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Abstract. In this paper we deal with the approximation of SBV functions in the strong BV

topology. In particular, we provide three approximation results. The first one, Theorem A,

concerns general SBV functions; the second one, Theorem B, concerns SBV functions with

absolutely continuous part of the gradient in Lp, p > 1; and the third one, Theorem C, concerns

SBVp functions, that is, those SBV functions for which not only the absolutely continuous part

of the gradient is in Lp, but also the jump set has finite H N−1
- measure. The last result

generalizes the previously known approximation theorems for SBVp functions, see [5, 7]. As we

discuss, the first and the third result are sharp. We conclude with a simple application of our

results.

1. Introduction

SBV functions, first introduced in [3], arise as a natural tool in order to study free dis-

continuity problems, which are a wide class of variational problems appearing, for instance, in

image analysis, fracture mechanics and liquid crystals theory. Typical energies involve bulk and

surface densities and are often modeled by integral functionals of the form

F (u) =

∫
Ω
f(x,∇u) dx+

∫
Ju

g(x, u+, u−, νu) dH N−1 . (1.1)

Here, u is a scalar (or vectorial) function in SBV(Ω), ∇u is the absolutely continuous part of its

gradient Du, Ju and u± are the jump set and the traces of u on both sides of Ju, and νu is the

approximate normal to Ju (all the relevant definitions are listed in Section 1.1).

Also in order to study functionals of the above type, it is clearly of primary importance

to have compactness and approximation results for SBV functions. This paper deals with the

question of the approximation. In the literature, there are two approximation results, quite

known, one due to Braides and Chiadò Piat in 1996 (see [5]), and the other by Cortesani and

Toader in 1999 (see [7], see also the weaker result obtained in the earlier paper [9]); they both

deal with the SBVp functions, which are the SBV functions for which ∇u belongs to Lp, and

the jump set Ju has finite H N−1 measure, see Section 1.1. Let us summarize the results in the

following statement.

Theorem 1.1 (Braides–Chiadò Piat [5], Cortesani–Toader [7]). Let Ω ⊆ RN be a bounded set

with Lipschitz boundary, let p > 1, and let u ∈ SBVp(Ω) ∩ L∞(Ω). Then:

[1 (Braides–Chiadò Piat)] There exists a sequence uj ∈ SBVp(Ω) such that ‖uj−u‖BV → 0

and ∇uj → ∇u in Lp, for every j ∈ N it is ‖uj‖L∞ ≤ ‖u‖L∞ and uj ∈ C1(Ω \Rj), being

Rj ⊇ Juj some closed rectifiable set, and H N−1(Juj∆Ju)→ 0.

1
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[2 (Cortesani–Toader)] There exists a sequence uj ∈ SBVp(Ω) such that uj → u in L1

and ∇uj → ∇u in Lp, and for every j ∈ N it is ‖uj‖L∞ ≤ ‖u‖L∞, Juj is polyhedral

(i.e., the intersection of Ω with a finite union of (N − 1)-dimensional simplexes), and

uj ∈ C∞(Ω \ Juj ) ∩W 1,∞(Ω \ Juj ). Moreover,

lim sup
j→∞

∫
Juj∩Ω

′
g(x, u+

j , u
−
j , νuj ) dH

N−1 ≤
∫
Ju∩Ω

′
g(x, u+, u−, νu) dH N−1 (1.2)

for every open set Ω′ ⊂⊂ Ω and every u.s.c. function g : Ω × R × R × SN−1 → [0,∞)

such that g(x, a, b, ν) = ϕ(x, b, a,−ν) for all x ∈ Ω, a, b ∈ R, ν ∈ SN−1.

The above results suffice for many applications, nevertheless they are still not sharp; in

fact, roughly speaking, one would like to find a sequence uj converging to u in the strong BV

topology and in Lp of the absolute continuous part of the gradient, with the functions uj having

a regular jump set and being smooth out of the jump set. Instead, in [5] there is no information

on the shape of the jump set, while in [7] the BV convergence fails. In addition, both results

are valid in SBVp and not in SBV; this means that one assumes a higher integrability of ∇u
and the finiteness of the H N−1-dimensional measure of the jump set. As we will discuss in

Section 1.2, there are good practical reasons to do that; moreover, the Lp assumption on ∇u is

actually satisfied in many applications (however, in Section 6 we will deal with a situation for

which this is not the case). Nevertheless, for some important functionals of the form (1.1) there

is no guarantee that minimizers (or at least minimizing sequences) have finite measure of the

jump set, and in fact for such functionals a lot is still not known. For these reasons, it appears

desirable to have approximation results dealing with completely general SBV functions, or with

SBV functions having absolutely continuous part of the gradient in Lp, with no constraint about

the measure of the jump set; we will call for brevity SBVp
∞ the space of such functions (see also

Section 1.1).

In this paper, we contribute to give an answer to these questions. More precisely, we

present three approximation results, respectively for SBV, SBVp
∞ and SBVp functions; the last

one generalizes Theorem 1.1. Our results read as follows.

Theorem A (Approximation in SBV). Let Ω ⊆ RN be an open set, and let u ∈ SBV(Ω). Then,

there exists a sequence of functions uj ∈ SBV(Ω) and of compact, C1, manifolds with (possibly

empty) C1 boundary Mj ⊂⊂ Ω, such that Juj ⊆Mj ∩ Ju, H N−1(Juj \ Juj ) = 0, and

‖uj − u‖BV(Ω) → 0 , uj ∈ C∞(Ω \ Juj ) .

Theorem B (Approximation in SBVp
∞). Let Ω ⊆ RN be a local extension domain (see Defini-

tion 4.4), and let u ∈ SBVp
∞(Ω). Then, there exists a sequence of functions uj ∈ SBVp(Ω) and

of compact, C1 manifolds with (possibly empty) C1 boundary Mj ⊂⊂ Ω, such that Juj ⊆Mj but

H N−1(Mj \ Juj ) = 0 and

‖uj − u‖BV(Ω) → 0 , uj ∈ C∞(Ω \ Juj ) , ∇uj −−−−→
Lp(Ω)

∇u . (1.3)
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Theorem C (Approximation in SBVp). Let Ω ⊆ RN be an open set with locally Lipschitz

boundary, and let u ∈ SBVp(Ω). Then, there exists a sequence of functions uj ∈ SBVp(Ω) and

of compact, C1, manifolds with (possibly empty) C1 boundary Mj ⊂⊂ Ω, such that Juj ⊆ Mj

but H N−1(Mj \ Juj ) = 0 and

‖uj − u‖BV(Ω) → 0 , uj ∈ C∞(Ω \ Juj ) , ∇uj −−−−→
Lp(Ω)

∇u , H N−1
(
Juj∆Ju

)
→ 0 . (1.4)

Notice that the only difference between the approximations given for SBVp and for SBVp
∞

functions consists in the validity of the convergence H N−1
(
Juj \ Ju

)
→ 0 (actually, the conver-

gence of H N−1
(
Ju \ Juj

)
to 0 in Theorem C is a direct consequence of the BV convergence).

However, as we will discuss in Section 1.2, this is a substantial difference, and it is precisely the

lack of this convergence making Theorem B still not sharp. We remark that, in Theorems B

and C, since the jump sets Juj are contained in the compact, C1, (N −1)-dimensional manifolds

Mj , then in particular they are essentially closed, that is, H N−1(Juj \ Juj ) = 0.

Let us note also that, in Theorem A, one can decide that the jump sets Juj of the functions

uj coincide H N−1-a.e. with the C1 manifolds Mj , but in this case it is no more true that

they are contained in Ju. Moreover, in Theorems B and C, one can remove the assumption

of Ω to be locally an extension domain, or a set with Lipschitz boundary, but then the Lp

convergences in (1.3) and (1.4) become Lploc convergences, see Theorem 4.7. We underline that

our Definition 4.4 of extension domains is even weaker than the usual one, we only require

W 1,p(Ω) to be dense in W 1,1(Ω). In our three results we do not need to assume that u is

bounded; however, if u ∈ L∞(Ω), then we can always assume that ‖uj‖L∞ ≤ ‖u‖L∞ for every

j ∈ N: this is an immediate consequence of Lemma 3.2. We remark that an approximation

result for SBV functions, similar to our Theorem A, was also proved in [13]. Finally, through

the paper we consider for simplicity of notations the case of scalar functions; however, the case

of vector-valued functions is identical.

As an immediate application of the approximation result in SBV, we will consider in Sec-

tion 6 a representation formula for the total variation recently obtained in [11] for functions

u ∈ SBV(Ω) for which LN (Ju) = 0, and we show that the same formula still holds in general,

with no additional assumptions on the jump set. The case of a general function in BV(Ω) with

non trivial Cantor part is also discussed.

1.1. Definitions and notations. Here we briefly give all the definitions and notations used in

this paper, most of which are standard: one can refer for instance to the book [4] for a complete

account of the subject. Given an open set Ω ⊆ RN , the space of the functions of bounded

variation is given by the set BV(Ω) of all the L1 functions over Ω whose distributional derivative

Du is a finite Radon measure. For any function u ∈ BV(Ω), one denotes by ∇u ∈ L1(Ω) the

absolutely continuous part (with respect to the Lebesgue measure) of Du, and Dsu the singular

part. Hence, Du = ∇uLN +Dsu, and u ∈ W 1,1(Ω) if and only if Dsu = 0. The measure Dsu

does not charge H N−1-negligible set; moreover, one further decomposes Dsu = Dju + Dcu,

where Dju is called jump part and Dcu Cantor part. While the Cantor part Dcu does not charge

H N−1-finite sets, the jump part Dju is concentrated on a (N − 1)-dimensional set Ju, called
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the jump set, which is countably rectifiable: this means that there exist countably many sets

Mi, i ∈ N, each one being a C1 image of the unit ball of RN−1, so that H N−1
(
Ju \∪i∈NMi

)
= 0.

In addition, for every point x ∈ Ju, there exist a direction νu = νu(x) ∈ SN−1, and two numbers

u+ = u+(x) 6= u− = u−(x), such that

lim
r→0

−
∫
B+
νu (x,r)

|u(y)− u+| dy = lim
r→0

−
∫
B−νu (x,r)

|u(y)− u−| dy = 0 ,

where B±ν (x, r) are the two half-balls defined by

B±ν (x, r) =
{
y ∈ RN : |y − x| < r, (y − x) · ν ≷ 0

}
.

Moreover, one has Dju = (u+ − u−)H N−1 Ju: this explains why this part of the derivative is

called “jump part”. In particular, the strictly positive quantity |u+(x)−u−(x)| is called “jump”.

We recall that a sequence {uj} ⊂ BV(Ω) converges strictly to u if

‖uj − u‖L1(Ω) +
∣∣|Dju|(Ω)− |Du|(Ω)| → 0.

Note that this also trivially implies that Duj
∗ Duj . We will say that a sequence {uj} ⊂ BV(Ω)

converges to u in the BV sense if it converges in in the strong norm topology:

‖uj − u‖BV (Ω) → 0.

The space SBV(Ω) of the special functions of bounded variation is given by the set of all BV

functions u for which the Cantor part Dcu of the derivative vanishes, thus Du = ∇uLN +Dju.

Despite the elementary definition, this space is extremely important, since it is the natural space

in which functions live in several applications. It is important to notice that SBV(Ω) is not a

closed subspace of BV(Ω) in the strict topology, because the strict limit of a bounded sequence

of SBV functions can have a non-trivial Cantor part in the derivative, which can arise both

from the absolutely continuous part and from the jump part of the derivatives. Also for this

reason, in many applications one considers the space SBVp(Ω), see for instance [5, 6, 7]: given

some p > 1, the space SBVp(Ω) is defined as the space of the SBV functions u for which the

quantity ‖u‖BV + ‖∇u‖Lp + H N−1(Ju) < ∞ is finite. As an immediate consequence of the

well-known compactness Theorem for SBV functions (see [4, Theorem 4.8]), one obtains that

limits of sequences in SBVp for which the above quantity is uniformly bounded remain in SBVp.

Basically, the higher integrability of the absolutely continuous parts of the gradients prevents

them to create Cantor part in the limit, while the boundedness of the measures of the jump sets

prevents the jump parts to create Cantor part in the limit.

For reasons that will be discussed in the next section, we will also be interested in an

intermediate space between SBV and SBVp, that is, the space of SBV functions u for which the

higher integrability ∇u ∈ Lp holds, but no constraint on the measure of Ju is assumed. Through

this paper, we will denote by SBVp
∞ this space. Notice that, as discussed above, this is not a

closed subspace of SBV in the strict topology.
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1.2. A brief discussion of our results and a comparison with Theorem 1.1. In this

section we make a general discussion about the approximating issue in SBV, and then we

comment our three results, and we compare them with Theorem 1.1.

First of all, let us consider a function u ∈ SBV: the best approximation that one can hope

to get, is to write u as a BV limit of SBV functions uj , each of them having a “nice” jump set

Juj and being smooth outside of Ω\Juj . Notice that the BV convergence of uj to u immediately

implies that H N−1(Ju \ Juj ) converges to 0 as soon as Ju has finite measure (otherwise it is

of course infinite for every j, since H N−1(Juj ) is finite). On the other hand, it could be in

principle possible that H N−1(Juj \ Ju) does not converge to 0, and this quantity could even

blow up: it is enough that the functions uj have a very large part of the jump set where the

jump |u+−u−| is very small. With this considerations at hand, Theorem A appears completely

satisfactory; in fact, not only we have that H N−1(Juj \ Ju) converges to 0, but also that Juj is

a subset of Ju.

As discussed above, not many applications use the space SBV, which is a non-closed subspace

of BV (even though, we consider an application in Section 6). In order to roughly understand

the reason, let us consider again a functional as in (1.1); to keep the discussion simple, we

restrict ourselves to the particular case (still very general) of a Mumford-Shah-like functional of

the form

F (u) =

∫
Ω
|∇u|p +

∫
Ju

g
(
|u+(x)− u−(x)|

)
,

where p > 1 and g is a positive, increasing, l.s.c. function. When studying the problem of

minimizing this functional in SBV (under suitable assumptions), it is of course not restrictive to

consider BV functions for which ∇u belongs to Lp, hence the functions belonging to the space

that we denote by SBVp
∞. On the other hand, depending on the function g, it is not obvious

whether or not it is restrictive to assume also that the measure of the jump set is finite, that is, to

consider functions in the space SBVp. This is of course not a problem for the original Mumford-

Shah case, corresponding to g ≡ 1, or more in general for functions for which limt→0+ g(t) > 0,

because in this case any function with finite energy belongs to SBVp. Otherwise, for instance

for the important case when g(t) = tq with some q > 0, restricting oneself to the space SBVp

might change the minimizers; and actually, the fact that the space SBVp
∞ is not closed in BV

(while so is SBVp, as said) is the main reason why much less is known for functionals of this last

type. For instance, it is not clear if, for these functionals, the minimizers (if any) should belong

to SBVp or not. This clarifies the need of an approximation result for the space SBVp
∞, and

we give a partial answer in the present paper with Theorem B: as far as we know, this is the

first approximation result for SBV functions with higher integrability of ∇u but without any

constraint on the measure of the jump set. Unlike Theorem A, one can still not say that our

result is completely satisfactory. Indeed, in our result we get an approximating sequence which

converges in the BV sense and in the Lp sense of the absolutely continuous parts of the gradients,

and which is done by functions which have the nicest possible jump set, and which are smooth

outside. However, the information that H N−1(Juj \ Ju) → 0 is missing, and this can create

troubles in some cases. To understand that, consider once again the case of g(t) = tq: if q < 1,
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then the convergence of uj to u provided by our Theorem B does not imply that F (uj)→ F (u),

and this is of course unsatisfactory. Notice that, instead, the convergence of F (uj) to F (u) is

an immediate consequence of the BV convergence if q ≥ 1 (at least when the functions uj are

equi-bounded, as one usually has in the applications): for functionals of this type, then, the

claim of our result seems to be enough for the applications.

