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Abstract. In this note we propose a min-max theory for embedded hypersurfaces with
a fixed boundary and apply it to prove several theorems about the existence of embedded
minimal hypersurfaces with a given boundary. A simpler variant of these theorems holds
also for the case of the free boundary minimal surfaces.

0. Introduction

The primary interest of this note is the following question, which has been posed to us by
White:

(Q) consider two minimal strictly stable embedded hypersurfaces Σ0 and Σ1 in Rn+1

which have the same boundary γ; is there a third smooth minimal hypersurface Γ2

with the same boundary?

In this note we anser positively, under some suitable assumptions, cf. Corollary 1.9: the
main one is that γ lies in the boundary of a smooth strictly convex subset of Rn+1, but there
are also two other assumptions of technical nature, which we discuss at the end of the next
section.

If we regard Σ0 and Σ1 as two local minima of the Plateau’s problem, we expect that a
“mountain pass lemma” type argument yields a third minimal surface Γ2 which is a saddle
point. This intuition has a long history, which for closed geodesics goes back to the pioneering
works of Birkhoff and Ljusternik and Fet (cf. [6, 22]). In the case n = 2 the first results
regarding the Plateau’s problem are due to Shiffman [32] and Morse and Tompkins [25], using
the parametric approach of Douglas-Rado, which therefore answers positively to question (Q)
if we drop the requirements of embeddedness of the surfaces.

Using a degree theory approach to the Plateau problem, Tromba [38,39] was able to derive
a limited Morse theory for disk-type surfaces, generalizing the Morse-Shiffman-Tompkins
result. M. Struwe [35–37] then developed a general Morse theory for minimal surfaces of
disk and annulus type, based on the H1,2 topology (as opposed to the C0 topology used in
Morse-Shiffman-Tompkins approach). These (and other related works) were expanded by
Jost and Struwe in [17], where they consider minimal surfaces of arbitrary topological type.
Among other things, they succeed in applying saddle-point methods to prove the existence
of unstable minimal surfaces of prescribed genus.

It is well-known that the parametric approach breaks down when n ≥ 3. For this reason
in their celebrated pioneering works [4, 5, 26] Almgren and subsequently Pitts developed a
variational calculus in the large using geometric measure theory. The latter enabled Pitts to
prove in [26] the existence of a nontrivial closed embedded minimal hypersurface in any closed
Riemannian manifold of dimension at most 6. The higher dimensional case of Pitts’ theorem
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was then settled by Schoen and Simon in [30]. A variant of the Almgren-Pitts theory was
later introduced by Simon and Smith (cf. Smith’s PhD thesis [34]) in the 2-dimensional case,
with the aim of producing a min-max construction which allows to control the topology of
the final minimal surface. Further investigations in that direction were then set forth by Pitts
and Rubinstein in [27, 28], who also proposed several striking potential applications to the
topology of 3-manifolds. Part of this program was carried out later in the papers [8], [9], [18]
and [7], whereas several other questions raised in [27,28] constitute an active area of research
right now (see for instance [24]). Currently, min-max constructions have gained a renewed
interest thanks to the celebrated recent work of Marques and Neves [23] which uses the
Almgren-Pitts machinery to prove a long-standing conjecture of Willmore in differential
geometry (cf. also the paper [2], where the authors use similar ideas to prove a conjecture
of Freedman, He and Wang in knot theory).

All the literature mentioned above regards closed hypersurfaces, namely without boundary.
The aim of this paper is to provide a similar framework in order to attack analogous existence
problems in the case of prescribed boundaries. The real issue is only in the boundary
regularity of the final min-max surface, as the interior regularity and much of the existence
setting can be extended without problems. When the boundary γ is lying in the boundary
of a strictly convex set, our theorems give full regularity of the min-max hypersurface in any
dimension. The most relevant difficulty in the proof can be overcome thanks to a beautiful
idea of Brian White, whom we thank very warmly for sharing it with us, cf. [40]: the elegant
argument of White to get curvature estimates at the boundary is reported in Section 6.4.
In passing, since many of the techniques are essentially the same, we also handle the case
of free boundaries, which for n = 2 has already been considered by Grüter and Jost in [16]
and by Li in [19] (modifying the Simon-Smith approach and reaching stronger conclusions).
Slightly after completing this work we learned that a more general approach to the existence
of minimal hypersurfaces with free boundary has been taken at the same time by Li and
Zhou in [20,21]. Note in particular that in [21] the authors are able to prove their existence
even without the assumption of convexity of the boundary.

Our min-max constructions use the simpler and less technical framework proposed by the
first author and Tasnady in [10], which is essentially a variant of that developed by Pitts
in his groundbreaking monograph [26]. It allows us to avoid a lot of technical details and
yet be sufficiently self-contained, but on the other hand there are certain limitations which
Pitts’ theory does not have. However, several of the tools developed in this paper can be
applied to a suitable “boundary version” of Pitts’ theory as well and we believe that the
same statements can be proved in that framework. Similarly, we do not expect any problems
in using the same ideas to extend the approach of Simon and Smith when the boundary is
prescribed.

1. Main statements

Consider a smooth, compact, oriented Riemannian manifold (M, g) of dimension n + 1
with boundary ∂M. We will assume that ∂M is strictly uniformly convex, namely:

Assumption 1.1. The principal curvatures of ∂M with respect to the unit normal ν pointing
inside M have a uniform, positive lower bound.
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Sometimes we write the condition above as A∂M � ξg, where ξ > 0, A∂M denotes the
second fundamental form of ∂M (with the choice of inward pointing normal) and g the
induced metric as submanifold ofM. We also note that we do not really needM to be C∞

since a limited amount of regularity (for instance C2,α for some positive α) suffices for all
our considerations, although we will not pay any attention to this detail.

We start by recalling the continuous families of hypersurfaces used in [10].

Definition 1.2. We fix a smooth compact k-dimensional manifold P with boundary ∂P
(possibly empty) and we will call it the space of parameters.

A smooth family of hypersurfaces inM parametrized by P is given by a map t 7→ Γt which
assigns to each t ∈ P a closed subset Γt of M and satisfies the following properties:

(s1) For each t there is a finite St ⊂M such that Γt is a smooth oriented hypersurface in
M\ St with boundary ∂Γt ⊂ ∂M\ St;

(s2) Hn(Γt) is continuous in t and t 7→ Γt is continuous in the following sense: for all t
and all open U ⊃ Γt there is ε > 0 such that

Γs ⊂ U for all s with |t− s| < ε;

(s3) on any U ⊂⊂M\ St0, Γt
t→t0−→ Γt0 smoothly in U .

Remark 1.3. There is indeed an important yet subtle difference between the above definition
and the corresponding one used in [10]. In the latter reference the families of hypersurfaces
{Γt}t are also assumed to have underlying families of open sets {Ωt}t which vary continuously
(more precisely t 7→ 1Ωt is continuous in L1) and such that ∂Ωt = Σt. For this reason, in
a lot of considerations where [10] invokes the theory of Caccioppoli sets, we will need to
consider more general integral currents, allowing for multiplicities higher than 1; cf. Remark
4.5 and Section 9.3.

From now on we will simply refer to such objects as families parametrized by P and we will
omit to mention the space of parameters when this is obvious from the context. Additionally
we will distinguish between two classes of smooth families according to their behaviour at
the boundary ∂M.

Definition 1.4. Consider a smooth, closed submanifold γ ⊂ ∂M of dimension n − 1. A
smooth family of hypersurfaces parametrized by P is constrained by γ if ∂Γt = γ \ St for
every t ∈ P. Otherwise we talk about “uncostrained families”.

Two unconstrained families {Γt} and {Σt} parametrized by P are homotopic if there is a
family {Λt,s} parametrized by P × [0, 1] such that

• Λt,0 = Σt ∀t ∈ P,
• Λt,1 = Γt ∀t ∈ P,
• and Λt,s = Λt,0 ∀t ∈ ∂P and for all s ∈ [0, 1].

When the two families are constrained by γ we then additionally require that the family {Λt,s}
is also constrained by γ.

Finally a set X of constrained (resp. unconstrained) families parametrized by the same P
is called homotopically closed if X includes the homotopy class of each of its elements.

Definition 1.5. Let X be a homotopically closed set of constrained (resp. unconstrained)
families parametrized by the same P. The min-max value of X, denoted by m0(X) is the
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number

m0(X) = inf

{
max
t∈P
Hn(Σt) : {Σt} ∈ X

}
. (1.1)

The boundary-max value of X is instead

bM0(X) = max
t∈∂P
{Hn(Σt) : {Σt} ∈ X} . (1.2)

A minimizing sequence is given by a sequence of elements {{Σt}`} ⊂ X such that

lim
`↑∞

max
t∈P
Hn(Σ`

t) = m0(X).

A min-max sequence is then obtained from a minimizing sequence by taking the slices {Σ`
t`
},

for a choice of parameters t` ∈ P such that Hn(Σ`
t`

)→ m0(X).

As it is well known, even the solutions of the codimension one Plateau problem can exhibit
singularities if the dimension n + 1 of the ambient manifold is strictly larger than 7. If we
say that an embedded minimal hypersurface Γ is smooth then we understand that it has
no singularities. Otherwise we denote by Sing (Γ) its closed singular set, i.e. the set of
points where Γ cannot be described locally as the graph of a smooth function. Such singular
set will always have Hausdorff dimension at most n − 7 and thus with a slight abuse of
terminology we will anyway say that Γ is embedded, although in a neighborhood of the
singularities the surface might not be a continuous embedded submanifold. When we write
dim (Sing (Γ)) ≤ n− 7 we then understand that the singular set is empty for n ≤ 6.

Our main theorem is the following.

Theorem 1.6. Let M be a smooth Riemannian manifold that satisfies Assumption 1.1 and
X be a homotopically closed set of constrained (resp. unconstrained) families parametrized
by P such that

m0(X) > bM0(X) . (1.3)

Then there is a min-max sequence {Σ`
t`
}, finitely many disjoint embedded and connected

compact minimal hypersurfaces {Γ1, . . . ,ΓN} with boundaries ∂Γi ⊂ ∂M (possibly empty)
and finitely many positive integers ci such that

Σ`
t`

⇀∗
∑
i

ciΓi

in the sense of varifolds and dim (Sing (Γi)) ≤ n− 7 for each i. In addition:

(a) If X consists of unconstrained families, then each Γi meets ∂M orthogonally;
(b) If X consists of families constrained by γ, then:

∑
∂Γi = γ, Sing (Γi) ∩ ∂M = ∅ for

each i and ci = 1 whenever ∂Γi 6= ∅.

Our main concern is in fact the case (b), because the regularity at the boundary requires
much more effort. The regularity at the boundary for the case (a) is instead much more
similar to the usual interior regularity for minimal surfaces and for this reason we will not
spend much time on it but rather sketch the needed changes in the arguments. As an
application of the main theorem we give the following two interesting corollaries.

Corollary 1.7. Under the assumptions above there is always a nontrivial embedded minimal
hypersurface Γ in M, meeting the boundary ∂M orthogonally, with dim (Sing (Γ)) ≤ n− 7.



MINIMAL SURFACES WITH BOUNDARY 5

Note that the corollary above does not necessarily imply that Γ has nonempty boundary:
we do not exclude that Γ might be a closed minimal surface. On the other hand, if Γ has
nonempty boundary, then it is contained in ∂M and any connected component of Γ is thus a
nontrivial solution of the free boundary problem. Therefore the existence of such nontrivial
solution is guaranteed by the following

Assumption 1.8. M does not contain any nontrivial minimal closed hypersurface Σ em-
bedded and smooth except for a singular set Sing (Σ) with dim (Sing (Σ)) ≤ n− 7.

Note that the property above holds ifM satisfies some stronger convexity condition than
Assumption 1.1: for instance if there is a point p such that M \ {p} can be foliated with
convex hypersurfaces, then it follows from the maximum principle. In particular both the
Assumptions 1.1 and 1.8 are satisfied by any bounded convex subset of the Euclidean space,
or by any ball of a closed Riemannian manifold with radius smaller than the convexity radius.

Likewise, under the very same assumptions we can conclude the following Morse-theoretical
result for the Plateau’s problem.

Corollary 1.9. Let M be a smooth Riemannian manifold satisfying Assumptions 1.1 and
1.8 and let γ ⊂ ∂M be a smooth, oriented, closed (n− 1)-dimensional submanifold. Assume
further that:

(i) there are two distinct smooth, oriented, minimal embedded hypersurfaces Σ0 and Σ1

with ∂Σ0 = ∂Σ1 = γ which are strictly stable, meet only at the boundary and bound
some open domain A (in particular Σ0 and Σ1 are homologous).

Then there exists a third distinct embedded minimal hypersurface Γ2 with ∂Γ2 = γ such that
dim (Sing (Γ2)) ≤ n− 7 and Sing (Γ2) ∩ ∂M = ∅.

The corollary above asks for two technical assumptions which are not really natural:

• Σ0 and Σ1 intersect only at the boundary;
• they are regular everywhere.

We use both to give an elementary construction of a 1-dimensional sweepout which “con-
nects” Σ0 and Σ1 (i.e. a one-parameter family {Σt}t∈[0,1]), but by taking advantage of more
avdanced techniques in geometric measure theory and algebraic topology - as for instance
Pitts’ approach via discretized faimly of currents - it should suffice to assume that Σ0 and
Σ1 are homologous and that the dimensions of their singular sets do not exceed n− 7.

The smoothness enters however more crucially in showing that any sweepout connecting Σ0

and Σ1 must have a “slice” with n-dimensional volume larger than max{Hn(Σ0),Hn(Σ1)}. It
is needed to take advantage of an argument of White [41], where regularity is a key ingredient.
The following local minimality property could replace strict stability and smoothness:

• For each i ∈ {0, 1} there is a ε > 0 such that any current Γ with boundary γ which is
distinct from Σi and at flat distance smaller than ε from Σi has mass strictly larger
than that of Σi.

1.1. Acknowledgements. Both authors acknowledge the support of the Swiss National
Foundation. Moreover, they wish to express their gratitude to the anonymous referee who
has pointed out several mistakes in an earlier version of the paper.
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2. Notation and outline of the paper

2.1. Outline of the paper. The Corollaries 1.7 and 1.9 will be shown in the very last
section of the paper (cf. Section 11). The remaining part will instead be entirely devoted to
prove Theorem 1.6.

First of all in the Section 3 we will introduce two adapted classes of stationary varifolds for
the constrained and unconstrained case, which are a simple variants of the usual notion of
stationary varifold introduced by Almgren. Then in Proposition 3.2 we prove the existence
of a suitable sequence of families {{Σt}`} in X with the property that each min-max se-
quence generated by it converges to a stationary varifold: the argument is a straightforward
adaptation of Almgren’s pull-tight procedure used in Pitts’ book and in several other later
references (indeed we follow the presentation in [8])).

In the sections 4 and 5 we adapt the notion of almost minimizing surfaces used in [10]
to the case at the boundary and we ultimately prove the existence of a min-max sequence
which is almost minimizing in any sufficiently small annulus centered at any given point,
cf. Proposition 4.3. The arguments follow closely those used by Pitts in [26] and a trick
introduced in [10] to avoid Pitts’ discretized families. The min-max sequence generated in
Proposition 4.3 is the one for which we will conclude the properties claimed in Theorem 1.6.
Indeed the interior regularity follows from the arguments of Pitts (with a suitable adaptation
by Schoen and Simon to the case n ≥ 6) and we refer to [10] for the details. The remaining
sections are thus devoted to the boundary regularity.

First of all in Section 6 we collect several tools about the boundary behavior of stationary
varifolds (such as the monotonicity formulae in both the constrained and uncostrained case
and a useful maximum principle in the constrained one), but more importantly, we will use a
very recent argument of White to conclude suitable curvature estimates at the boundary in
the constrained case, under the assumption that the minimal surface meets ∂M transversally
in a suitable (quantified) sense, cf. Theorem 6.14.

In Section 7 we recall the celebrated Schoen-Simon compactness theorem for stable min-
imal hypersurfaces in the interior and its variant by Grüter and Jost in the free boundary
case. Moreover, we combine the Schoen-Simon theorem with Theorem 6.14 to conclude a
version of the Schoen-Simon compactness theorem for stable hypersurfaces up to the bound-
ary, when the latter is a fixed given smooth γ and the surfaces meet ∂M transversally.
In Section 9 we modify the proof in [10] to construct replacements for almost minimizing
varifolds. The main difficulty and contribution here is to preserve the boundary conditions
for the surfaces in the constrained case, throughout the various steps of the construction.
Following the arguments in [10], we analogously define the (2m+2j)−1 - homotopic Platau
problem for j ∈ N, and we conclude that in sufficiently small balls, the corresponding mini-
mizers are actually minimizing for the (usual) Plateau problem. Hence their regularity (with
no singular points!) at the boundary will follow from Allard’s boundary regularity in [3].
Finally the tools of Section 7 and Section 9 are used in Section 10 to conclude the boundary
regularity of the minmax surface and hence complete the proof of Theorem 1.6.

2.2. Notation. Since we are always dealing with manifolds M which have a nonempty
boundary, as it is customary an open subset U of M can contain a portion of ∂M. For
instance, if M is the closed unit ball in Rn+2, P the north pole (0, 0, . . . , 1) and Ũ a neigh-
borhood of P in Rn+2, then Ũ ∩M is, in the relative topology, an open subset ofM. Hence,
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although we will denote by Int (M) the set M\ ∂M, the latter is not the topological inte-
rior of M and our notation is slightly abusive. In the following table we present notations,
definitions and conventions used consistently throughout the paper:

Bρ(x), Bρ(x) open and closed geodesic balll of radius ρ and center x in M;
∂Bρ(x) geodesic sphere of radius ρ and center x in M
Int (U) “interior” of the open set U , namely U \ ∂M;
Inj(M) injectivity radius of M;
An(x, τ, t) open annulus Bt(x) \Bτ (x);
AN r(x) the set {An(x, τ, t) with 0 < τ < t < r};
diam(G) diameter of a subset G ⊂M;

Hk k-dim Hausdorff measure in M;
ωk volume of the unit ball in Rk;
ν unit normal to ∂M, pointing inwards
spt support (of a function, vector field, varifold, current, etc.);
Xc(U) smooth vector fields χ with spt(χ) ⊂ U

(note that such χ do not necessarily vanish on ∂M!);
X0
c(U) χ ∈ Xc(U) which vanish on ∂M;

Xt
c(U) χ ∈ Xc(U) tangent to ∂M, i.e. χ · ν = 0;

X−c (U) χ ∈ Xc(U) pointing inwards at ∂M (i.e. χ · ν ≥ 0);
Vk(U),V(U) vector space of k-varifolds in U ;
Gk(U), G(U) Grassmanian bundle of unoriented k-planes on U ;
JSK (rectifiable) current induced by the k-dimensional

submanifold S (taken with multiplicity 1);
the same notation is used for the corresponding rectifiable varifold

M(S) mass norm of a current S;
F(S) flat norm of a current S;
v(R, θ) varifold induced by the k-rectifiable set R, with multiplicity θ;
W0 the set {(x1, . . . , xn+1) ∈ Rn+1 : |xn+1| ≤ x1 tan θ} with θ ∈]0, π

2
[

which we will refer to as the canonical wedge with opening angle θ.

Note that all of the different spaces of vector fields introduced above (namely Xc(U),
X0
c(U), Xt

c(U) and X−c (U)) coincide when U ∩ ∂M = ∅. Otherwise we have the inclusions

X0
c(U) ⊂ Xt

c(U) ⊂ X−c (U) ⊂ Xc(U) ,

which are all proper. Additional clarifications on the differences are provided in the next
section. For the notation and terminology about currents and rectifiable varifolds we will
follow [33]. However we warn the reader that, unless we specify that a given varifold is
integer rectifiable, in general it will be not and will be understood as a suitable measure on
the space of Grassmanians, according to [33, Chapter 8].

3. Existence of stationary varifolds

The first step in the min-max construction consists of finding a nice minimizing sequence
having the property that any min-max sequence belonging to it converges to a stationary
varifold. From now on we will denote the subset of stationary varifolds by Vs(M) (or
simply Vs): the latter is the space of varifolds V such that δV (χ) = 0 for any vector field
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X0
c(M), where δV denotes, as usual, the first variation of V (we refer to [33] for the relevant

definition). We will however consider two slightly smaller subclasses of Vs, depending on
whether we are dealing with the constrained or unconstrained problem. To get an intuition
consider the one-parameter families of smooth maps Φτ generated by vector fields in Xc

following their flows and observe first that such family of smooth maps are keep fix any
point x 6∈ U . Concerning the points in U (more precisely those in U ∩ ∂M), we have the
following different behaviors:

(C) If χ ∈ X0
c(U) then, for every τ , Φτ is a diffeomorphism of M onto itself which is the

identity on ∂M;
(T) If χ ∈ Xt

c(U) then, for every τ , Φτ is a diffeomorphism of M onto itself which maps
∂M∩ U onto itself;

(I) If χ ∈ X−c (U) then Φτ is a well-defined map for τ ≥ 0, but not necessarily for τ < 0;
moreover, for each τ ≥ 0, Φτ is a diffeomorphism of M with Φτ (M) ⊂ M, but in
general Φτ (M) will be a proper subset of M, i.e. Φτ rather than mapping ∂M into
itself might “push it inwards”.

