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ABSTRACT. For any Lie group G, we construct a G-equivariant analogue of symplectic capacities
and give examples when G = T* x R%%, in which case the capacity is an invariant of integrable
systems. Then we study the continuity of these capacities, using the natural topologies on the
symplectic G-categories on which they are defined.

1. INTRODUCTION

In the 1980s Gromov proved the symplectic non-squeezing theorem [9]. This influential result
says that a ball of radius r > 0 can be symplectically embedded into a cylinder of radius R > 0
only if r < R. This led to the first symplectic capacity, the Gromov radius, which is the radius
of the largest ball of the same dimension which can be symplectically embedded into a symplectic
manifold (M,w). Symplectic capacities are a class of symplectic invariants introduced by Ekeland
and Hofer [0, 11].

In this paper we give a notion of symplectic capacity for symplectic G-manifolds, where G is
any Lie group, which we call a symplectic G-capacity, and give nontrivial examples. Such a capac-
ity retains the properties of a symplectic capacity (monotonicity, conformality, and an analogue
of non-triviality) with respect to symplectic G-embeddings. Symplectic capacities are examples
of symplectic G-capacities in the case that G is trivial. In analogy with symplectic capacities,
symplectic G-capacities distinguish the symplectic G-type of symplectic G-manifolds. As a first
example we construct an equivariant analogue of the Gromov radius where G = RF as follows.
Let Symp?™% denote the category of 2n-dimensional symplectic G-manifolds. That is, an element
of Symp?*™% is a triple (M,w, ¢) where (M,w) is a symplectic manifold and ¢: G x M — M is
a symplectic G-action. Given integers 0 < k < m < n we define the (m, k)-equivariant Gromov
radius

(1) ng,k: Syme”’Rk — [0, 0]

(M,w,) — sup{r > 0| B2 (r) &5 M},

where <R;k> denotes a symplectic R¥-embedding and B?"(r) c C™ is the standard 2m-dimensional
ball of radius r > 0 with R*-action given by rotation of the first k coordinates. Thanks to the
added structure of the R¥-action the proof that cg’k is a R¥-capacity for k > 1 uses only elementary
techniques.

As an application of symplectic G-capacities to integrable systems we define the toric packing
capacity

(2) T: Symp™" — [0, 0]

1
sup{ vol(P) | P is a toric ball packing of M } 2»
M

where vol(E) denotes the symplectic volume of a subset E of a symplectic manifold, B2" is the

standard symplectic unit 2n-ball, Symprzfn’w is the category of 2n-dimensional symplectic toric
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manifolds, and a toric ball packing P of M is given by a disjoint collection of symplecticly and
T"-equivariantly embedded balls. In analogy we define the semitoric packing capacity

ST: Sympég1XR — [0, 0]

on Sympé%ngR, the category of semitoric manifolds [20], where P in (2) is replaced by a semitoric
ball packing of M (Definition 5.2). The following theorem is a combination of Propositions 2.7, 4.2,
and 5.5.

Theorem 1.1 (Examples of capacities). The following hold:

mRE [0, 00] is a symplectic R -capacity

(i) The (m, k)-equivariant Gromov radius cg’k: Symp
fork>1;
(ii) The toric packing capacity T : Symp?r”’T — [0, 00] is a symplectic T™-capacity;
1

(iii) The semitoric packing capacity ST : Sympéﬁf “B 510, 00] is a symplectic (S* x R)-capacity.
The continuity of symplectic capacities is discussed in [2, 3, 6, 27]. The semitoric and toric packing
capacities are each defined on categories of integrable systems which have a natural topology [15, 18],
but we can only discuss the continuity of the (m, k)-equivariant Gromov radius on a subcategory
of its domain which has a topology, so we restrict to the case of (m,k) = (n,n). The T"-action
on a symplectic toric manifold may be lifted to an action of R™. Let Sympgrn’R" be the symplectic
category of symplectic toric manifolds each of which is endowed with the R™-action obtained by

lifting the given T™-action which is a subcategory of Symp?™&".

