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Abstract. We analyse the rigidity of non-convex discrete energies where at least nearest
and next-to-nearest neighbour interactions are taken into account. Our purpose is to
show that interactions beyond nearest neighbours have the role of penalising changes of
orientation and, to some extent, they may replace the positive-determinant constraint
that is usually required when only nearest neighbours are accounted for. In a discrete to
continuum setting, we prove a compactness result for a family of surface-scaled energies
and we give bounds on its possible Gamma-limit in terms of interfacial energies that
penalise changes of orientation.
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Introduction

In the simplest model of atomistic interactions, the behaviour of a system of n particles is
described by pair interaction energies of the form

∑

1≤i6=j≤n

J(|ui − uj |) ,

where i and j label the pair of atoms, and ui and uj denote the corresponding positions. Typi-
cally, the interatomic potential J is assumed to be repulsive at small distances and attractive at
long distances, such as the celebrated Lennard-Jones potential. Numerical results (see for exam-
ple [27] and references therein) suggest that equilibrium configurations for such systems arrange
approximately in a periodic lattice as the number of particles increases (crystallisation). The
problem of crystallization for interactions of Lennard-Jones type is still open. A contribution in
this direction has been given in [26], where it is proved, in two dimensions, the optimality under
compact perturbations of the equilateral triangular lattice.

Assuming that we have crystallization on some reference lattice L, it is reasonable to suppose
that for some class of problems the positions u1, . . . , un are close to L, and then consider lattice
energies parametrised on L. A further simplification is to assume that the energy densities them-
selves depend on the labels i, j; in this context a discrete-to-continuum limit can be performed
by interpreting functions defined on L as traces of functions defined in the continuum, and a
macroscopic energy can be derived. The coarser simplification is when only nearest neighbours
are taken into account (i.e., we set the interaction energy to zero if i, j are not nearest neighbours
in L).
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However, such an oversimplification is usually in contrast with the assumption that ground
states are still close to L, since it may yield new undesirable ground states obtained, e.g., by
locally changing the orientation of the reference lattice. In order to overcome this, either the
energy J must be modified, or some other assumptions added. A possible choice is to consider
longer range interactions (e.g., second neighbours, etc.). Another choice is to add a restriction
on the deformation u corresponding to the local non-interpenetration condition det∇u > 0.
However, imposing a positive-determinant constraint on lattice systems gives rise to analytical
difficulties in deriving the continuum limit by a variational approach. Moreover, this condition
may not be preserved in the limit. For an extended discussion on these issues we refer to [8],
where the authors show some pathological effects that call into question the necessity of such
an assumption.

The purpose of this paper is to analyse discrete systems when next-to-nearest neighbour
interactions, and, more in general, interactions in a finite range are taken into account. We show
that, to some extent, their effect may replace the positive-determinant constraint in penalising
changes of orientation, which are thus not excluded by assumption but rather energetically
disfavoured.

We point out that the effects of long range interactions in non-convex lattice systems have
already been treated in some papers in the one-dimensional case. A first variational analysis
has been proposed in [13], which considers nearest and next-to-nearest interactions of quadratic
type, showing the appearance of external boundary layers. A complete study in dimension
one through a discrete-to-continuum analysis has been subsequently carried out in [6], which
studies a development by Γ-convergence for non-convex interactions, characterising external and
internal boundary layers and in particular rigorously showing the equivalence with higher-order
Modica-Mortola type perturbed energies; see also [22, 23]. It is worth mentioning the paper [10],
where next-to-nearest neighbour interactions replace the monotonicity assumption made in [9]
for deriving Griffith energies from Lennard-Jones interactions. In the higher-dimensional case,
a first contribution was given in [4], where the authors deduce a formal (pointwise) development
of the energies in terms of the lattice spacing as a singular perturbation of an elastic energy with
a term containing second derivatives.

In our paper we study the problem in the higher-dimensional case by means of a varia-
tional convergence. We will restrict our attention to interaction potentials that satisfy poly-
nomial growth conditions (i.e., strongly attractive at long distances), mimicking the behaviour
of Lennard-Jones type potentials at short distances and leading in the macroscopic limit to
continuum elastic theories that do not allow for fractures. We believe that, even under this re-
striction, our analysis highlights interesting phenomena and provides an essential step towards
the understanding of more general Lennard-Jones type potentials.

Assuming the existence of a reference configuration identified with a portion L′ of a periodic
lattice L in R

N , the deformation map can be regarded as a function u : L′ → R
N . As a model

case, we consider energies of the form
∑

|i−j|≤R

(|ui − uj | − |i − j|)2 ,(0.1)

where R is a positive constant larger than the lattice spacing. The constant R determines the
range of interactions contributing to the energy functional and is to be chosen according to
the lattice under examination. A prototypical example is the two-dimensional case of particles
sitting on a triangular lattice in their reference configuration and interacting via harmonic springs
between nearest and next-to-nearest neighbours. More precisely, normalising the equilibrium
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distance of the particles to one, the reference configuration L′ is a portion of the triangular
Bravais lattice Zv1 ⊕ Zv2, where v1 = (1, 0) and v2 = (1/2,

√
3/2), and the corresponding total

internal energy is of the form (0.1) with R =
√

3.
Note that, up to translations, the ground states of energies of the type (0.1) are given by all

linear maps in O(N), while adding a positive-determinant constraint reduces them to SO(N).
Nonetheless, the presence of next-to-nearest neighbour or longer range interactions prevents the
appearance of many changes of orientation, since these are energetically disfavoured. In contrast,
it can be easily shown that the sole presence of nearest neighbour interactions allows changes of
orientation without any additional cost.

By scaling the reference lattice L by a small parameter ε > 0 and identifying L′ with εL∩Ω,
where Ω is a bounded open set in R

N , one can consider a bulk scaling of (0.1) and rewrite it in
terms of difference quotients, thus obtaining functionals of the form

Fε(u) :=
∑

|i−j|≤R

εN

( |ui − uj |
ε

− |i − j|
)2

,(0.2)

where we use the notation ui := u(εi). The asymptotic behaviour of Fε, as ε tends to zero, was
studied in [1] by means of Γ-convergence (see [5, 16]) and leads to a continuum limit described
by a functional of the form

�
Ω f(∇u) dx defined on some Sobolev space. Here f is a non-negative

quasi-convex function, that is zero on O(N); therefore, the set of minimisers of f contains the
quasi-convex hull of O(N) and thus, in particular, all rank-one segments between SO(N) and
O(N) \ SO(N). Indeed, in the bulk scaling regime, rotations and reflections can be mixed with
a negligible cost in the limit.

