function,
quasiconvex in the second variable and satisfying the p-growth condition

(3.2) c1(|A|p − 1) ≤ f(x,A) ≤ c2(|A|p + 1)

for some strictly positive constants c1 and c2. Then

(3.3)
∫

Ω

f(x,∇u) dx ≤ lim inf
j

∫
Ω

f(x,∇uj) dx.

If f is polyconvex then the same lower semicontinuity result holds requiring a p-growth
condition only from below with p > n ∧m (see [6] Corollary 4.9).

Necessary and sufficient conditions for the lower semicontinuity of the integrals on the
free discontinuity set are studied in [10] and [5]. The general lower semicontinuity condition
for the surface energy density is given by an integral inequality similar to quasiconvexity,
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at least for continuous integrands (for the case of discontinuous integrands some results
are obtained in [35]). Here we state a sufficient condition.

Theorem 3.3 (SBV Lower Semicontinuity Theorem - Surface Integrals) Let d : IRm →
[0,+∞) be an even continuous function satisfying d(a + b) ≤ d(a) + d(b) (subadditivity),
and let ψ : IRn → [0,+∞) be an even convex function positively homogeneous of degree 1.
Then we have

(3.4)
∫
S(u)

d(u+ − u−)ψ(νu) dHn−1 ≤ lim inf
j

∫
S(uj)

d(u+
j − u

−
j )ψ(νuj ) dHn−1

if uj → u in L1
loc(Ω; IRm), ∇uj → ∇u weakly in L1(Ω;Mm×n) and supj Hn−1(S(uj)) <

+∞. In particular taking d = 1 and ψ(ν) = |ν| we get Hn−1(S(u)) ≤ lim infj Hn−1(S(uj)).
From Theorems 3.1–3.3 it is easy now to obtain an existence result for confined problems

in fracture mechanics.
Theorem 3.4 Let W : M3×3 → [0,+∞) be a polyconvex function satisfying W (A) ≥

c|A|p with p > 3 and c > 0 (or a quasiconvex function satisfying a p-growth condition
from below and from above for some p > 1), and let ϕ : IR3 → [0,+∞) be an even convex
function positively homogeneous of degree 1 with ϕ(ν) ≥ c|ν|. Let K be a non-empty
compact set in IR3, and let g ∈ L1(Ω; IR3). Then there exists a solution of the minimum
problem

min
{∫

Ω

W (∇u) dx+
∫
S(u)

ϕ(νu) dH2 +
∫

Ω

〈g, u〉 dx : u ∈ SBV (Ω; IR3), u ∈ K a.e.
}
,

provided that this infimum is finite.

Proof: let (uj) be a minimizing sequence for the problem above. We can suppose that

sup
j

(∫
Ω

|∇uj |p dx+Hn−1(S(uj))
)

≤ 1
c

sup
j

(∫
Ω

W (∇uj) dx+
∫
S(uj)

ϕ(νuj ) dH2 +
∫

Ω

〈g, uj〉 dx
)

+ ‖g‖1 sup{|x| : x ∈ K}

be finite. Hence, since ‖uj‖∞ ≤ sup{|x| : x ∈ K}, by Theorem 3.1 we can suppose that
uj → u ∈ SBV (Ω; IR3) in L1(Ω; IR3) and a.e., and ∇uj → ∇u weakly in L1(Ω;M3×3).
Since

∫
Ω
〈g, uj〉 dx →

∫
Ω
〈g, u〉 dx by Theorems 3.2 and 3.3 we get immediately that u is a

minimum point as desired.
A similar statement can be given for boundary value problems; in this case we have

to reformulate the Dirichlet boundary conditions, penalizing the possible fracture at the
boundary, considering minimum problems of the form

min
{∫

Ω

W (∇u) dx+
∫
S(u)

ϕ(νu) dH2 +
∫
S(u∪u0)

ϕ(ν) dH2 : u ∈ SBV (Ω; IR3)
}
,

where Ω is a Lipschitz open set, ν is the inner normal to ∂Ω, u0 is the boundary datum,
which we take suppose to be the outer trace on ∂Ω of a function in u0 ∈ SBV (Ω′, IR3)



Variational problems in fracture mechanics

(Ω ⊂⊂ Ω′), and S(u ∪ u0) = {x ∈ ∂Ω : u+(x) 6= u0(x)} (u+(x) and u0(x) are the inner
and outer traces at x, respectively, defined with respect to ν).