Theorem 1.2 (Continuity of capacities). The following hold:

(i) The toric packing capacity T : Symp?fn’w — [0, 00| is everywhere discontinuous and the

restriction of T to the space of symplectic toric 2n-dimensional manifolds with exactly N
fized points of the T™-action is continuous for any choice of N > 0;

(ii) The semitoric packing capacity ST : Sympgﬁ?lXR — [0, 00] is everywhere discontinuous and
the restriction of ST to the space of semitoric manifolds with exactly N elliptic-elliptic fized
points of the associated (S' x R)-action is continuous for any choice of N > 0;

(iii) The (n,n)-equivariant Gromov radius restricted to the space of symplectic toric manifolds

o ann : Sympa ™ [0, o]

CB |SymPT T

1s everywhere discontinuous and the restriction of Cg’n|symp2n,nz<n to the space of symplectic
T

toric 2n-dimensional manifolds with exactly N fized points of the R™-action is continuous
for any choice of N > 0.

Theorem 1.2 generalizes [7, Theorem A], which deals with 4-manifolds, and solves [18, Problem
30]. Theorem 1.2 is implied by Theorems 6.3, 7.12, and 7.15.

In Section 2 we give a general notion of symplectic G-capacities and we prove that the (m, k)-
-equivariant Gromov radius is a capacity. In Section 3 we review facts about Hamiltonian actions
and their relation to integrable systems that will be needed in the remainder of the paper. Sections 4
and 5 are devoted to constructing nontrivial symplectic G-capacities when G = T* x R4*_ which
include the toric and semitoric packing capacities. In Sections 6 and 7 we discuss the continuity of
these symplectic G-capacities.

Acknowledgements. The first author is supported by NSF grants DMS-1262411 and DMS-
1361122. The second and third authors are supported by NSF grants DMS-1055897 and DMS-

1518420.
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2. SYMPLECTIC (G-CAPACITIES

For n > 1 and r > 0 let B®*(r) C C" be the 2n-dimensional open symplectic ball of radius r and
let

ZM(r) = {(21)izy € C" [ || <7}

be the 2n-dimensional open symplectic cylinder of radius 7. Both inherit a symplectic structure
from their embedding as a subset of C" with symplectic form wy = 52?21 dz; A dz;. We write

B?" = B?"(1), Z*" = Z?"(1), and use < to denote a symplectic embedding.

2.1. Symplectic capacities. Let Symp?" be the category of symplectic 2n-dimensional manifolds
with symplectic embeddings as morphisms. A symplectic category is a subcategory C of Symp>"
such that (M,w) € C implies (M, \w) € C for all A € R\ {0}. Let C C Symp®" be a symplectic
category.

The following fundamental notion of symplectic invariant is due to Ekeland and Hofer.

Definition 2.1 ([6, 11]). A generalized symplectic capacity on C is a map c: C — [0, oo] satisfying:
(1) Monotonicity: if (M,w), (M’ ,w") € C and there exists a symplectic embedding M — M’
then ¢(M,w) < ¢(M',w');
(2) Conformality: if A € R\ {0} and (M,w) € C then ¢(M, \w) = |\| c¢(M,w).
If additionally B?",Z?" € C and c satisfies:
(3) Non-triviality: 0 < ¢(Z*",wp) < 0o and 0 < ¢(B?"*, wp) < o0;

then c is a symplectic capacity.

2.2. Symplectic G-capacities. Let G be a Lie group and let Sympl(M) denote the group of
symplectomorphisms of the symplectic manifold (M,w). A smooth G-action ¢: G x M — M is
symplectic if ¢(g,-) € Sympl(M) for each g € G. The triple (M, w, ¢) is a symplectic G-manifold. A
symplectic G-embedding p: (Mi,w1, $1) < (Ma,ws, ¢2) is a symplectic embedding for which there
exists an automorphism A: G — G of G such that p(¢1(g,p)) = ¢2(A(g), p(p)) for allp € My, g € G,
in which case we say that p is a symplectic G-embedding with respect to A. We write <% to denote a
symplectic G-embedding. We denote the collection of all 2n-dimensional symplectic G-manifolds by
Symp?™©. The set Symp?™¢ is a category with morphisms given by symplectic G-embeddings. We
call a subcategory Cg of Symp?™¢ a symplectic G-category if (M,w, ¢) € Cg implies (M, Mw, ¢) € Cq
for any A € R\ {0}. Let Cg C Symp?™“ be a symplectic G-category.

Definition 2.2. A generalized symplectic G-capacity on Cg is a map c: Cg — [0, 00| satisfying:
(1) Monotonicity: if (M,w,),(M',w',¢") € Cqc and there exists a symplectic G-embedding
M <% M’ then c(M,w, ) < c(M' W ¢);
(2) Conformality: if A € R\ {0} and (M,w, ¢) € Cq then c¢(M, \w, ¢) = || c¢(M,w, ¢).