Even though this result gives some insight into the structure of the equilibria of Fε, encoded
in the formula defining the density f , the effect of long range interactions in penalising changes
of orientation takes place at a surface scale which is not detected by this analysis. Hence a
higher order description is needed, which can be achieved by studying the asymptotic behaviour
of the surface-scaled energies

(0.3) Eε(u) := ε−1Fε(u) .

We prove a compactness result (Theorem 3.1), asserting that the gradient of the limit of a
sequence uε for which Eε(uε) is uniformly bounded, is piecewise constant with values in O(N)
and that the underlying partition of Ω consists of sets of finite perimeter. Key mathematical
tools in its proof are the well-known rigidity estimate of Friesecke, James, and Müller [17] and
the piecewise rigidity result proven by Chambolle, Giacomini, and Ponsiglione in [12].

The compactness result provided by Theorem 3.1 has applications also in problems of dimen-
sion reduction, for example it is used in [2] to prove scaling properties of energies in nanowires,
in particular it allows to extend the results of [19, 20] by removing the positive-determinant
constraint.

The characterisation of the Γ-limit of (0.3) turns out to be a rather delicate problem. Propo-
sitions 4.1 and 4.4 provide bounds on the Γ-limit in terms of interfacial energies that penalise
changes of orientation. More precisely, denoting by E the Γ-limit of a subsequence of {Eε}, we
show that, for each u ∈ W 1,∞(Ω; RN ) such that ∇u ∈ SBV (Ω;O(N)),

E(u) ≥
�

J∇u

g1(ν∇u) dHN−1 .(0.4)

Here J∇u denotes the jump set of ∇u, ν∇u is the unit normal to J∇u, while g1 is defined by
a suitable asymptotic formula and is bounded from below by a positive constant (see Remark
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4.2). An analogous upper bound holds for the class W(Ω) of limiting deformations u such that
J∇u is a polyhedral set, that is, it consists of the intersection of Ω with the union of a finite
number of (N−1)-dimensional simplices of R

N . Namely, we have

E(u) ≤
�

J∇u

g2(ν∇u) dHN−1 for all u ∈ W(Ω) ,(0.5)

where g2 is the limit of a sequence of suitable Dirichlet minimum problems and it is uniformly
bounded from above by a positive constant. Thus, the continuum limit penalises the jump set
J∇u and, at least on the class W(Ω), is concentrated on J∇u. By rotational invariance, the
density of a possible integral representation of the Γ-limit of Eε would depend only on ν∇u.
However, its computation remains an open question and leads to interesting analytical issues.
Indeed, a standard argument to show that (0.4) and (0.5) are optimal bounds and that g1 = g2

amounts to prove that it is possible to modify the boundary values of optimising sequences with
a negligible energy cost. This does not seem a trivial task in the present context. Another
interesting question, in analogy with density results in BV spaces, is whether any admissible
limiting deformation u can be approximated by a sequence of regular deformations un ∈ W(Ω),
so that

�
J∇un

g2(ν∇un) dHN−1 converges to the corresponding energy of u. Indeed, by the lower

semicontinuity of the Γ-limit, this would allow us first to extend the upper estimate (0.5) to the
whole limiting domain, and second, in combination with a positive answer to the first question,
to provide a complete characterisation of the Γ-limit.

We point out that including long range interactions in lattice energies has a similar effect
to that of adding higher-order perturbations in continuum models (cf. the above mentioned
papers [4, 13, 6]). The presence of higher-order perturbations brings in considerable technical
difficulties also in the continuum case. In fact, our discrete model is closely related to the
classical double-well singuarly perturbed functionals studied in the context of gradient theories
for phase transitions (see e.g. [14, 15]), where one considers energies of the form

(0.6)

�
Ω

1

ε
W (∇u) + ε|∇2u|2 dx .

Here W is a non-negative function vanishing on the set K := SO(N)A ∪ SO(N)B, where A
and B are given rank-one connected matrices with positive determinant. The second order term
in (0.6) has the role of penalising oscillations between the two wells as in our discrete model
long range interactions penalise oscillations between SO(N) and O(N)\SO(N). In [15] it is
shown that the Γ-limit of (0.6) is an interfacial energy concentrated on the jump set of ∇u. A
microscopic derivation of such result has been recently obtained in [18] in the context of square-
to-rectangular martensitic phase transitions. We point out that in [15, 18] the two wells of K
consist of matrices with positive determinant, while this is not the case in the present context.
Such difference is at the origin of the difficulties highlighted above.

Notation. We recall some basic notions of geometric measure theory for which we refer to [3].
Given a bounded open set Ω ⊂ R

N , N ≥ 2, and M ≥ 1, BV (Ω; RM ) denotes the space of
functions of bounded variation; i.e., of functions u ∈ L1(Ω; RM ) whose distributional gradient
Du is a Radon measure on Ω with |Du|(Ω) < +∞, where |Du| is the total variation of Du. If
u ∈ BV (Ω; RM ), the symbol ∇u stands for the density of the absolutely continuous part of Du
with respect to the N -dimensional Lebesgue measure LN . We denote by Ju the jump set of u,
by u+ and u− the traces of u on Ju, and by νu(x) the measure theoretic normal to Ju at x, which
is defined for HN−1-a.e. x ∈ Ju, where HN−1 is the (N−1)-dimensional Hausdorff measure. A
function u ∈ BV (Ω; RM ) is said to be a special function of bounded variation if Du −∇uLN is
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Figure 1: The six tetrahedral elements of the Kuhn decomposition of a cube in dimension three.

concentrated on Ju; in this case one writes u ∈ SBV (Ω; RM ). Given a set E ⊂ Ω, we denote by
P (E,Ω) its relative perimeter in Ω and by ∂∗E its reduced boundary.

For N ≥ 2, M
N×N is the set of real N×N matrices, GL+(N) is the set of matrices with

positive determinant, O(N) is the set of orthogonal matrices, and SO(N) is the set of rotations.
We denote by I the identity matrix and J the reflection matrix such that Je1 = −e1 and Jei = ei

for i = 2, . . . , N , where {ei : i = 2, . . . , N} is the canonical basis in R
N . Moreover, given N+1

points x0, x1, . . . , xN ∈ R
N , we denote by [x0, x1, . . . , xN ] the simplex determined by all convex

combinations of those points.
In the paper, the same letter C denotes various positive constants whose precise value may

change from place to place.