The confinement condition u ∈ K does not seem to be natural for all problems in
fracture mechanics, even though it may be a consequence of the geometry of the problem
in the case of boundary values. To remove such a condition we have in general to state
the problems in the larger space of the functions whose truncations are SBV (see [4]; some
related techniques can be found in [42], [38] and [57]). For the sake of simplicity we will
not treat this case.

4. Fracture mechanics in composite media.
We consider now the asymptotic behaviour of functionals of the type (1.6) modeling

cellular elastic materials with fine microstructure. The study of this kind of nonlinear
media, but without considering the possibility of fracture (i.e., in the framework of Sobolev
functions), has been carried on by S. Müller [68] and A. Braides [27] (see also [28], [29],
[30], [33], [40], [59]). Here we consider functionals

(4.1) Fε(u) =
∫

Ω

f(
x

ε
,∇u) dx+

∫
S(u)

g(
x

ε
, (u+ − u−)⊗ νu) dHn−1,

where f and g are Borel functions, periodic in the first variable, which model the response
of the material to elastic deformation, and to fracture, respectively, at a microscopical
scale (which is given by the small parameter ε). The behaviour of sequences of minima
for problems involving Fε, and of the corresponding minimizers, can be deduced from the
Γ-convergence of this sequence to a homogenized functional, which describes the overall
response of the medium (see [52], [46] for an introduction to Γ-convergence, and [32] for
Γ-convergence techniques for multiple integrals). The following result has been proven by
Braides, Defranceschi and Vitali [38].

Theorem 4.1 (Homogenization Theorem) Let f and g : IRn ×Mm×n → [0,+∞) be
Borel functions, periodic in the first variable; let p > 1, C, α, β > 0, and let f and g
satisfy

(4.2)
α|ξ|p ≤ f(x, ξ) ≤ β(1 + |ξ|p)

α(1 + C|ξ|) ≤ g(x, ξ) ≤ β(1 + C|ξ|)
for all x ∈ IRn, ξ ∈Mm×n.

Let fhom : Mm×n → [0,+∞) and ghom : Mm×n
1 → [0,+∞) (Mm×n

1 denotes the set
of matrices of rank one) be the homogenized bulk energy density and the homogenized
surface energy density, respectively, defined by

(4.3) fhom(ξ) = lim
T→+∞

inf
{ 1
Tn

∫
(0,T )n

f(x,∇u+ ξ) dx : u ∈W 1,p
0 ((0, T )n; IRm)

}
,

(4.4)
ghom(z ⊗ ν) = lim

T→+∞

1
Tn−1

inf
{∫

TQν∩S(u)

g(x, (u+ − u−)⊗ νu) dHn−1 :

u ∈ SBV (TQν ; IRm),∇u = 0 a.e., u = uz,ν on ∂(TQν)
}
,
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where Qν is any unit cube in IRn with centre in the origin and one face orthogonal to ν,
and

(4.5) uz,ν(x) =
{
z if 〈x, ν〉 ≥ 0
0 if 〈x, ν〉 < 0 .

Let Fhom be the homogenized functional defined by

(4.6) Fhom(u) =
∫

Ω

fhom(∇u) dx+
∫
S(u)

ghom((u+ − u−)⊗ νu) dHn−1.

Then the functionals Fε Γ-converge in the L1(Ω; IRn)-topology to Fhom as ε→ 0.
As a consequence of this theorem we can deduce the convergence of minimum problems,

also in the case C = 0 in (4.2) with a singular perturbation technique (see [38] Section 8).
Note that the homogenized bulk energy density is the same integrand computed in [27]

in the case without fracture. From (4.3)–(4.6) we obtain that the overall behaviour of the
medium described by (4.1) at the scale ε is the one of a homogeneous material whose bulk
elastic response is given by the study of Fε only on elastic deformations without cracks,
and whose response to fracture can be derived by the examination of ‘stiff deformations’
(i.e., where ∇u = 0). In particular, note that the homogenized surface energy density
is not influenced by f ; this phenomenon is particular of the process of homogenization,
since in general we do have an interaction (see [2] Theorem 4.1). We mention also that
the homogenization under SBV-growth conditions (4.2) gives rise to a different type of
phenomena than when a growth of order one is allowed; i.e.,

(4.7) f(x, ξ) ≤ γ|ξ| or g(x, ξ) ≤ γ|ξ|

(e.g., if g(x, ·) is positively homogeneous of degree one), in which case the homogenized
functional is defined and finite on the whole BV (Ω; IRm), and the homogenized energy
densities are determined by an interaction between f and g (see [30]).