When the symplectic form and G-action are understood we often write c(M) for ¢(M,w, ¢). Let
¢ be a generalized symplectic G-capacity on a symplectic G-category Cg.

Definition 2.3. For (N,wy, ¢n) € Cq we say that c satisfies N-non-triviality or is non-trivial on
N if 0 < ¢(V) < 0.

Definition 2.4. We say that c is tamed by (N,wy, ¢n) € Symp?™© if there exists some a € (0, 00)
such that the following two properties hold:
(1) if M € Cg and there exists a symplectic G-embedding M < N then (M) < a

(2) if P € Cg and there exists a symplectic G-embedding N <% P then a < c(P).
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The non-triviality condition in Definition 2.1 requires that B, Z?" € Cg and 0 < ¢(B?") <
c(Z*") < oo, and tameness encodes this second condition without necessarily including the first
one. If ¢ is a generalized symplectic G-capacity on Cg C Symp?™® we define

Symp2™©(c) = { N € Symp?»® | inf{c(P) | P € Cq,N <% P} =0},
Symp2™C(c) = { N € Symp2™C | sup{c(M) | M € C, M <& N} = o0 },
Sympr:%(c) = { N € Symp>»“ | ¢ is tamed by N }.

A generalized symplectic G-capacity gives rise to a decomposition of Symp?™¢

Proposition 2.5. Let ¢ be a generalized symplectic G-capacity on a symplectic G-category Cg.
Then:

(a) Symp
(b) the union in part (a) is pairwise disjoint;
(¢) ¢ is non-trivial on N € Symp*™% if and only if N € Cq N Symp

2n,G _ Sympgn, ( ) U Symp2n G( ) U Symen G( )

tame
2n,G
ame (C)-

tame

2n,G 2nG( )

Proof. In order to prove item (a ) we show that if N € Symp is not in Symp0 (c)USymp
then it is in Symp2% (c). If M < N < P for some M P € Cg then M <% P so c(M) < ¢(P). Let
a; =sup{c(M) | M N N} and ag = inf{c¢(P) | N <, P}. Since N gﬁ SymenG( ) U Symp2™©(c)
we have that 0 < a1 < az < 00. Pick a € [a1,a2]. If M € Cq and M <%, N then c(M)<a; <aand
if P eCqand N <% P then ¢(P)>a3 >asoN € Symptame( ). Item (b) follows from a similar
argument and (c¢) is immediate. O

In light of item (c) we view Sympf:r’nce(c) as an extension of the set of elements of Symp?™“ on

which ¢ is non-trivial to include those elements outside of the domain of c.

2.3. Symplectic (T* x R%*)-capacities. For 1 < d < n the standard action of T on C" is given
by

¢cn ((az)z 19 (Zz)¢ 1) = (01121, <o XgRdy Zd4-1 - - Zn)
This action induces actions of T¢ = T*¥ x T4* on BZ" and Z2” which in turn induce the standard
actions of T* x R%* on B2" and Z2" for k < d. The action of an element of T* x R%* is the action
of its image under the quotient map T* x Rd_k — T?. In the following we endow B and Z?" with
the standard actions.

Definition 2.6. A generalized symplectic (T* x RF)-capacity is a symplectic (T* x R4~*)-capacity
if it is tamed by B?" and Z2".

2.4. A first example. The Gromov radius cg: Symp>" — (0, 00] is given by

cg(M) :=sup{r >0 | B2n(r) — M }.
Fix 0 <k <m < nand let cg’k be as in Equation (1). If k = 0 and m = n then cg = cg’k.

Proposition 2.7. If k > 1, the (m, k)-equivariant Gromov radius Cgl,k: Symp2n,Rk

symplectic RF-capacity.

