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Abstract. The aim of this paper is to state a nonautonomous chain rule in BV

with Lipschitz dependence, i.e., a formula for the distributional derivative of the

composite function v(x) = B(x, u(x)), where u : RN → R is a scalar function

of bounded variation, B(·, t) has bounded variation and B(x, ·) is only a Lips-

chitz continuous function. We present a survey of recent developments on the

nonautonomous chain rules in BV. Formulas of this type are an useful tool es-

pecially in view to applications to lower semicontinuity for integral functional

(see [12, 14, 15, 16]) and to the conservation laws with discontinuous flux (see

[8, 10, 11]).
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1. Introduction

In this paper we recall some recent theorems on the nonautonomous chain rule
formulas in BV and we prove that, in the scalar case, the nonautonomous chain rule
formula for the distributional derivative of the composite function v(x) = B(x, u(x))
with B(·, t) and u of bounded variation, proved in [4], holds also by assuming a
Lipschitz continuity of B(x, ·), instead of a C1 dependence.

In order to illustrate our formula, we begin with the classical autonomous case
B(x, t) = B(t). In the pioneering [25] Vol’pert (see also [26]), in view of applications
in the study of quasilinear hyperbolic equations, established a (autonomous) chain
rule formula for distributional derivatives of the composite function v(x) = B(u(x)),
where u : Ω→ R has bounded variation in the open subset Ω of RN and B : R→ R
is continuously differentiable. He proved that v has bounded variation and its distri-
butional derivative Dv (which is a Radon measure on Ω) admits an explicit repre-
sentation in terms of the classical derivative ∂tB and of the distributional derivative
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Du . More precisely, the following equality holds:

Dv = (∂tB)(u)∇u LN

+ (∂tB)(ũ)Dcu+ [B(u+)−B(u−)] νuHN−1 Ju ,
(1.1)

in the sense of measures, where

Du = ∇u LN +Dcu+ νuHN−1 Ju

is the decomposition of Du in its absolutely continuous part ∇u with respect to
the Lebesgue measure LN , its Cantor part Dcu and its jumping part, which is
represented by the restriction of the (N − 1)-dimensional Hausdorff measure HN−1

to the jump set Ju . Here, νu denotes the measure theoretical unit normal to Ju, ũ
is the approximate limit and u+, u− are the approximate limits from both sides of
Ju .

The identity (1.1) holds also in the vectorial case (see Theorem 3.96 in [6]),
namely if u : RN → Rd has bounded variation and B : Rd → R is continuously
differentiable.

When B is only a Lipschitz continuous function, this vectorial chain rule is false
and a general form of the formula was proved by Ambrosio and Dal Maso in [5] (see
also [19]). See Theorem 3.99 in [6] for the scalar case with Lipschitz dependence of
B.

In the last years, analogous chain rule formulas are obtained, by admitting an
explicit dependence on the space variable x , in view to applications to semicontinuity
results for integral convex nonautonomous functionals (see [1, 2, 3, 12, 14, 15, 16])
and to conservation laws with discontinuous flux (see [8, 10, 11]). These formulas
describe the distributional derivative of the composite function v(x) = B(x, u(x)),
where B(x, ·) is continuously differentiable and, for every t ∈ Rd, B(·, t) and u are
W 1,1 and BV functions.

These formulas admit another derivation term due to the presence of the explicit
dependence on x and in the case of u and B regular functions, the following pointwise
identity holds:

∇v(x) = (∇xB)(x, u(x)) + (∂tB)(x, u(x)) · ∇u(x) , x ∈ RN ,

where all the derivatives are the classical ones.
The first formula of this type is established in [16] for functions u∈W 1,1(RN ;Rd)

by assuming that, for every t ∈ Rd, B(·, t) is an L1 function whose distributional
divergence belongs to L1 (in particular it holds if B(·, t) ∈W 1,1(RN ;Rd) ).

The case of a scalar function u ∈ BV (RN ) is studied in the papers [14, 15],
where it is considered the particular case

B(x, t) =

∫ t

0
b(x, s)ds . (1.2)

In [14] the authors have established the validity of the chain rule by requiring a
W 1,1 dependence with respect to the variable x, while in [15] it is assumed only a
BV dependence with respect to the variable x (see Theorem 3.1 below) . Moreover
in [15] the formula is proved also by assuming that, for every t ∈ R, b(·, t) is an
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L1 function whose distributional divergence is a Radon measure with bounded total
variation and u ∈ W 1,1(RN ) (the extension of this result to the case u ∈ BV (RN )
is studied in [9]) . We remark that in these results b is an L∞ function, hence its
integral B(x, ·) is a Lipschitz function.

The main difficulty of these results consists in giving sense to the different terms
of the formula. Notice that the new term of derivation with respect to x needs a
particular attention.

More recently, a very general formula is proven in [4] (see also [8] for N = 1)
for vector functions u ∈ BV (RN ,Rd). In the particular scalar case d = 1 the setting
is the following (see Theorem 4.1 below). The first assumption is a C1 dependence
of B(x, ·) with an uniform bound on (∂tB)(x, t). Concerning the x-derivative, it is
required the existence of a Radon measure σ bounding from above all measures
|DxB(·, t)|, uniformly with respect to t ∈ R (see assumption (H4) below). With
these two bounds it is proved that for any u ∈ BVloc the composite function v(x) =
B(x, u(x)) belongs to BVloc and it is shown the existence of a countably HN−1-
rectifiable set N , independent of u and containing the jump set of B(·, t) for every
t ∈ R, such that the jump set of v is contained in N ∪ Ju. On the other hand,
in order to prove the validity of the chain rule formula it is required that B(x, t)
satisfies other structural assumptions related to the uniform continuous dependence

of the classical derivative ∂tB and of the diffuse part D̃xB of the measure DxB with
respect to t (see assumptions (H2) and (H3) below).

The aim of this paper is to establish a formula of this type with Lipschitz depen-
dence with respect to the second variable. Since the problem is local, for simplicity
we assume Ω = RN .

We will obtain the nonautonomous chain rule formula in BV for the distri-
butional derivative of the composite function v(x) = B(x, u(x)), where B(·, t) has
bounded variation and B(x, ·) is Lipschitz continuous and differentiable in R \M0

(M0 independent of x with L1(M0) = 0). In the spirit of [4] we require the exis-
tence of a Radon measure σ bounding from above all measures |DxB(·, t)|, uniformly
with respect to t ∈ R. We will prove for any u ∈ BVloc the composite function
v(x) = B(x, u(x)) belongs to BVloc and there exists of a countably HN−1-rectifiable
set N , independent of t and containing the jump set of B(·, t) for every t ∈ R, such
that the jump set of v is contained in N ∪Ju. Moreover the following chain rule holds
(see Theorem 7.2 below for the precise statement) for the distributional derivative
of v:

Dv(x) = DxB(x, t)|t=u(x) + (∂tB)(x, u) · D̃u

+ [B∗(x, u+)−B∗(x, u−)]νuHN−1 N ∪ Ju,
(1.3)

in the sense of measure, where the measure DxB(x, t), depending on the parameter
t, is computed in t = u(x) in a suitable sense (see Remark 7.4).