Let us finally consider the case of the SBVp functions. As discussed above, not for all func-

tionals this is the “right” space to consider. However, our Theorem C seems again to be com-

pletely satisfactory, since we obtain also the convergence missing in Theorem B, compare (1.4)

with (1.3).

To conclude, we can make a quick comparison between our results and those of Theorem 1.1.

As already said, for several applications the results of Theorem 1.1 are enough; nevertheless,

in [5] there is no information about the possible shape of the jump sets of the functions uj ,

except the fact that they are contained in a closed rectifiable set; analogously, in [7] the strong

BV convergence fails. Notice that, since the jump sets of the approximating functions in [7]

are polyhedral (i.e., a finite union of (N − 1)-dimensional simplexes), hence in general disjoint

from the jump set of u, then of course there is no possibility to have strong BV convergence

in that result. We also underline that, in our result, the jump set is a compact C1 manifold:

hence, it is the disjoint union of finitely many C1 images of (N − 1)-dimensional simplexes;

obtaining the disjointness, which is not ensured by the result of [7], requires some care, and it is

done in Lemma 5.2. A last comment can be done about the strategy of the proof. In [5, 7] the

authors use the well-known existence and regularity results for the Mumford-Shah functional,

see for instance [8]. Our strategy is instead quite different; more precisely, given a function

u ∈ SBV(Ω), we single out a compact subset K of the jump set Ju contained in a C1 manifold,

and we construct a smooth function in Ω \K having the same upper and lower traces of u on K

by means of a simple mollification argument with variable kernel; this is enough to conclude in

the case of SBV functions, Theorem A, while a careful modification is needed to treat the cases

of SBVp
∞ or SBVp functions, in order to get also the Lp convergence of the ∇uj .

2. Mollification with variable kernel

In our construction to prove Theorem A we will make use of a mollification with a variable

kernel. Even though this is a well established technique, in this section we collect the relevant

definitions and the properties that we are going to need, in order to keep our presentation

self-contained.

Through this section, we will consider a given compact set K ⊂⊂ Ω, and we will write

D = K ∪ ∂Ω. Then, we arbitrarily fix a “regularized distance function” from D, that is, a

function δ : Ω→ R such that

‖Dδ‖L∞ ≤ 1 ,
dist(x,D)

2
≤ δ(x) ≤ dist(x,D) ∀x ∈ Ω ,

and that δ ∈ C∞(Ω \D). Moreover, we also take a function f ∈ C∞
(
[0,∞)

)
satisfying

f (j)(0) = 0 ∀ j ∈ N , 0 < f(t) ≤ 1 ∀ t ∈ (0,+∞) , 0 ≤ f ′(t) ≤ 1 ∀ t ∈ [0,+∞) . (2.1)
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Given a number 0 < σ < 1 and a vector y ∈ B(1), we define the “generalized translation” as

the function

Tσ,y(x) = x− σf(δ(x))y .

Here, and in the following, we denote by B(x, r) the ball with center x and radius r > 0, and

we simply write B(r) in place of B(0, r). Notice that, by the properties (2.1) and the choice of

0 < σ < 1, one has Tσ,y : Ω→ Ω, and Tσ,y is the identity on D. Since

DTσ,y(x) = Id− σf ′(δ(x))y ⊗Dδ(x) ,

(observe that f ′(δ(x))Dδ(x) is continuous on the whole Ω by construction), keeping in mind

that det(Id + a⊗ b) = 1 + a · b and recalling again (2.1) and the fact that σ < 1 and that |y| < 1

we obtain

detDTσ,y(x) = 1− σf ′(δ(x))y ·Dδ(x) ≥ 1− σ > 0 . (2.2)

In particular Tσ,y is a local diffeomorphism, and since a quick look at the definition ensures that

it is a bijection from Ω onto itself, it is also a global diffeomorphism. Finally, we fix a smooth

positive function ρ ∈ C∞c (B(1)), such that
∫
B(1) ρ = 1. We are then ready to give the definition

of the mollification with variable kernel, for a L1
loc function and for a Radon measure. Notice

that both definitions reduce to the standard mollification if Tσ,y is replaced by the standard

translation Ty(x) = x− y.

Definition 2.1. Let f , σ and ρ as above. For any u ∈ L1
loc(Ω) we define

uσ(x) =

∫
B(1)

u(Tσ,y(x))ρ(y) dy =

∫
B(1)

u(x− σf(δ(x))y)ρ(y) dy .

Instead, for any Radon measure µ ∈M(Ω), we let µσ ∈M(Ω) be the unique measure such that∫
Ω
ϕ(x) dµσ(x) =

∫
B(1)

(∫
Ω
ϕ
(
T−1
σ,y (z)

)
det
(
DT−1

σ,y (z)
)
dµ(z)

)
ρ(y) dy for all ϕ ∈ Cc(Ω) ,

that is,

µσ =

∫
B(1)

(
T−1
σ,y

)
#

[
det(DT−1

σ,y )µ
]
ρ(y) dy .

It is very simple to deduce from the definition that, if µ = udLN , then µσ = uσdL
N , as well

as that µσ = µ if the measure µ is concentrated on K; moreover, if µj
∗ µ then (µj)σ

∗ µσ.

Before proving the main properties of uσ, we need to make a simple observation about the

density (in the strict sense) of smooth functions in BV.

Lemma 2.2. Let u ∈ BV(Ω) be such that Dsu is concentrated on a compact set K ⊂⊂ Ω and

∇u belongs to Lp(Ω) for some 1 ≤ p < ∞. Then, there exists a sequence of smooth functions

uj : Ω → R such that uj → u strictly, and for every ε > 0 one has that Duj → Du strongly in

Lp(Ω \Kε), being Kε the ε-neighborhood of K.

Proof. First of all, assume that Ω = RN . In this case, it is immediate to observe that the

sequence u ∗ ρ1/j is as needed, where ρ1/j is a standard smooth kernel concentrated in the ball

of radius 1/j.
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Let us now consider the general situation of an open set Ω. Let A1 and A2 be two open

sets such that K ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ Ω. By means of a smooth cut-off function, we can write

u = u1 + u2, being u1 ∈ BV(Ω) supported in A2, with ∇u1 ∈ Lp(Ω), while u2 ∈ W 1,p(Ω) is

supported in Ω \ A1. By Meyers and Serrin Theorem, we can take a sequence u2,j of smooth

functions converging to u2 strongly in W 1,p(Ω). Instead, concerning u1, we can extend it by

0 outside of A2, getting a function in BV(RN ), and then we find the sequence u1,j with a

convolution as before. If we now let uj = u1,j + u2,j , this sequence is clearly as requested, since

in the set A2 \A1 both the convergences of u1,j and u2,j to u1 and u2 are strong in W 1,p. �

Proposition 2.3. Let 1 ≤ p <∞, u ∈ Lp(Ω), µ be a Radon measure, and let uσ and µσ be as

in Definition 2.1 for some 0 < σ ≤ 1/2. Then

(i) uσ ∈ C∞(Ω \K).

(ii) The following estimates hold:

‖uσ‖Lp(Ω) ≤ 2 ‖u‖Lp(Ω) , |µσ|(Ω) ≤ 2|µ|(Ω) . (2.3)

In particular, the map u 7→ uσ is linear and continuous in Lp.

(iii) One has ‖uσ − u‖Lp(Ω) → 0 as σ → 0 and, if u ∈ C(Ω), then ‖uσ − u‖L∞(Ω′) → 0 as

σ → 0 for every Ω′ ⊂⊂ Ω.

(iv) If u ∈ BV (Ω), then uσ ∈ BV (Ω) and

Duσ = (Du)σ + σξσ , (2.4)

where ξσ is a Radon measure such that ξσ K = 0 and |ξσ|(Ω) ≤ 2|Du|(Ω). Moreover,

Duσ K = Du K . (2.5)

Finally, if ∇u ∈ Lp(Ω) and Ju is contained in K, then

∇uσ −−−−→
Lp(Ω)

∇u .

Proof. Point (i) follows from the fact that for x ∈ Ω \K

uσ(x) =
1

(σf(δ(x)))N

∫
B(x,σf(δ(x)))

u(z)ρ

(
x− z

σf(δ(x))

)
dz ,

and by the smoothness of f on R+, ρ on B(1), and δ in Ω \K.

To prove point (ii), we start with an Lp function u. By Jensen inequality, Fubini Theorem

and the change of variable z = Tσ,y(x), also keeping in mind that Tσ,y(Ω) = Ω, we have∫
Ω
|uσ(x)|pdx ≤

∫
Ω

∫
B(1)
|u(Tσ,y(x))|pρ(y)dydx =

∫
B(1)

(∫
Ω
|u(Tσ,y(x))|pdx

)
ρ(y)dy

=

∫
B(1)

∫
Ω
|u(z)|p detDT−1

σ,y (z)dz ρ(y)dy ≤
∥∥detDT−1

σ,y

∥∥
L∞(Ω)

‖u‖pLp(Ω) .

(2.6)

Since by (2.2) for σ ≤ 1/2 we have
∥∥detDT−1

σ,y

∥∥
L∞(Ω)

≤ (1−σ)−1 ≤ 2, inequality (2.3) for an Lp

function follows from (2.6). More in general, calling Kε the ε-neighborhood of K, it is clear by
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construction that Tσ,y(x) might belong to Kε/2 only if x belongs to Kε, thus we also have that∫
Ω\Kε

|uσ(x)|p ≤ 2 ‖u‖pLp(Ω\Kε/2) . (2.7)

Let us now consider a Radon measure µ, and let uj be a sequence of L1 functions such that

uj dL
N ∗ µ. As noticed above, we get that

(uj)σ dL
N =

(
uj dL

N
)
σ
∗ µσ ,

thus the estimate (2.3) for the measure µ follows from the same estimate for the functions uj .

Concerning point (iii), we note that the second part is an immediate consequence of the

uniform continuity of u on compact sets and of the fact that ‖Tσ,y − Id‖L∞(Ω) → 0 as σ → 0.

The fact that ‖uσ − u‖Lp(Ω) → 0, then, follows by the density of C0
c(Ω) in Lp(Ω) and by (2.3)

exactly as in the classical case.

Let us now prove point (iv). We first assume that u ∈ C∞(Ω), then we get

Duσ(x) =

∫
B(1)

(
Du(Tσ,y(x))− σf ′(δ(x))Du(Tσ,y(x)) · y Dδ(x)

)
ρ(y) dy ,

so that (2.4) holds with

ξσ = −f ′(δ(x))Dδ(x)

∫
B(1)

Du(Tσ,y(x)) · yρ(y) dy . (2.8)

Notice that in the present case, also by (2.1), the measure ξσ is actually a smooth function.

Moreover, ξσ K = 0 because for every x ∈ K one has δ(x) = 0 and so f ′(δ(x)) = 0, and since

0 ≤ f ′ ≤ 1 and ‖Dδ‖L∞ ≤ 1, we have

|ξσ(x)| ≤
∫
B(1)
|Du(Tσ,y(x)|ρ(y) dy = |Du|σ(x) , (2.9)

so that applying part (ii) above to the function |Du| we get

|ξσ|(Ω) ≤ ‖|Du|σ‖L1 ≤ 2 ‖|Du|‖L1 = 2|Du|(Ω) .

In conclusion, (2.4) of point (iv) holds if u is a smooth function.

Let instead now u ∈ BV(Ω) be a generic function, and let uj ∈ BV(Ω) ∩ C∞(Ω) be a

sequence such that uj
∗ u in the strict BV sense (with the additional property granted by

Lemma 2.2 if Dsu is concentrated on K and ∇u ∈ Lp). First of all, note that (uj)σ → uσ in

L1 by part (ii), hence D(uj)σ → Duσ in the sense of distributions. Since for every j we have

D(uj)σ = (Duj)σ + σξσj according to (2.4), and since as already noticed Duj
∗ Du implies

(Duj)σ
∗ (Du)σ, we have to check the weak* limit of ξσj for j → ∞. Let us then take a

bounded and continuous function ϕ ∈ Cb(Ω,RN ), with compact support: applying (2.8) to each
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smooth function uj , we get

〈−ξσj , ϕ〉 =

∫
Ω
f ′(δ(x))Dδ(x) · ϕ(x)

(∫
B(1)

Duj(Tσ,y(x)) · yρ(y) dy

)
dx

=

∫
B(1)

y ·
(∫

Ω
Duj(Tσ,y(x))f ′(δ(x))Dδ(x) · ϕ(x) dx

)
ρ(y) dy

=

∫
B(1)

y ·
(∫

Ω
Duj(z)f

′(δ(T−1
σ,y (z)))Dδ(T−1

σ,y (z)) · ϕ(T−1
σ,y (z)) det(DTσ,y)

−1(z) dz

)
ρ(y) dy

=

∫
B(1)

y ·
(∫

Ω
Duj(z)g(y, z) dz

)
ρ(y) dy =

∫
Ω
Duj(z) ·

(∫
B(1)

yg(y, z)ρ(y) dy

)
dz ,

where for any y ∈ B(1) we have set

g(y, z) = f ′(δ(T−1
σ,y (z)))Dδ(T−1

σ,y (z)) · ϕ(T−1
σ,y (z)) det(DTσ,y)

−1(z) . (2.10)

By construction, g is a continuous, compactly supported, scalar function, with ‖g‖L∞ ≤ 2 ‖ϕ‖L∞
and of course depending on ϕ, so we can define

h(z) =

∫
B(1)

yg(y, z)ρ(y) dy , (2.11)

and the calculations above give

〈−ξσj , ϕ〉 =

∫
Ω
Duj(z) · h(z) dz = 〈Duj , h〉 −→ 〈Du, h〉 .

Since the map ϕ 7→ h is easily seen to be linear and continuous, we have a measure ξσ such

that ξσj
∗ ξσ. Summarizing, we have shown that for any u ∈ BV(Ω) there is a measure ξσ such

that (2.4) holds true, and this also implies that uσ ∈ BV(Ω). Moreover, since ξσj
∗ ξσ, the

validity of |ξσ|(Ω) ≤ 2|Du|(Ω) is straightforward, since we know it for every ξσj and uj . In order

to prove that ξσ K = 0, let us take a function ϕ ∈ Cb(Ω) supported in the ε-neighborhood Kε of

K. Thus, ϕ(T−1
σ,y (z)) = 0 whenever the distance between T−1

σ,y (z) and K is bigger than ε. On the

other hand, if it is smaller, then δ(T−1
σ,y (z)) ≤ ε, and this implies that f ′(δ(T−1

σ,y (z))) ≤ ε ‖f ′′‖L∞ .

Recalling the definitions (2.10) and (2.11), we deduce that ‖h‖L∞ ≤ ‖g‖L∞ ≤ 2ε ‖f ′′‖L∞ ‖ϕ‖L∞ .