It is thus clear that Xt
c is a natural class of variations for the uncostrained problem, whereas

a vector field in X−c gives a natural (one-sided) variation for the constrained problem if we
impose that it vanishes on the fixed boundary γ. This motivates the following

Definition 3.1. In the “constrained” min-max problem, where the boundary constraint is γ,
we introduce the set Vcs(M, γ) (or shortly Vcs(γ)) which consists of those varifolds satisfying
the condition

δV (χ) ≥ 0 for all χ ∈ X−c (M) which vanish on γ. (3.1)

In the “unconstrained” min-max problem we introduce the set Vus which consists of those
varifolds which are stationary for all variations in χ ∈ Xt

c(M):

δV (χ) = 0 for all χ ∈ Xt
c(M). (3.2)

Clearly, since X0
c(M) ⊂ Xt

c(M), Vus is a subset of the stationary varifolds Vs. Note
moreover that, if χ ∈ X0

c(M), then both χ and −χ belong to X−c (M) and vanish on γ:
therefore we again conclude Vcs(γ) ⊂ Vs.

For the purpose of this section, we will consider the subset V(M, 4m0) of varifolds with
mass bounded by 4m0 = 4m0(X) (the latter being the minmax value of Theorem 1.6). Recall
that the weak* topology on this set is metrizable, and we choose a metric D which induces
it. We are now ready to state the main technical proposition of this section which, as already
mentioned, will be proved using the classical pull-tight procedure of Almgren.

Proposition 3.2. Let X be a homotopically closed set of smooth families parametrized by P,
such that (1.3) is satisfied. Then:

(C) In the problem constrained by γ there exists a minimizing sequence {{Γt}`} ⊂ X such
that, if {Γ`t`} is a min-max sequence, then D(Γ`t` ,V

c
s(γ))→ 0;

(U) In the unconstrained problem there exists a minimizing sequence {{Γt}`} ⊂ X such
that, if {Γ`t`} is a min-max sequence, then D(Γ`t` ,V

u
s )→ 0.

Proof. In what follows we will use Vcs in place of Vcs(γ) for the constrained case. In order
to simplify our discussion, we introduce the notation X−(U, γ) for the class of vector fields
which belong to X−c (U) and vanish on γ. We can repeat the first two steps in the proof
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of [8, Proposition 4.1] verbatim, the only exception being that we consider vector fields in
Xt
c(M) or X−(M, γ) and thus we replace Vs with Vus and Vcs in the respective cases. Since

both these sets of vector fields are convex subsets of X(M), the vector field HV produced
in [8, Proof of Proposition 4.1, Step 1] will also belong to the same class. This way we obtain
a map Ψ as in [8, Proof of Proposition 4.1, Step 3], which sends each varifold V ∈ V(M, 4m0)
to a 1-parameter family of maps ΨV : [0,∞)×M→M, and a continuous, strictly increasing
function L : R→ R s.t. L(0) = 0, with the property that

if η = D(V,V�
s ) > 0, then ||ΨV (1, ·)]V ||(M) ≤ ||V ||(M)− L(η) ,

where � is either u or c, depending on the case considered. The map ΨV (s, ·) is given
by following the one-parameter family of diffeomorphisms generated by T (V )HV where the
“speed” T is a nonnegative continuous function as in [8, Proof of Proposition 4.1, Step 2]
with V�

s replacing the space of all stationary varifolds. In particular T is zero on V�
s and thus

ΨV (s, ·)]V = V for any varifold in V�
s . Note moreover that in the unconstrained case ΨV (s, ·)

is a diffeomorphism fromM to itself, whereas in the constrained case it is a diffeomorphism
of M with ΨV (s,M) which however keeps γ fixed.

At this point we diverge slightly from [8] and introduce the set

V∂ := {Ξt | t ∈ ∂P , {Ξt} ∈ X} ,
which is a closed subset of V(M). Note that, according to our notion of homotopy in
Definition 1.4, this definition is independent of the family {Ξt} ∈ X we choose. We define
b(V ) := min{D(V,V∂), 1} for V ∈ V(M), and remark that b : V(M) → R is a continuous
function. A quick computation as in [8, Proof of Proposition 4.1, Step 2] yields

||ΨV (b(V ), ·)]V ||(M) ≤ ||V ||(M)− b(V )L(D
(
V,V�

s )
)
. (3.3)

We now renormalize the diffeomorphisms ΨV by setting

ΩV (s, ·) = ΨV (b(V )s, ·), s ∈ [0, 1] .

We proceed exactly the same as in the rest of [8, Proof of Proposition 4.1, Step 3], only with
Ω instead of Ψ, and a different parameter space P . Hence, if we start with a sequence of
families {{Σt}`} ⊂ X such that maxt∈P Hn(Σ`

t) ≤ m0(X) + 1
`
, we consider for each ` the

map
h` : P → X−(M, γ) (or Xt

c(M)),

given by h`t = b(Σ`
t)T
(
D(Σ`

t,V�
s )
)
HΣ`t

: such smooth vector field generates ΩΣ`t
. Note that

h`t = 0 for t ∈ ∂P . Moreover the map h` is continuous if Xc(M) is endowed with the topology
of Ck-seminorms. We next smooth the mapp t 7→ h`t by keeping it 0 on ∂P . Consider now
the 1-parameter family of maps generated by such smoothing, which (by a slight abuse of
notation) we still denote by Ω`

t(s, ·). We are ready to define a new family Γ`t = Ω`
t(1,Σ

`
t)

Since Ω`
t(s, ·) is the identity for t ∈ ∂P , the new family {Γ`t}t is homotopic to {Σl

t}t. By the
rest of the construction and (3.3), assuming that the smoothing of h`t is sufficiently close to
it, we then have

Hn(Γ`t) ≤ Hn(Σ`
t)−

b(Σ`
t)L
(
D(Σ`

t,Vs)
)

2
. (3.4)

Moreover, there will be an increasing continuous map λ : R+ → R+ with λ(0) = 0 and

D(Σ`
t,V�

s ) ≥ λ
(
D(Γ`t,V�

s )
)
. (3.5)
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Finally, we claim that for every ε, there exist δ > 0 and N ∈ N such that

if

{
k > N

and Hn(Γ`t`) > m0 − δ

}
, then D(Γ`t` ,V

�
s ) < ε. (3.6)

Let us therefore fix ε > 0. Considering that b(W ) = 0 ∀W ∈ V∂, the continuity of mass

of varifolds clearly implies that, if we set ξ := m0(X)−bM0(X)
2

, then for all V ∈ V(M) with
Hn(V ) ≥ m0 − ξ = bM0(X) + ξ we have b(V ) ≥ c(ξ) > 0. We will choose 0 < δ < ξ and
N ∈ N satisfying

c(ξ)L(λ(ε))

2
− δ > 1

N
.

Assume now, contrary to (3.6), there are k > N and t ∈ P such that

Hn(Γ`t`) > m0 − δ and D(Γ`t` ,V
�
s ) > ε.

Then, by (3.4), (3.5) and the fact that Hn(Σ`
t`

) ≥ Hn(Γ`t`) > m0 − δ > m0 − ξ, we get

Hn(Σ`
t`

) ≥ Hn(Γ`t`) + δ +
c(ξ)L(λ(ε))

2
− δ

≥ m0 +
1

N
.

This contradicts maxt∈P Hn(Σ`
t) ≤ m0(X) + 1

`
, and thus completes the proof of claim (3.6),

which in turn implies the proposition. �

4. Almost minimizing property

Following its introduction by Pitts [26], an important concept to achieve regularity for
stationary varifolds produced by min-max theory is that of almost minimizing surfaces.
Roughly speaking, a surface is almost minimizing if any area-decreasing deformation must
eventually pass through some surface with sufficiently large area. The precise definition we
require here is the following:

Definition 4.1. Let ε > 0, U ∈M be an open subset, and fix m ∈ N. A surface Σ is called
ε-almost minimizing in U if there is no family of surfaces {Σt}t∈[0,1] satisfying the properties:

(s1), (s2) and (s3) of Definition 0.1 hold; (4.1)

Σ0 = Σ and Σt \ U = Σ \ U for every t ∈ [0, 1]; (4.2)

Hn(Σt) ≤ Hn(Σ) +
ε

2m+2
for all t ∈ [0, 1]; (4.3)

Hn(Σ1) ≤ Hn(Σ)− ε (4.4)

A sequence {Ωi} of surfaces is called almost minimizing (or a.m.) in U if each Ωi is εi-almost
minimizing in U for some sequence εi → 0 (with the same m).

Remark 4.2. The definition above is practically the same as the one given in [10] when
m = 1. The generalization is due to the more general parameter space P. To be precise, we
will henceforth fix m ∈ N such that P can be smoothly embedded into Rm.

The main goal of this section is to prove an existence result regarding almost minimizing
property in annuli:
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Proposition 4.3. Le X be a homotopically closed set of (constrained or unconstrained)
families in Mn+1, parameterized by a smooth, compact k-dimensional manifold P (with or
without boundary), and satisfying the condition (1.3). Then there is a function r :M→ R+

and a min-max sequence {Γk} = {Γktk} such that

• {Γk} is a.m. in every An ∈ AN r(x)(x) with x ∈M

• {Γk} converges to a stationary varifold V as k →∞; the varifold V belongs to Vcs(γ)
in the constrained case, whereas it belongs to Vus in the unconstrained case.

An important corollary of the above proposition is the interior regularity, for which we
refer to [10]. We record the consequence here

Proposition 4.4. The varifold V of Proposition 4.3 is a regular embedded minimal surface
in Int (M), except for a set of Hausdorff dimension at most n− 7.

Remark 4.5. As already noticed in Remark 1.3, there is indeed a difference between the
families considered here and the ones of [10]. For this reason, one cannot literally apply the
statements in [10] to conclude Proposition 4.4 from Proposition 4.3. However, this difference
only requires a small technical adjustment, which is illustrated in Section 9.3.

In order to prove Proposition 4.3 we will be following the strategy laid out in Section
5 of [8] (see also Section 3 of [10]), which contains a similar statement. In fact, the main
difference is the significant generalization of the parameter space P . The case of higher
dimensional cubes was covered in the master thesis of Fuchs [12], and in this paper, some
necessary modifications were made. The key ingredient of the proof is a combinatorial
covering argument, a variant of the original one by Almgren and Pitts (see [26]), and which
we therefore refer to as the Almgren-Pitts combinatorial lemma. We will use it to prove
Proposition 4.3 at the end of this section, and its proof will be provided in the next one.

Definition 4.6. Let d ∈ N and U1, . . . Ud be open sets in M. A surface Σ is said to be
ε-almost minimizing in (U1, . . . , Ud) if it is ε-a.m. in at least one of the open sets U1, . . . Ud.
Furthermore, we define

dist(U, V ) := inf
u∈U,v∈V

dg(u, v)

as the distance between the two sets U and V (dg being the Riemannian distance).
Finally, for any d ∈ N we denote by COd the set of d-tuples (U1, . . . , Ud), where U1, . . . , Ud

are open sets with the property that

dist(U i, U j) ≥ 4 ·min{diam(U i), diam(U j)}
for all i, j ∈ {1, . . . , d} with i 6= j.

We require also the following lemma as preparation:

Lemma 4.7. Let p ∈ N. Then there exists ωp ∈ N with the following property:

(CA) Assume F1 = (U1
1 , . . . , U

ωp
1 ), . . . ,F2p = (U1

2p , . . . , U
ωp
2p ) are 2p families of open sets

with the property that

dist(U j
i , U

j′

i ) ≥ 2 ·min{diam(U j
i ), diam(U j′

i )} (4.5)

for all i ∈ {1, . . . , 2p} and for all j, j′ ∈ {1, . . . , ωp} with j 6= j′.
Then we can extract 2p subfamilies F sub1 ⊂ F1, . . . ,F sub2p ⊂ F2p such that
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• dist(U, V ) > 0 for all U ∈ F subi , V ∈ F subj with i, j ∈ {1, . . . , 2p} and i 6= j;

• F subi contains at least 2p open sets for every i ∈ {1, . . . , 2p}.

Proof. Let F1, . . . ,F2p be as in the assumption (CA), with ωp some (natural) number, to
be fixed later. First note that, if U ∈ Fi and V 1, . . . V l ∈ Fs with i 6= s and diam(U) ≤
diam(V j), j ∈ {1, . . . , l}, then there is at most one j ∈ {1, . . . , l} with dist(U, V j) = 0.
Otherwise, assuming there are two such sets V j1 , V j2 with dist(V j1 , U) = 0, dist(V j2 , U) = 0
and w.l.o.g. diam(V j1) ≤ diam(V j2), we would get

dist(V j1 , V j2) ≤ diam(U) ≤ diam(V j1),

which contradicts the assumption (4.5). Now, in order to produce the subfamilies, one can
employ the following algorithm:

– take all the sets in all the families and arrange them in an ascending order with
respect to their diameters, left to right (from smallest to largest). In the first step,
fix the leftmost set;

– at each step of the process, remove all the sets to the right of the fixed set which
are at distance zero with respect to it. Furthermore, if to the left of the currently
fixed set there are 2p− 1 remaining sets from the same family Fi, remove all the sets
to the right which belong to the same family (the latter operation will be called, for
convenience, “clearing of the family Fi”);

– move on to the first (remaining) set to the right of the previously fixed set, fix it, and
repeat the step above.

We claim that the remaining sets build the desired subfamilies. Firstly, it is obvious from
the construction that for any two remaining sets U, V we have dist(U, V ) > 0. Secondly,
we see from the consideration at the beginning of the proof that at each step we remove at
most one set from each family to which the fixed set does not belong to (and none from the
same family, due to (4.5)). Finally, since any family that reaches 2p remaining elements is
removed from the process, it can account for no more than 2p removed elements from any
other family. Hence, if for some Fi we do not reach the stage at each we “clear” Fi, we
have removed at most 2p(2p − 1) elements from Fi and retained at most 2p − 1. Hence, if
we choose any ωp ≥ 4p we can ensure that the clearing process happens for every family and
thus that we have selected at least 2p elements from each. �

Proposition 4.8. (Almgren-Pitts combinatorial lemma) Let X be a homotopically closed
set of families as in Proposition 4.3. Assume P is smoothly embedded into Rm, and let ωm
be as in Lemma 4.7. Then there exists a min-max sequence {ΓN} =

{
ΓNtN
}

such that

• {ΓN} converges to a stationary varifold V , which belongs to Vcs(γ) in the constrained
case and to Vus in the unconstrained case;

• for any (U1, . . . , Uωm) ∈ COωm , ΓN is 1
N

-a.m. in (U1, . . . , Uωm), for N large enough.

We can now prove the main proposition as a corollary of the above.
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Proof of Proposition 4.3. We will show that a subsequence of {Γj} in Proposition 4.8
satisfies the requirements. For each positive r1 < Inj(M) and for each choice of r2, . . . , rω
with the property that ri <

1
9
ri−1 consider the tuple (U1

r1
(x), . . . , Uωm

rωm
(x)) given by

U1
r1

(x) :=M\Br1(x); (4.6)

U l
rl

(x) := Br̃l(x) \Brl(x) where r̃l :=
1

9
rl−1 ; (4.7)

Uωm
rωm

:= Brωm (x) where rωm ≤
1

9
rωm−1. (4.8)

Then, by definition, (U1
r1

(x), . . . , Uωm
rωm

(x)) ∈ COωm and Γj is therefore (for j large enough)
1
j
-a.m. in at least one U l

rl
(x), 1 ≤ l ≤ ωm. Having fixed r1 > 0, one of the following options

holds:

(a) either {Γj} is (for j large) 1
j
-a.m. in (U2

r2
(y), . . . , Uωm

rωm
(y)) for every y ∈M and every

choice of r2, . . . , rω compatible with the requirement ri <
1
9
ri−1;

(b) or, for each K ∈ N, there exists some sK ≥ K and a point xsKr1 ⊂ M such that ΓsK

is 1
sK

-a.m. in M\Br1(x
sK
r1

).

Assume there is no r1 > 0 such that (a) holds. Thus, choosing option (b) with r1 = 1
j

and K = j for each j ∈ N, we obtain a subsequence {Γsj}j∈N, and a sequence of points
{xsjj }j∈N ⊂ M such that Γsj is 1

sj
-a.m. in M\ B 1

j
(x

sj
j ). Since M is compact, there exists

some x ∈ M such that x
sj
j → x. We conclude that, for any N ∈ N, Γsj is 1

sj
-a.m. in

M\B 1
N

(x) for j large enough. Consequently, if y ∈M\ {x}, we can choose r(y) such that

Br(y)(y) ⊂⊂M\{x}, whereas r(x) can be chosen arbitrarily: with such choice {Γsj} is a.m.
in any annullus of AN r(z)(z) for any z ∈M.
Assume now that there is some fixed r1 > 0 such that (a) holds. Note that, in this case,
for any x there is a J (possibly depending on x) such that Γj is not 1

j
-a.m. in U1

r1
for all

j ≥ J . Due to compactness, we can divide the manifold M into finitely many, nonempty,
closed subsets M1, . . . ,MN ⊂M such that

• 0 < diam(Mi) < r̃2 = 1
9
r1 for every i ∈ {1, . . . , N};

• M = ∪Mi.

Similar to the reasoning above, for each Mi, starting with M1, we consider two mutually
exclusive cases:

(a) either there exists some fixed r2,i > 0 such that {Γj} must be (for j large) 1
j
-a.m.

in (U3
r3

(y), . . . , Uωm
rωm

(y)) for every y ∈ Mi and every choice of radii r3, . . . , rωm with

r3 <
1
9
r2,i and rj <

1
9
rj−1;

(b) or we can extract a subsequence {Γj}, not relabeled, and a sequence of points {xi,j} ⊂
Mi such that Γj is 1

j
-a.m. in Br̃2(xi,j) \B 1

j
(xi,j)
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Again, if (b) holds, we know xi,j → xi ∈ Mi, and we can choose r(xi) ∈ (diam(Mi), r̃2).
Accordingly, for any other y ∈ Mi, we can choose r(y) such that Br(y)(y) ⊂⊂ Br(xi)(xi) \
{xi}. We proceed onto Mi+1, where either (a) gets chosen, or we possibly extract a futher
subsequence, and define further values of the function r. For the subsetsMi1 , . . . ,Mil where
option (a) holds, we define r2 := min{r2,i1 , . . . , r2,il}, and then continue iteratively, by first
subdividing the sets and then considering the relevant cases. Finally, note that if in the last
instance of the iteration we choose option (a) for certain subsets, it means that, in those
sets, Γj must be (for j large) 1

j
-a.m. in Brωm (y) for some rωm > 0 and all y, hence we can

choose r(y) = rωm , and we are done. �

5. Almgren-Pitts combinatorial lemma

In this section, we turn to proving Proposition 4.8, which will be done by contradiction.
Assuming no min-max sequence (extracted from an appropriate minimizing sequence) with
the required property exists, we are able to construct a competitor minimizing sequence
{Σt}N with energy (i.e. maxt∈P{Σt}N), lowered by a fixed amount, thus reaching a con-
tradiction to the minimality of the original sequence. This will be done using two main
ingredients. The first is a technical lemma which enables us to use the ”static” variational
principle in Definition 4.1 for a single, fixed time slice to construct a ”dynamic” competitor
family of surfaces. This is achieved by using a tool called ”freezing”, introduced in [10] (see
Lemma 3.1). The statement and proof we present here are slightly different. In the rest of
this section we will use the notation Q(t0, r) for the p-dimensional cube centered at t0 with
sidelength 2r, namely

Q(t0, r) :=
{
t = (t1, . . . , tp) ∈ [0, 1]p | ti0 − r < ti < ti0 + r ∀i ∈ {1, . . . , p}

}
.

Lemma 5.1. Let U ⊂⊂ U ′ ⊂ M be two open sets, and {Ξt}t∈[0,1]p be a smooth family
parameterized by [0, 1]p, with p ∈ N fixed. Given an ε > 0 and t0 ∈ (0, 1)p, suppose {Σs}s∈[0,1]

is a 1-parameter family of surfaces satisfying properties (4.1)-(4.4), with Σ0 = Ξt0 and m = p.
Then there is an η > 0 such that the following holds for every a′, a with 0 < a′ < a < η:
There is a competitor (smooth) family {Ξ′t}t∈[0,1]p such that

Ξt = Ξ′t for t ∈ [0, 1]p \Q(t0, a), and Ξt \ U ′ = Ξ′t \ U ′ for t ∈ Q(t0, a); (5.1)

Hn(Ξ′t) ≤ Hn(Ξt) +
ε

2p+1
for every t ∈ [0, 1]p; (5.2)

Hn(Ξ′t) ≤ Hn(Ξt)−
ε

2
for every t ∈ Q(t0, a

′) . (5.3)

Moreover, {Ξ′t} is homotopic to {Ξt}.

Proof. Step 1: Freezing. First we will choose open sets A1, A2 and B1, B2 satisfying

U ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ U ′,

and such that Ξt0 ∩ C̃ is a smooth surface, where C̃ := B2 \ Ā1, which is possible since
Ξt0 contains only finitely many singularities. In a tubular δ-neighborhood (w.r.t the normal
bundle) of Ξt0 ∩ C̃ we fix normal coordinates (z, σ) ∈ (Ξt0 ∩ C̃) × (−δ, δ) (from now on we
use the notation Ω× (α, β) to identify those points of the tubular neighborhood which lie on
top of Ω ⊂ Ξt0 and have signed distance bounded between α and β). By choosing δ small
enough and/or redefining Ai-s and Bi-s, we can ensure that (Ξt0 ∩A2)× (−δ, δ) ⊂⊂ B1 and
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(Ξt0∩B1)×(−δ, δ) ⊂⊂ B2. Now, after defining the open sets A := A1∪
(
(Ξt0∩A2)×(−δ, δ)

)
,

and B :=
(
(B1∩Ξt0)× (−δ, δ)

)
∪
(
B2 \ ((B̄2∩Ξt0)× [−δ, δ])

)
, we set C := B \ Ā and deduce

the following properties:

(a) U ⊂⊂ A ⊂⊂ B ⊂⊂ U ′;

(b) Ξt0 ∩ C is a smooth surface;

(c) we can fix η > 0 such that Ξt ∩ C is the graph of a function gt over Ξt0 ∩ C for
t ∈ Q(t0, η).

