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ABSTRACT. We study the discrete-to-continuum limit of ferromagnetic spin systems when the lattice
spacing tends to zero. We assume that the atoms are part of a (maybe) non-periodic lattice close to a flat
set in a lower dimensional space, typically a plate in three dimensions. Scaling the particle positions by a
small parameter ¢ > 0 we perform a I'-convergence analysis of properly rescaled interfacial-type energies.
We show that, up to subsequences, the energies converge to a surface integral defined on partitions of
the flat space. In the second part of the paper we address the issue of stochastic homogenization in
the case of random stationary lattices. A finer dependence of the homogenized energy on the average
thickness of the random lattice is analyzed for an example of a magnetic thin system obtained by a
random deposition mechanism.
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1. INTRODUCTION

Polymeric magnets are known to be lighter and more flexible than conventional magnets. They can be
easily manufactured to form thin films made of few layers and are currently considered one of the main
building blocks of the future generations of electronic devices. Under external magnetic fields they form
Weiss domains whose wall energy is influenced by the thickness and the roughness of the film which in
turn depends on the physical and chemical properties of the specific material at use. A fairly large amount
of experimental results reconstruct the relation between film thickness and interfacial domain wall energy
for different ferromagnetic materials (see [26] and references therein), but no rigorous explanation has
appeared so far in this direction. Among the reasons for such an unsatisfactory analysis we single out one
which has a geometric flavour: depositing magnetic particles on a substrate to obtain a thin film leads
to disordered arrangements of particles and rough film surfaces which makes very difficult to formulate
a suitable ansatz leading to the correct (and simpler) continuum model. In this paper we look at this
problem from a different perspective: we single out a simple Ising-type model for a thin film obtained by
random deposition of magnetic particles on a flat substrate, for which the geometric part of the problem is
still non trivial, and propose an ansatz-free variational analysis of such a film. Combining I'-convergence
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and percolation theory we finally obtain a rigorous explanation of the relation between film thickness and
domain-wall energy in some asymptotic regimes.

A simple way to model thin ferromagnetic polymeric materials at the micro scale first requires the
definition of a polymeric matrix made of magnetic cells and then that of an interaction energy between
those cells (see [34] and references therein for further details). The polymeric matrix of such a system can
be seen as a random network whose nodes are the cross-linkers molecules of the 3-d polymeric magnet,
which are supposed to entail the local magnetic properties of the system and to interact as magnetic
elementary cells via a ferromagnetic Potts-type coupling. The system is supposed to be thin in the sense
that the nodes of the matrix are within a small distance, of the order of the average distance between the
nodes themselves, from a 2-d plane. In the presence of an external magnetic field or of proper boundary
conditions, the ferromagnetic coupling induces the system to form mesoscopic Weiss domains, i.e. regions
of constant magnetization.

In this paper we aim at upscaling the system described above from its microscopic description to a
mesoscopic one in a variational setting. This consists in performing the limit of its energy as the average
distance between the magnetic cells, which we denote by ¢, goes to zero with respect to the macroscopic
size of the system. Such a limit will have two main effects: it will allow us to describe the original discrete
system as a continuum while at the same time it will reduce its dimension from three to two (or more
generally from d to k with 2 < k < d).

The discrete-to-continuum analysis in this paper is also part of a general study of the effects of discreteness
in lattice systems on their macroscopic description. It is directly related to a series of papers describing
the overall behaviour of spin energies [22, 2, 21, 16, 8]. Moreover, discrete-to-continuum analyses for thin
elastic objects in a deterministic setting have also been considered, e.g. in [3, 32, 27], and the behaviour
of full-dimensional random lattices is dealt with in [5] (see also [12]). For dimension-reduction problems
for continuum elastic objects we also refer to [28, 19], the latter introducing a dimensionally reduced
localization argument similar to the one used in the present paper.

Using the same model as in [6] we describe the polymeric matrix as a random network whose nodes
L C R? form a thin admissible stochastic lattice, meaning that the matrix is thin, i.e. there exist k € N
with 2 < k < d and M > 0 such that, identifying R* with a linear subspace of R,

dist(z,R¥) <M forallz e L

and it is admissible according to the following standard definition (see [30] and also [5, 12] in the framework
of rubber elasticity). We say that £ is an admissible set of points if the following two requirements are
satisfied:

(i) there exists r > 0 such that |x —y| > r for all © # y, z,y € L,
(ii) there exists R > 0 such that dist(z, £) < R for all z € R*.

Within this definition we may include ‘slices’ of periodic lattices [3], and also aperiodic geometries [15].
Given a probability space (€2, F,P), a random variable £ : Q — (R?)N is called an admissible stochastic
lattice if L(w) is an admissible set of points uniformly with respect to w € Q.

We assume that the magnetization takes only finitely many values, that is to say we consider configurations
u: el — S with a state-space S = {s1,..., 54} that we embed in the euclidean space R?. We have in
mind the case of spin systems, where u; € {1, —1}. Note that even in that case it is sometimes necessary
to use a larger set of parameters S if frustration forces the formation of texture (see [16]). Note that if we
have more than two parameters, we may have concentration phenomena of a third phase on the interfaces
between two phases. A finer description of this phenomenon can be found in [7].

Associating a Voronoi tessellation V(L) to the lattice £, one introduces the set of nearest neighbours
NN (L) as the set of those pairs of points in £ whose Voronoi cells share a (d — 1)-dimensional edge. This
allows us to distinguish between long-range and short-range interactions introducing the (£-dependent)
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interactions

fo(z,y, 80, 85) = { on (@Y, 81,85) if (z,y) € NN(L),

fi.(x,y,8:,8;) otherwise,

which we assume to be non-negative and to satisfy the following coerciveness and growth assumptions.
Hypothesis 1 There exist ¢ > 0 and a decreasing function J,. : [0, +00) — [0, +00) with
/ Jn(lz)|zl dz = J < 400
Rk

such that, for all € > 0, z,y € R? and s;,s; € S,

clsi = sj| < fan(@y,8i,85) < Dl —yllsi — 81, [ (2,9, 81, 85) < T (|2 = yl)]si — s5]-

We remark that the decay of J;,. is needed to control the effect of long-range interactions and we use the
same bound for short-range interactions only to save notation.

We fix D C R¥ and denote by P, : R? — R* the projection onto R¥. For a given configuration
u: el — S we consider the energy per unit ((k — 1)-dimensional) surface of D to have the ferromagnetic
Potts form (see also [2, 6, 7, 16]) given by

E(u)= Y 7 fela,y,ulen), uey)).

z,yeL
sm,eyePkle

Since the sets e£ will eventually shrink to a k-dimensional set, we conveniently describe the system in
terms of an average spin order parameter Pu : e Py L — co(S) defined on the k-dimensional set e P, L by

1
P = .
v 7* (Plgl(z) n 5[’) g:pEP;Z)ﬂEL‘, e

We then embed the energies E. in L'(D) by identifying Pu with a function piecewise constant on the
cells of the Voronoi tessellation of Py L, define the convergence u. — w in D in the sense that the piecewise
constant functions Pu. converge to u strongly in L!'(D) and perform the I'-convergence analysis with
respect to this notion (see Section 2 for further details).

In Theorem 3.2 we prove a compactness and integral representation result for the I'-limit F of E., stating
that, up to subsequences, this is finite only on BV(D,S), where it takes the integral form

B(u) = / 6 (ot um ) AHF L.
Su

In this formula S, is the jump set of u, the functions u™ and u~ represent the traces on both sides
of the jump set, v, € S*~1 is the measure-theoretical normal to S, and H*~! the (k — 1)-dimensional
Hausdorff measure. The function ¢“ is interpreted as the domain-wall interaction energy (per unit (k—1)-
dimensional area) between Weiss domains.

The dependence of such an energy on the randomness of the lattice is studied in Section 5 in the context
of stochastic homogenization assuming the thin random lattice to be stationary (or ergodic) in the di-
rections of the flat subspace to which it is close to and the interaction coefficients to be invariant under
translation in these directions. More precisely we assume that there exists a measure-preserving group
action (7,),czr on § such that, almost surely in 2, we have L(7,w) = L(w) + 2z (if in addition (7,),cz»
is ergodic, then also the lattice £ is said to be ergodic) and the following structural assumption:

Hypothesis 2 There exist functions fy,,, fir : R¥ xR2(4=k) xS — [0, +00) such that, setting Ag(z,y) =
(Y1 — @1, -, Yk — Thy Tk 1, Ykt 1y - - - Lds Yd), it holds that

f'rin(x7y7si7sj) = fnn(Ak(xyy),si; Sj)7 flar(x7ya Siysj) = Clr(Ak(-Tay)u Siysj)~
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In Theorem 5.8 we prove that under Hypotheses 1 and 2 and assuming the stationarity (or ergodicity) in
the sense specified above, the I'-limit of E. as ¢ — 0 exists and is finite only on BV (D, S) where it takes
the form

B () = / 60 (u ) AHEL,
Su

The energy density is given by an asymptotic homogenization formula which is averaged in the proba-
bility space under ergodicity assumptions on £, thus turning the stochastic domain wall energy into a
deterministic one.

The result is proved by the abstract methods of I'-convergence, first showing an abstract compactness
result, and then giving an integral representation of the limit, as described in detail for deterministic bulk
elastic thin films in [19] (for other applications of this method in a discrete-to-continuum setting see e.g.
[4, 29, 16]). The proof makes use of two main ingredients: the integral-representation theorem in [13] and
the subadditive ergodic theorem by Ackoglu and Krengel in [1]. They are combined following a scheme
introduced in [5] in the context of random discrete systems with limit energy on Sobolev spaces (see also
[24]) and recently extended to sets of finite perimeter in [6]. Section 6 is devoted to extending the result
above to the case of a volume constraint on the phases.

An interesting issue in the theory of thin magnetic composite polymeric materials is the dependence of
the domain wall energy on the random geometry of the polymer matrix. We devote the second part of
the paper to this problem. We consider a specific model of a discrete system in which the state-space
is § = {£1} and the stochastic lattice is generated by the random deposition of magnetic particles on
a two-dimensional flat substrate. For simplicity we limit ourselves to a simple deposition model with
vertical order and suppose that the magnetic interactions have finite range. We are interested in the
dependence of the domain wall energy on the average thickness of the thin film. Even though a complete
picture would need a more extended treatment, thanks to percolation arguments we are able to attack
the problem in the asymptotic cases when the thickness of the film is either small or very large.

More specifically, we model the substrate (where the particles are deposited) by taking a two-dimensional
deterministic lattice, which we choose for simplicity as £ = Z? x {0}. We then consider an independent
random field {X?};czs, where the X? are Bernoulli random variables with P(X? = 1) = p € (0,1). For
fixed M € N we construct the random point set

M
,CS/I(W) = {(7;177;%1.3) €zZ’: 0 <3< ZXﬁl,i%k)(w)}’

k=1

which means that we successively deposit particles M times independently onto the flat lattice £° and
stack them over each other (the point set constructed is stationary with respect to translations in Z? and
ergodic). Moreover, given u : e£)(w) — {#1}, we consider an energy of the form

EL (W) (u, A) = >, e c(z — y)lu(ex) — uley)l,
w,yeﬁé” (w)
ePy(x),ePa(y)EA
where the interaction constant ¢ : R® — [0, +00) has finite range, is bounded from above and is coercive
on nearest-neighbours, so that the Hypotheses 1 and 2 above are satisfied. As a result Theorem 5.8 guar-
antees the existence of a surface tension, say ¢! (M;v) given by an asymptotic cell formula.

hom

The main issue now is the dependence of ¢f  (M;v) on p and M.

A first result in this direction is proved in Proposition 7.3 where we show that, for every direction v € S,
the wall energy density is linear in the average thickness pM as M — 400, that is
P (M l/)
—em 2 = ¢l (v),

: hom
(1'1) M1—1>IR<>O pM
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with ¢!(v) given in Lemma 7.2 being the wall energy per unit thickness of the deterministic problem
obtained for p = 1.
A second and more delicate result is contained in Theorem 7.5 and concerns a percolation type phenom-
enon which can be roughly stated as follows: When the deposition probability p is sufficiently low (below
a certain critical percolation threshold) the domain wall energy is zero for M small enough. At this stage
it is worth noticing that our energy accounts for the interactions between the deposited particles and the
substrate. On one hand this assumption might be questionable from a physical point of view in the case
one assumes to grow thin films on neutral media, thus expecting the properties of the film to be indepen-
dent of the substrate. On the other hand removing such an interaction leads to a dilute model similar to
the one considered in [20]. An adaption of this analysis would require a lot of additional work like the
extension of fine percolation results to the (range 1)-dependent case which goes far beyond the scopes of
the present paper (see also Remark 7.4). We prove the percolation result for nearest-neighbour positive
interactions. Setting the interaction with the substrate to be 7 > 0 we can prove that if p < 1 — pgje
(here pg;t. is the critical site percolation threshold in Z?), the limit energy ¢}’ (M;v) is bounded above
(up to a constant) by n for M small enough. This result suggests the absence of a positive domain wall
energy in the thin film on a neutral substrate (n = 0 case). In the limit as M diverges (1.1) holds with
P (M;v), which is independent of 7, thus showing that the contribution of the first layer does not affect
the asymptotic average domain wall energy as expected. The proof of these results needs the extension
to the dimension reduction framework of a result by Caffarelli and de la Lave [22] about the existence
of plane-like minimizers for discrete systems subject to periodic Ising type interactions at the surface
scaling. This is contained in Appendix A.
As a final remark, we mention that we prove all our results in the case when the flat object is at least
two-dimensional. Most of the results can be extended to one-dimensional objects (with the proof being
much simpler), except the ones contained in Section 6 which fail in dimension one as can be seen by simple
examples and the percolation-type phenomenon in Section 7 as no percolation can occur in (essentially)
one-dimensional lattices.

2. MODELING DISCRETE DISORDERED THIN SETS AND SPIN SYSTEMS

This section is devoted to the precise description of the model we are going to study. We start with the
notation we are going to use in the sequel.

As we are concerned with dimension-reduction issues, there will be two geometric dimensions & and
d with 2 < k < d. Given a measurable set A C R¥ we denote by |A] its k-dimensional Lebesgue measure,
while more generally H™(A) stands for the m-dimensional Hausdorfl measure. We denote by 14 the
characteristic function of A. Given x € R¥ and r > 0, B,(z) is the open ball around z with radius r.
By |z| we denote the usual euclidean norm of z. Moreover, we set dy; (A, B) to be the Hausdorff distance
between the sets A and B and dimy(A) to be the Hausdorff dimension of A. If it is clear from the
context we will use the same notation as above also in R? (otherwise we will indicate the dimension by
sub/superscript indices). Given an open set D C R¥ we denote by A(D) the family of all bounded open
subsets of D and by A% (D) the family of those sets in A(D) with Lipschitz boundary. Given a unit vector
ve Sk 1 let v =u1y,...,1;, be an orthonormal basis. We define the open cube in R*

1
— k. ) - ;
QV—{xER : \(m,ul>|<2 forallz},

and, for z € R*, p > 0, we set Q,(z,p) :== 2+ pQ,. We call v € S¥7! a rational direction if v € Q*. We
denote by P, : R? — R* the projection onto R¥.

For ¢ € N we let BV(D,R?) be the space of R?-valued functions of bounded variation; that is, those
functions u € L*(D,R?) such that their distributional derivative Du is a matrix-valued Radon measure.
Given a set S C RY, we denote by BV (A,S) the space of those functions u € BV(A,RY) such that
u(x) € § almost everywhere. If S is a finite set, then the distributional derivative of u can be represented
on any Borel set B C D as Du(B) = [3.g (u'(z) —u™(2)) @ vy(z) dH* ! (z), for a countably #*~'-
rectifiable set S, in D which coincides H*~!-almost everywhere with the complement in D of the Lebesgue
points of u. Moreover v, () is a unit normal to S,,, defined for #*~!-almost every = and u™t(z), u™ ()
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are the traces of u on both sides of S,,. Here the symbol ® stands for the tensorial product of vectors,
that is for any a,b € R* we have (a ® b)ij := a;bj. A measurable set B is said to have finite perimeter
in D if its characteristic function belongs to BV (D). We refer the reader to [11] for an introduction to
functions of bounded variation. The letter C' stands for a generic positive constant that may change every
time it appears.

We want to describe (possibly non-periodic) particle systems, where the particles themselves are
located very close to a lower-dimensional linear subspace. To this end we make the following assumptions:
Let £ ¢ R? be a countable set. We assume that there exists M > 0 such that, after identifying R* ~
R* x {0}4*, we have

(2.2) dist(z,R*) < M forall z € L.
Moreover, adapting ideas from [5, 6, 12] we assume that the point set is regular in the following sense:

Definition 2.1. A countable set £ C R? is a thin admissible lattice if (2.2) holds and

(i) there exists r > 0 such that |x —y| > r for all © # y, z,y € L,
(ii) there exists R > 0 such that dist(z, £) < R for all z € RF.