The proof uses a regularization argument. We regularize B(x, t) w.r.t. t and we
use the chain rule proven in [4]. We need to study for every Borel set E ⊂ RN the
map t 7→ DxB(·, t)(E) and we will prove that it is Lipschitz continuous, (∂tB)(·, t)
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is a BV function and for L1-a.e. t ∈ R

∂t(DxB(·, t)(E)) = Dx(∂tB)(·, t)(E) .

The last part of the proof consists in analyzing carefully the convergence of all the
terms in the formula written for the regularized function, those involving the various
parts of the derivative of u and the one containing the derivatives of B(x, t) with
respect to x.

Let us conclude this Introduction by presenting the structure of the paper. In
Section 2 below we list some definitions and basic fact of the BV functions. In Section
3 and 4 we recall the formulas proven in [15, 4]. Section 5 contains the setting and
Section 6 some preliminary results in order to establish the main result (Theorem
7.2 in Section 7). Eventually Section 8 contains its proof.

2. Definitions and preliminaries

In this section we recall some preliminary results and basic definitions (see [6, 17,
18, 27]).

Let E be a measurable subset of RN . The density D(E;x) of E at a point
x ∈ RN is defined by

D(E;x) = lim
%→0

LN (E ∩Bρ(x))

ωNρN
,

where ωN is the measure of the unit ball, whenever this limit exists. Hereafter, Bρ(x)
denotes the ball centered at x with radius ρ. The essential boundary ∂ME of E is
the Borel set defined as

∂ME = RN \ {x ∈ RN : D(E;x) = 0 or D(E;x) = 1} .

We say that the set E is of finite perimeter in an open set Ω if HN−1(∂ME∩Ω) <∞.
Notice also that if Ω ⊂ RN is an open set, the quantity HN−1(∂ME∩Ω) agrees with
the classical perimeter of E in Ω (see [6, Theorem 3.61]).

Let Ω ⊆ RN be an open set and let u : Ω → R be a measurable function. The
upper and lower approximate limits of u at a point x ∈ Ω are defined as

u+(x)=inf{t ∈ R : D({u>t};x)= 0},
u−(x)=sup{t ∈ R : D({u<t};x)= 0},

respectively. The quantities u+(x), u−(x) are well defined (possibly equal to ±∞)
at every x ∈ Ω, and u−(x) ≤ u+(x). The functions u+, u− : Ω→ [−∞,∞] are Borel
measurable.

We say that u is approximately continuous at a point x ∈ Ω if u+(x) = u−(x) ∈
R. In this case, we set ũ(x) = u+(x) = u−(x) and call ũ(x) the approximate limit of
u at x. The set of all points in Ω where u is approximately continuous is a Borel set
which will be denoted by Cu and called the set of approximate continuity of u. The
set Su = Ω \ Cu will be referred to as the set of approximate discontinuity of u.
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Finally, by u∗ we denote the precise representative of u which is defined by

u∗(x) =
u+(x) + u−(x)

2

if u+(x), u−(x) ∈ R, u∗(x) = 0 otherwise.

A locally integrable function u is said to be approximately differentiable at a
point x ∈ Cu if there exists ∇u(x) ∈ RN such that

lim
ρ→0

1

ρN+1

∫
Bρ(x)

|u(y)− ũ(x)− 〈∇u(x), y − x〉| dy = 0 .

Here, 〈·, ·〉 stands for scalar product in RN . The vector ∇u(x) is called the approx-
imate differential of u at x. The set of all points in Cu where u is approximately
differentiable is denoted by Du and is called the set of approximate differentiability
of u. It can be easily verified that Du is a Borel set and that ∇u : Du → RN is a
Borel function.

A function u ∈ L1(Ω) is said to be of bounded variation if its distributional
gradient Du is an RN -valued Radon measure in Ω and the total variation |Du| of
Du is finite in Ω. The space of all functions of bounded variation in Ω is denoted by
BV (Ω), while the notation BVloc(Ω) will be reserved for the space of those functions
u ∈ L1

loc(Ω) such that u ∈ BV (Ω′) for every open set Ω′ ⊂⊂ Ω.

Let u ∈ BV (Ω). Then it can be proved that

lim
ρ→0
−
∫
Bρ(x)

|u(y)− ũ(x)| dy = 0 for HN−1-a.e. x ∈ Cu

and that u is approximately differentiable for LN -a.e. x. Moreover, the functions u−

and u+ are finite HN−1-a.e. and for HN−1-a.e. x ∈ Su there exists a unit vector
νu(x) such that

lim
ρ→0
−
∫
B+
ρ (x;νu(x))

|u(y)− u+(x)| dy = 0,

lim
ρ→0
−
∫
B−ρ (x;νu(x))

|u(y)− u−(x)| dy = 0,

(2.1)

where B+
ρ (x; νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}, and B−% (x; νu(x)) is defined

analogously. The set of all points in Su where the equalities (2.1) are satisfied is
called the jump set of u and is denoted by Ju.

If u is a BV function, we denote by Dau the absolutely continuous part of Du with
respect to Lebesgue measure. The singular part, denoted by Dsu, is split into two
more parts, the jump part Dju and the Cantor part Dcu, defined by

Dju = Dsu Ju, Dcu = Dsu−Dju .

Finally, we denote by D̃u the diffuse part of Du, defined by

D̃u = Dau+Dcu .

We recall the following lemma which contains some useful properties of the
characteristic functions of the level sets of a BV function u (see Lemma 2.2 in [15]).
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Lemma 2.1. Let u : RN → R a measurable function. Then, for all t ∈ R and x ∈ RN

u−(x) > t =⇒ χ∗{u>t}(x) = 1, u+(x) < t =⇒ χ∗{u>t}(x) = 0 .

Moreover, if u ∈ BV (RN ), for L1-a.e. t ∈ R there exists a Borel set Nt ⊂ RN , with
HN−1(Nt) = 0, such that for any x ∈ RN \Nt the following relations hold:

u−(x) > t ⇐⇒ χ∗{u>t}(x) = 1, u+(x) < t ⇐⇒ χ∗{u>t}(x) = 0,

u−(x) ≤ t ≤ u+(x) ⇐⇒ χ∗{u>t}(x) =
1

2
.

Now, we recall the coarea formula for BV functions.

Theorem 2.2 (Coarea formula). Let Ω be an open subset of RN and let u ∈ BV (Ω).
Assume that g : Ω→ [0,+∞] is a Borel function. Then∫

Ω
g d|Du| =

∫ +∞

−∞
dt

∫
∂M{u>t}∩Ω

g dHN−1 . (2.2)

An alternative version of formula (2.2) states that∫
Ω
g d|Du| =

∫ +∞

−∞
dt

∫
{u−≤t≤u+}

g dHN−1 (2.3)

(see [18, Theorem 4.5.9]).

3. The chain rule proven in [15]

In the paper [15] the authors deal with a general chain rule formula in BV (RN ) for
functions whose dependence in x is BV . More precisely, the following theorem is

proved, for particular B(x, t) of the type
∫ t

0 b(x, s)ds.

Theorem 3.1. Let b : RN × R→ R be a Borel function. Assume that

(α) the function b(x, t) is locally bounded;
(β) for every t ∈ R the function b(·, t) ∈ BV (RN );
(γ) for any compact set H ⊂ R,∫

H
|Dxb(·, t)|(RN )dt < +∞ ,

where Dxb(·, t) is the distributional gradient of the map x 7→ b(x, t).