5. Barenblatt-type materials.
Functionals of the form (1.5), which are related to Griffith materials, allow the modeling

of quasi-static fracture propagation only if a pre-existing crack is present and require
singular stresses at the crack tip. These drawbacks can be overcome if we consider energies
of the form

(5.1) I(u) =
∫

Ω

W (∇u) dx+
∫
S(u)

ϕ(|u+ − u−|) dHn−1 ,

in whose framework can be included the models proposed by Barenblatt [22], which allow
an interaction between the two sides of the fracture for small values of the crack opening.
If ϕ(t) → 0 as t → 0 then the surface energy of the functional I does not satisfy the
hypotheses of Theorem 3.3, and I may not be lower semicontinuous in natural topologies.
As a consequence, minimizing sequences for problems related to I may have unbounded
jump set Hn−1-measure, and may converge to a function with a “plasticity zone”, which
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means that the limit of the jump part of the derivatives may not be a measure concentrated
on a set of Hausdorff dimension n−1. In order to give a choice criterion among minimizing
sequences we can follow a singular perturbation approach, considering functionals

(5.2) Iε(u) = I(u) + εHn−1(S(u)).

These functionals are of Griffith-type, with λ = ε representing the energy necessary to
create a fracture of unit length. If ϕ is subadditive then Iε is lower semicontinuous, and
we can consider the minimum points uε ∈ SBV (Ω; IRm) related to Iε (if an application
of the existence theorems is possible). The limit points of converging subsequences in
SBV (Ω; IRm) of (uε) are precisely the limits of minimizing sequences for the corresponding
problems for I which are in SBV (Ω; IRm) and have minimal Hn−1-measure. A precise
statement of this fact can be found in a paper by Braides and Coscia [36], where more
general functionals of the form

(5.3) Iε(u) = I(u) + ε

∫
S(u)

ψ(|u+ − u−|) dHn−1

are considered.
We can give a mechanical interpretation to the approximating approach outlined above:

the length of the pre-existing fracture necessary to quasi-static crack growth in a medium
related to Iε is proportional to ε. The passage to the limit as ε→ 0 can be viewed then as
the requirement of pre-existing infinitesimal fractures; i.e., as a modeling of microfractures.
The form of ψ is related to the properties of these microfractures.

6. Linear elasticity problems.
Linear elasticity is not compatible with the Griffith theory of fracture mechanics, since

this one implies infinite stresses at crack tips. However it may be interesting as a first
approximation to study the functional in (1.1) when W is a linear-elasticity energy density.
In this case W is degenerate as a quadratic form with respect to ∇u, and the framework
of SBV functions is not suitable. To deal with minimum problems related to bulk energy
densities which are coercive quadratic form with respect to the linearized strain tensor
Eu = 1

2 (∇jui +∇iuj)ij it is convenient to work within the space of functions of bounded
deformation (see [66], [75], [77], [78], [64])

BD(Ω) = {u ∈ L1(Ω; IRn) : Eu bounded (matrix-valued) Radon measure} ,

(where (Eu)ij = 1
2 (Diu

j + Dju
i)), and to introduce a new subspace of BD functions

analogous to SBV . To this purpose Ambrosio, Coscia and Dal Maso [12] have proven the
following structure theorem.

Theorem 6.1 (BD Structure Theorem) Let u ∈ BD(Ω) and let

J(u) =
{
x ∈ Ω : lim

ρ→0+

|Eu|(B(x, ρ))
ρn−1

= 0
}
.
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Then J(u) is rectifiable with normal νu and there exist the traces u± on both sides of J(u).
Moreover, we have

Eu = EuLn +
1
2

(
(u+ − u−)⊗ νu + νu ⊗ (u+ − u−)

)
Hn−1 J(u) + Cu

with Cu singular with respect to the Lebesgue measure and vanishing on Borel sets of
σ-finite Hn−1-measure. Finally, |Cu|-a.e. point of Ω is a Lebesgue point for u.