We associate to such a lattice a truncated Voronoi tessellation V(L), where the d-dimensional cells C €
V(L) are defined by

C(z) :={z e R¥ x [-2M,2M]4* . |z — 2| < |z — /| for all 2’ € L},
and we introduce the set of nearest neighbours accordingly by setting
NN (L) := {(z,y) € L? : dimy(C(x)NC(y)) =d—1}.

As usual in the passage from atomistic to continuum theories we scale the point set £ by a small parameter
e > 0. We assume that the magnetization of the particles takes values in a finite set S = {s1,...,s,} C R
Fix a k-dimensional reference set D € A®(R¥). Given A € A®(D) and u : e£ — S, we consider a localized
(on A) pairwise interaction energy

E.(u,A)= ) ez y uler) uley)),

z,yeL
ez,eyGP,;lA

where the (£-dependent) interactions distinguish between long and short-range interactions and are of
the form

fo(2,y,80,85) = { (@Y, si,s5) i (x,y) € NN (L),

fi(,y, sis 5]‘) otherwise.

For our analysis we make the following assumptions on the measurable functions fZ,, f. : RIx R?x §% —
[0, +00):

Hypothesis 1 There exist ¢ > 0 and a decreasing function Jj,. : [0, +00) — [0, +00) with
/ |z |z] de = J < 400
Rk

such that, for all € > 0, z,y € R? and s;,s; € S,
¢ < cpn(2,y) < Jie(lz —yl), o, (z,y) < Jie(lz —yl).

Since the sets £ shrink to a k-dimensional set as £ vanishes, we want to define a convergence of
discrete variables on shrinking domains.To that end, denoting by co(S) the convex hull of S, we define
the averaged and projected spin variable Pu : e PyL — co(S) via

1
| Pules) e = u(ex).
(2.3) (e2) # (P (z)N L) I€p§z)m£ .
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FicURE 1. Construction of the piecewise-constant interpolation for d = 2, k¥ = 1 and

S = {+1).

The projected lattice P,£ C R* inherits property (ii) from Definition 2.1, but (i) might fail after projec-
tion. Nevertheless, due to (2.2) the projected lattice is still locally finite and the following uniform bound
on the number of points holds true: there exists a constant C' = C > 0 such that, given a set A € A(D)
with |0A| = 0, we have

(2.4) ehdlez e ePLN A} < C|A|

for e small enough. We now associate the corresponding k-dimensional Voronoi tessellation V(PiL) =
{Ci(2)} in R¥ to the lattice PyL and we identify Pu with a piecewise-constant function belonging to the
class

PC.(L) :={v: R = co(S) : vjec,(») is constant for all z € PpL}

Note that we can embed PC.(£) in L'(D) since the intersection of two Voronoi cells always has zero
k-dimensional Lebesgue measure.

For the sake of illustration, in Figure 1 we picture the construction in the simple case d = 2, k = 1 and
S = {£1}. In the picture above, we draw a portion of the truncated Voronoi diagram of the lattice £
represented by the dots, black for u = —1 and white for v = +1. At the bottom of the Voronoi diagram we
include the projected points Py £ and the values of the variable Pu € [—1, 1] (range reflected by the grey
scale in the figure). The dashed lines indicate the exceptional set of projection points where |Pu| # 1. In
the picture below, it is represented the piecewise-constant function on the Voronoi intervals subordinated
to Plﬁ.

To deal with convergence of sequences u. : e£ — S, we adopt the idea of [15]. We will see in Section 6
that this notion of convergence is indeed meaningful for variational problems in a random environment.

Definition 2.2. Let A € A(D). We say that a sequence u. : e£ — S converges in A to u : A — RY if
the piecewise-constant functions Pu. converge to u strongly in L!(A).
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For our variational analysis we also introduce the lower and upper I'-limits E’, E” : L'(D,R9) x
AE(D) — [0, +00] setting

E'(u, A) := inf{limi(l)leE(ug,A) D Ue = uin D}7
E—r

(2.5) E"(u, A) := inf{limsup E (uc, A) 1 ue = win D}.

e—0
Remark 2.3. The functionals E’, E” are not I'-lower /upper limits inNthe usual sense since they are not
defined on the same space as E.. However, if we define the functionals E. : L*(D,R?) x A%(D) — [0, +o0]
as
inf, E.(v, A) if u= Pv for some v: el — S,

400 otherwise,

E.(u,A) := {

then E', E” agree with the I-lower/upper limit of E. in the strong L'(D)-topology. Therefore we will
refer to the equality of £/ and E” as I'-convergence. Moreover, one can show that

E'(u,A) = inf{ligl_gleE(uE,A) D Ue = uin A},

E"(u, A) = inf{limsupEa(uE,A) D Uue = uin A}.
e—0

By the properties of I'-convergence this implies that both functionals u — E’'(u, A) and u — E"(u, A)

are L!(A)-lower semicontinuous and hence local in the sense of Theorem 3.1 (ii).

We now prove several properties of the convergence introduced in Definition 2.2. We start with an
equi-coercivity property.

Lemma 2.4. Assume Hypothesis 1 holds. Let A € A(D) and let uc : e£L — S be such that
sup Fe(ue, A) < 4o0.

Then, up to subsequences, the functions Pu. defined as in (2.3) converge strongly in L'(A) to some
ue BV(A,S).

Proof. Fix A’ CC A such that A’ € AR(D). We start by estimating the measure of the set { Pu. ¢ S}NA’.
Note that if Puc(c2) ¢ S for some z € PyL such that £ Cy(2)N A’ # 0, then there exist z1, 22 € P, '(2)NL
such that ue(ex1) # ucs(ex2). As a preliminary step we show that we can find a path of nearest neighbours
in £ joining ; and xo; that is, a finite collection of points {x!,...,2™} C £ such that ' = z; and
™ = x5 and (z¢,2°t!) € NN(L) for all i = 1,...,m — 1. Moreover this path will be chosen such that it
does not vary too much from the segment between x; and x5. To this end, fix 0 < § << 1 and consider
the collection of segments

(2.6) Gs(x1,m2) ={x+ AMaa —x1): x € Bs(x1), 0 < A< 1}
We argue that there exists a segment g* = {&* + AM(a2 — 1) : 0 < A < 1} C G5 satisfying the implication
(2.7) g NCx)NC)#0 = (x,2") e NN(L).

Indeed, assume by contradiction that the implication is false for all * € Bs(z1). Since the number
of d-dimensional Voronoi cells C(x) € V(L) such that C(z) N Gs # O is uniformly bounded, we can
then find finitely many Voronoi facets of dimension less than d — 1 whose projection onto the hyperplane
containing x; and orthogonal to zo —x; covers a d— 1-dimensional set. Since projections onto hyperplanes
are Lipschitz continuous, we obtain a contradiction.

The path connecting z; and x5 is then given by the set G(x1,22) := {& € L : g* NC(z) # 0},
provided that ¢ is small enough. Observe that there exist x,y € G(z1,23) such that (z,y) € NN (L)
and ue(ex) # ue(ey). From the coercivity assumption in Hypothesis 1, we thus deduce that each path
contributes to the energy. Moreover, by (2.2) and the local construction of the paths, for any pair (z,y) €
NN (L) it holds that

#{z € PL: G(xy,22) N{x,y} £ 0} < C.
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From these two facts we infer that
(2.8) eF Tl ez eCr(2) N A’ # 0, Puc(ez) ¢ S} < CE.(u., A) < C,

where we have used that eG(v1,22) C (P, 'A) NeL for e small enough. Since the measure of a Voronoi
cell in PyL can be bounded uniformly by a constant, by rescaling we deduce that

(2.9) [{Pu. ¢ S}nA| < Ce.

We continue bounding the total variation |DPu.|(A’). Since Pu. is equibounded and piecewise constant,
it is enough to provide a bound for H*~1(Sp,. N A’). Note that the jump set Sp,_ is contained in the
facets of the Voronoi cells of the lattice e P,L. Since £ is thin admissible in the sense of Definition 2.1
and property (ii) is preserved by projection, for each such facet F it holds that

HFY(F) < el L
For € small enough, we conclude that
HF 1 (Spu, NA') < CeF 714 {(2, 7)) € NN (PLL) : Puc(ez) # Puc(e2'), ez,e2’ € A’ + Bg.(0)}.
Given ez,e2’ € A’ + Br:(0) such that (z,2') € NNV (PxL) and Pu.(ez) # Pu.(e2'), again we may find a
path of nearest neighbours G(z,2') = {2° € P, '(2),2%,...,2™ € P, '(2)} with u.(e2®) # uc(ex™) and
the paths are local in the sense that
#{(2,2") e NN(PL) : G(z,2")n{x,y} #0} <C
for all (z,y) € NN (L). Reasoning as in the first part of the proof we find that
eF =14l (2,2) € NN (PpL) : Puc(ez) # Pu.(e?'), ez,e2’ € A’ + Br.(0)} < CE.(u.,A) < C.

By well-known compactness properties of BV -functions (see for example [11, Corollary 3.49]) and (2.9),
there exists a subsequence (not relabeled) such that Pu. — u in L*(A’) for some u € BV (A’,S). Since
A’ was arbitrary, the claim follows by a diagonal argument combined with equiboundedness which rules
out concentrations close to the boundary. g

We will also use the following auxiliary result about the convergence introduced in Definition 2.2.

Lemma 2.5. Let A € A(D) be such that |0A| =0 and let ue,v. : eL — S both converge in A to u in the
sense of Definition 2.2 and assume both have equibounded energy on A. Then

lim e¥luc(ex) — ve(ex)| = 0.
e—0
ex€el
ePy(xz)€A

Proof. Fix aset A’ CC A such that A’ € A®(D). By (2.4) and equiboundedness of u. and v, it is enough
to show that
lim Z e lue(ex) — ve(ex)| = 0.

e—0
excel
ePy(z)eA’

Using the fact that u.,v. both have finite energy in A, we can argue as in the derivation of (2.8) to show
#{ex € eL: ePy(x) € A, Pu.(ePy(x)) # uc(ex) or Pu.(ePy(x)) # ve(ex)} < Ce'~F,
Inserting this estimate and using that £ satisfies (2.2) we obtain

Z e¥lus(ex) — ve(ex)| < C Z e¥|Pu.(e2) — Pu.(ez)| + Ce.

ex€el ez€ePr L
EPk(af)EA/ gzeA/

Thus it is enough to control the last sum. Since the Voronoi cells in the projected lattice may become
degenerate, we can only use bounds on the number of cells. To this end fix L > 1 large enough such that,
for all z;, € LZ*, we have

(2.10) 1 < # (ePeLN(e2 + [0, Le)k)) < C.
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Define I, := {21, € LZ* : (21, + [0, Le)*) N A’ # ()} and subdivide this set again as
Isl :={zp, € I. : Pu. is not constant on ez, + [O,Le)k},
I? := {2z € I. : Pu. is not constant on ez, + [0, Le)*},
=L\ U12).
Since every scaled k-dimensional Voronoi cell eCi(z) can only intersect finitely many cubic cells ez, +

[0, Le)* with a uniform bound on the cardinality, we can again use the energy bound in A and argue as
for (2.8) to conclude

(2.11) #(ILUTI?) <Cetr
Combining (2.10) and (2.11) we infer from the definition of the set I2? that

Z | Pu.(e2) — Pv.(e2)| < Ce + Z Z e¥|Pu.(ez) — Pv.(e2)|

ez€ePr L zp €13 ez€ePr L

ez€A’ ez€ezr,+[0,Le)*
<CetC > / |Pu.(s) — Puv.(s)|ds < Ce + C|[Puc — Pvc||11(a).-
zpel? ezr+[0,Le)k
This concludes the proof, since the last term tends to 0 by assumption. ]

Following some ideas in [5] we introduce an auxiliary deterministic square lattice on which we will
rewrite the energies E.. This lattice, shown in Figure 2, will turn out to be a convenient way to control
the long-range interactions.

On setting 1’ = % it follows that #{L N {a + [0,7/)4}} < 1 for all a € 7'Z%. We now set
Zo(L) ={aerZ®: #(LN{a+[0,r)"}) =1},

To :=LN{a+[0,7)}, ac Z.(L)

and, for £ € 'Z%, U c R* and ¢ > 0,
REU) :={a: a,a+£&€ Zu(L), exg,Tare € P U}

Note that by (2.2), enlarging M if necessary, it is enough to consider

€'zl =20 (R* x [-2M,2M]4F).
We can then rewrite the localized energy as

Z Z k 1f5 xaaxa+§, (€$a),u(€$a+£)).

¢er'Zg; acRE(A)

Remark 2.6. Observe that we can write

{cerziy= |J (6= 2, 2an): & €r'ZFY.

zer'zd—k
2]oe <2M

Hence the monotonicity assumption from Hypothesis 1 allows to transfer the decay of long-range inter-
actions to the discrete environment as follows: Given & > 0, there exists Ls > 0 such that

(2.12) > €D <4,

EETIZ‘;/I

1€1>Ls
where £ € £+ [—7',r']% is such that |£| = dist([0,7")%, [0,7")¢ + ). This decay property along with Lemma
2.7 below will be crucial to control the long-range interactions. However note that Ls in general depends
on M.
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FIGURE 2. The particles in £ (circles) and the auxiliary lattice 7'Z? (black dots).

The following lemma asserts that on convex domains we can essentially control the long-range interactions
by considering only nearest neighbours.

Lemma 2.7. Let B C A(RF) be conver and B = {x € R¥ : dist(x, B) < 3(R + M)e}. Then there
exists a constant C' depending only on v, R, M in Definition 2.1 such that for every & € v'Z3, and every
u:el — S it holds that

Z fe(@a, Tate, u(eza), u(ezase)) < CJlT(‘éDlﬂ Z fe(z,y, u(ex), uley)).

a€RE(B) (z,y) ENN (L)
: smﬁyEP]:lBE

Proof. Let a € RE(B). As in the proof of Lemma 2.4 we consider the collection of segments Gs (2, Ta-t¢)
defined as in (2.6). By the same argument there exists a segment g* C G5(zq,Zat¢) satisfying (2.7).
Consider then the set G(o,&) = {z € L : g* NC(z) # 0}. By construction we can number G(a, &) =
{xq =2°,..., 2" = z,4¢} such that (2%, 2F1) € NN(L). By the bounds of Hypothesis 1 it holds that

fe(@a, Tate, u(exa), u(eTate)) < T (€D [u(ea) — u(eTate)| < T (I€]) Z lu(ex) — u(ey)|

(m,y) ENN(L)
z,y€G(a,§)

(213) < CJIT(‘ED Z fs(x,y,u(sx),u(sy)),
(z,y) ENN (L)
z,yeL P BENG(,€)

where we used that by convexity we have G(a, &) C %P,; 1B provided § is small enough. Now given
(z,y) € NN(£) N 1P ' B* we set

Tf(z,y) == {a € R{(B) : {z,y} N G(a, &) # 0}.
Note that if o € TS(x,y), then
zo €{z 4+t |z—2| <C, |t| <C}
for some C' > 0, and hence #75(x,y) < C|¢| by Definition 2.1. The claim now follows by summing (2.13)
over all « € RE(B). O
3. INTEGRAL REPRESENTATION ON THE FLAT SET

Our first aim is to characterize all possible variational limits of energies E. that satisfy Hypothesis 1. As
for the case k = d and § = {£1} treated in [6], the following version of Theorem 3 in [13] will be the key
ingredient:
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Theorem 3.1. Let F: BV(D,S) x A(D) — [0,+00) satisfy the following hypotheses:
(i) F(u,-) is the restriction to A(D) of a Radon measure;

(ii) F(u,A) = F(v,A) whenever u=v a.e. on A € A(D);

(iii) F(-, A) is LY(D) lower semicontinuous for every A € A(D);

(iv) there exists ¢ > 0 such that

1
EH’H(SU NA) < F(u, A) < cHFY(S, N A)

for every (u, A) € BV(D,S) x A(D).
Then for every u € BV(D,S) and A € A(D)

Flu,A) = / oo ut umve) A,
S.NA

with
m(”;"o,ll’ QV (‘,I:O7 p))

g(zo, s, 55, v) = limsup - ,

p—0 1Y

where, for all s;,s; € S,

ij si if (x —xo,v) >0,
u =
s; otherwise,
and for any (v, A) € BV(D,S) x A(D) we set
m(v, A) = inf{F(u, A) : u € BV(A,S), u=v in a neighbourhood of 0A}.
The following theorem is the main result of this section.

