
ON THE CONTINUITY OF FUNCTIONALS DEFINED ON PARTITIONS

MATTHIAS RUF

Abstract. We characterize the continuity of prototypical functionals acting on finite Caccioppoli par-

titions and prove that it is equivalent to convergence of the perimeter of the jump set.

1. Introduction

In this short note we investigate the continuity of functionals defined on functions of bounded variation
taking values in a finite set. More precisely, for an open set Ω ⊂ Rd and Z = {z1, . . . , zq} ⊂ RN we
consider functionals F : BV (Ω,Z)→ R of the form

(1.1) F (u) =

∫
Su∩Ω

g(x, u+, u−, νu) dHd−1.

Here Su denotes the discontinuity set of u, νu = νu(x) is the corresponding normal vector at x ∈ Su and
u+, u− are the traces of u on both sides of the discontinuity set. As it is usual in this framework, the
functional is well-defined if we require the symmetry condition g(x, a, b, ν) = g(x, b, a,−ν). Such func-
tionals arise for example in the study of multiphase Cahn-Hilliard fluids [4] or the discrete to continuum
analysis of spin systems with finitely many ground states [5]. A general treatment of these functionals
from a variational point of view can be found in [1, 2]. In the recent paper [6] the authors proved a density
result in the space BV (Ω,Z) and established continuity of functionals of type (1.1) along the particular
approximating sequence. Here we investigate general continuity properties. Assuming g to be bounded
and continuous, we provide a precise characterization of the convergence under which all functionals of
the form (1.1) are continuous.

We prove that functionals of the form (1.1) are continuous along sequences un such that un → u in
L1(Ω) and in addition Hd−1(Sun ∩Ω)→ Hd−1(Su∩Ω). This is of course also a necessary condition when
we take g ≡ 1. Even though the issue of the continuity of functionals as in (1.1) arises very naturally, to
the best of our knowledge our result never appeared in the mathematical literature.

This short note is organized as follows: In the first part we give a short introduction to functions of
bounded variation. In the second part we prove our main claim.

2. Mathematical Preliminaries

In this section we recall basic facts about functions of bounded variation that can be found in [3].
A function u ∈ L1(Ω) is a function of bounded variation, if there exists a finite vector-valued Radon

measure µ on Ω such that for any ϕ ∈ C∞c (Ω,Rd) it holds∫
Ω

udivϕdx = −
∫

Ω

〈ϕ, µ〉.

In this case we write u ∈ BV (Ω) and Du = µ is the distributional derivative of u. A function u ∈
L1(Ω,RN ) belongs to BV (Ω,RN ) if every component belongs to BV (Ω). In this case Du denotes the
matrix-valued Radon measure consisting of the distributional derivatives of each component.
The spaces BVloc(Ω) and BVloc(Ω,RN ) are defined as usual. The space BV (Ω,RN ) becomes a Banach
space when endowed with the norm ‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω), where |Du| denotes the total varia-

tion measure of Du. When Ω is a bounded Lipschitz domain, then BV (Ω,RN ) is compactly embedded in
L1(Ω,RN ). We say that a sequence un converges weakly∗ in BV (Ω,RN ) to u if un → u in L1(Ω,RN ) and

Dun
∗
⇀ Du in the sense of measures. We say that un converges strictly to u if un → u in L1(Ω,RN ) and
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|Dun|(Ω)→ |Du|(Ω). Note that strict convergence implies weak∗-convergence and that for Ω with Lips-
chitz boundary norm-bounded sequences in BV (Ω,RN ) are compact with respect to weak∗-convergence,
but not necessarily with respect to strict convergence.

We say that a Lebesgue-measurable set E ⊂ Rd has finite perimeter in Ω if its characteristic function
1E belongs to BV (Ω). We say it has locally finite perimeter in Ω if 1E ∈ BVloc(Ω). Let Ω′ be the largest
open set such that E has locally finite perimeter in Ω′. The reduced boundary FE of E is defined as

FE =
{
x ∈ Ω′ ∩ supp|D1E | : ν(x) = lim

ρ→0

D1E(Bρ(x))

|D1E |(Bρ(x))
exists and |ν(x)| = 1

}
and it holds that |D1E | = Hd−1 FE. Moreover ν can be interpreted as a measure theoretic inner normal
vector (see also Theorem 3.59 in [3]).

Now we state some fine properties of BV -functions. To this end, we need some definitions. A function
u ∈ L1(Ω,RN ) is said to have an approximate limit at x ∈ Ω whenever there exists z ∈ RN such that

lim
ρ→0

1

ρd

∫
Bρ(x)

|u(y)− z|dy = 0.