Then for every u ∈ BV (RN ) ∩ L∞loc(RN ), the function v : RN → R, defined by

v(x) :=

∫ u(x)

0
b(x, t) dt ,
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belongs to BVloc(RN ) and for any φ ∈ C1
0 (RN ) we have∫

RN
∇φ(x)v(x) dx (3.1)

= −
∫ +∞

−∞
dt

∫
RN

sgn(t)χ∗Ωu,t(x)φ(x) dDxb(x, t)−
∫
RN
φ(x)b(x, u(x))∇u(x) dx

−
∫
RN

φ(x)̃b(x, ũ(x)) dDcu−
∫
Ju

φ(x)

[∫ u+(x)

u−(x)
b∗(x, t) dt

]
νu(x) dHN−1,

where Ju is the jump set of u, Ωu,t = {x ∈ RN : t belongs to the segment of endpoints
0 and u(x)} and χ∗Ωu,t and b∗(·, t) are, respectively, the precise representatives of χΩu,t

and b(·, t).

4. The formula proven in [4]

In this section we recall the following chain rule for scalar BV functions obtained
as particular case of the general formula proven in [4] for vector valued functions.

Theorem 4.1 (Theorem 3.2 in [4]). Let B : RN × R→ R be satisfying:

(a) x 7→ B(x, t) belongs to BVloc(RN ) for all t ∈ R;
(b) t 7→ B(x, t) is continuously differentiable in R for almost every x ∈ RN ;

(H1) for some constant M , |(∂tB)(x, t)| ≤ C for all x ∈ RN and t ∈ R;
(H2) for any compact set H ⊂ R there exists a modulus of continuity ω̃H independent

of x such that

|(∂tB)(x, t)− (∂tB)(x,w)| ≤ ω̃H(|t− w|)

for all t, w ∈ H and x ∈ RN ;
(H3) for any compact set H ⊂ R there exist a positive Radon measure λH and a

modulus of continuity ωH such that

|D̃xB(·, t)(A)− D̃xB(·, w)(A)| ≤ ωH(|t− w|)λH(A)

for all t, w ∈ H and A ⊂ RN Borel;
(H4) the measure

σ :=
∨
t∈R
|DxB(·, t)|

is a Radon measure.

Then for every u ∈ BVloc(RN )∩L∞loc(RN ) the composite function v(x) := B(x, u(x))
belongs to BVloc(Rn) and the following chain rule holds:

(diffuse) |Dv| � σ+ |Du| and, for any Radon measure µ such that σ+ |Du| << µ,
it holds

dD̃v

dµ
=
dD̃xB(·, ũ(x))

dµ
+ (∂tB̃)(x, ũ(x))

dD̃u

dµ
µ-a.e. in RN .
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(jump) Jv ⊂ N ∪ Ju and, denoting by u±(x) and B±(x, t) the one-sided traces of
u and B(·, t) induced by a suitable orientation of N ∪ Ju, it holds

Djv =
(
B+(x, u+(x))−B−(x, u−(x)

)
νN∪JuHN−1 (N ∪ Ju)

in the sense of measures.

Moreover for a.e. x the map y 7→ B(y, u(x)) is approximately differentiable at x and

∇v(x) = ∇xB(x, u(x)) + (∂tB)(x, u(x))∇u(x) LN -a.e. in RN . (4.1)

Here the expression

dD̃xB(·, ũ(x))

dµ

means the pointwise density of the measure D̃xB(·, t) with respect to µ, computed
choosing t = ũ(x) (notice that the composition is Borel measurable thanks to the
Scorza-Dragoni Theorem and Lemma 3.9 in [4]).

Remark 4.2. Let us note that, since σ << µ, it holds

dD̃v

dµ
=
dD̃xB(·, ũ(x))

dσ

dσ

dµ
+ (∂tB̃)(x, ũ(x))

dD̃u

dµ
µ-a.e. in Rn.

Then we have

D̃v =
dD̃xB(·, ũ(x))

dσ
σ + (∂tB̃)(x, ũ(x)) D̃u

= ∇xB(x, u(x))LN + (∂tB)(x, u(x))∇u(x)LN

+
dDc

xB(·, ũ(x))

dσ
σ + (∂tB̃)(x, ũ(x))Dcu ,

in the sense of measures.

5. Setting

We will obtain a stronger result than the previous one in the special case of scalar
functions. We will weak assumption (b), by requiring only the Lipschitz continuity
of B(x, ·) instead of the C1 dependence and we will drop the continuity assumptions
(H2).

Let B : RN×R→ R be a locally bounded Borel function such that B(x, 0) = 0.
We consider the following assumptions:

(I) For all x ∈ RN the function B (x, ·) is Lipschitz continuous, there exists a
Lebesgue negligible set M0 ⊂ R such that for all x ∈ RN the function B (x, ·)
is differentiable in R \M0 and there exists a constant C > 0 such that

|(∂tB)(x, t)| ≤ C, ∀x ∈ RN , t ∈ R \M0 .

(II) For every t ∈ R the function B(·, t) ∈ BVloc(RN ) .
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(III) The measure

σ :=
∨

t∈R\M0

|DxB(·, t)|

is a Radon measure, where
∨

denotes the least upper bound in the space of
nonnegative Borel measures.

(IV) For any compact set H ⊂ R there exist a positive Radon measure λH such that

|D̃xB(·, t)(A)− D̃xB(·, w)(A)| ≤ |t− w|λH(A)

for all t, w ∈ H and A ⊂ RN Borel.

Remark 5.1. As in Remark 3.5 in [4], since we will consider u ∈ L∞loc(RN ), condition
(III) can be replaced by the following local version:

(III)loc for every compact set H ⊂ R the measure

σH :=
∨
t∈H
|DxB(·, t)|

is a Radon measure.

By (III) we have that σ << HN−1. Let use define

N =
{
x ∈ RN : lim inf

r→0

σ(Br(x))

rN−1
> 0
}
.

In [4] it is proved that N is a HN−1-rectifiable set. This set is independent of t
and contains the jump set of the BV function B(·, t) for every t ∈ R. We omit the
dependence of N and σ on H in the local version. In the following, νN will always
denote an oriented normal vector field on N .

We will consider the following assumption:
(V) For every compact set K ⊆ RN we have HN−1(N ∩K) < +∞ .

Remark 5.2. By using (I), we have (see Prop. 4.2 in [4]) that there exists a set
N1 ⊂ RN with HN−1(N1) = 0 such that for all x ∈ RN \N1 and t ∈ R the following
limits exist

B±(x, t) = lim
r→0
−
∫
B±r (x)

B(y, t)dy

and the map t 7→ B±(x, t) is Lipschitz continuous. In particular

B+(x, t) = B−(x, t) HN−1-a.e. x ∈ RN \ N and for every t ∈ R.

In the same way, see [4, Section 3], for HN−1 almost every point of RN \ N and
every t ∈ R there exists the limit

B̃(x, t) = lim
r→0
−
∫
Br(x)

B(y, t) dy,

and the map t 7→ B̃(x, t) is Lipschitz continuous. Without loss of generality we shall

always assume that B(x, t) = B̃(x, t) for HN−1 almost every point of RN \ N and
every t ∈ R. For every t ∈ R let us denote by

B∗(·, t) :=
B+(·, t) +B−(·, t)

2
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the precise representative of the BV function x 7→ B(x, t) .