Recalling that 〈−ξσ, ϕ〉 = 〈Du, h〉 and sending ε → 0, we have obtained that ξσ K = 0. In

other words, we have now proved the validity of (2.4).

Let us pass now to show (2.5). By (2.4) we have Duσ K = (Du)σ K, so to obtain (2.5)

we have to show

(Du)σ K = Du K . (2.12)

Keeping in mind Definition 2.1, for any function ϕ ∈ Cb(Ω) we have

〈(Du)σ, ϕ〉 =

∫
B(1)
〈
(
T−1
σ,y

)
#

[
det(DT−1

σ,y )Du
]
, ϕ〉ρ(y) dy =

∫
B(1)
〈det(DT−1

σ,y )Du, ϕ ◦ T−1
σ,y 〉ρ(y) dy

=

∫
B(1)

(
〈Du, ϕ〉+ 〈Du, ϕ ◦ T−1

σ,y − ϕ〉+ 〈
(

det(DT−1
σ,y )− 1

)
Du, ϕ ◦ T−1

σ,y 〉
)
ρ(y) dy

= 〈Du, ϕ〉+

∫
B(1)

(
〈Du, ϕ ◦ T−1

σ,y − ϕ〉+ 〈
(

det(DT−1
σ,y )− 1

)
Du, ϕ ◦ T−1

σ,y 〉
)
ρ(y) dy .
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Let us now again restrict our attention to the case when ϕ is supported in Kε. Since by

construction the function ϕ ◦ T−1
σ,y is concentrated on K2ε, and moreover for every x ∈ K one

has ϕ ◦ T−1
σ,y (x)− ϕ(x) = ϕ(x)− ϕ(x) = 0, then we can evaluate∣∣〈(Du)σ, ϕ〉 − 〈Du, ϕ〉

∣∣ ≤ ‖ϕ‖L∞ (2|Du|(K2ε \K) +
∥∥det(DT−1

σ,y )− 1
∥∥
L∞(K2ε)

|Du|(K2ε)
)
.

By sending ε to 0, since
∥∥det(DT−1

σ,y )− 1
∥∥
L∞(K2ε)

goes to 0 by (2.2), we obtain (2.12).

To conclude the proof, let us now assume that the jump set Ju is contained in K, and

that the function ∇u belongs to Lp(Ω): we have to prove that ∇uσ converges to ∇u in Lp(Ω).

Recalling (2.4) and by linearity, we have

Duσ = (Du)σ + σξσ =
(
∇u dLN +Dsu

)
σ

+ σξσ = (∇u)σ dL
N + (Dsu)σ + σξσ . (2.13)

By point (iii) we know that (∇u)σ converges to ∇u in Lp(Ω), and on the other hand since Dsu is

concentrated in K then (Dsu)σ = Dsu is also concentrated in K. As a consequence, to deduce

that ∇uσ converges in Lp(Ω) to ∇u when σ → 0, it is enough to observe that the measures ξσ

are actually functions, uniformly bounded in Lp(Ω).

To do so, we fix some ε→ 0, and we consider the situation in Ω \Kε: keeping in mind that

ξσj
∗ ξσ, applying the estimate (2.9) to each function uj , and recalling (2.7) and Lemma 2.2,

we derive that

‖ξσ‖Lp(Ω\Kε) ≤ lim inf
j→∞

‖ξσj ‖Lp(Ω\Kε) ≤ lim inf
j→∞

‖|Duj |σ‖Lp(Ω\Kε) ≤ 2 lim inf
j→∞

‖Duj‖Lp(Ω\Kε/2)

≤ 2‖∇u‖Lp(Ω\Kε/2) ≤ 2‖∇u‖Lp(Ω) .

By letting ε to 0, recalling also that ξσ K = 0, we deduce that

‖ξσ‖Lp(Ω) ≤ 2‖∇u‖Lp(Ω) (2.14)

and, as noticed above, this uniform estimate in Lp(Ω) concludes the proof. �

An immediate corollary of the above proposition is the following result, which basically says

that in all the converge results in SBV (or SBVp, or SBVp
∞), the smoothness of the approximating

functions out of their jump sets comes for free.

Corollary 2.4. Let u ∈ SBV(Ω) be a function with ∇u ∈ Lp(Ω) and Ju ⊆ K for some compact

set K ⊂⊂ Ω and p ≥ 1. Then, for every ε > 0, there exists ũ ∈ SBV(Ω) with Dsũ = Dsu and

Jũ = Ju , ũ ∈ C∞(Ω \K) , ‖u− ũ‖BV(Ω) + ‖∇u−∇ũ‖Lp(Ω) < ε .

If, in addition, Ω has finite measure and u ∈W 1,∞(Ω \K), then also ũ ∈W 1,∞(Ω \K).

Proof. We apply Proposition 2.3 to the function u, finding the BV functions uσ. By the propo-

sition, each function uσ belongs to C∞(Ω \ K), so the measure Dsuσ is concentrated on K;

recalling (2.13) and the fact that ξσ K = 0, we derive that Dsuσ = (Dsu)σ = Dsu, which also

implies that Juσ = Ju. Moreover, points (iii) and (iv) ensure that uσ → u and ∇uσ → ∇u in

Lp(Ω), so to obtain the first part of the thesis it is enough to set ũ = uσ for some σ = σ(ε) small

enough.
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Let us now suppose that u ∈ W 1,∞(Ω \K). Since Duσ = ∇uσ + Dsuσ with Dsuσ = Dsu

concentrated in K, we have to show that ∇uσ ∈ L∞(Ω). By (2.13), ∇uσ = (∇u)σ + σξσ,

and by Definition 2.1 it is obvious that ‖(∇u)σ‖L∞ ≤ ‖∇u‖L∞(Ω). To conclude, it is then

enough to observe that the functions ξσ are uniformly bounded in L∞(Ω); but in fact, since

the estimate (2.14) is true for every σ and every p, by letting p → ∞ we directly find that

‖ξσ‖L∞ ≤ 2 ‖∇u‖L∞ for every σ. The functions uσ are then also in W 1,∞(Ω \K), and the proof

is concluded. �

We want now to prove that the traces of uσ on K coincide with those of u: recall that a

function u is said to have right and left traces u±(x0) with respect to a vector ν ∈ SN−1 at a

point x0, if

lim
r→0
−
∫
B±ν (x0,r)

|u(x)− u±(x0)| dx = 0 .

We can then prove what follows.

Lemma 2.5. Let u ∈ L1(Ω) be a function, and let x0 ∈ K be a point such that u admits right

and left traces with respect to a vector ν ∈ SN−1. Then, for any σ ≤ 1/2 we have that uσ admits

the same traces at x0.

Proof. Without loss of generality, we assume that x0 = 0, that the traces are u+(x0) = 1 and

u−(x0) = 0, and we denote B±(r) = B±ν (0, r). It is enough to show that

lim
r→0
−
∫
B+(r)

|uσ − 1| = 0 . (2.15)

Let us take any r such that B(2r) = B(0, 2r) ⊂⊂ Ω, and let us define v the restriction of u to

B(2r), extended to 0 outside, and w the function given by w = 1 in B+(2r) and 0 outside. By

the definition of the left and right traces we have that

‖v − w‖L1(Ω)

rN
=
‖u− u+‖L1(B+(2r)) + ‖u− u−‖L1(B−(2r))

rN
−−−→
r→0

0 .

Hence, by (ii) of Proposition 2.3, one has also

‖vσ − wσ‖L1(Ω)

rN
−−−→
r→0

0 .

Moreover, by construction and since x0 ∈ K, for every x ∈ B(r) we have that Tσ,y(x) ∈ B(2r);

as a consequence, recalling Definition 2.1, we get that uσ = vσ in B(r), then the last inequality

implies
‖uσ − wσ‖L1(B+(r))

rN
−−−→
r→0

0 . (2.16)

We have then to evaluate ‖wσ − 1‖L1(B+(r)). Keeping in mind that w = 1 on B+(2r) and 0

outside, and recalling the definition of wσ, we immediately obtain that 0 ≤ wσ ≤ 1 everywhere.

Let now x ∈ B+(r): as already noticed, for every y ∈ B(1) one has Tσ,y(x) ∈ B(2r); in particular,

if Tσ,y(x) ∈ B+(2r) for each y ∈ B(1) one has wσ(x) = 1. By the properties of f and δ we get

|Tσ,y(x)− x| = |σf(δ(x))y| ≤ f(δ(x)) ≤ f(r) .
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Summarizing, we know that 0 ≤ wσ(x) ≤ 1 for every x ∈ B+(r), and that wσ(x) = 1 if the

whole ball B(x, f(r)) is contained in B+(2r), that is, for every x ∈ B+(r) which does not belong

to the set {
x ∈ B+(r) : x · ν ≤ f(r)

}
.

Since a rough estimate ensures that the volume of this set is less than ωN−1r
N−1f(r), we obtain

‖wσ − 1‖L1(B+(r))

rN
≤ ωN−1

f(r)

r
.

Putting this inequality together with (2.16), and keeping in mind that f(r)/r goes to 0, when

r → 0, since f ′(0) = 0, we derive the validity of (2.15), and this concludes the proof. �

3. The proof of Theorem A

This section is devoted to show Theorem A.

Proof of Theorem A. Let us fix a small quantity ε. Then, since the jump set Ju of u is (N − 1)-

rectifiable, we can find a compact, C1 manifold M with C1 boundary and a compact set Kε ⊆
Ju ∩M satisfying

|Du|(Ju \Kε) ≤
ε

4
; (3.1)

actually, M can be chosen as a finite union of C1 images of the closed unit disk in RN−1.

Let us now consider the functions uσ defined in Section 2 with K = Kε. First of all,

by Proposition 2.3 we know that every uσ is a BV function in Ω, of class C∞ in Ω \ K; this

implies that every uσ belongs to SBV(Ω). Moreover, since K is contained in the jump set

Ju of u, by Lemma 2.5 we obtain that Juσ = K up to (N − 1)-negligible subsets. Hence,

H N−1(Juσ \ Juσ) = 0. Therefore, keeping in mind (3.1), we see that to conclude the proof we

have to show that, for σ small enough, ‖u− uσ‖BV (Ω) ≤ ε. Since by (iii) in Proposition 2.3 we

already have that uσ −−−−→
L1(Ω)

u for σ → 0, we are reduced to check only that, for σ small enough,

|Du−Duσ|(Ω) ≤ ε . (3.2)

By (2.4), we know that Duσ = (Du)σ + σξσ, with |ξσ|(Ω) ≤ 2|Du|(Ω), thus

Duσ =
(
∇uLN +Du K +Du (Ju \K)

)
σ

+ σξσ .

Moreover, as already noticed after Definition 2.1, µσ = µ for every measure µ concentrated on

K; therefore, by linearity we can rewrite the last equality as

Duσ = (∇u)σL
N +Du K +

(
Du (Ju \K)

)
σ

+ σξσ .

We derive, thanks to (2.3), (iv) of Proposition 2.3 and (3.1),

|Du−Duσ|(Ω) ≤ ‖∇u− (∇u)σ‖L1(Ω) + |Du (Ju \K)|(Ω) +
∣∣(Du (Ju \K)

)
σ

∣∣(Ω) + σ|ξσ|(Ω)

≤ ‖∇u− (∇u)σ‖L1(Ω) + 3|Du (Ju \K)|(Ω) + 2σ|Du|(Ω)

≤ ‖∇u− (∇u)σ‖L1(Ω) +
3

4
ε+ 2σ|Du|(Ω) .

By (iii) of Proposition 2.3 the validity of (3.2) for σ � 1 immediately follows, hence the proof

is concluded. �
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Remark 3.1. As an immediate application of Lemma 2.5 we have that, if u admits an inner

trace on ∂Ω, then the same is true for uσ (hence for every function uj of Theorem A) and the

two traces coincide.

A quick look to the above construction ensures that, if the function u is in L∞, then the

same is true for every function uj , and in fact ‖uj‖L∞(Ω) ≤ ‖u‖L∞(Ω). We want now to observe

something much stronger, which will be useful in the sequel; namely, that starting from every

sequence {uj} as in Theorem A, one can construct by smooth truncation a new sequence {ũj},
still approximating u, satisfying the L∞ bound. This is a straightforward consequence of the

next general result, which we can directly prove for SBV or SBVp
∞ functions. Notice that,

instead of giving two different results for the case of an SBV, or of an SBVp
∞, function, we

present a single claim for a function u ∈ SBV with ∇u ∈ Lp for some p ≥ 1: of course, these

functions are simply the SBV functions if p = 1, and the SBVp
∞ functions if p > 1.

Lemma 3.2. Let u ∈ SBV(Ω) ∩ L∞(Ω) be a function such that ∇u ∈ Lp(Ω) for some p ≥ 1.

Then, for every ε > 0 there exists δ > 0 with the following property: whenever v ∈ SBV(Ω) is a

function satisfying

‖u− v‖BV(Ω) + ‖∇u−∇v‖Lp(Ω) < δ , (3.3)

there is a modification ṽ ∈ SBV(Ω) of v such that

Jṽ = Jv , ‖ṽ‖L∞ ≤ ‖u‖L∞ , ‖u− ṽ‖BV(Ω) + ‖∇u−∇ṽ‖Lp(Ω) < ε .

In addition, if v ∈ C∞(Ω \ Jv), then the same is true for ṽ.

Proof. Without loss of generality, let us assume that ‖u‖L∞ = 1. Let moreover δ � η � 1 be

two fixed constants, depending on u and ε, to be specified later, and let τ : R→ (−1−2η, 1+2η)

be a smooth function satisfying

0 < τ ′(t) ≤ 1 ∀ t ∈ R , τ(t) = t ∀ − 1− η ≤ t ≤ 1 + η .

Given now a function v ∈ SBV(Ω) satisfying (3.3), we define w = τ ◦ v. Notice that of course

w ∈ SBV(Ω), Jw = Jv, and if v ∈ C∞(Ω \ Jv) the same is true for w.

We want to estimate the deviation between w and u; first of all, it is obvious that

‖w − u‖L1(Ω) ≤ ‖v − u‖L1(Ω) ≤ δ . (3.4)

Let us now concentrate ourselves on the singular parts of Du and Dw; this is very easy in the

set Ju∆Jv, since

|Dsu−Dsw|(Ju∆Jv) = |Dsu−Dsw|(Ju \ Jv) + |Dsu−Dsw|(Jv \ Ju)

= |Dsu|(Ju \ Jv) + |Dsw|(Jv \ Ju) ≤ |Dsu|(Ju \ Jv) + |Dsv|(Jv \ Ju)

= |Dsu−Dsv|(Ju \ Jv) + |Dsu−Dsv|(Jv \ Ju) = |Dsu−Dsv|(Ju∆Jv) ≤ δ .

(3.5)

Keep now in mind that Ju is countably rectificable; as a consequence, we can write Ju = G∪H in

such a way that G is a finite union of Lipschitz (N−1)-dimensional graphs, while |Dsu|(H) < η.
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Since, on Lipschitz sets, the trace operator for BV functions is continuous with respect to the

strong BV convergence (see [4, Theorem 3.86]), there exists a constant C such that∥∥f±∥∥
L1

H N−1 (G)
≤ C ‖f‖BV(Ω) (3.6)

for every function f ∈ BV(Ω), where f± are the two traces of f on the two sides of G. Notice

that C only depends on the set G, hence on u and η, but not on δ.