We let Su ⊂ Ω be the set, where u has no approximate limit. Now we introduce so called approximate
jump points. Given x ∈ Ω and ν ∈ Sd−1 we set{

B+
ρ (x, ν) = {y ∈ Bρ(x) : 〈y − x, ν〉 > 0}

B−ρ (x, ν) = {y ∈ Bρ(x) : 〈y − x, ν〉 < 0}

We say that x ∈ Ω is an approximate jump point of u if there exist a 6= b ∈ RN and ν ∈ Sd−1 such that

lim
ρ→0

1

ρd

∫
B+
ρ (x,ν)

|u(y)− a|dy = lim
ρ→0

1

ρd

∫
B−
ρ (x,ν)

|u(y)− b|dy = 0.

Note that the triplet (a, b, ν) is determined uniquely up to the change to (b, a,−ν). We denote it by
(u+(x), u−(x), νu(x)) and let Ju be the set of approximate jump points of u. Then the triplet (u+, u−, νu)
can be chosen as a Borel function on the Borel set Ju. If u ∈ BV (Ω,RN ) it can be shown that
Hd−1(Su\Ju) = 0. Denoting by ∇u the density of the absolutely continuous part of Du with respect
to the Lebesgue measure, we can decompose the measure Du via

Du(B) =

∫
B

∇udx+

∫
Ju∩B

(u+(x)− u−(x))⊗ νu(x) dHd−1 +Dcu(B),

where Dcu is the so called Cantor part.
From now on we assume that Ω is a bounded open set. Given a finite set Z = {z1, . . . , zq} ⊂ RN we

define the space BV (Ω,Z) as the space of those functions u ∈ BV (Ω,RN ) such that u(x) ∈ Z almost
everywhere. As an immediate consequence of the coarea formula applied to each component, it follows
that all level sets Ei := {u = zi} have finite perimeter in Ω. Moreover, the total variation of Du and the
surface measure of Su are given by

|Du| = 1

2

q∑
i=1

∑
j 6=i

|zi − zj |Hd−1(FEi ∩ FEj ∩ Ω), Hd−1(Su) =
1

2

q∑
i=1

Hd−1(FEi ∩ Ω).

3. Statement and proof of the main result

The following theorem is the main result of this short note. For our proof we use minimal liftings in BV
as in [9] (see also [7]).

Theorem 3.1. Let g : Ω×Z2×Sd−1 → R be bounded and continuous and let un, u ∈ BV (Ω,Z) be such
that un → u in L1(Ω) and Hd−1(Sun ∩ Ω)→ Hd−1(Su ∩ Ω). Then

lim
n

∫
Sun∩Ω

g(x, u+
n , u

−
n , νun) dHd−1 =

∫
Su∩Ω

g(x, u+, u−, νu) dHd−1.
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Remark 1. Since we aim for a rather weak kind of convergence it is convenient to require that g is
bounded and continuous. While continuity in the trace variables is redundant since Z is a finite set,
continuity in x and ν can be dropped if we aim for norm convergence in BV (Ω,Z). On the other hand,
given a sequence un ∈ BV (Ω,Z) such that un → u in L1(Ω) we can’t expect the energy to converge as
well.

Proof of Theorem 3.1. Let us set F (u) =
∫
Su∩Ω

g(x, u+, u−, νu) dHd−1. We will just prove upper semi-

continuity. The general result then follows applying upper semicontinuity to the functional −F . By our
assumptions we can assume without loss of generality that g ≥ 0. For an arbitrary v ∈ BV (Ω,Z) we
define for |Dv|-almost every x ∈ Ω the vector measure λx via its action on functions ϕ ∈ C0(RN ) by∫

RN
ϕ(y) dλx(y) =

dDv

d|Dv|
(x)

∫ 1

0

ϕ(θv+(x) + (1− θ)v−(x)) dθ.

To reduce notation, we write vθ = θv+ + (1 − θ)v−. Since v+, v− are |Dv|-measurable, using Fubini’s
theorem one can show that for any ϕ ∈ C0(Ω× RN ) the mapping

x 7→
∫
RN

ϕ(x, y) dλx(y)

is |Dv|-measurable and essentially bounded. Hence we can define the generalized product µ[v] = |Dv|⊗λx
again by its action on C0(Ω× RN ) setting∫

Ω×RN
ϕ(x, y) dµ[v](x, y) =

∫
Ω

∫
RN

ϕ(x, y) dλx(y) d|Dv|(x);

see also Definition 2.27 in [3]. We next claim that up to a negligible set it holds that

(3.2)
dµ[v]

d|µ[v]|
(x, y) =

dDv

d|Dv|
(x).