Remark 5.3. Under the previous assumptions we have

∀t ∈ R \M0 (∂tB)(·, t) ∈ BVloc(RN ) .

In fact, let h ∈ R, for any compact set H ⊂ R and t, t+ h ∈ H, the functions

Bh(x, t) =
B(x, t+ h)−B(x, t)

h

satisfy

|Bh(x, t)| ≤ C, |DxBh(·, t)| ≤ λH + CHN−1 N .

Remark 5.4. For every t ∈ R let

ψ(·, t) :=
d(D̃xB)

dσ
(·, t)

be the Radon-Nikodým derivative of the diffuse part D̃xB(·, t) of the measure
(DxB)(·, t) with respect to the measure σ, which is defined σ-a.e.. By Lemma 3.9 in
[4] and by (IV) there exists a Borel subset N0 of RN with σ(N0) = 0 such that the
following limit

lim
r↓0

D̃xB(·, t)(Br(x))

σ(Br(x))
=
dD̃xB(·, t)

dσ
(x)

exists for every x ∈ RN \ N0 and for every t ∈ R and this equality holds. Moreover,
for every x /∈ N0 and every t, t′ ∈ R we have

|ψ(x, t)− ψ(x, t′)| =

∣∣∣∣∣d[(D̃xB)(·, t)− (D̃xB)(·, t′)]
dσ

∣∣∣∣∣
=
d|(D̃xB)(·, t)− (D̃xB)(·, t′)|

dσ
≤ C|t− t′| .

(5.1)

In order to prove this fact, it is sufficient to fix a dense countable subset T of R
and for every t, t′ ∈ T to consider the sets Dt,t′ ⊆ RN , with σ(Dt,t′) = 0, such that
for every x /∈ Dt,t′ condition (5.1) holds. Hence, if we define N0 =

⋃
t,t′∈T Dt,t′ , we

have σ(N0) = 0 and by (IV) condition (5.1) holds for every x /∈ N0. By (5.1) for
every x /∈ N0 the function t 7→ ψ(x, t) is Lipschitz continuous. For every t ∈ R the
following decomposition formula holds

(DxB)(·, t) = ψ(x, t)σ +
[
B+(x, t)−B−(x, t)

]
νN HN−1 N ,

in the sense of measures.

Moreover, we have that the limit

lim
r↓0

Dc
xB(·, t)(Br(x))

σ(Br(x))
=
dDc

xB(·, t)
dσ

(x)

exists for every x ∈ RN \ N0 and for every t ∈ R and this equality holds, where
dDcxB(·,t)

dσ (x) is Radon-Nikodým derivative at x of the Cantor part of the measure
DxB(·, t) w.r.t. σ.
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On the other hand, by Proposition 4.4 of [4] there exists a Borel set N2 ⊂ RN
such that LN (N2) = 0 and the approximate gradient ∇xB(x, t) of the function
y 7→ B(y, t) at x exists for every x ∈ RN \ N2 and for every t ∈ R and

dDxB(·, t)
dLN

(x) = ∇xB(x, t).

Moreover, we have

dDj
xB(·, t)
dHN−1

(x) = [B+(x, t)−B−(x, t)]νN (x) (5.2)

for every x ∈ N \ N1 and for every t ∈ R.

6. Preliminaries

Let us define the function b(x, t) := (∂tB)(x, t) for every x ∈ RN and t ∈ R \M0 .

Proposition 6.1. Let B(x, t) satisfying (I) – (IV).

(j) For every Borel bounded set E ⊂ RN , the map t 7→ DxB(·, t)(E) is Lipschitz
continuous, for L1-a.e. t ∈ R

∂t(DxB(·, t)(E)) = Dxb(·, t)(E)

and Dxb(·, t) << σ.
(k) For every Borel bounded function u with compact support, the map

t 7→
∫
RN

u(x) dDxB(·, t)

is Lipschitz continuous with derivative∫
RN

u(x) dDxb(·, t) ,

for L1-a.e. t ∈ R.
(l) For L1-a.e. t ∈ R and HN−1-a.e. x ∈ N there exists the derivative of the

function t 7→ B+(x, t)−B−(x, t) and

∂t
(
B+(x, t)−B−(x, t)

)
= b+(x, t)− b−(x, t) forHN−1- a.e. x ∈ N .

(m) For L1-a.e. t ∈ R and for LN -a.e. x ∈ RN \ N there exist the derivative of
the function t 7→ ∇xB(x, t) and the approximate gradient ∇x(∂tB)(x, t) of the
function y 7→ (∂tB)(y, t) at x, i.e.,

dDx(∂tB)(·, t)
dLN

(x) = ∇x(∂tB)(x, t),

and for every Borel set E ⊆ RN \ N with LN (E) > 0 we have

∂t

∫
E
∇xB(x, t) dx =

∫
E
∇x(∂tB)(x, t) dx. (6.1)
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(n) For L1-a.e. t ∈ R and for σ-a.e. x ∈ RN \ N there exist the derivative of the

function t 7→ dDcxB
dσ (x, t) and the Radon-Nikodým derivative dDcx(∂tB)(·,t)

dσ at x of
the Cantor part of the measure Dx(∂tB)(·, t) w.r.t. σ, i.e., the following limit

lim
r↓0

Dc
x(∂tB)(·, t)(Br(x))

σ(Br(x))
=
dDc

x(∂tB)(·, t)
dσ

(x)

exists for σ-a.e. x ∈ RN and for L1-a.e. t ∈ R and for every Borel set E ⊆
RN \ N with LN (E) = 0 we have

∂t

∫
E

dDc
xB

dσ
(x, t) dσ =

∫
E

dDc
x(∂tB)

dσ
(x, t) dσ.

Proof. We will we prove (j). Firstly, we prove that if Ω is an open bounded subset
of RN , then for a.e. t ∈ R the function t 7→ DxB(·, t)(Ω) is Lipschitz continuous and

∂t(DxB(·, t))(Ω) = Dxb(·, t)(Ω) , (6.2)

for L1-a.e. t ∈ R . Let ψh be an increasing sequence of functions in C1
0 (Ω) converging

to the characteristic function of Ω. Then for every φ ∈ C1
0 (R) we have∫

R
φ′(t)DxB(·, t)(Ω) dt = lim

h→+∞

∫
R
dt

∫
Ω
φ′(t)ψh(x) dDxB(·, t)

= − lim
h→+∞

∫
R
dt

∫
Ω
φ′(t)∇ψh(x)B(x, t) dx

= lim
h→+∞

∫
Ω
∇ψh(x)

∫
R
φ(t) b(x, t) dt dx

= lim
h→+∞

∫
R
φ(t)

∫
Ω
∇ψh(x) b(x, t) dx dt

= − lim
h→+∞

∫
R
φ(t)

∫
Ω
ψh(x) dDxb(·, t) dt

= −
∫
R
φ(t)Dxb(·, t)(Ω) dt .

