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SCHAUDER ESTIMATES AT THE BOUNDARY FOR
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ANNALISA BALDI, GIOVANNA CITTI, GIOVANNI CUPINI

ABSTRACT. In this paper we present a new approach to prove Schauder estimates at the
boundary for sub-Laplacian type operators in Carnot groups. While internal Schauder
estimates have been deeply studied, up to now subriemannian estimates at the boundary
are known only in the Heisenberg groups. The proof of these estimates in the Heisenberg
setting, due to Jerison ([34]), is based on the Fourier transform technique and cannot be
repeated in general Lie groups. After the result of Jerison no new contribution to the
boundary problem has been provided. In this paper we introduce a new method, which
allows to build a Poisson kernel starting from the fundamental solution, from which we
deduce the Schauder estimates at non characteristic boundary points.
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1. INTRODUCTION

1.1. Aim of this work. The aim of this work is to introduce a new approach to obtain
Schauder estimates to the boundary for sub-Laplacian type operators in Carnot groups.

As it is well known, Schauder estimates at the boundary in the Euclidean setting are
based on two main ingredients. The first one, which is the core of the Schauder method,
is the local reduction of general uniformly elliptic operators to the Laplace operator. The
second one, which seems elementary in the Euclidean setting, is a reflection technique
which reduces the boundary Schauder estimates to internal ones. Unfortunately, this
technique cannot be applied in the strong anisotropic setting of a Carnot group, since a
Laplace type operator in this framework is not invariant with respect to reflection, nor
can be approximated by any invariant operator. In the special case of the Heisenberg
group, Schauder estimates are a classical result due to Jerison (see [34]), but not even this
technique, based on the Fourier transform, can be extended to general Lie groups. After
that, no new contribution has been provided to the problem, which is still open, while its
solution would be necessary for the development of nonlinear PDE’s theory in this setting.

In this paper we introduce a completely different approach, which is new even in the
Riemannian setting, that allows to build a Poisson kernel starting from the knowledge of
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a smooth fundamental solution for the problem on the whole space and eliminates any use
of Fourier transform in the full rank case.

1.2. Carnot groups. A Carnot group G can be identified with R™ with a polynomial
group law (G, -), whose Lie algebra g admits a step s stratification. Precisely there exist
linear subspaces V1, ..., V* such that

g=V'e..ovs [VLVTU=Vifi<k [VL,V"]={0} (1.1)

We will call horizontal tangent bundle the subspace V!, and we will choose a basis for
it denoted by {X1,---,X;,}. By the assumption on the Lie algebra, this basis can be
completed to a basis {X1, -+, X,} of g with the list of their commutators. On the vec-
tor space V! we define a Riemannian metric which makes orthonormal the vector fields
X1,-++, X, Several equivalent left invariant distances d can be introduced on the whole
space requiring that their restriction to V! is equivalent to the fixed Riemannian metric
(see for example Nagel, Stein and Wainger in [43]). The subriemannian gradient of a regu-
lar function f will be denoted by Vf = (X1 f,---, X;nf) and f will be called of class C* if
this gradient is continuous with respect to the distance d. More generally, spaces of Holder
continuous functions C*® can be defined in terms of this distance and this gradient. We
will study here a subelliptic operator expressed as follows:

A= (X7 +biX), (1.2)
i=1
with regular coefficients b;. Operators of this type are hypoelliptic and have been deeply
studied after the first works of Folland and Stein [23], Rothschild and Stein [44], Jerison
and Sanchez-Calle [36], Fefferman and Sanchez-Calle [20], Kohn and Nirenberg [37], and
Jerison [34, 35] (see also [4] for a recent monograph). Their fundamental solution I'a is of
clags C*° far from the diagonal and it can be estimated in term of the distance as follows
1

Ca(z,y) = @2z )

for a suitable integer @, called homogeneous dimension of the space (see (2.7) for a precise
definition). A kernel with the behavior of T'a is called of local type 2. In general we will
say that a kernel K is of local type A with respect to the distance d if for every open
bounded set V' and for every p > 0 there exists a positive constant C), such that, for every
x,y €V, with z #£y

X, X, K (2,)] < Cpd(a,y)* T (1) (1.4)

(1.3)

A well established theory of singular integrals in Hormander setting (due to Folland and
Stein [23], Rothschild and Stein [44], Greiner and Stein [30]) allows to prove interior
Schauder estimates. For more recent results we quote the Holder estimates by Citti [15],
the Schauder estimates of Xu [49] and Capogna and Han [14] for uniformly subelliptic
operators, Bramanti and Brandolini [5] for heat-type operators and the results of Lunardi
[39], Di Francesco and Polidoro [18], Gutierrez and Lanconelli [32], Bramanti and Zhu [7]
and Simon [46] for a large class of operators. The problem at the boundary is completely
different and largely unsolved.
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1.3. Schauder estimates at the boundary. A surface M in a Carnot group, smooth
in the Euclidean sense, can be locally expressed as the zero level set of a function f € C'°,
but it can have points in M where its subriemannian gradient vanishes. At these points,
called characteristic, the geometry of the surface is not completely understood. Far from
characteristic points, properties of regular surfaces have been largely studied starting from
the papers of Kohn and Nirenberg in [37], Jerison in [34] and more recently by Franchi,
Serapioni and Serra Cassano, [24, 25] (see also the references therein). The stratification
defined in (1.1) induces a stratification on the tangent plane of the manifold M. We will
cll VI=VINTM,V2=V2ATM, -, V¥ =V5ATM. It is not restrictive to assume
that X; € V! is normal to V! with respect to the metric fixed in V! so that we can denote
by {X,}Zzg .m a basis of V1. We also require that the following condition holds:

Lie(V') = TM. (1.5)

Under this assumption the manifold M has a Hormander structure, and V! inherits a
metric from the immersion in V!. Hence a distance d and corresponding classes of Holder
continuous functions C’ka(M ) are well defined. For every choice of regular coefficients
(bi)i=2.... m, & Laplace-type operator

A= i Ai2 + isz(z (1.6)
=2 =2

is defined on M, with fundamental solution r A-

It has been proved by Kohn and Nirenberg in [37] that, if D is a smooth open set with
smooth boundary and g a smooth function defined on the boundary of D, the problem

Au=0in D, u=gondD (1.7)

has a unique solution, of class C* up to the boundary at non characteristic points. At the
characteristic points very few results are known (see [35], already quoted, and [13], [27] and
[48], where existence of non tangential limits up to the boundary are established). In this
paper we prove the exact analogous of the classical Schauder estimates at the boundary,
providing estimates of the C% norm of the solution in terms of the Hélder norm of the
data. Precisely our result can be stated as follows.

Theorem 1.1. Let D C G be a smooth, bounded domain and assume that the vector fields
{Xi}i=1,... m satisfy the assumption (1.5). Denote u the unique solution to

Au= fin D, w=g on 0D,

where f € C*(D) and g € C*>*(OD) and 0 < a < 1. If Z € D and V is an open
neighborhood of T without characteristic points, for every ¢ € C§°(V) we have pu €
C*>*(DNV) and

lpullcneqonyy < Cllglenain) + If o). (15)

We believe that, even if we prove our results under assumption (1.5), the method pre-
sented here will open the possibility to establish Schauder estimates for non characteristic
points in any Carnot group, since any Carnot group can be lifted to a group satisfying
assumption (1.5).
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As we mentioned before, up to now subriemannian boundary Schauder estimates are
known only for the Heisenberg group (see [34]) and are based on the construction of a
Poisson kernel. If D is an open bounded set, and V is a neighborhood of a non character-
istic point Z € D, we say that P : C*°(dDNV) — C*(V N D) is a local Poisson operator
for the problem (1.7) if, for every g € C*°(0DNV), the function u = P(g) satisfies Au = 0
in DNV and u(z) = g(z) forallz € 90D N V.

The construction of the Poisson kernel contained in [34] is based on the Fourier transform
and cannot be directly repeated in general Lie groups. General measure theory ensures
the existence of a Poisson kernel under very weak assumptions on the vector fields (see
for example Lanconelli and Uguzzoni [38]), but this theory only allows to establish LP
regularity of the solution at the boundary. A Poisson kernel has been built by Ferrari
and Franchi [21] in the very special case of a set D of the form R x G, that enables to
obtain Schauder estimates via a direct symmetrization argument which cannot be applied
in general Lie groups satisfying assumption (1.5).

Our construction of the Poisson operator is based on the knowledge of a smooth funda-
mental solution, its restriction to the boundary, and on the properties of singular integrals.
Since our result is local, we can locally express the boundary of D as the graph of a smooth
function w, and perform a change of variable to reduce the boundary to a plane. In the
new coordinates the vector fields will explicitly depend on the function w defining the
boundary, and will not be homogeneous in general. For sub-Laplacian type operators
associated to these vector fields we will obtain the following expression of the Poisson
kernel.

Theorem 1.2. Let D = {(z1,2) € R x R" 1 : 21 > 0} C G be a non characteristic half
space and let g € C*°(0D). Let & € 0D, let Vi be a neighborhood of T in R™ and let

A~

K1(9)(§) = /a Tal(0.9).0.2)Ag(e)dz (1.9)

There exists a lower order operator R of type 3/2 with respect to the distance d defined on
0D, such that for every neighborhood V' of T in R™, V CC Vp, the operator

P(g)(z) :== /amv La(z, (0,9)) (K1 + R)(9)(9)dy (1.10)
is a Poisson kernel in V.

The representation (1.10) and the properties of the fundamental solution immediately
ensure that P(g) satisfies the equation in (1.7). In order to show that P is a Poisson
operator, we only have to show that P(g) = ¢g on the boundary {z; = 0}. Denoting by
Er,(0,) the operator associated to the kernel I'a((0,%), (0, 2)), this is equivalent to say
that K1 + R is the inverse of the operator Er, .. Under the assumption (1.5) this is

proved using the fundamental solution F of the operator A defined in (1.6). Indeed F
satisfies the following approximate reproducmg formula:

Theorem 1.3. Let D = {(z1,2) € R x R"™' : 1 > 0} C G be a non characteristic half
plane. If & € 0D, then there exists a neighborhood V' of T in G such that the fundamental
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solution admits the following representation:

P () = /a L Ta((0.).(0.)Pa(0.2) (0.9)dE + Ry(d). (L1

for every x :A(O, z),y = (0,9) € DNV, where RA is a kernel of type 5/2 with respect to
the distance d.

This theorem ensures that K7 is the inverse of the operator Er, (g.) up to a remainder.
The proof of Theorem 1.2 will be concluded with a standard version of the parametrix
method, which allows to carefully handle the remainder and to prove that K; + R is indeed
the inverse of Er, (o,

Theorem 1.3 expresses Er, (o, as the square root of the operator associated to I A
This result, well known in the Euclidean setting and due to Caffarelli and Silvestre [§],
was not known for general Carnot groups, but only in the special case when the group G
is expressed as G = R x G (see Ferrari and Franchi in [21]). These proofs strongly rely
on the splitting of the space as direct product, which is not satisfied in general Carnot
groups, making impossible to follow their approach. The proof in our setting is inspired
by the results of Evans in [19] (in the Euclidean case) and of Capogna, Citti and Senni
(in Carnot groups) in [12].

1.4. Structure of the paper and sketch of the proofs. The paper starts with Sec-
tion 2, where we fix notations and recall known properties of Carnot groups and their
Riemannian approximation.