Theorem 6.1 shows that a decomposition analogous to (1.4) holds in BD. The only
difference is that for BD functions it is not known whether Hn−1(S(u) \ J(u)) = 0 or not.
Kohn proved in [64] that the set L = S(u) \ J(u) has Hausdorff dimension (n − 1), has
zero (n − 1)-dimensional capacity and is purely (n − 1)-unrectifiable. The last statement
in Theorem 6.1 shows that Eu L = 0, i.e., the set L does not charge any distributional
measure.

We can define now the space of special functions of bounded deformation SBD(Ω) as
the subset of BD(Ω) of functions such that Cu = 0. This space has been first introduced
in a different form by Bellettini, Coscia and Dal Maso [24], who proved the following
compactness result.

Theorem 6.2 (SBD Compactness Theorem) Let (uj) be a sequence of SBD(Ω) func-
tions such that

sup
j

(∫
Ω

|Euj |2 dx+Hn−1(J(uj)) + ‖uj‖∞
)
< +∞ .

Then there exists a subsequence uj(k) converging in L1
loc(Ω; IRn) to a function u ∈ SBD(Ω).

Moreover Euj → Eu weakly in L2(Ω; IRn2
) and Hn−1(J(u)) ≤ lim infj Hn−1(J(uj)).

In this framework it is therefore possible to repeat the proof of the analogue of the
existence results of Section 3.

7. Hencky’s Plasticity.
In this section we recover a classical functional of Hencky’s plasticity with a relaxation

procedure, starting from a somewhat simpler functional defined of SBD(Ω). In this case
the growth conditions of bulk and surface energy densities required in Section 3 are not
satisfied, and the functional F in (1.6) is not lower semicontinuous even if convexity and
subadditivity conditions are satisfied. For an introduction to relaxation techniques we refer
to the book by Buttazzo [41].

Let Ω be a bounded domain in IR3 and let u : Ω → IR3 represent the displacement
field of an elastic perfectly plastic body occupying the domain Ω in unstrained position.
Denote by σ : Ω→ Msym the corresponding stress tensor field referred to the configuration
Ω (Msym stands for the space of 3× 3 symmetric real matrices). Let EDu be the deviator
of the linearized strain tensor : EDu = Eu − 1

3 (divu)I, where I is the identity matrix.
Then the variational formulation of the displacement and stress problems in the theory of
Hencky’s plasticity (see [76], [53], [71]) involves respectively the functionals∫

Ω

ψ(Eu(x))dx ,
∫

Ω

ψ∗(σ(x))dx ,
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where ψ and ψ∗ are non-negative convex functions conjugate each other (in the duality
theory of Fenchel-Moreau), and

ψ∗(σ) =
{

1
4µ |σ

D|2 + 1
18κ (trσ)2 , if σ ∈ K

+∞ , otherwise .

Here trσ =
∑
i σii, σ

D = σ − 1
3 (trσ) I, κ = λ + 2

3µ is the bulk modulus of the material,
λ and µ are the Lamè coefficients and K is a closed convex subset of Msym describing the
elastic zone for the stress. Two classical examples of the set K are:

(7.1)
K = {σ ∈ Msym : |σD| ≤

√
2k} (von Mises’ model)

K = {σ ∈ Msym : λM (σ)− λm(σ) ≤ C} (Tresca’s model),

where k and C are fixed positive constants and λM (σ) and λm(σ) denote the maximum
and the minimum eigenvalue of σ. Both these convex sets are of the form KD⊕ IRI, where
KD is the orthogonal projection of K onto the space Msym

0 of the matrices with null trace.
This allows to write the functional of the displacement problem as

(7.2)
∫

Ω

(ϕ(EDu) +
κ

2
(divu)2)dx ,

where ϕ : Msym
0 → [0,+∞) is the convex function in duality with

(7.3) ϕ∗(σ) =
{

1
4µ |σ|

2 , if σ ∈ K ∩Msym
0 ,

+∞ , otherwise
(σ ∈ Msym

0 ) .

The application of the direct method of the Calculus of Variations to the minimum prob-
lem for the displacement, i.e., involving the functional (7.2), requires a space where the
functional is coercive and lower semicontinuous. Since ϕ grows only linearly as |ξD| → +∞
(note that ϕ∗ = +∞ outside K ∩Msym

0 ) and no Korn’s inequality holds on W 1,1(Ω; IR3)
(see [66], [64]), to gain coerciveness the definition of the functional must be extended to
account for displacements whose strains are merely measures. This has led, in the general
n-dimensional case, to the introduction of the space ([75], [77], [78], [63])

P = {u ∈ BD(Ω) : divu ∈ L2(Ω)} .