— [0,00] is a

Proof. Parts (1) and (2) of Definition 2.2 are immediate. By the standard inclusion map R (B2ny >

1 so we only must show that cmk(Z%) < 1. Suppose that for r > 1 p: B*™(r ) — 7 is a
symplectic R¥-embedding with respect to some A € Aut(R¥). Let

(7717--'a77k) :A_l(l,o,,,,,()).
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Since A is an automorphism n;, # 0 for some jo € {1,...,k}. Pick
w=(0,...,0,wj,,0,...,0) € B*(r)

with entries all zero except in the ji! position and such that |wj,| > 1. Let u = (uq, ..., u,) = p(w)
and note |u1| < 1. Let ¢: R < R¥ be given by «(z) = (z,0,...,0). Let ¢p: RF x B2™(r) — B>™(r)
and ¢y : RF x Z?" — Z2" be the standard actions of R¥. Then for z € R

p(dB(A™ 0 u(z),w)) = ¢z(u(), p(w)) = dz(e(x), u).
Thus
(3) p({(0,...,e*"ow; ,0,...,0) |z € R}) = { (e*uy,up,...,up) | v € R}
and since p is injective and 7;, # 0 this means that u; # 0. Let

Sg = {(0,...,0,a,0,...,0) € B (r) | |a| < |wj,| }
where « is in the j{! position and

SZ = { (/Bau27" : 7un) € ZQn | ‘ﬁ| < ‘U1| }

Equation (3) implies that p(9Sg) = 0S5z and since p is an embedding this means 0(p(Sg)) = 95z.
Since p(Sg) and Sz have the same boundary, wy is closed, and Z2?" has trivial second homotopy

group,
J wn Jon

p(SB)
Finally, integrating over z we have

f dzAdzZ = fwB—fpwz— f wz—fwz—f f dz A dz.
|Z\<\w1| p(SB) 2| <|u1]

This implies that 1 < |w;| = |u1| < 1, which is a contradiction.

It follows from the proof that cj” (B2) = cgb’k(Z%) =1.

Proposition 2.8. Let M = (5?)" with symplectic form wyr = 5 > iy dhy Adb; where h; € [—1,1],
0; € [0,2m), i =1,...,n, are the standard height and angle coordinates. Let R*, 1 < k < n, act on
M by rotating the first k components. Then

(M) = V2
for all m,k € Z with 1 <k <m < n.
Proof. The map p: B2"(v/2) N Vs given by

p(rlei'91 rnelen) (01,7“% -1,... ,Hn,ri -1)

is a symplectic R"-embedding, so ¢ (M

Fix k,m,n € Z satisfying 0 < &k < m
embedding for some r > 0. Let

Bj :{(hz,el)le eM | h; € {:l:l} 1fz<k:andz7éj}
for j=1,...,k. For R € (0,r) let
Ar ={(2,0,...,0) € B*™(r) | |2| < R}.

Every point in Ag, except at the identity, has the same (k — 1)-dimensional stabilizer in R* so
there exists jo < k such that p(Agr) C Bj, for all R € (0,r). Write p = (H;,0;)}—; and consider

coordinates (r,6) on Ag given by (re'?,0,...,0) = (r,6). For i # jy this means that H; is constant
5
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if 1 < k and the R"-equivariance of p implies that H; and ©; are independent of § if ¢ > k. Thus if
i€ {1,...,n} and i # jo then

j dh; A d6; _de AdO; =0

P(AR)
for R € (0,7). Therefore,
1
= [wn :jwM =< | dhj,ndoj + 5 Z | dninas; | <5 [ dhnab=ox
p(AR 175]0 (AR) 52

for any R € (0,7). This implies that r < /2 so
V2 < (M) < epF (M) < V2
for any k,m,n € Z satisfying 0 < k < m < n. O

r>1
\_/
RN

FIGURE 1. A symplectic R-embedding.

Example 2.9. For k,n € Z~q with k < n let M = Z?" with the standard symplectic form. There
are two natural ways in which R* can act symplectically on M given by

dL((t)X_y, (z)y) = (P02, eB22, &P 2y, 2n)
and
(), (z))) = (21,820, Bz 1 2pis ooy 20)
where ¢;: R¥ x M — M for i = 1,2. Let p: M — M be given by
p(2i)y) = <1 ﬁ;ﬂ,, - jzl‘,zg, e T2, .,zn>

similar to the map shown in Figure 1. The map p is well-defined because |z1] < 1 and it is an
RF*-equivariant diffeomorphism because

21

Zl41 : : .
(0, () = (T2 e ey M g

= 02 (O, p((z)10))

for all ¢1,...,t;, € R. Thus the symplectic R¥-manifolds (M,w, ¢1) and (M,w, ¢2) are symplec-
tomorphic via the identity map and RF-equivariantly diffeomorphic via p but they are not R*-
equivariantly symplectomorphic because cll_%’l(M ,w, 1) =1 and cll3’l(M , W, ¢2) = o0. %)
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3. HAMILTONIAN (T* x R"~F)-AcTIONS