Note that the slightly complicated definitions above are only to ensure the property (c), or
in other words, that the set C is ”cylindrical” near Ξt0 so that Ξt ∩C can in fact be entirely
represented as a graph over Ξt0∩C, i.e. Ξt∩C = {(z, σ)|σ = gt(z), z ∈ Ξt0∩C} ∀t ∈ Q(t0, η).
Next, we fix two smooth functions ϕA and ϕB such that

• ϕA + ϕB = 1;

• ϕA ∈ C∞c (B), ϕB ∈ C∞c (M\ Ā)

We then introduce the functions

gt,τ := ϕBgt + ϕAgτ , t, τ ∈ Q(t0, η), s ∈ [0, 1]

Since gt converges smoothly to gt0(= 0) as t→ t0, we can make supτ ‖gt,τ − gt‖C1 arbitrarily
small by choosing η small. Moreover, if we express the area of the graph of a function g
over Ξt0 ∩ C as an integral functional of g, we know that it only depends on g and its first
derivatives. Thus, if Γt,τ is the graph of gt,τ , we can find η small enough such that

Hn(Γt,τ ) ≤ Hn(Ξt ∩ C) +
ε

2p+3
. (5.4)

Now, given 0 < a′ < a < η, we choose a′′ ∈ (a′, a) and fix a smooth function ϑ : Q(t0, a) →
Q(t0, η) which is equal to the identity in a neighborhood of ∂Q(t0, a) and equal to t0 in
Q(t0, a

′′). We now define a new family {∆t} as follows:

• ∆t = Ξt for t /∈ Q(t0, a);

• ∆t \ B̄ = Ξt \ B̄ for all t;

• ∆t ∩ A = Ξγ(t) ∩ A for t ∈ Q(t0, a);

• ∆t ∩ C = {(z, σ) |σ = gt,ϑ(t), z ∈ Ξt0 ∩ C} for t ∈ Q(t0, a).

Note that {∆t} is a smooth family homotopic to {Ξt}, they both coincide outside of B (and
hence outside of U ′) for every t, and that in A (and hence in U) we have ∆t = Ξϑ(t) for
t ∈ Q(t0, a). Since ϑ(t) is equal to t0 for t ∈ Q(t, a′′), it follows that ∆t ∩ U = Ξt0 ∩ U for
t ∈ Q(t0, a

′′), or in other words, ∆∩U is frozen in Q(t0, a
′′). Furthermore, because of (5.4),

Hn(∆t ∩ C) ≤ Hn(Ξt ∩ C) +
ε

2p+3
for t ∈ Q(t0, a). (5.5)
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Step 2: Dynamic competitor. We fix a smooth function χ : Q(t0, a
′′) → [0, 1] which is

identically 0 in a neighborhood of ∂Q(t0, a
′′), and identically 1 on Q(t0, a

′). We then define
a competitor family {Ξ′t} in the following way:

• Ξ′t = ∆t for t /∈ Q(t0, a
′′);

• Ξ′t \ A = ∆t \ A for t ∈ Q(t0, a
′′);

• Ξ′t ∩ A = Σχ(t) ∩ A for t ∈ Q(t0, a
′′).

The new family {Ξ′t} is also a smooth family, which is obviously homotopic in the sense
of Definition 1.4 to {∆t} and hence to {Ξt}, so long as we ensure a is small enough that
Q(t0, a) ⊆ (0, 1)p. We can now start estimating Hn(Ξ′t).
For t /∈ Q(t0, a), we have Ξ′t = ∆t = Ξt, so

Hn(Ξ′t) = Hn(Ξt) for t /∈ Q(t0, a). (5.6)

For t ∈ Q(t0, a), we have Ξt \ B̄ = Ξ′t \ B̄ and hence Ξ′t \ U ′ = Ξt \ U ′. This shows property
(5.1) of the lemma.
In the set C we have Ξ′t = ∆t for t ∈ Q(t0, a), thus owing to (5.5),

Hn(Ξ′t)−Hn(Ξt) = [Hn(∆t ∩ C)−Hn(Ξt ∩ C)] + [Hn(Ξ′t ∩ A)−Hn(Ξt ∩ A)]

(5.5)

≤ ε

2p+3
+ [Hn(Ξ′t ∩ A)−Hn(Ξt ∩ A)]. (5.7)

Next, we want to estimate the area in A for t ∈ Q(t0, a). To do so, we consider several cases
separately:

(i) Let t ∈ Q(t0, a) \ Q(t0, a
′′). Then Ξ′t ∩ A = ∆t ∩ A = Ξγ(t) ∩ A. However, t, γ(t) ∈

Q(t0, η) and, having chosen η small enough, we can assume that

|Hn(Ξs ∩ A)−Hn(Ξσ ∩ A)| ≤ ε

2p+3
for every σ, s ∈ Q(t0, η). (5.8)

Hence, we deduce with (5.7) that

Hn(Ξ′t) ≤ Hn(Ξt) +
ε

2p+2
. (5.9)

(ii) Let t ∈ Q(t0, a
′′) \Q(t0, a

′). Then Ξ′t ∩A = Σχ(t) ∩A. Therefore, with (5.7) it follows

Hn(Ξ′t)−Hn(Ξt) ≤
ε

2p+3
+ [Hn(Ξt0 ∩ A)−Hn(Ξt ∩ A)]

+ [Hn(Σχ(t) ∩ A)−Hn(Ξt0 ∩ A)]

(4.3),(5.8)

≤ ε

2p+3
+

ε

2p+3
+

ε

2p+2
=

ε

2p+1
. (5.10)

(iii) Let t ∈ Q(t0, a
′). Then we have Ξ′t ∩ A = Σ1 ∩ A. Using (5.7) again, we have

Hn(Ξ′t)−Hn(Ξt) ≤
ε

2p+3
+ [Hn(Σ1 ∩ A)−Hn(Ξt0 ∩ A)]

+ [Hn(Ξt0 ∩ A)−Hn(Ξt ∩ A)]

(4.4),(5.8)

≤ ε

2p+3
− ε+

ε

2p+3
< − ε

2
. (5.11)
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Gathering the estimates (5.6), (5.9), (5.10) and (5.11), we finally obtain the properties (5.2)
and (5.3) of the lemma, which concludes the proof. �

By retracing the steps of the previous proof, we can see that it allows for (at least) two
generalizations, which will be useful.

Remark 5.2. (i) Note that the choice to have the cubes Q(t0, a
′) and Q(t0, a) centered at t0

is unnecessary and only for the sake of notational simplicity. Indeed, with the appropriate
choice of cut-off functions ψ, γ and χ, the proof is almost identical if we replace them with
cubes Q(t1, a

′) and Q(t2, a) (or even more general sets) that are nested inside each other, i.e.
Q(t1, a

′) ⊂⊂ Q(t2, a) ⊂⊂ Q(to, η).
(ii) The lemma also works with minimal modifications if the family {Ξt}t∈[0,1]p is parame-
terized by a k-dimensional smooth submanifold P of [0, 1]p, with ∂P ∩ (0, 1)p = ∅ in case it
has a boundary. One can simply take restrictions of the relevant subsets of [0, 1]p to their
intersection with P, both in the statement and the proof.

In order to use the previous lemma to construct the aforementioned competitor minimiz-
ing sequence and prove the Almgren-Pitts lemma, we will require a combinatorial covering
argument, which is the second main ingredient. The idea is to decrease areas of certain
”large-area” slices by a definite amount, while simultaneously keeping the potential area
increase for other slices under control.

Proof of Proposition 4.8. Let {{Γ`t}}` ⊂ X be a minimizing sequence which satisfies
Proposition 3.2, and such that F({Γ`t}) := max

t∈P
Hn(Γ`t) < m0(X) + 1

2m+2`
. The following

claim clearly implies the proposition:

Claim: For every N large enough there exists tN ∈ P such that ΓN := ΓNtN is 1
N

-a.m. in

every (U1, . . . , Uωm) ∈ COωm and Hn(ΓN) ≥ m0(X)− 1
N

.

We define

KN :=
{
t ∈ P | Hn(ΓNt ) ≥ m0(X)− 1

N

}
(5.12)

and suppose, contrary to the claim, that there is some subsequence {Nj}j such that for every

t ∈ KNj there exists an ωm-tuple (U1, . . . , Uωm) such that Γ
Nj
t is not 1

Nj
-a.m. in it. After a

translation and/or dilation, we can assume, without loss of generality, that P ⊂ [0, 1]m (in
the embedding). Note that, if we assume N to be large enough that m0(X)−1/N > bM0(X),
the set KN will surely lie in the interior of P . In fact, in everything that follows, it is tacitly
assumed that the subsets of P we choose stay away from ∂P , in order to comply with our
definition of homotopic families.
By a slight abuse of notation, from now on we do not rename the subsequence, and also
drop the super- and subscript N from ΓNt and KN . Thus for every t ∈ K there is a ωm-tuple
of open sets (U1,t, . . . , Uωm,t) ∈ COωm and ωm families {Σi,t,τ}τ∈[0,1] such that the following
properties hold for every i ∈ {1, . . . , ωm}:

• Σi,t,0 = Γt;

• Σi,t,τ \ Ui,t = Γt \ Ui,t;
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• Hn(Σi,t,τ ) ≤ Hn(Γt) + 1
2m+2N

;

• Hn(Σi,t,1) ≤ Hn(Γt)− 1
N

.

By recalling the definition of COωm , for every t ∈ K and every i ∈ {1, . . . , ωm} we can choose
an open set U ′i,t such that Ui,t ⊂⊂ U ′i,t and

dist(U ′i,t, U
′
j,t) ≥ 2 ·min{diam(U ′i,t), diam(U ′j,t)} (5.13)

for all i, j ∈ {1, . . . , ωm} with i 6= j. Next, we apply Lemma 5.1 with Ξt = Γt, U = Ui,t,
U ′ = U ′i,t and Στ = Σi,t,τ . Hence, for every t ∈ K and i ∈ {1, . . . , ωm} we get a corresponding
constant ηi,t given by the statement of the lemma.

Step 1: Initial covering. We first assign to each t ∈ K exactly one constant ηt, by setting
ηt := min

i∈{1,...,ωm}
ηi,t. We would like to initially decompose the cube [0, 1]m into a grid of small,

slightly overlapping cubes, such that we might be able to apply the constructions in Lemma
5.1 to each of those (after discarding the ones which have empty intersection with K). For
this, we would like their size to be smaller than the size of the cube given by the lemma for
any point lying in the center of one of these cubes. Therefore, we choose a covering of K:{

Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

) ∣∣∣∣ r1, . . . , rm ∈ {1, . . . , ξ}
Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)
∩K 6= ∅

}
,

where η̃ = 9
10
η, ξ = min{n ∈ N0 | (2n+ 1)η̃ > 1− η}, and η is yet to be determined.

Ideally, we would like η to be smaller than any ηt. The problem, however, is that for each
t ∈ K, the constant ηt (which is determined by the proof of Lemma 5.1) depends also on the
sets Ui,t, so one might not in general expect to prove lower boundedness. Nevertheless, using
Remark 5.2(i), we deduce that if t0 ∈ K, then for any t ∈ Q(t0,

ηi,t0
2

), the conclusions of the

lemma hold with η =
ηi,t0

2
(t being the center of the cubes now), and U = Ui,t0 . Therefore, for

t (∈ K) close enough to t0, we can replace (U1,t, . . . , Uωm,t) by (U1,t0 , . . . , Uωm,t0) if necessary.
Now, we can start by covering K with Q(t, ηt

2
), t ∈ K. Since K is compact, it suffices to

pick finitely many t0, . . . , tl with K ⊂
⋃
Q(ti,

ηti
2

). We then set:

η′ := min
j∈{0,...,l}

ηtj
2

(5.14)

Also note that for N large enough, because of condition (1.3), the set K lies in the interior
of P (in case it has a boundary). That means there exists some η′′ > 0 such that for any
cube Q(t, η′′) intersecting K we have ∂P ∩Q(t, η′′) = ∅.
We define η := min{η′

4
, η′′}, which determines the size of the cubes in the covering. Further-

more, we set

r := (r1, . . . , rm);

tr := ((2r1 + 1)η̃, . . . , (2rm + 1)η̃)

Qr := Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)
To each Qr with tr ∈ K we can assign a corresponding ωm-tuple (U1,tr , . . . , Uωm,tr) ∈ COωm
by assumption. On the other hand, to any cube Qr in the covering (i.e. Qr ∩K 6= ∅) where
the center tr /∈ K, owing to Remark 5.2(i) and the choice of η above, we can also assign
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(U1,t̃, . . . , Uωm,t̃) belonging to some t̃ ∈ K, where we are able to apply Lemma 5.1. With a
slight abuse of notation, we will denote this tuple by (U1,tr , . . . , Uωm,tr).

Step 2: Refinement of the covering. Our aim is to find a refinement {Qr(a)}, a ∈
{−2

5
, 2

5
}m of the initial covering, such that

(i) Qr(a) ⊂ Qr for any a;

(ii) for every r and every a there is a choice of Ua,tr such that
– U ′a,tr ∈ {U

′
1,tr , . . . , U

′
ωm,tr},

– dist(U ′a,tr , U
′
a′,t′r

) > 0 if Qr(a) ∩Qr′(a
′) 6= ∅;

(iii) every point t ∈ [0, 1]m is contained in at most 2m cubes Qr(a).

To do this, we cover each cube Qr with 2m smaller cubes in the following way:{
Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,
3

5
η
)
| a1, . . . , am ∈

{
−2

5
,
2

5

}}
(5.15)

We simplify the notation by setting

a := (a1, . . . , am) ∈
{
−2

5
,
2

5

}
;

Qr(a) := Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,
3

5
η
)
.

Note that this choice of the refinement, as well as that of the initial covering, immediately
guarantees properties (i) and (iii).

After assigning a family of open sets to each cube of the initial covering in the previous step,
we now want to assign a subfamily to every cube of the refined covering. Consider a cube
Qr1(a) ⊂ Qr1 of the refinement. Assume that Qr1(a) intersects 1 ≤ j ≤ 2m − 1 different
cubes of the initial covering, say Qr2 , . . . ,Qrj , and let

Fr1 := (U ′1,tr1 , . . . , U
′
ωm,tr1

), . . . ,Frj := (U ′1,trj . . . , U
′
ωm,trj

)

be the corresponding tuples of open sets. Applying Lemma 4.7, we extract subfamilies
F subri

⊂ Fri for every i ∈ {1, . . . , j}, each containing at least 2m open sets such that

dist(U, V ) > 0 ∀ U ∈ F subra , V ∈ F subrb
. (5.16)

We then assign to Qr1(a) the subfamily F subr1
, which we now denote by Fr(a). We can

do this for every cube in the refinement. By construction, the property (5.16) surely
holds for each two subfamilies Fri(a),Frj(a

′) assigned to cubes Qri(a),Qrj(a
′), such that

Qri(a) ∩Qrj(a
′) 6= ∅ and Qri 6= Qrj . On the other hand, the subfamilies assigned to two

cubes belonging to the same cube of the initial covering (i.e. Qri = Qrj), are not necessarily
different. Note however, that each subfamily contains at least 2m open sets, and every cube
Qr of the initial covering is covered by exactly 2m cubes of the refinement. Hence we can
assign to each of those a distinct open set U ′a,tr ∈ Fr(a).
Thus we have a refinement of the covering {Qr(a)} and corresponding open sets U ′a,tr which
have all the three properties listed in the beginning of Step 2. Moreover, since K is compact,
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and Qr(a) = Q(tr + aη, 3
5
η) according to (5.15), we can choose a δ > 0 such that every t ∈ K

is contained in at least one of the cubes Q(tr + aη, 3
5
η − δ).

For the sake of simplicity, let us now rename the refinement {Qr(a)} and call it {Pα}, the
corresponding smaller cubes Q(tr + aη, 3

5
η − δ) we call P δ

α, and the associated open sets we
now denote by Uα and U ′α. In particular α stands for the pair (a, tr).

Step 3: Conclusion. In order to deduce the existence of a family {Γα,t} with the properties

• Γα,t = Γt if t /∈ Pα and Γα,t \ U ′α = Γt \ U ′α if t ∈ Pα;

• Hn(Γα,t) ≤ Hn(Γt) + 1
2m+1N

for every t;

• Hn(Γα,t) ≤ Hn(Γt)− 1
2N

if t ∈ P δ
α,

we apply Lemma 5.1 for Ξt = Γt, U = Uα, U
′ = U ′α and Στ = Σi,s,τ , where (i, s) = α.

Recall that from the construction of the refined covering {Pα} and the choice of U ′α it follows
that, if Pα ∩ Pβ 6= ∅ for α 6= β, then dist(U ′α, U

′
β) > 0. We can therefore define a new family

{Γ′t}t∈P with

• Γ′t = Γt if t /∈ ∪Pα;

• Γ′t = Γα,t if t is contained in in a single Pα;

• Γ′t =
[
Γt\(U ′α1

∪. . .∪U ′αs)
]
∪
[
Γα1,t∩U ′α1

]
∪. . .∪

[
Γαs,t∩U ′αs

]
if t ∈ Pα1∩. . .∩Pαs , s ≥ 2.

This family is clearly homotopic to {Γt} and hence belongs to X.
We now want to estimate F({Γ′t}). If t /∈ K, then t is contained in at most 2m Pα’s and Γ′t
can therefore increase at most 2m · 1

2m+1N
in area:

t /∈ K =⇒ Hn(Γ′t) ≤ Hn(Γt) + 2m · 1

2m+1N
≤ m0(X)− 1

2N
. (5.17)

Note that the last inequality is due to the definition of K. If t ∈ K, then t is contained in
at least one cube P δ

α and at most 2m − 1 other cubes Pα1 , . . . , Pα2m−1
. Hence the area of Γ′t

looses at least 1
2N

in the first cube and increases at most 1
2m+1N

in the remaining ones, which
are no more than 2m − 1. Thus,

t ∈ K =⇒ Hn(Γ′t) ≤ Hn(Γt) + (2m − 1) · 1

2m+1N
− 1

2N
≤ m0(X)− 1

2m+2N
, (5.18)

where the last inequality holds sinceHn(Γt) ≤ F({ΓNs }s∈P) ≤ m0(X)+ 1
2m+2N

by assumption.
From the preceding inequalities we conclude

F({Γ′t}) ≤ m0(X)− 1

2m+1N
,

which is a contradiction to m0(X) = inf
X
F . This finishes the proof. �

6. Boundary behavior of stationary varifolds

6.1. Maximum principle. The first important tool which we recall is the following classical
maximum principle for the constrained case.
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Proposition 6.1 (Maximum principle). LetM be a smooth (n+1)-dimensional submanifold
satisfying Assumption 1.1 and U ⊂M an open set. If V ∈ Vcs(U, γ) for some C2,α (n− 1)-
dimensional submanifold γ of ∂M (namely δV (χ) ≥ 0 for every χ ∈ X−c (U) which vanishes
on γ), then spt(V ) ∩ ∂M⊂ γ.

The above proposition is classical if we were to considerM as a subset of a larger manifold
M̃ without boundary and we had a varifold V which were stationary in M̃ \ γ. For a proof
we refer the reader to White’s paper [42]. However it is straightforward to check that the
proof in [42] works in our setting, since the condition δV (χ) ≥ 0 for the class of vector fields
X−c (U \ γ) pointing “inwards” is what White really uses in his proof.

Remark 6.2. While one can in principle work with objects defined intrinsically on M, it is
often more convenient to embed M (smoothly) isometrically into some Euclidean space RN .
In fact, by possibly choosing a larger N , one can do this so that M is a compact subset of a
closed (n+ 1)-dimensional manifold M̃.

As a corollary to Proposition 6.1 we obtain the following

Corollary 6.3. Let M be a smooth (n+ 1)-dimensional Riemannian manifold isometrically
embedded in a Euclidean space RN and satisfying Assumption 1.1. If U ′ is an open subset
of RN and V a varifold in Vcs(U ′ ∩M, γ) for some n − 1-dimensional C2,α submanifold γ
of ∂M, then the restricion of V to U ′ \ γ has, as a varifold in U ′ \ γ, bounded generalized
mean curvature in the sense of Allard: in particular all the conclusions of Allard’s boundary
regularity theory in [3] are applicable.

The proof is straightforward: after viewing M as a subset of a closed submanifold M̃,
Proposition 6.1 implies the stationarity of V in M̃\γ and reduces the statement to a classical
computation (see for instance [33, Remark 16.6(2)]).

6.2. Monotonicity formulae. An important tool in regularity theory for stationary var-
ifolds is the monotonicity formula. For x ∈ Int(M) it says that there exists a constant Λ
(depending on the ambient Riemannian manifold M, and which is 0 if the metric is flat,
see [33]) such that the function

f(ρ) := eΛρ ||V ||(Bρ(x))

ωnρn
(6.1)

is non-decreasing for every x ∈ M and every ρ < min{Inj(M), dist(x, ∂M)}. A similar
conclusion assuming the existence of a ”boundary” was reached by Allard [3]. However,
in order to apply Allard’s conclusion to our case, we need to first show that in our case
‖V ‖(γ) = 0. This is achieved in the following Lemma.

Lemma 6.4. Let V ∈ Vcs(U, γ). Then ‖V ‖(γ) = 0. In particular, a varifold V which is a.m.
in annuli for the constrained problem as in Proposition 4.3 is integer rectifiable in the whole
M.

