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Abstract. The evolution equation derived by Xu and Xiang in [16] to describe heteroepitaxial
growth in 2 + 1 dimensions with elastic forces on vicinal surfaces is, in the radial case and uniform
mobility,

`t = −∆
[
∇ · (−r̂ + |`r|`r) + L(`r)− (∇ · r̂) log |`r| −

`rr
`r

]
, (1)

where r̂ denotes the unit vector, ` denotes the surface height of the film, `r is assumed to be
negative, and

L(`r)(r) :=
∫ +∞

0

(
K(m)
ρ+ r

+ E(m)
ρ− r

)
`r(ρ) dρ, m := 4ρr

(ρ+ r)2 ,

with

K(m) :=
∫ π/2

0

1√
1−m sin2 θ

dθ, E(m) :=
∫ π/2

0

√
1−m sin2 θ dθ.

The strong nonlinearity, and the presence of elliptic integrals and Cauchy principal values are the
main difficulties of our analysis. In this paper we will show that (1) is formally (i.e., when sufficient
regularity is assumed) equivalent to the parabolic evolution equation (3) below, and the main aim
is to prove existence, uniqueness and regularity of strong solutions to (3). We will extensively use
techniques from the theory of evolution equations governed by maximal monotone operators in
Banach spaces.
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1. Introduction

Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps
self-organize to accommodate misfit elasticity forces. Discrete one-dimensional models have been
proposed by Duport, Politi and Villain [5], and Tersoff, Phang, Zhang and Lagally [13]. The
associated continuum model was derived by Xiang [14]. Also related is the work by Xiang and E
[15]. For two-dimensional models, a continuum model was derived by Xu and Xiang [16].

For simplicity, we assume uniform mobility. Moreover, the original model from [16] involves three
separate scales, and this makes the analysis significantly more challenging. Thus, similarly to what
done by Gao, Liu and Lu in [7], all terms are assumed to be of order O(1). Further neglecting non
influential material constants, the non-dimensional evolution equation, in the radially symmetric
case, reads (in polar coordinates (r, θ))

`t = −∆
[
∇ · (−r̂ + |`r|`r) + L(`r)− (∇ · r̂) log |`r| −

`rr
`r

]
. (2)

Here ` denotes the surface height of the film, `r is assumed to be nonpositive, and

L(`r)(r) := PV

∫ +∞

0

(
K(m)
ρ+ r

+ E(m)
ρ− r

)
`r(ρ) dρ, m := 4ρr

(ρ+ r)2 ,

1
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where PV denotes the Cauchy principal value, and

K(m) :=
∫ π/2

0

1√
1−m sin2 θ

dθ, E(m) :=
∫ π/2

0

√
1−m sin2 θ dθ,

denote the complete elliptic integrals of the first and second kind respectively. The time domain is
the interval [0, T ], with T > 0 being a given datum, and the space domain is R2. Although ` is a
radial function, equation (2) is still quite different from the true one-dimensional equation, which
has been studied by Dal Maso, Fonseca and Leoni in [4], and by Fonseca, Leoni and the author in
[6]. In particular, due to the presence of the elliptic integrals E(m) and K(m), and the fact that L
is defined via Cauchy principal value, the analysis of (2) is quite involved.

Working on an unbounded domain (such as R2) carries the drawbacks of not having Poincaré’s
inequality, and having significantly weaker versions of Sobolev embeddings. Therefore, to avoid
such unnecessary technical difficulties, and similarly to the what done in [4] and [6], we will restrict
our domain to the unit disk D := {(r, θ) : r ≤ 1}. Then let H be the operator “representing” L in
D. The operator H is the “analogue” of the Hilbert transform in the one-dimensional case. The
explicit expression of H will be irrelevant, and the crucial fact is that, since L is a bounded linear
operator with norm not exceeding 2/π (see Lemma 6 below), so is H.

Finally, for future reference, the notation 〈, 〉 (without subscripts) will denote the Euclidean
scalar product of R2.

Now fix a constant a, and we introduce the parabolic equation

ut = −∇
[
∇ · (−r̂ + |〈∇∇ · u, r̂〉+ a|(〈∇∇ · u, r̂〉+ a)r̂) +H(〈∇∇ · u, r̂〉+ a)

− (∇ · r̂) log |〈∇∇ · u, r̂〉+ a| − (log |〈∇∇ · u, r̂〉+ a|)r
]
, (3)

with time domain [0, T ], and spatial domain D. As will be proven in Lemma 5 below, (3) has a
variational structure.

The relation between (2) and (3) is the following: given a radial function h, let u be a (radial)
function such that h = ∇ · u+ ar (such a u can be found by direct computation, but is not unique,
since one can always add divergence-free functions to u). Then, neglecting all regularity issues
(e.g., when u, h are W 2,2-regular, and 〈∇∇ · u, r̂〉+ a, hr are uniformly bounded away from zero),
it follows

hr = (∇ · u)r + a = 〈∇∇ · u, r̂〉+ a.

Now, if u is a radial solution of (3), then

ut = −∇
[
∇ · (−r̂ + |〈∇∇ · u, r̂〉+ a|(〈∇∇ · u, r̂〉+ a)r̂) +H(〈∇∇ · u, r̂〉+ a)

− (∇ · r̂) log |〈∇∇ · u, r̂〉+ a| − (log |〈∇∇ · u, r̂〉+ a|)r
]

= −∇
[
∇ · (−r̂ + |hr|hrr̂) +H(hr)− (∇ · r̂) log |hr| − (log |hr|)r

]
= −∇

[
∇ · (−r̂ + |hr|hrr̂) +H(hr)− (∇ · r̂) log |hr| −

hrr
hr

]
,

hence
(∇ · u+ ar)t = ht = −∆

[
∇ · (−r̂ + |hr|hr) +H(hr)− (∇ · r̂) log |hr| −

hrr
hr

]
,
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i.e., h is solution of (2). Thus, we have full “equivalence” between formulations (2) and (3) when
sufficient regularity (and uniform boundedness away from zero) is assumed (but is unclear if such
“equivalence” holds in general). Therefore, since hr < 0 by hypothesis, we will also impose

〈∇∇ · u, r̂〉+ a < 0 a.e. (4)

The choice to introduce the term “+ar” in “h = ∇ · u+ ar” is due to the following reasons:

(1) to fully exploit Poincaré’s inequality, we will impose
∫
D∇ · udx = 0 (when defining the

space V in (7) below).
(2) However, in the original equation (2), hr was always nonpositive, hence the necessity of

adding +ar to have (4) (this forces also a < 0).