In Section 3 we show that a non characteristic plane can always be represented as the
plane {(z1,2) € R x R*"! : 27 = 0} with the canonical exponential change of variables
described in (2.2). In these coordinates the vector fields attain an explicit polynomial
representation recalled in (2.3). Moreover, Section 3 contains the proof of Theorem 1.3
under the assumption that the boundary of D is a non characteristic plane and the vector
fields are homogeneous. The proof of this theorem is the most technical part of the paper
and it is based on a Riemannian approximation and a parabolic regularization of the
operator A. Precisely, the Riemannian approximation of the Laplace type operator A is
an operator of the form

n
Ac=A+e> Y X7, (1.12)
i=m-+1
and its parabolic regularization leads to the operator
L. =0 — A.. (1.13)

In a neighborhood of any non characteristic point z of the plane D we will apply a new
version of the freezing and parametrix methods to approximate the fundamental solution
I'. of L. in terms of the fundamental solution fs of a suitable tangential heat operator
d—A.. The parametrix method has already been largely used in the subriemannian setting
for estimating the fundamental solution in terms of a known one (see for example [44, 45,
36, 15, 3]). Here we are inspired by the papers [12] and [16] where the relation between the
fundamental solution on the whole space and its restriction to the boundary was studied in
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the framework of a diffusion driven motion by curvature. The main technical difficulty in
our setting is due to the fact that neither the geometry of the subriemannian space nor the
structure of the subriemannian operators is naturally represented as the direct sum of the
tangential and the normal part. This splitting is true in the Riemannian approximation,
and this is the reason for using this approximation. However the subriemannian structure
and its Riemannian approximation have different homogeneous dimension. Hence we
need to introduce a non homogeneous version of the parametrix method, which leads to
the existence of a constant C' such that

~

FE(@’I_’( T < Cr((0,4,0), (0,5, — DY (114)

S~—
<

Fa((ovivt)’ (ngaT)) -

\]

for every & and ¢ € 9D, (this is done in Proposition 3.13 below). The key point here is
to prove that C' is independent of €. The proof is quite delicate, and it is based on an
interplay between the Riemannian and subriemannian nature of our operators. Since all
constants in (1.14) are independent of e, we can let £ go to 0 and obtain an analogous
estimate for subriemannian operators. Denoting by I' the fundamental solution of 0y — A
and by I the fundamental solution of the operator 9, — A, we will prove in Theorem 3.2
that there exists a constant C' = C(T') such that for all z = (0,2), x = (0,) in 0D and
for every t and 7, with 0 <t — 7 < T, we have

D@D 0.D)] < cro, a0, 0.0 - (113)

F((O,i,t),(o,g), T)) - \/t—iT >~

Now, integrating in the time variable, we deduce the proof of Theorem 1.3 for homoge-
neous vector fields and on a plane (also called Lemma 3.16).

In Section 4 we provide the full proof of Theorem 1.3 on smooth manifolds. Since this
is a local result, we show that, via a suitable change of variables, it is possible to identify
the boundary of D with the plane {x; = 0}. With this change of variables the vector
fields (X;) become non homogeneous, but they still define an Hérmander structure. In
Section 4.1 we describe this procedure and recall some properties of subriemannian spaces
in this generality. Then, in Section 4.2 we apply a new simplified version of the parametrix
method of Rothschild and Stein [44] tailored on the present setting, and locally we reduce
the vector fields to homogeneous ones. With this instrument we can deduce the proof of
Theorem 1.3 for smooth surfaces from the one obtained on planes, previously proved in
Section 3.

Finally, Section 5 contains the construction of the Poisson kernel, which allows to prove
Theorem 1.2. The main idea of the proof of this theorem has been outlined above. First,
we use Theorem 1.3 to build an approximated kernel. After that, a standard version of
the parametrix method is applied to obtain the Poisson kernel from the approximating
one. The Schauder estimates stated in Theorem 1.1 are a consequence of the boundedness
of the operator associated to the Poisson kernel and they will be proved with the same
instruments as in [34]. In Section 6, in order to clarify our approach in finding a Poisson
kernel, we apply it to the special case of Heisenberg groups H", with n > 2.
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2. NOTATIONS AND KNOWN RESULTS

2.1. The subriemannian structure. As recalled in Section 1.2, a Carnot group G is
R”, with the group low induced by the exponential map and the stratification V'@ - -@V*
of the tangent space recalled in (1.1). The stratification induces a natural notion of degree
of a vector field:

deg(X) =j whenever X € V7. (2.1)

If {X;}i=1,.. n is the stratified basis introduced in subsection 1.2, we will write also deg(t)
instead of deg(X;). Via the exponential map, R" is endowed with a Lie group structure
and the resulting group is denoted by G. Since in this setting the exponential map around
a fixed point y is a global diffeomorphism, every other point x can be uniquely represented
as ¢ = exp(v1X1) exp(D i v;X;)(y). Consequently we can define a logarithmic function
Ox, - Xn,y as the inverse of the exponential map:

@Xh.‘.’me G — g, @le..’)(my(l‘) = (vl, e ,Un). (2.2)

We will simply denote ©, instead of Ox; ... x, , when no ambiguity may arise. Note that
we are using exponential canonical coordinates of second type around a fixed point y € G,
which will simplify notations while dealing with a boundary problem.

In particular, the fixed point gy, around which we choose the axes, has coordinates 0
and the vector field X is represented as X; = 0; and all the others vector fields (X;)i>2
coincide with the partial derivative 9; at the fixed point ¥y = 0. In any other point they
can be represented in these coordinates as

Xi=0, Xi=0+ >  a;(9; i=2--,n, (2.3)
deg(j)>deg(i)

where a;; are homogeneous polynomials of degree deg(j) — deg(i) depending only on vari-
ables vy, with deg(h) < deg(j) — deg(i) (see for example [44] for a detailed proof). Note
that if deg(i) = k then X; = 0;.

By construction the vectors {X;}i=1,... » and their commutators span g at every point,
and consequently verify Hormander’s finite rank condition ([33]). Due to the stratification
of the algebra, a natural family of dilation (0))x>¢ acts on points v = > | v; X; € g as
follows:

(A(’U) = )\deg(i)vi. (2.4)

On V!, which is generated by X7i,---X,,, we define a Riemannian metric which makes
Xi1,-++, X, an orthonormal basis. The associated norm will be extended to an homoge-
neous norm to the whole g defined as follows:

ol i= > foy /00, (2.5)
=1

Via the logarithmic function defined in (2.2) the dilation ) induces a one-parameter group
of automorphisms on G, again denoted by §y. A function f : G — R is called homogeneous
of degree o if f(dx(z)) = A*f(x) for any A > 0 and € G. In particular we can define
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a gauge distance d(-,-) homogeneous of degree 1, as the image of the norm through the
function ©:

d(y, x) == |0, xpy(2)]]- (2.6)
The gauge function is homogeneous of order

Q=) idim(V') (2.7)

i=1
with respect to the dilation. Hence @ is called the homogeneous dimension of the space
and there exist constants C7, Cs such that
C1r9 < |B(z,r)| < Cor® Vr >0, zeG,

where B(z,r) denotes the metric ball centered in = with radius r, and | - | denotes the
Lebesgue measure.

Any vector field X will be identified with the first order differential operator with its
same coefficients. If ¢ is a continuous function defined in an open set V of G and if, for
every ¢ = 1,--- ,m, there exists the Lie derivative X;¢ then we call horizontal gradient of
© the vector

m

Ve = Z(XiSD)Xi- (2.8)
i=1
The associated classes of Holder continuous functions will be defined as follows:

Definition 2.1. Let 0 < a < 1, V C G be an open set, and u be a function defined on V.
We say that u € C*(V) if there exists a positive constant M such that for every x,xo € V

lu(z) — u(zo)| < Md*(x, o). (2.9)
We put

lu(x) — u(wo)|
u « = Su —_—
ullca vy #E) oz 20)

Iterating this definition, if k > 1 we say that v € C**(V) if X;u € CF1(V) for all
i=1,---,m.

+ sup |ul.
v

The Laplace type operator defined in (1.2) is a differential operator of degree 2, in the
sense of the following definition.

Definition 2.2. Let {X;,} be differential operators of order 1 and degree deg(X;;). We
say that the differential operator Y1 = X;, --- X;, has order p and degree Z§:1 deg(Xi,)-
Moreover, if Y is a differential operator represented as

Y =av, (2.10)

where a is a homogeneous function of degree «, then we say that Y is homogeneous of
degree deg(Y1) — «. A differential operator will be called of degree k — « if it is a sum of
operators with maximum degree k — .

Following [22] we recall the definition of kernel of type a:
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Definition 2.3. We say that K is a kernel of type «, if K is of class C*° away from 0
and it is homogeneous of degree o — (.

In a Carnot group, this implies that K satisfies condition (1.4).

2.2. The Riemannian approximation of the structure. One of the key technical in-
struments that we will use is a Riemannian approximation of the subriemannian structure.

For every € > 0, we extend the Riemannian metric defined on V' to a left invariant
Riemannian metric defined on g by requesting that

(Xl,f:" T aXn7€) = (Xla e 7Xm7 5deg(m+1)_1Xm+lv T ’Edeg(n)—an) (211)

is an orthonormal frame. We say that these vector fields have e-degree equal to 1, and we
write deg-(X;.) = 1. Since the Lie algebra generated by these vectors also contains the
commutators of these vector fields, we also consider the vector fields

Xie = Xi—n+m and deg.(Xic) = deg(Xi—ptm) foralli=n+1,--- 2n—m. (2.12)

Let d.. and d,. . denote the control distances associated with the vector fields X1, ---, X,
and X, -+, X, respectively. It is well known (see for instance [31] and the references
therein) that (G, d...) converges in the Gromov-Hausdorff sense, as ¢ — 0, to the sub-
riemannian space (G,d..). Although the subriemannian structure is formally recovered
in the limit for ¢ — 0, we will need to recognize that the structure and all constants
appearing in the estimates are stable in the limit. In addition we will need to recognize
that the space has a property of e-homogeneity, with respect to the natural distance.

A classical estimate of the distance d... is due to Nagel, Stein and Wainger in [43].
From the whole family {X;c}i=1,... 2n—m it is possible to select different bases {X;; ¢ }i;er,
for different choices of indices I = (i1,--- ,i,) C {1,...,2n — m}™. As a consequence each
vector v has different representations v = ZZ-], e Vi eXi ;. in terms of the different bases.
The optimal choice of indices, denoted I, ¢, is the one which minimize the e-homogeneous
gauge distance:

vl = Z |vij75|1/dege(ij) — m}nz |Ul.j,5|1/dege(ij)‘ (2.13)
ijEIv,E ijEI

This norm can be explicitly written as follows: if v = ©x, ... x, y(x) then

S = . |UZ| eg(i
lv]le = Z v + Z nrun{gdeg(i)_17 oy |1/ des® { (2.14)

=1 i=m+1

In [11] it is proved that the associated ball box distance
de(y, ) = 10x, - x,5(@) e (2.15)

is locally equivalent to the distance d.. ¢, with equivalence constants independent of €. Let
us explicitly note that this distance has different behavior in 0 and at infinity. Indeed, if
v; are small with respect to ¢ for every ¢ > m + 1, then the distance d. has a Riemannian
behavior, while it is purely subriemannian for v; large.
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It is worthwhile to note that for every € > 0 there exists a constant C. such |B(z,r)| =
C.r™, where B.(x,r) denotes the ball {y € G|d.(z,y) < r} and |- | the Lebesgue measure.
In particular for every € > 0 the homogeneous dimension of the Riemannian space is n,
while by (2.7) for € = 0 the homogeneous dimension of the space is @, with @@ > n. Hence
this notion of homogeneity is not stable with respect to €, and the constant C. blows up
for ¢ — 0. However it has recently proved in [11] the following uniform doubling property:

Proposition 2.4. There is a constant C' independent of € such that for every x € G and
r >0,
| Be(x,2r)| < C|Be(x,7)]. (2.16)

The doubling inequality (2.16) can be considered as a weak form of homogeneity, and
suggests that it is possible to give a new definition of e- homogeneity. Following [44] we
will give the following definition of local homogeneous functions and operators

Definition 2.5. A function f is locally homogeneous of e-degree o in a meighborhood of
a point z with respect to the metric (2.15) if f o @;&an is homogeneous of degree «,
with respect to the norm || - || defined in (2.14). A differential operator Y is homogeneous
of local e-degree a in a neighborhood of a point z, with respect to the metric (2.15) if

dOx, ... x,,.2(Y) is homogeneous of degree c.

In particular this definition implies the following property:

Remark 2.6. If a is a homogeneous function of e-degree o and Yy is an operator of
e-degree k, then a(z~'x)Y1 is a homogeneous operator of e-degree k — a. This implies
that for every other smooth function f of local e-degree B in a neighborhood of a point z,
a(z7tx)(Y1f) is a smooth function of e-degree 3 + o — k in a neighborhood of a point z,
and |a(z"12) (Y1 f) ()] < CdZTF(z, 2).