In order to prove (j), let us fix a ball B and consider the family F of Borel sets
E ⊆ B such that the function t 7→ DxB(·, t)(E) is Lipschitz continuous and

∂t(DxB(·, t))(E) = Dxb(·, t)(E) ,

for L1-a.e. t ∈ R. Let Eh be an increasing sequence in F such that Eh ↑ E. Then
for L1-a.e. t ∈ R and for every h ∈ N we have

∂t(DxB(·, t))(Eh) = Dxb(·, t)(Eh) .

Moreover setting for every t /∈M0

fh(t) := DxB(·, t)(Eh) , f(t) := DxB(·, t)(E)

we have that fh converges to f in L1
loc(R). Therefore, since for L1-a.e. t ∈ R

∂t(DxB(·, t))(Eh)→ ∂t(DxB(·, t))(E),

we obtain
∂tf(t) = ∂t(DxB(·, t))(E) = Dxb(·, t)(E)
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and E belongs to F . Then by using Proposition 1.8 (coincidence criterion) and
Remark 1.9 in [6], we can conclude that F coincides with the σ-algebra of Borel sets
contained in B. Since

∂t

(∫
E

DxB(·, t)
dσ

(x) dσ

)
= Dxb(·, t)(E) ,

we have Dxb(·, t) << σ. This prove (j).

In order to prove (k) we remark that if u = χE and E is a Borel set, then by
(j) for every φ ∈ C1

c (R) we have∫
R
φ′(t)

∫
RN

χE(x) dDxB(·, t) dt =

∫
R
φ′(t)DxB(·, t)(E) dt

=

∫
R
φ(t)Dxb(·, t)(E) dt =

∫
R
φ(t)

∫
RN

χE(x)dDxb(·, t) dt .

The conclusion then follows since u(x) =
∑+∞

i=1
1
iχEi(x), where Ei is a sequence of

bounded Borel sets.

Now in order to prove (l), for every Borel set E ⊆ N and for L1-a.e. t ∈ R we
have

DxB(·, t)(E) =

∫
E∩N

(
B+(x, t)−B−(x, t)

)
νN dHN−1 .

Then by (j) we have

∂t(DxB(·, t))(E) = Dxb(·, t)(E) ,

and

∂t

∫
E∩N

(
B+(x, t)−B−(x, t)

)
νN dHN−1

=

∫
E∩N

(
b+(x, t)− b−(x, t)

)
νN dHN−1 .

This implies that for L1-a.e. t ∈ R and for HN−1-a.e. x ∈ N there exists the
derivative of the function t 7→ B+(x, t)−B−(x, t) and

∂t
(
B+(x, t)−B−(x, t)

)
= b+(x, t)− b−(x, t) .

Now in order to prove (m), for every Borel set E ⊆ RN \ N and for L1-a.e.
t ∈ R we have

D̃xB(·, t)(E) = DxB(·, t)(E) D̃xb(·, t)(E) = Dxb(·, t)(E).

Then by (k) we have

∂t(D̃xB(·, t)(E)) = D̃xb(·, t)(E) ,

For every Borel set E ⊆ RN \ N with LN (E) > 0 we have

∂t(D
a
xB(·, t))(E) = Da

xb(·, t)(E) .

Hence

∂t

∫
E
∇xB(x, t) dx = Da

xb(·, t)(E) .
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This implies that there exists the approximate gradient ∇x(∂tB)(x, t) of the function
y 7→ (∂tB)(y, t) at x for L1-a.e. t ∈ R, i.e.,

Da
xb(·, t)(E) =

∫
E

dDx(∂tB)(·, t)
dLN

(x) dx =

∫
E
∇x(∂tB)(x, t) dx,

and we can conclude that for L1-a.e. t ∈ R

∂t

∫
E
∇xB(x, t) dx =

∫
E
∇x(∂tB)(x, t) dx.

Now, we will prove (n). For every Borel set E ⊆ RN \ N with LN (E) = 0 we have

∂t(D
c
xB(·, t)(E)) = Dc

xb(·, t)(E) .

Hence

∂t

(∫
E

dDc
xB(·, t)
dσ

(x) dσ

)
= Dc

xb(·, t)(E) (6.3)

and Dc
xb(·, t) << σ. This implies that there exists the Radon-Nikodým derivative of

the Cantor part of the measure Dx(∂tB)(·, t) w.r.t. σ, i.e., the following limit

lim
r↓0

Dc
x(∂tB)(·, t)(Br(x))

σ(Br(x))
=
dDc

x(∂tB)(·, t)
dσ

(x)

exists for L1-a.e. t ∈ R and for σ-a.e. x ∈ RN and

Dc
xb(·, t)(E) =

∫
E

dDx(∂tB)(·, t)
dσ

(x) dσ =

∫
E

dDc
x(∂tB)

dσ
(x, t) dσ .

We can conclude that for L1-a.e. t ∈ R

∂t

∫
E

dDc
xB

dσ
(x, t) dσ =

∫
E

dDc
x(∂tB)

dσ
(x, t) dσ. �

Corollary 6.2. For L1-a.e. t ∈ R we have

DxB(x, t) =

[∫ t

0

dDx(∂tB)

dσ
(x,w) dw

]
dσ

=

[∫ t

0
∇x(∂tB)(x,w) dt

]
dLN +

[∫ t

0

dDc
x(∂tB)

dσ
(x,w) dw

]
dσ

+

[∫ t

0
[(∂tB)+(x,w)− (∂tB)−(x,w)] dw

]
νN dHN−1 .

7. The new formula

In this section we present the main result of this paper. We need to introduce some
further conditions.

We recall that by (l) of Proposition 6.1 we have that there exist a set N ⊂ RN
with HN−1(N ) = 0 and a set M1 ⊂ R with L1(M1) = 0 such that for every
x ∈ N \ N and for every t ∈ R \ (M0 ∪ M1) there exists the derivative of the
function t 7→ B+(x, t) − B−(x, t). On the other hand, by Remark 5.2, for every
x ∈ N \N1, since the functions B±(x, ·) are Lipschitz continuous, there exists a set
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M1(x) ⊂ R such that for every t ∈ R \ (M0 ∪M1(x)) there exists the derivatives
of the functions t 7→ B±(x, t).

However, in the following we need to consider the following stronger condition

(VI) forHN−1-a.e. x ∈ N and every t ∈ R\(M0∪M1) there exist the derivatives
of the functions t 7→ B±(x, t).

Remark 7.1. Similarly we need also that for HN−1-a.e. x ∈ RN \ N there exists a
setM2 ⊂ R (independent of x) such that for all t ∈ R \ (M0 ∪M2) there exists the

derivative of the function t 7→ B̃(x, t). This condition is satisfied since we assume

that for HN−1-a.e. x ∈ RN \ N and for L1-a.e. t ∈ R we have B(x, t) = B̃(x, t).

Theorem 7.2. Let B : RN × R → R be a function such that B(x, 0) = 0 and (I) –
(VI) hold. Then for every u ∈ BVloc(RN )∩L∞loc(RN ) the composite function v(x) :=

B (x, u(x)), x ∈ RN , belongs to BVloc(RN ) and for any φ ∈ C1
0 (RN ) we have∫

RN
∇φ(x)v(x) dx

= −
∫
RN

φ(x)(∇xB)(x, u(x)) dx−
∫
RN
φ(x)(∂tB)(x, u(x)) · ∇u(x) dx

−
∫
RN

φ(x)
dDc

xB

dσ
(x, ũ(x)) dσ −

∫
RN

φ(x)(∂tB̃)(x, ũ(x)) · dDcu(x)

−
∫
N∪Ju

φ(x)[B+(x, u+(x))−B−(x, u−(x))] νN∪Ju dHN−1 ,

(7.1)

where it is understood that for HN−1-a.e. x ∈ N ∩ Ju the normal νN∪Ju is chosen
equal to νN .