Proof. We split the varifold V into two parts: V r is the restriction of V to G(M\ γ), and
V s is the “restriction of V to γ”, namely V s = V − V r. We first claim that

δV r(χ) = 0 for all χ ∈ Xt
c(M) which vanish on γ. (6.2)
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First of all recall that δV (χ) = 0 for any χ ∈ Xt
c(M) which vanishes on γ, because in this

case both χ and −χ belong to X−(M, γ). Secondly, observe that from the formula for the
first variation, namely

δV (χ) =

∫
divπ χ(x) dV (x, π) , (6.3)

we conclude easily that δV (χ) = δV r(χ) whenever χ ∈ Xc(M\γ). Fix therefore a χ ∈ Xt
c(M)

which vanishes on γ and let ϕδ be a family of functions with the following properties:

• ϕδ ∈ C∞c (M\ γ);
• ϕδ is identically equal to 1 outside the 2δ-tubular neighborhood of γ;
• ‖∇ϕδ‖0 ≤ Cδ−1, where the constant C is independent of the parameter δ.

Note that, since χ vanishes on γ, ‖χ‖0 ≤ Cδ in the 2δ-tubular neighborhood of γ. Hence
it is straightforward to check that ‖∇(ϕδχ)‖ ≤ C, where C is a constant independent of δ.
Hence, the formula for the first variation and the dominated convergence theorem yield

δV r(χ) =

∫
divπ χ(x) dV r(x, π)

= lim
δ↓0

∫
divπ (ϕδχ)(x) dV r(x, π) = lim

δ↓0
δV r(ϕδχ) = 0 .

This shows (6.2), which in turn, recalling that V s = V − V r, yields

δV s(χ) = 0 for all χ ∈ Xt
c(M) which vanish on γ. (6.4)

Let now U be a sufficiently small tubular neighborhood of γ and for each p ∈ U \ γ consider
the nearest point q ∈ γ and the geodesic segment connecting p and q in M̃. We then let χ(p)
be the vector field tangent to such geodesic segment, pointing towards q and with length
equal to the geodesic distance of q to p. Extend it then to γ by setting it 0 there. χ is then
a smooth vector field on a tubular neighborhood of γ inside M̃ and it also has the following
property:

(N) If e1, . . . , en−1, en, en+1 is a smooth orthonormal frame defined over γ with the prop-
erty that e1, . . . , en−1 are tangent to γ, then we have ∇e1χ(q) = . . . = ∇en−1χ(q) = 0,
∇enχ(q) = −en and ∇en+1χ(q) = −en+1 for any q ∈ γ.

Clearly, χ is not tangent to ∂M. It is however easy to see that if q ∈ ∂M, then the projection
of χ(q) onto Tq∂M is bounded by C(dist (q, γ))2. For this reason χ can be modified so that:

• it is tangent to ∂M;
• it vanishes on γ;
• it retains property (N) above.

Moreover, multiplying it by a suitable cut-off function, it can be suitably extended outside a
neighborhood of γ to the whole manifoldM, in order to obtain a globally defined vector field
χ ∈ Xt(M) which vanishes on γ. For this reason it is an admissible test for (6.4), namely
we must have

0 = δV s(χ) =

∫
divπ χ(x) dV s(x, π) . (6.5)
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On the other hand, the integral on the left hand side takes place for x ∈ γ. For any such x,
fix any n-dimensional plane π ⊂ TxM and recall that,

divπχ(x) =
n∑
i=1

g(∇fiχ, fi) ,

where f1, . . . , fn is an orthonormal basis for π. Now, property (N) above ensures that
divπχ(x) ≤ −1. Hence we find δV s(χ) ≤ −‖V s‖(M) = −‖V ‖(γ). Thus (6.5) implies
‖V ‖(γ) = 0 and concludes our proof. �

Lemma 6.4 combined with Corollary 6.3 and with the results in [3] gives the following

Proposition 6.5. Consider an open subset U ⊂ M and a varifold V ∈ Vcs(U, γ) which is
a.m. in annuli as in Proposition 4.3 in the constrained case (where γ is a C2,α submanifold
γ of ∂M). Then, for every x ∈ γ there exists a ρ0 > 0 and a (smooth) function Φ(ρ) with
Φ(ρ)→ 0 as ρ→ 0, such that the quantity

f(ρ) = eΦ(ρ) ||V ||(Bρ(x))

ωnρn
(6.6)

is a monotone non-decreasing function of ρ as long as 0 < ρ < ρ0.

In particular, we conclude that the limit
||V ||(Bρ(x))

ωnρn
exists and it is finite at any point

x ∈ γ.
The case with free boundaries has been addressed by Grüter and Jost in [14–16], who

proved a suitable version of the monotonicity formula. The results in these papers were
proved in the Euclidean space, but they are easily extendable to the case of stationary
varifolds in compact Riemannian manifolds using the embedding trick of Remark 6.2. We
summarize the conclusion in the following

Proposition 6.6. AssumeM⊂ M̃ ⊂ RN , where M̃ is a closed manifold, let U ⊂M be an
open set and V a varifold in Vus (U). Then for each x ∈ U , there exists an r < dist(x, ∂U),
and a constant c(x, r), with c(x, r)→ 1 as r → 0, such that

||V ||(Bσ(x)) + ||V ||(B̃σ(x))

ωkσk
≤ c(x, r)

||V ||(Bρ(x)) + ||V ||(B̃ρ(x))

ωkρk
(6.7)

for all 0 < σ < ρ < r. Here, B̃σ(x) denotes the reflection of the ball Bσ(x) across the
boundary ∂M, as defined in [15, Section 2].

Note that, for points in Int (U) and r < dist(x, ∂M), the monotonicity formula of Grüter
and Jost reduces to (6.1).

Remark 6.7. Proposition 6.6 is indeed proved in [15, Section 3] under the additional as-
sumption that the varifold V is rectifiable. In our case it is however crucial that their ar-
gument can be extended to general varifolds. Indeed, since the monotonicity is derived by
testing the stationarity with a suitable vector field, the adaptation of the argument to gen-
eral varifolds is straightforward and the reader may consult the lecture notes of Leon Simon,
more precisely [33, Chapter 8], where he shows how to adapt to general varifolds the proof
of the interior monotonicity formula presented in [33, Chapter 4] under the rectifiability
assumption.



24 CAMILLO DE LELLIS AND JUSUF RAMIC

An important consequence of the monotonicity in all of the above cases is the existence
of the density function of the varifold under consideration:

Θ(V, x) = lim
r→0

||V ||(Br(x))

ωnrn
(6.8)

is well defined at all points x ∈ U . Moreover, in the case V ∈ Vus , one can conclude that the
function

Θ̃(V, x) :=

{
Θ(V, x) x ∈ Int(M) ∩ U
2Θ(V, x) x ∈ ∂M∩ U

is upper semicontinuous in U . In the constrained case we conclude instead that the density
function is upper semicontinuous in Int (U) and in ∂M∩ U separately.

A direct corollary of Proposition 6.6 is then the rectifiability of any varifold V ∈ Vus (M)
obtained in Proposition 4.3

Corollary 6.8. Let V ∈ Vus be a varifold which is a.m. in annuli as in Proposition 4.3.
Then V is a rectifiable varifold.

Proof. As already remarked, the a.m. property gives the integrality of the varifold in the
interior. The monotonicity formula of Proposition 6.6 gives that the upper density Θ(V, x) is
everywhere finite, and thus we have ‖V ‖ ∂M = ΘHn M by standard measure theoretic
arguments. It remains to show that for Hn-a.e. x ∈ ∂M the varifold V has Tx∂M as
approximate tangent. Arguing as in the proof of [33, Theorem 8.5.5] we know that for Hn-
a.e. x ∈ ∂M any varifold tangent to V at x ∈ ∂M is of the form C = ηΘ(V, x)Hn−1 Tx∂M,
where η is a probability measure on the Grassmanian G of n-dimensional planes of TxM.
We just need to show that η = δTx∂M: as argued in the proof of [33, Theorem 8.5.5] this
would imply the rectifiability of V .

First of all, by standard arguments, the fact that V ∈ Vuc implies that δC(χ) = 0 whenever
χ is a vector field which is tangent to Tx∂M. In particular we can conclude that η = δTx∂M
following the argument used in a similar situation in the proof of the Constancy Theorem
in [33, Chapter 8]. Notice that the proof in there is achieved by testing the first variation
condition with a vector field of the form χ = f∇f , where f is a function vanishing on Tx∂M:
in particular in our case δC(χ) = 0 because χ actually vanishes on Tx∂M. �

Finally, we record here a simple consequence of the argument in [15] proving Proposition
6.6, which has a crucial role in a later section.

Lemma 6.9. Let S be an n-dimensional varifold in {x ∈ Rn+1 : x1 ≤ 0} such that:

• δS(χ) = 0 for every vector field which is tangent to {x1 = 0};
• ρ−n‖S‖(Bρ(0)) = r−n‖S‖(Br(0)) for two distinct radii ρ < r.

Then s−n‖S‖(Bs(0)) = ρ−n‖S‖(Bρ(0)) for every s ∈ [ρ, r].

6.3. Blow-up and tangent cones. In this section we recall the usual “rescaling” procedure
which allows to blow-up minimal surfaces at a given point. Following Remark 6.2, we adhere
to the standard procedure of first embedding the Riemannian manifoldM into RN . We will
use the term n+ 1-dimensional wedge of opening angle θ ∈]0, π

2
[ for any closed subset W of

the form R(W0), where R ∈ SO(n+ 1) is an orientation-preserving isometry of Rn+1 and we
recall that that W0 is the canonical wedge with opening angle θ, namely the set

{(x1, . . . , xn+1) ∈ Rn+1 : |xn+1| ≤ x1 tan θ} .
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The half-hyperplane R({xn+1 = 0, x1 > 0}) will be called the axis of the wedge and the
n − 1-dimensional plane ` := R({xn+1 = x1 = 0}) will be called the tip of the wedge. As
stated above, when W = W0, we call it the canonical wedge with opening angle θ.

Definition 6.10. LetM be a smooth (n+1)-dimensional manifold with boundary satisfying
Assumption 1.1 and γ a C2,α (n− 1)-dimensional submanifold of ∂M. We say that a closed
set K ⊂M meets ∂M in γ with opening angle at most θ if the following holds:

• γ = K ∩ ∂M;
• for any x ∈ γ, let τ ∈ Tx∂M be a unit vector orthogonal to Txγ and ν ∈ TxM be

the unit vector orthogonal to Tx∂M and pointing inwards; then for every C1 curve
σ : [0, 1]→ K, with σ(0) = x and parameterized by arc length, we have

|〈σ̇(0), τ〉| ≤ 〈σ̇(0), ν〉 tan θ . (6.9)

γ

M

K

Figure 1. A set K meeting γ at some angle at most θ < π
2 .

We are now ready to state the blow-up procedure which we will use in the rest of the
note, especially at boundary points. Recall that, for x ∈ ∂M, ν is the unit vector of TxM
orthogonal to Tx∂M and pointing inwards.

Lemma 6.11. Let M ⊂ RN be a smooth Riemannian manifold satisfying Assumption 1.1,
U ⊂M an open set and V a rectifiable varifold which is stationary in Int (U). Given a point
x ∈ spt (V ) ⊂ M we introduce the map ιx,r : RN → RN defined by ιx,r(y) := (y − x)/r and
let Mx,r := ιx,r(M) and Vx,r := (ιx,r)]V .

(I) If x ∈ Int (U), thenMx,r converges, as r → 0, locally in the Hausdorff sense, to TxM
(which is identified with the corresponding linear subspace of RN). If V is integral,
then up to subsequences Vx,r converges, in the sense of varifolds, to a stationary
varifold S which is integral and is a cone.

(B) If x ∈ ∂M, then Mx,r converges, locally in the Hausdorff sense, to T+
xM := TxM∩

{y : ν ·y ≥ 0}. If V is integral and belongs to Vcs(γ), then Vx,r converges, in the sense
of varifolds, to an integral varifold S which a cone, it is supported in T+

xM and it is
stationary in TxM∩ {y : y · ν > 0}.

(W) If x ∈ ∂M, V is as in (B) and spt (V ) is contained in a closed K which meets ∂M
at a C2,α submanifold γ with opening angle at most θ < π

2
, then each such S (as in
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statement (B)) is supported in the wedge W ⊂ TxM of opening angle θ with tip Txγ
and axis orthogonal to Tx∂M.

The lemma is a straightforward consequence of the theory of varifolds developed in [3].

Definition 6.12. At every point x where Θ(V, x) < ∞ we denote by Tan (x, V ) the set of
varifolds W which are limits of subsequences (with rk ↓ 0) of {Vx,r}r and which will be called
tangent varifolds to V at x. If a tangent varifold is a cone, then it will be called tangent
cone.

Remark 6.13. We observe moreover that, when V is stationary and a x a point where it
satisfies the monotonicity formula, then W is stationary and

Θ(V, x) = Θ(W, 0) =
‖W‖(Br(0))

ωnrn
∀W ∈ Tan (x, V ), ∀r > 0 . (6.10)

In order to conclude that W is a cone one needs however some additional information. The
rectifiability of the varifold is enough in the interior, cf. [33, Chapter 8].

6.4. White’s curvature estimate at the boundary. We close this section by introducing
the most important tool in the boundary regularity theory which we will develop in the
sequel. The tool is a suitable curvature estimate at the boundary, suggested to us by Brian
White, which is valid for stable smooth hypersurfaces constrained in a wedge. A varifold
will be called stable (in an open set U) if the second variation δ2V is nonnegative when
evaluated at every vector field compactly supported in Int (U). Strict stability will mean
that the second variation is actually strictly positive, except for the trivial situation where
the vector field vanishes everywhere on the support of the varifold.

Theorem 6.14. Let M be an (n+ 1)-dimensional smooth Riemannian manifold satisfying
Assumption 1.1, γ ⊂ ∂M a C2,α submanifold of ∂M and r ∈]0, 1[. Denote by D the inverse
of the distance between the closest pair of points in γ which belong to distinct connected
components; if there is a single connected component, set D = 0. For every M > 0 and
θ ∈ [0, π[ there are positive constants C(D,M,M, γ, n, θ) and δ(D,M,M, γ, n, θ) with the
following property: Assume that

(CE1) x0 ∈ γ and Σ is a stable, minimal hypersurface in B2r(x0) such that:
– Hn(Σ) ≤Mrn, ∂Σ ⊂ ∂B2r(x0) ∪ ∂M and ∂Σ ∩ ∂M = γ;
– Σ is C1 apart from a closed set sing (Σ) with Hn−2(sing (Σ)) = 0 and
γ ∩ sing (Σ) = ∅;

– Σ is contained in a closed set K meeting ∂M in γ with opening angle at most
θ.

Then Σ is C2,α in Bδr(x0) and

|A| ≤ Cr−1 in Bδr(x0). (6.11)

Furthermore, Σ ∩Bδr(x0) consists of a single connected component.

The proof requires two elementary but important lemmas, which we state immediately.

Lemma 6.15. Let V be an integer n-dimensional rectifiable varifold in Rn+1 such that

(a) V is stationary in a wedge W0 of opening angle θ;
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(b) δV = (w1, w2, 0, . . . , 0)Hn−1 ` for some Borel vector field
w = (w1, w2) ∈ L1

loc(Hn−1 `;R2).

Then for Hn−1-a.e. x ∈ ` we have the representation

w(x) =
m∑
i=1

vi(x)

where

• m = 2Θ(x, V );
• each vi is of the form (− cos θi,− sin θi) for some θi ∈ [−θ, θ].

Lemma 6.16. Let k ∈ N \ {0} and vi = (cos θi, sin θi) 2k + 1 unit vectors in the plane with
−π

2
< θi <

π
2
. Then the sum v1 + . . .+ v2k+1 has length strictly larger than 1.

The simple proofs of the lemmata will be postponed to the end of the section, while we
first deal with the proof of the main Theorem (given the two lemmata).

Proof of Theorem 6.14. We will in fact prove that the constants δ and C depend on
the C2,α regularity of γ, M and ∂M. First of all we focus on the curvature estimate.

Without loss of generality, we again assume that M is isometrically embedded in a eu-
clidean space RN . Observe that the dimension N can be estimated by n and thus we can
assume that N is some fixed number, depending only on n. Upon rescaling we can also
assume that r = 1: the rescaling would just lower the C2,α norm of M, ∂M and γ and
increase the distance D−1 between different connected components of γ.

Assuming by contradiction that the statement does not hold, we would find a sequence of
manifolds Mk, boundaries γk, minimal surfaces Σk and points pk ∈ Σk with the properties
that:

• |AΣk |(pk) ↑ ∞, or pk is a singular point, and the distance between pk and γk converges
to 0
• Mk,Σk and γk satisfy the assumptions of the Theorem with r = 1, with a uniform

bound on the C2,α regularities of both γk and Mk and with a uniform bound on M
and θ.

We let qk ∈ γk be the closest point to pk and, w.l.o.g. we translate the surfaces so that
qk = 0. We next rescale them by a factor ρ−1

k where ρk is the maximum between |pk| and
|AΣk(pk)|−1 (where we understand the latter quantity to be 0 if pk is a singular point). We
denote by γ̄k, M̄k, Σ̄k and p̄k the corresponding rescaled objects. It turns out that, up to
subsequences,

(a) the rescaled manifolds M̄k are converging, locally in C2,α, to a half (n+1)-dimensional
plane, that w.l.o.g. we can assume to Rn+1

+ = {x : xn+2 = . . . = xN = 0, x1 ≥ 0};
(b) the rescaled manifolds ∂M̄k are converging, locally in C2,α, to an n-dimensional

plane, namely {x : x1 = xn+2 = . . . = xN = 0};
(c) the rescaled surfaces γ̄k are converging, locally in C2,α, to an n−1-dimensional plane,

that w.l.o.g. we can assume to be ` := {x1 = xn+1 = xn+2 = . . . = xN = 0};
(d) the points p̄k are converging to some point p̄ and lim infk |AΣ̄k | > 0;
(e) the surfaces Σ̄k are converging, in the sense of varifolds, to an integral varifold V ,

which is supported in the standard wedge W contained in Rn+1
+ with tip `, axis

π+ = {x1 > 0, xn+1 = xn+2 = . . . = xN = 0};



28 CAMILLO DE LELLIS AND JUSUF RAMIC

(f) the integral varifold V is stationary inside W \ ` and in fact |δV | ≤ Hn−1 `.

All these statements are simple consequences of elementary considerations and of the theory
of varifolds. For (f), observe that |δJΣ̄kK| ≤ Hn−1 γk + ‖AMk

‖C0Hn Σk and use the
semicontinuity of the total variation of the first variations under varifold convergence.

We next show that the varifold V is necessarily half of an n-dimensional plane τ bounded
by ` and lying in W . This would imply, by Allard’s regularity theorem, that the surfaces Σk

are in fact converging in C2,α to τ , contradicting (d).

We first start to show that the density 2Θ(V, x) is odd at Hn−1 a.e. p ∈ `. By White’s
stratification theorem, see Theorem 5 of White [43], at Hn−1-a.e. point x ∈ ` there is a
tangent cone V∞ to V which is invariant under translations along `. This implies that V∞ is
necessarily given by

m∑
i=1

Jπi ∩W0K

for some family of n-dimensional planes (possibly with repetitions) containing `, where

m = m(x) = 2Θ(V∞, 0) = 2Θ(V, x) .

Observe that any such halfplane πi ∩ W0 is contained in the wedge W0. Without loss of
generality we can assume that each πi ∩W0 makes an angle smaller than π

2
with π1 ∩W0

Let B ⊂ π1 ∩W0 be a compact connected set not intersecting `. By a simple diagonal
argument, V∞ is also the limit of an appropriate sequence of rescalings of the surfaces Σ̄k,
namely (Σ̄k(j))0,rj . If k(j) converges to infinity sufficiently fast, we keep the convergence
conclusions in (a), (b), (c), (e) and (f) even when we replace Σ̄k, M̄k, ∂M̄k and γ̄k with the
corresponding rescalings (Σ̄k(j))0,rj , (M̄k(j))0,rj , (∂M̄k(j))0,rj and (γ̄k(j))0,rj . For notational
simplicity, let us keep the label Σ̄k even for the rescaled surfaces.

Note that, since the support of the varifold V∞ is a finite number of affine graphs over the
set B (and m is the sum of the multiplicities, including the one of π1), the Schoen-Simon
theorem implies smooth convergence of the Σ̄k. Thus the Σ̄k will also be a union of m
graphs over B (distinct, because the Σk are surfaces with multiplicity 1). Let κ = π⊥1 and,
after giving compatible orientations to π1 and κ, for every x ∈ B where κ + x intersects Σ̄k

transversally, we define the degree

d(x) :=
∑

y∈κ∩Σ̄k

ε(TyΣ̄k,κ),

where ε(TyΣ̄k,κ) takes, respectively, the value 1 or−1 according to whether the two transver-
sal planes have compatible or non-compatible orientation. For k large enough γk does not
intersect B+κ and thus d is constant on B. Moreover, it turns out that d is either 1 or −1.
To see this, one can for instance consider Σ̄k as integral currents and project them onto π1.
Due to (c), for k large enough (and inside some large ball around the origin), the projection
of γ̄k’s will have multiplicity one, and since the projection and the boundary operator com-
mute, the projection of Σ̄k’s onto π1 inside B will be simply ±Jπ1K B. Thus the number of
intersections of y + κ with Σ̄k must be odd for a.e. y ∈ B. This obviously implies that m is
odd.
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We next infer that 2Θ(V, x) must be 1 at Hn−1-a.e. x ∈ `. Apply indeed Lemma 6.15
and, using the Borel maps w and vi defined in there, consider the Borel function

f(x) := |w(x)| =
∣∣∣∑ vi(x)

∣∣∣ .
We then have |δV | = fHn−1 ` and from Lemma 6.16, we conclude that f(x) > 1 at every
point x where 2Θ(V, x) is an odd number larger than 1. Since by the previous step such
number is odd a.e., we infer our claim by using item (f) from above. By Allard’s regularity
theorem, any point x as above (i.e. where there is at least one tangent cone invariant under
translations along `) is then a regular point.