In this section we review the facts we need for the remainder of the paper about Hamiltonian
(T* x R"*)-actions and their relation to toric and semitoric systems. Let (M,w) be a symplectic
manifold and G a Lie group with Lie algebra Lie(G) and dual Lie algebra Lie(G)*. A symplectic
G-action is Hamiltonian if there exists a map p: M — Lie(G)*, known as the momentum map,
such that

—d(p, &) = w(X, -)
for all X € Lie(G) where Xj; denotes the vector field on M generated by X via the action of G. A
Hamiltonian G-manifold is a quadruple (M, w, ¢, u) where (M, w, ¢) is a symplectic G-manifold for
which the action of G is Hamiltonian with momentum map p. Let Ham?™ denote the category
of 2n-dimensional Hamiltonian G-manifolds with morphisms given by symplectic G-embeddings
which intertwine the momentum maps. Given f: M — R the associated Hamiltonian vector field
is the vector field Xy on M satisfying w(Xy, ) = —df.

Definition 3.1. An integrable system is a triple (M, w, F') where (M,w) is a 2n-dimensional sym-
plectic manifold and F' = (f1,...,fn): M — R™ is a smooth map such that fi,..., f, pairwise
Poisson commute, i.e. w(Xy,,Xy,) = 0 for all 4,5 = 1,...,n, and the Hamiltonian vector fields
(Xt)p,-- - (Xf,)p are linearly independent for almost all p € M.

Let 72" denote the set of all 2n-dimensional integrable systems for which the Hamiltonian vector
fields of the components of the momentum map are complete and define an equivalence relation ~7
on this space by declaring (M,w, F) and (M’ &', F') to be equivalent if there exists a symplecto-
morphism ¢: M — M’ such that F — ¢*F’: M — R™ is constant. In this paper we always assume
the Hamiltonian vector fields of the components of the momentum map are complete, which is
automatic if M is compact or if F' is proper.

3.1. Hamiltonian R™-actions and integrable systems. Let (M,w,F = (fi1,...,fn)) be an
integrable system such that each X, is complete and for i = 1,...,n let Yl M — M denote the
flow along Xy,. The Hamiltonian flow action ¢p: R™ x M — M, given by ¢p((ti,...,tn),p) =

? o...09in(p), defines a Hamiltonian R™-action on M. The action of G on M is almost everywhere
locally free if the stabilizer of p is discrete for almost all p € M. Let FSymp?™®" be the space of
R"™-manifolds on which the action of R™ is Hamiltonian and almost everywhere locally free and let
~gn denote equivalence by R™-equivariant symplectomorphisms.

Lemma 3.2. Let Xy,..., X, be vector fields with commuting flows on an m-manifold M, with
n <m. Let R™ act on M by ¢((t1,...,tn),p) = il o...ottn(p) where ¢! is the flow of X;. Then,
for p € M, the vectors (X1)p, ..., (Xn)p € TpM are linearly independent if and only if the stabilizer
of p under the action ¢ is discrete.

Proof. If (X1)p, ..., (X,)p are linearly independent then, since they have commuting flows, there is
a chart (U, g), with U C M and g : U — R™, such that g=': g(U) — U satisfies

g Mty 0, 0,000, 0) = B((t1, -+ -y t0), D)
for any (t1,...,t,,0,...,0) € g(U). Thus g(U) is an open neighborhood of the identity in R™ and
there exists no non-zero point in g(U) which fixes p, so the stabilizer of p under the action of R™ is
discrete. On the other hand, if (&1)p,..., (X,), are linearly dependent, there exist ¢1,...,t, € R
not all zero such that Y " | ¢;(X;), = 0. Thus (aty,...,at,) € R™ fixes p for all @ € R and so the
stabilizer of p is not discrete. ]

Proposition 3.3. Let ¥ be the map which takes an integrable system on M to M equipped with
its Hamiltonian flow action. Then

1 I /mg — FSymp?*" [mps
7



s a bijection.