Remark 7.3. The formula make sense provided the terms (∂tB)(x, u(x)) ·∇u(x) and

(∂tB̃)(x, ũ(x)) · dDcu(x) are interpreted to be zero whenever ∇u = 0 and Dcu = 0

respectively, irrespective of whether (∂tB̃)(x, u(x)) is defined, i.e., (∂tB̃)(x, ũ(x)) ·
dD̃u is interpreted to vanish on sets where D̃u vanishes (see Prop. 3.92 in [6]).

Remark 7.4. By using (5.2) it is easy to check that

[B+(x, u+(x))−B−(x, u−(x))]νN∪Ju

=
[
B∗(x, u+(x))−B∗(x, u−(x))

+
B+(x, u+(x))−B−(x, u+(x))

2
+
B+(x, u−(x))−B−(x, u−(x))

2

]
νN∪Ju

=
[
B∗(x, u+(x))−B∗(x, u−(x))

]
νN∪Ju

+
1

2

[dDj
xB(·, t)
dHN−1

(x)t=u+(x) +
dDj

xB(·, t)
dHN−1

(x)t=u−(x)

]
.
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Then the representation formula in Theorem 7.2 can be written as the following
equality in the sense of measures:

Dv(x) = (∇xB)(x, u(x))LN + (∂tB)(x, u(x)) · ∇u(x)LN

+
dDc

xB

dσ
(x, ũ(x))σ + (∂tB̃)(x, ũ(x)) · dDcu

+
[
B∗(x, u+(x))−B∗(x, u−(x))

]
νN∪Ju HN−1 Ju

+
1

2

[dDj
xB(·, t)
dHN−1

(x)
∣∣
t=u+(x)

+
dDj

xB(·, t)
dHN−1

(x)
∣∣
t=u−(x)

]
HN−1 N ∪ Ju .

Hence

Dv(x) = DxB(x, t)|t=u(x) + (∂tB̃(x, u) · D̃u

+ [B∗(x, u+)−B∗(x, u−)]νN∪JuHN−1 N ∪ Ju,
(7.2)

where

DxB(·, t)|t=u(x) :=
1

2

[[
dDxB(·, t)

dσ

]
t=u+(x)

+

[
dDxB(·, t)

dσ

]
t=u−(x)

]
σ

= (∇xB)(x, u(x))LN +
dDc

xB

dσ
(x, ũ(x))σ

+
1

2

[dDj
xB(·, t)
dHN−1

(x)
∣∣
t=u+(x)

+
dDj

xB(·, t)
dHN−1

(x)
∣∣
t=u−(x)

]
HN−1 N ∪ Ju

(7.3)

and with the compact notation

DxB(·, t)|t=u(x) =
1

2

[
DxB(·, u+(x)) +DxB(·, u−(x))

]
.

Remark 7.5. A preliminary problem related to the chain rule formula is to find
sufficient conditions assuring that the composite function belongs to the space BV
of functions of bounded variation. For N = 1 it is well known that the autonomous
superposition operator u 7→ Tu, defined by (Tu)(x) = B(u(x)), maps the space BV
of functions of one variable of bounded variation in the sense of Jordan into itself
if and only if the function B which generates the operator is locally Lipschitz (see
[22, 23, 24]).

In the nonautonomous case, one of the well-known results ensuring that super-
position operator u 7→ Tu, defined by (Tu)(x) = B(x, u(x)), maps the space BV into
itself is the theorem by A.G. Ljamin (see [20]). According to that theorem it suffices
to consider the class of functions which are uniformly Lipschitz w.r.t. the second
variable and of uniformly bounded variation w.r.t. the first variable. Unfortunately,
Ljamin’s result is false. Recently, Maćkowiak in [21] gives an example contradict-
ing sufficiency of those conditions. However, a very interesting sufficient condition
is given in [7] and we extend this result to the multidimensional case: in fact, as
in Proposition 3.7 of [4], by using assumptions (I) – (III), we have that for every
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u ∈ BVloc(RN ) ∩ L∞loc(RN ) the composite function v(x) := B (x, u(x)), x ∈ RN ,

belongs to BVloc(RN ).

8. Proof of Theorem 7.2

Proof. We denote by %δ(t) a standard mollifier and we define

Bδ(x, t) :=

∫
R
%δ(t− s)B(x, s) ds

for all x ∈ RN , t ∈ R. Hence for all x ∈ RN , t ∈ R \ M0 the function Bδ(x, ·) is
continuously differentiable in R \M0 and

∂tBδ(x, t) = (∂tB)δ(x, t) :=

∫
R
%δ(t− s) ∂tB(x, s) ds . (8.1)

Moreover |(∂tB)δ(x, t)| ≤ C for all x ∈ RN and t ∈ R \M0. Hence Bδ(x, t) satisfies
hypotheses (b) and (H1) of Theorem 4.1. Let us define the convolution of the Radon-
Nikodým derivative dDxB

dσ (x, t) w.r.t. the variable t ∈ R(
dDxB

dσ

)
δ

(x, t) :=

∫
R
%δ(t− s)

dDxB

dσ
(x, s) ds .

We claim that for every t ∈ R \M0 the function Bδ(·, t) ∈ BVloc(RN ) (hence
Bδ(x, t) satisfies hypothesis (a) of Theorem 4.1), DxBδ(·, t) << σ and for σ-a.e.
x ∈ RN and for every t ∈ R \M0

dDxBδ
dσ

(x, t) =

(
dDxB

dσ

)
δ

(x, t). (8.2)

In fact, for every test function φ ∈ C1
0 (RN )∫

RN
∇φ(x)Bδ(x, t)dx =

∫
RN
∇φ(x)

(∫
R
%δ(t− s)B(x, s) ds

)
dx

=

∫
R
%δ(t− s)

(∫
RN
∇φ(x)B(x, s) dx

)
ds

= −
∫
R
%δ(t− s)

(∫
RN

φ(x) dDxB(x, s)

)
ds

= −
∫
R
%δ(t− s)

(∫
RN

φ(x)
dDxB(x, s)

dσ
dσ

)
ds

= −
∫
RN

φ(x)

(∫
R
%δ(t− s)

dDxB(x, s)

dσ
ds

)
dσ

= −
∫
RN

φ(x)

(
dDxB

dσ

)
δ

(x, t) dσ .

Then for every t ∈ R \M0 the following equality holds

DxBδ(·, t) =

(
dDxB

dσ

)
δ

(·, t) σ
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in the sense of measures. Finally

|DxBδ(·, t)| ≤ σ

and for every δ > 0

σδ :=
∨
t∈R
|DxBδ(·, t)| ≤ σ,

then it is a Radon measure. Hence Bδ(x, t) satisfies hypothesis (H4) of Theorem 4.1.
For any compact set H ⊂ R for all t, w ∈ H \M0 and x ∈ RN

|(∂tBδ)(x, t)− (∂tBδ)(x,w)| = |(∂tB)δ(x, t)− (∂tB)δ(x,w)|

≤
∫
R
|∂t %δ(s)||B(x, t− s)−B(x,w − s)| ds

≤ |t− w|
∫
R
∂t %δ(s) ds = Cδ|t− w|.