If p € C*(G) we define the e-gradient of ¢ as follows

n

Vep =Y (Xie@) Xic.
=1

In terms of the vector fields with e-degree 1, defined in (2.11), we consider the associated
heat operator

n m
Le:=0,— Y X7. =) biXic, (2.17)
i=1 =1

(recall that b; are the smooth coefficients introduced in (1.2)). In analogy with the operator
introduced in (2.8), the heat operator associated to the subriemannian structure has the
form

L:= at—ixf—ibixi. (2.18)
=1 =1

The behavior of these operators in interior points is well known: they admit fundamental
solutions respectively I'c(z,t) and I'(x, t) of class C™ out of the pole (see [36] for precise
estimates of I'(x, t) and [10] for estimates of I'.(x,¢) uniform in €).
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In our work we will need estimates which are uniform in the variable e. We start with
the following definition.

Definition 2.7. We say that a family of kernels (P:)e>0, defined on Gx]0, 0o[xGx]0, oo
and C*° out of the diagonal, is of uniform exponential e-type X\ + 2, if for ¢ € N and
k-tuple (i1,--- ,ir) € {1,--- ,n}* there exists Cyx > 0, depending only on k,q and on the
Riemannian metric, such that

ds(sz)Q
Cq’k<t77')

e

| Be(z, V/t — 7)|

|(Xiye - Xip O Pe) (2, 1), (2,7))] < Cyp(t —7) 4 M2 (2.19)

forallz € G andt > .

According with the definition above, the fundamental solution I'; is a kernel of expo-
nential e-type 2. Precisely, the following result, established in [9] (see also [16] and [10]),
holds:

Theorem 2.8. The fundamental solutions I'z(x,t) of the operators L. constitutes a family
of kernels of exponential e-type 2 and there exist constants Cy, C > 0 independent of € such
that for each € >0, x € G and t > 7 one has

_cde(@.)? _de(z,2)?
il T ((et),(sr) < Co (2.20)
| Be(z, v/t —7)| | Be(z, v/t = 7)|
Moreover, for any k-tuple (iy,--- i) € {1,---,m}* one has
Xiy o X3 00T — X3 - X3 0T ase— 0 (2.21)

uniformly on compact sets and in a dominated way on all G.

Remark 2.9. In particular from this theorem we can obtain the well known Gaussian
estimates of the fundamental solution I of the operator L. Indeed I' is a kernel of expo-
nential type 2 and there exist constants Cy, C' > 0 such that for each x € G and t > T one
has

— M _cl(z,z)2
e c (t—7) e CG-7)

AR x Z,T —_—
e e T N ]

2.3. The parametrix method. One of the main instruments that we will use to es-
timate the fundamental solution is the parametrix method, originally due to Levi and
now extremely classical for elliptic and parabolic equations (see [26]). In subriemannian
setting the parametrix method have been used to approximate general Hormander type
operators with homogeneous ones: we refer to [44, 45] for the first results, [36] for the
subriemannian heat kernel, [15] for estimates in case of low regularity, [3] for a recent
self-contained presentation. The method consists in providing an explicit representation
of the fundamental solution I' of an operator L in terms of the fundamental solution of an
approximating operator L., (with associated fundamental solution I',, ). Using the defini-
tion of fundamental solution and the fact that L., (I' —=T';,) = (L,, — L)T", the difference

(2.22)
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between the two solutions can be formally represented as

(C = T2)((2,1), (2,7)) = /Tzl((%t), (4, 0))(Lzy — L)' =T2,)((y,0), (2,7)) dy db

4 [0 0Ly~ DI (0,6, () dy 0. (223)

Denoting by
H:=L, —-L, (2.24)
and Er, the integral operator with kernel I';,, the above expression (2.23) can be written
as
(I = Er, H)(I' = T;) = Er, H('-,).
If the operator (I — Er, H) is invertible, the difference I' — I';, can be formally expressed
as

o0 oo
T, => (Br. H/'Y(T.,) = Br. ® with ®:=Y (HEp, JH(T.,).  (2.25)
j=0 j=0

Roughly speaking the proof is obtained as follows.

1) The first and most delicate part of the proof is to define the approximating
operator H and to prove that it is a differential operator of degree 2 — « for a
suitable positive . From this fact it follows that the kernel

Ri(z,z) :== HT';,(x, 2)

is homogeneous of type a with respect to the considered homogeneous space. It
is important to note that

Ri(z,2) = (Ly, — L)y (z,2) = L(T(2,2) — Ty (2, 2)) . (2.26)

2) Identifying the operator H Er,, with the integral operator Eg, with kernel Ry,
the series ® in (2.25) reduces to

[e.e]
¢ = Z(ERl)]ERI‘ (2.27)
§=0
Using the fact that the convolution of a kernel of type o with a kernel of type
provides a kernel of type « + 3, it is possible to prove that this series converges
uniformly (see for example Lemma 7.3 in [34]).
3) Finally, singular integrals tools lead to the convergence of the derivatives and
the function I', defined through (2.25), is a fundamental solution.

In the sequel we will consider kernels of type « in the sense of Definition 2.3, when working
with subelliptic operators, while kernels of exponential e-type « in the sense of Definition
2.7, when studying Riemannian heat kernels. The main difficulty to be faced here is
that the Riemannian approximation has not a standard notion of homogeneity, since the
Riemannian homogeneous dimension n collapses to the subriemannian one () in the limit.
However we have endowed the regularized space with an e-homogeneous structure (see
(2.16) and the remark below) and we will see that this is enough to apply the method in
this setting. Therefore, even though our vector fields are homogeneous, our approach is
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more similar to the ones [44, 45, 36, 15] where the geometry of the given operator and the
approximating one do not coincide.

3. REPRODUCING FORMULA ON A PLANE

In this section we will prove a first version of Theorem 1.3, under the simplified assump-
tions that 0D is a non characteristic plane and that the vector fields (X;)i—1.... m are the
generators of a Carnot group and have the explicit representation recalled in (2.3). This
result will be obtained via a parabolic approximation and a Riemannian regularization.
The proof of the same Theorem 1.3 on any smooth hypersurface will be deduced from this
result in next section.

3.1. Geometry of the plane. Let G be a Carnot group of step x. Consider a non
characteristic plane Mj. Using the logarithmic coordinates defined in (2.2), it is always
possible to represent M as follows:

My ={(z1,2) € G: x; =0}, (3.1)

where x = (21, %) is a point of the space, #1 € R and # € R"~!. This choice of coordinates
is made in such a way that the vector fields X7 = 91 coincides with the direction normal
to the plane, while {X;}i—s ... ,, are tangent to M, and are represented as in (2.3). Hence
the vector fields obtained from X; by evaluating the coefficients a;; on the points of the

plane My, are the generators of the first layer Vi on the plane, so that

Xi = Xijgym0, =2, ,n. (3.2)
Thanks to this choice, not only the plane My is non characteristic, but also the planes
M, = {(x1,2) € G : x1 = 21}, for every z; sufficiently small, are non characteristic.

We note also that assumption (1.5) ensures that the vector fields X; satisfy a Hormander
condition at every point and span a n — 1 dimensional space at every point. In analogy
with formula (2.7), the homogeneous dimension of the plane is

Q=) idim(V').

i=2
As a consequence
QR=0Q—1. (3.3)
Via the exponential map and definition (2.6) the vector fields X; define a distance
d(§,3) == 105, ¢ @)l (3.4)

on My. By the Héormander condition a Laplace operator and its time dependent counter-
part are defined on My as

A= Z X2 and L:=0,—A, (3.5)
=2

and they have non negative fundamental solutions r A and r respectively.

In analogy with Definition 2.7 we give the following definition.
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Definition 3.1. We say that a kernel P, defined on R*'x]0, oo[xR" ' x]0, co[ and C>
out of the diagonal, is of exponential type X\ + 2, if for ¢ € N and k-tuple (i1,--- ,i) €
{1,--- ,n}k there exists Cyy, > 0, depending only on k,q and on the subriemannian metric,
such that

_d(#,2)?
e Cqrt=—7

|B(&, VT =7)|

A

’(Xl szﬁfp)((j,t), (277-))| < quk(t_T)—q—k/Q—f—)\/Q
for all# € Rt and t > 7.

Our first result is the following one:

Theorem 3.2. Assume that My = {(z1,2) € G : x; = 0} is a non characteristic plane
and let T > 0. Then there exists a constant C = C(T) such that for all z = (0, 2),
x = (0,2) in My and for every t and T, with 0 <t —71 < T, we have

D((2:1), (2,7)) = VE=TT(((0,), ), ((0,2),7))| < CL((&,8), (2,7)(t = 7)/%. (3.6)

In addition T((2,1), (2,7)) — vVt — 7L(((0,2),1), ((0,2),7)) is an operator of exponential
type 1/4 with respect to the vector fields {X;}i=2,... m.

Since the kernel I'((0, Z,t), (0, 2, 7)) has the same growth of the kernel %, we
immediately deduce from the previous theorem the following corollary:

Corollary 3.3. The kernel T'(((0,%),t),((0,2),7)) is an operator of exponential type 1
with respect to the distance d.

Theorem 3.2 will be proved with the parametrix method and a Riemannian approxi-
mation. Classically, the method is applied for proving the existence of the fundamental
solution of a given operator. Extending an approach of [12], in Lemma 3.2 we apply the
method to find a relation between the fundamental solutions since we already know that
they exist.

Even though the parametrix method has been largely used in the subriemannian setting
for internal estimates, the vector fields X; do not provide a subriemannian approximation
of the vector fields X; and the standard parametrix method of Rothschild and Stein cannot
be applied starting with the fundamental solution of L. In order to clarify this fact we
start with a concrete example of vector fields:

Example 3.4. Let us consider the following fields
X1=01, Xo=09+ x%a5 4+ 2304, X3 =03+ 1405. (37)

Their commutators are Oy = [X1,Xs], which is a vector field of degree 2, and 05 =
[[ X1, X2], X2], which is a vector field of degree 3.

If we evaluate the vector fields X; on the plane {x1 = 0} we obtain
Xy =0y + 130y, X3 =05+ 1405,

so that R
Xo— X9 = 9:%35 is an operator of degree 1.
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Consequently, the difference
H=L-1L isan operator of degree 2.

Hence it is not possible to apply the parametriz method, whose convergence requires H to
be an operator of degree strictly less than 2.

Due to these difficulties, we introduce a new version of the parametrix method, using
the e-Riemannian approximation described in Section 2. The whole proof is based on a
careful analysis of the Riemannian approximation metric and lies on a delicate interplay
between the Riemannian and subriemannian nature of our operators.

3.2. A Riemannian and frozen approximating operator. In Section 3.1 we have
chosen a point 0 and a constant € sufficiently small such that for every z; € R, such that
|z1| < €%, the plane M,, = {(21,%) € G : 21 = 21} is non-characteristic. In analogy with
(3.2), we define the vector fields X; ., := X;|, _. as the vector fields whose coefficients are
evaluated at the points with first component z;. Thanks to (2.3), they can be represented
as

X1721 = 01, Xi,z1 = Xi|x1=21 = 6Z + Z Qjj (zl,:%)ﬁj 1= 2, SN ) (38)

deg(7)>deg(7)
for every £ > 0 and we set, see (2.11) and (2.12),
Xi721,€ = i75|x1:21 7= 1, N 7271, —m, (XLZLE = 81) (39)

We introduce now an operator L., . which can be split in a tangential and in a normal
part on any plane M, , and we will use it to approximate with the parametrix method
the tangential and the normal part of the operator L.. Precisely, we define

Loyc=0—Y X7, . (3.10)
=1

with fundamental solution I',, . on the whole space. On every plane M., we define the
tangential operators

n
Loc=0—A. . where A, . := ZXZ (3.11)

1,21,
1=2

with non negative fundamental solutions le,a and fA,zl . respectively.