Proof. By Lemma 3.2 we know that the Hamiltonian flow action must be almost everywhere locally
free because the Hamiltonian vector fields of an integrable system are by definition independent
almost everywhere. Next suppose that R™ acts Hamiltonianly on M in such a way that the action
is almost everywhere locally free. Since the action is Hamiltonian there exists a momentum map
w: M — Lie(R™)*. Define F' = (f1,..., fn): M — R" by F = Aoy where A: Lie(R")* — R" is the
standard identification which is induced by the standard basis {eq,...,e,} of R". These functions
Poisson commute because action by the components of R” commute and are linearly independent
at almost all points because the group action is almost everywhere locally free (Lemma 3.2). Thus,
(M, w, F) is an integrable Hamiltonian system as in Definition 3.1. Let {v1,...,v,} be the standard
basis of Lie(R™) = R™ induced by the standard basis of R™. Let vy; denote the vector field on M
generated by v € Lie(R") via the action of G. Then (u,v;) = fi: M — R so dfi = w((vi)m, ")
which means that the Hamiltonian vector field associated to f; is (v;)as. Thus the Hamiltonian
flow action related to F' is the original action of R". O

Here we fix the identification between Lie(T™)* and R™ that we will use for the remainder of the

paper. We specify our convention by choosing an epimorphism from R to T!, which we take to be
x> e2Vle,

3.2. Hamiltonian T*-actions. Atiyah [I] and Guillemin-Sternberg [10] proved that if (M, w, ¢, i)
is a compact connected Hamiltonian T*-manifold, then u(M) C Lie(T*)* is the convex hull of the
image of the fixed points of the T*-action. The case in which ¥ = n and the torus action is
effective enjoys very special properties, and in such a case (M,w, ¢, u) is called a symplectic toric
manifold, or a toric integrable system. An isomorphism of such manifolds is a symplectomorphism
which intertwines their respective momentum maps. We denote by HamQT"’Tn the category of
2n-dimensional symplectic toric manifolds with morphisms as symplectic T"-embeddings and we
denote equivalence by toric isomorphism by ~t. In general being an invariant is weaker than being
monotonic, but in the case of toric manifolds these are equivalent because symplectic T"-embeddings
between toric manifolds are automatically T"-equivariant symplectomorphisms. Delzant proved [7]
that in this case u(M) is a Delzant polytope, i.e. simple, rational, and smooth, and that

v Ham%n’Tn/%T — Pr
(M, w, ¢, p)] = p(M)

is a bijection, where P denotes the set of n-dimensional Delzant polytopes. Let Ham?™T" —

Symp?» ™" be given by (M,w, ¢, i) — (M,w, ¢) and let Symp?rn’w denote the image of Ham%n’w
under this map. Also let ~1 denote equivalence on Symp%"’w by T"-equivariant symplectomor-

phisms.

3.3. Hamiltonian (S! x R)-actions. We say that an integrable system (M,w,F = (J,H): M —
R?) is a semitoric integrable system or semitoric manifold if (M,w) is a 4-dimensional connected
symplectic manifold, J is a proper momentum map for an effective Hamiltonian S'-action on M,
and F' has only non-degenerate singularities which have no real-hyperbolic blocks (see [21, Section
4.2.1]). A semitoric integrable system is simple if there is at most one singular point of focus-
focus type in J~!'(z) for each # € R. Let (M;,w;, F; = (J;, H;)) be a semitoric manifold for
i =1,2. A semitoric isomorphism between them is a symplectomorphism p: M; — My such that
p*(J2, Hy) = (J1, f(J1, H1)) where f: R2 — R is a smooth function for which 88—13;1 is everywhere
4,51 xR

nonzero. Let Hamgp denote the category of simple semitoric systems and let =g denote
1 1
equivalence by semitoric isomorphism. Let Sympég *B denote the image of Hamé%g *B inder
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the map Ham*5' *R Symp4’S1X1R given by (M,w,¢,u) — (M,w,¢) and let ~gp denote the

. 4,8 xR . . 4,5TxR
equivalence on Sympgr inherited from ~gr on Hamgy ™.
The number of focus-focus singular points of an integrable system must be finite [23], and we
denote it by my.
3.3.1. Invariant of focus-focus singularities. It is proven in [22] that the structure in the neighbor-

hood of a fiber over a focus-focus point is determined by a Taylor series. Let R[[X, Y]] denote the
space of real formal Taylor series in two variables X and Y and let R[[X,Y]]p C R[[X, Y]] denote
the subspace of series ZZ >0 0;j X 'YJ which have 00,0 = 0 and og1 € [0,27). The Taylor series
invariant consists of my elements of R[[X, Y]]y, one for each focus-focus singular point.