Hence Bδ(x, t) satisfies hypothesis (H2) of Theorem 4.1.

On the other hand, we will prove that for any compact set H ⊂ R by using
(IV) we have

|D̃xBδ(·, t)(A)− D̃xBδ(·, w)(A)| ≤ |t− w|σH(A)

for all t, w ∈ H \M0 and A ⊂ RN \ N Borel. In fact, by (8.2)

|D̃xBδ(·, t)(A)− D̃xBδ(·, w)(A)|

≤
∫
A

∣∣∣∣∣dD̃xBδ
dσ

(x, t)− dD̃xBδ
dσ

(x,w)

∣∣∣∣∣ dσ
=

∫
A

∣∣∣∣∣
(
dD̃xB

dσ

)
δ

(x, t)−

(
dD̃xB

dσ

)
δ

(x,w)

∣∣∣∣∣ dσ
≤
∫
A

∫
R
ρδ(s)

∣∣∣∣∣dD̃xB

dσ
(x, s− t)− dD̃xB

dσ
(x, s− w)

∣∣∣∣∣ ds dσ
≤
∫
R
ρδ(s)

∫
A
|t− w| dσ ds ≤ |t− w|σ(A).

Hence Bδ(x, t) satisfies hypothesis (H3) of Theorem 4.1. We prove that by Remark
5.2 for every x ∈ RN \ N1 and for every t ∈ R \M0 we have

(B±)δ(x, t) = (Bδ)
±(x, t). (8.3)

In fact, for every t ∈ R \M0 we have

lim
r↓0
−
∫
B±r (x)

|Bδ(y, t)− (B±)δ(x, t)|dy

= lim
r↓0
−
∫
B±r (x)

∣∣∣∣∫
R
%δ(t− s) [B(y, s)−B±(x, s)] ds

∣∣∣∣ dy
≤ lim

r↓0

∫
R
%δ(t− s)

[
−
∫
B±r (x)

∣∣B(y, s)−B±(x, s)
∣∣ dy] ds = 0 .
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Therefore (Bδ)
±(x, t) tends to B±(x, t) for every x ∈ RN \ N1 and for every t ∈

R \M0. Similarly, we have

B̃δ(x, t) = B̃δ(x, t). (8.4)

Given a function u ∈ BVloc(RN ) ∩ L∞loc(RN ) for every x ∈ RN we define

vδ(x) := Bδ(x, u(x)).

Since the function t→ Bδ(x, t) satisfies all the hypotheses of Theorem 4.1 by using
the chain rule formula we have that vδ ∈ BVloc(RN ) and∫

RN
∇φ(x)vδ(x) dx

= −
∫
RN

φ(x)(∇xBδ)(x, u(x)) dx−
∫
RN
φ(x)(∂tBδ)(x, u(x)) · ∇u(x) dx

−
∫
RN

φ(x)
dDc

xBδ
dσ

(x, ũ(x)) dσ −
∫
RN

φ(x)(∂tB̃δ)(x, ũ(x)) · dDcu

−
∫
N∪Ju

φ(x)[(Bδ)
+(x, u+(x))− (Bδ)

−(x, u−(x))] νN∪Ju(x) dHN−1.

Step 1. Let us now prove that

lim
δ→0+

∫
RN
∇φ(x)Bδ(x, u(x)) dx =

∫
RN
∇φ(x)B(x, u(x)) dx . (8.5)

It is enough to observe that for every x ∈ RN the functions Bδ(x, ·) converge in
L1(R) to B(x, ·) and to use the Lebesgue’s dominated convergence theorem.

Step 2. We shall prove the convergence of the diffuse parts, i.e.,

lim
δ→0+

∫
RN

φ(x)(∂tB̃δ)(x, ũ(x)) dD̃u =

∫
RN

φ(x)(∂tB̃)(x, ũ(x)) dD̃u. (8.6)

By recalling that, by (8.4) and by repeating the argument in (8.1), for every x ∈
RN \ N and for every t ∈ R \M0 we have

(∂tB̃δ)(x, t) = (∂tB̃δ)(x, t) = (∂tB̃)δ(x, t)

and by using the coarea formula (2.3), we get∫
RN

φ(x)(∂tB̃δ)(x, ũ(x)) dD̃u (8.7)

=

∫
Cu

φ(x)(∂tB̃)δ(x, ũ(x))
dD̃u

d|Du|
(x) d|Du|

=

∫ +∞

−∞
dt

∫
{u−≤t≤u+}

φ(x)(∂tB̃)δ(x, ũ(x))χCu(x)
dD̃u

d|Du|
(x) dHN−1

=

∫ +∞

−∞
dt

∫
{ũ=t}∩Cu

φ(x)(∂tB̃)δ(x, t)
dD̃u

d|Du|
(x) dHN−1 .
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For HN−1-a.e. x ∈ RN \N , by Remark 7.1 the map B̃(x, ·) is differentiable for every
t ∈ R \ (M0 ∪M2). Hence

(∂tB̃)δ(x, t)→ (∂tB̃)(x, t)

as δ → 0. Therefore, for every t ∈ R \ (M0 ∪M2), we have

lim
δ→0

∫
{ũ=t}∩Cu

φ(x)(∂tB̃)δ(x, t)
dD̃u

d|Du|
dHN−1

=

∫
{ũ=t}∩Cu

φ(x)(∂tB̃)(x, t)
dD̃u

d|Du|
dHN−1 .

From this equation, using the boundedness of ∂tB and the fact that, by the coarea
formula (2.3), ∫ +∞

−∞
HN−1 ({ũ = t} ∩ Cu) dt = |Du|(Cu) <∞ ,

we can pass to the limit in (8.7) and by the Lebesgue’s dominated convergence
theorem we get

lim
δ→0

∫
RN

φ(x)(∂tB̃δ)(x, ũ(x)) dD̃u

=

∫ +∞

−∞
dt

∫
{ũ=t}∩Cu

φ(x)(∂tB̃)(x, t)
dD̃u

d|Du|
(x) dHN−1 .

From this equation, using the coarea formula (2.3) again, we immediately get (8.6).

Step 3. We shall prove the convergence of the jump parts, i.e.,

lim
δ→0+

∫
N∪Ju

φ(x)[(B+)δ(x, u
+(x))− (B−)δ(x, u

−(x))] νN∪Ju(x) dHN−1

=

∫
N∪Ju

φ(x)[B+(x, u+(x))−B−(x, u−(x))] νN∪Ju(x) dHN−1 .

(8.8)

Firstly, we shall prove that for HN−1-a.e. x ∈ N ∪ Ju

lim
δ→0

[(Bδ)
+(x, u+(x))− (Bδ)

−(x, u−(x))] = B+(x, u+(x))−B−(x, u−(x)).