Equation (3) will be the main object of our analysis. Clearly, since we have axial symmetry from
the model, for future reference, any considered function will be tacitly assumed to be radial. Thus
(3) can be rewritten as

ut = −∇
[
∇ ·

(
−r̂ − |〈∇∇ · u, r̂〉+ a|2r̂

)
+H(〈∇∇ · u, r̂〉+ a)

− (∇ · r̂) log |〈∇∇ · u, r̂〉+ a| − (log |〈∇∇ · u, r̂〉+ a|)r
]
. (5)

The main result is:

Theorem 1. Given T > 0, a < 0, an initial datum u0 ∈ V (defined in (7) below) such that

−∇
[
∇ ·

(
−r̂ − |〈∇∇ · u0, r̂〉+ a|2r̂

)
+H(〈∇∇ · u0, r̂〉+ a)

− (∇ · r̂) log |〈∇∇ · u0, r̂〉+ a| − (log |〈∇∇ · u0, r̂〉+ a|)r
]
∈ L2(D;R2), (6)

then there exists a unique strong solution

u ∈ L∞(0, T ;V ) ∩ C0([0, T ];U), ut ∈ L∞(0, T ;U)

of (3), with U defined in (8) below. That is,

ut = −∇
[
∇ ·

(
−r̂ − |〈∇∇ · u, r̂〉+ a|2r̂

)
+H(〈∇∇ · u, r̂〉+ a)

− (∇ · r̂) log |〈∇∇ · u, r̂〉+ a| − (log |〈∇∇ · u, r̂〉+ a|)r
]

for a.e. t ∈ [0, T ], r ∈ [0, 1] and θ ∈ [0, 2π].

The key difficulty in the analysis is that the right-hand side term in (3) contains the elliptic
integrals K(m) and E(m), a Cauchy principal value, and singularities due to the logarithm. To
overcome this issue, we will prove that the linear term ∇H(〈∇∇ · u, r̂〉+ a) is a bounded operator
(Lemma 6), and the remaining (nonlinear) part is the sub-differential of some convex, proper,
lower-semicontinuous functional (Lemmas 5 and 7). Then we will rely on the theory of parabolic
evolution equations governed by maximal monotone operators.
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2. Auxiliary results

The main aim of this section is to study the right-hand side operator in (5). Our main functional
spaces through the paper will be

V :={u ∈ L2(D;R2) : ∇ · u ∈ L2(D;R), ∇∇ · u ∈ L2(D;R2),
u is radial, 〈u, ν〉 = ∇ · u ≡ 0 on ∂D}, (7)

U :={u ∈ L2(D;R2) : u is radial}. (8)

Here ν denotes the (exterior) unit normal vector to D. Here we identified U with its dual U ′,
but in many instances, where it is important to consider U ′ as a dual space, we will continue to
use the notation U ′ instead of U . It is straightforward to check that V is reflexive, and that the
embeddings V ↪→ U , U ′ ↪→ V ′ are continuous and dense. The duality pairing between V ′ and V
will be denoted by 〈, 〉V ′,V , and given by

(∀v′ ∈ V ′, v ∈ V ) 〈v′, v〉V ′,V :=
∫
D
〈v′, v〉 dx.

Endow U with the L2-norm of D, and V with the norm

‖v‖V := ‖∇∇ · v‖U .

The absence of ‖∇ · v‖U in the definition of ‖ · ‖V is due to the boundary condition 〈v, ν〉 ≡ 0
on ∂D, which gives

∫
D∇ · v dx = 0 for all v ∈ V . This, combined with Poincaré inequality, gives

‖∇ · v‖U ≤ c‖∇∇ · v‖V for some constant c. The absence of ‖v‖U is due to Lemma 2 below.

Lemma 2. There exists a constant C > 0 such that

‖∇ · v‖U ≥ C‖v‖U
for any v ∈ V .

Proof. The thesis follows from the fact that every radial function is a gradient, and from [1, Theo-
rem 5.4] �

Remark 3. As a consequence, the norms ‖v‖V and ‖v‖U + ‖∇ · v‖U + ‖∇∇ · v‖U are equivalent.

Next let us recall the following definitions (see for instance [2, Chapter 2]):

Definition 4. Given a Banach space X, denote by 〈, 〉X′,X the duality pairing between X ′ and X.
A single-valued operator A : X −→ X ′, whose domain we denote by

domX(A) := {u ∈ X : Au ∈ X ′},

is:
(1) monotone if for any u, v ∈ domX(A), it holds

〈Au−Av, u− v〉X′,X ≥ 0.

Similarly, a set G ⊆ X ×X ′ is “monotone” if for any pair (u, u′), (v, v′) ∈ G, it holds

〈u′ − v′, u− v〉X′,X ≥ 0;

(2) maximal monotone if the graph

ΓA(X) := {(u,Au) : u ∈ X} ⊆ X ×X ′

is not a proper subset of any monotone set;
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(3) hemi-continuous if for any u, v, w ∈ X the mapping t 7−→ 〈Au+ tJXv, w〉X′,X is contin-
uous, where JX : X −→ X ′ denotes the duality mapping.

Moreover, the graph ΓA(X) is demi-closed if for any sequence (xn) ⊆ X, such that xn → x

strongly in X, Axn ⇀ ξ ∈ X, it holds (x, ξ) ∈ A.

Our next lemma proves a crucial monotonicity result.

Lemma 5. Consider the operator

B : V −→ V ′,

Bu := ∇
[
∇ ·

(
− r̂ − |〈∇∇ · u, r̂〉+ a|2r̂

)
− (∇ · r̂) log |〈∇∇ · u, r̂〉+ a| − (log |〈∇∇ · u, r̂〉+ a|)r

]
,

that is (since (log |〈∇∇ · u, r̂〉+ a|)r = 〈∇ log |〈∇∇ · u, r̂〉+ a|, r̂〉),

〈Bu, v〉V ′,V = −
∫
D
〈r̂ + |〈∇∇ · u, r̂〉+ a|2r̂,∇∇ · v〉 dx

+
∫
D

(∇ · r̂) log |〈∇∇ · u, r̂〉+ a|∇ · v dx−
∫
D

log |〈∇∇ · u, r̂〉+ a|∇ · (r̂∇ · v) dx.

for all v ∈ V . Then B is the sub-differential of the proper, convex, lower-semicontinuous functional

φ : V −→ R, φ(u) :=
∫
D

Φ(−〈∇∇ · u, r̂〉 − a) dx, (9)

with Φ defined in (10) below. Consequently, B is maximal monotone and demi-closed.

Proof. Note that

(∇ · r̂) log |〈∇∇ · u, r̂〉+ a|+ (log |〈∇∇ · u, r̂〉+ a|)r
= (∇ · r̂) log |〈∇∇ · u, r̂〉+ a|+ 〈∇ log |〈∇∇ · u, r̂〉+ a|, r̂〉 = ∇ · (r̂ log |〈∇∇ · u, r̂〉+ a|),

hence B is rewritten as

Bu = −∇∇ · (|〈∇∇ · u, r̂〉+ a|2r̂)−∇∇ · r̂ −∇∇ · (r̂ log |〈∇∇ · u, r̂〉+ a|).

The proof is essentially divided into four steps:
(1) first, we define the functions Φ and φ (see (10) below), and prove that

∂φ(u) ⊇ {∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a)r̂)}

provided that ∂φ(u) is not empty.
(2) Second, we prove that the Gâteaux differential

lim
ε→0

φ(u+ v)− φ(u)
ε

=
∫
D
〈∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a))r̂, v〉dx

is well defined for all directions v belonging to
⋃
C≥0 TC (defined in (11) below).

(3) Third, we prove that
⋃
C≥0 TC is dense in V .

(4) Finally, we infer the uniqueness of the sub-differential ∂φ, i.e.