3.3.2. Affine and twisting-index invariants. Denote the set of rational polygons in R? by Polyg(R?).
For )\ € R let £y denote the set of (z,y) € R? such that x = ), Let Vert(R?) denote the collection
of all £, as \ varies in R. Let m;: R? — R denote the projection onto the i** coordinate for i = 1, 2.
Notice that elements of Polyg(R?) can be non-compact. A labeled weighted polygon of complexity
my € Zxo is an element

Ay = (A, (€r;, €, k)7 ) € Polyg(R?) x (Vert(R?) x {—1,+1} x 2)™/

with mingea m(s) < A1 < ... < Am; < MaXsea 71(s). We denote the space of labeled weighed
polygons by £LWPolyg(R?). Let

(4) T:(} ?)ESLg(Z)

and for vy, ..., v, € Z" let det(vy,...,v,) denote the determinant of the matrix with columns given
by v1,...,vn.

hi1 €R

{y, € Vert(R?) lx, € Vert(R?)
£1 € {—1,+1} g € {—1,+1}
ki €Z ko € Z

(51)> € R[[X,Y]lo (S2)> € R[[X,Y]]o

FIGURE 2. The complete invariant of a semitoric system is a collection of these objects.

The top boundary of A € Polyg(R?) is the set 9"PA of (x9,70) € A such that yg is the maximal
y € R such that (z9,y) € A. A point p € OA is a vertex of A if the edges meeting at p are not
co-linear. Let p be a vertex of A and let u,v € Z? be primitive vectors directing the edges adjacent
to p ordered so that det(u,v) > 0. Then we say that:
- p satisfies the Delzant condition if det(u,v) = 1;
- p satisfies the hidden condition if det(u, Tv) = 1;
- p satisfies the fake condition if det(u,Tv) = 0.

We say that A has everywhere finite height if A N £, is either compact or empty for all A €
R. A primitive semitoric polygon of complexity my € Zzo [12] is a labeled weighted polygon
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A, (by;,€5,k5)52,) € LWPolyg(R?) such that:

1) A has everywhere finite height;

2)ej=+1forall j=1,...,my;

3) any point in 9*PA N/ ), for j =1,...,my satisfies either the hidden or fake condition (and is
referred to as either a hidden corner or a fake corner, respectively);

(4) all other corners satisfy the Delzant condition, and are known as Delzant corners. The set of
primitive semitoric polygons is denoted by Polyggr(R?)o.

For my € Zxo let G, = {—1,41}™ and G = {T* | k € Z} where T is as in Equation (4). For
AeRand k € Zlet tZ : R? — R? denote the map which acts as the identity on the left of the line
¢y and acts as T relative to an origin placed arbitrarily on the line ¢y to the right of £5. Now for
@=(u1,..., un,) € {~1,0,1}" and X = (A1,..., Am,) € R™ define t9: R? — R? by

(
(
(
(

= Um

U u1l f
- = 0...0 .
p) t@)\l tfxmf

We define the action of an element of Gy, X G on a labeled weighted polygon by
()72, T5) - (A, (O 5. K5)j2h) = (5 0 THA), (b, e b + Kj);2)

J/3=D J= J
here X = (A1,..., Am,) and @ = (=99 This acti h ity of A
where A = (A1,..., Ap,) and @ =~ . This action may not preserve the convexity o
but it is shown in [20, Lemma 4.2] that the orbit of a primitive semitoric polygon consists only of

elements of £LWPolyg(R?).

Definition 3.4 ([20]). A semitoric polygon is the orbit under G,,, X G of a primitive semitoric
polygon.

The collection of semitoric polygons is denoted by Polyggr(R?) = (G, +xG) -Polyggr(R?)g. The
orbit of Ay = (A, (£, €, k:j)gn:fl) € Polyggr(R?) is given by

[Aw] = { (tEo TH(A), (6,1 = 2uy, k+ k)2 @ € {0,137 k € Z}.

The corners of any element of [A] are identified as hidden, fake, or Delzant similar to the case of
the primitive semitoric polygon.

3.3.3. Volume invariant. For each j = 1,...,my we let h; denote the height of the image of
the j* focus-focus point from the bottom of the semitoric polygon. Formally, this amounts to
hi,..., him, € R satisfying 0 < h; < length(ma(ANLy,)) for each j =1,...,my.

3.3.4. Classification. Semitoric systems are classified by the invariants we have just reviewed. That
is, the complete invariant of a semitoric system is an integer my, my Taylor series, a collection of
my real numbers, and a labeled weighed semitoric polygon. A single element of this orbit is shown
in Figure 2. The complete invariant is an infinite family of such labeled weighted polygons, formed
by a countably infinite number of subfamilies of size 2™/ each parameterized by € € {—1,+1}"/
(Figure 3).