Theorem 3.2. Let L be a thin admissible lattice and let 5, and f;. satisfy Hypothesis 1. For every
sequence of € — 07 there exists a subsequence €, such that the functionals E., T-converge with respect
to the convergence of Definition 2.2 with A = D to a functional E : L*(D,R?) — [0, 4+00] of the form

/ oz, ut,u”,v,)dHE ifu e BV(D,S),
E(u) =4 Js,
+00 otherwise.

Moreover a local version of the statement above holds: For all u € BV (D,S) and all A € A%(D)
I-limE., (u,A) = / H(z,uT u, vy dHF L,
n SuNA
with respect to the same convergence as above.

Remark 3.3. If £ = 1, then a similar result holds. In this case we obtain a limit energy finite for
u € BV(D,S) and of the form
E(u) = Y é(x,u’,u”).
TESy

The proof of Theorem 3.2 will be given later and it is based on Theorem 3.1. We now start proving
several propositions that allow us to apply Theorem 3.1.

We start with the growth condition (iv) of Theorem 3.1. Using the lower semicontinuity of the
perimeter of level sets in BV (D,S), one can use the same argument as for Lemma 2.4 to prove the
following lower bound for E’(u, A) defined in (2.5):

Proposition 3.4. Assume that Hypothesis 1 holds. Then E'(u, A) < +oo only if uw € BV(A,S) and
there exists a constant ¢ > 0 independent of A such that

EH’H(SU NA) < E'(u, A).
C

In the next step we provide a suitable upper bound for E”(u, A) defined in (2.5).
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Proposition 3.5. Assume Hypothesis 1 holds. Then there exists a constant ¢ > 0 such that, for all
A€ AR(D) and allu € BV(D,S),

E"(u, A) < cH*1(S, N A).

Proof. First, assume that u is a polyhedral function on R*, which means that all level sets have boundaries
that coincide (up to H*~!-null sets) with a finite union of k& — 1-dimensional simplexes. We define a
sequence u. : €L — S by setting

ue(ex) := u(eP(x))
Note that u. — u in the sense of Definition 2.2. Given § > 0, we choose Ls > 0 such that (2.12) holds.
We further set A% = A + Bs(0). For |¢| < Ls, we can argue as in the proof of Lemma 2.7 to show that,
for € small enough, it holds that

Z 5k_1f5(xmxa+§,u€(€xa),ue(exa+§)) < CJlT(|éD|f| Z 5k_1|u6(5x) — uc(ey)|

a€RE(A) (z,y)ENN (L)
ex,eyel, 1A%

(3.14) < CJi(EDIE[HE(Su N A%,

where the last estimate follows from the regularity of S,,. Next we consider the interactions where || > Ls.
Let u be a polyhedral function; applying Lemma 2.7 we deduce for any € > 0 the weaker bound

Z Ek_le(xmxa+§7u€(5xa)vu€(5xa+£)) < Z Ek_lfs(xmxa+§,u5(€xa),uE(Eanr,g))
a€RE(A) € RE(RF)
(3.15) < CTir([EDIE[HE 1 (S)-
Combining (3.14),(3.15) and (2.12) and the integrability assumption from Hypothesis 1, we deduce that
E"(u, A) < limsup E. (ue, A) < CHF1(S, N A%) + CoHF1(S,,).

As 0 > 0 was arbitrary we obtain
(3.16) E"(u,A) < CH*1(S, N A).

Now we use locality and a density argument. Indeed, for every u € BV (D, S) we can find a function
@ € BWioe(R¥,S) such that v = @ on A and H*~1(S;NOA) = 0 (see Lemma 2.7 in [17]). From Remark 2.3
it follows that E” (u, A) = E" (i, A). Then, by [17, Corollary 2.4] there exists a sequence u,, € BVj,.(R¥,S)
of polyhedral functions such that u,, — @ in L*(D) and H¥~1(S,, N D) — H*"1(Sz N D). By the L!(D)-
lower semicontinuity of E(-, A) stated in Remark 2.3 and (3.16) we obtain

E"(u, A) < liminf E” (u,, A) < Climsup H* (S, N A) < CHF1(Sz nA) = CHF1(S, N A),

where the last inequality is a consequence of the L'(D)-lower semicontinuity of u +— H*~1(S, N D\A)
for u € BV(D,S). O

As is usual for applying integral-representation theorems we next establish a weak subadditivity
property of A — E"(u, A).

Proposition 3.6. Let f5, and f{. satisfy Hypothesis 1. Then, for every A,B € A%(D), every A’ C
ABR(D) such that A’ CC A and every u € BV(D,S),

E"(u,A"UB) < E"(u, A) + E" (u, B).

Proof. We may assume that E”(u, A) and E”(u, B) are both finite. Let u., v, : e£ — S both converge to
u in the sense of Definition 2.2 such that
(3.17) limsup E.(ue, A) = E”(u, A), limsup E.(v., B) = E"(u, B).

e—0 e—0
Step 1 Extensions to convex domains
Let Qp be a cube containing D. Since D € A%(D), we can extend u (without relabeling) to a function
u € BVioo(R*, S). We first show that we can modify u. and v. on e£\A and ££\B respectively, such
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that they converge to u on L'(Qp) and such that they have equibounded energy on the larger set Qp.
We will show the argument for u.. Take another cube @ such that Qp CC Q’. Arguing as in the proof
of Proposition 3.5 we find a sequence 4. : e£ — S such that 4. — v on @' and limsup,_,, F: (4., Q") <
CHF1(S, NQ’). We then set & € PC.(L) as

t(ex) = La(Pr(ex))uc(ex) + (1 — Lao(Pr(ex)))te(ex).
Then 4. — u on @p and applying Lemma 2.7 combined with Hypothesis 1 and (2.2) yields
E(1,Q0) <C Y (€Dl YD ey, i (en), i (ey))

ger'zd, (z,y) ENN (L)
ex,eycqQ’

<c <E5<uE,A> B Q\A) + Loa+ B4RE<0>|) |

The first and second terms remain bounded by construction, while the third term converges to a multiple
of the Minkowski content of A which agrees with H*~1(9A) as A € AR(D).
Step 2 Energy estimates

Again, given § > 0 we choose Ls such that (2.12) holds. Fix d’ < 1dist(A’, 0A) and let N, := L#;QT)J,

where || denotes the integer part. For j € N we define
Acj={z e A: dist(z,A") < je(Ls + 2r)}.
We let w! € PC.(L) be the interpolation defined by
wl(ex) =1a_, (Pr(ex))uc(ex) + (1 — Da_, (Prlex)))ve ().

Note that for each fixed j € N it holds that w? — u on D in the sense of Definition 2.2. We set

S5 i={z=y+tP(): y€0A, [t|<e, & €&+ [ 71 N (AUB).
For j < N, we have

E.(wl, A"V B) <E.(uc, A j) + Ee(ve, B\A: ;)

£ (e Tare 0 (), 0 (k)

E’I"Zd £ g,e
3 M a€ER:(S5F) ::p_f‘s(a)

(3.18) <E.(ue, A)+ E(ve,B)+ Y. Y p5%(a).

§ET LY, a€RE(SS)

We now distinguish between two types of interactions depending on Lg. If |{| > L, we use Lemma 2.7.
Since AU B CC @Qp, we deduce that

YooY ey Y (el > T (g wiex), wiey)).
1€1>Ls ae RE(S5°) 1€1>Ls (z,y) ENN (L)
aw,ayePk__lQD
We have P,;lQD - PglAe)j U PQI(QD\AEJ). Nearest-neighbour interactions between those two sets

are contained in Py 1S,§’E for some ¢ € 7'Z4, with |¢| < 4R. Therefore, we can further estimate the last
inequality via

(3.19) Z Z p?E(O‘) < Cd(Es(ue:a A) + Ec(ve,Qp) + Z Z p?e(a))'
[€1>Ls e RE(S5°) l€1<Ls aeRE(S5°)

Now we treat the interactions when || < Ls. Consider any points ez,ey € eL. If wi(ex) # wi(ey)
then ex,ey € A, j, ex,ey ¢ A.j or ex € A.; but ey ¢ A.; (the reverse case can be treated simi-
larly). In the last case we have a contribution only if u.(ex) # v.(ey). Then either u.(ey) = v.(ey) or
fe(z,y,ue(ex), ve(ey)) < Clue(ey) — ve(ey)|. Summarizing all cases we obtain the inequality

p?a(a) ggk’—lfa(m,y,ua(ax), us(ey)) + Ek_lfa(xvya Ve (ex), ve(y)) + Csk_llua(gy) — ve(ey)l-
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By our construction we have S§’£ C (Acjy1\Acjo1) = S5. We deduce that

Z Z p§ E( ) < Ee(umS]E') + Ee(vasj) +Cs Z 5k_1|u6(51‘/) —ve(ey)l,

|€I<Ls aeRE(S5° yeL
a€R(57) cPi(y)€S;

where Cs depends only on Ls. Observe that by definition every point can only lie in at most two sets
S5, S5, Thus averaging combined with (3.19), Step 1 and the last inequality yields

=Y Y Y f@=lY Y Y fwea

J=lger' 2 acRE(S5) J=1¢I<Ls aeRE(S57)
4 d

< ﬁ(Ea(usaQD)+Ea(Ua7QD)>+C§ Z € \UE(EZ/) _UE(Ey>| + C4

€ eL

EPg(y)ED
<£—|—C Z e u.(ey) — v (ey)| + C8
> Ng 5 € 3 .
yeL
EPk(y)ED

Due to Step 1 we can apply Lemma 2.5 to deduce that limsup,_,,I. < C§. For every ¢ > 0, let
je € {1,..., N.} be such that

(3.20) Yo Y A<

§Er'Ly aE€RE(SS)")

and set w. := wls. Note that, as a convex combination, w, still converges to v on D. Hence, using (3.18)
and (3.20), we conclude that
E"(u, A" U B) < limsup E.(w., A" UB) < E"(u, A) + E"(u, B) + C 4.
e—0

The arbitrariness of § proves the claim. O

Proof of Theorem 3.2. From Propositions 3.5 and 3.6 it follows by standard arguments that E(u,-) is
inner regular on A% (D) (see, for example, Proposition 11.6 in [18]). Therefore, given a sequence &, — 0
we can use Remark 2.3 and the compactness property of I'-convergence (see [14] Section 1.8.2) to construct
a subsequence &, (not relabeled) such that

I-lim B, (u, A) =: E(u, A)

exists for every (u,A) € L}(D) x A%(D). By Proposition 3.4 we know that E(u, A) is finite only if
u € BV(A,S). We extend E(u,-) to A(D) setting

E(u,A) :=sup {E(u, A") : A’ cc A, A’ ¢ A®(D)}.

To complete the proof, it is enough to show that F satisfies the assumptions of Theorem 3.1. Again
by standard arguments E(u,-) fulfills the assumptions of the De Giorgi-Letta criterion ([14] Section 16)
so that E(u,-) is the trace of a Borel measure. By Proposition 3.5, it is indeed a Radon measure. The
locality property follows from Remark 2.3. By the properties of I'-limits and again Remark 2.3 we know
that E(-, A) is L'(D)-lower semicontinuous and so is E(-, A) as the supremum of lower semicontinuous
functions. The growth conditions (iv) in Theorem 3.1 follow from Propositions 3.4 and 3.5 which still
hold for E in place of E. The local version of the theorem is a direct consequence of our construction. [

4. CONVERGENCE OF BOUNDARY VALUE PROBLEMS

In this section we consider the convergence of minimum problems with Dirichlet-type boundary data. In
order to model boundary conditions in our discrete setting we need to introduce a suitable notion of trace
taking into account possible long range interactions (see also [6]). In what follows we will further assume
a continuous spatial dependence of the integrand of the limit continuum energy. Without such a condition
we can still obtain a weaker result stated in Lemma 4.3. On the other hand continuity assumptions are
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always fulfilled in the case of the homogenization problem that we are going to treat in Section 5.

Consider A € A%(D) and fix boundary data ug € BV (R} _,S). We assume that the boundary data
are well-prepared in the sense that, setting u. o € PCo(L) as ueo(ex) = uo(Pr(ex)), we have u. o — up
on D and
(4.21) limsup F. (uc 0, B) < CH*'(S,, N B),  H*'(S,, NdA) =0.

e—0

with C independent of B € A®(R¥). Observe that as in the proof of Proposition 3.5 we may allow for
any polyhedral function such that H*~1(S,, N AA) = 0, but more generally it suffices that all level sets
are Lipschitz sets.

We define a discrete trace constraint as follows: Let [. > 0 be such that

(4.22) lim . = 400, liml.e=0.
e—0 e—0

We set PCle

g,uQ

(L, A) as the space of those u that agree with ug at the discrete boundary of A, by setting

PCl;ZO (L, A) :={u:el = §: ulex) = ug(Py(ex)) if dist(Px(ex), 0A) < l.c}.
For £ > 0 and I. > 0 we consider the restricted functional Els, (-, A) : ’PClgjo (£,A) — [0, 400] defined as
(4.23) El, (u, A) := E(u, A).

We need some further notation. Given u € BV (D, S), we set us, : R¥ — S as

wao(a) = {W) it e A,

ug(z) otherwise.
Since A is regular we have us g € BVjo.(R¥,S). The following convergence result holds:

Theorem 4.1. Let L be a thin admissible lattice and let ff, and f;. satisfy Hypothesis 1. For every
sequence converging to 0, let €, and ¢ be as in Theorem 3.2. Assume that the limit integrand ¢ is
continuous on D x 8% x S¥=L1. Then, for every set A € AR(D), A CC D, the functionals Eéiﬁu0(~,A)
defined in (4.23) T-converge with respect to the convergence on A in Definition 2.2 to the functional
Eyu, (-, A) : LY(D,RY) — [0, +00] that is finite only for u € BV (A,S), where it takes the form

Buud)= [ oo puiprm) W

Sup oA

Proof. By Proposition 3.4 we know that the limit energy is finite only for u € BV (A4, S). To save notation,
we replace the subsequence ¢,, again by ¢.

Lower bound: Without loss of generality let u. — uw on A in the sense of Definition 2.2 be such that

(4.24) liminf B, (u., A) < C.

g,uQ

Passing to a subsequence, we may assume that u. € PClEin (L, A). We define a new sequence v, : eL — S
by

ve(ex) = La(Pr(ex))us(ex) + (1 — La(Pr(ex)))uo(ePr(x)).
Note that by our assumptions on up we have v. — ua,0 on D in the sense of Definition 2.2. Now fix
A} CC A CC Ay such that Ay, Ay € AR(D). Setting

S§5¢ .= {a € RS(Ay) : exq € Pk_lA, ETqte ¢ Pk_lA or vice versa},
it holds that
E.(ve, Az) SEéqu (ue, A) + E. (U'E,O) A2\A71)

(4.25) + Z Z Ek_le(xouxa+£7”€(5$a)vvs(5$a+€))a

£er'zg, acSse
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Given 0 > 0, let Ls > 0 be such that (2.12) holds. To bound the long-range interactions, we fix again a
large cube @Qp containing D. Then Lemma 2.7 and the coercivity assumption in Hypothesis 1 yield

Z Z Ek_lfs(xavanr&UE(Exa)7U€(E'Ta+§)) <C Z JlT('él)‘E' Z Ek_lfs(xa%Ue(El’)ave(Ey))
[€]>Ls acSs= [€]>Ls (z,y) ENN (L)
ex,syEP]C_lQD

(4.26) <05<E5(u8,A)+E€(uE,O,QD)+ >y fs(xa,anrg,vs(sma),Us(sxa+§))).
|€]<Ls acsée

For interactions with |¢| < Ls and & small enough, we have S C A5\ A;. Moreover, if I. > Ls+2r, then
by the boundary conditions on u. we get

Z Z 5k_1fs(xo¢7xo¢+§vUe(sxa)avs(gma+£)) < Es(us,OvAQ\Tl)'

[€|<Ls aeSé:=
From the local version of Theorem 3.2, (4.21), (4.24), (4.25) and (4.26) we infer

E(uag, A2) <liminf B, (uc, A) + C (1 +H“(Sy, NQp)) + CHI (S, N A\ Ay).

E,uQ

The lower bound follows by letting As | A and A; 1 A combined with (4.21) and the arbitrariness of 4.

Upper bound: We first provide a recovery sequence in the case when u = 1 in a neighbourhood of 0 A.
Let u. : e£ — S converge to u on D in the sense of Definition 2.2 and be such that

(4.27) 1in(1) E.(uc, A) = E(u, A).
e
Again, given 6 > 0 we let Ls > 0 be such that (2.12) holds. Now choose regular sets A1 CC Ay CC A
such that
(4.28) u=mup on A\A;.