∂φ(u) = {∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a)r̂)}

provided that ∂φ(u) is not empty.
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Step 1. Define the convex function

Φ : R −→ R ∪ {+∞}, Φ(ξ) :=


+∞ if ξ < 0,

0 if ξ = 0,
ξ log ξ + ξ3/3 if ξ > 0,

(10)

and let
φ : V −→ R ∪ {+∞}, φ(u) :=

∫
D

Φ(−〈∇∇ · u, r̂〉 − a) dx.

It is straightforward to check that φ is lower-semicontinuous, proper (i.e., not identically equal to
+∞), and convex, as we imposed 〈∇∇ · u, r̂〉+ a < 0 a.e.. Thus

Φ(−〈∇∇· (u+εv), r̂〉−a)−Φ(−〈∇∇·u, r̂〉−a) ≥ εΦ′(−〈∇∇·u, r̂〉−a)〈−∇∇·v, r̂〉 for a.e. r, θ

holds whenever Φ(−〈∇∇ · u, r̂〉 − a) < +∞, and integrating on D gives

φ(u+ εv)− φ(u) =
∫
D

[Φ(−〈∇∇ · (u+ εv), r̂〉 − a)− Φ(−〈∇∇ · u, r̂〉 − a)] dx

≥ ε
∫
D

Φ′(−〈∇∇ · u, r̂〉 − a)〈−∇∇ · v, r̂〉 dx

= ε

∫
D
〈−v,∇∇ · (Φ′(−〈∇∇ · u, r̂〉 − a)r̂)〉dx.

Thus
∂φ(u) 6= ∅ =⇒ ∂φ(u) ⊇ {−∇∇ · (Φ′(−〈∇∇ · u, r̂〉 − a)r̂)}.

Note that

−∇∇ · (Φ′(−〈∇∇ · u, r̂〉 − a)r̂) = −∇∇ · (|〈∇∇ · u, r̂〉+ a|2r̂ + log |〈∇∇ · u, r̂〉+ a|r̂ + r̂) = Bu.

Step 2. Now we prove ∂φ(u) = {−∇∇ · (Φ′(−〈∇∇ · u, r̂〉 − a)r̂)} (provided that ∂φ(u) 6= ∅). We
recall that ∂φ(u) is a singleton as soon as φ is Gâteaux differentiable at u. Let

ξ1 := −〈∇∇ · (u+ εv), r̂〉 − a, ξ2 := −〈∇∇ · u, r̂〉 − a, ξ1 − ξ2 = −ε〈∇∇ · v, r̂〉,

and we impose the extra condition

v ∈ TC , TC :=
{
z ∈ U :

∣∣∣∣ 〈∇∇ · z, r̂〉〈∇∇ · u, r̂〉+ a

∣∣∣∣ ≤ C < +∞
}

(11)

for some C. The mean value theorem then gives

φ(u+ εv)− φ(u) =
∫
D

[Φ(ξ1)− Φ(ξ2)] dx =
∫
D

Φ′(ξ̃)(ξ1 − ξ2) dx, (12)

where ξ̃ is a function satisfying

min{ξ1, ξ2} ≤ ξ̃ ≤ max{ξ1, ξ2} for a.e. r, θ.

Note that ξ̃ is Lebesgue measurable since Φ′ is strictly increasing on (0,+∞), and ξ̃ = ξ1 = ξ2 on
ξ1 = ξ2, and

ξ̃ = (Φ′)−1
(Φ(ξ1)− Φ(ξ2)

ξ1 − ξ2

)
on ξ1 6= ξ2,

where the right-hand side term is clearly Lebesgue measurable. Since Φ′ is strictly increasing, we
have ∫

D
Φ′(min{ξ1, ξ2})(ξ1 − ξ2) dx ≤

∫
D

Φ′(ξ̃)(ξ1 − ξ2) dx ≤
∫
D

Φ′(max{ξ1, ξ2})(ξ1 − ξ2) dx.
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We prove now

lim
ε→0

1
ε

∫
D

Φ′(min{ξ1, ξ2})(ξ1 − ξ2) dx

= lim
ε→0

1
ε

∫
D

Φ′(max{ξ1, ξ2})(ξ1 − ξ2) dx =
∫
D

Φ′(ξ2) dx〈∇∇ · v, r̂〉 dx. (13)

Note that both terms

Φ′(min{ξ1, ξ2}) = Φ′(min{−〈∇∇ · (u+ εv), r̂〉 − a,−〈∇∇ · u, r̂〉 − a}),
Φ′(max{ξ1, ξ2}) = Φ′(max{−〈∇∇ · (u+ εv), r̂〉 − a,−〈∇∇ · u, r̂〉 − a}),

converge to
Φ′(−〈∇∇ · u, r̂〉 − a) = Φ′(ξ2)

for a.e. r, θ. Since we have chosen v ∈ TC (defined in (11)), it follows

ε−1|ξ1 − ξ2| = |〈∇∇ · v, r̂〉| ≤ C|〈∇∇ · u, r̂〉+ a| = C|ξ2|.

As we will take the limit ε→ 0, without loss of generality we can consider only ε with |ε| < 1/(2C).
Thus

ξ1 ≥ ξ2 − |ξ1 − ξ2| ≥ ξ2 − Cε|ξ2| > ξ2/2, ξ1 ≤ ξ2 + |ξ1 − ξ2| ≤ ξ2 + Cε|ξ2| < 3ξ2/2,

and the monotonicity and positivity of Φ′ gives

ε−1|ξ1 − ξ2|Φ′(max{ξ1, ξ2}), ε−1|ξ1 − ξ2|Φ′(max{ξ1, ξ2}) ≤ C|ξ2|Φ′(ξ2).

Recalling that

φ(u) =
∫
D

Φ(−〈∇∇ · u, r̂〉 − a) dx =
∫
D

(ξ3
2/3 + ξ2 log ξ2) dx < +∞, (14)

ξ2 > 0 a.e., and ξ 7→ ξ log ξ is bounded from below, we infer
∫
D ξ

3
2 dx < +∞. Therefore,∫

D
|ξ2|Φ′(ξ2) dx =

∫
D
ξ2Φ′(ξ2) dx =

∫
D

[ξ3
2 + ξ2 log ξ2 + ξ2] dx < +∞,

as
∫
D

[ξ3
2 + ξ2 log ξ2] dx < +∞ in view of (14), and

∫
D
ξ2 dx < +∞ in view of the continuity of the

embedding L1(D;R) ↪→ L3(D;R). Thus both functions

Φ′(min{ξ1, ξ2})(ξ1 − ξ2), Φ′(max{ξ1, ξ2})(ξ1 − ξ2)

are dominated by C|ξ2|Φ′(ξ2) ∈ L1(D;R), and (13) follows from Lebesgue’s dominated convergence
theorem. Thus we have proven

lim
ε→0

φ(u+ εv)− φ(u)
ε

=
∫
D

Φ′(−〈∇∇ · u, r̂〉 − a)〈−∇∇ · v, r̂〉 dx

=
∫
D
〈∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a))r̂, v〉 dx

for any v ∈
⋃
C≥0 TC .

Step 3. Now we prove the set
⋃
C≥0 TC is dense in V . Consider an arbitrary z ∈ V , and construct

the approximating sequence as follows: let

zn :=
{
〈∇∇ · z, r̂〉 if

∣∣∣ 〈∇∇·z,r̂〉〈∇∇·u,r̂〉

∣∣∣ ≤ n,
0 otherwise.