Hence, it turns out that

• the set of interior singular points of V has Hausdorff dimension at most n−7, by the
Schoen-Simon compactness theorem;
• the set of boundary singular points has Hausdorff dimension at most n− 2.

Consequently, there is only one connected component of the regular set of V whose closure
contains `. Thus there cannot be any other connected component, because its closure would
not touch ` and would give a stationary varifold contained in the wedge W , violating the
maximum principle. Hence we infer that any interior regular point of V can be connected
with a curve of regular points to a regular boundary point. In turn this implies that the
varifold V has density 1 at every regular point. So V can be given the structure of a current
and in particular we conclude that the Σk’s are converging to V as a current.

Consider next that,

lim
R↑∞

‖V ‖(BR(0))

Rn

is bounded uniformly, depending only on the constant M . Thus, by the usual monotonicity
formula, there is a sequence Rk → ∞ such that V0,RK converges to a cone V∞ stationary
in W \ `. Again, by a diagonal argument, V∞ is also the limit of a sequence of rescalings
(Σ̄k(j))0,Rj , and if k(j) converges to infinity sufficiently fast, we retain the conclusions in (a),
(b), (c), (e) and (f) when we replace Σ̄k, M̄k, ∂M̄k and γ̄k with the corresponding rescalings
(Σ̄k(j))0,Rj , (M̄k(j))0,Rj , (∂M̄k(j))0,Rj and (γ̄k(j))0,Rj .

All the conclusions inferred above for V are then valid for V∞ as well, namely: V∞ has
multiplicity 1 a.e., it can be given the structure of a current and the surfaces (Σ̄k(j))0,Rj are
converging to it in the sense of currents. In particular the boundary of V∞ (as a current) is
given by ` (with the appropriate orientation). We can then argue as in [3, Lemma 5.2] to
conclude that the current V∞ is in fact the union of finitely many half-hyperplanes meeting
at `. But since ` has many regular points, where the multiplicity must be 1

2
, we conclude

that indeed V∞ consists of a single plane.

In particular we infer from the argument above that Θ(V∞, 0) = 1
2
. This in turn implies

lim
R↑∞

‖V ‖(BR(0))

Rn
=
ωn
2
.

On the other hand

lim
r↓0

‖V ‖(Br(0))

rn
= ωnΘ(V, 0) .
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But the upper semicontinuity of the density and the fact that Θ(V, x) = 1
2

for Hn−1-a.e.

x ∈ ` implies implies that Θ(V, 0) ≥ 1
2
.

Since ` is flat, Allard’s monotonicity formula implies that

r 7→ ‖V ‖(Br(0))

rn

is monotone and thus constant. Again the monotonicity formula implies that such function
is constant if and only if V is itself a cone. This means that V coincides with V∞ and is half
of a hyperplane, as desired.

We now come to the claim that, choosing δ possibly smaller, the surface Σ has a single
connected component in Bδr(x0). Again this is achieved by a blow-up argument. Given
the estimate on the curvature, for every sufficiently small η we have that x0 belongs to a
connected component of Σ which is the graph of a function f for some given system of
coordinates in B2η(x0). Let us denote by Γ such a connected component. For η small we can
assume that the tangent to Γ is as close to Tx0Γ as we desire and thus we can assume that
the connected component is actually a graph of a function f : Tx0Γ→ Tx0Γ

⊥, with gradient
smaller than some ε > 0, whose choice we specify in a moment. From now on in all our
discussion we assume to work in normal coordinates based at x0. In fact it is convenient to
consider a closed manifold M̃ which contains ∂M and from now on we let B̃r(x0) be the
corresponding geodesic balls.

Assume now, by contradiction, that Bδη(x0) contains another point y0 ∈ Σ which does not
belong to Γ, where δ is a small parameter, depending on the maximal opening angle θ with
which the set K can meet ∂M. Thus y0 belongs to a second connected component Γ′. By
the curvature estimates we can assume that Γ′ as well is graphical and more precisely it is a
graph over some plane π of a function g with gradient smaller than ε and height smaller than
εη. Moreover, without loss of generality, we can assume that π passes through the point y0.

Observe that by assumption (CE1) Γ′ cannot intersect ∂M, hence any point in ∂Γ′ is at
distance 2η from x0. Since ‖g‖0 ≤ εη, it turns out that any point z0 ∈ π ∩ B̃(2−2ε)η(x0) must
be in the domain of g, which we denote by Dom (g). To see this observe first that, since
π ∩ B̃(2−2ε)η(x0) is convex, we can join y0 and z0 with a path γ lying in π ∩ B̃(2−2ε)η(x0).
Assume that γ is parametrized over [0, 1] and that γ(0) = y0. For a small ε we know that
γ([0, ε]) ⊂ Dom (g). If γ(1) ∈ Dom (g) we are finished. Otherwise we let τ be the infimum
of {t : γ(t) 6∈ Dom (g)}. Obviously the point p in the closure of the graph of g lying over
γ(τ) is a boundary point for Γ′. On the other hand, since γ(τ) ∈ B̃(2−2ε)η(x0) and ‖g‖ ≤ εη,
clearly p cannot be at distance 2η from x0. This is a contradiction and thus we have proved
the conclusion

π ∩ B̃(2−2ε)η(x0) ⊂ Dom (g) .

In particular we conclude that π ∩ B̃(2−4ε)η(x0) cannot meet ∂M: if the intersection were

not empty, then there would be a point q contained in π ∩ (B̃(2−2ε)η(x0) \M) which lies at
distance at least 3

2
εη from ∂M. In particular the point of the graph of g lying on top of q

could not belong to M, although it would be a point of Γ′.
By a similar argument, we conclude that π∩ B̃(2−6ε)η(x0) cannot intersect Tx0Σ, otherwise

we would have nonempty intersection between the graphs of f and g, i.e. a point belonging
to Γ∩Γ′, which we know to be different connected components of Σ∩B2η(x0), hence disjoint.
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At this point we choose ε = 1
12

. Summarizing, the plane π has the following properties:

(a) π contains a point y0 ∈ Bδη(x0);

(b) π does not intersect ∂M∩ B̃3η/2;

(c) π does not intersect Tx0Σ ∩ B̃3η/2;
(d) Tx0Σ meets Tx0∂M at an opening angle at most θ.

It is now a simple geometric property that, if δ is chosen sufficiently small compared to θ,
then the plane π cannot exist, cf. Figure 2.

π

Tx0Σ

x0

∂M

Figure 2. If two planes π and Tx0Σ satisfy the assumption (b), (c) and (d), then π cannot
contain a point which is δη close to x0.

�

Proof of Lemma 6.15. By White’s stratification theorem, see Theorem 5 of White [43],
atHn−1-a.e. point x ∈ ` there is a tangent cone V∞ to V which is invariant under translations
along `. This implies that V∞ is necessarily given by

m∑
i=1

Jπi ∩W0K

for some family of n-dimensional planes containing `, where m = m(x) = 2Θ(V∞, 0) =
2Θ(V, x). It is therefore obvious that

δV∞ =
m∑
i=1

viHn−1 `

where each vi = vi(x) is the unit vector contained in πi \W0 and orthogonal to `: therefore
for each i we have vi = (− cos θi,− sin θi) for some θi ∈ [−θ, θ].

Let rk ↓ 0 be a sequence such that the rescaled varifolds Vx,rk converge weakly to V∞.
Then δVx,r converges to δV∞ in the sense that δVx,rk(ϕ)→ δV∞(ϕ) for any smooth compactly
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supported vector field on Rn+1. On the other hand for a.e. x we have δVx,r⇀
∗w(x)Hn−1 `.

This completes the proof since for a.e. x we must have w(x) =
∑m(x)

i vi(x). �

Proof of Lemma 6.16. We order the vectors so that θ1 ≤ θ2 ≤ . . . ≤ θ2k+1. For each
i ≤ k, the sum wi of the pair vi + v2k+2−i is a positive multiple of(

cos θi+θ2k+2−i
2

, sin θi+θ2k+2−i
2

)
.

Since θi ≤ θk+1 ≤ θ2k+2−i, it is easy to see that the vectors wi and vk+1 form an angle strictly
smaller than π

2
. We therefore have 〈wi, vk+1〉 > 0 and we can estimate

|v1 + . . .+ v2k+1| ≥
2k+1∑
j=1

〈vj, vk+1〉 = 1 +
k∑
i=1

〈wi, vk+1〉 > 1 .

�

7. Stability and compactness

Since the ground-breaking works of Schoen [29], Schoen-Simon-Yau [31] and Schoen-Simon
[30], it is known that, roughly speaking, all the smoothness and compactness results which
are valid for hypersurfaces (resp. integer rectifiable hypercurrents) which minimize the area
are also valid (in the form of suitable a priori estimates) for stable hypersurfaces.

7.1. Interior compactness and regularity. We recall here the fundamental compact-
ness/regularity theorem of Schoen and Simon (cf. [30]) for stable minimal surfaces.

Theorem 7.1. Let {Σk} be a sequence of stable minimal hypersurfaces in some open subset
U ⊂M\ ∂M and assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2-measure;
(ii) Σk has no boundary in U ;

(iii) supkHn(Σk) <∞.

Then a subsequence of {Σk} (not relabeled) converges, in the sense of varifolds, to an integer
rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤ n−7;
(b) at any point p 6∈ Sing (Γ) the convergence is smooth, namely there is a neighborhood

U ′ of p such that, for k large enough, Σk∩U ′ can be written as the union of N distinct
smooth graphs over (the normal bundle of ) Γ ∩ U ′, converging smoothly (where the
number N is uniformly controlled by virtue of (iii)).

In fact the Theorem of Schoen and Simon gives a more quantitative version of the smooth
convergence, since for every point p 6∈ Sing (Γ) the second fundamental form of Σk at p
can be bounded, for k large enough, by C max{dist(p, Sing (Γ))−1, dist(p, ∂U)−1}, where the
constant C is independent of k.
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7.2. Boundary version for free boundary surfaces. In [16] the fundamental result of
Schoen and Simon has been extended to the case of free boundary minimal surfaces, under
a suitable convexity assumption in the case of n = 2 in the Euclidean case. However, it can
be readily checked that the arguments presented in [16] to adapt the proof of Schoen and
Simon in [30] to the free boundary case are independent both of the dimensional assumption
n = 2 and of the assumption that M is a convex subset of the Euclidean space. We state
the resulting theorem below, where we need the following stronger stability condition, which
we will call stability for the free boundary problem. For a more general result, where the
convexity assumption on ∂M is removed, see the recent work of Li and Zhou, [20].

Definition 7.2. Let M be a smooth (n+ 1)-dimensional Riemannian manifold and U ⊂M
an open set. A varifold V ∈ Vus (U) is said to be stable for the free boundary problem if
δ2V (χ) ≥ 0 for every χ ∈ Xt

c(U).

Theorem 7.3. LetM be a smooth (n+1)-dimensional Riemannian manifold which satisfies
Assumption 1.1. Let Σk be a sequence of stable minimal hypersurfaces in some open subset
U ⊂M and assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2-measure;
(ii) ∂Σk ∩ U is contained in ∂M and Σk meets ∂M orthogonally (thus, Σk is stationary

for the free boundary problem);
(iii) Σk is stable for the free boundary problem;
(iv) supkHn(Σk) <∞.

Then a subsequence of Σk (not relabeled) converges, in the sense of varifolds, to an integer
rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤ n−7;
(b) at any point p 6∈ Sing (Γ) the convergence is smooth;
(c) Γ meets ∂M orthogonally, thus V ∈ Vus (U);
(d) V is stable for the free boundary problem.

7.3. Boundary version for the constrained case. We close this section by combining
Theorem 6.14 with the interior estimates of Schoen and Simon to get a compactness theo-
rem for stable minimal hypersurfaces which have a fixed given boundary γ and meet ∂M
transversally in a suitable quantified way.

Theorem 7.4. LetM be an (n+1)-dimensional smooth Riemannian manifold which satisfies
Assumption 1.1, γ ⊂ ∂M a C2,α submanifold of ∂M, U an open subset of M and K ⊂ U a
set which meets ∂M in γ at an opening angle smaller than π

2
. Let Σk be a sequence of stable

minimal hypersurfaces in U ⊂M and assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2 measure and γ∩sing (Σ) =
∅;

(ii) ∂Σk ∩ U = γ ∩ U ;
(iii) supkHn(Σk) <∞;
(iv) Σk ⊂ K.

Then a subsequence of Σk, not relabeled, converges, in the sense of varifolds, to an integer
rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤ n−7;



34 CAMILLO DE LELLIS AND JUSUF RAMIC

(b) at any point p 6∈ Sing (Γ) the convergence is smooth;
(c) Sing (Γ) ∩ ∂M = ∅ and ∂Γ = γ (in particular, the multiplicity of any connected

component of Γ which intersects ∂M must be 1).

Proof. First of all, after extraction of a subsequence we can assume that Σk converges to a
varifold V . Observe that V is stationary in Int (U) and thus it is integer rectifiable in there,
by Allard’s compactness theorem. Note also that each Σk belongs to Vcs(U, γ) and thus, by
continuity of the first variations, V belongs as well to Vcs(U, γ). Thus, by the maximum
principle of Proposition 6.1 we conclude that ‖V ‖(∂M) = ‖V ‖(γ). In particular, as argued
for Lemma 6.4 ‖V ‖(∂M) = 0 and that V is integer rectifiable in U .

Next observe that in U \∂M we can apply the Schoen-Simon compactness theorem: thus,
except for a set K ′ in U \∂M, the smooth convergence holds at every point x0 ∈ U \(γ∪K ′)
and dim (K ′) ≤ n − 7. As for the points x ∈ γ, consider first an open subset U ′ which has
positive distance from ∂U \ ∂M. By the boundary curvature estimates of Theorem 6.14,
there is an r0 > 0 and a constant C0, both independent of k, such that |AΣk | ≤ C0 in any
ball Br0(x) with center x ∈ γ ∩ U ′. This implies that, in a fixed neighborhood U ′′ of γ,
Σk consists of a single smooth component which is a graph at a fixed scale, independent
of k. The estimate on the curvature in Theorem 6.14 gives then the convergence of these
graphs in C1,α for every α < 1. Since the limit turns out to be (locally) graphical and
a solution of an elliptic PDE, classical Schauder estimates imply its smoothness and the
smooth convergence. �

7.4. Varying the ambient manifolds. In all the situations above, we can allow also for
the manifolds M to vary in a controlled way, namely to change as Mk along the sequence.
One version which is particularly useful is when the Mk are embedded in a given, fixed,
Euclidean space and they are converging smoothly to aM. All the compactness statements
above still hold in this case and in particular the corresponding obvious modifications (left
to the reader) will be used at one occasion in the very simple situation where the Mk are
rescalings of the same M at a given point, thus converging to the tangent space at that
point, cf. Section 10.1 and Section 10.4 below.

8. Wedge property

In this section we use the maximum principle to prove that, given a smooth γ any sta-
tionary varifold V ∈ Vcs(U, γ) meets γ “transversally” in a quantified way, namely it lies in
suitable wedges that have a controlled angle. This property is necessary to apply to the
compactness Theorem 7.4. The precise formulation is the following

Lemma 8.1. Let M be a smooth (n + 1)-dimensional submanifold satisfying Assumption
1.1, γ be a C2 (n − 1)-dimensional submanifold of M and U ′ ⊂⊂ U two open subsets of
M. Then there is a constant θ0(U,U ′, γ) < π

2
and a compact set K ⊂ U ′ with the following

properties:

(a) K meets γ at an opening angle at most θ0;
(b) spt(V ) ∩ U ′ ⊂ K for every varifold V ∈ Vcs(U, γ).

Note that in the special case of U = M, we are allowed to choose U ′ = M and thus we
conclude a uniform transversality property for any varifold in Vcs(M, γ), in particular for
the varifold V of Proposition 4.3. On the other hand we do need the local version above for
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several considerations leading to the regularity of V at the boundary. When M is a subset
of the Euclidean case, the lemma above follows easily from the following two considerations:

(i) By the classical maximum principle, spt(V ) is contained in the compact subset K
which is the convex hull of (γ ∩ U) ∪ (∂U \ ∂M), see for instance the reference [33];

(ii) Such convex hull K meets γ at an opening angle which is strictly less than π
2

at every
point x ∈ γ ∩ U (here the C2 regularity of γ is crucially used, cf. the elementary
Lemma 8.2 below).

The uniform (upper) bound on the angle is then obtained in U ′ ⊂⊂ U simply by compactness.
Unfortunately, although the extension of (i) above to general Riemannian manifolds is

folklore among the experts, we do not know of a reference that we could invoke for Lemma
8.1 without some additional technical work. This essentially amounts to reducing to the
Euclidean situation by a suitable choice of coordinates.

8.1. Wedge property and convex hull. We start by recording the following elementary
fact, which in particular proves claim (ii) above.

Lemma 8.2. Consider a bounded, open, smooth, uniformly convex set M ⊂ Rn+1 and a
C2 (n− 1)-dimensional connected submanifold γ ⊂ Br(0) ∩ ∂M passing through the origin.
Then there is a wedge W containing γ such that:

(a) The axis of W is orthogonal to T0∂M;
(b) The tip of W is T0γ;
(c) The opening angle is bounded away from π

2
in terms of the principal curvatures of

∂M and of those of γ.

Proof. For simplicity fix coordinates so that T0γ = {x1 = xn+1 = 0}, T0∂M = {x1 = 0}
and M \ {0} is lying in {x1 > 0}. For every θ < π

2
let Mθ be the portion of M lying in

{xn+1 > x1 tan θ}, and consider r > 0 such that the open ball

Br((0, 0, . . . , 0, r))

contains Mθ. Let ρ(θ) be the smallest such radius. ρ(θ) is a non-increasing function of
θ and by the uniform convexity of M, ρ(θ) → 0 as θ ↑ π

2
. On the other hand we know

that if ρ(θ) < ‖Aγ‖−1
∞ , then Bρ((0, 0, . . . , 0, ρ)) is an osculating ball for γ at 0 and cannot

contain any point of γ. This shows that for all θ sufficiently close to π
2
, γ is contained

in {xn+1 ≤ x1 tan θ}. By a simple reflection argument we obtain the same property with
{−xn+1 ≤ x1 tan θ}, which completes the proof of the lemma. �

8.2. Proof of Lemma 8.1. First of all, we observe that by a simple covering argument it
suffices to show the lemma in a sufficiently small neighborhood U of any point p ∈ γ, since
we already know by the maximum principle in Proposition 6.1 that spt(V ) ∩ ∂M ⊂ γ.

Recall that we can assume that M is a subset of a closed Riemannian manifold M̃, cf.
Remark 6.2. Let p ∈ γ, and Ũ a normal neighborhood of p in M̃. We then consider normal
coordinates on M̃ centered at p, given by the chart ϕ := E ◦ exp−1

p : U → Rn+1, where the

isomorphism E : TpM̃ → Rn+1 is chosen so that E(Tp∂M) = {x ∈ Rn+1 : x1 = 0}, and
E(Tpγ) = {x ∈ Rn+1 : x1 = xn+1 = 0}.

Now, if we let A denote the second fundamental form of ∂M in M with respect to the
unit normal ν pointing inside M, B the second fundamental form of ϕ(∂M) in Rn+1 with
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respect to the unit normal n pointing inside ϕ(M), and ∇, ∇̄ the ambient Riemannian and
Euclidean connection respectively, we immediately see that

A(X, Y )
∣∣
p

= −g(∇̄Xν, Y )
∣∣
p

= g(ν, ∇̄XY )
∣∣
p

= 〈n,∇XY 〉
∣∣
0

= −〈∇Xn, Y 〉
∣∣
0

= B(X, Y )
∣∣
0
,

since ν(p) = n(0), g(., .)
∣∣
p

= 〈., .〉 and ∇
∣∣
p

= ∇̄
∣∣
0

by the properties of the exponential map.

Hence, it follows from Assumption 1.1 that B � ξ Id at 0. Thus, if we represent ϕ(∂M) as
a graph of a function f over its tangent plane {x ∈ Rn+1|x1 = 0} at 0, the Hessian of f is
equal to B at 0, and hence there are some Cartesian coordinates (y2, . . . , yn+1) on this plane
such that f has the form

f(y2, . . . , yn+1) =
1

2
(κ2y

2
2 + . . .+ κn+1y

2
n+1) +O(|y|3), (8.1)

where κ2, . . . , κn+1 > ξ > 0 are principal curvatures (w.r.t. inward pointing normal at 0).

In particular we can assume that U is chosen so small that f is uniformly convex in the
Euclidean sense, namely that D2f > 0 everywhere on ϕ(Ũ). By abuse of notation we keep
using Ũ for ϕ(Ũ), M for ϕ(M) and thus V for the varifold ϕ]V . Since we can now regard
M as a convex subset of the euclidean space, we can apply Lemma 8.2 and conclude that
γ is contained in a wedge W of the form {|xn+1| ≤ tan θx1}. However we cannot apply
the maximum principle to conclude that spt(V ) ⊂ W because V is not stationary in the
euclidean metric. Our aim is however to show that, if we enlarge slightly θ, but still keep
it smaller than π

2
, then spt(V ) ⊂ W . The resulting θ will depend on the manifold M, the

submanifold γ and the size of Ũ , but not on the point p. Thus this argument completes
the proof, since the set K can be taken to be, in a neighborhood of γ ∩ U ′, the union of
the corresponding wedges for p (intersected with the corresponding neighborhoods Ũ) as p
varies in γ ∩ U ′.

Recall that, in our notation, M is in fact the set {y1 ≥ f(y2, . . . , yn+1)}. For each λ ≥ 0
consider now the function

fλ(y2, . . . , yn+1) = (1− λ)f(y2, . . . , yn+1) + λ
yn+1

tan θ
.