We can then now evaluate Dsu−Dsw on the set Ju ∩ Jv. Within the set H we simply have

|Dsu−Dsw|(Ju ∩ Jv ∩H) ≤ |Dsu|(H) + |Dsw|(H) ≤ |Dsu|(H) + |Dsv|(H)

≤ 2|Dsu|(H) + ‖v − u‖BV(Ω) ≤ 2η + δ .
(3.7)

Instead, concerning the set Ju∩Jv∩G, we have to further subdivide it. More precisely, we write

Ju ∩ Jv ∩ G = G1 ∪ G2, where G1 is the subset done by all the points where both the traces

v± are in (−1 − η, 1 + η), and G2 are the remaining points. In G1, we have by construction

Dsw = Dsv; instead, since for every x ∈ G2 one has either |v+(x)| ≥ 1 + η or |v−(x)| ≥ 1 + η, so

in particular at least one between |v+ − u+| and |v− − u−| is bigger than η, by (3.6) we deduce

ηH N−1(G2) ≤
∥∥v+ − u+

∥∥
L1

H N−1 (G2)
+
∥∥v− − u−∥∥

L1

H N−1 (G2)
≤ 2C ‖v − u‖BV(Ω) ≤ 2Cδ .

Moreover, the jump |(w − u)+ − (w − u)−| is clearly at most 4 + 4η everywhere, so we get

|Dsu−Dsw|(Ju ∩ Jv ∩G) = |Dsu−Dsv|(G1) + |Dsu−Dsw|(G2)

≤ δ + (4 + 4η)H N−1(G2) ≤ δ +
8 + 8η

η
Cδ .

Putting this estimate together with (3.5) and (3.7), we obtain

|Dsu−Dsw|(Ω) ≤ 2η + 3δ +
8 + 8η

η
Cδ . (3.8)

Finally, we have to estimate ∇u − ∇w: calling A = {x ∈ Ω : |v(x)| > 1 + η}, we have

that ∇w = ∇v on Ω \ A, while |∇w| ≤ |∇v| on A. Moreover, |u − v| > η in A, hence

η|A| ≤ ‖v − u‖L1(Ω) ≤ δ, that is, |A| ≤ δ/η. Whatever η is, up to take δ small enough we have

then that the measure |A| is as small as we wish; in particular, since ∇u ∈ Lp(Ω), we can take

δ so small that ‖∇u‖Lp(A) < η. Consequently, we can evaluate

‖∇w −∇u‖Lp(Ω) ≤ ‖∇v −∇u‖Lp(Ω\A) + ‖∇w −∇u‖Lp(A) ≤ δ + ‖∇w‖Lp(A) + ‖∇u‖Lp(A)

≤ δ + ‖∇v‖Lp(A) + ‖∇u‖Lp(A) ≤ δ + 2 ‖∇u‖Lp(A) + ‖∇u−∇v‖Lp(A)

≤ 2δ + 2η .

Since this estimate holds for any p ≥ 1, in particular the case p = 1 and the estimates (3.8)

and (3.4) give

‖w − u‖BV(Ω) = ‖w − u‖L1(Ω) + |Du−Dw|(Ω) ≤ 4η + 6δ +
8 + 8η

η
Cδ ,

from which we further deduce

‖u− w‖BV(Ω) + ‖∇u−∇w‖Lp(Ω) ≤ 6η + 8δ +
8 + 8η

η
Cδ .
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We are finally in position to conclude, by defining ṽ = 1
1+2η w. In fact, it is clear that ṽ ∈

SBV(Ω), that Jṽ = Jw = Jv, that ‖ṽ‖L∞ ≤ 1 = ‖u‖L∞ , and that ṽ belongs to C∞(Ω \ Jv) as

soon as so does v. Moreover,

‖w − ṽ‖BV(Ω) + ‖∇w −∇ṽ‖Lp(Ω) =
2η

1 + 2η

(
‖w‖BV(Ω) + ‖∇w‖Lp(Ω)

)
,

so we finally conclude the proof by evaluating

‖u− ṽ‖BV(Ω) + ‖∇u−∇ṽ‖Lp(Ω)

≤ 2
(
‖u− w‖BV(Ω) + ‖∇u−∇w‖Lp(Ω)

)
+ 2η

(
‖u‖BV(Ω) + ‖∇u‖Lp(Ω)

)
≤ 12η + 16δ +

16 + 16η

η
Cδ + 2η

(
‖u‖BV(Ω) + ‖∇u‖Lp(Ω)

)
< ε ,

where the last inequality holds true as soon as η has been chosen small enough depending on u

and ε, and δ small enough depending on η (recall that C depends on u and η but not on δ). �

In the lemma above, we have considered the situation of a bounded function u ∈ SBV. Now

we notice that, in fact, for our purposes it is always admissible to assume that an SBV function

is bounded: this is a very simple observation, which will be useful later.

Lemma 3.3. Let Ω ⊆ RN be an open set, and let u ∈ SBV(Ω) be a function with ∇u ∈ Lp(Ω)

for some p ≥ 1. Then, for every ε > 0 there exists a function uε ∈ SBV(Ω) ∩ L∞(Ω) such that

‖u− uε‖BV(Ω) + ‖∇u−∇uε‖Lp(Ω) ≤ ε , Juε ⊆ Ju . (3.9)

Proof. Keep in mind that Ju is countably rectifiable, hence it is contained, up to H N−1-

negligible subsets, in the union of C1 compact manifolds Mi, i ∈ N. Moreover, as already

observed, by [4, Theorem 3.88] we know that the two traces τ±i : BV(Ω) → L1(Mi) on the two

sides of each manifold Mi are continuous. As a consequence, we can select a big constant K

such that

‖u‖L1(AK) + ‖∇u‖L1(AK) + ‖∇u‖Lp(AK) + |Dsu|(BK) < ε , (3.10)

where we call

AK = {x ∈ Ω : |u(x)| ≥ K} , BK =
⋃

i∈N

{
x ∈Mi, max{|τ+

i (x)|, |τ−i (x)|} ≥ K
}
.

With such a choice of K, we then let uε be the standard truncation of u at level K, that is,

uε(x) = sgn(u(x)) min{K, |u(x)|}. It is clear that uε ∈ SBV(Ω) and that ∇uε ∈ Lp(Ω), as well

as that Juε ⊆ Ju. Since, on the other hand, Dsuε = Dsu on Ju \ BK and |Dsuε| ≤ |Dsu| on

BK , then (3.9) comes directly from (3.10) since

‖u− uε‖BV(Ω) + ‖∇u−∇uε‖Lp(Ω) ≤ ‖u‖L1(AK) + ‖∇u‖L1(AK) + |Dsu|(BK) + ‖∇u‖Lp(AK) .

�
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4. The proof of Theorem B

This section is devoted to the proof of Theorem B; before doing that, we present three

simple technical results. The first one is an extension lemma for smooth sets with a C1 crack.

Lemma 4.1. Let A ⊆ RN be a smooth, bounded, open set, and let H ⊂⊂ A be a compact,

(N − 1)-dimensional, connected, C1 manifold, with (possibly empty) C1 boundary. Then, there

exists a constant C, depending only A and on H, such that for any three functions g ∈ L1(∂A)

and g± ∈ L1(H), there exists a function ϕ ∈ W 1,1(A \H) whose trace on ∂A coincides with g

and whose two traces on (the two sides of) H are g+ and g−, satisfying

‖ϕ‖W 1,1(A\H) ≤ C
(
‖g‖L1(∂A) + ‖g+‖L1(H) + ‖g−‖L1(H)

)
. (4.1)

If moreover g ∈ C1(∂A) and g± ∈ C1(H) with g+ = g− on ∂H, then there exists a function

ψ ∈W 1,∞(A \H), again with g as trace on ∂A and g± as traces on H, satisfying

‖ψ‖W 1,∞(A\H) ≤ C
(
‖g‖C1(∂A) + ‖g+‖C1(H) + ‖g−‖C1(H)

)
. (4.2)

Proof. Since H is a C1 manifold with C1 boundary, we can find an open, Lipschitz set A0 ⊂⊂ A,

contained in a small neighborhood of H, with the property that its boundary ∂A0 consists of two

parts, H+ and H−, so that H+ and H− are two C1 manifolds with disjoint interiors and with

the same (N − 2)-dimensional boundary ∂H+ = ∂H− = ∂H. This is a very simple geometrical

fact, Figure 1 depicts the situation for the two possible cases, namely, when H has non-empty

boundary (H1) and when it has empty boundary (H2).

H+
2

H−
2

A

H1

A

H2

H+
1

H−
1

Figure 1. Construction in Lemma 4.1: the shaded parts on the right are A0.

As a consequence, we can find a diffeomorphism Φ : A \ H → A \ A0, bi-Lipschitz up to

the boundary for the geodesic distance, which is the identity in a neighborhood of ∂A, and such

that the images of (the two sides of) H under Φ are H+ and H−.

The standard extension result for Lipschitz sets ensures that there exists a constant C1,

depending only on A and on A0, thus actually only on A and on H, such that for any two maps

g ∈ L1(∂A) and g0 ∈ L1(∂A0) there exists a a function v ∈ W 1,1(A \ A0) whose traces on ∂A

and ∂A0 coincide with g and g0 respectively and such that

‖v‖W 1,1(A\A0) ≤ C1

(
‖g‖L1(∂A) + ‖g0‖L1(∂A0)

)
. (4.3)

To obtain the searched ϕ, then, it is then enough to define g0 as g+ ◦Φ−1 on H+ and as g− ◦Φ−1

on H−, and then simply set ϕ = v ◦Φ; the validity of (4.1) comes directly from (4.3) and by the

fact that Φ is bi-Lipschitz up to the boundary.
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A similar argument can be done to find the searched function ψ when g, g+ and g− are

C1. In fact, the function defined on ∂(A \ A0), which equals g on ∂A and g0 on ∂A0, is C1 by

construction, so there exists a function w ∈W 1,∞(A \A0) with g and g0 as traces, for which

‖w‖W 1,∞(A\A0) ≤ C1

(
‖g‖C1(∂A) + ‖g0‖C1(∂A0)

)
.

Thus, defining ψ = w ◦ Φ, we get a W 1,∞ function on A \H with g, g+ and g− as traces and

satisfying the estimate (4.2). �

Our second preliminary lemma is the estimate of how much a continuous function changes

(in the BV sense) if we substitue its value in a ball with the average value on the ball itself. We

will use the following notation: given a continuous function ϕ on an open set U , and given a

ball B compactly contained in U , we set ϕB as the function

ϕB(x) =

{
ϕ(x) if x ∈ U \B ,
−
∫
B ϕ(y) dy if x ∈ B .

(4.4)

Lemma 4.2. Let U be an open set, and B a ball compactly contained in U . Let moreover

ϕ ∈ W 1,1(U) be a continuous function. Then, the function ϕB defined in (4.4) belongs to

SBV(U), its jump set satisfies JϕB ⊆ ∂B, and

‖ϕ− ϕB‖BV(U) ≤ C
′ ‖ϕ‖W 1,1(B) , (4.5)

where C ′ is a purely geometrical constant, not depending on ϕ, U or B.

Proof. Since the function ϕB coincides with the continuous, W 1,1 function ϕ in U \ B and is

constant in B, of course it belongs to SBV(U) with JϕB ⊆ ∂B, hence we only have to deal

with (4.5).

First of all, calling κ = −
∫
B ϕ(y) dy, by the trace inequality and the Sobolev–Poincarè in-

equality we get that∫
∂B
|ϕ−κ| ≤ CT ‖ϕ− κ‖W 1,1(B) = CT ‖ϕ− κ‖L1(B) +CT ‖Dϕ‖L1(B) ≤ CT (CP + 1) ‖Dϕ‖L1(B) .

Notice that both the constants CT and CP depend on the radius of the ball B; nevertheless, if

we define C1 as the smallest constant such that for every ϕ∫
∂B
|ϕ− κ| ≤ C1 ‖Dϕ‖L1(B) ,

a trivial rescaling argument ensures that C1 does not depend on the radius of B. Then, keeping

in mind that ϕ is continuous, we can evaluate

‖ϕ− ϕB‖BV(U) = |DϕB|(∂B) + ‖ϕ− ϕB‖W 1,1(B) =

∫
∂B
|ϕ− κ|+ ‖ϕ− ϕB‖L1(B) + ‖Dϕ‖L1(B)

≤ (C1 + 1) ‖Dϕ‖L1(B) + 2 ‖ϕ‖L1(B) ≤ (C1 + 2) ‖ϕ‖W 1,1(B) ,

hence (4.5) is established with the purely geometric constant C ′ = C1 + 2. �

Our last preliminary technical result allows to modify the jump set of a SBV function, in

order to make it more regular.
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Lemma 4.3. Let u ∈ SBV(Ω), and let M ⊂⊂ Ω be a compact manifold, polyhedral or of class

C1, such that Ju ⊆ M . Then, for every δ > 0, there exists a function v ∈ SBV(Ω) such that

Jv ⊆ M and H N−1(M \ Jv) = 0, satisfying ‖u− v‖BV(Ω) + ‖u− v‖L∞(Ω) < δ. In addition,

if u ∈ SBVp(Ω), then v ∈ SBVp(Ω) and also ‖∇u−∇v‖Lp(Ω) < δ. Finally, if u belongs to

C∞(Ω \M), or to W 1,∞(Ω \M), then so does v.

Proof. Let us assume, for a moment, that M is connected, and let us consider a smooth open

set A such that M ⊂⊂ A ⊂⊂ Ω. Let ϕ+ : M → R be a C1 function with ϕ+(x) = 0 for every

point x in the boundary of M , and ϕ+(x) > 0 for every other x ∈ M , and let ϕ− : M → R be

identically 0. By Lemma 4.1, we get a function ϕ ∈ W 1,∞(A \M), whose trace at ∂A is zero,

while the traces on the two sides of M are ϕ+ and ϕ−. In particular, extending ϕ by 0 outside

of A, we have ϕ ∈ SBV(Ω) ∩W 1,∞(Ω \M) with Jϕ = M . By Corollary 2.4, we are allowed to

assume that ϕ ∈ SBV(Ω) ∩ C∞(Ω \M) ∩W 1,∞(Ω \M). We want to define v = u + εϕ for a

suitable, small ε.

Of course, whatever ε is, we have that v ∈ SBV(Ω), and v belongs to SBVp(Ω), or C∞(Ω \
M), or W 1,∞(Ω \ M), as soon as so does u. Moreover, Jv ⊆ Ju ∪ Jϕ = M . The fact that

‖u− v‖BV(Ω) +‖u− v‖L∞(Ω) < δ is clearly true for every ε small enough, as well as the fact that

‖∇u−∇v‖Lp(Ω) < δ, in case that u ∈ SBVp(Ω). Therefore, to conclude we only have to find a

small ε such that H N−1(M \ Jv) = 0.

But actually, any point x ∈ M belongs to the jump set of v for all real ε except one; as a

consequence, the values of ε for which H N−1(M \ Jv) > 0 are only countably many, and then

the existence of some ε as required is obvious and the proof is conclued when M is connected.

If M is not connected, by compactness it has anyway a finite number of connected compo-

nents Mi; we can then consider disjoint, smooth sets Ai with Mi ⊂⊂ Ai ⊂⊂ Ω, and repeat in

each of them the above argument, so that the conclusion follows also in the general case. �

We give now the definition of the extension domains that we are going to need for Theorem B.