We look then for radial functions z∗n : D −→ R (resp. z∗∗n : D −→ R2) such that ∇z∗n = znr̂ (resp.
∇ · z∗∗n = z∗n) with the boundary conditions zn = 0 on ∂D (resp. z∗∗n = (0, 0) on ∂D). It suffices to
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construct z∗n and z∗∗n on the fiber {(r, θ) : r ∈ [−1, 0], θ = 0} of D, and the extend to D using the
radial symmetry. For any x ∈ [−1, 0] let

z∗n(x, 0) :=
∫ x

−1
zn(r, 0) dr,

and clearly zn = ∇z∗n, z∗n = 0 on ∂D. To construct z∗∗n , we recall that in radial coordinates the
divergence of a radial function f takes the form ∇ · f = 1

r
∂
∂r (r〈f, r̂〉), and 〈z∗∗n (·, 0), r̂〉 can be

found by integrating z∗n(·, 0). Then we extend the definition of z∗n and z∗∗n to D using their radial
symmetry. As ∇∇ · z∗∗n = zn, and ‖zn− 〈∇∇ · z, r̂〉‖L2(D;R) → 0, we infer z∗∗n → z in V . Therefore„
for any n, z∗∗n ∈ Tn, and

⋃
C≥0 T

∗∗
C is dense in V .

Step 4. In Step 3 we proved that

lim
ε→0

φ(u+ εv)− φ(u)
ε

=
∫
D
〈∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a))r̂, v〉 dx

holds for all directions v belonging to
⋃
C≥0 TC , which is dense in V . To prove that

∂φ(u) = {∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a)r̂)}

whenever ∂φ(u) is not empty, assume that for some u, ∂φ(u) contains two elements η1, η2 ∈ V ′.
It is straightforward to check (using the same arguments from Step 2) that that for any v ∈ TC
we have φ(u ± εv) < +∞ for sufficiently small ε (e.g., for all ε < 1/(2TC)). By the definition of
sub-gradient we then have

lim
ε→0

φ(u+ εv)− φ(u)
ε

≥
∫
D
η1v dx, lim

ε→0

φ(u− εv)− φ(u)
ε

≥ −
∫
D
η1v dx,

lim
ε→0

φ(u+ εv)− φ(u)
ε

≥
∫
D
η2v dx, lim

ε→0

φ(u− εv)− φ(u)
ε

≥ −
∫
D
η2v dx,

hence
〈η1, v〉V ′,V =

∫
D
η1v dx =

∫
D
η2v dx = 〈η2, v〉V ′,V

for all v ∈
⋃
C≥0 TC . Thus η1 = η2, which gives

∂φ(u) = {∇∇ · (−Φ′(−〈∇∇ · u, r̂〉 − a)r̂)}

whenever ∂φ(u) is not empty.

Thus B is sub-differential of the proper, convex and lower-semicontinuous function φ. Then the
maximal monotonicity of B follows from [2, Theorem 2.8], and the demi-closedness follows from
[12, Theorem 1, Remarks 3-4]. �

Now we estimate the linear term ∇H(〈∇∇ · u, r̂〉 + a). The main difficulties are due to the
presence of the Cauchy principal value, and the elliptic integrals K(m) and E(m).

Lemma 6. Consider the operator

H : V −→ V ′, H(w) := −∇H(∇∇ · w),

i.e.,

(∀w, v ∈ V ) 〈H(w), v〉V ′,V :=
∫
D
H(∇∇ · w)∇ · v dx.
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Then the operator norm of H is at most π/2, i.e.,

sup
v∈V

|〈H(w), v〉V ′,V |
‖∇∇ · v‖U

≤ π

2 ‖∇∇ · w‖U .

Moreover, H(c) = 0 for any constant c ∈ R.

Proof. Since we have no information on the structure of H, we must work with the original operator
L. Note that

L(hr)(r) :=
∫ +∞

0

(
K(m)
ρ+ r

+ E(m)
ρ− r

)
hr(ρ) dρ

is a particular case (i.e., when h is radial) of the functional G given by

G(∇h)(x, y) := PV

∫
R2

(x− ξ)hx(ξ, η) + (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2 dξ dη

We prove that the linear functional G1 given by

G1(kx)(x, y) := PV

∫
R2

(x− ξ)kx(ξ, η)
[(x− ξ)2 + (y − η)2]3/2 dξ dη (15)

is bounded, and G1(kx) ∈ L2(R2;R), for any k ∈W 1,2(R2;R).

Consider an arbitrary k ∈W 1,2(R2;R). Setting

f : R2 −→ R2, f(ξ, η) := ξ

(ξ2 + η2)3/2 , (16)

gives

G1(kx)(x, y) = PV

∫
R2

(x− ξ)kx(ξ, η)
[(x− ξ)2 + (y − η)2]3/2 dξ dη = (f ∗ kx)(x, y),

and f̂ ∗ kx = f̂ · k̂x. Since kx ∈ L2(R2;R), we have ‖kx‖L2(R2;R) = ‖k̂x‖L2(R2;R).
It suffices to prove f̂ ∈ L∞(R2;R), which requires delicate manipulation of the principal values.

Choose an arbitrary (x, y) = (r0, θ0) ∈ R2. Using polar coordinates we get

f̂(r0, θ0) = PV

∫
R2
f(ξ, η)e−2iπ〈(x,y),(ξ,η)〉 dξ dη

= PV

∫
R2

ξ

(ξ2 + η2)3/2 e
−2iπ〈(x,y),(ξ,η)〉 dξ dη

= PV

∫ 2π

0

∫ +∞

0

cos θ
r

e−2iπr0r cos(θ0−θ) dr dθ

Coupling the integrands at θ and θ + π, we obtain

PV

∫ π

0

∫ +∞

0

(cos θ
r

e−2iπr0r cos(θ0−θ) + cos(θ + π)
r

e−2iπr0r cos(θ0−θ−π)
)

dr dθ

= −PV
∫ θ0−π

θ0

∫ +∞

0

cos(θ0 − θ)
r

(
e−2iπr0r cos θ − e2iπr0r cos θ

)
dr dθ

= PV

∫ θ0−π

θ0

∫ +∞

0

cos(θ0 − θ)
r

sin(2πr0r cos θ)
2i dr dθ

=
∫ θ0−π

θ0

cos(θ0 − θ)
2i

(
PV

∫ +∞

0

sin(2πr0r cos θ)
r

dr
)

dθ

=
∫ θ0−π

θ0

cos(θ0 − θ)
2i sgn(cos θ)

(
PV

∫ +∞

0

sin(ρ)
ρ

dρ
)

dθ.
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Recalling that

PV

∫ +∞

0

sin(ρ)
ρ

dρ = lim
M→+∞

∫ M

0

sin(ρ)
ρ

dρ = π

2 ,

we infer ∣∣∣∣ ∫ θ0−π

θ0

cos(θ0 − θ)
2i sgn(cos θ)

(
PV

∫ +∞

0

sin(ρ)
ρ

dρ
)

dθ
∣∣∣∣

≤ π

4

∫ θ0−π

θ0
| cos(θ0 − θ)|dθ = π

4

∫ π

0
| cos θ| dθ = π

2 ,

hence ‖f̂‖L∞(R2;R) ≤ π/2. Thus G1(kx) ∈ L2(R2;R). Moreover,

‖f̂ ∗ kx‖L2(R2;R) = ‖f̂ · k̂x‖L2(R2;R) ≤
π

2 ‖k̂x‖L2(R2;R).