The natural L1(Ω; IR3)-lower semicontinuous extension to P of (7.2) turns out to be ([19])

(7.4)
∫

Ω

(ϕ(EDu) +
κ

2
(divu)2)dx+

∫
Ω

ϕ∞(
EDs u

|EDs u|
) |EDs u| ,

where EDu = EDuLn + EDs u is the Lebesgue decomposition of EDu, |EDs u| denotes the
total variation of EDs u, EDs u

|EDs u|
stands for the Radon-Nikodym derivative, and ϕ∞(ξ) =

limt→+∞ ϕ(tξ)/t is the recession function of ϕ.
We propose a different approach to problems involving the functional (7.4) introducing

a somehow simpler model. Consider the space SBD(Ω) ∩ P whose elements are allowed
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to have “singularities” in the form of jump discontinuities along surfaces (the possible
slippage surfaces of the material). It may be natural the attempt to obtain a functional of
type (7.4) by relaxation of the following

(7.5) F (u) =
∫

Ω

(µ|EDu|2 +
κ

2
(divu)2)dx+ c

∫
J(u)

|u+ − u−|dH2 , u ∈ SBD(Ω) ∩ P,

where J(u) is the set defined in Theorem 6.1 and c is a positive constant. Indeed, the
volume integral in the definition of F represents the (linearized) strain energy of an elastic
material corresponding to a displacement u from the reference configuration Ω. The second
term is a surface integral which takes into account the possible sliding of the material.
While F models the microscopic form of the energy, from a macroscopic point of view,
i.e., as far as minimum problems are concerned, we can equivalently consider its lower
semicontinuous envelope (or relaxation) F with respect to a suitable topology, which turns
out to be the L1(Ω; IR3) topology. In [39] Braides, Defranceschi and Vitali have shown how
in the relaxed functional F the effect of the volume and surface terms in (7.5) combine
giving rise to a typical plastic behaviour: slippage is preferred to large strains |EDu| and
F can be written as

F (u) =
∫

Ω

(φ(EDu) +
κ

2
(divu)2)dx+

∫
Ω

φ∞(
EDs u

|EDs u|
) |EDs u| , u ∈ P ,

where φ is a convex function with linear growth at infinity. This relaxation procedure
recovers exactly the functional (7.4) when adopting Tresca’s yielding model. Indeed, the
integrand function φ coincides with the function ϕ of (7.4) when the convex set K is the
second one displayed in (7.1), with C = 2c.

Following Section 5, F can also be considered as the limit (in the sense of Γ-convergence)
of the sequence of functionals

Fε(u) = F (u) + εHn−1(J(u)) ,

as ε → 0, to whose minimum problems we can apply the existence results of Section 6.
Such a singular perturbation approach may lead to a choice criterion among minima of
boundary value problems involving the functional F . For relaxation results in a BV setting
we refer to [37], [26] and [23].

8. Problems involving tangential derivatives.
The viewpoint described above privileges the reference configuration, neglecting the

effects of crack deformation. In a paper by Ambrosio, Braides and Garroni [11] it is
discussed the possibility to define a sub-class of SBV functions which allow the statement
(and solution) of problems taking into account also the deformation of S(u), i.e., the shape
of the crack surface in the deformed configuration.

As an example we can think of an elastic body in two dimensions subject to fracture, so
that a “hole” is formed bounded by two curves Γ+ and Γ− which are the images of S(u)
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by u+ and u−, respectively. If the traces are sufficiently smooth then the length of (the
boundary of the hole) Γ+ ∪ Γ− is given by

E1(u) =
∫
S(u)

(∣∣∂u+

∂τ

∣∣+
∣∣∂u−
∂τ

∣∣) dH1,

where τ is the tangent to S(u). Similarly, if u is bounded and we have an “opening hole”
(that is, Γ+ ∪ Γ− is compactly contained in u(Ω)) we can also consider the “area of the
hole”, given by

E2(u) =
∫

hole

dy1dy2 = −
∫

Γ+∪Γ−
y1dy2 = −

∫
S(u)