1. Setting of the problem

We study the deformations of a Bravais lattice governed by pairwise potentials with finite
range interactions. Up to an affine deformation H ∈ GL+(N), we can reduce to the case where
the lattice is Z

N . (See Remark 2.6 for details on the treatment of some specific lattices in
dimension two and three.) In order to define the interaction energy, we introduce the so-called
Kuhn decomposition, denoted by T , which consists in a partition of R

N into N -simplices. First
we define a partition T0 of the unit cube (0, 1)N into N -simplices: we say that T ∈ T0 if the
(N+1)-tuple of its vertices belongs to the set

{

{0, ei1 , ei1 + ei2 , . . . , ei1 + ei2 + · · · + eiN } :

(

1 2 · · · N
i1 i2 · · · iN

)

∈ SN

}

,

where SN is the set of permutations of N elements; see Figure 1. Next, we define T as the
periodic extension of T0 to all of R

N . We say that two nodes x, y ∈ Z
N are contiguous if there

exists a simplex T ∈ T that has both x and y as its vertices. We set

(1.1) B1 := {ξ ∈ R
N : x and x + ξ are contiguous} .
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If both [x0, x1, . . . , xN ] and [y0, x1, . . . , xN ] belong to T , then we say that [x0, x1, . . . , xN ] and
[y0, x1, . . . , xN ] are neighbouring simplices (i.e., they share a facet) and x0 and y0 are opposite
vertices. We set

(1.2) B2 := {ξ ∈ R
N : x and x + ξ are opposite vertices} ,

and remark that, by periodicity, B1 and B2 do not depend on x.
Let Ω be an open bounded Lipschitz subset of R

N . Given ε > 0 we consider

Lε := εZ
N ∩ Ωε ,

where Ωε is the union of all hypercubes with vertices in εZ
N that have non-empty intersection

with Ω. We identify every deformation u of the lattice Lε by its piecewise affine interpolation
with respect to the triangulation εT . By a slight abuse of notation, such extension is still
denoted by u. We define the domain of the functional as

Aε :=
{

u ∈ C0(Ωε; R
N ) : u piecewise affine,

∇u constant on Ωε ∩ εT ∀T ∈ T
}

.

We remark that all the results are independent of the choice of the interpolation. Indeed, all that
follows still holds if one identifies the deformations with their piecewise constant interpolation
instead of their piecewise affine interpolation, provided one uses a suitable notion of convergence;
see for example [25].

For fixed p > 1 and H ∈ GL+(N), we study the following surface-scaled discrete energy,

(1.3) Eε(u) := εN−1
∑

ξ∈B1∪B2

∑

x∈Lε
x+εξ∈Lε

∣

∣

∣

|u(x+εξ)−u(x)|
ε

− |Hξ|
∣

∣

∣

p
,

for ε > 0.

Remark 1.1. Our results generalise to energies of the form

(1.4) εN−1
∑

ξ∈Z
N

|ξ|≤R

∑

x∈Lε
x+εξ∈Lε

φ
(

ξ,
|u(x+εξ)−u(x)|

ε
− |Hξ|

)

,

where R is chosen in such a way that R ≥ max{|ξ| : ξ ∈ B1 ∪ B2}, φ : Z
N × R → [0,+∞) is

a positive potential satisfying polynomial growth conditions in the second variable and such that
minφ(ξ, z) = φ(ξ, 0) = 0 and φ(ξ, z) > 0 if z > 0. For simplicity, here we develop our analysis
in detail only in the case of p-harmonic potentials as in (1.3).

2. Discrete rigidity

The following result will play a crucial role in deriving rigidity estimates in our discrete setting.
(See [11, 24, 26] for discrete rigidity estimates.)

Theorem 2.1. [17, Theorem 3.1] Let N ≥ 2, and let 1 < p < ∞. Suppose that U ⊂ R
N

is a bounded Lipschitz domain. Then there exists a constant C = C(U) such that for each
u ∈ W 1,p(U ; RN ) there exists a constant matrix R ∈ SO(N) such that

(2.1) ‖∇u − R‖Lp(U ;MN×N ) ≤ C(U)‖dist(∇u, SO(N))‖Lp(U) .

The constant C(U) is invariant under dilation and translation of the domain.
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It is convenient to define the energy of a single simplex T with vertices x0, . . . , xN ,

Ecell(uF ;T ) :=

N
∑

i≤j=0

∣

∣

∣|F (xi − xj)| − |H(xi − xj)|
∣

∣

∣

p
for every F ∈ M

N×N ,

where uF is the affine map uF (x) := Fx. The following lemma provides a lower bound on
Ecell(uF ;T ) in terms of the distance of F from O(N). It will be instrumental in using Theorem
2.1.

Lemma 2.2. There exists a constant C > 0 such that

distp(F, SO(N)H) ≤ C Ecell(uF ;T ) for every F ∈ M
N×N with detF ≥ 0 ,(2.2a)

distp(F, (O(N)\SO(N))H) ≤ C Ecell(uF ;T ) for every F ∈ M
N×N with detF ≤ 0 .(2.2b)

Proof. Set δij := |F (xi−xj)|−|H(xi−xj)| for i ≤ j = 0, . . . , N , so that Ecell(uF ;T ) =
∑N

i≤j=0 δp
ij .

Assume first that dist(F,O(N)H) is small and that detF ≥ 0. In particular, we can assume
dist(F, SO(N)H) ≤ τ where τ is a small parameter whose value will be fixed later. By the

equivalence of norms in R
(N+1)(N+2)/2, it suffices to prove

1

C
dist2(F, SO(N)H) ≤

N
∑

i≤j=0

δ2
ij =: E2(F ) .

Define RH as the orthogonal projection of F on SO(N)H, so that dist(F, SO(N)H) = |F−RH|.
By computing the second order Taylor expansion of E2 about RH and recalling that matrices
in SO(N)H are minimum points for E2, we see that

E2(F ) =
1

2
∇2E2(RH)(F−RH,F−RH) + o(|F − RH|2) ≥ C|F − RH|2 + o(|F − RH|2) ,

since on SO(N)H the Hessian of E2 is positive definite on the orthogonal complement of the
tangent space of SO(N)H at RH, see e.g. [11, Remark 4]. In the case when detF ≤ 0 the
above argument is repeated replacing SO(N) by O(N)\SO(N). Therefore, if dist(F,O(N)H)
is sufficiently small, then (2.2a) and (2.2b) are readily seen to hold.