The remaining argument is similar to the proof of Proposition 3.6 and therefore we only sketch it. Fix
d' < 1dist(Ay,042) and set N, = LE(Lij For j € N we define the sets

A j={x e A: dist(z, A1) < je(Ls + 2r)}.
We further define u! : e£ — S setting
() = ug(ex) if Pk(sa.c) ¢ A, ;,
ue(ex) otherwise.
It holds that
EE(UZ7A) SEa(U@A) + Ee(”aOvA\Ail) + Z gkt Z fs($a7$a+§,Ug(fl‘a),ug(fl‘a+§)),
cer'zd, a€RE(SSF)
where the set Sf-’a is defined as
S = {o=y+tP(€): y€dA,, [t| <e, & €€+, 7 ]} N A.
As for (4.26), using (4.21) and (4.27) we can show that
Z 5’671 Z fs(womxa+§7ug(5xoz)7ug(5xa+§))

cer'zy, a€RE(S5F)
<Cé+C Z Z EF T o (Ta, Tare, Ul (e20),ul (€T o).
l€]<Ls acRE(S5°)

To estimate the interactions where || < Lg, note that due to (4.28) we can use the averaging technique
like in Step 2 of Proposition 3.6 to obtain j. € {1,..., N.} and the corresponding sequence u’* satisfying
the boundary conditions (at least for small e because of (4.22)) such that

limsup BZ,  (ul*, A) < B(u, A) + CH" 71 (S, 0 (A\A1)) + €6,

&,uo
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where we used (4.21). Moreover, due to the assumptions on ug and (4.28) we know that u/s — u on A.
Letting first § — 0 and then A; 1 A we finally get

T-lim sup Eifuo (u, A) < E(u, A) = Eyy(u, A).

For a general function u € BV (A, S) we argue by approximation. To this end we take any B € A% (D)
such that A CC B. By Lemma B.1 we obtain a sequence w, € BV(D,S) such that u, = ug in a
neighbourhood of dA and moreover u, — uago in L*(B) and H*~1(S,, N B) — H*"1(S, N B). By
L' (A)-lower semicontinuity and the previous argument we obtain

I-limsup E, (u, A) < liminf E(uy, A) < liminf E(u,, B) = E(ua, B).
£ n n

In the last step we used the continuity assumption on the integrand and a Reshetnyak-type continuity
result for functionals defined on partitions that is proven in [31]. Letting B | A we obtain the claim. O

Remark 4.2. (i) It is a direct consequence of our proof, that if we have only finite range of inter-
actions, that is ff.(x,y) = 0 for |z — y| > L, then it is enough to take I. > L.
(ii) By Remark 2.3 the above Theorem 4.1 implies the usual convergence of minimizers in the spirit
of I'-convergence.

Finally we prove an auxiliary result about convergence of boundary value problems that holds without
any continuity assumptions. This result will be useful to treat homogenization problems as in Section 5.
To this end we replace the discrete width [, by a macroscopic value 1 and then take first the limit when
e — 0 and let 7 — 0 in a second step. Given 7 > 0 and 4 € A%(D), we set

0A, ={z € A: dist(z,04) <n}.
We let ug be as before. Using a similar notation to that in Theorem 3.1 we define the quantities

my(ug, A) = inf{E:(v,A) : vePCL, (L, A)},

&,Uo

m(ug, A) = inf{E(v, A) : v = ugp in a neighbourhood of 0 A},

where the limit functional F is given (up to subsequences) by Theorem 3.2. Note that the mapping
17— m?(ug, A) is non-decreasing. Then we have the following weak version of Theorem 4.1.

Lemma 4.3. Let e, and E be as in Theorem 3.2. Then it holds that

lim lim inf m? (ug, A) = lim limsupm (ug, A) = m(ug, A).
n—0 n n n—0 " n
Proof. First note that by monotonicity the limits for n — 0 are well-defined. Moreover, by the first
assumption in (4.21) we have that m{(ug, A) is equibounded. Now for any n € N let u,, € PC? , (£, A)
be such that m! (ug, A) = E., (un,A). By Proposition 2.4 we know that, up to a subsequence (not
relabeled), u,, — v on A and by the assumptions on w it follows that u = ug on 0A4,. Extending u we
can assume that u is admissible in the infimum problem defining m(ug, A) and using Theorem 3.2 we
obtain

m(ug, A) < E(u, A) <liminf B, (u,, A) <liminfm? (ug, A).

Since 7 is arbitrary, we conclude that m(ug, A) < lim, o liminf,, m? (ug, A).

In order to prove the remaining inequality, given v > 0 we let u € BV(A,S) be such that u = ug
in a neighbourhood of 94 and E(u,A) < m(ug, A) + 7. Now let u,, : e£ — S be a recovery sequence
for u. Repeating the argument for the upper bound in Theorem 4.1, given é > 0 we can modify u,, to a
function @, € PC! , (L, A) for some n = n(d) > 0 such that

€n,U0
limsup E., (tin, A) < E(u, A) + 6,
n

By the choice of u we obtain

lir% limsupm (ug, A) <limsup E;, (U, A) + 0 < m(ug, A) + v+ 9.
n— n n

The claim now follows letting first 6 — 0 and then v — 0. O



CONTINUUM LIMIT AND STOCHASTIC HOMOGENIZATION OF DISCRETE FERROMAGNETIC THIN FILMS 19

5. HOMOGENIZATION RESULTS FOR STATIONARY LATTICES

We now replace the deterministic lattice £ by a random point set. In what follows we introduce the
probabilistic framework. To this end let (Q, F,P) be a probability space with a complete o-algebra F.

Definition 5.1. We say that a family (7.),czr, 7. : @ — Q, is an additive group action on § if
Taydzg = Tzy O Ty, for all 21,29 € ZF.
Such an additive group action is called measure preserving if
P(7,B) = P(B) for all B € F, z € Z".
Moreover (7),cz is called ergodic if, in addition, for all B € F we have the implication
(.(B) =B forall z€ Z¥) = P(B) € {0,1}.

For general m € N we denote by [a,b) := {z € R™ : a; < x; < b; for all i} the m-dimensional
coordinate parallelepiped with opposite vertices a and b, and we set Z,, = {[a,b) : a,b € Z™,a # b}.
Next, we introduce the notion of regular families and discrete subadditive stochastic processes:

Definition 5.2. Let {I,,} C Z,, be a family of sets. Then {I,,} is called regular if there exists another
family {I,} C Z,, and a constant C' > 0 such that
(i) I, c I, for all n,
(ii) I;Ll - I;w whenever n; < nao,
(iii) 0 < H™(I,) < CH™(I,) for all n.
Moreover, if {I;} can be chosen such that R™ =, I,’l, then we write lim,, o, [,, = R™.
Definition 5.3. A function y : Z,, — L'(2) is said to be a discrete subadditive stochastic process if the
following properties hold P-almost surely:
(i) for every I € Z,,, and for every finite partition (I;);cs C Z,, of I we have

p(lw) < (I, w).

JjEJ
(i) inf {H%(I) JouI,w)dP(w): I € Im} > —o0.

One of the key ingredients for our stochastic homogenization result will be the following pointwise ergodic
theorem (see Theorem 2.7 in [1]).

Theorem 5.4. Let ji : Z,, — L*(Q) be a discrete subadditive stochastic process and let I,, be a reqular
family in T,,. If p is stationary with respect to a measure-preserving group action (7,),czm, that is,

forallI €T, z€Z™ u(l+ z,w) = p(l,,w) almost surely,
then there exists u>° : 2 — R such that, for P-almost every w,

. Ly, w)

lim ———% = u™®(w).
The statement is written for a generic m since in this section we will use Theorem 5.4 for m = k — 1,
while in the next one we use it for m = k. We require some geometric and probabilistic properties of the
random point set.

Definition 5.5. A random variable £ : Q — (RN, w — L(w) = {£(w); }ien is called a stochastic lattice.
We say that £ is a thin admissible lattice if £(w) is a thin admissible lattice in the sense of Definition
2.1 and the constants M,r, R can be chosen independent of w P-almost surely. The stochastic lattice £
is said to be stationary if there exists a measure-preserving group action (7.),czr on Q such that, for
P-almost every w € €2,

L(T,w) = L(w) + 2.

If in addition (7,),czr is ergodic, then L is called ergodic, too.
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In order to prove a homogenization result we make the following structural assumption:

Hypothesis 2 There exist functions f,,, fi. : R x R2(4=k) — [0, 4-00) such that, setting Ag(z,y) =
(yl L1y Yk — Tk Tht1 Ykt15 - - - 7md7yd)a it holds that

r€m($7y):fnn(Ak(xay))’ fli“(l'vy):flr(Ak(xay))

Note that nearest-neighbour and long-range interaction coefficients are deterministic, but the set of nearest
neighbours becomes now random. In the following we let F.(w) be the discrete energy defined in the
previous section, with the stochastic lattice £(w) in place of L. As a general rule we will replace £ by w
to indicate the dependence on the stochastic lattice £(w).

In view of Theorem 3.1 and Lemma 4.3 we can further characterize the I'-limits of the family E.(w)
by investigating the quantities m(up, @) for suitable oriented cubes and uy = u;J ,- Due to the decay
assumptions of Hypothesis 1 it will be enough to consider truncated interactions. To this end, for fixed
L € N we will replace the long-range coefficients by

fll;‘(x7y) = flT(Ak(‘Ta y))]l|x—y\§L

and denote the corresponding energy by EZ(w)(u, A). By Remark 4.2 the I'-limit of the truncated energies
is characterized by the minimum problem defined below: For s;,5; € S, v € Sk=1 and a cube Q,(z,p)
we set

(5:29)  mPH@)(,. Qulw, p) = inf { BE @), Qu(w,p)) s we PCY L, (w,Qu(w,p) }-
The following technical auxiliary result will be used several times.

Lemma 5.6. Let Q = Q,(z,p) C R be a cube and let {Q,, = Qu(2n, pn)}n be a finite family of disjoint
cubes with the following properties:

(i) min, p, > 4L,

(ii) 2, — 21 € {v}+,

(iii) dlS t(z1, {v}+ + 2) < 1 miny, p,,

(i) U, @n C Q.

(v) either dist(dJ, Qn,0Q) > n or 23 — z € {v}+.

Then there exists C' = C', > 0 such that for allm > L
i @) (0, Q) £ om0, 1 Qu) + OHE 1((Q\UQn) (v} +2))

+cy (HH (0Qn\IQ) N ({v}* + 20)) + M1 (0Qu N 8, (2, 21)) ).

where S, (z, 1) is the infinite (possibly, flat) stripe enclosed by the two hyperplanes {v}++z and {v}++2.

Proof. During this proof, given y € R*, we denote by P, , the projection onto the affine space it +v.
For each n let u, be a minimizer for the problem in (5.29) with Q,(z, p) = Q.. By assumptions (ii) and
(v), the function v : L(w) — S defined as

v(z) = Un () if P,(z) € @,, for some n,
u?,(Py(x)) otherwise

is well-defined and belongs to PC;’ o (w, Q). For x,y € L(w) N Q with |z — y| < L, we say that

(I) holds if Py(z) € Q, and Py(y) € Q. for n # m or if Py(z), Py(y) € 0Q,,
(IT) holds if Py(z) € Q\U,, @» and Py(y) € @, for some n.
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By (iv) and Hypothesis 1 we can estimate
i (@), Q) < BHW)w, Q) < 3 mP ) . Qu) + BEHw) (v.Q\@n)

(5.30) +C Z [v(z) — v(y)]|
le—y|<L
(I) or (II) hold
We start with estimating the contribution of z,y € Q\ ,, @»- Suppose that v(z) # v(y). Then Py (z) and
Py, (y) lie on different sides of the hyperplane {v}+ + z. Then it holds true that P, ,(Py(z)) € Q\U,, @n,
otherwise assumptions (i) and (iii) would imply

Pn  Pn

L > |Pi(x) = Puly)] > |Pu(a) = Poa(P(@)] > 22 = 22 > 21,

Thus dist(Py(z), (Q\U,, Qn) N ({v}*+ +2)) < L and, using the properties of Definition 2.1, it follows that
(5.31) BHw) (v, Q@) < cnt ((@WU@n) ndwt +2)).

Next we have to control the interactions in Case (I). Given such z,y with |z — y| < L, we know that
by the definition of v, the boundary conditions on the smaller cubes and (ii) that v(z) = u% ,(Py(z))

zZ1,V

and v(y) = u¥ ,(Px(y)), so that if they contribute to the energy we conclude from assumption (ii) that

Z1,V
Py(z) and Py (y) must lie on different sides of the hyperplane {v}+ + z;. We deduce that |P, ., (Px(z)) —
Py (z)| < L. Since by (iv) the segment [P, ., (Px(x)), P, ., (Px(y))] intersects the (k — 2)-dimensional set
(0Q,\0Q) N ({v}*+ + z1), it follows that

dist (Px(2), (0Q,\0Q) N ({v}* + z1)) < 2L.
Again, by Definition 2.1 and the above inequality we derive the estimate

(5.32) Yo lo(@) —uy)l < 0 HTE((002\0Q) N ({r} +21)) -

lz—y|<L
(I) holds

It remains to estimate the contributions coming from Case (II). For such z,y with |x — y| < L, due
to the boundary conditions on the smaller cubes, a positive energy contribution implies u%,(Py(z)) #
u? ,(Py(y)). Thus the segment [Py (x), Py (y)] intersects Q,, in (at least) one point z,, and also S, (z, z1)
in (at least) one point xs. Denote by x, s the projection of zs onto the facet of the cube @, containing
T, Since this facet cannot be parallel to {v}+ by (i) and (iii), it holds that z, s € Q. N S,(z,z1) and

| Pi(x) — xn,s| < |Pe(z) —xg| + |25 — Zns| < L+ |zs — xpn] < 2L,
which yields the estimate
(5.33) dist(Py(x),0Q, NS, (z,21)) < 2L.

This set may not be (k — 1)-dimensional in the second possibility of (v). In this case one can bound the
interactions by the right hand side of (5.31). Otherwise, using (5.33) we obtain the estimate

(5.34) Z lv(z) —o(y)| < CZHk_l(aQnﬂS,,(z,zl)).
le—y|<L n
(IT) holds
In any case the claim now follows from (5.30), (5.31), (5.32) and (5.34). O

Remark 5.7. Lemma 5.6 still holds if we replace cubes by k-parallelepipeds of the type I,,(z, {pm}m) =

z+{z € R": |(z,1,)| < 2}. Then the cubes @, are replaced by the collection I, = I, (zn, {p" }m)

and in the assumptions (i) and (iii) we have to replace p,, by min,, p!,.

The next theorem is the main result of this section.
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Theorem 5.8. Let L be a stationary, thin admissible stochastic lattice and let fr, and fy. satisfy Hy-
potheses 1 and 2. For P-almost every w and for all s;,s; €S and v € Sk=1 there exists

¢hom(w;5ia8j7y) = lim hmsup tkl 1 lnf{El( )(U7Qu<0at)) Tue 'pc717t u (waQu(07t>)} .

N=0 t—4o00

The functionals E.(w) T-converge with respect to the convergence of Definition 2.2 to the functional
Fhom(w) : LY(D,RY) — [0, +00] defined by

E / ¢hom w; ut U, u) de71 ZfU S BV(D,S),
hom

otherwise.
If L is ergodic, then w — Pnom(w, S;,85,V) is almost-surely constant.

Proof. Fix any sequence ¢ — 0. According to Theorem 3.2, for all w € Q such that £(w) is admissible,
there exists a (w-dependent) subsequence &, such that

I-limE,, (w)(u, A) = / d(w;z,ut,u™, v)dH !
" SuNA

for all w € BV(D,S) and every A € A%(D). According to Theorem 3.1 and Lemma 4.3, for any = € D,
si,8; € S and v € S*71 it holds that

1 g
x, V) V(CL',,D)) - thllp k—1 hm hn’lsup’rrﬂ7 (w)(ulzj,uv V(l’,p))

1 3
(w; z, 84, 55, v) = limsup ——m(w)(uy
p—0 P p—0 P

If we change the variables via t, = &,;! and v(z) = u(t,;'z), the above characterization reads as

d(w;x, 84, 85,v) = lirzljgp %12(1) limnsup Wm;itn (W)(Utn;c L tnQu(, p)).
Except for the claim on ergodicity, due to the Urysohn property of I'-convergence (recall Remark 2.3)
it is enough to show that for a set of full probability the limit in p can be neglected and the remaining
limits do not depend on x or the subsequence t,,. We divide the proof into several steps.