(
u+

1

∂u+
2

∂τ
− u−1

∂u−2
∂τ

)
dH1,

which again makes sense if the tangential derivatives of u± exist.
It is clear that the crucial point in order to apply the direct methods of the Calculus of

Variations will be a weak definition of the tangential derivatives of u+ and u− on S(u). To
this purpose, the starting point is the characterization of the space SBV in Theorem 2.1.
We can interpret formula (2.2) as a property of the graph of u, which is given for BV
functions by

Γ = {(x, u(x)) : x ∈ Ω, ∃∇u(x)},

and is oriented by the unit n-covector

η(x, u(x)) =
1

|M(∇u)(x)|
(e1 +

∑
j

∂uj

∂x1
(x)εj) ∧ . . . ∧ (en +

∑
j

∂uj

∂xn
(x)εj) ,

where {e1, . . . , en} and {ε1, . . . , εm} are the standard orthonormal basis of IRn and IRm,
respectively, and M(∇u) denotes the vector of all minors of ∇u (see [60]). We can define
the linear functional on n-forms (n-current) “integration on the graph”, by

Tu(ω) =
∫

Γ

〈ω, η〉dHn ,

and the boundary of Tu as the (n− 1)-current given by

∂Tu(ω) = Tu(dω).

We can re-read formula (2.2) as a property of ∂Tu. In fact, using the area formula, we
have ∫

Ω

∂ϕ

∂xi
(x, u) +

m∑
j=1

∂ϕ

∂yj
(x, u)

∂uj

∂xi
dx = ∂Tu(ϕdx̂i)

where dx̂i = (−1)i+1dx1∧ . . .∧dxi−1∧dxi+1∧ . . .∧dxn, so that (2.5) states precisely that
the boundary of Tu is a measure when computed on “horizontal forms” (i.e., forms with
no dy).
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The class SBV0. Intuitively, tangential derivatives of u± give information on the “verti-
cal part of the boundary of the graph of u”. Following this reasoning Ambrosio, Braides and
Garroni have defined in [11] a sub-class of SBV (Ω; IRn) functions with Hn−1(S(u)) < +∞,
called SBV0(Ω; IRn), simply requiring that ∂Tu be a measure also when computed on
(n− 1)-forms with a vertical part. This is equivalent to asking that in addition to the in-
tegration by parts formulas stated above, there exist measures µαβ (α and β multi-indices
with |α|+ |β| = n− 1) such that

(8.1)
∫

Ω×IR

φ(x)ψ(y) dµαβ = ∂Tu
(
φ(x)ψ(y)dxα ∧ dyβ

)
for all φ ∈ C1

0

(
Ω
)
, ψ ∈ C1

b

(
IR
)
.

It is worth noting that the property u ∈ SBV0(Ω; IRm) can be stated without using the
language of currents, just as in the case of Theorem 2.1. The simplest case (n = 2,m = 1)
gives, besides the conditions (2.2), also

(8.2)
∫

Ω×IR

ϕ(x)ψ(y) dµ =
∫
S(u)

(∫ u+(x)

u−(x)

ψ(y) dy
)∂φ
∂τ

(x) dH1(x),

(τ the tangent to S(u)), for some finite measure µ (relative to α = 0, β = 1). Roughly
speaking, this is the requirement that the traces u± be functions of bounded variation
on S(u) (this is not precisely so since S(u) may present a very complex structure, see
the examples in [11]). In the physical case n = m = 3 the integration by parts formulas
obtained from (8.1) characterize the distributional and Jacobian determinants of ∇u and
its (2-dimensional) adjoint matrices. An important property that can be deduced from
(8.2) is that the approximate tangential derivatives ∇u± exist Hn−1-a.e. on S(u), and∫
S(u)
|∇u±| dHn−1 < +∞.

We denote by ∂vTu the vector of the measures µαβ ; i.e., the components of ∂Tu corre-
sponding to differential forms ϕdxα ∧ dyβ , with |β| > 0. The letter v refers to the fact
that we have in mind “vertical components”. The class SBV0(Ω) has the following com-
pactness property, which extends the results by Ball [21] to a class of functions “allowing
for cavitation”.