For λ ↓ 0, the function fλ converges in C2 to the function f . Thus the set Mλ = {y1 ≥
fλ(y2, . . . , yn+1)} is uniformly convex in the Riemannian manifold M̃ as soon as λ ≤ ε.

Observe next that all the graphs of all the functions fλ intersect in an n− 1-dimensional
submanifold, which is indeed the intersection of the graphs of f1 and f0 = f . Consider now
the region

R = {f0(y2, . . . , yn+1) ≤ y1 ≤ fε(y2, . . . , yn+1)} ,
cf. Fig. 3. Since the graph of f0 is in fact ∂M, we know from Proposition 6.1 that spt(V )∩
∂M∩R ⊂ γ and from the choice of the wedge W we thus know that spt(V )∩∂M∩R = {0}.
Assume now by contradiction that R contains another point p ∈ spt(V ). Then this point
does not belong to γ. On the other hand there must be a minimum δ such that the graph of
fδ contains this point. But then, by the fact thatMδ is uniformly convex in M̃, this would
be a contradiction to the maximum principle of Proposition 6.1.

We thus conclude that the region R intersects the support of V only in the origin. On the
other hand recall that fδ is convex also in the Euclidean sense. Thus its graph lies above
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its tangent at 0, which is given by {yn+1 = y1δ
−1 tan θ}. This implies that the support of V

intersected with Ũ is in fact contained in

{yn+1 ≤ y1δ
−1 tan θ} .

Symmetrizing the argument we find the new desired wedge in which the support of our
varifold is contained. �

f1

f0

M

fε

T0∂M

R

Figure 3. The region R foliated by the graps of fλ.

9. Replacements at the boundary

We have now all the tools for proving the boundary regularity of the varifold V in Propo-
sition 4.3 and we can start with the argument leading to

Theorem 9.1. The varifold V of Proposition 4.3 has all the properties claimed in Theorem
1.6.

The argument is indeed split into two main steps. In the first one we employ another
important concept first developed by Pitts, called a replacement.

Definition 9.2. Let V ∈ V(M) be a stationary varifold inM, belonging to one of the classes
Vus and Vcs(M, γ), and U ⊂ M an open set. A stationary varifold V ′ ∈ V(M) (belonging
to one of the two corresponding classes) is called a replacement for V in U if V = V ′ on
G(M \ U), ‖V ‖(M) = ‖V ′‖(M), and V ′ U is a stable minimal hypersurface Γ. In the
constrained case we require that ∂Γ ∩ U = γ ∩ U (in particular the connected components of
Γ that intersect γ will arise with multiplicity 1 in the varifold V ). In the unconstrained case
the surface Γ ∩ U meets ∂M orthogonally.

Our goal now is to show that the almost minimizing property of the sequence {Γj} from
Proposition 4.3 is sufficient to prove the existence of a replacement for the varifold V . More
precisely, we prove:

Proposition 9.3. Let {Γj}, V and r be as in Proposition 4.3. Fix x ∈ M and consider an
annulus An ∈ AN r(x)(x). Then there exist a varifold Ṽ , a sequence {Γ̃j} and a function
r′ :M→ R+ such that

• Ṽ is a replacement for V in An and Γ̃j converges to Ṽ in the sense of varifolds;
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• Γ̃j is almost minimizing in every An′ ∈ AN r′(y)(y) with y ∈M;

• r(x) = r′(x).

9.1. Homotopic Plateau’s problem. Let us fix a point x ∈M and An ∈ AN r(x)(x) from
now on. If x ∈ IntM, then the statement above is indeed proved in [10], except for a small
technical adjustment which we explain in Section 9.3 below. We fix therefore x ∈ ∂M. The
strategy of the proof will be analogous to the one in [10] and follows anyway the pioneering
ideas of Pitts: in An we will indeed replace the a.m. sequence Γj with a suitable Γ̃j, which
is a minimizing sequence for a suitable (homotopic) variational problem.

As a starting point for the proof we consider for each j ∈ N the following class and the
corresponding variational problem:

Definition 9.4. Let U ⊂M be an open set and for each j ∈ N consider the class Hc(Γ
j, U)

(resp. Hu(Γ
j, U)) of surfaces Ξ such that there is a constrained (resp. unconstrained) family

of surfaces {Γt} satisfying Γ0 = Γj, Γ1 = Ξ, (4.1), (4.2), and (4.3) for ε = 1/j (recall that
m is fixed by Remark 4.2). The subscript c (resp. u) will be dropped when clear from the
context. A minimizing sequence in H(Γj, U) is a sequence Γj,k for which the volume of Γj,k

converges towards the infimum.

We will call the variational problem above the (2m+2j)−1 - homotopic Plateau problem.
Next, we take a minimizing sequence {Γj,k}k∈N ⊂ H(Γj, An). Up to subsequences, we have
that

• as integral currents, JΓj,kK converge weakly to an integral current Zj (in the con-
strained case the current is integral in M, including the boundary ∂M, because
∂Zj ∂M = JγK; in the unconstrained case the current Zj is a-priori only integral in
the interior; however the regularity proved later in Corollary 9.7 will actually imply
that it is integral even when including the boundary ∂M);
• as varifolds, Γj,k converge to a varifold V j;
• V j, along with a suitable diagonal sequence Γ̃j = Γj,k(j) converges to a varifold Ṽ .

The rest of the section will then be devoted to prove that the varifold Ṽ is in fact the
replacement of Proposition 9.3 and that the sequence Γ̃j satisfies the requirements of the
same proposition.

Remark 9.5. Note that V j ∈ Vcs(An, γ) and that V j is a.m. in annuli (in fact it has a much
stronger minimizing property!). For this reason we can apply Lemma 6.4 and conclude that
V j is an integer rectifiable varifold.

The proof is split into two steps. In the first one we will show that, at all sufficiently small
scales, the current Zj is indeed a minimizer of the area in the corresponding variational
problem (constrained and unconstrained) without any restriction on the competitors. More
precisely we show that

Lemma 9.6. Let j ∈ N and y ∈ An. Then there are a ball B = Bρ(y) ⊂ An and a k0 ∈ N
such that every set Ξ with the following properties (satisfied for some k ≥ k0) belongs to the
class H(Γj, An):

• Ξ is a smooth hypersurface away from a finite set;
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• ∂Ξ ∩B = γ ∩B in the constrained problem, whereas ∂Ξ ∩ Int (B) = ∅ in the uncon-
strained problem;
• Ξ \B = Γj,k \B;
• Hn(Ξ) < Hn(Γj,k).

As a simple corollary, whose proof will be given later, using the regularity theory for
area minimizing currents for a given prescribed boundary (and the corresponding regularity
theory for the minimizers in the free boundary case, as developed by Grüter in [14]) we then
get the following

Corollary 9.7. Let B̃ be the ball concentric to the ball B in Lemma 9.6 with half the radius.
In the constrained case the current Zj has boundary γ in B and any competitor Zj + ∂S,
where S is an integer rectifiable current supported in B̃, cannot have mass smaller than that of
Zj. In the unconstrained case Zj is a minimizer with respect to free boundary perturbations,
namely any current Zj + T with spt(∂T ) ⊂ B ∩ ∂M and spt(T ) ⊂ B̃, cannot have mass
smaller than that of Zj.

Thus, Zj An = V j An = Γ̄j is a regular, minimal, embedded hypersurface except for
a closed set Sing (Γ̄j) of dimension at most n − 7. In the unconstrained case it meets the
boundary ∂M orthogonally and it is stable for the free boundary problem. In the constrained
case Sing (Γ̄j) does not intersect ∂M and ∂Γ̄j = γ (in An; in particular any connected
component of Γj that intersects ∂M must have multiplicity 1).

The second step in the proof of Proposition 9.3 takes advantage of the compactness theo-
rems in Section 7 to pass into the limit in j and conclude that Ṽ has the desired regularity
properties.

9.2. Proof of Lemma 9.6. We focus on the constrained case, since the proof in the un-
constrained case follows the same line and it is indeed easier.

We will exhibit a suitable homotopy between Γj,k and Ξ by first deforming Γj,k inside
B to a cone with vertex y and base Γj,k ∩ ∂B, and then deforming this cone back to Ξ,
without increasing the area by more than (2m+2j)−1, which will prove the claim. To this
end, we borrow the ”blow down -blow up” procedure from [10], which in turn is borrowed
from Smith [34] (see also Section 7 of [8]) and we only need to modify the idea because
x ∈ ∂M.

Fix y ∈ An∩ ∂M, and j ∈ N. If y /∈ γ, by consideringM as a subset of M̃ as in Remark
6.2, and simply making sure to choose ρ small enough that Bρ(y) ⊂⊂ M̃ \ γ, we can reduce
to the interior case. Note that we also make use of the convexity assumption onM to make
sure all the surfaces in the homotopy stay insideM. Therefore, we are left to prove the case
y ∈ An ∩ ∂M∩ γ.
First, in a small neighborhood around y, we can find (smooth) diffeomorphisms

Ψ1 : Rn−1 × R→ ∂M, Ψ−1
1 (γ) ⊂ Rn−1 × {0}, Ψ1(0) = ι(y);

Ψ2 : ∂M× R+ →M, Ψ2(x, t) = expx(tν(x)),

with ι : ∂M→M the inclusion map, and ν(x) unit normal to ∂M. By taking Ψ2(Ψ1(x), t)
and composing it with a linear map if necessary, we get a (smooth) local coordinate chart
Ψ : U ⊆ Rn+1 → V in a neighborhood V ⊂ An ⊂ M of y, with Ψ(0) = y, ∂M ∼=
Rn × {0}, γ ∼= Rn−1 × {0} × {0} , and DΨ0 = Id. In the following, Be

r(0) and Hn,e are
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used to denote the ball of radius r and the Hausdorff measure w.r.t the euclidean metric in
the given coordinates. We will choose τ > 0 small enough, that Be

2τ (0) ⊆ U . The required
radius ρ of the geodesic ball B = Bρ(y) will be fixed later, but chosen small enough that
Ψ−1(Bρ(y)) ⊂⊂ Be

τ (0) (and, of course, smaller than the injectivity radius). Furthermore, by
choosing U (and consequently τ) small enough, we can ensure for any surface Σ ⊂ Be

2τ (0)
that

1

c
Hn,e(Σ) ≤ Hn(Σ) ≤ cHn,e(Σ), (9.1)

where c depends on the metric, and c → 1 for τ → 0. From now on, we will use the same
symbols to denote sets and their representations in the coordinates given by Ψ.

Step 1: Stretching Γj,k ∩ ∂Be
r(0). First of all , we will choose r ∈ (τ, 2τ) such that, for

every k,

Γj,k is regular in a neighborhood of ∂Be
r(0)

and intersects it transversally
(9.2)

This is implied by Sard’s lemma, since each Γj,k has only finitely many singularities. We let
K be the cone

K = {λz | 0 ≤ λ < 1, z ∈ ∂Be
r(0) ∩ Γj,k}

We now show that Γj,k can be homotopized through a family Ω̃t to a surface Ω̃1 in such a
way that

• maxtHn,e(Ω̃t)−Hn,e(Γj,k) can be made arbitrarily small;
• Ω̃1 coincides with K in a neighborhood of ∂Be

r(0)

To this end, we consider a smooth function ϕ : [0, 2τ ]→ [0, 2τ ] with

• |ϕ(s)− s| ≤ ε and 0 ≤ ϕ′ ≤ 2;

• ϕ(s) = s if |s− r| > ε and ϕ ≡ r in a neighborhood of r.

Set Φ(t, s) := (1 − t)s + tϕ(s). If A is any set, we use λA as usual to denote the set
{λx |x ∈ A}. We can now define Ω̃t in the following way:

• Ω̃t \ Ane(0, r − ε, r + ε) = Γj,k \ Ane(0, r − ε, r + ε);

• Ω̃t ∩ ∂Be
s(0) = s

Φ(t,s)

(
Γj,k ∩ ∂Be

Φ(t,s)

)
for every s ∈ (r − ε, r + ε),

where the annuli (with the superscript e) are with respect to the euclidean metric. Note
that our choice of coordinates ensures that γ is preserved as the boundary. Furthermore,
the surfaces are smooth (with the exception of a finite number of singularities), since Γj,k is
regular in a neighborhood of ∂Be

r(0) Moreover, owing to (9.1) and (9.2), and for ε sufficiently
small, Ω̃t will have the desired properties. Finally, since Ξ coincides with Γj,k onM\Bρ(y)
(and in particular, outside Be

τ (0)), the same argument can be applied to Ξ. This shows that

w.l.o.g. we can assume K = Ξ = Γj,k

in a neighborhood of ∂Be
r(0)

(9.3)

Step 2: The homotopy. We now construct the required homotopy mentioned in the
beginning of the proof, as the family {Ωt}t∈[0,1] of hypersurfaces which satisfy:

• Ωt \ B̄e
r(y) = Γj,k \ B̄e

r(y) for every t;
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• Ωt ∩ Ane(0, |1− 2t|r, r) = K ∩ An(y, |1− 2t|r, r) for every t;
• Ωt ∩ B̄e

(1−2t)r(0) = (1− 2t)(Γj,k ∩ B̄e
r(0)) for t ∈ [0, 1

2
];

• Ωt ∩ B̄e
(2t−1)r(0) = (2t− 1)(Ξ ∩ B̄e

r(0)) for t ∈ [1
2
, 1].

Note again that, because of the way we chose our coordinates and deformations, and conse-
quently (9.3), this satisfies the properties of a smooth constrained family. The only property
left to check is that

max
t
Hn(Ωt) ≤ Hn(Γj,k) +

1

2m+2j
∀k ≥ k0 (9.4)

holds for a suitable choice ρ, r and k0.
First we observe the following standard facts, for every r < 2τ and λ ∈ [0, 1]:

Hn,e(K) =
r

n
Hn−1,e

(
Γj,k ∩ ∂Be

r(0)
)
; (9.5)

Hn,e
(
λ(Γj,k ∩ B̄e

r(0))
)

= Hn,e
(
λ(Γj,k ∩Be

r(0))
)
≤ Hn,e

(
Γj,k ∩Be

r(0)
)
; (9.6)

Hn,e
(
λ(Ξ ∩ B̄e

r(0))
)

= Hn,e
(
λ(Ξ ∩Be

r(0))
)
≤ Hn,e

(
Ξ ∩Be

r(0)
)
; (9.7)∫ 2τ

0

Hn−1,e
(
Γj,k ∩ ∂Be

s(0)
)
ds ≤ Hn,e

(
Γj,k ∩Be

2τ (0)
)
, (9.8)

where the equalities in (9.6) and (9.7) are due to (9.2). From (9.1) and the assumption on Ξ
we conclude Hn,e(Ξ ∩ Be

2τ (0)) ≤ c2Hn,e(Γj,k ∩ Be
2τ (0)), which together with (9.5), (9.6) and

(9.7) gives us the estimate

max
t
Hn(Ωt)−Hn(Γj,k) ≤ cHn,e

(
Ωt ∩Be

2τ (0)
)

≤ c3Hn,e
(
Γj,k ∩Be

2τ (0)
)

+ rHn−1,e
(
Γj,k ∩ ∂Be

r(0)
)

(9.9)

By (9.8) we can find r ∈ (τ, 2τ) which, in addition to (9.2) (and consequently (9.3)), satisfies

Hn−1,e
(
Γj,k ∩ ∂Be

r(0)
)
≤ 2

τ
Hn,e

(
Γj,k ∩Be

2τ (0)
)
. (9.10)

Hence,
max
t
Hn(Ωt) ≤ Hn(Γj,k) + (4 + c2)Hn,e

(
Γj,k ∩Be

2τ (0)
)
. (9.11)

By a metric comparison argument similar to (9.1) relating the lenghts of curves inside Be
2τ (0),

we can obtain the inclusions Bρ(y) ⊂⊂ Be
τ (0) ⊂ Be

2τ (0) ⊂⊂ Bc̄ρ(y), where the constant c̄
depends on the metric, assuming of course that τ is initially chosen small enough. Next, by
the convergence of Γj,k to the stationary varifold V j, we can choose k0 such that

Hn,e
(
Γj,k ∩Be

2τ (0)
)
≤ 2||V j||(Bc̄ρ(y)) for k ≥ k0. (9.12)

Finally, by the monotonicity formula (see Theorem 3.4.(2) in [3]),

||V j||(Bc̄ρ(y) ≤ CM||V j||(M)ρn. (9.13)

By gathering the estimates (9.11), (9.12), and (9.13) (and having chosen τ small enough as
instructed, depending only on M), we deduce that if

• ρ is chosen small enough that

2(4 + c2)CM||V j||(M)ρn <
1

2m+2j

holds,
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• k0 is chosen large enough that (9.12) holds
• and r ∈ (τ, 2τ) is fixed so that it satisfies (9.2) and (9.10),

then we can construct {Ωt} as above, concluding the proof. �

9.3. Proof of Corollary 9.7. Step 1. Minimality in the interior. Again, we focus
on the constrained problem, since the unconstrained problem is exactly the same. Strictly
speaking, the conclusion of the corollary is new even in the interior, because in [10] the
homotopic Plateau’s problem was stated in the framework of Caccioppoli sets, i.e. not
allowing multiplicities for our currents. We thus first show how to remove this technical
assumption in the interior; in turn, the following argument also gives the needed technical
adjustment to the arguments in [10] in order to show the interior regularity, cf. Remark 4.5.

Fix j ∈ N, y ∈ Int (An), and let Bρ(y) ⊂ An be the ball given by Lemma 9.6 where
we assume in addition ρ < dist(y, ∂M). We will prove, by contradiction, that the integral
current Zj (obtained as the weak limit of currents JΓj,kK) is area minimizing in Bρ/2(y).
Assume, therefore, it is not, and there exists an integral current S, with ∂S = γ, S = Zj on
M\Bρ/2(y) and

M(S) < M(Zj)− η (9.14)

Since supk(M(Γj,k)+M(γ)) <∞, and therefore the weak and flat convergence are equivalent,
we have the existence of currents integral Aj,k and Bj,k with

Γj,k − Zj = ∂Aj,k +Bj,k and M(Aj,k) + M(Bj,k)→ 0 (9.15)

In fact, considering that ∂(Γj,k − Zj) = 0, we can assume w.l.o.g. that Bj,k = 0. By slicing
theory, we can choose ρ/2 < τ < ρ and a subsequence (not relabeled) such that

∂(Aj,k Bτ (y)) = (∂Aj,k) Bτ (y) +Rj,k, M(Rj,k)→ 0 (9.16)

where sptRj,k ⊂ ∂Bτ (y), and Rj,k is integer multiplicity (cf. Fig. 4). Now, define the integer
n-rectifiable current

Sj,k := S Bτ (y)−Rj,k + Γj,k (M\Bτ (y)).

It is easy to check from the above that ∂Sj,k = γ. Moreover, from the weak convergence
Γj,k ⇀ Zj we get M(Zj Bτ ) ≤ lim infk→∞M(Γj,k Bτ ), and together with (9.14), (9.16),
this implies

lim sup
j→∞

(
M(Sj,k)−M(Γj,k)

)
≤ −η. (9.17)

We now proceed to approximate Sj,k with smooth surfaces, which would by construction
exhibit a similar gap in area (mass) with respect to Γj,k. The idea is to then apply Lemma
9.6, thereby showing that these smooth surfaces belong to the class H(Γj, An), and thus
contradicting the minimality of the original sequence Γj,k.

Let us first fix (a, b) ⊂⊂ (τ, ρ) with the property that Γj,k∩An(y, a, b) is a smooth surface.
Since ∂[Sj,k Bb(y)] ⊂ ∂Bb(y), we can find an n-rectifiable current Ξ with spt (Ξ) ⊂ ∂Bb(y)
and ∂Ξ = ∂[Sj,k Bb(y)]. Taking R = Sj,k Bb(y) − Ξ we apply 4.5.17 of [11] to find a
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Zj

S

Γj,k

Aj,k Bτ(y)

Figure 4. The cut-and-paste procedure to produce a suitable competitor.

decreasing sequence of Hn+1-measurable sets {Ui}∞i=−∞ (of finite perimeter in Bb) and use
them to construct rectifiable currents

Sj,ki = ∂JUiK Bb(y) with spt ∂Sj,ki ⊂ ∂Bb(y), and

Sj,k Bb(y) =
∑
i∈Z

Sj,ki , M(Sj,k Bb(y)) =
∑
i∈Z

M(Sj,ki ). (9.18)

In fact, R = ∂T where T =
∑∞

i=1JUiK −
∑0

i=−∞JBb(y) \ UiK. Let us therefore define the
integer valued function f : Bb(y)→ Z by

f :=
∞∑
i=1

χUi −
0∑

i=−∞

χBb\Ui ,

where χA denotes the characteristic function of a set A. Because the sequence {Ui}∞i=−∞ is
decreasing, we see immediately that Ui = {x : f(x) ≥ i}. In fact, f is of bounded variation
inside Bb(y), which follows from (9.18) and the fact that (see Remark 27.7 in [33])

M(∂JUiK Bb(y)) =

∫
Bb(y)

|DχUi |. (9.19)

By recalling the standard way of approximating functions of bounded variation by smooth
functions, we take a compactly supported convolution kernel ϕ and consider the functions
fε = f ∗ ϕε, for ε < ρ− b (hence spt fε ⊂ Bρ(y)). Of course,

∫
Bρ
|Dfε| →

∫
Bρ
|Df | for ε→ 0.

If we define Ut,ε := {x : fε(x) ≥ t}, then by coarea formula∫
|Dfε| =

∫ ∞
−∞

dt

∫
|DχUt,ε|.