Step 1 Truncating the range of interactions

First we show that it is enough to consider the case of finite range interactions. We argue that it is enough
to prove that there exists ¢f (w;v) and a set Q, of full probability such that for all w € Qr, z € D,
every cube Q,(z, p) and every sequence t,, — +oo it holds that

o 1
(5.35) Dhiom (w3 51,55, V) = 71]1_>mohmnsup Wm?t"’L(w)(ut e tnQu(, p)),

where m7"" % (w) is defined in (5.29). Indeed, if (5.35) is proven, then for all w € N Q2 we find a
configuration vX : £(w) — S with the correct boundary conditions (extended to the whole space) that
minimizes E¥(w)(-,t,Q.(z, p)) in (5.29). Using Lemma 2.7 we obtain the estimate

mi" (@) (g tnQu(, p) — m" (W) (il 4 80 Qu (. p)

0<

(ptn)k1
< Bi@)(vr, tnQu(x, p)) — EF (@) (07, taQu(z, p))
- (ptn)*—t
< o X (€D S k(@) ok ).
Pln 2|§|>L (z,y) ENN (w)

Y€ (tn Qu (2,p))>FHM)

The inner sum can be bounded by the energy plus interactions close to 9t,, Q. (z, p). Due to the boundary
conditions these are of order (pt,)*~2. Using the trivial a priori bound mf(w)(u;, ,,tnQ.(z,p)) <
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C(ptn)k_1 we deduce that
mi (W) (0 taQu (2, ) — M (W) (uf, taQu (2, p))

(ptn)*—t

Due to the integrability assumption of Hypothesis 1, we infer that gbﬁom (w; 84, s5,v) is a Cauchy sequence
with respect to L and moreover, in combination with (5.35), we deduce that

0<

<0 Y Jn(€Del-

21¢|>L

1
: L e . _ T : Nln
11£11¢h0m(w,sl,s],u) }]li)%hmful) A Ty (w)(ut e tnQu(, p))

exists and is independent of x, p and the sequence t,,. Therefore it remains to show (5.35). For clarity of
the argument we first consider an auxiliary problem where we replace the varying boundary width nt,
by L. As an intermediate result we show that there exists

(5.30) 0 (wiv) = lim gt @) (1 Qo)

and this limit does not depend on z, p or the sequence ¢,

Step 2 Existence of qb for x = 0 and rational dlrectlons

Fix L € N. We have to show that, for P-almost every w € Q and every s;,s; € S and v € Sk=1 there
exists the limit in (5.36). We start with the case z = 0 and v € S*~1 N Q*. For this choice we can use
the subadditive ergodic theorem in (k — 1)-dimensions.

Substep 2.1 Defining a stochastic process

We need a few preliminaries: Given v € S¥~1 there exists an orthogonal matrix 4, € R*** such that
Ayer = v, the mapping v — A,e; is continuous on S*~!\{—e;} and if v € QF then A, € QF** (it
suffices to consider the orthogonal transformation that keeps the vector v + e fixed and reverses the
orthogonal complement). We now fix a rational direction v € S*~! N QF. Then there exists an integer
N = N(v) > 4L such that NA,(z,0) € Z* for all z € Z*~1. We now define a discrete stochastic process
(see Definition 5.3). To I = [ay,b1) X - -+ X [ar_1,bk_1) € T._1 we associate the set Q; C R* defined by

Qr = N A, int 1 x (-2 Sy

2 2
where spax = max; |b; — a;| is the maximal side length. Then we define the process u : I — L'(£2) as
(5.37) p(l,w) = inf { BE@)(0,Q1) : v € PCE Ly (w, Q) } + C M 2(0D),

where C), is a constant to be chosen later. We first have to show that u(I,-) is an L' (Q)-function. Testing
the L(w)-interpolation of ug , as a candidate in the infimum problem, one can use the growth assumptions
from Hypothesis 1 and Definition 2.1 to show that there exists a constant C' > 0 such that

(5.38) w(I,w) < CN*19k=1(T)

for all T € Zj,_; and almost every w € § so that u(1,-) is essentially bounded. F-measurability can be
proven similar to [6, Lemma A.2].

We continue With proving lower-dimensional stationarity of the process. Let z € Z?~!. Note that
Qr_. = Qr — 2V, where 2V := NA,(2,0) € {v}* N ZF. By the stationarity of £ it holds that

v € ’PC1 yii (W, Qr_) if and only if u(-) = v(- — 2)) € PCf i (T.nw, Q). Moreover, by the defini-
sYo,v v

tion of nearest neighbours, Hypothesis 2 and again the statlonarlty of L we obtain E¥(w)(v,Qr_.) =
Ef(t.yw)(u,Qr). By the shift invariance of the Hausdorff measure we conclude that p(l — z,w) =
p(I, T.nw). Setting 7, = 7__~ we obtain a measure-preserving group action on ZF=1 such that p(I,7.w) =
(I + z)(w), which yields stationarity.

To show subadditivity, let T € Zyp_; and let {I,}, C Zx—1 be a finite disjoint family such that
I =, In. Note that Q; and the family {Q;, }, fulfill the assumptions of Lemma 5.6 (in the sense of
Remark 5.7). We conclude

my (W) (ud,, Qr) <> myH(w)(ug,, Q1) +czw 2((0Qr,\0Qr) N {v}+).
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Applying the definition of p(I,w) yields
I, w) = my (W) (ug,, Qr) + CH 2(0Qr N {v} )
< ZM Lo, w) + (C = C) Y HE2((0Q1,\Qr) N {v}H),

n

which yields subadditivity if we choose C}, > C. Property (i) in Definition 5.3 is trivial since p(I,w) is
always nonnegative. By Theorem 5.4 there exists (;SiLj (w;v) such that almost surely, for rational directions
v € S*1 it holds that

. 1
o1 (wiv) = nETmef’L(w)(uoy, »(0,2Nn)),

where we used that the term C,H*~2(dI) is negligible for the limit.
Substep 2.2 From integer sequences to all sequences
Next we consider an arbitrary sequence t,, — +00. From the previous step we know that

ohlwi) = lim om0 (0 Qu 0.2V 16))

exists almost surely. To shorten notation we set A, = 2Nt, and A, = 2N |t,]. For n large enough, we
can apply Lemma 5.6 to the cube @, (0, A;,) and singleton family {Q, (0, A,)} and obtain

my (W) (ug, Qu(0,An)) <mi" (W) (ug,, Qu(0,An)) + HF 2(D(Qu (0, An)) N {v}H)
+ CHMH((Qu(0, A)\Qu (0, X)) N {w}H)
<mp (W) (0,0, Qu (0, An)) + CAE™2,
which yields

(5.39) lim sup —— mb L(w)(uoy, +(0,A)) < (;Sfj(w;u).
Similarly, one can prove that

1
(5.40) o (wiv) < lminf —gmp " (@) (ug,, Qu(0, An)).

Combining (5.39) and (5.40) yields almost surely the existence of the limit for arbitrary sequences.
Substep 2.3 Shift invariance in the probability space

Up to neglecting a countable union of null sets we may assume that the limit defining q[)fj (w;v) exists
for all rational directions v. We next prove that the function w qi)z-Lj (w; V) is invariant under the entire
group action {7,},czr. This will be important to treat the ergodic case but also for the shift invariance
in the physical space. Given z € Z* there exists R = R(L, z) > 0 such that for all t > 0

(5.41) Q.,(0,t) CQu(—2z,R+1t), 2L <dist(0Q,(0,t),0Q,(—z, R+ 1t)).

Similar to the stationarity of the stochastic process we have

_ 1
¢iLj(Tzw; v) < lirgiip Wmf L(w)(ujz)l,, (=2, R+1))

1 g

= lim sup —— 1mlL Lw)@", ,,Qu(—2, R+1)).
t—4oc0 t ’

Due to (5.41) we can apply Lemma 5.6 to the cube Q,(—z, R + t) and the singleton family {Q,(0,t)}

and deduce that there exists a constant C' = C(R, z) such that

my " (w) (u? (=2, R+ 1)) < my""(w)(ug,,, Qu(0,1)) + Ct" 2.
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Hence we get qSiLj (row;v) < gbiLj (w; ). The other inequality can be proven similarly so that the limit indeed
exists (which we implicitly assumed with our notation) and, for P-almost every w € €,

(5.42) O (Tawiv) = ¢ (wsv).
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Step 3 Shift invariance in the physical space

In this step we prove the existence of the limit defining @Lj (w;v) when we blow up a cube not centered
in the origin. We further show that it agrees with the one already considered. We start with considering
a cube Q,(z, p) with rational direction v, x € Z*\{0} and p € Q. Given £ > 0 and N € N (not the same
one of Step 2.1) we define the events

QO = {weﬂz sup |(tp)' ~Fm{ " (@) (uff,. Qu (0.1p)) - £j<w;u>\<e}.
t>4

By Step 2 we know that the function 1o, converges almost surely to 1g when N — +oo. Denote by
J» the o-algebra of invariant sets for the measure-preserving map 7,. Fatou’s lemma for the conditional
expectation yields

(5.43) 1o = E[lq|J:] < liminf E[lg, |J:].
N—+oco
By (5.43), given § > 0, almost surely we find Ny = Ny(w, d) such that
12 Elloy, [7)w) > 16

Now due to Birkhoff’s ergodic theorem, almost surely, there exists ng = ng(w,d) such that, for any
n>%
- 92

< 4.

1 n
- > Mgy, (mzw) — E[lgy, | 7] (w)
=1

Note that the set we exclude will be a countable union of null sets provided € € Q.

For fixed n > max{ng, No} we denote by R the maximal integer such that for alll = n+1,...,n+R we
have 7, (w) ¢ Qn,- In order to bound R let 72 be the number of ones in the sequence {1g,, (7i:(w))}L;-
By the definition of R we have

n—n—R‘> R+n—n

0.
n+R n+ R

2 |2~ Elloy, ()| = |1 - Bllay [2:1) +

Since n — 1 > 0 and without loss of generality § < i, this provides an upper bound by R < 4né.

So for any n > max{ng, No} and R = 6nd we find l,, € [n+ 1,1+ R] such that 7;_,(w) € Qn,. Then
by (5.42) and stationarity we have for all ¢t > 22 that
(5.44) () S mEE @)W, e Qu(—u 1)) — B (wiv)| < =
Define 8, = n + cpp~t|z|(l,, — n), where ¢, € N is chosen such that Q,(—nz,np) C Q,(—l,z, Bnp) and
dist(0Q, (—nz,np), 0Q., (—l,x, Brp)) > L. Observe that such ¢y, exists as [, —n > 1. Then each face
of the cube Q,(—nx,np) has at most distance (8, — n)p = cr|z|(l, —n) to the corresponding face in

Q. (=lpz, Brp). Then, for n large enough, we can apply Lemma 5.6 to the cube Q(—I,z, 5,p) and the
singleton family {Q,(—nz,np)} to obtain

my @) () o Qu(—lnw, Bup))  mEE (@) (W, . Qu
(6np>k_1 o (ﬁnp)k_l

L.L .
my (w) (ul—jn;c,ya v (777’:53 np))

= (np)F=1

On the other hand we can define 6,, = n — ¢} p~*|z|(l,, — n) for a suitable ¢; € N and deduce from a
similar reasoning that

(=nz,np)) CR(Bup) !

(5.45) +6C5.

mlL’L(w) (ui—jmc,w v(=nz,np)) mf,L(w)(ui_jlan Qu(=lnz,0np))
(np)*=t - (Bnp)k—t

(5.46) +6C5.
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Now if ¢ is small enough (depending only on z,L and p) we have 3, > 6, > 2 > % Combining
(5.45),(5.46) and (5.44) we infer

my " (w) (u? v(=nz,n))

—nz,w’

nk—1

[

lim sup
n—-+o0o

— ¢fj(w; V)| <6CH+e,

which yields the claim in (5.36) for Q, (z, p) with € Z* and rational v and p. The extension to arbitrary
sequences t, — +o0o (and thus to rational centers z) can be achieved again by Lemma 5.6 comparing
first the minimal energy on the two cubes Q. (|tn]x, |tn]p) and Q. (|tn]x,tnp) similar to Substep 2.2
and then the energy on the latter cube with the one on Q, (t,x,t,p) as in Substep 2.3. Eventually the
convergence of irrational p follows from the estimate

mlL L(“)(“Zm,w ,,(tnx,tnp)) < mlL L(w)(ui{l%w V( n,tn(p—90)) + Ctn(s(tnp)k_27

which is a consequence of Lemma 5.6 applied to the cube Q. (tnz,tnp) and {Q, (t,x,t,(p — 9))}, when
one neglects lower-order terms. Choosing 0 < §; — 0 such that p — d; € Q then yields

L,L ij
m w)(u , Qutnx, ty
s 1) z;m;)k_l( D) ¢ gt ).

Using the same argument for the cube Q, (tnz,t,(p + ¢)) and the family {Q, (tnz,tnp)} we find that
the limit exists and agrees with qbiLj (w;v). Finally, for irrational centers we can again use a perturbation
argument based on Lemma 5.6 as we did for proving (5.45) and (5.46). We omit the details.

Step 4 From rational to irrational directions

Now we extend the convergence from rational directions to all » € S*~!. As the argument is purely
geometric similar to Lemma 5.6, we assume without loss of generality that © = 0. First note that the set
of rational directions is dense in S*~! (as the inverse of the stereographic projection maps rational points
to rational directions). Given v € S*~! and a sequence t,, — +0o we define

—L 1 i
¢ (w;v) = limsup — lme(w)(uoj,y,Qy(O,tn)),

n—+oo tn

?Lj(w V) —hmmfime(w)(uoy, »(0,t,)).

n—-+ ootk

Let v € S*¥~1\Q*. By the construction of the matrix A4, in Substep 2.1 we can assume that there exists
a sequence of rational directions v; such that A,, — A,. Therefore, given § > 0 we find y € N such that
for all [ > [y the following properties hold:

(1) Qu(oa (1 - 25)) cc Quz (07 1- 5) ccC QV(07 1)7
(i) 0 <du({r} N B2(0),{m}* NB(0)) < 6.

For fixed l > lp and n € N let u,,; : L(w) — S be an admissible minimizer for the problem defining
mi " (W) (uf WQW( (1 —6)tn)). We define a test function v, : L(w) — S setting

(z) = ung(z) iz e Q0,1 —9)t,),
)= uo,v(z) otherwise.

Note that if Py(x), Pi(y) € Q. (0,t,)\Q@y, (0, (1 — §)t;) are such that |z — y| < L and v, (x) # v,(y), then
by the choice of Iy and (i), for [ large enough we have

(5.47) dist (Py(2), (Qu (0, £0)\Q (0, (1 — 20)t,)) N {v}*) < L.

If Pi(x) € Qu(0,tn)\Qu, (0, (1 = 0)tn) and Pr(y) € Qu, (0, (1 = 6)tn) with [ —y| < L and vn(x) # vn(y),
then, for [ large enough one can show that by (ii) either Py (x) or Py (y) must lie in the cone

K(v,v) ={z cR*: (x,v)- (z,11) <0}.
As the segment [Py (z), Pi(y)] intersects 0Q,, (0, (1 — §)t,,), we conclude that
(5.48) dist (P (z), (K(v,v) + Br(0)) N1 9Q,,(0, (1 — §)t,)) < L.
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By (i) it holds that v,, € PClLuij (w,®Q,(0,t,)) for n large enough. From (5.47), (5.48) and the choice of
0, v
lp we deduce that for [ large enough

my " (@) (ug, Qu(0:tn) < m1 " (@) (ugly, s Qu, (0, (1 = 8)t)) + Ot
Dividing the last inequality by t*~! and taking the limsup as n — +oc we deduce
—L
bij(w;v) < gbiLj(w; v) + C6.

Letting first [ — 400 and then § — 0 yields a,Lj (w;v) < liminf; qSiLj (w;vp). By a similar argument we can
also prove that lim sup; qﬁfj (wyy) < QZLJ (w;v). Hence, we get almost surely the existence of the limit in
(5.36) for all directions v and the limit does not depend on z, p or the sequence t,,.

Step 5 Proof of (5.35)

We claim that d)iLj (w;v) = ¢k (w; si,s;,v). By the preceding steps this concludes the proof. First observe
that by monotonicity it is enough to show that ¢f.  (w;s;,s;,v) < ngiLj (w;v). Let t,, = 400 and fix a
cube Q,(z, p). By a trivial extension argument, for 7 small enough (depending on p) it holds that

@) (1) QU tup)) < @) () Qb tup — 1) + Copth ™.