Theorem 8.1 Let (uj) be a sequence in SBV0 such that

sup
j∈IN

(
‖uj‖∞ +H1(S(uj)) +

∫
Ω

|∇uj |q dx+ ‖∂vTuj‖
)
< +∞ ,

where q ≥ min{n,m}, and assume in addition that
(

det
∂(uj)β
∂xγ

)
j

is a equi-integrable

sequence for every pair of multi-indices β, γ of order min{n,m} if q = min{n,m}.
Then, there exists a subsequence (uj(k)) converging in L1

loc(Ω, IRm) to u ∈ SBV0, such
that

∇uj(k) → ∇u weakly in Lq(Ω, IRnm),

det
∂(uj(k))β
∂xγ

→ det
∂uβ
∂xγ

weakly in L1(Ω)
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for every pair of multi-indices β, γ of equal order not greater than min{n,m}, and ∂Tuj(k)
converges weakly to ∂Tu. In particular ∂vTuj(k) converges weakly to ∂vTu in the sense of
measures.

SBV0-functions with Sobolev traces. As a subclass of SBV0(Ω) (that is, “SBV -
functions with BV -traces on S(u)”) we can consider the family of “SBV -functions with
Sobolev traces on S(u)”, that is, those SBV0 functions such that∫

S(u)

|∇u±|p dx < +∞

for some p ≥ 1, and such that the measure ∂vTu is determined by ∇u±; e.g., in the case
n = 2,m = 1

∂Tu(φψdy) = −
∫
S(u)

(
ψ(u+)∇u+ − ψ(u−)∇u−

)
φ(x) dH1.

Unfortunately, this subclass is not compact: it is possible to give an example such that all
hypotheses of the compactness Theorem 8.1 are satisfied and in addition ∇u±j are equi-
bounded, but the limit u does not possess Sobolev traces on S(u). This phenomenon is
due to the fact that S(uj) may converge only in a weak sense to S(u); the phenomenon
does not occur if we have strong convergence; i.e., Hn−1(S(uj))→ Hn−1(S(u)).

Appendix.
It is worth spending a few words on another important application of SBV functions. A

functional formally similar to the ones presented above has been proposed by Mumford and
Shah as a variational model in computer vision (see [69], [67], [4], [47], [9], [44]). Minimum
problems are considered, whose SBV formulation is

(A.1) min
{∫

Ω

|∇u|2 dx+ c1Hn−1(S(u)) + c2

∫
Ω

|u− g|2 dx : u ∈ SBV (Ω; IR)
}
,

where g ∈ L∞(Ω), called the “grey function”, represents an “input picture” and ci > 0 are
constants. The solution u to (A.1) is the best “piecewise smooth” approximation of g, and
its “jump set” is expected to detect the relevant contours of the objects in the picture. The
existence of minimizers for (A.1) follows as in the proof of Theorem 3.4 once we remark
that there is no restriction to confine ourselves to the case ‖u‖∞ ≤ ‖g‖∞. The functional

u 7→
∫

Ω

|∇u|2 dx+ c1Hn−1(S(u))

is in many cases a good simplified version of the energies (1.1), (1.2), and the techniques of
computer vision developed for this functional, deriving from a different viewpoint, provide
a good alternative to the methods of fracture mechanics. In this appendix we include some
results whose study can be of help in the general case of fracture mechanics.
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Motion of Fracture. The functionals of the type (1.6) with ϕ ≥ c > 0 are not differen-
tiable on SBV (at least with respect to BV or Lp norms). In fact, if u, v ∈ SBV (Ω; IRm)
and Hn−1(S(v) \ S(u)) > 0, then we have

lim
t→0+

∣∣∣F (u+ tv)− F (u)
t

∣∣∣ = +∞.

It is not possible therefore to define the motion of fracture by the flow of this functional.
We can nevertheless study quasi-static motion by a minimization process at fixed time-
steps, and then let the time-step tend to zero. An axiomatization of this procedure in
an abstract setting has been proposed by De Giorgi [49] under the name of minimizing
movements.

We illustrate this procedure considering the Mumford and Shah functional with the
notation

(A.2) F (u,K) =
∫

Ω

|∇u|2 dx+Hn−1(K) u ∈ SBV (Ω)

as a model.
A function u0 ∈ SBV (Ω) will be fixed, which we regard as the initial datum at t = 0.

for the sake of simplicity we suppose u0 ∈ L∞(Ω) ∩ H1(Ω). Fixed λ > 0 we define by
induction a sequence (uλj ) in SBV (Ω) and an increasing sequence of closed sets (Kλ

j ) as
follows: uλ0 = u0, Kλ

0 = ∅, and uλj = w, Kλ
j = S(w) ∪Kλ

j−1, where w is a solution to

min
{∫

Ω

|∇v|2 dx+Hn−1(S(v)\Kλ
j−1)+λ

∫
Ω

|v−uλj−1|2 dx : v ∈ SBV (Ω), ‖v‖∞ ≤ ‖u0‖∞
}
.