On the other hand, if dist(F,O(N)H) is sufficiently large, (and therefore maxi≤j |δij | is larger
than a fixed constant,) then

dist2(F, SO(N)H) ≤ |F − H|2 ≤ C
N
∑

j=1

|(F − H)(xj − x0)|2 ,

dist2(F, (O(N)\SO(N))H) ≤ |F − JH|2 ≤ C

N
∑

j=1

|(F − JH)(xj − x0)|2 .

By the triangle inequality, |(F−H)(xj−x0)| ≤ |F (xj−x0)|+|H(xj−x0)| = 2|H(xj−x0)|+|δ0j | ≤
C maxi≤j |δij |, and the same holds for F − JH; thus (2.2a) and (2.2b) follow. The intermediate
cases follow by a continuity argument. �

The next lemma asserts that if in two neighbouring simplices the sign of det∇u has different
sign, then the energy of those two simplices is larger than a positive constant. It will be conve-
nient to define the energetic contribution of the interactions within two neighbouring simplices
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x0 x1 x2

x3x4x5

(a)

x0 x1

x2x3

x4 x5

x6x7

x8 x9

x10x11

(b)

Figure 2: Notation for Remark 2.4.

T = [x0, x1, . . . , xN ], S = [y0, x1, . . . , xN ] as

Ecell(u;S ∪ T ) :=

N
∑

i≤j=0

∣

∣

∣|u(xi) − u(xj)| − |H(xi − xj)|
∣

∣

∣

p
+

N
∑

j=1

∣

∣

∣|u(y0) − u(xj)| − |H(y0 − xj)|
∣

∣

∣

p

+
∣

∣

∣
|u(y0) − u(x0)| − |H(y0 − x0)|

∣

∣

∣

p
.

Lemma 2.3. There exists a positive constant C0 (depending on H) with the following property:
if two neighbouring N -simplices S, T have different orientations in the deformed configuration,
i.e.,

det (∇u|S) det (∇u|T ) ≤ 0 ,

then Ecell(u;S ∪ T ) ≥ C0.

Proof. We first consider the case when H = I is the identity matrix. Let τ be a small positive
constant. If max{dist (∇u|S , O(N)) ,dist (∇u|T , O(N))} > τ , then, by Lemma 2.2, Ecell(u;S ∪
T ) ≥ Cτp. Otherwise we can assume that

∣

∣∇u|T − I
∣

∣ < Cτ and
∣

∣∇u|S − Q
∣

∣ < Cτ , where Q ∈
O(N)\SO(N) is the reflection across the facet shared by S and T . If S and T are neighbouring
simplices within the same unit cube, then |x0−y0| =

√
2, since x0 and y0 are opposite vertices of a

two-dimensional facet of the unit cube, while |u(x0)−u(y0)| < Cτ . This yields Ecell(u;S∪T ) ≥ 1
for τ sufficiently small. If S and T belong to different cubes, then |x0 −y0| =

√
N − 1 + 4, while

|u(x0)−u(y0)| <
√

N − 1+Cτ , which gives Ecell(u;S∪T ) ≥ 1 for small τ . The case of a general
H is recovered by applying the previous argument to v(x) := u(H−1x). �

Remark 2.4. For the sake of illustration, we show a detailed proof of Lemma 2.3 for H = I in
dimension two and three. In this remark, Q denotes a matrix as in the proof of Lemma 2.3.
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(a) (b)

Figure 3: Cubic cells of the face-centred cubic (a) and of the body-centred cubic lattice (b).

Let N = 2 and let x0, . . . , x5 be as in Figure 2(a). Let T = [x0, x1, x4] and S = [x0, x4, x5]. In
the case when

∣

∣∇u|T − I
∣

∣ < Cτ and
∣

∣∇u|S −Q
∣

∣ < Cτ , we find that |u(x5)−u(x1)| < Cτ , which
implies Ecell(u;S ∪ T ) ≥ 1 for τ is sufficiently small. In the case when T = [x0, x1, x4], S =
[x1, x3, x4],

∣

∣∇u|T − I
∣

∣ < Cτ , and
∣

∣∇u|S −Q
∣

∣ < Cτ , we have that |u(x3)− x5| < Cτ (assuming

w.l.o.g. that u(x4) = x4). Then |u(x3) − u(x0)| <
√

5 − 1 and therefore Ecell(u;S ∪ T ) ≥ 1 for
small τ .

Let N = 3 and let x0, . . . , x11 be as in Figure 2(b). In the case when T = [x0, x1, x5, x6],
S = [x0, x4, x5, x6],

∣

∣∇u|T − I
∣

∣ < Cτ , and
∣

∣∇u|S −Q
∣

∣ < Cτ , we have that |u(x4)−u(x1)| < Cτ ,
which yields Ecell(u;S ∪ T ) ≥ 1. In the case when T = [x0, x4, x5, x6], S = [x4, x5, x6, x10],
∣

∣∇u|T − I
∣

∣ < Cτ , and
∣

∣∇u|S − Q
∣

∣ < Cτ , we have that |u(x10) − x2| < Cτ (assuming w.l.o.g.

that u(x6) = x6). Then |u(x0) − u(x10)| <
√

6 − 1, which gives Ecell(u;S ∪ T ) ≥ 1 for τ small.

We conclude the discussion about discrete rigidity with some remarks on the choice of the
interactions.

Remark 2.5. For N = 2 and H = I, using the Kuhn decomposition we model a square lattice
with bonds given by the sides and the diagonals of each cell. Notice that one of the diagonals
is accounted for in B1, while the other in B2; the other bonds in B2 correspond to longer range
interactions. Further interactions could be added to the total energy in order to make the bonds
symmetric. More precisely, one could define the total interaction energy as

E(u; Ω) :=
∑

ξ∈B(M)

∑

x∈Ω∩ZN

x+ξ∈Ω∩Z
N

∣

∣

∣|u(x+ξ)−u(x)| − |ξ|
∣

∣

∣

p
,

where B(M) := {ξ ∈ Z
N : |ξ| ≤ M}; for M =

√
3, B(

√
5) ⊃ B1 ∪ B2. We underline that

one retrieves the same rigidity properties stated above also by choosing M = 2; i.e., the Kuhn
decomposition is not “optimal” in this case. In general, the choice of M depends on N and H.