Remark 3.5. Let us explicitly note that Azl,e s independent of x1, hence it commutes
with 01. Therefore the operator L, . can be represented as

9 R
Lye=0—01 — Az e

Since 01 coincides with the direction normal to the plane, the operator splits in the sum
of its orthogonal part 0, — 0%, and its tangential part L., .. Consequently its fundamental
solution can be represented as

le,E(xla jy t) - ]-_‘L,zl,e(xla t)f‘zl,f(i) t)
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where le & is defined above andI'| ,, . is the standard one-dimensional Gaussian function,
fundamental solution of 8; — %,.

3.3. Estimates of the approximating operator. As recalled in Section 2.3 the first
step of the parametrix method is to prove that the difference X; . — X; ., . is a differential
operator of e-degree strictly less than 1 around the point z; and, as a consequence, that
the operator H, := L. — L, . (see also (2.17) and (2.24) above) has e-degree strictly less
than 2.

Lemma 3.6. Let M,, = {(z1,2) € G: x1 = 21} be a non characteristic plane. For every
z = (z1,2) € M,,, and for every i < n and for every h such that deg(i) + 1 < deg(h) < k
(where K is the step of G) there exists a polynomial p;p -, (v), homogeneous of degree
deg(h) — deg(i) — 1 as a function of v and z1, such that, if v=0Ox, .(z),
K
dOx,, -(Xi — Xiz) =01 > pina(©)dOx. 2 (Xnz), (3.12)
deg(h)=deg(i)+1
where O, . has been defined in (2.2). Moreover
deg(h)—deg(i)—1
pina @) <C > |21 |7 ]| 49 t) - deg () =13 (3.13)
§=0

Proof. When i = 1,--- ,n, by the definition (2.3) and (3.8) of the vector fields we have,
for deg(i) = k

Xi — Xi., =0, (3.14)
hence the thesis is true, and we have to prove it only for deg(i) < k. Using the fact that
the translation associated to the vector fields X,, acts only on the & variables, we have

dOx, (Xi— Xiz) = Z (az‘,h(%,@) - az‘,h(zla@))ah =
deg(h)=deg(i)+1
= Z (x1 — zl)a}’h’zl ()0, =11 Z a,}7h721(v)8h. (3.15)
deg(h)=deg(i)+1 deg(h)=deg(i)+1

In the last equality we have denoted (z1—21)a; , ., (v) the polynomial a; (1, ) —a; n(21,9)
and we used the fact that v1 = £1 — z1. The polynomial a}’ hoo (v) is homogeneous of degree
deg(h) — deg(i) — 1 in the variables v and z; and we have estimated as
deg(h)—deg(i)—1
azlﬁh721(v)| <C Z ’ZI‘JHdeeg(h)*deg(l)*lfJ_

j=0
If deg(i) = k — 1, the proof is completed, by (3.14). For deg(i) < k — 1, using again the
expression (3.8) for deg(h) < k and (3.14) for deg(h) = Kk, we get

K
d®leuZ(Xi - Xiyzl) =U Z a’},h,zl (U)d(—)le,Z(thzl)_
deg(h)=deg(i)+1
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K deg(j)—1
U Z Z all,h,zl (v)an,;,-(v)0y,.
deg(j)=deg(i)+2 deg(h)=deg(i)+1

Since the Lie group is nilpotent of step «, after kK — 1 iteration of this method, we get that
there exists a polynomial p; ., such that (3.16) is satisfied. O

From this lemma, Corollary 3.7 below immediately follows. The proof is technically
very simple, but it is important to note that the X;. — X ., - is a differential operator
which has local degree 1 while has local e-degree 1/2, in a neighborhood of the point z.
This property allows to obtain a better approximation in the Riemannian setting, rather
than in the subriemannian setting.

Corollary 3.7. Let My be a non characteristic plane. Let S be the strip
S:={z=(21,2) €G: |x1] <™, |z — 21| < ¥},

where k is the step of the group. Then X; . — X; ., - s a differential operator of e-degree

1/2 with respect to the vector fields X ,, .

Proof. Applying Lemma 3.6, calling pgh’Zl,E(U) = E*deg(h)vlpi,hm(v) and using the fact
that |v1| < &2 and |21| < 1 we have

K deg(h)—deg(i)—1 ‘ ‘
D (@) < Clon 2 > Yoo |destmdes@tm,
deg(h)=deg(i)+1 j=0

Since X, = gdeg(d) X, and VI1Pi b,z (V) Xz = p?hz1 (V) X} 2, ¢, from Lemma 3.6 we also
deduce that

K

dele,z(Xi,e - Xi7z1,6> = Edeg(i) Z p?,h,zl,e(v)dGle 7Z(Xh721,€)‘ (316)
deg(h)=deg(i)+1
If ||v]| <1, then
D012, (V)] < Clon] V2. (3.17)
Since Xj, ., . has degree 1, then pghmﬁ(v)d@xq7Z(Xh,zl75) is a differential operator of
local e-degree 1/2 in the set ||v|| < 1 with respect to the vector fields X ., ..

On the other side, if ||v|| > 1, we have that X}, ,, is a differential operator of e-degree
h,
169,20, (V)] < Cloa |2 ][o]| 0, (3.18)

so that p?h21 (v)dOx, »(Xpz ) is a differential operator of e-degree 1/2 for |lv]| > 1
with respect to the vector fields X ., .. O

As a direct consequence of the previous corollary, we can prove that the difference
H. = L. — L, . is a differential operator of degree strictly less than 2 in a neighborhood
of the point z.
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Lemma 3.8. Under the assumptions of Corollary 3.7, L. — L., . is an operator of e-degree
3/2 with respect to the vector fields X, .. Precisely there exist polynomials pgil o pﬁz e
and a constant C' independent of € satisfying
Pht, (0] < Cloa| V2 for o]l <1, |pf), (@) < CloaY2 o] *9®) for [|v]| > 1
and
2 2 deg(h)+d
P 2 @) < Cloa 2 for ol < 1. o3, ()] < Clon| 2ol s+ for o] > 1,
such that
K
1
dOx., o(Le = L) = > phl, (0)dOx,, o(Xnsio) + (3.19)

deg(h)=2
P deg(h)—

+ Z Z PZ h 21,6 d@le, (Xz 21, Xh 21, a Z bid(—)le 2 (Xi,e)
deg(h)=2 deg(i)=1 )

where the coefficients b; appear in the expression (2.17) of the operator L..

Proof. By the definition of the operators we have:
d@)le, (Le = Lz e)

_Zd@le (Xizr (X = Xy )+Z(d@xzv X 121,5)>2—|—

(3.20)
+2d@le,z(<xi,s—xi,zl, Xizpe) = Zb dOx., .(Xiz)
By (3.8_), Xi.= X1, = 0y, so that
0., (Le = L)
—Zd@le, (X e (X = X, )+Z(d@le, e Ximo)) + o)

+Zdexq,z((xi,g—xi,zl, i) Zb dOx., +(Xic).
1=2

Let us consider the first term at the right hand side. By (3.16)
d@le 2 (Xi,zl,e)dele ,z(Xi,e - Xi,zha) =

=405, +(Xio ) (90 ST g (A0, L (Xs ) =
deg(h)=deg(i)+1

K

=Y Oy (40 (Ko )i (0))AOX., (X o)+
deg(h)=deg(i)+1
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K

+ Z edeg(@)=deg()yy ., (0V)dOx. | 2(Xi 2 e Xn 2 )
deg(h)=deg(i)+1

where we have used the fact that p?}hyz1 ()= e=9(M 1 p; 4 ., (v). The second term in the

right hand side will contribute to the term P (v)dOx., 2(Xh,z ), and the estimates

i,h,z1,e
directly follows from the estimates (3.17) and (3.18) of p?,h,z1,a(v)‘ The first term in the
(1)

h,z1,e

right hand side will contribute to the terms p
be estimated arguing as in Corollary 3.7.

(0)dOx., 2(Xh,z ). Its expression can

The other terms of (3.21) can be handled in a similar way. O

In analogy with (2.26) we define the kernel
Ri:((2,1),(2,7)) i= (Lay,e — L)z e ((2,1), (2, 7)) (3.22)
for t > 7.

As a consequence of Lemma 3.8 and of the homogeneity of the fundamental solution,
we provide an estimate for R .

Lemma 3.9. If My C G is a non-characteristic plane, Ri. is a family of kernels of

e-uniform exponential type 1/2 in the set {|z1| < €2*}. Precisely for every bounded set

there exists a constant C' such that for every x = (1,%), z = (21,2) € G such that

21|, |21] < €2%.

FZl,E(($7 Qt)v (Zv 27—))
It — 7[3/4 ’

’Rl,s((x¢t)a(za7—))| < C (323)

with C' independent of € and z1.

Proof. By the representation formulas obtained in the previous Lemma 3.8, used with v; =
21— 21, we only have to estimate terms of the type |z1—21("2X; 2, e Xp 2, T 2 (2, 1), (2, 7).
Using (2.19) for any 0 < £ < 1 we immediately obtain

‘531 - 21‘1/2F21,€((xa Qt)a (Z, 27—))
|t — | '

‘Rl,E((x7t)> (Z>7—)>’ <C

In order to prove (3.23) we note that we can assume that |r; — 21| > /t — 7, since
otherwise the assertion is true. In this case we can use the fact that p1/4e_p2 < 06_92/2,
for a suitable constant C, and the estimate (2.20) of the fundamental solution to ensure
that

|:L‘1 _ 21|1/2
mrzhg((l'? t), (Z, '7_)) S CFZI’E((I', 2t)7 (Z, 27’)), (324)
From here the thesis follows at once. O

3.4. Convergence of the parametrix method. The second step of the parametrix
method consists in proving that the series ®, defined in (2.27), is convergent. In order
to do this, we first need to obtain an uniform estimate of the distances d., .. We denote
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respectively d., . and d,, o the distances defined as in (2.15) and (2.6) in terms of the
vector fields X; ., . and X .,:

oy 0(2,2) = 1Ox1) o Xy 2 (D)5 Aoy e(@,2) = (1O e Xy 2 (@) e (3.25)

Under the usual assumption that My C G is a non characteristic plane (so that also
M., is non characteristic for |z;| sufficiently small), we have the following lemmata.

Lemma 3.10. For every x = (z1,%), 2 = (z1,2) in G,

d(z,z) =d, 0(z,2), de(z,z) =ds ((,2). (3.26)
In addition the distance d defined in Section 3.1 satisfies
d(z,2) = doo((0, &), (0, 2)). (3.27)
and R
d(z,2) =d((0,z),(0,2)). (3.28)

Proof. The distance d(x, z) is defined in (2.6) as the norm of the vector v such that

n
x = exp(v1X1) exp(z 0;: X;)(2). (3.29)

i=2
Since all the vector fields (X;)i—2.... n are tangential to the plane M, the integral curve
t — exp(tY ;o v;X;)(2) is tangent to the same plane. Therefore, along this curve the
vector fields (X;)i=2,.. , are computed for z; = z; and coincide with the vector fields
Xi,z. This implies that d(z,z) = d., o(z,2). The same argument applies to the second
equality in (3.26) to (3.27), and to (3.27). O

Since we have a good estimate of the kernel R;. only in an e- neighborhood of the
plane My, we have to modify the classical parametrix method, restricting the integral in
this neighborhood. To this end we consider a cut-off function depending only on the first
variable x1. Precisely, we consider a piecewise function p., supported in an € neighborhood
of the origin, defined as follows:

pe(z1) = 1if |z1] < 2%, p.(21) = 0 elsewhere. (3.30)

For any suitable kernel K, we define

ERl,E(K>((xﬂt)7 (277—)) = /R"X[ q Rlyé((xvt% (ya 0)) K((ya 9)7 (2'77'))p5(3/1 - zl) dyd‘g

(3.31)
and, in analogy with (2.27), we consider
b ((2,1), (2,7) = Y (Erye) (Re)((@,1), (2,7)). (3.32)
§=0

We will prove that the series can be is totally convergent on the set

{0<t—T§T, lz1], |21] < €2F, dg(x,z)+|t—ﬂ% 25} forall T > 0,6 >0,
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and it is a kernel of uniform exponential e-type 1/2, i.e. it satisfies the estimate

| ((x,t), (2,7))] < e(T)(t — T)fgf‘zlyg((a:, ct), (z,c1)) 0<t—7<T, (3.33)
with constants independent of € and of z7.