Indeed, Corollary 2.29 in [3] yields |µ[v]| = |Dv|⊗|λx|. As the defining formula for the generalized product
extends to integrable functions, we infer that∫

Ω×RN
ϕ(x, y)

dDv

d|Dv|
(x) d|µ[v]|(x, y) =

∫
Ω

∫
RN

ϕ(x, y)
dDv

d|Dv|
(x) d|λx|(y) d|Dv|(x)

=

∫
Ω

∫
RN

ϕ(x, y) dλx(y) d|Dv|(x) =

∫
Ω×RN

ϕ(x, y) dµ[v](x, y),

where we have used that λx = dDv
d|Dv| (x)|λx|. Hence (3.2) follows by uniqueness of the polar decomposi-

tion of measures. Because of (3.2) and the generalized product structure of |µ[v]|, by an approximation
argument it holds that∫

Ω×RN
f(x, y,

dµ[v]

d|µ[v]|
(x, y)) d|µ[v]|(x, y) =

∫
Ω×RN

f(x, y,
dDv

d|Dv|
(x)) d|µ[v]|(x, y)

=

∫
Ω

∫
RN
f(x, y,

dDv

d|Dv|
(x)) d|λx|(y) d|Dv|(x)

=

∫
Ω

∫ 1

0

f(x, vθ,
dDv

d|Dv|
(x)) dθ d|Dv|(x)(3.3)

for every nonnegative function f ∈ C(Ω × RN × SN×d−1). In [7] it is proven that if vn → v strictly in

BV (Ω,RN ), then µ[vn]
∗
⇀ µ[v] and |µ[vn]|(Ω × RN ) → |µ[v]|(Ω × RN ). The idea now is to apply the

classical Reshetnyak continuity theorem (see for instance [8, 10]) with an appropriate f and a strictly
converging sequence vn. To this end we transform the set Z so that averages of the jump functions u±

encode the values of the traces and such that the convergence assumptions yield strict convergence. Recall
that q = #Z. We define the mapping T : Z → Rq via T (zi) = ei, where ei denotes the i-th unit vector.
Next we construct the function f . Given i < j we consider the set

Lij = {λT (zi) + (1− λ)T (zj) : λ ∈ (1/4, 3/4)}.
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Observe that by construction of the set T (Z) it holds Lij ∩Lkl = ∅ whenever {i, j} 6= {k, l}. Given δ > 0
we next choose a cut-off function θδij : [T (zi), T (zj)] → [0, 1] such that θδij = 1 on Lij and θδij(x) = 0 if

dist(x, Lij) ≥ δ. Set fδ ∈ C(D × Rq × Sq×d−1) as any continuous, nonnegative extension of the function

fδ(x, u, ξ) =
θδij(u)

√
2H1(Lij)

g(x, zi, zj ,
ξT e1

|ξT e1|
)|ξT e1| if u ∈ [T (zi), T (zj)].

First observe that this is well-defined due to the ordering i < j (also in the case ξT e1 = 0 since g is
bounded). Moreover, for δ small enough such an extension exists by the properties of the cut-off function.
Now for any T (u) ∈ BV (Ω, T (Z)), with a suitable orientation of the normal vector, for |DT (u)|-almost
every x ∈ Ω it holds that

dDT (u)

d|DT (u)|
(x) =

1√
2

∑
i<j

(T (zi)− T (zj))⊗ νu(x)1FEi∩FEj (x),

|DT (u)| =
√

2
∑
i<j

Hd−1 (FEi ∩ FEj),

where Ei = {u = zi}. Therefore we can rewrite with a nonnegative error O(δ)∫
Ω

∫ 1

0

fδ(x, T (u)θ,
dDT (u)

d|DT (u)|
(x)) dθ d|DT (u)|(x)

=

∫
Ω

∑
i<j

g(x, zi, zj , νu) dHd−1 (FEi ∩ FEj) +O(δ)Hd−1(Su ∩ Ω)

= F (u) +O(δ)Hd−1(Su ∩ Ω).

If un, u are as in the claim, then T (un)→ T (u) in L1(Ω) and moreover |DT (un)| =
√

2Hd−1(Sun ∩Ω)→√
2Hd−1(Su ∩Ω) = |DT (u)|, so that T (un) converges strictly to T (u). Hence we conclude from (3.3) and

the classical Reshetnyak continuity theorem applied to the measures µ[T (un)], µ[T (u)] that

lim sup
n

F (un) ≤ lim
n

∫
Ω

∫ 1

0

fδ(x, T (un)θ,
dDT (un)

d|DT (un)|
(x)) dθ d|DT (un)|(x)

=

∫
Ω

∫ 1

0

fδ(x, T (u)θ,
dDT (u)

d|DT (u)|
(x)) dθ d|DT (u)|(x)

≤ F (u) +O(δ)Hd−1(Su ∩ Ω).

The claim follows by the arbitrariness of δ. �

Remark 2. Taking g(x, u+, u−, ν) = |u+ − u−|, Theorem 3.1 yields that L1(Ω)-convergence combined
with the convergence of Hd−1(Su) implies strict convergence in BV (Ω,Z). The converse is false in general
as can be seen by the following one-dimensional example. Given n ∈ N we set un : (−1, 1)→ {0, 1, 2} as
un(x) = 1(1/n,2/n) + 21(2/n,1). Then un converges strictly to the function u = 21(0,1), while H0(Sun) = 2

but H0(Su) = 1.
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