Definition 4.4. Let Ω ⊆ RN be an open set. We say that Ω is a local extension domain if

W 1,p(Ω) is dense in W 1,1(Ω).

Notice that this definition is even weaker than the usual one. In fact, given a function

u ∈ W 1,1(Ω), we do not need a function ũ ∈ W 1,1(RN ) which coincides with u in Ω, we only

want to find a function v ∈ W 1,p(Ω) such that ‖v − u‖W 1,1(Ω) is arbitrarily small (by Meyers

and Serrin Theorem, this requirement is of course weaker). We are now ready to present the

construction of the approximation required by Theorem B.

Proof (of Theorem B). Let us take Ω and u as in the claim, and let us fix a very small constant

ε � ‖u‖BV(Ω). Notice that, thanks to Lemma 3.3, we can assume that u ∈ L∞(Ω). Moreover,

we can also assume that the support of u is bounded, that is, u(x) = 0 for every x ∈ Ω with

|x| big enough: to achieve this, it is enough to multiply u by a smooth function η : RN → [0, 1]

such that η(x) = 1 for |x| < R1, η(x) = 0 for |x| > R2, ‖Dη‖L∞ ≤ 1, and R2 � R1 � 1. We
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aim to find a function uε ∈ SBVp(Ω) ∩ C∞(Ω \ Juε) satisfying

‖uε − u‖BV(Ω) < ε , ‖∇uε −∇u‖Lp(Ω) < ε . (4.6)

Moreover, we will find a compact, (N − 1)-dimensional manifold M , C1 and with C1 boundary,

such that Juε is contained in M and coincides with it up to H N−1-negligible subsets. Of course,

once we do so we will have concluded the proof.

We start by selecting a sufficiently big constant K, depending on Ω, u and ε, so that both

properties ∫
{|∇u|>2K}

|∇u|p < εp

2p+2
,

‖∇u‖Lp(F ) <
ε

2 · 21/p
, ‖u‖L1(F ) + ‖∇u‖L1(F ) <

ε

2C ′
∀F ⊆ Ω : |F | ≤

2 ‖u‖BV(Ω)

K

(4.7)

hold, where C ′ is the constant of Lemma 4.2. We also fix a small constant δ, depending on

Ω, u, ε and K, hence actually only on Ω, u and ε, satisfying

(6 + 5C ′)δ <
ε

2
, (3K)p−15δ <

εp

12
, δ < ε

(
1−

(
5

6

)1/p)
. (4.8)

We will define several approximating functions trough successive refinements, until we will reach

the desired function uε. For the sake of clarity, we divide our construction in some steps.

Step I. The function v1 ∈ SBV(Ω) from Theorem A.

First of all, we apply Theorem A to get a first approximation v1 ∈ SBV(Ω) which satisfies

‖v1 − u‖BV(Ω) < δ , (4.9)

and so that v1 is C∞ in Ω \ Jv1 ; moreover, there is a compact, C1 manifold M ′ ⊂⊂ Ω, with C1

boundary, which contains Jv1 . Notice that the choice uε = v1 does not work because Theorem A

does not give information on ‖∇v1 −∇u‖Lp(Ω), and we do not even know whether ∇v1 ∈ Lp(Ω).

Step II. The function v2 ∈ SBV(Ω) ∩ C∞(Ω \M ′), with C1 traces on M ′ coinciding on ∂M ′.

We want now to modify v1 so to become smooth in Ω \M ′, and in such a way that its traces

on M ′ become C1 and coincide on ∂M ′. To do so, let us call Mi, for 1 ≤ i ≤ P , the connected

components of M ′, which are finitely many, and let Ai be disjoint smooth open sets, compactly

contained in Ω, and each one compactly containing the corresponding manifold Mi.

We apply Lemma 4.1 to the set A = Ai and with H = Mi, getting a constant Ci. Then,

we set gi = 0 on ∂Ai, and we let g±i ∈ L1(Mi) be two functions such that v±i + g±i are two C1

functions on Mi coinciding on ∂Mi, where v±i denote the two traces of vi on Mi, and satisfying∥∥g±i ∥∥L1(Mi)
<

δ

(Ci + 1)P
. (4.10)

Lemma 4.1 provides then us with a function ϕi ∈W 1,1(Ai \Mi), with zero as trace on ∂Ai and

with g±i as traces on Mi and satisfying the estimate (4.1), which by (4.10) becomes

‖ϕi‖W 1,1(Ai\Mi) ≤
2δCi

(Ci + 1)P
. (4.11)
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We can then define the function ṽ2 ∈ SBV(Ω) as the function coinciding with v1 +ϕi on each Ai,

and with v1 in Ω \ ∪iAi. Notice that the Jṽ2 ⊆M ′, the traces of ṽ2 are C1 on M ′ and coincide

on ∂M ′, and by (4.10) and (4.11) we evaluate

‖ṽ2 − v1‖BV(Ω) =

P∑
i=1

‖ϕi‖W 1,1(Ai\Mi)
+
∥∥g+

i − g
−
i

∥∥
L1(Mi)

≤ 2δ ,

which by (4.9) implies

‖ṽ2 − u‖BV(Ω) < 3δ .

We can then apply Corollary 2.4 to ṽ2 ∈ SBV(Ω), finding to v2 ∈ SBV(Ω) ∩ C∞(Ω \M ′) with

‖v2 − ṽ2‖BV(Ω) < 3δ − ‖ṽ2 − u‖BV(Ω), so that

‖v2 − u‖BV(Ω) < 3δ . (4.12)

Notice that, by Lemma 2.5, the traces of v2 on M ′ coincide with those of ṽ2.

Step III. The function v3 ∈ SBV(Ω) ∩ C∞(Ω \M ′) ∩W 1,∞(Ω− \M ′) for M ′ ⊂⊂ Ω− ⊂⊂ Ω.

Our next goal is to modify v2, so to become W 1,∞ in Ω′ \ M ′ for every open set Ω′ ⊂⊂ Ω

compactly containing M ′. Since the traces of v2 on M ′ are C1 and coincide on ∂M ′, and

since M ′ is a finite union of connected, C1 manifolds, Lemma 4.1 provides us with a function

ψ ∈ W 1,∞(Ω \ M ′) which equals 0 outside of a neighborhood of M ′, and whose traces on

M ′ coincide with those of v2; considered on the whole Ω, ψ is of course an SBV function.

Again by Corollary 2.4 and Lemma 2.5, we can assume without loss of generality that ψ ∈
SBV(Ω) ∩W 1,∞(Ω \M ′) ∩ C∞(Ω \M ′). Let us then write v2 = ψ + ω. By definition, ω ∈
SBV(Ω) ∩ C∞(Ω \M ′); however, both the traces of ω on M ′ are zero by construction, hence

we derive ω ∈ W 1,1(Ω) ∩ C∞(Ω \ M ′). By Meyers and Serrin Theorem, we can find ωδ ∈
W 1,1(Ω) ∩ C∞(Ω) such that ‖ωδ − ω‖BV(Ω) = ‖ωδ − ω‖W 1,1(Ω) < δ. We can now simply define

v3 = ψ+ωδ: this function clearly belongs to SBV(Ω)∩C∞(Ω\M ′), and since ψ ∈W 1,∞(Ω\M ′)
and ωδ ∈ C∞(Ω) we have also v3 ∈ W 1,∞(Ω− \M ′) for every M ′ ⊂⊂ Ω′ ⊂⊂ Ω. Finally, by

construction ‖v3 − v2‖BV(Ω) < δ, which from (4.12) gives

‖v3 − u‖BV(Ω) < 4δ . (4.13)

Step IV. The function v4 ∈ SBVp(Ω) ∩ C∞(Ω \M ′).
Observe now that the function v3 is smooth in Ω \ M ′, but this does not necessarily mean

that ∇v3 is in Lp(Ω \ M ′). In this step we face with this problem, replacing v3 with v4 ∈
SBVp(Ω) ∩ C∞(Ω \M ′). Let η : Ω → [0, 1] be a smooth function with compact support such

that η ≡ 1 on a neighborhood of M ′, and let us set ϕ = (1−η)v3; by construction, ϕ ∈W 1,1(Ω).

Let us now use the assumption on Ω to be a local extension domain in the sense of Definition 4.4:

then, we can approximate ϕ in W 1,1(Ω) with W 1,p functions, so again by Meyers and Serrin

we can take a function ϕδ ∈ W 1,p(Ω) ∩ C∞(Ω) with ‖ϕδ − ϕ‖W 1,1(Ω) < δ. Let us then define

v4 = ηv3 + ϕδ: since ∇v3 is bounded in A \ M ′, being M ′ ⊂⊂ A = {η 6= 0} ⊂⊂ Ω, we

derive that ηv3 ∈ SBVp(Ω) ∩ C∞(Ω \ M ′), so it is also v4 ∈ SBVp(Ω) ∩ C∞(Ω \ M ′), and

‖v4 − v3‖BV(Ω) = ‖ϕδ − ϕ‖BV(Ω) = ‖ϕδ − ϕ‖W 1,1(Ω) < δ, which by (4.13) gives

‖v4 − u‖BV(Ω) < 5δ . (4.14)
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Step V. The final function uε.

We are now ready to give our last two approximating functions, namely, the function v5 and the

final function uε. Let us consider the set

F =
{
x ∈ Ω \M ′ : |∇v4(x)| > K

}
,

where K is the constant in (4.7). The set F is open in Ω\M ′, since v4 is smooth there; moreover,

it has small measure: indeed, also by (4.14), we have

K|F | ≤
∫
F
|∇v4| ≤ ‖v4‖BV(Ω) ≤ ‖u‖BV(Ω) + ‖v4 − u‖BV (Ω) ≤ 2 ‖u‖BV(Ω) ,

and by (4.7) this implies that

‖∇u‖Lp(F ) <
ε

2 · 21/p
, ‖u‖L1(F ) + ‖∇u‖L1(F ) <

ε

2C ′
. (4.15)

Now, let us use the fact that ∇v4 belongs to Lp(Ω \M ′), hence in particular ∇v4 ∈ Lp(F ): as a

consequence, we can take finitely many disjoint balls Bi, 1 ≤ i ≤ k, compactly contained in F ,

with the property that

‖∇v4‖Lp(F\∪ki=1Bi)
≤ ε

2 · 21/p
. (4.16)

We now define v5 : Ω→ R as the function given by

v5(x) =

{
(v4)Bi if x ∈ Bi ,
v4(x) if x /∈ ∪ki=1Bi ,

where (v4)Bi denotes the average of v4 in the ball Bi, according with the notation of Lemma 4.2.

In particular, observe that v5 = v4 on Ω \F . It is clear by construction that v5 ∈ SBVp(Ω), and

its jump set is contained in

M = M ′ ∪
⋃k

i=1
∂Bi .

Observe that M is a C1 and compact manifold, with C1 boundary, and since v4 was smooth

on Ω \M ′, then v5 is smooth on Ω \M . We apply now Lemma 4.3 to get our final function

uε ∈ SBVp(Ω), which belongs to C∞(Ω \M) and which satisfies

‖∇v5 −∇uε‖Lp(Ω) < δ , ‖v5 − uε‖BV(Ω) < δ , H N−1(M \ Juε) = 0 . (4.17)

Hence, we have then only to take care of (4.6) to conclude.

Recalling the estimate (4.5) of Lemma 4.2, since v4 is a continuous function in the open set

Ω \M ′′, and by (4.14) and (4.15), we have

‖v4 − v5‖BV(Ω) ≤ C
′ ‖v4‖W 1,1(∪ki=1Bi)

≤ C ′ ‖v4‖W 1,1(F )

≤ C ′
(
‖v4 − u‖BV(Ω) + ‖u‖L1(F ) + ‖∇u‖L1(F )

)
≤ 5C ′δ +

ε

2
,

so that again by (4.14), by (4.17), and by (4.8)

‖u− uε‖BV(Ω) ≤ ‖u− v4‖BV(Ω) + ‖v4 − v5‖BV(Ω) + ‖v5 − uε‖BV(Ω) ≤ (6 + 5C ′)δ +
ε

2
< ε ,

and the first estimate in (4.6) follows.
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Let us then pass to estimate the Lp norm of ∇v5 −∇u in Ω. In Ω \ F , using (4.14), (4.7)

and (4.8), and recalling that v5 = v4, we can evaluate∫
Ω\F
|∇v5 −∇u|p =

∫
Ω\F∩{|∇u|≤2K}

|∇v4 −∇u|p +

∫
Ω\F∩{|∇u|>2K}

|∇v4 −∇u|p

≤ (3K)p−1 ‖∇v4 −∇u‖L1(Ω) + 2p
∫
{|∇u|>2K}

|∇u|p ≤ (3K)p−15δ +
εp

4
≤ εp

3
.

Instead, in F , by (4.15), by (4.16) and by construction we have

‖∇v5 −∇u‖Lp(F ) ≤ ‖∇v5‖Lp(F ) + ‖∇u‖Lp(F ) = ‖∇v4‖Lp(F\∪ki=1Bi)
+ ‖∇u‖Lp(F ) ≤

ε

21/p
.

Putting together the last two estimates, (4.17), and again (4.8), we get the second estimate

in (4.6), therefore the proof is concluded. �

For later use, we now remark what we have found after Step III in the above proof, namely,

the result below.

Lemma 4.5. Let Ω be an open set, u ∈ SBV(Ω), and let M be a C1 manifold with C1 boundary

such that, for some small ε, |Dsu|(Ju \M) < ε/4. Then, there exists a function v ∈ SBV(Ω) ∩
C∞(Ω \M) such that ‖v − u‖BV(Ω) < 4ε, H N−1(M \ Jv) = 0, both the traces of v on the two

sides of M are C1, and v belongs to W 1,∞(Ω− \M) for every M ⊂⊂ Ω− ⊂⊂ Ω. Moreover, if u

is compactly supported in Ω, then so is also v (and then, one has v ∈W 1,∞(Ω \M)).

In fact, in this lemma, to get that H N−1(M \ Jv) = 0 one has to rely also on Lemma 4.3;

moreover, the last point comes directly from the construction.

Remark 4.6. We remark that, in Theorem B, we do not have Juj ⊆ Ju, which was the case

for Theorem A. In fact, in our construction of the functions uj for the proof of Theorem B, we

have enlarged the jump set in Step V.

Observe that the domain Ω could be any open set in RN in Theorem A, while we have

added the assumption on Ω to be a local extension domain for Theorem B. Nevertheless, it is

also possible to consider any open set Ω, up to replace the Lp convergence by an Lploc convergence.

Theorem 4.7. Let Ω ⊆ RN be an open set, and let u ∈ SBVp
∞(Ω). Then, there esists a sequence

of functions uj ∈ SBV(Ω) ∩ SBVp
loc(Ω) and of compact, C1, manifolds with (possibly empty) C1

boundary Mj ⊂⊂ Ω, such that Juj ⊆Mj, H N−1(Mj \ Juj ) = 0, and so that

‖uj − u‖BV(Ω) → 0 , uj ∈ C∞(Ω \ Juj ) , ∇uj −−−−−→
Lploc(Ω)

∇u .