As we mentioned in Section 2.3 the convergence of this series relies on properties of
convolutions of kernels. Hence we will need the following property of the operator Eg, .,
that ensures that the series can be estimated by a power series, so that it is convergent on
the mentioned set:

Lemma 3.11. Let My C G be a non-characteristic plane. For z € My, © € G, with
|z1] < 2% and for j € N it holds that

(Er eV (o), )] < S P 0 Ban))

(3.34)
Jj € N, where pj := Fj“(%)/F(M) and T' is the Euler Gamma-function.

Proof. We argue as in [36] or [3] and we prove by induction (3.34). Our main concern
in the proof of (3.34) is to show that the constants are independent of . The estimate
for j = 0 is already contained in (3.23). Let us assume that estimate (3.34) holds for
j—1eN. Using the explicit expression of Eg, . contained in (3.31) we have

’(ERl,E)le((xv t)a (Z, 7—))|

< / ‘Rl,a((xv t)’ (ya 0)) (ERl,E)j_lRl((y’ 9)7 (Zv T))pa(yl - Zl) dyd@ .
R"™ X [7,t]

Now we apply the estimate (3.23) for Ry and the inductive assumption (3.34) on (Eg, -)’ 1 Ry
to obtain

|(ER1,€>jR1((xv t)? (Z7 7—))‘

< ngj‘l/T (t—0)" 50— )~ it % /nrg((x, c1t), (y, c10)Te((y, c10), (2, c17)) dydo.

By the reproducing property of the fundamental solution, (see [36] or [3]), we have

/R" FE((x’ Clt)a (ya 619))F5((y7 010)7 (Z’ 017—)) dy = FE((1:7 Clt)’ (Z’ 617—))

and, by the change of variable r» = (t — 7)71(8 — 7),

1 j i+1/1
:ﬁj,l(t—f)—3/4+j/4r(1)’F(%) _ (t_T)—3/4+j/4PJ+ (2) _ B,(t — 7) B,

(3.35)
by the definition of ;. Putting together these terms we obtain

(Bry o) Ra((z8), (o) < 50— 1) 90T (), 2 07).
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Thus, (3.34) follows by induction for all j € N. d

Remark 3.12. From the assertion above it follows that the convolution of a family of
kernels of uniform exponential e-type 1/2 with a family of kernels with uniform exponential
e-type [ is a family of kernels with uniform exponential e-type §+ 1/2.

For every € > 0 the operators L. and L., . are uniformly elliptic, so that the proof of
the convergence of the parametrix method is a well known fact (see [26]). In particular
I',, - provides a good approximation of I'; in a neighborhood of the plane. More precisely

FE((QZ,t), (Z, T)) = le,E((xvt)7 (Z)T))
[ T, (506) Be((9:6), (2 )l — 1) dyd.
R7 X [7,t]

In addition, for i = 1,--- ,n,
Xz() Lel(z,t),(2,7)) = Xi27078FZ175((x,t), (z,7))

+ lim XZOEFyl»E((:U?t)’ (yve))q)E((yv H)a (ZaT))pE(yl - Zl) dydp. (3'37)
6—=0F JRn x[r,t—6]

(3.36)

Using the explicit representation formulas above we can provide the following estimates
for I'c —I';, ¢ uniform in e:

Proposition 3.13. Let My be a non characteristic plane and x = (x1,%),z = (21,2) € G
such that |z1|, |21 < €2%. For every T > 0 there exists a constant C = C(T) such that for
every € > 0 and for every t, 7 with 0 <t — 7 < T the following inequalities hold

Te((@, ), (2,7)) = Doy e(:1), (2,7))] < Ot = 1)V Toy e ((2,0), (2,7)). (3.38)
In addition T ((z,t), (2,7)) =T, ((x, 1), (2,7)) is a family of kernels of uniform exponen-
tial e-type 1/4 with respect to the vector fields (X;z)i=2.... n-
For the proof we refer to [36], while the uniformity with respect to e follows by (2.8).
Proof of Theorem 3.2 . We first prove a Riemannian version of Theorem 3.2. Precisely we
show that for all (0, 2), (0,%) in My and for every ¢, 7, with 0 <t —7 < T we have

[Loc((@8), (2,7)) = Van(t = T)T((0,2,1), (0, 2,7))| < CT((0,,1), (0,2, 7)(t — 7)*/*,
(3.39)
where C' is a constant independent of £. Indeed,

4n(t = T)L((0,2,), 0, 2,7)) = Do (1), (2,7)) =
= VAr(t = 1)T0.((0,8,),(0,2,7)) = Do (1), (2,7))
+/Am(t = 1) (Te((0,2,), (0, 2,7)) = To((0,,2), (0, £,7))).
By Remark 3.5
Lo, ((0,4,1), (0,2,7)) = T'Lo.((0,1), (0, 7)o (2, ), (2,7)),

then the first difference at the right hand side is zero since

\/mFL,O,a((Oa t)7 (07 7—)) =
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and hence the estimate (3.39) follows by (3.38). Always from Proposition 3.13 it follows
that \/4r(t — 7)T((0,4,1), (0, 2,7)) — Toc((&,1), (2,7)) is a family of kernels of uniform
exponential e-type 3/4 with respect to the vector fields (X;c)i=2.... n. Sending € to 0 in
the assertion (3.39), we obtain that for all z = (0, 2), x = (0, ) in My and for every ¢ and
7, with 0 <t —7 < T, we have

D((2,1), (2,7)) = VE=7T((2,1), (2,7))| < CT((w, 1), (z,7)(t — 7)*/*,
and the left hand side is a kernel of exponential type 3/4 with respect to the vector fields
(Xi)i=2,....m- Using the Gaussian estimate (2.22) of I" and I' together with formula (3.28)
we obtain

08,0, (2,7)) = VE= 7T ((@,0), (2, )] < OF((@.0), (2, 7)) = )
and the left hand side is a kernel of exponential type 1/4 with respect to the vector fields
(Xi)i=2,...,m- Theorem 3.2 follows immediately. O

3.5. The reproducing formula for homogeneous sub-Laplacians on a plane. Here
we establish the analogous of Theorem 1.3 for homogeneous vector fields expressed as in
(2.3), under the assumption that the boundary of D is the plane {x1 = 0}. This is done
integrating in time the result of Theorem 3.2. Let us first deduce an integral version of
Theorem 3.2, based on the reproducing formula of the heat kernel.

Lemma 3.14. Let D = {(z1,2) € R™ : 21 > 0}, and assume that its boundary is non
characteristic. There exists C > 0 such that for any (0,2),(0,9) € 0D and for all t, T,
with 0 < 7 <t we have

f((*@at)7 (ga T)) = (3.40)

_ / /R T((0,2,t), (0, 2,0))0((0, £,0), (0,3, 7))d2d6 + R(#, §,t — 7),

where
[R(2,9,0)| < CET((2,1), (5,0)), (3.41)
and R is a kernel of exponential type 5/2 with respect to the vector fields {Xi}izgj...m.

Proof. Let us first prove (3.40). To this end we note that the thesis is true for ¢t — 7 > 1.
Indeed

P((#,8), (7)) < et = 1)@, 1), (5,7))
and by the standard Gaussian estimates (2.22) of the fundamental solution and by the
relation (3.28) between the distances d and d, we obtain

t
//Rn1F((Ovi’t)»(Uaiﬁ))F((O,%,@),(O,g,r))d;:«de

< e(t —7)*UT((0,4,1), (0,9, 7)) < et — 1)/ T((&,1), (9, 7))-
If t — 7 < 1, by Theorem 3.2, we have

0((0,,1t),(0,2,0)) = ——222 22 (1 4 O(t — 9)'/4). (3.42)
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Thus,

/ /R P((0,2,), (0, 2,0))T((0, 2, 6), (0,5, 7))d2do

A

-/ ( [ B0, GoNE(z0), iz

(om0 (o) (gm0 (=) )‘w
_ f((:i,t%(?)m))/: (e 0 () (g 0 (=) ) 0

by the reproducing formula. Now, with the change of variable r = (t —7)~1(6 — 1), we get

A (a0 (=) (G 0 (@=am) )= 10 (a-0").

Therefore, we get

/t /RM I'((0,,1), (0, 2,0))I'((0, £,0), (0,9, 7))dzdf (3.43)

= I((#,1), (9, 7)) (1 + O((t — 7)),
so that R satisfies (3.40). A similar argument applied to all derivatives ensures that Risa

kernel of exponential type 5/2 with respect to the vector fields { X;}io.... , and concludes
the proof. 0

3.6. Proof of Theorem 1.3 for homogeneous vector fields on a plane. We will
provide in Lemma 3.16 below the proof of Theorem 1.3 on a plane and for homogeneous
vector fields. This result can be considered the time independent version of Lemma 3.14.
It will be established integrating in time the thesis of that Lemma and using the well
known fact that the fundamental solutions I A of the Laplace type operator (3.5) and I'a
of the Laplace operator (1.2) satisfy respectively

oo +o0
FA(2,2) = /0 I'((z,t),(2,0)dt, Ta(z,z)= /0 I'((x,t),(%,0))dt. (3.44)

From the previous definition and Corollary 3.3, we deduce the following remark:

Remark 3.15. The kernel T'a((0, ), (0,2)) is an operator of type 1 with respect to the
distance d. Indeed the integration (3.44) with respect to the t variable changes kernels of
exponential type o in kernels of type .

Lemma 3.16. Let the vector (X;) be represented as in (2.3), let Mo = {(0,%) : # € R*~1}
be a non characteristic plane. For any (0,%),(0,3) € My

A~

f‘A('@a Z}) = /Rnl FA((Ov 'i')a (07 2))FA((07 2)7 (07 ]}))dé + RA('TA}a y)v (3'45)
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where

~ A~

A A PPN A A
Ri(2,9) = O(d(2,9)2Tx(2,9))- (3.46)
In particular ]%A(i, 9) is a kernel of type 5/2 in the sense of Definition 2.3 with respect to
the distance d defined on the plane.

Proof. Using (3.44) and integrating both sides of expression (3.40) we obtain:

A oo ~
TA(2,9) +/O R((2,1),(g,0))dt

B /m /t/ T((0, &t — 6), (0, 2,0)T((0, 2,6), (0,7, 0))d2 db dt.
0 0 JRrn—1

Changing the order of integration, we get that the last term is equal to

/Rnl /;OO </9+Oo I'((0,2,t - 9),(0,2,0)) dt) I'((0, 2,6),(0,9,0)) dodz

+o0
- / / TA((0,2), (0, 2))0((0, 5, 6), (0, §,0))d6d2
rRr-1 Jo

and integrating with respect to 8 we obtain
[ Pal0.8),(0.)Pa(0,2),0.)ds
R7—

The estimate of R A (2, 9) directly follows easily integrating in (3.43) and using the estimate

of f‘((:ﬁ, ct), (9,0)) provided in Lemma 3.14. Therefore, recalling that @ = @ — 1 denotes
the homogeneous dimension of the plane, we have

) +oo
Rp(2,9) = ; R((%,1),(9,0))dt <

_d@,9)?

TN (s 1/4 e
< c/ (&, 38, (5,004t < c/ I,
0 0

_1
t2 1

)

where the constants may vary from line to line. Now, with the change of variables v =
G0m 2)2
—LZ’?;) we get
~ A +oo _ 1)%7
RA(2,9) SC/O e ——

A~

d(&,9)

An analogous inequality holds for any derivative and the result is proved. O

|©

dv < cci(:%, @)7@+2+% < Cfi(@ﬁ)%fA(@a 9) -

Q)| »

Njo
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4. REPRODUCING FORMULA ON A SMOOTH HYPERSURFACE

4.1. Reduction of a general hypersurface to a plane with a subriemannian struc-
ture. Let us denote by D a smooth, open bounded set in G and let 0 € 9D be a non
characteristic point. In this section we show that we can always reduce the boundary
0D to the plane {(z1,Z) : x1 = 0}, via a change of variables. Indeed, there exists a
neighborhood V;y of 0 such that the subriemannian normal v satisfies

v(s) # 0 for every s € 0D NVj.