The Kuhn decomposition is relevant especially for modeling some specific Bravais lattices as
observed in the following remark.

Remark 2.6. We show how the Kuhn decomposition can be used to parametrise Bravais lattices
that are related with the crystalline structure of metals. We recall that a Bravais lattice in R

N

consists of all integer combinations of N linearly independent vectors, called generators.
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For N = 2, the Bravais lattice generated by v1 = (1, 0) and v2 = (1
2 ,

√
3

2 ) is called (equilateral)
triangular (or hexagonal) since every point has six nearest neighbours at distance one; moreover,

every point has six next-to-nearest neighbours at distance
√

3. In order to map Z
2 onto the

triangular lattice, we set

H =

(

1 −1
2

0
√

3
2

)

,

so that He1 = v1 and H(e1+e2) = v2. One can see that H establishes a bijection between vectors
in B1, respectively B2, and vectors associated with nearest neighbour interactions, respectively
next-to-nearest, in the triangular lattice; cf. (1.1)–(1.2) for the definition of B1 and B2.

In dimension three, a structure of interest is the face-centred cubic lattice, which is the Bravais
lattice generated by v1 = (0, 1

2 , 1
2), v2 = (1

2 , 0, 1
2), and v3 = (1

2 , 1
2 , 0); see Figure 3(a). Such lattice

determines a subdivision of the space into cubic cells of edge one, where the atoms occupy the
vertices and the centres of the facets of each cell. Each point has twelve nearest neighbours

at distance
√

2
2 and six next-to-nearest neighbours at distance one. Nearest and next-to-nearest

neighbour interactions guarantee the rigidity of the lattice; i.e., a deformation preserving the
length of nearest and next-to-nearest bonds needs to be a rotation of the original lattice. Setting
He1 = v1, H(e1 + e2) = v2, and H(e1 + e2 + e3) = v3, we obtain

H = 1
2





0 1 0
1 −1 1
1 0 −1



 .

Under this affinity, the bonds in B1 associated with the Kuhn decomposition are transformed into
twelve nearest and two next-to-nearest neighbour interactions for the face-centred cubic lattice;
the images of the bonds in B2 include four more next-to-nearest neighbour interactions. The
total energy defined via the Kuhn decomposition includes few more interactions of longer range.

We conclude with the body-centred cubic lattice, which is generated by v1 = (−1
2 ,−1

2 ,−1
2 ),

v2 = (0, 0, 1), v3 = (0, 1, 0); see Figure 3(b). Here the atoms occupy the vertices and the centre
of cubic cells of edge one. Arguing as above we get

H = 1
2





−1 1 1
1 −1 1
1 1 −1



 .

Applying the transformation H, the fourteen bonds in B1 are mapped into eight vectors of length√
3

2 and six of length one; these correspond exactly to the nearest neighbour interactions in the
body-centred cubic lattice, if the definition of the neighbours is based on a Delaunay triangulation,
see [20] for details. The twelve bonds in B2 are in bijection with vectors corresponding to the
next-to-nearest neighbour interactions for that triangulation.

3. Compactness result

Before stating our main result, we recall that a partition {Ei}i∈N of Ω is called a Caccioppoli
partition if

∑

i∈N
P (Ei,Ω) < +∞, where P (Ei,Ω) denotes the perimeter of Ei in Ω. Given a

rectifiable set K ⊂ Ω, we say that a Caccioppoli partition {Ei}i∈N of Ω is subordinated to K if
for every i ∈ N the reduced boundary ∂∗Ei of Ei is contained in K, up to a HN−1-negligible set.

Theorem 3.1 (Compactness). For every ε > 0 let uε ∈ Aε be a sequence such that

(3.1) Eε(uε) < C .
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Then there exist a subsequence (not relabelled) and a function u ∈ W 1,∞(Ω; RN ) such that
∇uε → ∇u in Lp(Ω; MN×N ) and

(3.2) ∇u ∈ SBV (Ω;O(N)H) .

Specifically, u is a collection of an at most countable family of rigid deformations, i.e., there
exists a Caccioppoli partition {Ei}i∈N subordinated to the reduced boundary ∂∗{∇u ∈ SO(N)H},
such that

(3.3) u(x) =
∑

i∈N

(RiHx + bi)χEi
(x) ,

where Ri ∈ O(N) and bi ∈ R
N . Moreover, if ∂∗Ei ∩ ∂∗Ej 6= Ø, then det Ri detRj = −1 and

∂∗Ei ∩ ∂∗Ej is flat, i.e., the measure theoretic normal vector to ∂∗Ei ∩ ∂∗Ej is constant (up to
the sign).

Proof. Note that by Lemma 2.2�
Ω

distp(∇uε, O(N)H) dx ≤ Cε .(3.4)

In particular, ‖∇uε‖Lp(Ω) < C and therefore, up to subsequences, uε −
 

Ω
uε dx ⇀ u weakly in

W 1,p(Ω; RN ), for some u ∈ W 1,p(Ω; RN ). We first prove that ∇u ∈ O(N)H (which implies that
u ∈ W 1,∞(Ω; RN )) and then that ∇uε → ∇u strongly in Lp(Ω).

Introduce the function sε : Ω → {−1, 1} defined by

sε(x) :=

{

1 in Ω+
ε ,

−1 in Ω−
ε ,

where Ω+
ε := {det∇uε ≥ 0} and Ω−

ε := {det∇uε < 0}. Remark that sε ∈ BV (Ω; {±1}) and, by
(3.1) and Lemma 2.3, Jsε is the union of C/εN−1 facets of (N−1)-dimensional measure of order
εN−1, whence

HN−1(Jsε) < C uniformly in ε .