Proof. It is enough to repeat the proof of Theorem B with few minor modifications. More

precisely, we define the functions v1, v2 and v3 exactly as in the steps I, II and III of that

proof. In place of Step IV, which is the only point where we have used the assumption on Ω

of being a local extension domain, we simply set v4 = v3. Of course, we do not know whether

v4 ∈ SBVp(Ω), but v4 ∈ SBVp
loc(Ω) for sure, since it is smooth outside the compact set M ′ and

∇v4 is bounded around M ′.
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Keep now in mind Step V: the fact that ∇v4 was in Lp(Ω) was used only to get the balls Bi

satisfying (4.16). In the present case we cannot get such an estimate, but since ∇v4 ∈ Lploc(Ω)

we can find balls Bi for which

‖∇v4‖Lp(F∩Ωε\∪Hi=1Bi)
≤ ε

2 · 21/p
, (4.16’)

where Ωε ⊂⊂ Ω is a smooth open set such that

M ′ ⊂⊂ Ωε ,
{
x ∈ Ω : |x| < ε−1, B(x, ε) ⊂⊂ Ω

}
⊆ Ωε .

Continuing Step V, we can notice that the proof of the fact that ‖u− uε‖BV(Ω) < ε did not

use (4.16), hence the validity of the estimate still holds. Instead, (4.16) was used to obtain that

‖∇u−∇uε‖Lp(Ω) < ε, and using in the very same way (4.16’) we readily get ‖∇u−∇uε‖Lp(Ωε)
<

ε, which implies the Lploc convergence stated above. The proof is then concluded. �

Remark 4.8. A further generalization of Theorem B for the case of a generic open set Ω ⊆ RN

is possible. Namely, we can have the sequence uj in SBVp(Ω), instead of SBV(Ω) ∩ SBVp
loc(Ω).

But, in this case, both the BV and the Lp convergences in (1.3) become a BVloc and a Lploc

convergence. To prove this, just define the open sets Ωε as in the proof of Theorem 4.7, notice

that v4 is Lipschitz in a neighborhood of ∂Ωε by construction, and replace v4 with some function

coinciding with it in Ωε, and Lipschitz in Ω\Ωε. Of course, the function v4 belongs to SBVp(Ω),

but we do not have any estimate of u − uε in Ω \ Ωε, so that even the BV estimate of u − uε
remains valid only in Ωε, thus we have only a BVloc estimate.

5. The proof of Theorem C

This section is devoted to present the proof of Theorem C. In our construction, we will make

use of Theorem B, of Theorem 1.1 (in particular, the part 2 by Cortesani and Toader), and of

the following two technical lemmas.

Lemma 5.1. Let Ω ⊆ RN be an open set and M0 ⊂⊂ Ω a C1 manifold (possibly with boundary).

Given δ > 0 and a neighborhood A ⊂⊂ Ω of M0, there exist a diffeomorphism Φ : Ω 7→ Ω, with

Φ(x) = x outside of A, and a relatively open, C1 set M ⊆M0 without boundary such that

‖Φ− Id‖C1(Ω;RN ) + ‖Φ−1 − Id‖C1(Ω;RN ) < δ , H N−1(M0 \M) < δ , Φ(M) =
⋃k

i=1
Qi ,

where the Qi are (N − 1)-dimensional open cubes with pairwise disjoint closures.

Lemma 5.2. Let u ∈ SBVp(Ω)∩C1(Ω\Ju)∩W 1,∞(Ω\Ju) with a polyhedral jump set Ju ⊂⊂ Ω

(i.e., Ju is the intersection of Ω with a finite union of (N − 1)-dimensional simplexes). Given

ε > 0 there exists a function uε ∈ SBVp(Ω) ∩C∞(Ω \ Juε) ∩W 1,∞(Ω \ Juε) such that Juε ⊂⊂ Ω

is a C1 manifold with C1 boundary and

‖u− uε‖BV(Ω) < ε , ‖∇u−∇uε‖Lp(Ω;RN ) < ε , H N−1(Ju∆Juε) < ε .

Moreover, if Π is any given hyperplane in RN , we can build the function uε in such a way that

Juε \ Π ⊂⊂ RN \ Π, that is, the part of Juε which is not contained in Π is a strictly positive

distance apart from it.
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The first lemma is a variant of a well know result stated in [10, Th. 3.1.23], in particular it

can be deduced at once from [1, Th. 3.1]. The second one, instead, is a technical approximation

result; notice that the result is not trivial because a polyhedral set is not a C1 manifold, since

different simplexes might intersect with each other and with ∂Ω. To keep this section simple,

we postpone the proof of Lemma 5.2 to the Appendix.

Proof of Theorem C. For the sake of clarity, we will divide this proof in some steps. First, we

will consider the case when u is compactly supported, then we will deduce the general case.

Part A. The case of u compactly supported in Ω.

Step I. The set M and the function u1 from Theorems A and B.

First of all, we fix an arbitrary ε > 0 and we select a C1 manifold M0 ⊂⊂ Ω with C1 boundary

in such a way that

H N−1(Ju∆M0) <
ε

3
, |Du|(Ju \M0) <

ε

5
. (5.1)

Applying Lemma 5.1 with some constant δ � ε to be specified later, we obtain another C1 man-

ifold M ⊆M0 without boundary, a diffeomorphism Φ : Ω 7→ Ω coinciding with the identity map

outside a compact subset of Ω, and finitely many disjoint open (N − 1)-dimensional simplexes

{Qi}i=1, ... , k such that

H N−1(Ju∆M) <
ε

2
, |Du|(Ju \M) <

ε

4
, (5.2)

as well as

‖Φ− Id‖C1(Ω;RN ) + ‖Φ−1 − Id‖C1(Ω;RN ) < δ , Φ(M) =
⋃k

i=1
Qi . (5.3)

In fact, the properties (5.3) are directly given by Lemma 5.1, and the first inequality in (5.2)

comes from the corresponding one in (5.1) as soon as δ < ε/6, while the second inequality

in (5.2) comes from the corresponding one in (5.1) if δ is small enough, because Dsu is a finite

measure, absolutely continuous with respect to H N−1.

Lemma 4.5 (which is nothing else than Theorem A and the first three steps of Theorem B)

provides then us with a function u1 ∈ SBV(Ω) ∩ C∞(Ω \M) ∩W 1,∞(Ω \M) such that

H N−1(M \ Ju1) = 0 , ‖u− u1‖BV(Ω) < 4ε . (5.4)

Notice that, since u1 ∈ SBV(Ω) ∩W 1,∞(Ω \M), then of course it is also u1 ∈ SBVp(Ω).

Step II. The function v1 from Theorem 1.1.

Let us now set

v := u ◦ Φ−1 − u1 ◦ Φ−1 .

By the first estimate in (5.2) and the last one in (5.4) we have that, if δ is sufficiently small,

H N−1(Jv \ Φ(M)) < ε , ‖v‖BV(Ω) < 8ε . (5.5)

Moreover, of course v is still compactly supported in Ω and v ∈ SBVp(Ω), however we have no

a priori estimate on the Lp norm of ∇v.
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Let us now denote by νi the normal vector to each of the simplexes Qi, and set Pi = {x+tνi :

x ∈ Qi, t ∈ (−η, η)}, where η is a sufficiently small parameter to be chosen. In particular, we

take η so small that the parallelepipeds Pi are pairwise disjoint.

Since the function v is bounded by construction, we can apply to it the result by Cortesani

and Toader, Theorem 1.1, finding a sequence {fj} of SBVp functions with polyhedral jump sets,

with fj ∈ C∞(Ω \ Jfj ) ∩W 1,∞(Ω \ Jfj ), such that

fj −−−−→
L1(Ω)

v , ∇fj −−−−→
Lp(Ω)

∇v (5.6)

and satisfying property (1.2) for any admissible function g. Notice that, since v is compactly

supported in Ω, again by multiplication by a smooth cut-off function we can assume without

loss of generality that all the functions fj are supported inside some given open set Ω′ ⊂⊂ Ω.

We claim that, by setting v1 = fj for some j � 1, one has

‖∇v −∇v1‖Lp(Ω) < ε , ‖v1‖BV(Ω) ≤ 2‖v‖BV(Ω) ≤ 16ε , H N−1(Jv1 \ ∪ki=1Pi) < ε . (5.7)

In fact, the first inequality in (5.7) is obvious for j big enough by (5.6). Instead, the validity

of the second inequality in (5.7) for j � 1 comes by (5.6) and applying (1.2) with the function

g(x, a, b, ν) = |b− a|, since this implies that

lim sup
j→∞

‖fj‖BV(Ω) = lim sup
j→∞

(
‖fj‖L1(Ω) + ‖∇fj‖L1(Ω) + |Dsfj |(Ω)

)
= ‖v‖L1(Ω) + ‖∇v‖L1(Ω) + lim sup

j→∞

∫
Jfj∩Ω

′
g(x, f+

j , f
−
j , νfj ) dH

N−1

≤ ‖v‖BV(Ω) .

Finally, the third property of (5.7) for j � 1 comes by applying again (1.2), this time with

the u.s.c. function g(x, a, b, ν) which coincides with 0 whenever x ∈ ∪i=1, ... , kPi, and with 1

otherwise: indeed,

lim sup
j→∞

H N−1(Jfj \ ∪
k
i=1Pi) = lim sup

j→∞

∫
Jfj∩Ω

′
g(x, f+

j , f
−
j , νfj ) dH

N−1

≤
∫
Jv∩Ω

′
g(x, v+, v−, νv) dH

N−1 = H N−1(Jv \ ∪ki=1Pi) < ε ,

since ∪ki=1Pi ⊇ Φ(M) and recalling (5.5). For future reference we observe that for every 1 ≤ i ≤ k

‖Tr(v1;Qi + ηνi)− Tr(v1;Qi − ηνi)‖L1(Qi) ≤ |Dv1|(Pi) , (5.8)

where Tr(v1;Qi + ηνi)(x) and Tr(v1;Qi− ηνi)(x) denote the upper trace of v1 on Qi + ηνi, and

its lower trace on Qi − ηνi (where “upper” and “lower” are intended in the direction of νi).

Step III. The function v2.

Let Ψ : Ω→ Ω be a piecewise affine function which is a bijection from Ω \∪iPi to Ω \∪iQi, and

such that Ψ(x) = x unless x has distance at most
√
Nη from ∪iPi, while Ψ(Pi) = Ψ(∂(Pi)) = Qi

for every i. In particular, we can take such a function so that, for every i, the function Ψ maps

each of the two simplexes Qi ± ηνi in an affine way onto Q′i ⊆ Qi, obtained from Qi with an

homothety of factor 1− η. With a slight abuse of notation we denote by Ψ−1 the inverse of the
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restriction of Ψ to Ω \ ∪iP i, so Ψ−1 maps Ω \Φ(M) = Ω \ ∪iQi onto Ω \ ∪iP i. It is very simple

to check that, as soon as η is small enough, one can find such a map Ψ so that ‖DΨ‖L∞(Ω) ≤ 2

and ‖DΨ−1‖L∞(Ω\∪iQi) ≤ 2. We now set

v2 := v1 ◦Ψ−1 .

From our construction it follows immediately that v2 ∈ SBVp(Ω \Φ(M)), and clearly v2 can be

uniquely extended to a function in SBVp(Ω), which we still denote v2. Notice that Jv2 ⊂⊂ Ω is

a polyhedral set. Moreover from (5.7) it follows that

‖v2‖BV(Ω\Φ(M)) ≤ 2N+4ε , H N−1
(
Jv2 \ Φ(M)

)
≤ 2N−1ε . (5.9)

To conclude this step, we want an estimate of the BV norm of v2 on the whole Ω, as well as

of the Lp norm of ∇v − ∇v2. The latter is very easy to obtain; indeed, by construction, (5.7)

yields that if η is very small then

‖∇v −∇v2‖Lp(Ω) < 2ε . (5.10)

Concerning the BV norm of v2, by recalling (5.9), (5.8) and (5.7), the definition of the Q′i, and

the definition of Ψ on ∂Pi , we get

‖v2‖BV(Ω) = ‖v2‖BV(Ω\Φ(M)) +
k∑
i=1

∫
Qi

|v+
2 − v

−
2 | dH

N−1

≤ Cε+
k∑
i=1

∫
Q′i

|v+
2 − v

−
2 | dH

N−1 +

∫
Qi\Q′i

|v+
2 − v

−
2 | dH

N−1

≤ Cε+
k∑
i=1

‖Tr(v1;Qi + ηνi)− Tr(v1;Qi − ηνi)‖L1(Qi) + C ′ηH N−1(Qi)‖v1‖L∞

≤ Cε+ |Dv1|(∪iPi) + C ′ηH N−1(∪iQi)‖v1‖L∞ ≤ C ′ε ,

(5.11)

where C and C ′ are two constants depending only on N (that we do not write explicitely just

for the sake of shortness), and the last inequality is true as soon as η is small enough (keep in

mind that v1 is bounded by construction).

Step IV. The final functions w, wε and uε.

Let us now define w = u1 ◦ Φ−1 + v2, which is by construction a function in SBVp(Ω). From

Steps I and III we know that Jw ⊆ Φ(M) ∪ Jv2 and the latter set is a polyhedral set compactly

contained in Ω. Moreover, from (5.2) and (5.9) we have that

H N−1
(
(Φ(M) ∪ Jv2)∆Φ(Ju)

)
≤ 2Nε. (5.12)

We claim that

‖u ◦ Φ−1 − w‖BV(Ω) ≤ (C ′ + 5)ε , ‖∇(u ◦ Φ−1)−∇w‖Lp(Ω) < 2ε . (5.13)

The first inequality follows by (5.11), (5.4) and (5.3), while the second is simply (5.10), since by

definition

u ◦ Φ−1 − w = u ◦ Φ−1 − u1 ◦ Φ−1 − v2 = v − v2 .
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Notice that, by Lemma 4.3 and Corollary 2.4, up to an arbitrarily small modification both in the

BV norm and in the Lp norm of the absolutely continuous part of the gradient, we can assume

that Jw = Φ(M) ∪ Jv2 (up to H N−1-negligible sets) and that w ∈ C∞(Ω \ Jw).

Keep in mind that, since u1 ∈ C∞(Ω\Ju1)∩W 1,∞(Ω\Ju1), v1 ∈ C∞(Ω\Jv1)∩W 1,∞(Ω\Jv1),

Φ is a diffeomorphism, and Ψ is piecewise affine, then w also belongs to W 1,∞(Ω \ Jw). As a

consequence, we can apply Lemma 5.2 to w, finding a function wε ∈ SBVp(Ω) ∩C∞(Ω \ Jwε) ∩
W 1,∞(Ω \ Jwε) such that Jwε ⊂⊂ Ω is a manifold of class C1 with C1 boundary and satisfying

‖w − wε‖BV(Ω) < ε , ‖∇w −∇wε‖Lp(Ω;RN ) < ε , H N−1(Jw∆Jwε) < ε . (5.14)

We can finally set the final function uε = wε ◦ Φ. Then, keeping in mind (5.13), (5.3), (5.14)

and (5.12), as well as the fact that Jw = Φ(M) ∪ Jv2 , we immediately obtain

‖u− uε‖BV(Ω) < C ′′ε , ‖∇u−∇uε‖Lp(Ω;RN ) < C ′′ε , H N−1(Ju∆Juε) < C ′′ε ,

for a suitable, purely dimensional constant C ′′. The thesis is then obtained in this case.

Part B. The general case.

Let us now pass to consider the general case, which only requires few simple arguments to be

reduced to the preceding, particular one. We divide for simplicity also this part in few steps.

Step I. The case of Ju ⊂⊂ Ω.