We can also choose an invariant basis (Z;)i=1,.. » of the tangent space of G around the
point 0 and Z; coincides with the standard element 0; of the tangent basis at the point
0, for every ¢ = 1,--- ,n. In addition, eventually applying a group homomorphism 7j,
we can assume that 7)o := 01)p = v(0) and that the vector fields (Z;|g)i=2,.. m span the
horizontal tangent space of 0D at 0. We also assume that the problem is expressed in
canonical coordinates of second type around the point 0 associated to these vector fields.
In these coordinates the vector fields admit the representation

Zy =01, Z;=0;+ Z a;(s)0;, fori=1,---,m (4.1)
deg(j)>deg(i)
while the boundary of D can be identified in a neighborhood V' CC Vj with the graph of
a regular function w, defined on a neighborhood V =V NR"~! of 0:
dDNV = {(w(3),5): 5 V}.
By the choice of coordinates we have in particular that
Ziw(0) = 0. (4.2)
On the set V the function =(s1,§) = (s1 — w(8), §) is a diffeomorphism. It sends 0D NV
to a subset of the plane {z; = 0}:
2@DNV)={(z1,2) : z1 = 0}.
Through this change of variables the vector fields Z; can be represented as
X1 =d=(21) = Ony, o ) (4.3)
Xi = d=2(Zi) = 0z, + X deg(j)>deg(i) %ii (@1 + W(Z), £)0; + Ziw(2)0y,

for i =1,--- ,n, where the polynomials a;; are the same of the ones defined in (2.3).

A neighborhood of 0 in the boundary of D locally becomes in the new coordinates an
open subset My = Z(0D NV) of the plane {z1 = 0}. We can restrict the vector fields
(Xi)i=1,...,m to the tangent to My and we call them X;:

K
XZ' =0;+ Z ai,j(w(:%), i’)aj, 1=2,--,n. (4.4)
deg(j)=deg(i)+1

The vector fields (X;)i=1.... . still satisfy the assumption (1.5), which ensures that they
satisfy the Hérmander finite rank condition [33]. They do not define a general Héormander
structure (see [40]), since they have been obtained from the generators of a Carnot group
via a change of variables. It is important to note that the vector fields X; as well as
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the vector fields XZ are not homogeneous with respect to the new variables x;. However
we will see in Lemma 4.4 and Lemma 4.5 that at every point they admit approximating
vector fields respectively Z; and Z; homogeneous in the new variables. Hence the local
homogeneous dimension of R™ endowed with the choice of the vector fields X; is Q. Since
the Hormander condition is satisfied, a Carnot Carathéodory distance d is defined in terms
of the vector fields (X;)7,. Thanks to assumption (1.5), the vector fields {X;};—o.
defined in (4.4), generate on the plane My a subriemannian structure with local homoge—
neous dimension Q (@ —1 and induce a distance d on My defined through the exponential
map as in (2.6), which satisfies (3.27) and (3.28).

The Laplace type operator, analogous to (1.2) and expressed in terms of the vector

fields X; is denoted by
A=) "X+ biX; (4.5)
i=1 i=1

and it has a fundamental solution I'a, of class C* out of the pole (see for example [44]).
The operator analogous to (3.5), expressed in terms of the vector fields X, is

m

A= 2, (4.6)

i=2
with fundamental solution I A- In analogy with the definition of type of a kernel with
respect to the vector fields (X;), given in (1.4), we give here the definition of kernel of
local type A with respect to the vector fields Xo, -, Xp:

Definition 4.1. k is a kernel of local type A with respect to the vector fields Xy, -, X,
and the distance d if it is a smooth function out of the diagonal and, in any open set V,

the following holds: for every p there exists a positive constant C, such that, for every
T,ye DNV, z#y,

Clearly, if the space is homogeneous, the previous definition coincides with Definition
2.3.

4.2. A freezing procedure. Here we will show that, when we are studying pointwise
properties around a fixed point xg, we can always reduce our vector fields to homogeneous
ones. The proof is made approximating the vector fields with nilpotent ones, adapting
to this context the Rothschild and Stein parametrix method. In the classical case the
vector fields are lifted to vector fields free up to step x and then they are reduced to the
generators of a free algebra with a freezing method. Here we cannot lift the vector fields
to free ones otherwise we would lose assumption (1.5). However, we can use the explicit
expression of the vector fields (4.3) to obtain an ad hoc version of the Rothschild and Stein
method.

Let D be a smooth, open bounded set in R", locally expressed as a graph of a function
w. In the previous section we defined a change of variable allowing the description of the
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set as
ODNV = {=; (x1,2) : x1 = 0}.
In the following remark we perform a similar change of variable for every z € 0D NV.
Remark 4.2. For every z € 0D NV we will denote v(z) the normal to 9D NV in z and
T, : (G,0) — (G, 2) the group homomorphism such that
T.(0) =z, dT.(X1)p = v(2)
and dT,(Xa)|g, -+ ,dT:(Xp)|o is a basis of the tangent space to ID NV at z.

If we fizx z the implicit function theorem (see [25], [17]) ensures that there exists a
neighborhood U = I x U of 0 and a function w, : U — R such that w,(0) =0 and

{(w.(9),9) : 9 € Uy =T,(0DNV)NT,

so that {T.(w.(9),9) : § € U} ¢ d9DNV. We can always assume that V.w.(0) = 0.
Due to the regularity of the boundary we can find an open set W C V' such that for every
z € WNOD the function w, is defined on the same set U with values in the same set 1.
Clearly Ty = id, and wg = w, where w is defined above as the defining function of the set
0D in the original variables.

We prove the following result analogous to [43] in our simplified setting:

Proposition 4.3. There exist open neighborhoods U of 0 in R™ and V, W of 0 € 0D C
R", with W C V' and, for every z fized in W, a change of coordinates =, such that

e the function x — Z,(z) is a diffeomorphism from U on the image
e in the new coordinates the vector fields will admit the following representation:

22(X1) = 0y,

dEZ(XZ) = 8%. + Z ai,j(yl + wz( J), [&)ayj + Xiwzﬁyl, 1=2,---,n.
deg(j)>deg(i)

Proof. Hence we can define the map
E.:U—=V, E.(y1,9):=T.(y1 +w.(9),9)

E. is invertible on its image and sends the plane {y; = 0} NU into a suitable subset of OD.
The composition Ey'E, sends the plane {y; = 0} into the the plane {z; = 0}, boundary
of D. For every z € W N JD its inverse function =,(x) is a diffeomorphism on the image
and Z,(W) Cc U C Z,(V) The vector fields X; can be represented as follows in the new
coordinates (see also [1], [16]):

d=:(X1) = 9y,

dEZ(XZ) 8yi + Z Qs 5 (yl + wZ(g))v y)ayj + Xiwz(g)ayp 1= 2) o, N
deg(j)>deg(i)

We can now prove the following result, analogous to Theorem 5 in [44]:
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Lemma 4.4. With the same notations of previous Proposition 4.3, let us call
Zi = 0y, + Z aij(y) Oy,
deg(j)>deg(i)
fori=1,---,n. Then we have
dEZ(XZ) — Zz = Ri,z,E

where R; , = are vector fields of local degree < deg(i)—1 depending smoothly on z. Precisely
Ri,== Zj 1ij,.0; where r; . = O(d(0, y)deg(j)*deg(i)ﬂ).

Proof. Tt is a direct computation. Indeed the assertion is true for ¢ = 1. For every i > 1
the difference d=,(X;) — Z; can be expressed as

d2.(Xi) = Zi= ) (aij(yl + wx(9),9) — aij(y1, ?J))% + Xiw: ()0, -
deg(7)>deg(7)
We first note that, since w,(0) = 0 and we can always think that also X;w,(0) = 0, then
Xiw,(y)0y, is an operator of degree 0. Moreover, being a;; homogeneous polynomials,
their difference can be represented as a homogeneous polynomial. Precisely there exists a
suitable polynomial allj homogeneous of degree deg(i) — deg(j) — 1 such that

aii(y1 + w:(9),9) — aij(y1,9) = w=(§)ay;(yr, y1 +w-(9),9) =

= O(1911*)a; (y1, 91 + w2 (), 9),
since w, and its gradient vanish at y = 0. (|

A similar relation holds between the vector fields restricted to the boundary:

Lemma 4.5. Using the same notation of Proposition 4.3 and setting

Zi=0y+ Y ay(0,9)dy,
deg(j)>deg(i)
we get:
d=.(X;) = Z; + Ri,z,E
where ]A%i,zg are vector fields of local degree < deg(i) — 1 depending smoothly on z € W.

Proof. We omit the proof which is exactly the same as the previous lemma. O

4.3. Properties of the fundamental solution and its approximating ones. The
vector fields (X;)i=1,... » in (4.3), as well as their restriction to the boundary (XZ)lZQ o
are in general non homogeneous in the variables x, but we have proved in the previous
section that for every z their images through =, admit homogeneous approximating vectors
fields. Then calling X; , = d=,'(Z;) fori = 1,--- ,n, and applying the change of variable
= to the result of Lemma 4.4, we deduce that for every 7 = 1, - - - , n there exists an operator
R; . such that R; , < deg(i) — 1 and

Xi=Xiz+ Ri.. (4.7)
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Calling X;. = d=;'(Z;) for i = 2,---,n, we obtain from Lemma 4.5 that for every
i =2,---,n there exists a vector field R; , such that R; , < deg(i) — 1 and
Xi = Xi,z + Ri,z-

The associated sub-Laplacian type operators are defined as

AZ:iXZZ’ Az:i)ziz,w AZ:iZz?’ AZ:iZ?, (4.8)
=1 i=2 i=1 i=2

~

with fundamental solutions I'; A, T', i, I'a, and r A, respectively. Note that I'a, and
I A, do not depend on the fixed point 2.
z

We can now apply the parametrix method of [36], recalled in (2.24) and (2.25) to
estimate the fundamental solutions I'a and T A, associated to the operators (4.5) and
(4.6) respectively. The argument is similar to the one applied in Section 3 but in this
case the proof is standard, since we do not have to take care of the different homogeneous
dimensions of the Riemannian and subriemannian structures. Hence we state without
proof the following lemma:

Lemma 4.6. Let us consider the operators defined in (4.8). Then
H=A-A, H=A-A,
are differential operators of degree 1. As a consequence
Fa(z,2) =T, a(z,2) =Ta(z,2) —Ta,(E:(x),0)
are kernels of type 3, with respect to the vector fields X; and the distance d. Analogously
Da(#,2) =T, (8 2) =Tx(#,2) — Tz (E2(2),0)

are kernels of type 3 with respect to the vector fields X, and the distance d.

We will also denote by (X;)* the formal adjoint of Xj.

Remark 4.7. Let us note that for every i =1,--- ,n, the vector field X; is no more self
adjoint, but its formal adjoint differs from X; by an operator of order 0. Indeed there
exists a smooth function @; such that

(X)) =-Xi+epi, i=1-,n (4.9)
Indeed
(Xi)" =—-Xi — Z Zaxlai,j(l“l + w(Z),2)0z,w.

deg(j)>deg(i) k

In the sequel we will denote X7 the derivative with respect to z and X" the one with
respect to = of a kernel K (z, z). From Proposition 5.10 in [9] (see also [44], page 295, line
3 from below) we have
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Proposition 4.8. Assume that f € CP(R™™1), and for x € R" define

F(fla) = [ Tale.0.0)f)di

For every i, h =1,--- ,m there exist kernels T'; (z,y) and S;(z,y), of type 2 with respect
to the distance d, such that

XiF(f)(x) =

== [ Tl 0,07 )5 - / i, (0.9)) £ (3)d.
Rt

Rn—1

Lemma 4.9. Let f € C°(R"). Let us call

G(H() = [ Talw)iwiy

Then there exists a kernel S of type 1 such that the operator G1(f) := G(Vf) can be
represented as

G(Vf) = Es(f),

where Eg is the operator with kernel S.