Therefore, applying standard compactness results for sets of finite perimeter (see [3]), we can
extract a subsequence sε (not relabelled) converging to a function s ∈ BV (Ω; {±1}) strongly in
L1(Ω). Let x̄ ∈ Ω be a Lebesgue point for both ∇u and s and let Br(x̄) denote the ball of radius
r and centre x̄. Assume that the Lebesgue value of s at x̄ is 1. Then, by Theorem 2.1, (3.4),
and the fact that the maximum distance between matrices in O(N) and SO(N) is bounded, one
finds  

Br(x̄)
|∇uε − Rr

εH|p dx ≤ C

 
Br(x̄)

distp(∇uε, SO(N)H) dx

≤ C

 
Br(x̄)

(

distp(∇uε, O(N)H) + |sε(x) − 1|
)

dx ≤ Cr−Nε + C

 
Br(x̄)

|sε(x) − 1|dx ,

(3.5)

for some Rr
ε ∈ SO(N). Using the strong convergence of sε to s in L1, up to extracting a further

subsequence, one can pass to the limit as ε → 0 in (3.5) and get

(3.6)

 
Br(x̄)

|∇u − RrH|p dx ≤ C

 
Br(x̄)

|s(x) − 1|dx ,

where Rr ∈ SO(N). Letting r → 0 in (3.6), and possibly extracting a further subsequence, we
deduce that the Lebesgue value of ∇u at x̄ is RH for some R ∈ SO(N). Therefore the Lebesgue
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value of ∇u at every Lebesgue point where s̃ = 1 (where s̃ is the Lebesgue representative of s) is
an element of SO(N)H. We apply the same argument to Quε, where Q ∈ O(N)\SO(N) is any
fixed rotoreflection, to find that the Lebesgue value of ∇u at every Lebesgue point where s̃ = −1
is an element of (O(N)\SO(N))H. Moreover the set {∇u ∈ SO(N)H} is of finite perimeter in
Ω, since s ∈ BV (Ω; {±1}).

In order to show the strong convergence, we will show that the Lp norm is conserved, namely,

lim
ε→0+

�
Ω
|∇uε|p dx =

�
Ω
|∇u|p dx .

Fix η > 0 and let Ωη
ε :=

{

dist(∇uε, O(N)H) > η
}

. Since |Ωη
ε | → 0 in measure, one has that�

Ωη
ε

|∇uε|p dx ≤ C

�
Ωη

ε

distp(∇uε, O(N)H) dx + C|Ωη
ε | ≤ C

(

εEε + |Ωη
ε |
)

→ 0 .

Then �
Ω
|∇uε|p dx =

�
Ωη

ε

|∇uε|p dx +

�
Ω\Ωη

ε

|∇uε|p dx = o(1) + (Np/2 + σ(η))|Ω \ Ωη
ε |

→ (Np/2 + σ(η)) =

�
Ω
|∇u|p dx + σ(η) ,

with σ(η) → 0 as η → 0+.
Finally, we prove that u is a collection of an at most countable family of rigid deformations.

To this end, fix Q ∈ O(N) \ SO(N) and define

v :=

{

u if ∇u ∈ SO(N)H ,

Qu if ∇u ∈ (O(N)\SO(N))H .

Since v ∈ SBV (Ω; RN ) and ∇v ∈ SO(N)H a.e. in Ω, we can appeal to [12, Theorem 1.1] and
deduce that there exists a Caccioppoli partition {Ei}i∈N subordinated to Jv, such that

v(x) =
∑

i∈N

(RiHx + bi)χEi
(x) ,

where Ri ∈ SO(N) and bi ∈ R
N . Taking into account that {∇u ∈ SO(N)H} has finite

perimeter, this implies (3.2) and (3.3). The last part of the statement follows from Lemma 3.2
below. �

Lemma 3.2. Let Ω ⊂ R
N be an open, bounded set with Lipschitz boundary, and let u ∈

W 1,∞(Ω; RN ). Suppose that there exists a Caccioppoli partition {Ei}i∈N of Ω such that

u(x) =
∑

i∈N

(Pix + bi)χEi
(x) ,

where Pi ∈ M
N×N and bi ∈ R

N . If ∂∗Ei ∩ ∂∗Ej 6= Ø, then rank(Pi − Pj) ≤ 1 and, denoted by
νi the measure theoretic inner normal to Ei, νi is constant on ∂∗Ei ∩ ∂∗Ej .

Proof. Let x̄ ∈ ∂∗Ei ∩ ∂∗Ej . Then x̄ ∈ J∇u, i.e., there exists a unit vector ν ∈ R
N such that

(3.7) lim
ε→0+

 
Bν+

ε (x̄)
|∇v − Pi|dx = 0 , lim

ε→0+

 
Bν−

ε (x̄)
|∇v − Pj |dx = 0 ,

where Bν±
ε (x̄) := Bε(x̄) ∩ {x : ± x · ν > 0} and Br(p) denotes the ball of radius r and centre

p; cf. [3, Definition 3.67 and Example 3.68]. For x ∈ B1(0) define the sequence vε(x) :=
1
εv(ε(x − x̄)). Then ∇vε(x) = ∇v(ε(x − x̄)) and, by (3.7), we have that ∇vε → χPi + (1− χ)Pj
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in Lp(B1(0); M
N×N ) for every p ≥ 1, where χ is the characteristic function of Bν+

1 (0). The thesis
now follows from the rigidity of the two-gradient problem, see e.g. [21, Proposition 2.1]. �

4. Lower and upper bounds

In this section we provide lower and upper bounds for the Γ-limit of (any subsequence of)
{Eε} in terms of interfacial energies that penalise changes of orientation. In what follows we
denote by E′(·) and E′′(·) the Γ-lim inf and the Γ-lim sup as ε → 0+, respectively, of the sequence
{Eε} with respect to the strong convergence in W 1,p(Ω; RN ). We also introduce a “localised”
version of the functionals Eε by setting, for any open set A ⊂ R

N ,

Eε(u;A) = εN−1
∑

ξ∈B1∪B2

∑

x∈εZN∩A
x+εξ∈εZ

N∩A

∣

∣

∣

|u(x+εξ)−u(x)|
ε

− |Hξ|
∣

∣

∣

p
.

Moreover, given ν in the unit sphere SN−1, we denote by Qν any cube centred at 0, with side
length 1 and two faces orthogonal to ν, and by uν

0 the piecewise affine function defined by

uν
0(x) :=

{

Hx if 〈x, ν〉 ≥ 0 ,

Rνx otherwise,

where Rν ∈ (O(N)\SO(N))H is such that H − Rν = a ⊗ ν for some a ∈ R
N .