Therefore, the operator norm of G1 is at most π/2.
Similarly, setting

G2(ky)(x, y) := PV

∫
R2

(y − η)ky(ξ, η)
[(x− ξ)2 + (y − η)2]3/2 dξ dη

and
g : R2 −→ R2, g(ξ, η) := η

(ξ2 + η2)3/2 ,

we get G2(ky)(x, y) = (g ∗ ky)(x, y), and the same arguments give that G2 maps L2(R2;R) to
L2(R2;R), and

‖ĝ ∗ ky‖L2(R2;R) ≤
π

2 ‖ky‖L2(R2;R).

Now, we return to work again in the domain D. By Hölder and Poincaré inequalities, we get

|〈Hw, v〉V ′,V | ≤
∫
D
|H(∇∇ · w)∇ · v| dx ≤ ‖H(∇∇ · w)‖L2(D;R)‖∇ · v‖L2(D;R)

≤ π

2 ‖∇∇ · w‖L2(D;R)‖∇∇ · v‖L2(D;R),

for any w, v ∈ V .

To prove the last part, i.e. H(c) = 0 for any constant c ∈ R, it is again convenient to work with
L instead of H. It suffices to prove that G1(c) = G2(c) = 0 for any constant c ∈ R. From (15), by
change of variable ξ̃ := x− ξ, η̃ := y − η, we get

G1(c)(x, y) := c

[
PV

∫
R2

x− ξ
[(x− ξ)2 + (y − η)2]3/2 dξ dη

]
= c

[
PV

∫
R2

ξ̃

[ξ̃2 + η̃2]3/2 dξ̃ dη̃
]

= 0

as the function ξ 7→ ξ̃/[ξ̃2 + η̃2]3/2 is odd for any η̃. The proof for G2(c) = 0 is completely
analogous. �

Lemma 6 estimates the operator norm of H, but does not give any information about mono-
tonicity. The following results (Lemma 7 and Corollary (8)) will prove that both operators ∂φ±H
are maximal monotone.

Lemma 7. Consider the operator

ψ : V −→ R, ψ(u) :=
∫
D

(Φ(|〈∇∇ · u, r̂〉+ a|)− |〈∇∇ · u, r̂〉|2) dx, (17)

with Φ being the function from Lemma 5. Then its sub-differential ∂ψ(u) is a maximal monotone
operator.
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Proof. It is straightforward to check that ψ is proper and lower-semicontinuous. To prove the
convexity, set

ϕ : R −→ R ∪ {+∞}, ϕ(ξ) := Φ(ξ + a)− ξ2,

and it follows
ψ(u) =

∫
D
ϕ(|〈∇∇ · u, r̂〉|) dx.

Note that ϕ is smooth on (0,+∞), and

ϕ′′(ξ) = Φ′′(ξ + a)− 2 = 2(ξ + a) + (ξ + a)−1 − 2.

Since the minimum of 2(ξ + a) + (ξ + a)−1 is attained at ξ + a = 1/
√

2, it follows

ϕ′′(ξ) = 2(ξ + a) + (ξ + a)−1 − 2 ≥ 2
√

2− 2 > 0,

hence ϕ, and consequently ψ, is convex. Therefore, by [2, Theorem 2.8], its sub-differential ∂ψ(u)
is maximal monotone. �

Corollary 8. The operators ±H+ ∂φ are maximal monotone and coercive, i.e.

(∀u, v ∈ V ) 〈±H(u− v) + ∂φ(u)− ∂φ(v), u− v〉V ′,V ≥ ‖u− v‖2V .

Although we will use only the operator ∂φ +H in the following, we prove the maximal mono-
tonicity for both operator ∂φ±H (as the proof is identical), to show how the linear perturbation
term H (independently of its sign) does not affect monotonicity.

Proof. Let ψ be the functional from Lemma 7. Note that

∂ψ(u) = −∇∇ · [r̂(Φ′(|〈∇∇ · u, r̂〉+ a)|)]− 2∇∇ · [r̂|〈∇∇ · u, r̂〉+ a|],

in view of the following facts:
(1) we already proved (in Lemma 5) that the sub-differential of u 7→

∫
D Φ(|〈∇∇ · u, r̂〉+ a|) dx

is −∇∇ · [r̂Φ′(|〈∇∇ · u, r̂〉+ a|)],
(2) direct computation then gives∫

D
[|〈∇∇ · (u+ v), r̂〉|2 − |〈∇∇ · u, r̂〉|2] dx

= 2
∫
D
〈∇∇ · (u+ v), r̂〉〈∇∇ · v, r̂〉dx+

∫
D
|〈∇∇ · v, r̂〉|2 dx

=
∫
D
〈v, 2∇∇ · [〈∇∇ · (u+ v), r̂〉r̂]〉dx+ ‖v‖2V ,

hence the sub-differential of χ(u) :=
∫
D
|〈∇∇ · u, r̂〉|2 dx is linear, and equal to 2∇∇·[r̂〈∇∇·

u, r̂〉].
Lemma 6 proved that the operator norm of H is at most π/2, and it has been proven in [10] that
the Poincaré constant for L2 norms on the unit disk is at most 2/π. Thus it follows

|〈H(u), u〉V ′,V | ≤
∫
D
|H(〈∇∇ · u, r̂〉)∇ · u|dx ≤ π

2 ‖〈∇∇ · u, r̂〉‖U‖∇ · u‖U

≤ ‖〈∇∇ · u, r̂〉‖U‖∇∇ · u‖U , (18)
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and

〈∂φ(u)− ∂φ(v), u− v〉V ′,V − 〈±H(u− v), u− v〉V ′,V

= 〈∂φ(u)− ∂φ(v), u− v〉V ′,V ∓
∫
D
H(〈∇∇ · (u− v), r̂〉)∇ · (u− v) dx

≥ 〈∂φ(u)− ∂φ(v), u− v〉V ′,V − ‖〈∇∇ · (u− v), r̂〉‖U‖∇∇ · (u− v)‖U . (19)

Since u is radial (and so is ∇∇ · u), it follows

‖〈∇∇ · (u− v), r̂〉‖U = ‖(∇ · (u− v))r‖U = ‖∇∇ · (u− v)‖U ,

thus (18) becomes

〈∂φ(u)− ∂φ(v), u− v〉V ′,V − 〈±H(u− v), u− v〉V ′,V

≥ 〈∂φ(u)− ∂φ(v), u− v〉V ′,V − ‖(∇ · (u− v))r‖2U . (20)

On the other hand, since we already proved that the the sub-differential of χ(u) is linear, and equal
to 2∇∇ · [r̂〈∇∇ · u, r̂〉], it follows

〈∂χ(u)− ∂χ(v), u− v〉V ′,V = 2
∫
D
〈∇∇ · [r̂〈∇∇ · (u− v), r̂〉], u− v〉 dx

= 2
∫
D
〈r̂(∇ · (u− v))r,∇∇ · (u− v)〉 dx = 2

∫
D

(∇ · (u− v))2
r dx = 2‖u− v‖2V .