We recall that by Proposition 6.1 (l) the one-sided limits (∂tB)+(x, t) and
(∂tB)−(x, t) defined by

lim
r↓0
−
∫
B±r (x)

|(∂tB)(y, t)− (∂tB)±(x, t)|dy = 0

exist for HN−1-a.e. x ∈ RN and for every t ∈ R \M0. Moreover we have

∂t((Bδ)
±)(x, t) = ∂t((B

±)δ)(x, t) = (∂t(B
±))δ(x, t),
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where the first equality is due to (8.3) and the last one can be obtained as in (8.1).
Therefore, for every δ > 0 we have

(Bδ)
+(x, u+(x))− (Bδ)

−(x, u−(x))

=

∫ u+(x)

0
∂t((Bδ)

+)(x, t) dt−
∫ u−(x)

0
∂t((Bδ)

−)(x, t) dt

=

∫ u+(x)

0
(∂t(B

+))δ(x, t) dt−
∫ u−(x)

0
(∂t(B

−))δ(x, t) dt.

By condition (VI) for HN−1-a.e. x ∈ RN , the maps B±(x, ·) are differentiable for
every t ∈ R \ (M0 ∪M1). Then

lim
δ→0

[(Bδ)
+(x, u+(x))− (Bδ)

−(x, u−(x))]

=

∫ u+(x)

0
∂t(B

+)(x, t) dt−
∫ u−(x)

0
∂t(B

−)(x, t) dt

= B+(x, u+(x))−B−(x, u−(x)) .

(8.9)

We estimate∣∣∣∫
N∪Ju

φ(x)
[
(Bδ)

+(x, u+)− (Bδ)
−(x, u−) (8.10)

−[B+(x, u+)−B−(x, u−)]
]
νN∪Ju dHN−1

∣∣∣
≤ ‖φ‖∞

∫
N∪Ju∩{u+−u−<1/h}

∣∣∣(Bδ)+(x, u+)−(Bδ)
−(x, u−)

−[B+(x, u+)−B−(x, u−)]
∣∣∣ dHN−1

+‖φ‖∞
∫
N∪Ju∩{u+−u−≥1/h}

∣∣∣(Bδ)+(x, u+)−(Bδ)
−(x, u−)

−[B+(x, u+)−B−(x, u−)]
∣∣∣ dHN−1 .

Notice that for all δ > 0 and h ∈ N∫
N∪Ju∩{u+−u−<1/h}

∣∣∣(Bδ)+(x, u+)−(Bδ)
−(x, u−)

−[B+(x, u+)−B−(x, u−)]
∣∣∣ dHN−1

≤ 2C

∫
N∪Ju∩{u+−u−<1/h}

|u+(x)− u−(x)| dHN−1 .

On the other hand, the integral∫
N∪Ju∩{u+−u−≥1/h}

∣∣∣(Bδ)+(x, u+)− (Bδ)
−(x, u−)

−[B+(x, u+)−B−(x, u−)]
∣∣∣ dHN−1
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is infinitesimal, as δ → 0, by (8.9), since B± and B±δ are bounded and since for any

h by (V) we have that N ∪ Ju ∩ {x ∈ RN : u+(x) − u−(x) ≥ 1/h} is a set of finite
HN−1 measure. Therefore, from (8.10), letting first δ tend to zero and then h tend
to ∞, we immediately obtain (8.8).

We recall that by Corollary 6.2 for σ-a.e. x ∈ RN and for every w ∈ R \M0

dDxB

dσ
(x,w) =

∫ w

0

dDx(∂tB)

dσ
(x, t) dt.

Similarly we have

dDx(Bδ)

dσ
(x,w) =

∫ w

0

dDx(∂t(Bδ))

dσ
(x, t) dt.

Moreover, as in (8.2) for every t ∈ R \M0 the following equality holds

Dx(∂tB)δ(·, t) =

(
dDx(∂tB)

dσ

)
δ

(·, t) σ

in the sense of measures. Then for every w ∈ R \M0 we have

dDxBδ
dσ

(x,w) =

∫ w

0

dDx(∂tBδ)

dσ
(x, t) dt

=

∫ w

0

dDx(∂tB)δ
dσ

(x, t) dt =

∫ w

0

(
dDx(∂tB)

dσ

)
δ

(x, t) dt

In particular, for every w ∈ R \M0 we have

∇xBδ(x,w) =

∫ w

0
(∇x(∂tB))δ (x, t) dt for LN − a.e. x ∈ RN (8.11)

and

dDc
xBδ
dσ

(x,w) =

∫ w

0

(
dDc

x(∂tB)

dσ

)
δ

(x, t) dt for σ − a.e. x ∈ RN . (8.12)

Step 4. We shall prove that

lim
δ→0+

∫
RN

φ(x)(∇xBδ)(x, u(x)) dx =

∫
RN

φ(x)(∇xB)(x, u(x)) dx. (8.13)

By Proposition 6.1 (m) there exists a Borel set N̂2 ⊂ RN such that LN (N̂2) = 0
and the approximate gradient ∇x(∂tB)(x, t) of the function y 7→ (∂tB)(y, t) at x

exists for every x ∈ RN \ N̂2 and for every t ∈ R \M0 and

dDx(∂tB)(·, t)
dLN

(x) = ∇x(∂tB)(x, t)

for every x ∈ RN \ (N ∪ N̂2) and for every t ∈ R \M0. By (8.11) we get

∇xBδ(x,w) =

∫ w

0
∇x((∂tB)δ)(x, t) dt =

∫ w

0
(∇x(∂tB))δ(x, t) dt

for every x ∈ RN \ (N ∪ N̂2) and for every w ∈ R \M0. This term tends to∫ w

0
∇x(∂tB)(x, t) dt = ∇xB(x,w),
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where the last equality is due to (6.1). The conclusion follows by Lebesgue Dominated
Convergence Theorem.

Step 5. We shall prove that

lim
δ→0+

∫
RN

φ(x)
dDc

xBδ
dσ

(x, ũ(x)) dσ =

∫
RN

φ(x)
dDc

xB

dσ
(x, ũ(x)) dσ . (8.14)

By Proposition 6.1 (n), there exists a Borel set N̂0 ⊆ RN such that σ(N̂0) = 0
such that the following limit

lim
r↓0

Dc
x(∂tB)(·, t)(Br(x))

σ(Br(x))
=
dDc

x(∂tB)(·, t)
dσ

(x)

exists for every x ∈ RN \ N̂0 and for every t ∈ R\M0 and this equality holds, where
dDcx(∂tB)(·,t)

dσ (x) is Radon-Nikodým derivative at x of the Cantor part of the measure
Dx(∂tB)(·, t) w.r.t. σ. By (8.12) we get

dDc
xBδ
dσ

(x,w) =

∫ w

0

dDc
x(∂tB)δ
dσ

(x, t) dt =

∫ w

0

(
dDc

x(∂tB)

dσ

)
δ

(x, t) dt. (8.15)

for every x ∈ RN \ (N ∪ N̂0) and for every w ∈ R \M0. By (6.3), this term tends to∫ w

0

dDc
x(∂tB)

dσ
(x, t) dt =

dDc
xB

dσ
(x,w).

Then by Dominated Lebesgue Convergence Theorem, condition (8.14) holds.

Therefore, the assertion follows at once from (8.5), (8.6), (8.8), (8.13), (8.14)
and from equation (8.5). �
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