Proposition 4.1 (Lower bound). For every u ∈ W 1,∞(Ω; RN ) with ∇u ∈ SBV (Ω;O(N)H),
one has

E′(u) ≥
�

J∇u

g1(ν∇u) dHN−1 ,

where g1 : SN−1 → [0,+∞) is defined by

g1(ν) := inf
{

lim inf
n→∞

Eεn(un;Qν) : εn → 0 , un → uν
0 strongly in W 1,p(Qν ; R

N )
}

,

and satisfies g1(ν) = g1(−ν).

Proof. Suppose that uε → u in W 1,p(Qν ; R
N ) and supε Eε(uε) < +∞. Let

(4.1) r := sup{|ξ| : ξ ∈ B1 ∪ B2} ,

and define the family of positive measures

µε :=
∑

x∈Lr
ε

(

∑

ξ∈B1∪B2

∣

∣

∣

|uε(x+εξ)−uε(x)|
ε

− |Hξ|
∣

∣

∣

p
)

δx ,

where Lr
ε = {x ∈ Lε : dist(x, ∂Ω) ≥ rε}. Note that

Eε(uε) ≥ µε(Ω) ,

hence, up to passing to a subsequence, we may suppose that there exists a positive measure µ

such that µε
∗
⇀ µ. We now use a blow-up argument. By the Radon-Nikodym Theorem, we can

decompose µ into two mutually singular positive measures:

µ = gHN−1 J∇u + µs .

We complete the proof if we show that

g(x0) ≥ g1(ν∇u(x0)) for HN−1-a.e. x0 ∈ J∇u .
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By the properties of BV functions we know that for HN−1-a.e. x0 ∈ J∇u

(i) lim
ρ→0

1

ρN−1
HN−1(J∇u ∩ (x0 + ρQν∇u(x0))) = 1 ,

(ii) lim
ρ→0

1

ρN

�
ρQ±

ν∇u(x0)

|∇u(y) −∇u±(x0)|dx = 0 ,

(iii) g(x0) = lim
ρ→0

µ(x0 + ρQν∇u(x0))

HN−1(J∇u ∩ (x0 + ρQν∇u(x0)))
.

Fix such a point x0 ∈ J∇u and let {ρn} be a sequence of positive numbers converging to zero
such that µ(x0 + ρn∂Qν∇u(x0)) = 0. From (i) and (iii) it follows that

g(x0) = lim
n→∞

lim
ε→0

1

ρN−1
n

µε(x0 + ρnQν∇u(x0)) .

Note that for every ε > 0 and n ∈ N we can find ρn,ε and x0,ε ∈ εZ
N such that limε→0 ρn,ε = ρn,

limε→0 x0,ε = x0, and

x0 + (ρn−Rε)Qν∇u(x0) ⊇ x0,ε + ρn,εQν∇u(x0) .

Then

g(x0) ≥ lim
n→∞

lim
ε→0

1

ρN−1
n,ε

Eε(uε;x0,ε + ρn,εQν∇u(x0)) .

Set

un,ε(x) := uε(x0,ε+ρn,εx) for x ∈ ε

ρn,ε
Z

N ,

vn,ε := un,ε − cn,ε ,

F± := ∇u±(x0) .

Since uε → u in W 1,p(Ω; RN ), from (ii) we deduce that there exist constants cn,ε such that

lim
n→∞

lim
ε→0

‖vn,ε − uF+,F−‖W 1,p(Qν∇u(x0);RN ) = 0 ,

where

uF+,F−(x) :=

{

F+x if 〈x, ν〉 ≥ 0 ,

F−x otherwise.

Using a standard diagonalisation argument and the translational invariance of Eε with respect to
both independent and dependent variables, we can find a sequence of positive numbers λk → 0
and a sequence vk converging to uF+,F− in W 1,p(Qν∇u(x0); R

N ) such that

g(x0) ≥ lim
k→∞

Eλk
(vk;Qν∇u(x0)) .

The conclusion then follows by the very definition of g1 and taking into account that, by in-
variance with respect to O(N), we may replace vk by Rvk, R ∈ O(N), without changing the
energy. �

Remark 4.2. By a slicing argument, we may show that

inf
ν∈SN−1

g1(ν) ≥ C0

N
> 0 ,(4.2)

where C0 is as in Lemma 2.3. This implies in particular that

E′(u) ≥ C0

N
HN−1(J∇u) .
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In order to prove (4.2), let us set, for every k ∈ {1, . . . , N},
Sk

ν := Πek(Qν ∩ {〈x, ν〉 = 0}) ,

where Πek denote the orthogonal projection on {〈x, ek〉 = 0}. Let εn → 0 and un → uν
0 strongly

in W 1,p(Qν ; R
N ), and for any k ∈ {1, . . . , N} set

Ik
n := Ik+

n ∪ Ik−
n ,

where

Ik±
n := {i ∈ εZ

N ∩ Sk
ν : ± det∇un(x) > 0 ∀x ∈ ((Πek)−1(i) + [0, εn]N ) ∩ Qν} .

Then, one easily gets that �
Qν

|∇un −∇uν
0 |p dx ≥ CεN−1#Ik

n + o(1) ,

so that εN−1#Ik
n → 0. Hence, by Lemma 2.3 we deduce that

lim inf
n→∞

Eεn(un, Qν) ≥ C0 max
k=1,...,N

lim inf
n→∞

εN−1
n #(Ik

n)c = C0 max
k=1,...,N

|Sk
ν | ≥

C0

N
.

Remark 4.3. A slicing argument can be also exploited to obtain a more refined lower bound
on g1 in terms of minimum problems for one-dimensional energies. For example, if N = 2 and
H is as in Remark 2.6 (and thus we are modeling a triangular lattice with nearest and next-to-
nearest neighbour interactions), we can bound g1 from below by means of minimum problems for
p-harmonic nearest and next-to-nearest neighbour interactions in one dimension, which can be
analysed following the approach developed in [13] and [6]. Precisely, if N = 2 and H is as in
Remark 2.6, we get that the sets B1 and B2 defined in (1.1) and (1.2) are given by

B1 = {±v1,±v2,±v3} ,

where v1 := (1, 0), v2 := (0, 1), v3 := (1, 1), and

B2 = {±ξ1,±ξ2,±ξ3} ,

where ξ1 := (1, 2), ξ2 := (2, 1), ξ3 := (−1, 1). Note that, by regrouping the energetic contributions
of the interactions and neglecting the interactions near the boundary, we get that for any Q′ ⊂⊂
Qν

Eε(u;Qν) ≥
3
∑

i=1

Ei
ε(u;Q′) ,

where

Ei
ε(u;Q′) = ε

∑

ξ∈Ci

c(ξ)
∑

x∈εZ
2∩Q′

x+εξ∈εZ2∩Q′

∣

∣

∣

|u(x+εξ)−u(x)|
ε

− |Hξ|
∣

∣

∣

p
,

with
C1 := {±ξ1,±v2,±v3} , C2 := {±ξ2,±v1,±v3} , C3 := {±ξ3,±v1,±v2} ,

and

c(ξ) :=

{

1 if ξ ∈ B2 ,

1/2 if ξ ∈ B1 .