By a simple argument, which essentially follows from Chebyshev’s inequality applied to
the function fε(x) − f(x) (see Lemma 1.25 in [13]), we get χUt,ε → χUi in L1 for every
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t ∈ (i − 1, i), i ∈ Z. Taking a sequence εl → 0, and using the lower semicontinuity of the
perimeter w.r.t L1 convergence, we deduce∫

Bb

|Df | = lim
j→∞

∫
Bb

|Dfεl | ≥
∫ ∞
−∞

dt lim inf
l→∞

∫
Bb

|DχUt,εl |

≥
∞∑

i=−∞

∫ i

i−1

dt

∫
Bb

|DχUi | =
∫
Bb

|Df |. (9.20)

Hence, for all i ∈ Z and almost all t ∈ (i − 1, i), lim inf l→∞
∫
Bb
|DχUt,εl | →

∫
Bb
|DχUi|.

Moreover, since almost all level sets are smooth by Sard’s lemma, for all i ∈ Z we may
choose a ti ∈ (i− 1, i) such that:

• ∂Uti,εl is smooth;

• lim inf l→∞
∫
Bb
|DχUti,εl | →

∫
Bb
|DχUi |.

By choosing a diagonal subsequence (without relabeling), we can ensure that the lim inf l→∞
is replaced by a liml→∞. We now define a current

∆j,k,l =
∞∑

i=−∞

∂JUti,εlK Bb(y),

and note that it is induced by a smooth surface (for each l ∈ N), since it is composed of
smooth level sets of a smooth function. Furthermore, the properties above together with
(9.18) and (9.19) imply that M(∆j,k,l)→M(Sj,k Bb(y)) as l→∞.

We would now like to patch ∆j,k,l with Γj,k outside Bb(y). For this, recall that Sj,k ∩
An(y, a, b) = Γj,k ∩ An(y, a, b) is also a smooth surface. Therefore, fixing a regular tubular
neighborhood T of Sj,k inside An(y, a, b) and the corresponding normal coordinates (ξ, σ) on
it, we conclude that for l sufficiently large (consequently εl sufficiently small), T ∩∆j,k,l is the
set {σ = gεl(ξ)} for some function gεl . Moreover, gεl → 0 smoothly, as l→∞. Now, using a
patching argument entirely analogous to the one of the freezing construction in Lemma 5.1
(one dimensional version) allows us to modify ∆j,k,l to coincide with Sj,k (and therefore Γj,k)
in some smaller annulus An(y, b′, b) ⊂ An(y, a, b), without increasing the area too much.
Thus, observing the definition of Sj,k and (9.17), we are able to construct currents ∆j,k with
the following properties:

• ∆j,k is smooth outside of a finite set;
• ∆j,k (M\Bρ(y)) = Γj,k (M\Bρ(y)) ;
• lim supk

(
M(∆j,k)−M(Γj,k)

)
≤ −η < 0.

For k large enough, Lemma 9.6 tells us that ∆j,k ∈ H(Γj, An), which would in turn imply
that Γj,k is not a minimizing sequence, thus closing the contradiction argument.

Step 2. Minimality at the boundary. We are still left with proving the statement
in case y ∈ γ ⊂ ∂M. As before, we start with a competitor current S and the assumption
(9.14). As a matter of fact, we will reduce this to the previous case by constructing the current
Sj,k, ”pushing” it slightly towards the interior of M, and then ”attaching” to it a smooth
layer which connects it to γ. If the mass of the resulting current is very close to the mass of
Sj,k, we retain (9.14) with a smaller constant, and proceed with smoothing as before. First,
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analogously to the above, we obtain the currents Sj,k and (9.17). Choose (a, b) ⊂⊂ (τ, ρ) such
that Γj,k∩An(y, a, b) (and hence also Sj,k) is a smooth surface with boundary γ∩An(y, a, b).
Parametrize a tubular neighborhood Uδ(∂M) = {x ∈ M : |dist(x, ∂M)| < δ} of ∂M with
the usual smooth diffeomorphism

Φ : ∂M× [0, δ)→ Uδ(∂M), (t, s) 7→ Φ(t, s) = expt(sν(t)),

where ν(t) is the inward pointing normal of ∂M at t. Let us denote by N := γ × [0, δ) the
smooth hypersurface which meets ∂M orthogonally in γ. Next, we pick a < a′ < b′ < b
and slightly deform Sj,k to make it coincide with N in An(y, a′, b′) ∩ Uξ(∂M) for some ξ
small enough. To do this, note for example that near γ, Sj,k ∩ An(y, a′, b′) is a graph of
a function g over N , due to the convexity assumption on M. By considering g(1 − ψ),
where ψ is a suitable cutoff function supported in An(y, a, b) ∩ U2ξ(∂M) and equal to 1 in
An(y, a′, b′)∩Uξ(∂M), we obtain the desired surface. Furthermore, its area will be arbitrarily
close to the area of Sj,k, provided ξ is chosen small enough. Thus, w.l.o.g. we can assume

Sj,k = N in An(y, a′, b′) ∩ Uξ(∂M), for some ξ small enough. (9.21)

We fix:

• a smooth function ϕ : [0,∞) → [0, ε] such that ϕ(0) = ε, ϕ(x) = 0 for x ≥
√
ε,

and |ϕ′(x)| ≤ C
√
ε (where ε will be fixed later);

• a smooth function η : ∂M → [0, 1] such that η(t) = 1 for t ∈ ∂M∩ Ba′(y) and
η(t) = 0 for t ∈ ∂M\Bb′(y).

Consider now the map

Ψ(x) :=

{
(t, s) 7→ (t, s+ ϕ(s)η(t)) for x = (t, s) ∈ U√ε(∂M);
Id for x ∈M \ U√ε(∂M).

(9.22)

If ε < δ2 is small enough that |ϕ′(x)| < 1, we ensure that s 7→ s + ϕ(s)η(t) is monotone
increasing, and Ψ : M → M is a well defined, smooth, proper map, with a Lipschitz
constant 1 + O(

√
ε). This means that we can push forward the current Sj,k to obtain

Ψ#(Sj,k) with a (possibly) small gain in mass, and with ∂(Ψ#(Sj,k)) = Ψ#(∂Sj,k) = Ψ#(γ)
being a smooth submanifold of N . It is now obvious that, by attaching to it a smooth
surface γ|spt (η)× [0, εη(t)) with mass O(ε) (and the proper orientation assigned), we are able

to construct a current S̃j,k with ∂S̃j,k = γ, S̃j,k \ Bρ(y) = Γj,k \ Bρ(y) and with M(S̃j,k)

arbitrarily close to M(Sj,k). Moreover, it follows from the construction and (9.21) that S̃j,k

is smooth in Uε(∂M) ∩Bb(y) (in fact, it coincides with N in Uε(∂M) ∩Bb′(y)).
We can now repeat the smoothing procedure from the previous case, centered around the
point y′ = Ψ(y) ∈ S̃j,k, with one modification; we may not be able to actually choose (met-

ric) balls around y′ with some radii ã, b̃, contained in Int(M) such that S̃j,k ∩ An(y′, ã, b̃) is
smooth, as before. Nevertheless, it follows from the above that we may choose some open
neighborhoods Va(y

′) ⊂⊂ Vb(y
′) ⊂⊂ Bb(y) diffeomorphic to balls, such that this is true. All

the arguments can be easily modified for this case, and we reach a contradiction once again.

Step 3. Zj = V j. We first show that M(Γj,k) converges to M(Zj). Indeed, if this were
not the case, we would have

M(Zj ∩Bρ/2)(y) < lim sup
k→∞

M(Γj,k ∩Bρ/2)(y)
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for some y ∈ An and some ρ to which we can apply the conclusion of Lemma 9.6. We can
then use Zj instead of S in the beginning of this proof to once again contradict the minimality
of the sequence {Γj,k}k∈N. The convergence of the mass is then a simple consequence of the
following well known fact

Lemma 9.8. Let V j be a sequence of rectifiable currents in M such that

(i) V j ⇀ V in the flat norm;
(ii) M(V j)→M(V ).

Let the rectifiable varifolds W j associated to V j converge to a (rectifiable) varifold W . Then
W is the varifold associated to the rectifiable current V .

Step 4. Regularity and stability. In the constrained case the regularity in the interior
follows from the standard theory for area-minimizing currents, see for instance [33]. The
regularity at the boundary follows instead from [3] because ∂M is uniformly convex (actually
[3] deals with the case whereM is a subset of the Euclidean space, but the modifications to
handle the case of a general Riemannian manifold are just routine ones). In the unconstrained
case, the regularity is proved in Grüter’s work [14] (here again, the arguments, given in the
euclidean setting, can be easily adapted to deal with the general Riemannian one).

The minimality and stability of the surfaces Γ̄j (together with the condition that they meet
orthogonally ∂M in the unconstrained case) are obvious consequences of the minimality
property. �

9.4. Proof of Proposition 9.3. We can now use the compactness theorems in Section 7 to
show that the varifold Ṽ has all the regularity properties required by Definition 9.2. In the
unconstrained case we use Theorem 7.3, whereas in the constrained case we use Theorem
7.4. Note that we can apply the latter theorem thanks to Lemma 8.1. As for the remaining
claims, the arguments are the same as in [10]. �

10. Proof of Theorem 9.1 and Theorem 1.6

Clearly Theorem 1.6 is a direct consequence of Theorem 9.1 and Proposition 4.3. Thus
from now on we focus on Theorem 9.1: we fix a varifold V as in there and we want to prove
that it is regular. In particular, we already know that V is regular in the interior. Moreover,

(a) In the constrained case we know that spt(V ) ∩ ∂M⊂ γ. We thus need to show the
regularity of V at any point p ∈ γ, and more precisely that for every p ∈ γ there
is a neighborhood U such that V is a regular minimal surface Γ in U counted with
multiplicity 1, such that ∂Γ = γ (in U).

(b) In the unconstrained case we need to show that, with the exception of a closed set of
dimension at most n− 7, for any p ∈ ∂M there is a neighborhood U such that V is
a regular minimal surface Γ in U (counted with integer multiplicity, not necessarily
1) which meets ∂M orthogonally.

10.1. Tangent varifolds and integrality. We already know, in the constrained case, that
V is an integer rectifiable varifold and that ‖V ‖(∂M) = 0. In the unconstrained case we
know the integrality of V in Int (M). We now wish to show that ‖V ‖(∂M) = 0 even in this
case.
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Fix a point p ∈ ∂M where Θ(V, p) > 0 and consider the standard blow-up procedure of
Lemma 6.11. The upper bound on the density provided by Proposition 6.6 ensures that any
sequence of rescaled varifolds Vp,rk have locally uniformly bounded mass and thus converges,
up to subsequences, to some tangent varifold W : recall that Tan (V, p) denotes the set of
such tangent varifolds. We fix one of them, say W , together with a converging sequence of
rescalings Vp,rk . W is supported in TpM. Indeed the hyperplane Tp∂M divides TpM in two
connected components π+ and π− and W is supported in the closure of one of them, say π+.

By Proposition 6.6 and standard arguments we conclude that

i) δW (χ) = 0 for every smooth compactly supported vector field on TpM tangent to
TpM;

(ii) ρ−n‖W‖(Bρ(0)) = σ−n‖W‖(Bσ(0)) = ωmΘ(V, p) for every σ, ρ > 0.

Thanks to Proposition 9.3, there exists a varifold Ṽk which is a replacement for V in the
annulus An(p, rk, 2rk). Rescaling such a replacement suitably we get a second varifold V̄k
which is a replacement for Vp,rk in ιp,rk(An(p, rk, 2rk)). In particular, by the compactness
Theorem 7.3 (in the appropriately modified version discussed in Section 7.4) we obtain the
convergence of V̄k to a replacement W̄ for W . Now, the latter replacement has the property
that it is regular in B2(0) \B1(0) ⊂ TpM and meets Tp∂M orthogonally. Moreover, by the
property of the replacement we must have

‖W̄‖(B1/2(0)) = ‖W‖(B1/2(0)) and ‖W̄‖(B5/2(0)) = ‖W‖(B5/2(0)) .

Using (ii) above and Lemma 6.9 we conclude that

σ−n‖W̄‖(Bσ(0)) = ρ−n‖W̄‖(Bρ(0)) = ωmΘ(V, p) ∀σ, ρ > 0 . (10.1)

In particular we must have that spt(‖W̄‖)∩∂Br(0) 6= ∅ for every r > 0: otherwise we would
find an annulus Br+ε(0) \Br−ε(0) which does not intersect spt(‖W̄‖), implying in turn that
‖W̄‖(Br+ε(0)) = ‖W̄‖Br−ε(0), which would contradict (10.1).

Fix now a point q ∈ B3/2(0)∩W̄ . Since W̄ is regular in B2(0)\B1(0), clearly Θ(W̄ , q) ≥ 1
2
.

Using the monotonicity formula in B1/2(q) we then conclude that

‖W̄‖(B1/2(q)) ≥ c(n) > 0 ,

where c(n) is a geometric constant. In particular we have obtained a uniform lower bound
for the density Θ(V, p), namely we have

Θ(V, p) ≥ c(n) > 0 ∀V ∈ spt(‖V ‖) . (10.2)

In turn, by standard arguments (cf. [33, Chapter 8]: in place of the usual monotonicity
formula we can use Proposition 6.6), we conclude that, if p ∈ spt(‖V ‖ ∩ ∂M), any tan-
gent varifold W has the same uniform lower bound on the density. The classical Allard’s
rectifiability theorem implies that V is then rectifiable “in the interior”, namely in π+ (cf.
again [33, Chapter 8]). On the other hand we also have that ‖V ‖ Tp∂M = ΘHn Tp∂M
and we can use the same argument as in the proof of Corollary 6.8 in order to show that
indeed W is rectifiable everywhere. Finally, using the Grüter-Jost monotonicity formula and
arguing as in [33, Chapter 8], the property (ii) together with the rectifiability imply that W
is indeed a cone.

Going back to the replacement W̄ , for the same reason we can argue that W̄ is a cone
and thus conclude that W itself is regular in the punctured plane TpM\ {0}. Moreover, by
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the considerations in [14] and [16], the reflection of W along Tp∂M gives a stable minimal
hypercone in TpM \ {0}, regular up to a set of codimension at least 7. Finally, see for
instance [30], since the origin has zero 2-capacity, such a cone turns out to be stable on the
whole TpM. In particular, by the classical result of Simons, the cone is in fact a hyperplane
if n ≤ 6.

Before going on, we observe that the argument above applies literally in the same way
to the constrained case as well. We conclude that W is a cone C in TpM \ {0} with the
property that ∂C = Tpγ. In particular we conclude that C is a multiplicity 1 half-hyperplane
and indeed, by the Wedge property of Lemma 8.1, C meets Tp∂M transversally.

We summarize our conclusions in the following

Lemma 10.1. Let V be as in Theorem 9.1, p a point in ∂M and W ∈ Tan (V, p) a tangent
varifold.

(i) In the constrained case W = 0 unless p ∈ γ and if p ∈ γ then W is a half hyperplane
of TpM, counted with multiplicity 1, which meets Tp∂M transversally at Tpγ.

(ii) In the unconstrained case W is a minimal hypersurface Ξ meeting Tp∂M orthog-
onally, which is half of a stable minimal cone in TpM (counted with multiplicity),
regular up to a set of dimension at most n−7. When n ≤ 6, Ξ is half of a hyperplane
meeting Tp∂M orthogonally.

Next, in the unconstrained case the lemma above implies that ‖W‖(Tp∂M) = 0. In
particular, since ∂M is a closed subset of M, we easily conclude that

lim
k→∞

r−nk ‖V ‖(∂M∩Brk(p)) = lim
r↓0
‖Vp,rk‖(ιp,rk(∂M∩Brk(p)) ≤ ‖W‖(Tp∂M∩B1) = 0 .

Therefore,
lim
r↓0

r−n‖V ‖(∂M∩Br(p)) = 0 for every p ∈ ∂M ,

which in turn implies easily ‖V ‖(∂M) = 0.
In particular we have concluded that V is integral even in the unconstrained case.

10.2. Regularity in the constrained case. In the constrained case, Lemma 10.1 implies
that we fall under the assumptions of Allard’s boundary regularity theorem for stationary
varifolds: V is therefore regular at every point p ∈ γ, which completes the proof.

10.3. Unconstrained case: regularity in the punctured ball. Our first goal is to show
that, if p ∈ ∂M, then there is a radius r such that V is regular up to the boundary in the
punctured ball Bρ(p) \ {p} (except for a singular set of dimension at most n− 7).

We first fix p ∈ ∂M and we then choose r > 0 so that V is a.m. in any annulus centered at
p and with outer radius smaller than r. Fix next a ρ > 0 with 4ρ < r and recall that we do
know that V is regular in the interior of An(p, ρ, 4ρ), namely in An(p, ρ, 4ρ)\∂M. Enumerate
next the connected components Γ1, . . . ,Γi . . . of (An(p, ρ, 4ρ)\∂M)∩spt(‖V ‖) (which might
be infinitely many). Fix any point q ∈ Γi and consider a small ball Bσ̃(q) ⊂ An(p, ρ, 4ρ)\∂M
so that Bσ(q) ∩ Γi is (diffeomorphic to) an n-dimensional ball for every σ < σ̃. Let s be the
distance between p and q and observe that, by the classical maximum principle, there is a
positive σ such that ∂Bt(p) must intersect Γi ∩ Bσ(q) for every t ∈]s, s + σ[. Moreover, for
a.e. t such intersection must be transversal by Sard’s Lemma. Let t be any such radius,
let q̃ ∈ ∂Bt ∩ Γi ∩ Bσ(q) and let γ be a curve connecting q̃ and q in Γi ∩ Bσ(q). Without
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loss of generality, by possibly changing the point q̃, we can assume that γ is contained in
Bt(p) \Bs−σ(p) (except for the endpoint q̃).

Consider now a replacement V ′ for V in the annulus An(p, ρ, t). It turns out that q̃ ∈
spt(‖V ‖) necessarily. On the other hand V ′ is a.m. in annuli and thus it is regular in the
interior, namely in M \ ∂M: more precisely it can have only singularities of codimension
at most 7 and at a singular point any tangent cone must be singular. This is certainly not
the case for q̃ because “outside of Bt(q)” V ′ is regular in a neighborhood of q̃ and meets
∂Bt(q) transversally: in particular we know that any tangent cone of V ′ at q̃ must contain
half of an hyperplane. Since such tangent cone is stable and regular, except for a singular
set of dimension n− 7, we conclude that any tangent cone to V ′ at q̃ is indeed the (same!)
hyperplane.

Hence q̃ is a regular point for V ′ as well. Let now Γ̃ be the connected component of
spt(‖V ′‖) ∩ (An(p, ρ, 4ρ) \ ∂M) which contains q̃. By unique continuation, Γ̃ must in fact
contain Γi∩Bσ(q). Again by unique continuation we conclude that the connected component
Γ̃ and Γi must coincide. On the other hand, because of the properties of the replacement, Γ̃
is regular up to the boundary in An(p, ρ, t).

Since q can be chosen arbitrarily close to sup{d(p, p′) : p′ ∈ Γi, we conclude that in fact Γi
is regular up to the boundary on the whole annulus An(p, ρ, 4ρ). Now, by the monotonicity
formula, we conclude immediately that, if Γi contains a point in An(p, 2ρ, 3ρ) (no matter
whether such point is in the interior or in the boundary), then its n-dimensional volume
is bounded from below by c(n)ρn: in particular there are only finitely many Γi’s which
intersect An(p, 2ρ, 3ρ). For simplicity we will assume that they are the first N0 in the chosen
enumeration.

Recall that the singular sets Si := Sing (Γi ∩An(p, 2ρ, 3ρ)) have dimension at most n− 7.
Consider a boundary point q ∈ ∂M∩ Γi ∩ An(p, 2ρ, 3ρ) which is regular for Γi and at the
same time does not belong to any other Sj. If q were in the closure of some other Γj, then
it would be a regular point for Γj as well. Recall that Γi and Γj cannot cross in the interior
and that they meet ∂M orthogonally. In particular we would necessarily have that Γi and
Γj have the same tangent at q. However this would violate the maximum principle.

Consider now a point p ∈ spt(‖V ‖) ∩An(p, 2ρ, 3ρ) ∩ ∂M. Since ‖V ‖(∂M) = 0 and since
the Γi’s intersecting An(p, 2ρ, 3ρ) are finitely many, we must necessarily have that p ∈ Γi for
some i.

Summarizing we have concluded so far that

spt(‖V ‖) ∩ An(p, 2ρ, 3ρ) ⊂
N0⋃
i=1

Γi

and

any point q ∈ (An(p, 2ρ, 3ρ) ∩ Γi) \
N0⋃
i=1

Si

is a regular point for V .
Clearly, these two properties together imply that V is regular in An(p, 2ρ, 3ρ) (except for

the usual closed set of dimension at most n− 7). Since the argument is valid for any ρ < r
4
,

we easily conclude the regularity of V in a punctured ball.
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10.4. Unconstrained case: removing singular points for n ≤ 6. From the previous
step and by a simple covering argument, we conclude that the set of singular points at
the boundary is at most finite when n ≤ 6. We now wish to remove said points. Again
the argument is a suitable variant of the argument which deals with the same issue in the
interior (cf. [10]). Consider the smooth surface Γ (counted with multiplicity) which gives
the varifold V in Br(p) \ {p}. If we choose r sufficiently small, by Lemma 10.1, for every
ρ < r we know that the rescalings ιp,ρ(Γ) are ε close, in the varifold sense and in the
annulus ιp,ρ(An(p, ρ/8, 4ρ)), to a varifold of the form Θ(V, p)π(ρ) where π(ρ) ⊂ TpM is a
half-hyperplane meeting Tp∂M orthogonally. We can also assume that the tilt between π(ρ)
and π(2ρ) is smaller than ε, provided r is chosen even smaller.