Dividing by (t,,p)*~! and letting first n — 400 and then 7 — 0 we obtain the claim.
When the group action is ergodic, the additional statement in Theorem 5.8 follows from (5.42) since
in this case all the functions w > ¢fj (w;v) are constant and so is the pointwise limit when L — +oco. O

Remark 5.9. One can show that the surface tension can be obtained by one single limit procedure.
Indeed, referring to (4.22) and repeating Steps 1 and 5 of the proof of Theorem 5.8 it follows that

1
(bhom(w;si,sjvl/) = lim tkflinf{El(w)(anu(OJ)) Tu€ ,Pclll’;téj (W7Qu(07t)>}'

t—+oo

6. VOLUME CONSTRAINTS IN THE STATIONARY CASE

In this section we will discuss the variational limit of the energies E.(w) when, for all i = 1,...,q, we
fix the number of lattice points where the configuration takes the value s;. For general thin admissible
lattices this energy might not converge without passing to a further subsequence, so we treat only the
case of stationary lattices in the sense of Definition 5.5. In order to formulate the result, given A € A%(D)
and a family V. = {V; .}{_, € N9, we introduce the class

PCY (W) = {u:eL(w) = S: #{ex €eL(W) NP 'D: u(ex) = s} = Vi)

Beside the natural compatibility condition ), V; . = #(sﬁ(w)ﬂPk_lD), we assume that foralli =1,... ¢
there exists V; > 0 such that

. Vie

im ——————

c=0#(eLN P 'D)
Note that we exclude the case V; = 0 for some i. This case contains some non-trivial aspects which are
related to the concept of (B)-convexity studied in [10]. Such conditions are not necessarily satisfied by
our discrete energies. Of course the extreme case V; . = 0 for all ¢ > 0 can be treated by changing the set
S and thus the whole model.

The following lemma describes how the volume constraint behaves for sequences with finite energy.

= V.

Lemma 6.1. For P-almost all w € Q the following statement holds true: For allu € BV (D,S) such that
there exists a sequence ue : eL(w) — S with ue — u in the sense of Definition 2.2 and
i #{er € eL(w)NP'D: uc(ex) = s;}

E. <) <C, 1 -
ig% () () £230 #{ex € eL(w) N P ' D}

B

we have
{u=s:}| = V/ID|.
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Proof. Up to the transformation T'(s;) = e; we may assume that the vectors s; form a basis. For w € Q
we consider the sequence of nonnegative Borel measures 7. (w) on D defined as

W = Y H(PTN()NLW)) I

zEPy (L‘,(w))ﬂ%

As 7. (w)(D) < C|D|, up to subsequences we know that v.(w) — ~(w) in the sense of measures. We now
identify the limit measure. To this end we define a discrete stochastic process v : Z, — LY(Q) as

(6.49) D)= Y # (P WNLW) = # (@ e Lw): Pulx) € 1).

yEP, (L(w))NI

It follows from (2.4) that v(I) is essentially bounded for every I € Z;. In addition it can be checked that
~(I) is F-measurable, thus we infer that v(I) € L*°(Q2). Upon redefining the group action as 7, = 17—,
the process « is stationary and (sub)additive. By Theorem 5.4 there exists yo(w) such that for almost
every w € Q and all I € 7}, we have

V(nd)(w)

lim ] = o (w).

n—-+4oo

It is straightforward to extend this result to all sequences ¢, — +o0o and then to all cubes in R* by a
continuity argument. Now let a,b € R* and let Q = [a,b). Then by definition

. L k —1 _
(6.50) lim(@)(@ =lim > (P (2) NLW)) =0w)Ql-
2€P(L(W))NLQ
Given any open set A € A(D), for § > 0 we consider the following interior approximation:
At (6) = U 24 [0,8)F.
zES8ZF: z+[0,6)*CA
It can be checked by monotone convergence that lims_,o |A(d)| = |A|. By (6.50) and additivity we obtain
lim inf . () (A) > lim inf 7 () (A(5)) = 70(«)| )]
e—0 e—0

Letting 6 — 0 we obtain liminf, 7. (w)(A) > ~o(w)|A|. By the Portmanteau-Theorem we conclude that
Y(w)(B) = vo(w)|B| for all Borel sets B C D. In particular the whole sequence converges in the sense of
measures. On the other hand, if A € A(D) is such that |0A| = 0, then the outer approximation

Aout((s) - U z+ [Oa 5)k
2E€8Z%: z+[0,6)*NAZD
also fulfills lims_,q |A(d)| = | A[, hence
(6.51) lim 7 (w)(A) = 70 (w)|4]

e—=0

for all A € A(D) such that |[0A| = 0. Given now § > 0, we take any polyhedral function us € BV,.(R*,S)
such that ||u — us|[z1(p)y < 6. As us is Borel-measurable, we have

[ Pucdne) = [ (P —us dr) + [ usdne(o)

D
Since u; is a polyhedral function, we can use (6.51) to obtain

us dvye (w) = ’Yo(w)/ ugs dx.

(6.52) lim
e—0 D

D
Concerning the first term, by (2.2) and the regularity of S,, and 9D we have

/D (Pu. — u[;)d%(w)‘ <0 Y e |Pucler) — uslen)

2EPy (£(w))ﬂ%

(6.53)
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Now using the fact that u. has equibounded energy, one can reason as in the proof of Lemma 2.5 to show
that
lim sup z e¥|Puc(e2) — us(ez)| < Cllu — usl| 11 (py < C6.
e—0
Z2EPL(L(w))NE
Combining the above inequality with (6.52) and (6.53) we finally obtain by the arbitrariness of ¢ that
q

tim [ Pucdo(w) = 20(w) [ ude =20 Y si{u = 5]

e—0 £
=1

On the other hand, plugging in the definition and using again (6.51), it holds

e—0

q
lim/ Pu, dvy. (w) = lirr(l)Zsi#{sx €eL(w)ND: u(ex) = s;}ek
D A

q
= siV{IDho(w).
i=1

Since we assumed the s; form a basis we conclude the proof. O

In order to include the volume constraint in the functional, for almost every w € Q we introduce EY= (w) :
PC.(w) — [0, +00] as
. V.
E;/E (W) (u) = Ee(w)(u) ifue PCE (w),
+oo otherwise.

With the help of Lemma 6.1 we can now prove the following theorem.

Theorem 6.2. Let L be a stationary stochastic lattice and let fn, and fi, satisfy Hypotheses 1 and 2.
For P-almost every w the functionals EY=(w) T'-converge with respect to the convergence of Definition 2.2
to the functional Ey. (w): L'(D,R?) — [0, +oc] defined by

v B / Shom (Wi uT, u™, v, dHFY ifu € BV(D,S) and |{u = s;}| = V| D| for all i,
Epom(w)(u) = § /s,
400 otherwise.

Proof. The lower bound follows from Theorem 5.8 and Lemma 6.1. In order to prove the upper bound, for
the moment assume that u € BV(D,S) satisfies the volume constraint and that each level set {u = s;}
contains an interior point. In particular, in each level set we find ¢ disjoint open balls Bn(xﬁ) cC {u=s;}
with n << 1. By Theorem 5.8 we can find a sequence u. : eL(w) — S such that u. converges to u in the
sense of Definition 2.2 and
(6.54) lim F.(w)(u:) = Ehom(w)(u).

e—0
Repeating the argument used for proving Proposition 3.6 one can show that without loss of generality we
may assume that u.(ex) = s; for all ex € eL(w) N B, (x!) and that u. has equibounded energy on a large
cube Qp containing D. For each i set V; . = #{ex € eL(w)N P 'D : u.(ex) = s;}. Applying Lemma 6.1
we deduce that

‘/;,5 - Vvi,E

6.55 i =0
(6.55) e30 #{ex € eL(w) N P D}

We now adjust the sequence u. so that it belongs to PCZE (w). This will be done locally on the balls
B, (z!). First we change the values on B, (z}) and B,(x3) so that the sequence satisfies the constraint
for i = 1. In general, for i < ¢ we change the sequence on B, (z!) and Bn(x§+1) so that it satisfies the
constraints for all j < 4. At the end the constraint for ¢ = ¢ follows by the compatibility assumption.
Each modification will be such that L!-convergence and convergence of the energies is conserved. We
will provide the construction only for the first step. In what follows we consider the case ‘N/'Lg >Vie We
set h, = (‘715 - Vl,g)%. Up to modifying u. on a set of lattice points contained in the complement of
the union of the balls Bn(mé) and with diverging cardinality much less than ¢!~*, we may assume that
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he — +00. Note that such a modification still yields a recovery sequence.
Observe that (6.55) and the properties of a thin admissible lattice imply

(6.56) lim hee = 0.
e—0

We already know from the proof of Lemma 6.1 that, almost surely, we can write
q“’(xihg) = #{r € L(w) : Pr(x) € Qq(m%y’YO(W)_lhE)} = hlg + hlg_l')’e’
for some sequence vy, = V. (w, x%) such that lim._,q Z—i = 0. In the following we assume that 7. < 0, but

with a similar argument we can also treat the case 7. > 0. As L(w) is thin admissible in the sense of
Definition 2.1, one can show that for some appropriate ¢ = ¢(R) > 0 it holds true that

1

ahf_l < ¢ (20, he + 1+ ¢) — ¢“ (w0, he +n) < ChE?
for any 0 < n < h.. In particular, there exist n. = O(7.) and nonnegative equibounded c¢. such that
(6.57) q“ (x0, he +n2) = h + chF1

Now choose any set G. C R? such that P,G. C B, (x3) and # (G N L(w)) = c.hf~1. To reduce notation,
set Q. = Qe, (71,70 (w) " te(he + n.)). We define

S9 if ePy(x) € Qe,
te(ex) = < 81 if ex € G,
uc(ex) otherwise.
Note that by (6.56) we have Q. CC B, (1) for £ small enough and therefore
#ler € eL(w)NP'D : a(ex) = 51} = Vie.
Again by (6.56) we still have @, — w in the sense of Definition 2.2. From Hypothesis 1 we deduce

E-(w)(:) <B-(w)(ue) +C Y Ju(|E)#(Ge NeL(w))e"

ger'Zy,
(6.58) + Z Z gkilfa(xouxa+£aﬂe(fxa)aﬂa(fxa-&-f))'
ger'zd, a€RE(D)

EP)C([I(,,,’EQ+§])O(9Q5;£@
It remains to bound the last term since the second one vanishes by (6.56) and the integrability of J;,.. We

split the interactions according to (2.12). By Lemma 2.7 and Hypothesis 1, for ¢ small enough we have
by construction

Z Z 5k71f6($o¢;za+£aﬂs(5xa)aﬂs(5xa+f))
[€I<Ls a€RE(D)
ePy([Ta,Tate])NOQH#D

(6.59) <C Z Jlr(|é|)|£| Z Ek_lfs(%y,ﬂs(sx),ﬁs(ey)) < CHk_l(aQs) < C(Ehs)k_lv

[€1<Ls (,y) ENN (w)

ex,ey€ B, (x7)

so that the left hand side vanishes when € — 0. To control the remaining interactions, recall that u. has
finite energy on the larger cube @p. Hence Lemma 2.7 and Hypothesis 1 yield

Z Z Ekflfg(xa,ma+§,ﬂ5(6xa),a5(axa+g))
|§1>Ls a€RE(D)
ePy([za:Tate])NOQ#D
<Cé Z gkilfs(x,y7ﬂs(€x),ﬂ€(€y))

(z,y) ENN (w)
ex,eyYy€EQ D

< CO6 (Bo(w)(ue, Q) +H1(0Q:) + #(Ge NeL(w))eh ) < Co.
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As 6 > 0 was arbitrary, we infer from (6.54), (6.58) and (6.59) that
limsup E. (w)(u.) = limsup E. (w)(ue) = Epom(w)(u).
0

e— e—0
The case when V! < V. can be treated by an almost symmetric argument. Repeating this construction
for the remaining phases as described at the beginning of this proof, we obtain

I-lim sup E2* (@) (4) = Biyom () (w).

Now for a general u € BV(D,S) such that |[{u = s;}| = V;|D|, the statement follows by density. This
procedure is classical (see [9]) and therefore we omit the details. O

7. A MODEL FOR RANDOM DEPOSITION

The general homogenization result proved in Section 5 describes only the qualitative phenomenon that
interfaces may form on the flat subspace. In this final section we investigate the asymptotic behavior of the
limit energy as a function of the average thickness. To simplify matters, we consider a 3d to 2d dimension
reduction problem in which magnetic particles are deposited with vertical order on a two-dimensional flat
substrate and interact via finite-range ferromagnetic interactions of Ising-type, which means in particular
that S = {41}. We obtain information on the dependence of the limit energy on the average thickness
when the latter is very small or very large.

In order to model the substrate where the particles are deposited, we take a two-dimensional deter-
ministic lattice, which we choose for simplicity to be £° = Z2 x {0}. We then consider an independent
random field {X?};czs, where the X? are Bernoulli random variables with P(X? = 1) = p € (0,1) and,
for fixed M € N, we define the random point set

M
(7.60) L) (w) = {(ihig,ig) €2’ 0<iz <y X{ .o (w)} ,
k=1

which means that we successively deposit particles M times independently on the flat lattice £° and stack

FIGURE 3. Three successive deposition steps (black, grey and white) in the construction
of C;‘f (w). The dashed bonds connect nearest neighbouring particles.

them over each other (see Figure 3). Note that the point set constructed in (7.60) is stationary with respect



32 ANDREA BRAIDES, MARCO CICALESE, AND MATTHIAS RUF

to integer translations in Z? and ergodic by the independence assumption. Given w : z—:ﬁi’,\/[ (w) = {£1},
we consider an energy of the form

(7.61) E? @) (u,A) = > eclw —y)lulex) — uley)],
x,yeﬁé)”(w)
Pz(x),Pz(y)E?

where the interaction ¢ : R* — [0, +00) fulfills
(i) c(z) < C for all z € R?,
(ii) e(z) =01if |z| > L,
(iii) e(z) > o > 01if |z| = 1.

Remark 7.1. The coefficients above satisfy Hypothesis 2, but in general are not coercive as required in
Hypothesis 1. However the results obtained in the first part of this paper still hold true. This is due to
the vertical order of the deposition model which makes the proof of coercivity much simpler. However
note that for instance the constant in Lemma 2.7 now depends strongly on M.

Due to Remark 7.1 we can apply Theorem 5.8 and thus we know that there exists the effective (deter-
ministic) surface tension

hom

P (M;v):= t_ljinoo % inf{Ef’M(w)(v,Ql,(O,t)) 2 v(z) = ug, (Pe(x)) if dist(Pa(z),0Q,(0,t)) < 2L},

where we used the alternative formula in Remark 5.9 and Remark 4.2. Note that due to symmetry reasons
the surface tension does not depend on the traces (see also [6]).
We are interested in the asymptotic behavior of ¢} (M;v) when M — +oo. First, we define some

auxiliary quantities. Given p € (0,1], 0 < N < M and u : Z> — {£1} we set

Efy @)@, 0):= > clz —y)lu(e) —uly)l

m,yeﬁgj(w)
z,y€O X [N,M]

P

and omit the dependence on w of E[N)M

| when p = 1. In that case, given v € S' we further introduce the
corresponding surface tension
1
M (v) = , ligl 7 inf{E[lo (s Qu(0,1)) = v(z) = w0, (P2(2)) if dist(P(2),0Q,(0,1)) < 2L}
— 400 )
Note that the existence of this limit follows by standard subadditivity arguments. The next lemma shows
that the auxiliary surface tensions converge when M — +oc0.

Lemma 7.2. For any v € S there exists the limit

gbl(y) = lim iqi)l’M(V).

M—+4o0 M

Proof. We define a sequence a, = ¢“*~1(v). It is enough to show that aj is superadditive. To reduce
notation, similar to (5.29) we introduce

min ) (o, Qu(@, p)) = inf{ By 1 (u, Qu(z,p)) - w e PCYL, (Qulz,p))}-

Note that by periodicity my, an (o, Qu(, p)) = MmN,k (Uo,0, Qu(x, p)) for every k € N. For fixed
t >> 1 one can take any admissible configuration for mg nr4a—1](uo,, @, (0,t)) and restrict it to the
sets @,(0,¢) x [0, M — 1] and Q,(0,t) x [M, M + M’ — 1] to obtain the inequality

1 1 1
770, M+ M —1] (10,0, Qu(0,1)) > 7o, -1 (w0, Qu(0,1)) + 7 M MM -1 (u0,,, Qv (0,1))
1

1
= 70, M—1] (u0,0, Qv (0,1)) + 770 —1] (u0,0, Qv (0,1)),

where we neglected the interactions between the two cubes and used periodicity in the last equality.
Letting t — 400, we obtain superadditivity of the sequence ay. O
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The next result shows the asymptotic behaviour of the surface tension when the average number of layers
pM diverges.