Proof. For i =1,---,m, we have

GXf) = [ Tale,2) X7 f(2)dz = [(X)Ta(e,2)f(2)d
Hence we only have to prove that the kernel
S = (X7)Ta(z, 2)

is a kernel of type 1 with respect to the distance d. By (4.9) there exist regular functions
; such that

(X7)" = =X} + ¢
On the other side, by (4.7) for every i = 1,--- ,n there exist and operator R; . such that
deg(R;,») < deg(i) — 1 and

X=X, +R;,.
Finally in [44], page 295, line 3 from below, it is proved that

DG PN
is an kernel of type 1. Now we use the fact that K =I'a —I', A is an operator of type 3,
to conclude that
S=(X7)Ta = (=X, - Ri, +¢i)(Tza + K)

is a kernel of local type 1 with respect to the distance d, associated with the vector fields

Xi .. On the other side as in Lemma 3.10, the distances d and d. are equivalent, so that
the conclusion follows. O



SCHAUDER ESTIMATES 33

4.4. The reproducing formula for non homogeneous vector fields. In this section
we prove Theorem 1.3. The proof is obtained, via the results of the previous section,
by reducing to the analogous result for homogeneous vector fields, already established in
Lemma 3.16.
Proof of Theorem 1.3. By Lemma 4.6,

PA3,2) Dy (B:(2),0) (4.10)
is a kernel of type 3 with respect to the vector fields X;. For the vector fields (Zi)i=1,-n

and the fundamental solution associated to the corresponding sub-Laplacian type operator,
we can apply Lemma 3.16, so that

Fay(E:@10) = [ Tay((0.),0.6)Ta, ((0.6).(0.)dj

is a kernel of type 5/2 with respect to the vector fields XZZ Using Lemma 4.5 we deduce

that a kernel has the same type with respect to the vector fields X; and Xu Inserting in
(4.10) we get that

Fa@2)= [ Tay((0.),0.0)Ta,((0.9).(0.)d (411)

is a kernel of type 5/2. Applying again Lemma 4.6 we deduce that the following difference,

/Rnl FAZ((Oa j)a (07 g))FAz((Oa Q)v (Oa 2))dﬁg - /]R"l FA((()? j)a (Oa Q))FA((Oa ?j)a (07 2))d?3 =

[ T (0.2), 00 (P, ((0.9). (0.2 = P ((0,3): 0.2) i+

+ /Rnl (FAZ((OV%)? (Oa Q)) - FA((Oa f)v (0733)))FA((0’ Z)), (07 2))d:&7

is a kernel of type 3. As a consequence, we deduce from here and (4.11) that

Fa@9)= [ Tal(0.2). 0.9)Pa(0.4). 0.2)ds

is a kernel of type 5/2. The proof is complete. O

5. POISSON KERNEL AND SCHAUDER ESTIMATES AT THE BOUNDARY

In this section we will show the existence of a Poisson kernel for the Dirichlet problem,
stated in Theorem 1.2. From this we deduce the Schauder estimates at the boundary
stated in Theorem 1.1.

Consider a bounded smooth set D and a sub-Laplacian type operator A defined in D,
as in (1.2), in terms of the homogeneous vector fields defined in (2.3). The corresponding
Dirichlet problem is expressed as

Au=fin D, wu=gondD, (5.1)

for a suitable boundary datum g and a smooth function f defined on D.
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As mentioned in Section 4.1, we can locally perform a change of variable, and reduce
the domain of the Dirichlet problem to the half space. Hence there is an open set V' C R"
such that DNV = {x = (z1,%) € V : z; > 0} and {z; = 0} is a non characteristic plane.
Under this change of variable, the vector fields { X }i=1 ... ,, will take the non homogeneous
expression of (4.3). Their restriction to the boundary, denoted by (X;) are defined in (4.4).
They induce on the set D a distance d defined in (3.27). The corresponding spaces of

Hoélder continuous functions, will be denoted Che,

We look for a Poisson operator in a neighborhood V' of a point xg € 0D. We say that
P :C>®(VNOD) — C>(VND) is alocal Poisson operator for the problem (5.1) if, for every
g € C*°(VNOaD), the function u := P(g) satisfies Au = 0in DNV and u(x) = g(z) for all
x € dDNV. We will construct an approximate Poisson kernel of the Dirichlet problem,
adapting to the present setting a method introduced by Greiner and Stein [30] and Jerison
[34]. They used an approximating kernel, defined via pseudodifferential instruments, while
we use here the kernel found in Theorem 1.3. We will denote it as follows:

Far(@d)i= [ Ta(0.2).(0.2)Ta(0.2). (0.9)dz )

We will now apply the parametrix method presented in Section 2.3 to prove that
I (Z,9) is an approximation of the Poisson kernel. We first note that it is a kernel
of type 2 with respect to the distance d, since T'A((0,%),(0,2)) is a kernel of type 1 with
respect to same distance, as proved in Remark 3.15.

In analogy with (2.26) we call
Ri(2,9) = A(P4(#.9) - Paz(@.9)).
By Theorem 1.3, fA — T'a2 is a kernel of type 5/2, so that R; is a kernel of type 1/2
with respect to the distance d. As in (2.27) we now call

o0

O(,9) ==Y (Er,) (R1)(&,9).

j=0
We will now prove an uniform estimate for (Eg,)?(R1), arguing as in Lemma 3.11.

Remark 5.1. We prove by induction that

i o I ('%739)
E jR % 1 <C]AA—-
(B0 1 (0.3) < O 30T

The estimate for j = 0 is a consequence of the fact that Ry is a kernel of type 1/2. Let us
assume that estimate (5.3) holds for j —1 € N. Using the expression of Er, we have

(Ery YR (#.9)] < O /

(5.3)

R'n—l
<o | Do) D0 o Ta@0)
T Jenen d32(2,2) dG-G-D)2(2,9) T dG-02(4, )]

by the properties of the fundamental solution.
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We deduce that the series uniformly converges on any bounded open set Vj and it is a
INGE))
d3/2(i,9)
which ensures that T'a((0, Z), (0,9)) is a kernel of type 1, we deduce that

kernel of the same type as

, i.e. it is of type 1/2. From here and Remark 3.15,

/ Ta((0,2), (0,2))®(2,4)d2 is of type 3/2 with respect to the distance d
Rnflmvo (54)

By (®(2,7)) is of type 5/2 with respect to the same distance,
A2

where Ep ) denotes the operator with kernel I A2, and we have already noted that it is a
A

kernel of type 2, and applied to ® provides a kernel of type 5/2. Again, in analogy with

(2.25) we can write 'y —I'a2 = EfAQCD. Hence, the fundamental solution of the operator

A can be represented as

CA(@,9) = Tac(@,9) + By, ®(2,9), (5.5)
for &,9 € Vo NR™ L,

Let us now prove Theorem 1.2 with

Ra@) = [ [ Ta((0.0).0.8)8((0.5). 0.2)Ag()did:

and

K:C*0DNnVy) = CODNV,y), K=K +R. (5.6)

Proof of Theorem 1.2. Since we are proving a local property, it is not restrictive that
the boundary datum g belongs to C§°(0D N Vp). Since I'a is the fundamental solution of
A, then the function u = P(g)(z) satisfies Au = 0in V' N D. Hence by (5.5), we have

P0)O.3) = [ (Panldd) + By, (0(6.9))) Aati)ai -

O

Once proved the existence of a Poisson kernel, the proof of Schauder estimate is based
on properties of singular integrals. We follow here the same ideas as in [34] and we prove
that the operator P is bounded. Since it can be represented as in (1.10) we will start with
the properties of K.

Let us first note that both K7 and R can be extended to operators with values in
C(DNV) setting

Ki(9)(y) = /MW Ta(y, (0,2)Ag(2)dz.

RO = [ [ Tal(0.5)8((0.5).0.2) Ag(2) sz
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As a consequence K = Kj + R will be considered as an operator acting between the
following sets

K :C*0DNVy) = C(DN V).
Remark 5.2. Let us explicitly note that the spaces C* associated with the vector fields
X; defined in (4.3) are equivalent to the spaces C™* associated with the vector fields

Yl = a:rzla
Yi =0+ D deg()>deg(i) @i (01 + w(2), 8)0py 0 =1,-- ,n

since these vectors are linear combinations of the previous ones.

(5.7)

Lemma 5.3. Let D = {(z1,%) € RxR"! : 21 > 0} be a half space with non characteristic
boundary. Then for every V. CC Vy there is a constant Ci such that for every g €
C22(0D N V)

1K @llcteony) < Crllgllgnap (5.5)
In addition there is a constant Cy such that if g € C§°(0D N'Vy), then

i d(% supp(g))
|B(Z,d(2,supp(g)))|

Proof. Clearly T'a((0, 2),(0,7)) is a kernel of type 2 with respect to the distance d in the
sense of Definition 4.1. Because of inequality (3.28) we deduce that there are constants
C1, Cy such that

K(g) € {gp (0, 2)] < Oy Vzs.t. d(2,supp(g)) > 2diam(supp(g))} .

~ ~

d2,9) <Ta((0,2),(0,9)) <C d(2,9)

Clﬁ 2T A A
|B(2,d(2,9))] |B(2,d(2,9))]

(5.9)

so that T'A((0,2),(0,7)) is a kernel of type 1 with respect to the distance d induced on
0D, while the first derivatives of T'a((0, 2), (0, 7)) are singular integrals. As a consequence
we obtain (see for example [42])

1Ees (@l < Cllellcam: (5.10)
for every ¢ € C*(dD N V), where Er, denotes the operator with kernel Ta(z, (0,7)).
Therefore K1 = Er, o A satisfies
1K1 (@) lonepov) < CHAGl @ < Clldllczaopo
Since ® is a kernel of type 1/2, its associated operator Eg satisfies
1E6(Ag)l| sz < ClAdlsenr < Claleseoomn: (311
It follows that

IR(9)llcre(pavy = I1Ers Eo(Ag) | craprvy < 1 Ba(Ag)llcoprvy < 191l 2.0 (aprvR)

In particular (5.8) directly follows. Also the decay property of K immediately follows,
since

d(%,9) = d(Z,supp g)
for all § € supp g and for all Z such that ci(é’, supp g) > 2 diam(supp g). O
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Arguing as in Remark 5.2 we have the following

Remark 5.4. There are C°° functions such that the Laplace type operator A can be
expressed as

A=Y+ (Yi— ZwV1)? + Y1+ Y bi(Yi — ZwYr) =

=2 =2
m m m
= V24 3 (Vi Zuoi2 4 (b = Y Ziw) Vi + > biYi =
=2 =2 =2

1+i2w Y1+ZY2 ZZwYYH—YlY)
=2 =2 =2

(61 iZw+ZY Zle)Zw>Y1 Zby (5.12)

=2 =2

In particular the coefficient 1 + ZiZQ(Ziw) of Y is smooth and bounded from above and
below by positive constants.

Let us now conclude the proof of the boundedness of P.

Theorem 5.5. Let V', Vy be open sets in R™, with V CC Vj, let g € C’2’a(8Dﬂ%). Then
there is a constant C1 such that

1P(9)llc2e vy < Cl”g”éz,a(aDmVO)- (5.13)

Proof. Let us fix V; such that V' CC V; CC V. Thanks to the previous lemma we only
have to prove that the operator

)

K:CY(DnV . 0,2)] < C— CZ( A,Supp(g))
wr Om{w 0= 5 3G supplo))]

V2 s.t. d(2.supp(g)) > 2diam(supp(g))} — C?Y(DNV)

defined as
Rip)e) = [ Tale.(0.9)p(0.)d:
satisfies
H—f{(@)HC?»a(DmV) <|lelleta(pavy)- (5.14)
It is standard to recognize that for every i,j =2,--- ,m, EYJIN( it is bounded as operator

with values in C*(D N V) (see for example [30], [42]).