By the compactness Theorem 7.3 (again, in the more general version where the am-
bient manifolds can change, cf. Section 7.4), if r is sufficiently small and ρ < r, then
Vp,ρ ιp,ρ(An(p, ρ/4, 2ρ)) consists of finitely many Lipschitz graphs Γ1(ρ), . . . ,Γk(ρ) over π(ρ),
with controlled Lipschitz constant (say, at most 1), each counted with multiplicity mi. The
same then holds for V An(p, ρ/4, 2ρ). Moreover since the tilt between π(ρ) and π(ρ/2) is
small, we easily conclude that the numbers of connected components in An(p, ρ/8, ρ) is the
same, that they can be ordered so that Γi(ρ) and Γi(ρ/2) overlap smoothly and that the
corresponding multiplicities are the same.

We can repeat the above argument over dyadic radii ρ2−j and we conclude that V (Bρ(p)\
{p} consists of finitely many connected components Γi counted with multiplicity mi, which
are topologically punctured n-dimensional balls, smooth up to ∂M. Taking one such con-
nected component and removing the multiplicity, we get a multiplicity 1 varifold in Bρ(p)
which is stationary for the free boundary problem and has flat tangent cones at p, with mul-
tiplicity 1. This falls therefore under the assumptions of the Allard’s type theorem proved by
Grüter and Jost in the paper [15], from which we conclude that p is a regular point. Hence
each Γi continues smoothly across p. The classical maximum principle now implies that
the Γi cannot actually touch at the point p, implying in fact that the number of connected
components of Γ in any ball Bρ is 1.

11. Competitors: proofs of Corollary 1.7 and 1.9

We start with Corollary 1.7.

Proof of Corollary 1.7. Without loss of generality we can assume that M is connected.
First of all we show that there is a generalized family {Σt}t∈[0,1] where Σ0 and Σ1 are

trivial (namely as closed sets which consist of a collection of finitely many points). Indeed it
suffices to take the level sets of a Morse function f whose range is [0, 1], with the additional
requirement that the restriction of f to ∂M is also a Morse function. Since Morse functions
are generic on smooth manifolds, the existence of such an f is guaranteed. We then construct
a homotopically closed family X by taking the smallest such family which contains Σt.

Take now any {Σ′t}t ∈ X. Away from the singularities St the family {Σ′t} can be given
locally and for t in an interval [a, b] as the image of a smooth map Φ : U × [a, b]. Thus
the family {Σ′τ}τ∈[0,1] induces canonically a current Ω′t such that ∂Ω′t = Σ′t. If {Γt,s}(t,s)∈[0,1]2

is a homotopy between {Σt}t∈[0,1] and {Σ′t}t∈[0,1], it is easy to check that the corresponding
currents Ωt,s such that ∂Ωt,s = Γt,s also vary continuously. Observe however that:

• Ωt,0 = J{f < t}K and thus Ω1,0 = JMK, whereas Ω0,0 = 0;
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• Since Γ1,s, resp. Γ0,s are all trivial currents, each Ω1,s, resp. Ω0,s, is either 0 or M
(because we are assuming that M is connected);
• The continuity of Ω1,t and Ω0,t ensures then that Ω′1 = Ω1,1 = JMK and Ω′0 = Ω′0,1 = 0.

We thus conclude that there must be one Ω′t such that M(Ω′t) = 1
2
Vol(M). Now the isoperi-

metric inequality implies that Hn(Σ′t) ≥ c0(M) > 0, where the constant c0 depends only
upon the ambient manifold.

The above argument shows that m0(X) > bM0(X) = 0 and thus we can apply Theorem
1.6 to find a free boundary minimal hypersurface with total area equal to m0(X). This
completes the proof. �

Similarly, Corollary 1.9 will be an immediate consequence of Theorem 1.6 applied to
constrained families, once we are able to show the existence of two strictly stable minimal
surfaces gives a homotopically closed set X of constrained families parametrized by P = [0, 1]
which satisfies the condition (1.3). The proof will be divided into two lemmas. In the first
one we show the existence of a particular smooth family of hypersurfaces {Σ}t∈[0,1], starting
from Σ0 and ending in Σ1. In the second lemma we show that any integer rectifiable current
with sufficiently small flat distance to Σ0 or Σ1 must have mass which is strictly greater,
with a uniform lower bound depending on the distance. More precisely our two lemmas are

Lemma 11.1. Assume Σ0 and Σ1 are as in Corollary 1.9. Then there exists a smooth family
of hypersurfaces {Σt} parametrized by [0, 1] which is constrained by γ.

Lemma 11.2. Let Σ0,Σ1 be as above. There exists an ε0 > 0 and f : (0, ε0]→ R+ such that

(S)
If Γ is an integer rectifiable current with F(JΣiK− Γ) = ε, i ∈ {0, 1} , and

∂Γ = ∂JΣiK = γ, then M(Γ) ≥M(JΣiK) + f(ε)

The two lemmas above easily imply our corollary.

Proof of Corollary 1.9. Obviously, by taking the homotopy class of the family in Lemma
11.1 we construct a homotopically closed set X. The second lemma then clearly implies that
any smooth family {Γt} with Γ0 = Σ0 and Γ1 = Σ1 must satisfy (1.3), since F(Γt,Γs) is a
continuous function of t and s and F(Γ0,Γ1) > 0. In particular there is a smooth minimal
surface Γ with volume equal to m0(X) > max{Hn(Σ0),Hn(Σ1)} which bounds γ.

Now, by Assumption 1.8 the surface Γ cannot be given by Σ0 (or Σ1) plus a closed minimal
hypersurface, since the latter cannot exist. Recall moreover that the volume of Γ must be
strictly larger than Σ0 (resp. Σ1) and the multiplicity of Γ must be everywhere 1 thanks to
part (b) of Theorem 1.6, we conclude that Γ is distinct from Σ0 (resp. Σ1). In particular, if
γ is connected, then all the Σi’s must be connected and thus Σ2 would give a third distinct
minimal surface.

In general, such argument would still be correct if one between Σ0 and Σ1 were con-
nected. Otherwise, Σ2 might be the union of some connected components of Σ0 and of
some connected components of Σ1, arranged in such a way that ∂Σ2 = γ and that Hn(Σ2) >
max{Hn(Σ0),Hn(Σ1)}. In order to avoid such situation, we consider the family F of minimal
surfaces which bound γ and which can be described as union of some connected components
of Σ0 and of some connected components of Σ1. Since F consists of finitely many elements,
we can pick one of maximal volume, which we denote by Γ0. The remaining connected com-
ponents of Σ0 and of Σ1 (namely those which are not connected components of Γ0) form a
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second stable minimal surface Γ1 which also bounds γ. If we now run the previous argument
with Γ0 and Γ1 replacing Σ0 and Σ1, we achieve yet another minimal surface Γ2: since Γ2

must have volume strictly larger than that of Γ0, the maximality of the latler in the class F
guarantees that Γ2 has at least one connected component which is neither contained in Σ0,
nor in Σ1. �

11.1. Proof of Lemma 11.1. Step 1: Let us first extendM slightly across ∂M, in order
to make the following arguments more elegant (as per Remark 6.2 we can even do this so
that M ⊂ M̃, for some closed manifold M̃, if necessary). Consider the normal tubular
neighborhood of γ in M, which is realized by an embedding ι : U →M, where U ⊂ Nγ is
a neighborhood of the zero section of the normal bundle Nγ, such that ι|γ = 1γ and ι(U) is
open inM. Take a (smooth) vector field e1(x) along γ, which is the normal to ∂M pointing
inwards.

For each point x of γ, consider the sets ι−1(Σi ∩ ι(U)) ∩ Ux, i ∈ {1, 2}, where Ux ∼= R2 is
the fiber of the normal bundle at x. Since Σ0 and Σ1 are smooth and minimal, we can use
the same arguments as in the proof of Lemma 8.1 to conclude that, if U is small enough,
these are smooth, non-intersecting curves (starting at the origin) which are contained inside
a 2-dimensional wedge of opening angle at most θ < π

2
, with e1(x) lying on its axis. Hence,

choosing U even smaller if necessary, we can make sure that they are graphs over e1(x).
That is, for each Ux there exist (smooth) functions φ0

x, φ
1
x such that:

φ0
x, φ

1
x : Wx → R, φix(Wx) = ι−1(Σi ∩ ι(U)) ∩ Ux for i = 0, 1

where Wx := e1(x) ∩ Ux.
Recall that, by our assumption, Σ0∪Σ1 bounds an open set A. Consider a point y ∈ Ā∩ι(Ux),
for some x ∈ γ. Note that the orthogonal projection of ι−1(y) on e1(x), which we denote by
ȳ, lies on the line segment Wx. We define:

ux(y) := t, where ι−1(y) = tφ1
x(ȳ) + (1− t)φ0

x(ȳ), t ∈ [0, 1]. (11.1)

Now, by the properties of the tubular neighborhood, to each y ∈ A ∩ ι(U) is associated a
unique fiber Ux, hence there exists an η > 0, such that when we are at most η-away from ∂M,
i.e. on some open set E0 = A ∩ ι(U) ∩ (M\Mη) with Mη := {x ∈ M : dist(x, ∂M) ≥ η},
these fiber-wise constructions yield a well defined function f0 : E0 → R such that,

f0(y) := ux(y), where y ∈ ι(Ux).
Furthermore, this function is smooth (by smoothness of Σ0,Σ1 and ι), and it has no critical
points, provided we choose η small enough, since obviously the derivative in the direction
orthogonal to e1 (and γ) will be different from 0.

Now, we construct a covering of Ā \E0 with balls, satisfying the following two properties:

a) Each ball has a radius less or equal than η
2
;

b) Each ball can only contain points from one of the surfaces Σ0 and Σ1, and if it does,
its center must lie on the surface.

Through compactness, we obtain a finite subcover, consisting of balls centered at the points
x1, x2, . . . , xN . We will denote these balls by E1, . . . , EN .
Around each of these points xk lying on one of the Σi-s, we can characterize the submanifold
through a local trivialization, i.e. there exists a neighborhood W ⊂ M of the point (which
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we can w.l.o.g. assume to be bigger than the ball Ek), an open set W ′ ⊂ Rn+1 ∼= Rn × R1,
and a diffeomorphism

Ψxk : W → W ′, Ψxk(Σi ∩ U) = W ′ ∩ (Rn × {0}).
We assume in these cases that the points lying inside the set A are mapped into the positive
half-space Rn+1

+ := {(y1, . . . , yn+1), yn+1 > 0}. We now define functions fi on the balls
Ei, i ∈ {1, . . . , N} in the following way:

fi(y) :=


1
2

if xi lies in the interior of A;
(yn+1 ◦Ψxi)(y) if xi lies on Σ0;
1− (yn+1 ◦Ψxi)(y) if xi lies on Σ1.

(11.2)

Here, yn+1 : Rn+1 → R is just a function which evaluates the corresponding coordinate.
Functions fi defined in this way are obviously smooth.

Finally, take a partition of unity {ϕj}0≤j≤N of Ā, subordinate to the covering E0, . . . , EN .
This allows us to define a function h : Ā→ R via:

h(x) :=
N∑
i=0

ϕi(x)fi(x), (11.3)

which is smooth up to the boundary of A, excluding γ of course.

Step 2: The function h defined in (11.3) has no critical points near Σ0 and Σ1, as well
as in a small neighborhood of γ. Moreover h(Σ0 \ γ) = 0 and h(Σ1 \ γ) = 1.

It is obvious from (11.1), (11.2) and (11.3) that h(Σ0 \γ) = 0 and h(Σ1 \γ) = 1. Note also
that, by the definitions of Ei, when we are at most η

2
away from ∂M, only ϕ0 is supported

in this region, hence here it must hold h(x) = f0(x), and we already know that f0 has no
critical points in it. In points q ∈ Σ0, we have

∂h

∂yn+1

∣∣∣∣
q

=
∑
i

∂ϕi
∂yn+1

· fi +
∑
i

ϕi ·
∂fi
∂yn+1

where yn+1 again denotes the ”height” with respect to some fixed local chart Ej. We have
fi(q) = 0 ∀i according to (11.1) and (11.2), so the first sum vanishes. We also see that
∂fj
∂yn+1

= 1 and ∂fi
∂yn+1

> 0 for i 6= j, i > 0 due to the compatibility of charts. so since ϕi-s are

nonnegative and
∑

i ϕi = 1, it follows that the second sum is positive. Hence q cannot be a
critical point of h. With similar arguments, we deduce this also for points lying on Σ1.

It can be seen from the construction, however, that the function h will be mostly constant
inside the open set A away from Σ0 and Σ1. So in this region we will use the fact that Morse
functions form a dense, open subset in the C2 topology, and define one such function g, say
on the open set B := A ∩ Int(Mη/4) (recall the definition above), such that

‖h− g‖C2(B) < ε (11.4)

for some small ε > 0, which will be fixed later. Next, we define a cut-off function ψ :M→ R,
such that ψ = 0 on (M\Mη/4)∪W and ψ = 1 onMη/2\W ′, where W ⊂⊂ W ′ are sufficiently
small neighborhoods of Σ0 ∪ Σ1. We finally define:

f : Ā→ R, f(x) := ψ(x)g(x) + (1− ψ(x))h(x) (11.5)
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Step 3: For ε small enough, the function f is Morse inside A, and its level sets provide
a smooth family parametrized by [0, 1], where f−1(1) = Σ1 and f−1(0) = Σ0.

It follows from the construction that f does not have any degenerate critical point in the
regions where ψ = 0 or ψ = 1. In the intermediate region, due to (11.4) we have:

Df = Dh+Dψ(g − h) + ψ(Dg −Dh)

Due to the previous steps, we know h = f0 when at most η
2

away from ∂M, and thus we
have no critical points for h close to ∂M. Thus |Dh| > δ for some δ > 0 onM\M η

2
. Hence

we have
|Df | ≥ |Dh| − (|Dψ|+ |ψ|)‖h− g‖C2 ≥ δ − Cε,

for some constant C depending on ψ (which in turn depends only on η) on M\M η
2
∪W ′.

Now, we can fix ε small enough so that |Df | > 0 on M \M η
2
∪W ′. On the other hand,

since f = g onM η
2
, we conclude that f is a Morse function. It is clear from the construction

that the level sets of f will be smooth hypersurfaces near γ and will in fact have γ as
boundary. �

11.2. Proof of Lemma 11.2. The proof uses heavily Brian White’s similar result in [41]
where he proves that JΣiK is the unique minimizer among all currents in the same homology
class whose support is contained in a sufficiently small neighborhood of Σi (note that, actu-
ally, it follows from standard arguments that, if the neighborhood is sufficiently small, any
current with the same boundary as Σi must be in its holomogy class). In this lemma we just
need to replace the assumption of being close in the L∞ sense to the one of being close in
the flat norm. Thus our lemma is indeed very close to [1, Lemma 4.1].

W.l.o.g. we assume i = 0. By Theorem 2 of White [41], there exists an open set U
containing Σ0 such that

M(Γ) > M(JΣ0K) ∀Γ with ∂Γ = ∂JΣ0K, and spt (Γ) ⊂ U. (11.6)

We define
m0(ε) := inf{M(Γ) : ∂Γ = ∂JΣ0K and F(Γ− JΣ0K) = ε}. (11.7)

Our aim is to show thatm0(ε) > M(JΣ0K)∀ε ∈ (0, ε0], which clearly implies the statement (S),
by setting f(ε) = m0(ε)−M(JΣ0K). Note that the infimum in (11.7) is actually a minimum.
We would like to show that, if ε sufficiently small, a minimizer Γε must be contained in the
tubular neighborhood U of Σ0: this would then conclude the proof because by (11.6) the
mass of Γε would be strictly larger than that of JΣ0K. In fact, what we will really show is
that there is certainly a Z which has at most the same mass as Γε, has boundary γ and it
is contained in U , which still suffices to reach the desired conclusion.

Step 1: Let us denote first extend Σ0 slightly outside ∂M to a Σ′0 (remember that we can
embedM in a smooth closed manifold M̃) and denote by Uδ the δ-tubular neighborhood of
Σ′0 intersected with M. We will choose δ small enough so that U2δ ⊂ U . Note that ∂Uτ is
smooth for all τ ∈ (δ, 2δ) and diffeomorphic to two copies of Σ0, with diffeomorphisms whose
smoothness can be bounded independently of τ . Hence, by the isoperimetric inequality, we
can choose some constant C > 0 (independent of τ) such that for every (n− 1)-dimensional
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integer rectifiable current α homologous to 0 in ∂Uτ , there exists an n-dimensional integer
rectifiable current S in ∂Uτ with

∂S = α and M(S) ≤ CM(α)
n
n−1 . (11.8)

Take Γε to be the minimizer in (11.7). For every τ ∈ (δ, 2δ) we define:

• A(τ) := M
(
Γε (Uτ )

c
)
;

• L(τ) := M
(
∂
(
Γε (Uτ )

c
))

= M
(
∂(Γε Uτ )− γ

)
.

A standard inequality using coarea formula yields

L(τ) ≤ −A′(τ) for a.e. τ . (11.9)

Let us now fix τ ∈ (δ, 2δ). One of the following alternatives must hold:

(A1) L(τ) = 0. This means that ∂
(
Γε Uτ

)
= γ, and hence Γε Uτ is homologous to Σ0

in U . Consequently, by (11.6),

m0(ε) = M(Γε) ≥M(Γε Uτ ) > M(JΣ0K),

hence we are finished.
(A2) L(τ) > 0. Since F(Γε − JΣ0K) is sufficiently small, then F(Γε − JΣ0K) = M(T ) with

∂T = Γε − JΣ0K. Note that the slice of the (n + 1)-current T , which is supported
in ∂Uτ , bounds the slice of the n-current Γε − JΣ0K, which in fact coincides with the
slice of Γε because Σ0 ∩ ∂Uτ = 0. Let us denote the slice of T by S. This means that
S lies in ∂Uτ (Σ0) with ∂S = γ − ∂(Γε Uτ ), and by (11.8),

M(S) ≤ CL(τ)
n
n−1

Let us set Z = Γε Uτ +S. At this point, we make a further distinction between two
cases:

(A2.1) M(Z) ≤M(Γε). By construction, Z is homologous to Σ0 in U ; thus by (11.6),

m0(ε) = M(Γε) ≥M(Z) > M(JΣ0K),

and the claim follows.
(A2.2) M(Z) ≥M(Γε). By the above, this implies

M
(
Γε (Uτ )

c
)
≤M(S) ≤ CL(τ)

n
n−1 .

In summary, it follows from the considerations above that for the rest of the proof we may
assume w.l.o.g. the following properties for a.e. τ ∈ (δ, 2δ):

• L(τ) > 0

• A(τ) ≤ CL(τ)
n
n−1 .

Step 2: We claim that the minimizers Γε satisfy

M(Γε)→M(JΣ0K) as ε→ 0. (11.10)

By the lower semicontinuity of mass with respect to flat convergence, we immediately get

lim inf
ε→0

M(Γε) ≥M(JΣ0K).

The other inequality needed to prove the claim follows by constructing suitable competitors.
Consider the currents Γ̃r := JΣ0K + ∂JBr(p)K, where Br(p) ⊂ U , Br(p) ∩ Σ0 = ∅. Clearly,
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F(Γ̃r − JΣ0K) → 0 as r → 0, hence (for ε small enough) there exists some r(ε) such that
F(Γ̃r(ε) − JΣ0K) = ε. Moreover, M(Γ̃r(ε))→M(JΣ0K) as ε→ 0. This shows that

lim sup
ε→0

M(Γε) ≤M(JΣ0K),

and the claim follows.

Step 3: We next prove that

lim
ε→0

M
(
Γε (U3δ/2)c

)
= 0. (11.11)

As before, we can assume Γε− JΣ0K = ∂Tε, with M(Tε)→ 0 as ε→ 0. If (11.11) were wrong,
there would exist a sequence εk ↓ 0 and an α > 0 such that

M
(
Γεk (U3δ/2)c

)
≥ α. (11.12)

If we let 〈Tεk , τ〉 = ∂(Tεk Uτ )− (∂Tεk) Uτ denote the slices of Tεk (w.r.t the distance from
Σ0), then by coarea formula ∫ 3

2
δ

δ

M(〈Tεk , τ〉) dτ ≤M(Tεk)→ 0

as k → 0. Since L1 convergence implies a.e. pointwise convergence, we are able to extract
a subsequence (not relabeled) and a τ ∈ (δ, 3

2
δ) such that M(〈Tεk , τ〉) → 0. On the other

hand, we can apply (11.6) to the current 〈Tεk , τ〉+ Γεk Uτ as we did in Step 1, which gives
us

M
(
〈Tεk , τ〉+ Γεk Uτ

)
> M(JΣ0K).

Using these two facts together with (11.10), one easily concludes lim
k→∞

M
(
Γεk (Uτ )

c
)
→ 0,

which is a contradiction to (11.12).

Step 4: Note that the previous step tells us that A
(

3
2
δ
)
→ 0 as ε → 0. Recall that we

assume L(τ) > 0 ∀τ ∈ (δ, 2δ) since Step 1, which immediately implies that also A(τ) > 0.
However, from (11.9) and the other assumption of Step 1 we deduce

A(τ) ≤ CL(τ)
n
n−1 ≤ C(−A′(τ))

n
n−1 ,

giving (by a slight abuse of notation regarding the constants involved)

− A′(τ)

A(τ)
n−1
n

≥ 1

C
∀τ ∈ (δ, 2δ).

Integrating the above inequality between 3
2
δ and 2δ, we get

A
(

3
2
δ
) 1
n ≥ A

(
3
2
δ
) 1
n − A(2δ)

1
n ≥ δ

2nC

which gives a contradiction for ε small enough. �
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