Proposition 7.3. Let ¢! be defined as in the previous lemma. For v € St it holds that

. hom(M V) 41

Proof. Throughout this proof we assume without loss of generality that L € N and we set Z3, = Z? x
{0,...,M}. Fix v € St (we will drop the dependence on v for several quantities). We separately show two
inequalities. For the moment we also fix M. Consider a sequence of minimizing configurations uy such
that limy %EBQM] (un, QL (0, N)) = ¢+M(v). As we show now, we can assume that uy is a plane-like
configuration as given by Theorem A.3. Indeed, applying that theorem we find a plane-like ground state

u,, for the energy
@ ON) = S S ew - y)lule) - uly)l

€73, y€ez2,
Py (x)€Q.,(0,N)

To reduce notation, we set
S,(N,\) ={z € R?: x€Q,(0,N), dist(x, {v}*) <4\ + L)}
so that the energy of u, is concentrated on S, (N, \) x [0, M] with A < CM (see Theorem A.3). For any

N € N we define two configurations Uy, 4y : Z3; — {£1} via

un(z) = {uo’"(Pz(x)) if dist(P3(z), R\Q, (0, N)) < 2L,

uy () otherwise.

un(z) otherwise.

an(w) = {uy(z) if dist(Py(2), R\ (Qu (0, N)) < L,

Then Ty is a plane-like configuration whose energy is again concentrated on S, (N, A) x [0, M]. Using the
boundary conditions and the finite range assumptions one can prove that

By (un, Qu(0,N)) < Efy g (@in, Qu(0,N)) < Eny (s, Qu(0, N)) + CM?
< En(iiy, Qu(0,N)) + CM? < Efy yy(un, Qu(0,N)) + 2C M2,

Dividing by N and letting N — +o0o we see that asymptotically we can replace uy by the plane-like
configuration %y. From now on we denote by uy ps a plane-like minimizer whose energy is concentrated
on S, (N, ) x [0, M] with A < CM and such that

1
QSLM(V) = hj{ln NEEO’M] (UN,Ma QV(O7 N))

We extend uy pr to Z3 setting un a(x) = ug, (Pa(x)) for x3 ¢ {0,..., M}. For § > 0 small enough, we
separate the contribution of the bottom and the first M} := [(p + §) M| random layers and estimate the
remaining interactions. This leads to

1 1 . . 1
M hom(M V) <M Jl\lrg_l"_rég NE[E{),M(W)(“N,M;’a QV(O7 N))]
1 .. . 1
< o7 kiminf SE[E vy (uarg, Qu(0, N))]

—|—£hmsup E[#{x e L) (w): z € S,(N,\) x (M} — L, M]}]
MN—Hroo N

<6 ) + CEl{w € L)1 () = € {(0,0)} x (M} — L, M]}]

cLgwiie 3 k—M§+L>(J,‘f)pk<1—p>M—’“,

k=Mf—
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where in the last step we have used that the probability of having k points in {(0,0)} x (M} — L, M] is
the same as having k + M} — L successes out of M trials in a Bernoulli experiment. In order to bound
the last sum, we use Hoeffding’s inequality which yields, for M large enough depending on L, d,

PS5 200 - 2) <(3 00245 o+ £)30) <o (254 £).

From this bound we infer the estimate

M Y M 1
EY: k(] _ M~k < _Lars2 _
E (k— Mjg —|—L)<k>p (1-p) < E k;exp( 2M5 )exp( 20k).
k=MP—L k=1

Since the right hand side vanishes when M — 400, by Lemma 7.2 we deduce limsup,, ﬁqﬁﬁom(M; v) <
(p+6) ¢'(v). Since § was arbitrary the first inequality is proven.

It remains to show the reverse inequality. Given any admissible function vy : £} (w) — {£1} we can
neglect the interactions coming from @, (0, N) x [M* s + 1, M| which yields the estimate

Ef,M(w)(vNaQV(mN)) > Eﬁ) MP ]( )(UNvQV(OvN))'

Minimizing on both sides and dividing by N, we obtain in the limit that

1
(7.62) (M) > 75 (1),
Now the idea is to estimate the error when we replace ¢PM~ ( ) by ¢" MZ 5(v). Let uy be a sequence of

plane-like configurations as in the first part of the proof. We also consider an optimal sequence w N6 =

u®’ (w) such that

» . 1
oM () = lim BB (@R, Qu(0, V)]

Since the deterministic surface tension dominates the random one, we have
0.< 6" M0 () — 6P M () = T [Bly o (v, Su (N, ) — Bl o (@) (05 (), Qu (0, V)
< hm;up NIE [E[o M7 ](uN ,SU(N,A)) — [0 P ](w)(u?]’\}‘s( w), S, (N, )\))}

< Climsup N]E[#{x € (SSAN)x [LMP ) NZP: x ¢ L) (w)}]
N

gCMIE[maX{Mp ZX(OM),O}} SCM%W( ZX(OM— )
k=1

Here we used that the number of missing interactions can be estimated by the number of missing lattice
points since each point can only interact with finitely many others. Now we apply again Hoeffding’s
inequality which yields

M
Jere ZX(OM > ) <2(M(p-3) -k 22 Xooo) <o (—204(5 4 57) )
We conclude the bound
Zk[@( ZX(OM) >k:> Siékexp(—;Méz) exp(—20k).

Again the right-hand side vanishes when M — 400 and thus lim, ﬁ|¢1’Mfé(u) — ¢p’M35(y)| =0, so
that Lemma 7.2 and (7.62) imply the estimate

Lo 1
> — =((p-9)¢ (v).
lim inf M(ﬁhom(M v) Mhm Mgb s(v)=(p—9)¢ (v)
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Again the desired estimate follows by the arbitrariness of § > 0. ]

Remark 7.4. If we had not included the initial layer £°, then Proposition 7.3 would still hold. However
then the surface tension may not be related to an appropriate I'-limit since the compactness of sequences
with bounded energy becomes a nontrivial issue. We refer to [20] for a possible approach to this problem
in the case of nearest-neighbour interactions and bond-percolation models.

A percolation-type phenomenon. We close this final section with a result on the growth of the
averaged surface tension when the number of layers increases. We let £/ (w) be defined as in (7.60) but
restrict the analysis to nearest-neighbour interactions and make them non-periodic in the sense that their
magnitude is very small when one of the particles belongs to the initial layer £°. More precisely, given
0 < m << 1 we consider functions of the form

0 if |z —y| > 1,
en(Ba(z,y)) = {7 if |z —y|=1and 23 y3 =0,
c(x —y) otherwise,

where As is defined in Hypothesis 2 and = — ¢(z) is strictly positive on the unit circle. Then the
coefficients satisfy Hypothesis 2 and fulfill (a slightly weaker version of) Hypothesis 1. We define Effvj
as in (7.61) with c replaced by ¢,. According to Theorem 5.8, again there exists the limit

P (M;v) = lim %inf{Eiﬂ(w}(v,Qy(O,t)) s v(z) = up (Pe(x)) if dist(Pa(x), 0Q,(0,t)) < 2}.

hom t—+oo

In contrast to Proposition 7.3, for this model we also consider the case of small M. We will show that if
p < 1 — paite, Where pgite is the critical site percolation probability on Z2, then it holds that

o (Lv) < Cpn,

hom

where C), may blow up only for p — 1 — psite. Note that we do not claim here that pgii. is the optimal
bound. We can actually improve the result in the sense that for all M € N such that (1 —p)™ > pgie, we
have

tom (M3 1) < Cp.

hom

This shows that when the probability is very small but finite, the surface tension can be arbitrary small
depending on the strength of the interaction in the substrate layer, on the other hand we will establish
an analogue of Proposition 7.3 asserting that if the average number of layers increases further, even
the normalized surface tension approaches a value independent of 1. This result can be interpreted as
the equivalent to the percolation phenomenon described in the introduction of the paper for the model
without initial layer (n = 0). Before proving this result, we introduce the typical energy of one slice.
Given ¢ € (0,1] and u : Z% — {1} we set

Eh(w)(w,A) = > clz—y)lux) - uly)]
w,yEL}I(w)\LO
Py(z),P2(y)€A

and omit the dependence on w if ¢ = 1. We further introduce the corresponding surface tension

gz(’/) =

Note that the existence of this deterministic limit follows again from the subadditive ergodic theorem as
in the proof of Theorem 5.8, since we used the coercivity only for passing from finite range to decaying
interactions in Step 4. In general the random variables w — EY (w)(u, A) are not defined on the same
probability space but we will use them only for slices of the large set L’;)VI (w).

m %inf{Egl(w)(u, Q.,(0,t)) = v(x) = up(x) if dist(z, 0Q,(0,t)) < 2}.

li
t——+oo

Theorem 7.5. Let p € (0,1) and M € N be such that (1 — p)™ > pge. There exists a constant Cy pr
locally bounded for (1 — p)™ € (psite, 1) such that

P (M;v) < Cpum-

hom
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On the other hand, for any p € (0,1) it holds that

1
oA ol (Mv) = 2p( (eler) + e(—en) ] + (clez) + el=e2))lval )
Proof. In order to prove the first statement, we start with the case v = e; and use results from percolation
theory which show that the contribution from the random layers is negligible: For q := (1 — p)™ > pgite,
we consider the so-called Bernoulli site percolation on Z2, that is we assign independently a weight
X;(w) € {&1} to all the vertices i € Z? such that P(X; = 1) = ¢q. We say that ig,..., 4 is an occupied
path if |ip, —ipy1| =1 and X;, (w) =1 for all n = 0,..., k. Theorem 11.1 in [25] yields that there exist
universal constants c;, d; such that

}P’(at least ¢1(q — psite) ™1 disjoint occupied paths from {0} x [0,7] to {m} x [0,7]

and contained in [0,m] x [0, n] exist) > 1 —co(m + 1) exp(—c3(q — peite) 21).

Given N € N, we first combine this estimate with the Borel-Cantelli lemma and, using stationarity, we
obtain that for almost every w €  there exists Ny = Ny(w) such that for all N > Ny we find at least
c1(q — psite)2V/'N disjoint occupied paths connecting the vertical boundary segments of the rectangle

N N
Ry =[] + 2,15 ]~ 2 x [-[VE, VAL

As the paths are disjoint and are contained in Ry, at least one of them uses at most ?21(‘1 — Psite) NN
vertices. Now we come back to the actual proof. By the definition of the random lattice in (7.60), using
the above considerations in the layer Z? x {1}, for N > Ny we can find a path connecting the vertical
boundary segments of the rectangle Ry x {1}, contained in Ry x {1}, using at most ¢, s N vertices
with none of them belonging to £}/ (w). This path separates Ry x {1} into two subregions Ry x {1} and
R} x {1}. As depicted in Figure 4, for N > Ny we define a (random) configuration uy : £3 (w) — {%1}
as

Uge, (Po()) if P2(2) ¢ Ry,

un(z) =< +1 if P»(z) € R,
-1 otherwise.
[ 2 ® L ] L ] L & L L L L L ] L 2 > ®
[ 2 L 2 L 2 L L ® ®

[ L] L L L L L L L2 L2 L2 ® -

f ~N |

FIGURE 4. The different sets in the construction of uy. Rj; and Ry correspond to the
white regions above and below the bold line, respectively. In the light grey region uy ()
agrees with ug e, (P2(x)).
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Up to possibly exchanging the roles of RE we can assume that uy € PC} 0,0y (@5 Qe (0,N)). Hence by
the definition of ¢’ (es) and the fact that un does not depend on the z-direction, it holds that

1 . 1
hom (€2) < lminf = B (w) (un, Qe, (0, N)) < limsup > nfun () = un(y)|
—+oo N N—+o0 N 5
z,Y€Qe, (0,N)NZ

le—yl|=1

(7.63) + limsup — Z Z clz —y)|lun(x) —un(y)|

NHJFOO x yELM (w)
Z,Y€EQeq (0 N)x{k}
We now estimate each of the two terms on the right-hand side. Concerning the second one, we observe that
if 2,y € (Qe, (0, N)x{k})NLY (w) are such that |z —y| = 1 and un (x) # un(y), then either Py(x), Py(y) €
+8e; + ([-4,4] x [-2V/N,2VN]) or, without loss of generality, P»(z) € Ry and P»(y) € Rj. In the
second case, we note that either (Py(x),1) or (P2(y), 1) has to be a vertex of the path constructed above,

hence either 2 ¢ £/ (w) or y ¢ L)' (w). We then rule out the existence of such interactions and we may
bound the second term via

CM
(7.64) lim sup — Z Z ez —y)lun(z) —un(y)| <limsup — = 0.
N—+oo IV ool () No4oo VN

7yEQez (0,N)x{k}

Applying the same arguments for the first term, we may use the fact that the separating path uses at
most ¢, pr N vertices and we deduce that

. 1
limsup — E nun (z) —un(y)| < dep mn.
N—+oco N 2
z,Yy€Qe, (0,N)NZ
|z—y|=1

From this estimate, the first claim in the case v = ey follows by (7.63) and (7.64). The above argument
can be adapted to the cases v = —ey and v = #e;. By L!-lower semicontinuity, the one-homogeneous
extension of ¢} must be convex (see [10]). For general v € S* the claim then follows upon multiplying
the constant by a factor v/2.

In order to prove the second claim, we need to show two inequalities. Given a sequence of admissible
configurations uy such that limy NE1 (un,Q,(0,N)) = ¢}(v), we define an admissible configuration
uy : LY (w) = {£1} via

ﬂN(l‘) = uN(Pg(l‘))
Arguing as in the proof of Proposition 7.3, we may assume that uy is a plane-like configuration and its
energy is concentrated in a stripe

S,(N,\) ={z e R?: z€Q,(0,N), dist(zx, {v}*) <4\ + 1)},
where now A is independent of N, M. By definition and the fact that @y gives no interaction in the
z-direction, we obtain that for any § > 0 small enough
(M;v) 1

1
hom < m i _ P,n
]1\1Im1nf E[EY ) (w)(@n, Qv (0, N))]

(%IEE;E i Z SE[E? (w)(un, Qu (0, N))]) + < timsup — #{z € 22N 5,(N, )}

N—>+oo
1 1 M CA
< Timinf A L Dk i
<liminf < | (p+0)Ey (v, Qu(O,N) + 57 D BB @)(un, Qu(0,N)] | + 57
k> (p+0)M]

1 CA
=(p+0)pu(v)+ sup liminf —E[EF(w)(un,Qu (0, N))] + —,
- O)h) s it B ). Q0. 8))] +
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where pi, = Zf\ik (]\ll)pl(l — p)M~=1is the probability of having at least k successes out of M trials in a
Bernoulli experiment. Note that here the new random variables are indeed defined on the same probability
space and are coupled to the variables generating the stochastic lattice £11)v1 (w). As X is independent of M,
the third term vanishes when M — +00, so that we are left to show that also the second one converges
to zero. In order to estimate the second term we use the fact that uy is a plane-like configuration, so
that

1 1

~ BIES (@)(un, Qu(0, N))] = FE[ES () (un, Sy (N, A))] < prOA.

For any k > [(p + 0)M |, by the law of large numbers it holds that py — 0 when M — +4o00. Hence we
deduce limsup,; @0 (M;v) < (p+6) ¢L(v). As 6 > 0 was arbitrary, we finally obtain

hom

. 1
lim sup i P (M) < poh(v).
M

We next show the reverse inequality. Given any admissible function uy : L) (w) — {£1} we can
neglect the interactions in the z-direction and the lowest layer £° and obtain the estimate

M [(p—6)M]
EP (@)(n, Qu(0,N)) > S BB @) (@n (4 k), Qu(0,N) > S BB () (@n (-, k), Qu (0, N)).
k=1 k=1

Since up (-, k) fulfills the correct boundary condition in every layer, we deduce that

1
o (Miv) 2 (p=0) _ f O W),
Again by the law of large numbers for an independent Bernoulli experiment it remains to show that the
function ¢ — ¢7,(v) is continuous in ¢ = 1, which means we can pass from a random to a deterministic
lattice. This will be the last step.

In order to prove continuity let uy be a plane-like sequence of configurations as in the first part of
the proof and consider an optimal sequence u%; (w) such that

Gw) = JJim CEIEw) (@), Qu(0, M)

N—+oc0

Similar to the proof of Proposition 7.3 we obtain

0 < 65(v) = ¢4 (v) =lim %E[Esll(qu Sy (A N)) = Eg(w)(uy (@), Qu(0, N))]

sl

< tim sup CE[E} (uh (), Sy (A, N)) — B4 (@) (v (), S0, N))]
N
< Cli]{rn %E[#{z €(SUAN)NZ) x {1} : z¢ LL()}H =C(1 —q)A

The estimate above clearly implies convergence of the surface tensions when ¢ — 1 which shows that
lim sup ;57 $hon, (M3 v) > pég (v).