Hence we have to estimate the normal derivative. Let us begin with the derivatives
Y;YiK with ¢ = 2,--- ,m. Let ¢ € C§°(V}) such that ¢» = 1 in a neighborhood of V' and



38 ANNALISA BALDI, GIOVANNA CITTI, GIOVANNI CUPINI

let z € V and p € CH*(DNVy). By Proposition 4.8 there exist kernels (I'y ; (2, ¥))i=1,. m,
Si(z,y) of type 2 such that

n—1

ARW@) = [ 07 Taalen(0.2)p(0.50d2 + [ Si(a,(0.2))p(0. 22
=1
== [ 9T (0.9)p(0.2)i2
= [ T 0,200 + [ 1w (0.2))e(0. 2
Rr=155

Rn—1

Let us estimate the first term, using the fact that 07 = 92,
[ o 0.9)p(0. 5002
Rn—
— [ <V 0.2) > $0.2)0(0, )iz
R»—1NV;
—/) <, VT, (0,2)) > (0, 2)(1 — (0, 2))d2
Rn—l
= —/ < VIa(z, 2), V(ey)(z) > dz
vinD

—/ < 1, VT4, (0,2)) > (0, 2)(1 — (0, 2))d2.
RA-1\V;

If € V the last integral contains a C'*° kernel since ¢ = 1, on a closed set which contains
V' in the interior. Thus, applying standard singular integral theory to all terms in the
expression of 91K we obtain

01K (#)[lcre(prvy < Cllellete(pavy)-
Analogously for every ¢ = 2,--- ;m we have
101YiK ()|l ce(pavy < Cllelletepave)-

Finally we note that AK (x,(0,9)) = 0, consequently the estimate of lef( follows by
difference from the estimates of all the other second derivatives and the expression (5.12).

Assertion (5.14) is proved, so that the thesis follows. O

From here it immediately follows:

Corollary 5.6. Assume that the same assumptions as in Theorem 5.5 are satisfied. If
V cc Vo, k€{0,1}, f € CF*(Vp), and

G(f) = Era(f) = P((Era(f)joprmy);

there exists a constant C such that

1G(Nllczaqvy < Cllfllceqy  and |GV )llgrrrany < Cllf llorey)- (5.15)
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Proof. The first inequality follows from properties of singular integrals (see [47]) and the
boundedness of P established in Theorem 5.5. The last inequality follows applying Lemma
4.9. Indeed there exists a kernel S of type 1 such that

Er (V) = Es(f).
Consequently
G(Vf)=Es(f) — P(Es(f))apnvs)s

and the assertion follows at once. O

Let D = {(x1,2) € R x R*! : 2; > 0} be a half space as above and consider the
problem

{ Au=f in D, (5.16)

w=g¢g ondD.
From Theorem 1.2 next theorem easily follows .
Theorem 5.7. If f € C§°(Wy) and g € C3°(0D NVy) and

G(f) = EFA (f) - P(EFA (f))wDﬂVo)’
then the function u = G(f) + P(g) solves the problem
Au=finD, w=gondDNV.

As a consequence of the previous theorem, we immediately get an approximate repre-
sentation formula for a smooth function w.

Lemma 5.8. Let V. CC Vy and let u € Cg°(V'). Let us call Au = f and g = wjapny,, and
let p € C(W), p =1 o0nV. Then

u=pv+ Er, <f(1—cp)+vaiXi<p) — Es(vVep), (5.17)
i=1
where v = G(f) + P(g) and b; are the coefficients of the operator A in (1.2).

Proof. Setting v = G(Au) + P(ulapnv,) we have by Theorem 5.7

Alu—opv) = f(l—¢)+VoVe+vAp  inVpnND,
u— QU =0 ond(VoND).

where we have extended u — ¢v on the whole space with 0. We deduce by (1.2)
u= v+ Er, (f(l — )+ VoVe + vAsO) =
— v+ Er, (f(1 —p) vy bin-cp) — Br, (V(uVy)).

Now applying Lemma 4.9 we obtain
u=¢v+ Er, (f(l — )+ vaiXigo) — Eg(vVep).
i
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5.1. Schauder estimates. We can now complete the proof of the Schauder estimates,
stated in the introduction:

Proof of Theorem 1.1. Let u be a solution of Au = f and ujpp = g. We will prove the a
priori estimates for w under the assumption that f € C*(D), g € C*°(9D) and we will
obtain the thesis for f € C%(D), g € C’Q’a(ﬁD) by a density argument. For smooth data,
by [37] there exists a unique solution u € C*°(D), smooth up to the boundary at non
characteristic points.

We first note that
[ulloo < ll9lloo

via the maximum principle. In addition, extending g in the interior of D to a function of
class C*® such that |g[|c2.«(py < HgHCQ,a(aD), we see that v — g is a solution of A(u—g) =

f—Agin D and u—g =0 on 9D, hence the Moser iteration technique (see [41]) ensures
that there exists a value 3 such that u — g € C?(D), and

lullos(py < C(IIfllcapy + I9lle2.a@p))- (5.18)

We can choose a non characteristic point, say 0 € 9D, and denote V; a neighborhood of
0 such that the subriemannian normal

v(s) # 0 for every s € 9D N V.

Then we can perform the change of variable described in Section 4.1 on a set V CC V4.
Through this change of variables the vector fields X; can be represented as in (4.3)

dE(X1) = 0p,, dE(X:) =0n + Y aij(z1+ w(@), )0, + Xiw(2)0y,,
deg(j)>deg (i)

so that the results of the previous section apply. Let ¢ € C§°(V), let Vi be an open set
such that V .cC V1, ¢1 € C§°(V1) and identically 1 on V. Define

vi= G(A(pu) + P((pu)pprv) = G(fio + VeVu+ Agu) + P((gu)ppoy).  (5.19)
By (5.17) we get
ou = v+ Er, (f(l — 1) — v Z biXigc)l) + Es(vVq). (5.20)
Then, from previous expressions and using (5.15), for nested open sets V. CC Vi3 CC
Vo cC Vi CC Vp and for every v < o we get that
leullers(vnpy < Cllvlleryvanpy + 1 flleevanp)) (5.21)

< C(HUHCW(VWD) + HfHCoc(D) + Hg”éz,a(ap))'

In particular, using this inequality and the uniform estimate of ||oul|cs(py provided by
(5.18) we get for V.CcC Vy CcC V3

leullcaann) < Cllgullerspany < CUIflcaoy + 19l eza@n))-
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Having an estimate of ||¢u||ce we apply again (5.18) with v = « and we have for V' .CC
Vs CCVy

leullcraqznpy < C(I1fllcapy + HgHéZa(aD))‘

Finally, we iterate the same argument applying again (5.15) to (5.19) and (5.20). Therefore
we get

leullczawnp) < Cleulorawsnny + 1flcaoy + 9l g2a@py) <

< CIflow ) + 19l c2aom))-
This concludes the proof. O

6. AN EXAMPLE

To clarify our approach in finding a Poisson kernel, we apply it to the special case of
the Heisenberg group H".

6.1. The Heisenberg group. The Heisenberg group H", n > 2, can be identified with
R?"*1 with the choice of vector fields

Xl :8zla X2 = 8$2 + wlamgnJrl

1 1
X; =0y, — 5xi+lax2n+1 ifiisodd X; =0y + 5962-_1612”“ if 7 is even

with ¢ € {3,---,2n}. Note that, as in Section 2.1, we are using exponential canonical
coordinates of second type around a fixed point, so that the vector fields exhibit the
structure (2.3). They satisfy the condition

[Xi7 XZ+1] == ax2n+1 = X2n+1

if 7 is odd, so that the Hormander condition is satisfied. The expression of the gauge norm
on the space H", according to definition (2.5), is

2n
]| = Z || + |want1 |2,
i=1

The homogeneous dimension of the space according to definition (2.7) is @ = 2n + 2, so
that there exist constants C7, Cy such that

Crt? < |B(z,r)| < Cyr?nt? Vr > 0.

In order to provide an example, we consider here the heat operator

2n
L=29 — ZX?,
=1

where we have discarded the first order terms present in (2.18). The fundamental solution
of the heat kernel has been found by many authors (see [28], [2]). Due to invariance with
respect to the group law, we will consider the expression of the fundamental solution with
pole in (0,0). In particular, using (2.22), the estimate of the distance, and the estimate
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of the measure of the ball we find the following Gaussian estimate of the fundamental
solution. There exist constants Cy, C; > 0 such that for each x € H™ and ¢ > 0 one has

,%(Z?ﬁl |w¢\2+|zzn+1|) efc%t (Z?gl |$¢\2+|zzn+1|)
§ F((ZL‘, t)) (Oa 0)) S OO

c1E (6.1)

tn+1 tn+1

We refer to [28] for an asymptotic pointwise estimate of the heat kernel in a neighborhood
of the pole.

6.2. Restriction of the heat kernel to a non characteristc plane. As in (3.1), we
consider the manifold

M={zeH" : z; =0}.
The plane is non characteristic, and the vector field X; = 0y coincides with the direction
normal to the plane. The generators of the first layer of the tangent space of the plane can

be represented, according to (3.2), as the restrictions of the operators X; to the tangent
plane to M. In this way we obtain the vector fields

. A 1 N 1
Xo = 0py, X; =0y, — §$i+1ax2n+l ifiisodd X;=0, + 5:@-,1812”“ if 7 is even,

i > 3. Note that Xy commutes with all the other vector fields, while the vector fields
(Xi)i:?,,---,Qn generate an Heisenberg algebra h”~!. As a consequence M coincides with
H"~! x R. In particular the assumption (1.5) is satisfied, and our result can be applied.
The homogeneous dimension of the plane, defined in (3.3), becomes Q =Q-1=2n+1,
and, denoting by & = (x2, -+ ,T2,+1) a point of the plane, the induced norm becomes

2n
12 = il + [w2nia] 2.
=2

The tangential heat operator is represented as
2n
L=0,-> X7,
i=2

and it has a non negative fundamental solutions I'. From the Gaussian estimates of the
fundamental solution we obtain the existence of constants Cy and C7 such that

e_% ( >, |xi\2+|9ﬂ2n+1|) e_C%t (Z?EQ |$i\2+|12n+1|>
< F(('@?t)v (Oa 0)) < C’0

Cyt (6.2)

n+1/2 n+1/2

Putting together estimates (6.1) and (6.2) we obtain a relation between of the restriction
of I' to the plane M and I:

Remark 6.1. There exist constants Cy,Cy > 0 such that for each & € M and t > 0 one
has

D@1, 0.0) _ 0.0, (0.0) < ¢ DED0.0)

Co t1/2 - t1/2

(6.3)
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Theorem 3.2 can be considered a refined version of this inequality, with a precise esti-
mate of the difference X
I'((#,1), (0,0))

r'((0,#,t),(0,0)) — /2

6.3. Restriction of the Laplace fundamental solution to a non characteristc
plane. The next step in our proof is to integrate in time, and obtain from Theorem 3.2
an estimate of the restriction to the plane of the fundamental solution of the Laplace
equation, contained in Theorem 1.3.

The Laplace operator on the whole space H" and the Laplacian on the plane can be
represented respectively as

2n 2n
A= ZXf and A = ZXZQ,
=1 1=2

As in the whole paper, we again denote their fundamental solutions by I'n and I A - In
particular I'A satisfies the estimate

!
<212:1 |zi|% + |962n+1|)
(see (1.3)). Restricting on the plane we obtain

-1 -1
C’()A — CO
Jz)e-t 129>

Co

Q-2
(52 i + )

) S FA(:I;:O) S

G _ G
[2]972 2@

< FA((Oa:i)a (070)) <

We recall from Section 2 that the convolution of a kernel of type « with a kernel of type
B provides a kernel of type o + 8. More precisely, for every «, § there exists a constant
(1 such that

1 1 1
/ N A 1A dQSCHAAi
M (|2 =gl %= 1911977 12|95

Denoting, as in equation (5.2),

Pp2(z,9) = /M T'ax, (0, £))Ta((0, 2), (0, 7))d

we immediately obtain that

. 1
FAQ((OM’%)J)) <C N
|12)1%-2

< C104(#,0) .

Theorem 1.3 provides a precise version of this estimate, proving that

Pa(0.9) = Daa(0,8),9) + O (d2.9)) " P4.9)). (6.4
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6.4. The Poisson Kernel. As clarified in the description before Theorem 1.2 and proved
in Section 5, equation (6.4) is the main step to prove that a Poisson kernel can be defined
as in (1.10):

A~

Pg)(x) = /M P ps (2, 5)Ag(§)di. (6.5)

Indeed, by the properties of the fundamental solution, AP(g)(x) = 0 for every smooth
function g defined on the plane. Moreover, equality (6.4) ensures that the integral operator
associated to I'a2((0,2), ) is the inverse operator of the tangential Laplacian A. Then

Pg(ov*f) - g(,@)
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