Combining with (20) then gives

〈∂φ(u)− ∂φ(v), u− v〉V ′,V − 〈±H(u− v), u− v〉V ′,V

≥ 〈∂φ(u)− ∂φ(v), u− v〉V ′,V − ‖∇∇ · (u− v)‖2U
= 〈∂ψ(u)− ∂ψ(v), u− v〉V ′,V + 〈∂χ(u)− ∂χ(v), u− v〉V ′,V − ‖∇∇ · (u− v)‖2U
≥ 〈∂ψ(u)− ∂ψ(v), u− v〉V ′,V + ‖u− v‖2V . (21)

Since Lemma 7 proved that ∂ψ is maximal monotone, and both operators ∂χ ± H are linear,
bounded and monotone, it follows (by [11]) that both operators ∂φ ± H = ∂ψ + ∂χ ± H are
maximal monotone. �

3. Proof of Theorem 1

In this section we are going to prove Theorem 1.

3.1. Variational Inequality. The first step is to establish the variational inequality (24) below,
that plays a key role in the proof of Theorem 1. This is a direct application of Kačur’s result from
[8, Section 5], but due to its relevance to our arguments, we report the proof.

Proposition 9. Let H and φ be the functionals from Lemma 6 and equation (10) respectively. Let
u0 ∈ domU (H+ ∂φ) be a given initial datum, satisfying

(H+ ∂φ)u0 ∈ U. (22)

Then there exists a function

u ∈ L∞(0, T ;V ) ∩ C0([0, T ];U), ut ∈ L∞(0, T ;U) (23)

such that u(0) = u0 and

〈ut(t), v − u(t)〉U ′,U + 〈H(u(t)), v − u(t)〉V ′,V + φ(v)− φ(u(t)) ≥ 0 (24)
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for a.e. time t ∈ (0, T ), and all v ∈ V . Moreover, it holds

‖ut‖L∞(0,T ;U) ≤ ‖(H+ ∂φ)u0‖U . (25)

Proof. The proof is essentially divided into three steps:
(1) first, using the classic method of time discretization (i.e., backward Euler’s method), we

construct an approximating sequence of piece-wise linear functions uε : [0, T ] −→ V ;
(2) then we prove that the sequence (uε)ε is uniformly bounded in L∞(0, T ;V )∩W 1,∞([0, T ];U),

and we obtain a limit function (in the weak-* topology of L∞(0, T ;V ) ∩W 1,∞([0, T ];U))

u ∈ L∞(0, T ;V ) ∩ C0([0, T ];U), ut ∈ L∞(0, T ;U);

(3) finally, we prove that such u is solution of (24).

Step 1. Let ε > 0 be given. Consider the partition

0 = t0 < t1 < · · · < tnε−1 < tnε ≤ T ≤ tnε + ε,

tj − tj−1 = ε, j = 1, · · · , nε :=
⌊
T

ε

⌋
,

where b·c denotes the integer part mapping.
We define the recursive sequence (uε,i)i in the following way:
(1) uε,0 := u0,
(2) given uε,i−1 ∈ V , let uε,i ∈ V be a solution of〈

uε,i − uε,i−1
ti − ti−1

+ (H+ ∂φ)uε,i, v − uε,i
〉
V ′,V

≥ 0 for all v ∈ V.

Observe that this is equivalent to find uε,i ∈ V such that

〈(id +ε(H+ ∂φ))uε,i, v − uε,i〉V ′,V ≥ 〈uε,i−1, v − uε,i〉V ′,V for all v ∈ V, (26)

which would surely hold if uε,i ∈ V is (strong) solution of

uε,i−1 = (id +ε(H+ ∂φ))uε,i. (27)

Since H + ∂φ is maximal monotone, id +ε(H + ∂φ) : V −→ V ′ is surjective for all ε > 0. Hence
there exists uε,i ∈ V such that (27) holds. Moreover, we note that id +ε(H + ∂φ) is also injective
since H+ ∂φ is strictly monotone: this because given v1, v2 ∈ domV (H+ ∂φ), such that

[id +ε(H+ ∂φ)]v1 = [id +ε(H+ ∂φ)]v2,

it holds

0 = 〈[id +ε(H+ ∂φ)]v1 − [id +ε(H+ ∂φ)]v2, v1 − v2〉V ′,V

= ‖v1 − v2‖2U + ε〈(H+ ∂φ)v1 − (H+ ∂φ)v2, v1 − v2〉V ′,V ≥ ‖v1 − v2‖2U .

Therefore, uε,i = (id +ε(H+ ∂φ))−1uε,i−1 is unique. Thus uε,i ∈ V is a solution of (26).
Next we define the piece-wise linear functions uε such that

uε : [0, T ] −→ V, uε(kε) := uε,k, k = 0, · · · ,
⌊
T

ε

⌋
.

Step 2. We first claim

‖uε,i − uε,i−1‖U ≤ ‖uε,i−1 − uε,i−2‖U , i = 2, 3, · · · ,
⌊
T

ε

⌋
. (28)
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By construction,

uε,i = (id +ε(H+ ∂φ))−1uε,i−1 =⇒ 〈(id +ε(H+ ∂φ))uε,i − uε,i−1, uε,i−1 − uε,i〉V ′,V ≥ 0, (29)

uε,i−1 = (id +ε(H+ ∂φ))−1uε,i−2 =⇒ 〈(id +ε(H+ ∂φ))uε,i−1 − uε,i−2, uε,i − uε,i−1〉V ′,V ≥ 0, (30)

and summing (29) and (30) gives

〈(id +ε(H+ ∂φ))uε,i − (id +ε(H+ ∂φ))uε,i−1 − (uε,i−1 − uε,i−2), uε,i−1 − uε,i〉V ′,V ≥ 0,

hence

−‖uε,i−1 − uε,i‖2U + ε〈(H+ ∂φ)uε,i − (H+ ∂φ)uε,i−1, uε,i−1 − uε,i〉V ′,V

≥ 〈uε,i−1 − uε,i−2, uε,i−1 − uε,i〉V ′,V

≥ −‖uε,i−1 − uε,i−2‖U‖uε,i−1 − uε,i‖U . (31)

Since H+ ∂φ is monotone, it follows

〈(H+ ∂φ)uε,i − (H+ ∂φ)uε,i−1, uε,i−1 − uε,i〉V ′,V ≤ 0,

thus (31) yields

−‖uε,i−1 − uε,i‖2U ≥ −‖uε,i−1 − uε,i−2‖U‖uε,i−1 − uε,i‖U =⇒ ‖uε,i−1 − uε,i‖U ≤ ‖uε,i−1 − uε,i−2‖U ,

which proves (28).

Now observe that given v1, v2 ∈ domV (H+ ∂φ), such that

(id +ε(H+ ∂φ))v1, (id +ε(H+ ∂φ))v2 ∈ V,

then the monotonicity of H+ ∂φ gives

‖(id + ε(H+ ∂φ))v1 − (id +ε(H+ ∂φ))v2‖2U
= 〈(id +ε(H+ ∂φ))v1 − (id +ε(H+ ∂φ))v2, (id +ε(H+ ∂φ))v1 − (id +ε(H+ ∂φ))v2〉V ′,V

= ‖v1 − v2‖2U + 2ε〈(H+ ∂φ)v1 − (H+ ∂φ)v2, v1 − v2〉V ′,V

+ ε2‖(H+ ∂φ)v1 − (H+ ∂φ)v2‖2U ≥ ‖v1 − v2‖2U .