It remains to identify ¢ (). We just sketch the argument. Any admissible configuration asymptoti-
cally has an interface containing at least |v;| interactions along the two directions +e; and |vs| interactions
along the directions +es. Since any pair of interacting points is counted twice with reversing direction
and |u(x) —u(y)| € {0,2} we find that ¢} (v) > 2(c(e1) +c(—e1))|v1|+2(c(e2) + c(—ez))|v2|. On the other
hand a suitable discretization of a plane attains this value, hence

$a(v) = 2(c(er) + c(—ex)) ] + 2(c(e2) + c(—e2))|vel,

and the proof is finished. O
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APPENDIX A. PLANE-LIKE MINIMIZERS FOR ONE-PERIODIC DIMENSION REDUCTION PROBLEMS

In this first part of the appendix we prove that the results about plane-like minimizers for periodic
interactions in [22] can be extended to dimension-reduction problems. We restrict the analysis to one-
periodic interactions, which is the case when the coefficients depend only on the difference as in Hypothesis
2. Moreover, we focus on the physical case of reduction from 3-d to 2-d. To fix notation, for any set
I' C Z2, we write I'yy = I x (Z N[0, M]). In contrast to the main part of this paper, here we consider
an interaction energy that takes into account also interactions outside the domain. To be more precise,
given u : Z3, — {£1} we investigate finite-range energies of the form

En(u,T)= Y Y clz—yu) - uly),
z€lM yez2,
where the coeficients fulfill the following assumptions:
(i) 0 <c(z) < O for all z € R? and min; c(+e;) > ¢ > 0,
(ii) there exists L > 0 such that ¢(z) = 0 for all |z| > L.

Before stating and proving the main theorem we need some definitions.

Definition A.1. We say that u : Z%, — {£1} is a ground state for the energy F); whenever Ej(u,T') <
En(u,T) for all finite sets I' € Z?% and all v : Z3;, — {£1} such that w = v on {z € Z3, : 32’ €
(Z*\I') o with |2 — 2/| < L}.

Remark A.2. When u and T are such that Fps(u,I') < Ej(v,T) for all v such that u = v on {z € Z3, :
32" € (Z*\I')ps with |z — 2| < L}, the same conclusion holds for every subset IV C I'. Indeed, take any
v such that u = v on {z € Z%, : 32’ € (Z*\I")n with |z — 2’| < L}. Then for any two points z,y with
z € (P\I")p and y € Z3, with |z — y| < L, it holds that u(z) = v(z) and u(y) = v(y). Hence it follows
that

E]u(u,rl) — E]\/j(’u, F/) = EM(U, F) - EM(U,F) S 0.

Using the same notation as for the stochastic group action, for k& € Z? we denote by 73 the shift operator
acting on sets I' and configurations u : Z%, — {£1} via

7l =T+ k, Tru(z) = u(z — (k,0)).
Then the following formula holds true:
(A.65) Ey(mpu, 1) = Ep(u, T).
The remaining part of this appendix will be devoted to the proof of the next theorem.
Theorem A.3. There exists A > 0 such that for all v € S' there exists a ground state u, of Enr such

that u(z) # u(y) implies dist(z, {v}+) < \. Such a ground state is called plane-like. Moreover we can
choose A < CM for some constant C' independent of v, M.

The proof of this theorem is very similar to [22, 23]. We first construct a particular minimizer among
periodic configurations that enjoys several geometric properties. To this end, we need further notation
(see [22] for more details). Fix a rational direction v € S N Q?; we define the Z-module Z, = {z € Z?* :
(z,v) = 0} and, given m € N, we let F,,, , be any fundamental domain of the quotient Z?mzy, that is for

every z € Z? there exist unique z; € mZ, and zy € Fm,v such that z = 21 + z2. Given real numbers 0
and A\, with 8 < )\, we further introduce

fg;i, ={z€Fn,: (v,z) €0,\}.
Now we define an admissible class of periodic configurations: A function u : Z2, — {£1} is called
(m, v)-periodic if u(z) = u(z + m(z,0)) for every = € Z%, and every z € Z,. We set
A%A = {u: wis (m,v)-periodic, u = +1 if (P3(2),v) <0, u(z) = —1if (Py(2),v) > A}.

We start with a very elementary lemma, that shows how that for periodic functions any translation gives
the same energy.
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Lemma A.4. Let u be (m,v)-periodic and k € Z*. Then it holds that
EM(TkU7 ]:m,u) = EM(U, ]:m,u)-

Proof. Given © € (T_pFm.)m, we find z1(x) € mZ, and z2(z) € F,,, such that Py(z) = 2z1(x) + 22(x).
By (m, v)-periodicity, for any y € Z2, it holds that
ju(e) — u(y)] = fu(z — (21(2), 0)) = uly — (21 (), )],
o —y) = cx — (21(2),0) — y + (21(2), 0)).
Now assume that there exist another 2’ € (7—;Fm ) a\{2} with (z — 2/,e3) = 0 and z3(z) = 2z2(2’).

Then 7, P2 (x) — T Pa(2’) = z1(z) — 21(2") € mZ,\{(0,0)}. As 7. Pa(x), 7, P2(2’) € Fyp,, this contradicts
the fact that F,, , is a fundamental domain. Using (A.65) we conclude by comparison that

En (e, Finw) = Ev(u, T— g Fmn) < Envi(u, Frn ).
Applying the above inequality to 7, and @ := 7,u, which is also (m, v)-periodic, we obtain the claim. O
We define the class of minimizers for the energy Ens (-, Fpn,) o0 Aﬁf‘u via
Miﬁv ={ue Af,;j\,, s Ep(u, Fow) < Enyi(v, Fpy) for all v € .Af,;f‘,,}.

As the set A%* s finite, the class of minimizers is non-empty. Next we define the so-called infimal

m,v

minimizer which has several useful properties.

OX - 0. 0.x
Uy, = minfu € M7} € A

m,v*
We next show that the infimal minimizer also belongs to the class of minimizers. This follows from the
following elementary observation (see Lemma 2.1 and also Lemma 2.3 in [23]).

Lemma A.5. Given any u:Z3; — {£1} and T € Z* finite, it holds that
Epn(min{u,v},T) + Epy(max{u,v},T) < Ep(u,T') + Ep(v,T).

Iterating the above lemma finitely many times we find that u%;%, € M%,.
We now turn to the first property of the infimal minimizer. This is the so-called absence of symmetry

breaking, which says that the infimal minimizer does not depend on the length m of the period.

Lemma A.6. For any m € N it holds that u? 6,2

myy ul,l/ .

Proof. We define an auxiliary configuration via v = min{Tkufﬁf‘y : k € Z,}. By elementary arguments

it follows that u € Af:l),‘, while Lemma A.4 implies that 7uf, € M%%, and by iterating Lemma A.5
0.2 0,2

m,v m,v*

we obtain u € Mf,;”\l,. Since u < u by the definition of the infimal minimizer we obtain u = u

Moreover, as u and uf::} are both (1, v)-periodic it follows that

1 1
(A66) EM(Ua-Fl,V) = EEM(U’? Fm,u) < EEIVI(U%l),\a-Fm,D) = EM(“%Z;-FI,V)~

In particular we deduce that u € M?i‘ and thus u > u?i‘ On the other hand, (A.66) must be an equality,
so that u?i‘ € ./\/lf,::‘l, and therefore u?i‘ > u. This proves the claim. g

We next establish the so-called Birkhoff property of the infimal minimizer which will be the main ingre-
dient for the proof of Theorem A.3.

Lemma A.7. Let k € Z%. Then Tku?:f) < ufi‘ if (k,v) <0 and Tku%i > ufi‘ if (k,v) > 0.

Proof. We start with the case (k,v) < 0 and define the two configurations m = min{u‘f:i‘, Tku?i‘} and
M = max{ufzi,ﬂcu%i‘}. By elementary considerations one can prove that m € Af:<k’”>’>‘+<k’”> and

M e A?i‘ Using Lemma A.5 we obtain

Er(m, Fip) + Ea(ul), Fr) < Exr(m, Fu) + Ey(M, Fry) < Ey(meud), Fu) + Exr(ul, i),
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which yields EM(m Fip) < EM(Tku‘f:i‘,fL,,) We claim that Tkuﬁi‘ = ui)j}k’w’)‘ﬂk’w. Indeed, as
Tku?i‘ € A9+ (k) At (k) hig configuration is admissible and minimality follows by Lemma A.4. Now

assume it is not the infimal minimizer, then also uf:i‘ is not the infimal minimizer as we could construct
a smaller one by translation of the other infimal minimizer.
By definition of the infimal minimizer we infer that m > Tku(f’f,‘, which proves the clairn by deﬁnition

of m. The case (k,v) > 0 follows upon applying the translation 75 to the inequality 7_ kul T A< U1 * which
holds by the first part of the proof. O

In the next lemma we deduce a powerful property of configurations fulfilling the Birkhoff property.

Lemma A.8. Let u: Z3, — {£1} satisfy the Birkhoff property with respect to v € S* N Q?; that is,
meu < u if (k,v) <0, and Tu > w if (k,v) > 0. Assume further that u(zo) = —1 for some zo € Z3,.
Then u(z) = —1 for all x € Z3, such that (x — mg,e3) =0 and (Pa(z — x¢),v) > 0.

Proof. Every such z can be written as x = z — (k,0) with k € Z? such that (k,v) < 0. Hence Lemma

A.7 implies that u(z) = Tpu(zo) < u(xg) = —1, so that u(z) = —1. O
We are now in a position to prove that the infimal minimizer becomes unconstrained when we take § = 0
and \ large enough. To reduce notation, from now on we set u;) := u?i‘

Lemma A.9. There exists \g > 0 (depending on M in such a way that \og < CM) such that for all
A > )Xo it holds that u)(x) = —1 for all x € 73, such that (Ps(x),v) > X\ — V2.

Proof. By Lemma A.8 it is enough to show that for large enough ), in every layer Z2 x {I} with [ €
{0,..., M} there exists some x; such that (Ps(x;),v) < XA — /2 and u))(x;) = —1. We will show that this
is always the case provided A is large enough.

Assume that there exists a layer Z? x {I} such that u))(z) = 1 for all z € Z? x {I} with (Py(x),v) <
A — /2. We argue that in this case there must exists a second layer Z? x {I'} and a point x € Z2 x {I'}
with (Py(zp),v) < V2 and u)(zy) = —1. Indeed if this would be false, then the function 7,u;) with any
k € {0,+1}2 such that (k,v) < 0 fulfills mu) € AV e By Lemma A.7 we further know that mu) < u)).
On the other hand, by Lemma A.4 we have rpu) € MO '+ hence by the definition of the infimal minimizer
we obtain 7,u) = u). This contradicts the boundary condltlonb by the choice of k. Now applying Lemma
A.8 in the second layer Z2 x {I'} we obtain u}(z) = —1 for all x € Z? x {I'} such that (Py(z),v) > /2.
As we will see now, for fixed M this will cost too much energy.

Without loss of generality we assume that [ > I’, the other case can be treated almost the same way.
For every r € {1,..., M} there exists x € Z? x {r} such that u)(z,.) = —1. Let x, be one of such points
that minimizes (P»(z),v) among all such points. According to Lemma A.8 we obtain u)(x) = —1 for all
z € 72 x {r} with (Py(x),v) > (Ps(z,),v) =: p,. Note that
-1

Z(pr+1 - pr)

r=I’

(A.67) >\ —2V2.

On the other hand, just counting the interactions between neighbouring layers, we obtain by the coercivity
of the interactions and (A.67) that

M
En(u), Fio) = ¢y |pr — proal = (A —2V2).

r=1
Testing a discretized plane as a possible minimizer, by the finite range assumption we know an a priori
bound of the form E,, (uf),]:l,l,) < CM. Hence our assumption can only hold as long as A < C'M for
some constant C' depending neither on v nor on M and the claim follows upon setting \g = 2CM. O

The next (and last) lemma bounds the oscillation of the jump set of the infimal minimizer u)°.

Lemma A.10. Let Ao be as in Lemma A.9. Then u)° € M;ﬁ;/\”" for any n,m € N.
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Proof. We first claim that u}° = u)o*! for any I € N. This will be done iteratively. First note that for
any A > ) it holds that u) € A?:i“ and by Lemma A.9 it also holds that u}*! € A(l);\ Then

Ey(u)™ F1.) = Ex(u), Fi)

and both are infimal minimizers. Hence they must agree. This proves the first claim.
Give an arbitrary configuration v € A;Lf‘,;’\”” we choose a vector k € Z? such that (k,v) > n and
(k,v) € N. Then
= Ar—nfblj-(k,u),)\o-l—n-i—(k,u) c A?y’:\le-’_n/

with n’ € N. Using the first claim and Lemmata A.4 and A.6 we obtain Ejs(u)°, Fow) < En(mi0, Finw) =
Er (v, Finw). As u)0 € A2 we proved the claim. O

Proof of Theorem A.3. First assume that v € STNQ?2. We show that u)° is a ground state. To this end let
' C Z2 be finite and let v : Z2, — {£1} be such that v = u\° on {z € Z2, : 32’ € (Z>\I')ps with [z—2/| <
L}. Then we find m € N such that, for a suitable fundamental domain, I' C 7, ,. By Lemma A.10 we
have En(u), Fm.) < En(v, Fin,) and the claim then follows by Remark A.2.

For general directions v € S! we argue by approximation. Take a sequence v; — v of rational directions
and consider the sequence u; := uﬁj where )\; is uniformly bounded in j. By Tychonoff’s theorem we
can assume that u; — u for some u : Z3, — {£1}. It holds that u is a plane-like configuration. By the
definition of the topology, given any finite set I' C Z? we can find an index jo such that u;(z) = u(x)
for all x € T'y; and all j > jg. Since we assume a finite range of interaction, the previous convergence
property implies that u is also a ground state. O

APPENDIX B. DENSITY RESULTS FOR TRACE-CONSTRAINTS ON PARTITIONS
In this second appendix we show the density result needed in the proof of Theorem 4.1.

Lemma B.1. Let A CC B both be bounded open sets with Lipschitz boundary. Given v,w € BV (B,S)
such that H*=1(S, NOA) = 0 we set u = Lav + (1 — L a)w. Then there exists a sequence A, CC A of

sets of finite perimeter such that u, = 1a,v + (1 — 14, )w converges to u in L'(B) and additionally
HF1(S,, N B) = H*1(S, N B).

Proof. We define the mapping T': S — R? by T'(s;) = e;. As a special case of Proposition 4.1 in [33],
applied to the bounded BV-function « := T'(w) — T'(v), for every € > 0 we find an open set A, of finite
perimeter such that A, CC A, |A\A.| <¢e and

k— k—
(B.68) /M a4 | dH 1§/6A|ar5A|dH Tye

With the same arguments as in [33], the sets A. can be constructed in such a way that for all § > 0 there
exists g > 0 such that for all € < gg

(B.69) {z € A: dist(z,04) > §} C A..

We show that the sets A, fulfill the required properties. As a first step we claim that T'(u.) converges
strictly to T'(u). We have that T'(u.) converges to T'(u) in L'(B). By lower semicontinuity of the total
variation it is enough to show that

(B.70) limsup | DT (u.)|(B) < |DT(u)|(B).

e—0

By definition we have |DT(u.)|(B\A) = |DT(u)|(B\A), so that we can reduce the analysis to A. By
Theorem 3.84 in [11] it holds that

DT (u.) = DT(v)_ AN + DT (w)_ A® + (T(v)iha, = T(w)pa) ©vH 'L OA,

where in general A" is defined for t € [0,1] via

AD = {x R lim (20 Bol0)] t} .
=0 |By(x)|
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Since A. CC A and A. is open we infer Agl) C A and Aé‘” - Rk\AE, so that

| DT (ue)|(4) <|DT(v)[(A) + |DT (w)|(A\A:) +/8A T(0) 5, = T(w)jy, | dHE

€

<[DT()|(4) + |DT(w)|(A\A.) + /8 T, Ty |aH

+/8A T(0)oa, — T(w)fy, [dHP

By the assumption on w we have |DT(w)|(0A) = 0, so that by (B.69) the second and the third terms
vanish when ¢ — 0. For the fourth one we use (B.68) and infer

limsup | DT (u.)|(A) < |DT(v)|(A) + /OA |T(11)|'5A — T(w)"’éA\ dnF1

e—0
= IDT@IA)+ [ 1T0) = T(w)j 4" = [DT(w)|(A),

where we used that inner and outer trace of T'(w) agree for H*~!-almost every = € dA. By the structure
of the set T'(S) strict convergence implies that

1
V2

Since for every u € BV (B,S) it holds that H*~1(S, N B) = H*~'(S7(,) N B) and also L'-convergence is
conserved, we conclude the proof. O

_ 1 _
M (Sr(u) N B) = DT ()| = 5 [DT(w)] = H*~' (7 1 B).
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