First of all, let us assume that u is not necessarily compactly supported in Ω, but the jump set

of u is compactly contained in Ω. In this case, we can argue more or less as in Lemma 2.2; that

is, we take two open sets A1 and A2 such that Ju ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ Ω, and we use a smooth

cut-off function to write u = u1 + u2, with u1 ∈ SBVp(Ω) supported in A2, and u2 ∈ W 1,p(Ω)

supported in Ω \ A1. The conclusion is then obtained just applying Part A to the function u1,

and Meyers and Serrin Theorem to u2.

Step II. The case of Ω = RN+ : separating the jump set from the boundary.

Let us now consider the case when Ω = RN+ = {x ∈ RN : xN > 0}: we aim to approximate a

given u ∈ SBVp(Ω) with another function whose jump set is a positive distance apart from ∂Ω,

that is, we claim the existence of a function v ∈ SBVp(Ω) such that

dist(Jv, ∂Ω) > 0 , ‖v − u‖BV(Ω) < ε , ‖∇v −∇u‖Lp(Ω) < ε , H N−1(Jv∆Ju) < ε . (5.15)

First of all, as already done at the beginning of the proof of Theorem B, we can assume without

loss of generality that the support of u is bounded. Then, via multiplication with a smooth cut-

off function, we can also write u = u1 + u2, with u1, u2 ∈ SBVp(Ω) and so that u1 is compactly

supported in Ω and

Ju = Ju1 ∪ Ju2 , H N−1(Ju2) < δ , |Dsu2|(Ju2) < δ , (5.16)

for some δ = δ(ε) to be specified later. Then, we let u3 ∈ SBVp(RN ) be the extension of u2 by

symmetry through the hyperplane {xN = 0} = ∂Ω, that is, u3(x, y) = u2(x, |y|). Notice that by

definition

H N−1(Ju3) < 2δ , |Dsu3|(Ju3) < 2δ .
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Notice also that, since the support of u is bounded, then u3 is compactly supported in RN (while

u2 is not compactly supported in Ω). Hence, we can apply as before Theorem 1.1 to the function

u3 so to find a function ũ3 ∈ SBVp(RN )∩C∞(RN \Ju3)∩W 1,∞(RN \Ju3) with polyhedral jump

set Ju3 satisfying

‖u3 − ũ3‖L1(RN ) < δ , ‖∇u3 −∇ũ3‖L1(RN ) < δ , ‖∇u3 −∇ũ3‖Lp(RN ) < δ , (5.17)

and by (1.2) we have also

H N−1(Jũ3) ≤ 2H N−1(Ju3) < 4δ , |Dsũ3|(Jũ3) ≤ 2|Dsu3|(Ju3) < 4δ . (5.18)

Putting together the last estimates, we immediately deduce

‖u3 − ũ3‖BV(RN ) < 8δ . (5.19)

Let us now apply Lemma 5.2 to the function ũ3 with the hyperplane Π = {xN = 0} = ∂Ω,

finding a function ũ3,δ ∈ SBVp(RN ) ∩ C∞(RN \ Jũ3,δ) ∩W 1,∞(RN \ Jũ3,δ), satisfying

‖ũ3 − ũ3,δ‖BV(RN ) < δ , ‖∇ũ3 −∇ũ3,δ‖Lp(RN ) < δ , H N−1(Jũ3∆Jũ3,δ) < δ . (5.20)

and such that the part of the jump set of ũ3,δ not contained in ∂Ω has positive distance from

∂Ω itself. To conclude, it is enough to define v = u1 + ũ3,δ on Ω. Indeed, the jump set of v has

positive distance from ∂Ω by construction, and of course

Ju1 \ Jũ3,δ ⊆ Jv ⊆ Ju1 ∪ Jũ3,δ . (5.21)

Moreover,

‖v − u‖BV(Ω) = ‖ũ3,δ − u2‖BV(Ω) ≤ ‖ũ3,δ − ũ3‖BV(Ω) + ‖ũ3 − u2‖BV(Ω)

≤ ‖ũ3,δ − ũ3‖BV(RN ) + ‖ũ3 − u3‖BV(RN ) < 9δ

by (5.20) and (5.19), and in the very same way

‖∇v −∇u‖Lp(Ω) ≤ ‖∇ũ3,δ −∇ũ3‖Lp(RN ) + ‖∇ũ3 −∇u3‖Lp(RN ) < 2δ

by (5.20) and (5.17). Finally, by (5.16) and (5.21) we have

Jv∆Ju ⊆
((
Ju1 ∪ Jũ3,δ

)
\
(
Ju1 ∪ Ju2

))
∪
((
Ju1 ∪ Ju2

)
\
(
Ju1 \ Jũ3,δ

))
⊆ Jũ3,δ ∪ Ju2 ,

so by (5.16), (5.20) and (5.18) we have

H N−1(Jv∆Ju) < 6δ .

In conclusion, (5.15) holds as soon as soon as we have chosen δ = ε/9, and the step is concluded.

Step III. Conclusion.

It is easy to conclude by putting together the last two steps. Indeed, let u ∈ SBVp(Ω) be a

given function. First of all, as already done several times, we select ũ ∈ SBVp(Ω) with bounded

support and such that

‖ũ− u‖BV(Ω) < ε , ‖∇ũ−∇u‖Lp(Ω) < ε , H N−1(Jũ∆Ju) < ε . (5.22)

Since Ω has locally Lipschitz boundary, we can find another set Ω′ ⊆ Ω, bounded and with

Lipschitz boundary, in such a way that ũ ≡ 0 in Ω \ Ω′, and of course ũ ∈ SBVp(Ω′). By
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compactness, we can find finitely many smooth, bounded, open sets Ωi ⊆ RN , 0 ≤ i ≤ K,

so that Ω′ ⊆ Ω0 ∪ Ω1 ∪ · · · ∪ ΩK , Ω0 ⊂⊂ Ω, and for every 1 ≤ i ≤ K there is a bi-Lipschitz

homeomorphism Φi : RN → RN such that

Φi(Ωi) = (−1, 1)N , Φi(Ωi ∩ Ω) = (−1, 1)N−1 × (0, 1) , Φi(Ωi ∩ ∂Ω) = (−1, 1)N−1 × {0} .

Moreover, we can select a smooth partition of unity {ηi}i=0,1, ... ,K associated with the covering

of Ω′. We write then ũ = u0 + u1 + · · · + uK , where for every 0 ≤ i ≤ K we have set

ui = ηiũ ∈ SBVp(Ωi).

Let us now take any i > 0; we have that ui ◦ Φ−1
i ∈ SBVp(RN+ ), so by Step II and in

particular (5.15) we find a function vi ∈ SBV(RN+ ) such that∥∥vi − ui ◦ Φ−1
i

∥∥
BV(RN+ )

< ε ,
∥∥∇vi −∇ui ◦ Φ−1

i

∥∥
Lp(RN+ )

< ε , H N−1(Jvi∆Jui◦Φ−1
i

) < ε ,

and the jump set of vi is a positive distance apart from ∂RN+ ; hence, the function vi ◦Φi belongs

to SBVp(Ωi), and its jump set is a positive distance apart from ∂Ωi ∩ ∂Ω′, so in particular from

∂Ω′. As a consequence, if we define

v = u0 +
K∑
i=1

vi ◦ Φi ,

then we have v ∈ SBVp(Ω′), and the jump set Jv of v is a positive distance apart from ∂Ω′, so

in particular Jv ⊂⊂ Ω. Moreover, from the decomposition of ũ, also recalling (5.22), we deduce

that

‖u− v‖BV(Ω) < Cε , ‖∇u−∇v‖Lp(Ω) < Cε , H N−1(Ju∆Jv) < Cε ,

where C is a geometric constant, only depending on the sets Ωi and on the bi-Lipschitz constants

of the functions Φi. We can then simply apply Step I to the function v, and the proof is

concluded. �

6. An application of our result

In this last section we present an application of our first result, Theorem A. Let Ω ⊆ RN

be an open set, and for ε > 0 let us denote by Gε any finite collection of disjoint open cubes

Q ⊆ Ω with side length ε and arbitrary orientation. Given a function u ∈ L1
loc(Rn) and ε > 0,

we consider the quantity

κε(u) := εN−1 sup
Gε

∑
Q∈Gε

−
∫
Q

∣∣∣u− uQ∣∣∣ dx ,
denoting uQ = −

∫
Q u. This quantity was introduced in [2], where it was proved that in the special

case of the characteristic function of a measurable set the following formula holds

lim
ε→0

κε(χE
) =

1

2
P (E) ,

where P (E) denotes the perimeter of the set E. This formula was then extended in [11] to the

case of a function u ∈ SBVloc(Ω) with “well behaved” jump set. More precisely, the following

result holds.
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Theorem 6.1. Let Ω ⊆ RN be an open set and u ∈ SBVloc(Ω) such that LN (Ju) = 0. Then

lim
ε→0

κε(u) =
1

4

∫
Ω
|∇u| dx+

1

2
|Dsu|(Ω) . (6.1)

As a consequence of Theorem A, we can show that the above representation formula holds

with no assumptions on Ju.

Corollary 6.2. Let Ω ⊆ RN be an open set, and let u ∈ SBVloc(Ω). Then (6.1) holds.

Proof. Let us assume for a moment that u ∈ SBV(Ω). Then, given any δ > 0, Theorem A

provides us with a function v ∈ SBV(Ω) such that ‖u− v‖BV(Ω) < δ, and H N−1(Jv \ Jv) = 0,

so that in particular LN (Jv) = 0 and then (6.1) holds for v. Given now any cube Q of side ε,

we can evaluate∣∣∣∣−∫
Q
|u−uQ|−−

∫
Q
|v−vQ|

∣∣∣∣ ≤ −∫
Q

∣∣(u−v)−(uQ−vQ)
∣∣ = −
∫
Q

∣∣(u−v)−(u−v)Q
∣∣ ≤ 1

2εN−1
|D(u−v)|(Q) ,

where the last inequality comes by the Poincaré inequality in a cube of side ε, which holds with

constant ε/2. For any finite family Gε of cubes of side ε, then, we have

εN−1

∣∣∣∣ ∑
Q∈Gε

−
∫
Q
|u− uQ| −

∑
Q∈Gε

−
∫
Q
|v − vQ|

∣∣∣∣ ≤ 1

2

∑
Q∈Gε

|Du−Dv|(Q) ≤ δ

2
,

which implies that |κε(u)− κε(v)| ≤ δ/2. Applying (6.1) to v, and sending first ε and then δ to

0, we directly obtain the validity of (6.1) also for u.

Suppose now that u /∈ SBV(Ω), so that we have to show κε(u) → ∞. Fix any open set

Ω′ ⊂⊂ Ω: since u ∈ SBV(Ω′), the very same argument as above, only considering cubes in Q′,

implies that

lim inf
ε→0

κε(u) ≥ 1

4

∫
Ω′
|∇u| dx+

1

2
|Dsu|(Ω′) ,

and letting Ω′ ↑ Ω the conclusion follows. �

It is actually possible to estimate the behaviour of κε(u) even for the case of a function u ∈
BV(Ω), thus possibly with a non vanishing Cantor part. In this case, by means of Theorem 6.1

and of a suitable approximation argument (see [12]), one can show that

1

4
|Du|(Ω) ≤ lim inf

ε→0
κε(u) ≤ lim sup

ε→0
κε(u) ≤ 1

2
|Du|(Ω) . (6.2)

Generalizing [11, Ex. 2.2], we can now show that this estimate is sharp: in fact, if u has a

non-vanishing Cantor part, then any limit between 1/4|Du|(Ω) and 1/2|Du|(Ω) is possible.

Example 6.3. Given any real sequence λn, with 0 < λn < 1/2 for every n, we consider the

following Cantor-like function. We are going to define inductively the intervals Jni for any n ∈ N
and 0 < i ≤ 2n−1, and the intervals Ini for any n ∈ N and 0 < i ≤ 2n. For n = 1, we let

I1
1 = [0, λ1], J1

1 = (λ1, 1− λ1), and I1
2 = [1− λ1, 1]. Then, once we have defined any interval Ini ,

we subdivide it in three parts, namely, In+1
2i−1, Jn+1

i and In+1
2i : the open interval Jn+1

i has the

same center as Ini , while the two closed intervals In+1
2i−1 and In+1

2i are respectively on its left and

on its right, and the measure of each of them is a portion λn+1 of the measure of Ini .
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We define then also a sequence of continuous functions un. More precisely, given any n ≥ 1,

we define un(x) = 0 for x ≤ 0, un(x) = 1 for x ≥ 1,

un(x) =
2i− 1

2k
for x ∈ Jki , with k ≤ n and 1 ≤ i ≤ 2k−1 ,

and un is affine in each interval Ini for 1 ≤ i ≤ 2n. It is easily checked that un uniformly

converges to a function u ∈ BV(R), and moreover Du is purely Cantor (that is, the absolutely

continuous part and the jump part of Du are both 0), and |Du|(R) = 1.

Suppose for a moment that the sequence λn takes constantly the value 0 < λ < 1/2. In this

case, a simple calculation ensures that, defining

κ−(λ) = lim inf
ε→0

κε(u) , κ+(λ) = lim sup
ε→0

κε(u) ,

one has that λ 7→ κ±(λ) are two continuous and decreasing functions in (0, 1/2), satisfying

lim
λ→0

κ−(λ) =
1

2
, lim

λ→1/2
κ+(λ) =

1

4
.

As a consequence, we have shown that the lim inf and the lim sup in (6.2) can take any value in

the open interval (
|Du|(Ω)

4
,
|Du|(Ω)

2

)
.

Finally, one can also build an example of u ∈ SBV for which limε→0 κε(u) = |Du|(Ω)/4 (resp.,

limε→0 κε(u) = |Du|(Ω)/2). This can be obtained by the same construction as above choosing

the sequence λn converging fast enough to 1/2 (resp., to 0).

Appendix A. Proof of Lemma 5.2

This final section is devoted to the proof of Lemma 5.2.

Proof of Lemma 5.2. By assumption, the jump set of u is made by finitely many (N − 1)-

dimensional open simplexes. Nevertheless, in order to perform our recursive construction, it is

simpler to consider a more general situation, namely, when Ju is made by finitely many (N −1)-

dimensional polyhedra. In our construction, a 1-dimensional polyhedron in RN is simply a

segment in RN , and for every 2 ≤ n ≤ N − 1 we recursively define a n-dimensional polyhedron

in RN as a bounded, connected set, contained in an n-dimensional subspace of RN , whose

boundary is a finite union of (n− 1)-dimensional polyhedra.

We assume then that Ju is made by K polyhedra of dimension N − 1, possibly intersecting

with each other, and we call Π and {Πi}i=1, ... ,K−1 the closures of these polyhedra. Since our aim

is, roughly speaking, to “separate” these polyhedra, we aim to reduce ourselves to a situation in

which one polyhedron is a strictly positive distance apart from the other K − 1. For simplicity

of notations, we assume that the polyhedron Π is contained in the hyperplane {xN = 0}. For

any 1 ≤ i ≤ K − 1, we want now to define a (N − 2)-dimensional polyhedron Γi ⊆ Π; if the

intersection between Πi and Π is empty, we simply set Γi = ∅. Otherwise, let us call Θi the

(N−1)-dimensional hyperplane containing Πi, and let us consider Π∩Θi, which is a finite union

of (N − 2)-dimensional closed polyhedra: then, we call Γi the union of those which intersect Πi,
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so Π ∩ Πi ⊆ Γi ⊆ Π ∩Θi, and both inclusions can be strict. Since, in our construction, we will

need to know that the first inclusion is in fact an equality, we make a slight modification of u.