As uε,1 = (id +ε(H+ ∂φ))−1u0, we get

uε,1 − u0 = (id +ε(H+ ∂φ))−1u0 − (id +ε(H+ ∂φ))−1(id +ε(H+ ∂φ))u0,

hence

‖uε,1 − u0‖U = ‖(id +ε(H+ ∂φ))−1u0 − (id +ε(H+ ∂φ))−1(id +ε(H+ ∂φ))u0‖U
≤ ‖u0 − (id +ε(H+ ∂φ))u0‖U = ε‖(H+ ∂φ)u0‖U ,

which in turn gives
‖uε,1 − u0‖U

ε
≤ ‖(H+ ∂φ)u0‖U . (32)

Combining (28) and (32) gives
‖uε,i − uε,i−1‖U

ε
≤ ‖(H+ ∂φ)u0‖U

for all ε > 0, and i = 0, · · · , bT/εc. Since
‖uε,i − uε,i−1‖U

ε
= ‖uεt (t)‖U
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for t ∈ ((i− 1)ε, iε), it follows

‖uεt‖U ≤ ‖(H+ ∂φ)u0‖U =⇒ sup
ε

sup
t∈[0,T ]

‖uε(t)− u0‖U ≤ T‖(H+ ∂φ)u0‖U . (33)

To estimate ‖uε(t)‖V , note that (id +ε(H+∂φ))uε,i = uε,i−1 gives, in view of the coercivity estimate
(21),

‖uε,i‖2V ≤
∣∣∣〈(H+ ∂φ)uε,i, uε,i〉V ′,V

∣∣∣ =
∣∣∣∣∣
〈
uε,i − uε,i−1

ε
, uε,i

〉
V ′,V

∣∣∣∣∣
≤ ‖uε,i − uε,i−1‖U

ε
‖uε,i‖U ≤ ‖(H+ ∂φ)u0‖U (T‖(H+ ∂φ)u0‖U + ‖u0‖U ),

hence
sup
ε

sup
t∈[0,T ]

‖uε(t)‖2V ≤ ‖(H+ ∂φ)u0‖U (T‖(H+ ∂φ)u0‖U + ‖u0‖U ). (34)

Step 3. Note that the space L∞(0, T ;V ) (resp. L∞(0, T ;U)) is the dual of L1(0, T ;V ′) (resp.
L1(0, T ;U)). Thus by Banach-Alaoglu theorem, in view of the a priori estimates (33) and (34), we
have

uεn
∗
⇀ u in L∞(0, T ;V ), uεnt

∗
⇀ ut in L∞(0, T ;U),

Consequently, we have the lower-semicontinuity of the norms

‖u‖L∞(0,T ;V ) ≤ lim inf
n→+∞

‖uεn‖L∞(0,T ;V ), ‖ut‖L∞(0,T ;U) ≤ lim inf
n→+∞

‖uεnt ‖L∞(0,T ;U),

and (23) follows. Moreover, we have also uεn ∗
⇀ u in L∞(J ;V ) and uεnt

∗
⇀ ut in L∞(J ;U) for any

time set J ⊆ [0, T ] of positive measure.
By construction, each uεn satisfies

〈uεnt (t) + (H+ ∂φ)uεn(t), v − uεn(t)〉V ′,V ≥ 0 (35)

for a.e. t ∈ [0, T ], and all v ∈ V . Due to the convexity of φ, (35) gives

〈uεnt (t) +Huεn(t), v − uεn(t)〉V ′,V + φ(v)− φ(uεn(t)) ≥ 0

for a.e. t ∈ [0, T ], and all v ∈ V . Now consider an arbitrary time set J ⊆ [0, T ] of positive measure.
Integrating on J gives∫

J

[
〈uεnt (t) +Huεn(t), v − uεn(t)〉V ′,V + φ(v)− φ(uεn(t))

]
dt ≥ 0 (36)

for all v ∈ V . We claim

lim sup
n→+∞

−
∫
J
φ(uεn(t)) dt ≤ −

∫
J
φ(u(t)) dt, (37)

lim
n→+∞

∫
J
〈Huεn(t), v − uεn(t)〉V ′,V dt =

∫
J
〈Hu(t), v − u(t)〉V ′,V dt, (38)

lim
n→+∞

∫
J
〈uεnt (t), v − uεn(t)〉V ′,V dt =

∫
J
〈ut(t), v − u(t)〉V ′,V dt. (39)

To prove (37), it suffices to note that −ψ is concave, hence weakly-* upper-semicontinuous, and
uεn ⇀ u in L∞(J ;V ).

To prove (38), note that∫
J
〈Huεn(t), v − uεn(t)〉V ′,V dt =

∫
J
〈Huεn(t), v − u(t)〉V ′,V dt+

∫
J
〈Huεn(t), u(t)− uεn(t)〉V ′,V dt,
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where

lim
n→+∞

∫
J
〈Huεn(t), v − u(t)〉V ′,V dt =

∫
J
〈Hu(t), v − u(t)〉V ′,V dt, (40)

since H is bounded and linear. To prove

lim
n→+∞

∫
J
〈Huεn(t), u(t)− uεn(t)〉V ′,V dt = 0, (41)

observe that, by Hölder’s inequality and Lemma 6,∣∣∣∣ ∫
J
〈Huεn(t), u(t)− uεn(t)〉V ′,V dt

∣∣∣∣
≤
∫
J
‖H(〈∇∇ · uεn(t), r̂〉)‖U‖∇ · (u(t)− uεn(t))‖U dt

≤ π

2

∫
J
‖∇∇ · uεn(t)‖U‖∇ · (u(t)− uεn(t))‖U dt.

The sequence uεn(t) is uniformly bounded in V (by (34)), hence the sequence of norms ‖∇∇ ·
uεn(t)‖U is also uniformly bounded. Moreover, the embedding V ↪→ X is compact, where

X := {u ∈ L2(D;R2) : ∇ · u ∈ L2(D;R), u is radial, 〈u, ν〉 ≡ 0, on ∂D},

endowed with the norm ‖u‖X := ‖∇ · u‖L2(D;R). This because if a sequence vn ⊆ V is weakly
converging in V , then both sequences ∇∇ · vn and ∇ · vn are weakly converging in L2(D;R2) and
L2(D;R) respectively, hence ∇·vn is strongly converging in L2(D;R) (i.e., vn is strongly converging
in X). Thus

‖∇∇ · uεn(t)‖U‖∇ · (u(t)− uεn(t))‖U → 0

for a.e. t. This proves (41). Combining (40) and (41) then gives (38).
To prove (39), note that∫

J
〈uεnt (t), v − uεn(t)〉V ′,V dt =

∫
J
〈uεnt (t), v − u(t)〉V ′,V dt+

∫
J
〈uεnt (t), u− uεn(t)〉V ′,V dt,

and ∫
J
〈uεnt (t), v − u(t)〉V ′,V dt→

∫
J
〈ut, v − u(t)〉V ′,V dt (42)

since uεnt ⇀ ut in Lp(0, T ;U). Note also that, by Hölder’s inequality,∫
J
| 〈uεnt (t), u− uεn(t)〉V ′,V | dt ≤

∫
J
‖uεnt (t)‖U‖u− uεn(t)‖U dt,

where ‖uεnt (t)‖U is uniformly bounded in view of (33), and ‖u− uεn(t)‖U → 0. Thus∫
J
〈uεnt (t), u− uεn(t)〉V ′,V dt→ 0,

and combining with (42) gives (39). Combining (37), (38), (39) and the arbitrariness of J ⊆ [0, T ]
gives (24). �
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3.2. Proof of Theorem 1. Before the proof of Theorem 1, a preliminary result is required.