Let us introduce the infinite chains of particles defined by

Z1 := Zξ1 ∪ (Zξ1 + v3) , Z2 := Zξ2 ∪ (Zξ2 + v1) , Z3 := Zξ3 ∪ (Zξ3 + v2)
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(a) (b) (c)

Figure 4: The bold zig-zag lines describe the chains of particles Zi, i = 1, 2, 3 (cf. Remark 4.3).
The dashed lines are aligned with the vectors ξi and interpolate next-to-nearest neighbours. The
horizontal bold line represents the interface corresponding to ν = e2.

(see Figure 4). Given L ∈ N, set

ZL
i = Zi ∩ {x ∈ R

2 : |x · ξi| ≤ L|ξi|}, i = 1, 2, 3 .

We can then introduce, for any i ∈ {1, 2, 3} and L ∈ N, a one-dimensional energy accounting
for nearest and next-to-nearest neighbour interactions defined on the maps u : ZL

i → R
2 as

Ei,L(u) :=
1

2

∑

ξ∈Ci

∑

x∈ZL
i

x+ξ∈ZL
i

∣

∣

∣
|u(x + ξ) − u(x)| − |Hξ|

∣

∣

∣

p
.

Using a slicing procedure, we may then deduce that

g1(ν) ≥
3
∑

i=1

mi(ν)|ν · ξi| ,

where

mi(ν) = inf
L∈N

inf
{

Ei,L(u) : u(x) = uν
0(x) if (L − 1)|ξi| ≤ |x · ξi| ≤ L|ξi|}

}

.

We now provide an upper estimate of E′′(u) for a suitable subclass of the limiting deformations
u identified by Theorem 3.1. We say that a set K ⊂ Ω is polyhedral with respect to Ω if it
consists of the intersection of Ω with the union of a finite number of (N−1)-dimensional simplices
of R

N . We set then

W(Ω) := {u ∈ W 1,∞(Ω; RN ) : ∇u ∈ SBV (Ω;O(N)H) and J∇u is polyhedral in Ω} .

Proposition 4.4 (Upper bound). For any u ∈ W(Ω), the following inequality holds true:

E′′(u) ≤
�

J∇u

g2(ν∇u) dHN−1 ,

where, g2 : SN−1 → [0,+∞) is defined by

(4.3) g2(ν) := lim
T→∞

1

TN−1
inf{E1(u;TQν) : u(x) = uν

0(x) if dist(x, ∂(TQν)) ≤ r} ,

and r is given by (4.1).
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Proof. We analyse only the case where J∇u is the restriction to Ω of a hyperplane, since the case
of a general polyhedral boundary is easily recovered by a gluing argument. Fix then ν ∈ SN−1,
let J∇u = Πν ∩ Ω, where Πν is a hyperplane orthogonal to ν. By translational and rotational
invariance, without loss of generality we may assume that Πν = {x ∈ R

N : 〈x, ν〉 = 0} and
u = uν

0 . Given δ > 0, let Tδ > 0 and uδ such that uδ(x) = uν
0(x) if dist(x, ∂(TδQν)) ≤ r and

1

TN−1
δ

E1(uδ;TδQν) ≤ g2(ν) + δ .

Let {b1, . . . , bN} be an orthonormal base of R
N such that bN = ν and Qν = {x ∈ R

N : |〈x, bl〉| <

1/2 , l = 1, . . . , N}. For any j ∈
⊕N−1

l=1 ZTδbl set xj = [j] = ([j1], . . . , [jN ]), where [·] denotes
the integer part. Then let uε : εZ

N ∩ Ω → R
N be such that

uε(εi) = uδ(i − xj) + εHxj for i ∈ Z
N ∩ TδQν + xj , j ∈

N−1
⊕

l=1

Z(Tδ + 2r)bl ,

and u ≡ uν
0 otherwise. Then uε → u strongly in W 1,p(Ω; RN ) and

E′′(u) ≤ lim sup
ε→0

Eε(uε) ≤
HN−1(J∇u)

TN−1
δ

E1(uδ;TδQν) + O(δ) ≤ (g2(ν) + δ)HN−1(J∇u) + O(δ) .

The conclusion follows by letting δ tend to 0. �

Remark 4.5. Testing the infimum problems defining g2 with u = uν
0 , we easily get that g2(ν) ≤ C

uniformly in ν. In particular, we have that for every u ∈ W(Ω)

E′′(u) ≤ CHN−1(J∇u) .

Explicit estimates on g2 can be given for example in the particular case of a two-dimensional
triangular lattice, see Remark 2.6, when ν is orthogonal to a lattice direction, specifically ν ∈
{(0, 1), (−

√
3

2 , 1
2), (

√
3

2 , 1
2)}. One can easily see that g2((0, 1)) = g2((−

√
3

2 , 1
2 )) = g2((

√
3

2 , 1
2 )) ≤ 3

p

2 .
Indeed, the only active bonds are the next-to-nearest neighbour bonds across the interface, whose
cardinality is of order T , cfr. (4.3).

Remark 4.6. The computation of the Γ-limit of Eε remains an open question. However, we
believe that the bounds provided in Propositions 4.1 and 4.4 give some insight into its derivation.
Assume that the following result holds true: given any test sequence un in the definition of g1,
there exists a sequence of functions vn such that vn → uν

0 strongly in W 1,p(Qν , R
N ), vn(x) =

uν
0(x) if dist(x, ∂(TδQν)) ≤ r and Eεn(vn;Qν) ≤ Eεn(un;Qν) + o(1). Then it could be easily

shown that g1 = g2 and, consequently, the interfacial energies in Propositions 4.1 and 4.4 would
provide the Γ-limit of Eε(u) for any u ∈ W(Ω).
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