More precisely, we fix a constant ᾱ > 0 so small that the set

J+
u = Ju ∪

⋃K−1

i=1

{
(x, t) ∈ Θi : 0 ≤ t ≤ ᾱ, pri(x, t) ∈ Γi

}
, (A.1)

where pri : Θi → Θi ∩Π is the orthogonal projection, satisfies

H N−1(J+
u ∆Ju) = H N−1(J+

u \ Ju) <
ε

2K
. (A.2)

From Lemma 4.3 we get then u1 ∈ SBVp(Ω) ∩ C1(Ω \ J+
u ) ∩W 1,∞(Ω \ J+

u ) so that

‖u1 − u‖BV(Ω) + ‖u1 − u‖L∞(Ω) + ‖∇u1 −∇u‖Lp(Ω) <
ε

2K
, Ju1 = J+

u . (A.3)

Notice that Ju1 is not the same set as Ju, but by construction it is still the union of K polyhedra,

that for ease of notation we still denote by Π and Πi; we have only slightly enlarged some of

the polyhedra Πi (actually, we could have even diminished the total number of polyhedra, since

two different ones contained in a same hyperplane could have been glued). Observe that, now,

the equality Γi = Π ∩Πi holds true.

Let us now consider Π, which is subdivided by the (N − 2)-dimensional sets Γi in finitely

many “zones” Z1, Z2, . . . ZM . More precisely, Π is the union of finitely many (N−1)-dimensional

closed polyhedra Zj , 1 ≤ j ≤M , in such a way that⋃M

j=1
∂Zj = ∂Π ∪

⋃K−1

i=1
Γi .

Notice that these zones are uniquely determined.

Let us now fix a small quantity 0 < α < ᾱ, to be determined later. Consider the closed,

N -dimensional set {(x, t) : (x, 0) ∈ Π, 0 ≤ t ≤ α}: thanks to our modification and since α < ᾱ,

the sets Πi divide this set in finitely many N -dimensional polyhedra; in particular, for each

1 ≤ j ≤M there is a N -dimensional polyhedron Zj,α, one (N−1)-dimensional face of which is Zj .

Notice that the union of these Zj,α is not necessarily the whole {(x, t) : (x, 0) ∈ Π, 0 ≤ t ≤ α},
there could be also other very small zones appearing if two different Γi’s have an intersection

with positive (N − 2)-dimensional measure; however, we will not need to take care of these new

zones. Observe that, whenever a point (x, t) with 0 < t < α belongs to the boundary of some

Zj,α, then either this point is contained in some Πi, or (x, 0) belongs to the boundary of Π.

We fix now a given polyhedron Zj,α, and we want to define a modification ũj of u1, such that

ũj = u1 outside Zj,α. First of all, we take a piecewise affine diffeomorphism Φ : Zj,α → Zj×[0, α],

being the identity on Zj and on the (possibly empty) intersection Zj,α ∩
(
∂Π × [0, α]

)
: notice

that we can do this in such a way that the bi-Lipschitz constant of this diffeomorphism remains

bounded when α→ 0. It is then simpler to construct a function v on Zj × [0, α] and eventually

to define ũj as v ◦ Φ on Zj,α and u1 outside.

Let β � α be another constant, still to be specified later, and let ZINTj ⊆ Zj be given by

ZINTj =
{
x ∈ Zj : dist(x, ∂Zj) ≤ β

}
.
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A simple geometric argument ensures that there exists a diffeomorphism Ψ : ∂Zj×[0, β]→ ZINTj

with bi-Lipschitz constant which remains bounded for β → 0, and in such a way that for every

point P ∈ ∂Zj the set Ψ
(
{P} × [0, β]

)
is a segment, call it σP , with endpoints Ψ(P, 0) = P and

Ψ(P, β) ∈ ∂ZINTj \ ∂Zj .
The set ZINTj × [0, α] is then the union of the rectangles σP × [0, α], with P varying in ∂Zj .

Let us then fix a point P ∈ ∂Zj ; notice that the segment σP belongs to Π, so to the jump set

Ju1 , and call v− : σP → R the lower trace of u1 on the segment, that is, for every (y, 0) ∈ σP
we have v−(y, 0) = limt↗0 u1(y, t). Notice that the limit exists since u1 ∈ W 1,∞(Ω \ Ju1).

Instead, by construction the set Φ−1
(
(σP \ {P}) × (0, α]

)
does not intersect Ju1 , so we can set

v+ : (σP \ {P}) × (0, α] → R as v+ = u1 ◦ Φ−1. Notice that v+ is Lipschitz, thus it extends

naturally to the whole σP × [0, α]: in general, v+(y, 0) and v−(y, 0) do not coincide; they do so,

however, if y ∈ ∂Π, again by the fact that u1 ∈W 1,∞(Ω\Ju1). We are then in position to define

v on the rectangle σP × [0, α], by setting

v(y, tα) = (1− t)v−(y, 0) + tv+(y, α) + v+(P, tα)− tv+(P, α)− (1− t)v+(P, 0)

for every (y, 0) ∈ σP and 0 ≤ t ≤ 1. Notice that, on the horizontal sides of the rectangle one has

v(y, 0) = v−(y, 0) , v(y, α) = v+(y, α) , (A.4)

while on the vertical side touching ∂Zj it is

v(P, tα) = (1− t)
(
v−(P, 0)− v+(P, 0)

)
+ v+(P, tα) . (A.5)

Now, keep in mind that both v− and v+ are Lipschitz continuous, with Lipschitz constant

at most ‖u1‖W 1,∞(Ω\Ju1 ); as a consequence, by the definition, on the rectangle σP × [0, α] the

function v is Lipschitz continuous, with constant bounded by

5 ‖u1‖W 1,∞(Ω\Ju1 )

α
.

If we now repeat the same construction for every point P ∈ ∂Zj , we end up with a function

v : ZINTj × [0, α]→ R, and this function satisfies

‖v‖W 1,∞(Zj×[0,α]) ≤
5 ‖u1‖W 1,∞(Ω\Ju1 ) Lip(Ψ)

α
. (A.6)

We define then the function ũj : Ω→ R as follows:

ũj(x) =

{
v
(
Φ(x)

)
if x ∈ Φ−1

(
ZINTj × [0, α]

)
,

u1(x) otherwise .

By construction, the function ũj belongs to W 1,∞ in the set Φ−1
(
ZINTj × [0, α]

)
, and it is a BV

function outside, so it is globally a BV function on Ω. Thanks to the first equality in (A.4),

ũj is continuous across ZINTj , and by the second equality in (A.4) it is also continuous across

Φ−1(ZINTj × {α}). Instead, ũj is generally not continuous across Φ−1
(
(∂ZINTj \ ∂Zj)× [0, α]

)
,

so we can expect this set to belong to Jũj .

Finally, we want to determine whether ũj is continuous across Φ−1(∂Zj × [0, α]) ⊆ ∂Zj,α;

more precisely, we intend to prove that, in Φ−1(∂Zj× [0, α]), the jump set Jũj is contained in the



ON THE APPROXIMATION OF SBV FUNCTIONS 35

jump set Ju1 . In fact, let us take a generic point P ∈ ∂Zj and 0 ≤ t ≤ 1, and let us consider the

point Q = Φ−1(P, tα): by construction, and keeping in mind (A.5), ũj is continuous at Q if u1

is continuous there, and v+(P, 0) = v−(P, 0), and both things are generally false. Nevertheless,

assume that Q /∈ Ju1 : as noticed above, this means that Q is not contained in any of the Πi,

and then it is necessarily Q = (P, σ) with (P, 0) ∈ ∂Π and some 0 ≤ σ ≤ α. And then, u1 is

continuous at Q because Q /∈ Ju1 , and v+(P, 0) = v−(P, 0) because the function u1 is continuous

on the boundary of Π. In conclusion, we have shown that if Q /∈ Ju1 , then also Q /∈ Jũj ; as a

consequence, the jump set Jũj coincides with the jump set of u1, except that in place of Zj we

have now the “L-shaped set”

Z̃j = Zj \ ZINTj ∪ Φ−1
(
(∂ZINTj \ ∂Zj)× [0, α]

)
= Zj \ ZINTj ∪ ZLj .

Taking α small enough, and keeping in mind that β � α has still to be chosen, and that the

bi-Lipschitz constant of Φ does not explode when α→ 0, we can then evaluate

H N−1(Jũj∆Ju1) = H N−1(ZINTj ) + H N−1(ZLj )

≤ 2H N−2(∂Zj)β + 2αH N−2(∂Zj)Lip(Φ−1) .
(A.7)

Observe that the big achievement in passing from u1 to ũj is that Z̃j is a positive distance apart

from Jũj \ Z̃j , so we have separated a piece of the jump set from all the rest.

Let us now estimate the distance between u1 and ũj in the BV sense, and in the Lp sense of

the absolutely continuous part of the gradient. Calling A = {x ∈ Ω : u1(x) 6= ũj(x)}, we have

by construction

H N (A) ≤ 2H N−2(∂Zj)βαLip(Φ−1) .

Hence, by construction, by (A.3), (A.6) and (A.7), by the fact that the bi-Lipschitz constants of

Φ and Ψ do not explode when α and β go to 0, and up to choose β � α� 1, we can evaluate

H N−1(Jũj∆Ju1) ≤ ε

3MK
, ‖ũj − u1‖BV(Ω) + ‖∇ũj −∇u1‖Lp(Ω) ≤

ε

3MK
. (A.8)

It is now very simple to conclude: for each 1 ≤ j ≤ M we do the same construction, and we

define the approximating function ũL ∈ BV(Ω) as the function coinciding with ũj on each Zj,α,

and with u1 outside the union of the different Zj,α. Thanks to (A.8), we have

H N−1(JũL∆Ju1) ≤ ε

3K
,

∥∥ũL − u1

∥∥
BV(Ω)

+
∥∥∇ũL −∇u1

∥∥
Lp(Ω)

≤ ε

3K
.

Moreover, by construction the jump set JũL satisfies JũL = Π̃∪
⋃K−1
i=1 Πi, where Π̃ =

⋃M
j=1 Z̃j is a

stricitly positive distance apart from JũL \ Π̃. Notice that Π̃ is no more a connected polyhedron;

in fact, it is a union of M pieces, and each piece is not a polyhedron, but an “L-shaped” set, not

even contained in a (N − 1)-dimensional hyperplane. Nevertheless, it is obvious by construction

that there exists a bi-Lipschitz homeomorphism F : RN → RN which transforms Π̃ into a C1

compact manifold with C1 boundary, and which equals the identity outside of an arbitrarily

small neighborhood U of Π̃; moreover, the bi-Lipschitz constant of F does not explode when U

becomes smaller and smaller. Hence, we can assume that U is a strictly positive distance apart
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from the polyhedra Πi, 1 ≤ i ≤ K − 1, so the function ũ = ũL ◦ F−1 satisfies

H N−1(Jũ∆Ju1) ≤ ε

2K
, ‖ũ− u1‖BV(Ω) + ‖∇ũ−∇u1‖Lp(Ω) ≤

ε

2K
,

which by (A.3) and (A.2) become

H N−1(Jũ∆Ju) ≤ ε

K
, ‖ũ− u‖BV(Ω) + ‖∇ũ−∇u‖Lp(Ω) ≤

ε

K
. (A.9)

Summarizing, starting from the function u ∈ BV(Ω) having K (possibly intersecting) polyhedra

as jump set, we have chosen one of the polyhedra, Π, and constructed a function ũ whose jump

set is made by a C1, compact manifold with C1 boundary, together with K − 1 polyhedra, and

there is a strictly positive distance between the manifold and the polyhedra; in addition, each

of the K − 1 “new” polyhedra coincides with one of the “old” K − 1 polyhedra, or with a small

enlargement of it (at the beginning, we have added to each Πi the small set
{

(x, t) ∈ Θi : 0 ≤
t ≤ ᾱ, pri(x, t) ∈ Γi

}
, recall the definition (A.1) of J+

u ). Finally, (A.9) holds and the set {u 6= ũ}
is an arbitrarily small neighborhood of the polyhedron Π. With an obvious recursion argument

(and also using Corollary 2.4 to get the smoothness of uε for free), we obtain the first part of

the conclusion. Notice that there is one polyhedron on which we never apply our construction:

indeed, once we have done K−1 steps, and then transformed K−1 polyhedra into C1 manifolds,

each one a positive distance away from the remaining of the jump set, the last polyhedron is

automatically isolated; hence, there is no need to apply our argument to this last polyhedron,

it is enough to modify it so to become C1, of course remaining away from the other manifolds.

Let us now prove the second part of the statement. Let Π be a given hyperplane; since Ju

is compactly contained in Ω, we can select finitely many polyhedra Πj ⊂⊂ Ω, 1 ≤ j ≤ H, such

that the intersection of Ju with Π is compactly contained in the union of the Πj . Thanks to

Lemma 4.3, we can replace u with a function ũ which is very close to u, whose jump set coincides

with Ju ∪
⋃H
j=1 Πj ⊂⊂ Ω, and which is still smooth, bounded and with bounded differential

outside of its jump set. Notice that the jump set of ũ is still polyhedral; in particular, if Ju is

the union of K polyhedra, then Jũ is done by K +H ones. We can then apply our construction

above to the function ũ; more precisely, we perform K steps, in each of which we transform

one of the K original polyhedra into a isolated C1 manifold. In each of these steps we could

have enlarged the polyhedra Πj , and it is also possible that some of these polyhedra have been

glued together, so in the end we have polyhedra Π
′
j for 1 ≤ j ≤ H ′ and a suitable H ′ ≤ H.

Keep in mind that by construction the polyhedra Π
′
j are still compactly contained in Ω, and

inside the hyperplane Π. Summarizing, after the K steps we have obtained a function v in

SBVp(Ω)∩C∞(Ω\Jv)∩W 1,∞(Ω\Jv), very close to ũ and so to u, and whose jump set coincides

with the union of K+H ′ disconnected, compact pieces, namely, K connected C1 manifolds, and

H ′ polyhedra inside Π. Notice also that, by construction, none of the manifolds can intersect Π,

since we have modified ũ only in an arbitrarily small neighborhood of Ju, and the union of Π
′
j is

larger than that of Πj , which contains a neighborhood of Π∩ Ju. Hence, we conclude by letting

uε be a last, trivial modification of v which makes the polyhedra Π
′
j become disjoint, compact,

C1 manifolds, still contained in Π and compactly contained in Ω. �



ON THE APPROXIMATION OF SBV FUNCTIONS 37

Acknowledgments. We acknowledge the support of the ICMS where this collaboration was

initiated, and of the ERC St.G. 258685, as well as the MIUR SIR-grant “Geometric Variational

Problems” (RBSI14RVEZ).

References

[1] M. Amar & V. De Cicco, A new approximation result for BV-functions. C.R. Acad. Sci. Paris, Ser. I 340

(2005), 735-738.

[2] L. Ambrosio, H. Brezis, J. Bourgain & A. Figalli, BMO-type norms related to the perimeter of sets. Comm.

Pure Appl. Math. 69 (2016), 1062-1086.

[3] L. Ambrosio & E. De Giorgi, New functionals in the calculus of variations, Atti Accad. Naz. Lincei Rend.

Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 2, 199–210.

[4] L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems.

Oxford University Press, 2000.
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