Lemma 10. For any h > 0, the operator id +hB : domU (B) −→ U ′ is maximal monotone, and its
graph is demi-closed.

Note that although it is easy to check, using the maximal monotonicity of B, that id +hB is
maximal monotone as functional from V to V ′, the same conclusion when considered as functional
from U to U ′ is non trivial since domU (B) = {u ∈ U : Bu ∈ U ′} is a proper subset of domV (B). As
there is no inclusion relation between U×U ′ and V ×V ′, proper extensions (which would contradict
the maximality) of the graph of B in U × U ′ are not immediately excluded.

Proof. Lemma 5 gives that B : V −→ V ′ is maximal monotone. The identity operator id : V −→ V ′

is hemi-continuous, bounded and monotone (thought not maximal), and by [11] the sum id +hB :
V −→ V ′ is maximal monotone. Thus it is surjective, and

U ′ ⊆ V ′ = (id +hB)(V ) ⊆ (id +hB)(U).

Thus for any η′ ∈ U ′ there exists η ∈ V ⊆ U such that η′ = (id +hB)(η), hence η ∈ domU (B),
and the operator id +hB : domU (B) −→ U ′ is surjective. By [3, 9] (see also [2, Theorem 2.2])
id +hB : domU (B) −→ U ′ is also maximal monotone, and by [12, Remarks 3-4] its graph is demi-
closed. �

Now we are ready to prove that the function u given by Proposition 9 is the desired solution given
by the thesis of Theorem 1. The proof uses some ideas from [2]. However, crucial monotonicity
estimates are achieved differently, since H+ ∂φ : V −→ V ′ is clearly not accretive.

Proof. (of Theorem 1) The proof is split in two parts: we first prove existence, and then uniqueness.
For brevity, let B := H+ ∂φ.

Existence. Let u be a solution of (24) given by Proposition 9. By construction, ut is limit (in the
weak-∗ topology of L∞(0, T ;U)) of a sequence uεnt satisfying

sup
n
‖uεnt ‖L∞(0,T ;U) ≤ ‖Bu0‖U .

Thus
‖ut‖L∞(0,T ;U) ≤ lim inf

n→+∞
‖uεt‖L∞(0,T ;U) ≤ ‖Bu0‖U .

By construction, u also satisfies

u ∈ L∞(0, T ;V ) ∩ C0([0, T ];U), ut ∈ L∞(0, T ;U), u(0) = u0. (43)

To conclude the proof of existence, it suffices to check that such u satisfies

ut(t) = −Bu(t) for a.e. t ∈ [0, T ]. (44)

Consider some t > 0 such that

u(t− h) = u(t)− hut(t)− hg(h), 0 < h� t, (45)

for some function g(h) satisfying
lim
h→0
‖g(h)‖U = 0. (46)

In view of (43), the set of such t that satisfies (45) has full measure.
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Observe that the restriction id +hB| domU (B) : domU (B) −→ U is maximal monotone by Lemma
10. For brevity, in the rest of the proof we will just write id +hB instead of id +hB|domU (B). Then,
since id +hB : domU (B) −→ U is bijective, we set

xh := (id +hB)−1u(t− h) ∈ domU (B),

hence u(t− h) = (id +hB)xh, and plugging into (45) gives

u(t)− xh = h[Bxh + ut(t) + g(h)]. (47)

Multiplying both sides of (47) by u(t)− xh then yields

〈u(t)− xh, u(t)− xh〉V ′,V = h〈Bxh + ut(t), u(t)− xh〉U ′,U + h〈g(h), u(t)− xh〉V ′,V . (48)

We claim
〈Bxh + ut(t), u(t)− xh〉U ′,U ≤ 0. (49)

Since u is a solution of (24), taking v = xh gives

〈ut(t), xh − u(t)〉U ′,U + 〈H̃u(t), xh − u(t)〉V ′,V + ψ(xh)− ψ(u(t)) ≥ 0,

with ψ defined in (17) and H̃ := H + ∂φ − ∂ψ. Recall that in the proof of Lemma 7 we proved
that H̃ is linear and monotone (in particular, using the same notations from the proof of Lemma
7 we have φ − ψ = χ, and ∂χ(u) = 2∇∇ · [r̂〈∇∇ · u, r̂〉]). Thus, by the convexity of ψ and the
monotonicity of H̃, we get

0 ≤ 〈ut(t), xh − u(t)〉U ′,U + 〈H̃u(t) + ∂ψ(xh), xh − u(t)〉V ′,V

= 〈ut(t), xh − u(t)〉U ′,U + 〈H̃xh + ∂ψ(xh), xh − u(t)〉V ′,V + 〈H̃u(t)− H̃xh, xh − u(t)〉V ′,V

≤ 〈ut(t), xh − u(t)〉U ′,U + 〈H̃xh + ∂ψ(xh), xh − u(t)〉V ′,V

= 〈ut(t), xh − u(t)〉U ′,U + 〈Bxh, xh − u(t)〉V ′,V ,

proving (49). Thus (48) gives

〈u(t)− xh, u(t)− xh〉V ′,V = h〈Bxh + ut(t) + g(h), u(t)− xh〉V ′,V ≤ h〈g(h), u(t)− xh〉V ′,V ,

hence ‖u(t)− xh‖U
h

→ 0 as h→ 0. Note that, by construction, we have

Bxh = u(t− h)− xh

h
= u(t)− xh

h
+ u(t− h)− u(t)

h
,

thus
Bxh = u(t− h)− xh

h
= u(t)− xh

h
+ u(t− h)− u(t)

h
→ −ut(t) weakly in U.

Since we proved that xh → u(t), Bxh → −u(t), and

{(w,Bw) : w ∈ domU (B), Bw ∈ U}

is demi-closed in U ×U ′, we infer (by [12, Theorem 1] and [12, Remarks 3-4]) Bu(t) = −u(t). Since
this argument holds for a.e. t ∈ [0, T ], (44) is proven.

Uniqueness. Let u1, u2 be two solutions of ut = −Bu, with u1(0) = ū1, u2(0) = ū2. Thus
1
2
d

dt‖u
1(t)− u2(t)‖2U = 〈u1

t (t)− u2
t (t), u1(t)− u2(t)〉V ′,V

= −〈Bu1(t)−Bu2(t), u1(t)− u2(t)〉V ′,V

≤ −‖u1(t)− u2(t)‖2V ≤ −‖u1(t)− u2(t)‖2U ,
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with the last line following from Corollary 8. Gronwall’s lemma thus gives

‖u1(t)− u2(t)‖2U ≤ ‖ū1 − ū2‖2Ue−t.

In particular, if u1(0) = u2(0) = u0, then ‖u1(t)− u2(t)‖2U = 0 for a.e. t. �
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