This solution exists since such a minimum problem is equivalent to the analogous one in
SBV (Ω \Kλ

j−1). Note that by the regularity result of [51] we have

Hn−1
(
S(w) \ [S(w) ∪Kλ

j−1]
)

= 0,

and this implies, taking v = uλj−1 in (A.2), the energy estimate

F (uλj ,K
λ
j ) + λ

∫
Ω

|uλj − uλj−1|2 dx ≤ F (uλj−1,K
λ
j−1);

in particular F (uλj ,K
λ
j ) is decreasing with j, and

‖uλj − uλj−1‖2 ≤ λ−1/2
√
F (uλj−1,K

λ
j−1)− F (uλj ,K

λ
j ).

If k > j we obtain the estimate

‖uλk − uλj ‖2 ≤
k−1∑
i=j

‖uλi+1 − uλi ‖2
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≤
k−1∑
i=j

λ−1/2
√
F (uλi ,K

λ
i )− F (uλi+1,K

λ
i+1)

≤
√
k − j
λ

√√√√k−1∑
i=j

(F (uλi ,K
λ
i )− F (uλi+1,K

λ
i+1))

=

√
k − j
λ

√
F (uλj ,K

λ
j )− F (uλk ,K

λ
k )

≤
√
k − j
λ

√
F (u0,K0) =

√
k − j
λ
‖∇u0‖2.

We define then the piecewise constant functions vλ(t) : [0,+∞)→ SBV (Ω) by

vλ(t) = uλ([λt]),

which satisfy the estimate

‖vλ(t)− vλ(s)‖2 ≤M
√
t− s+

1
λ

if t ≥ s,

with M = ‖∇u0‖2. Using the uniform estimate above it is not difficult to show that there
exists a subsequence (λj) such that

vλj → u uniformly in L∞([0, T ];L2(Ω)) for all T > 0

and the limit u belongs to C0,1/2([0,+∞);L2(Ω)). Moreover by Theorem 3.1 we have
u(t) ∈ SBV (Ω) for all t. Functions u obtained in such a way for a particular choice of (λj)
are called an evolution by minimizing movements of the Mumford-Shah functional with
initial datum u0.

Further information about minimizing movements can be found in [49] and [8].

Approximation with differentiable functionals. Another important issue in fracture
mechanics is numerical approximation. Functionals of type (1.5) can be approximated by
elliptic functionals via a procedure due to Ambrosio and Tortorelli [17], [18] which can
be more easily handled. In the case of the Mumford and Shah functional we have the
following result.

Theorem A.1 Let Ω be a bounded Lipschitz set, let g ∈ L∞(Ω), and let c1, c2 > 0. For
every ε > 0 and κε > 0 consider the problem

(A.3)
min

{∫
Ω

(
(κε + v2)|∇u|2 + c2(u− g)2

)
dx+ c1

∫
Ω

(
ε|∇v|2 +

(1− v)2

ε

)
dx :

u, v ∈ L∞(Ω), 0 ≤ v ≤ 1 a.e., ‖u‖∞ ≤ ‖g‖∞, u, v ∈ H1,2(Ω)
}
.

Then:
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(i) for every ε > 0 there exists at least a C1 solution (uε, vε) to (A.3), and if (εj) is any
sequence of positive numbers converging to 0, then the sequence uεj is relatively compact
in L2(Ω);

(ii) if κεj = o(εj), any limit point u of a subsequence uεj(k) belongs to SBV (Ω) and is
a solution of (A.1); we have also that ∇uεj(k) strongly converges to ∇u in L2(Ω) and the
absolutely continuous measures with densities

εj(k)|∇vεj(k) |
2 +

(1− vεj(k))2

εj(k)

converge to Hn−1 S(u).
A discrete approximation of the Mumford and Shah functional using the Ambrosio and

Tortorelli approach has been studied by Bellettini and Coscia [25].
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