Definition 3.5 ([20]). A semitoric list of ingredients is given by:

(1) the number of focus-focus singularities invariant: my € Zx;
(2) the Taylor series invariant: a collection of my elements of R[[X, Y]]o;
(3) the affine and twisting index invariants: a semitoric polygon of complexity my, the (G, ;X
G)-orbit of some Ay, = (A, (L), €, kj);gl) € Polyggr(R?)o;
(4) the volume invariant: a collection of real numbers hy, ..., hy,, € R such that 0 < h; <
length(ma(A N Ly,)) for each j =1,...,my.
10



Let I denote the collection of all semitoric lists of ingredients. In [20] the authors prove that
semitoric manifolds modulo isomorphisms are classified by semitoric lists of ingredients, that is,

(5) ®: Ham&? % /agp — 1

(M7w7 (Jv H)) = (mf7 ((S])oo)ybzfla [Aw]7 (h]);}il)
is a bijection, where ® is the assignment of the five invariants to the system (M,w, (J, H)) described
in detail in [20].

£=(+1,+1)

g=(+1,-1)

B

&= (-1,+1)

(I

ANNL

|

k=(-1,0) k=(0,1) k=(1,2)

FicUure 3. Complete invariant of a semitoric system.

4. SYMPLECTIC T™-CAPACITIES

In this section we construct a symplectic T"™-capacity on the space of symplectic toric manifolds.
Recall Hamgfn’T ~T is the moduli space of 2n-dimensional symplectic toric manifolds up to T"-

-equivariant symplectomorphisms which preserve the moment map. In [7, 16, 17, 19] the authors
study the toric optimal density function €): Ham2Tn’T ~t1 — (0, 1], which assigns to each symplectic

toric manifold the fraction of that manifold which can be filled by equivariantly embedded disjoint
open balls. This function is not a capacity because it is not monotonic or conformal. Next we
study a modified version of this function which is a capacity.

For M € Symp?*™" by a T"-equivariantly embedded ball we mean the image ¢(B%"(r)) of a
symplectic T"-embedding ¢: B2"(r) L% M for some r > 0. A toric ball packing of M [10] is a
disjoint union P = | | ¢ 4 Ba Where B, C M is a symplecticly and T"-equivariantly embedded ball
in M for each o € A, where A is some index set. That is, for each «a € A there exists some r, > 0
and some symplectic T"-embedding ¢, : B*"(ry) " M such that

$a(B*(14)) = Ba.
2n,T"

An example is shown in Figure 4. Recall the toric packing capacity 7 : Symp=, — [0, 0o] defined
in Equation (2). In the following for M € Symp?™™" let ¢ (M) be defined by first lifting the
action of T™ on M to an action of R™ and applying the usual cg’n to the resulting symplectic

R™manifold.
11



FIGURE 4. Toric ball packing of S? by symplectic S'-disks.

Lemma 4.1. Let M € SymeTn’Tn, N € Symp?>™»"™ be such that the T"-action on N has { € Z>o
fized points. If there is a symplectic T"-embedding M < N then T (M) < /2cg™(N).

Proof. Since the center of B2*(r), r > 0, is a fixed point of the T"-action we see that the maximal
number of such balls that can be simultaneously equivariantly embedded with disjoint images into
M is the Euler characteristic x (M) of M, which is the number of fixed points of the T"-action on M.
Each of these balls has radius at most ¢y (M). For r > 0 we have that vol(B2*(r)) = r?"vol(B*").
Therefore

(T(M))?"vol(B*") < x(M)vol (B (™ (M))) = x(M)(cly™(M))*"vol(B>").

Since T"-embeddings send fixed points to fixed points and M I N we know that x(M) < ¢
Furthermore, since M 2% N and cg’n is a symplectic T"-capacity by Theorem 1.1 we have that
g™ (M) < g™ (N). Hence T (M) < £72"cy™(N). O

Proposition 4.2. The toric packing capacity is a symplectic T"-capacity on SymeTn’Tn.

Proof. Let M € SymeTn’Tn with x(M) € Zsg fixed points and fix any ordering of these points.
Notice that 7 (M) is the supremum of

{72 | 7€ RX(M) Py (7) € M is a toric packing }
where 77 = (r1,...,7y () € RX(M),

X(M) /2

#llz0 = | D 73"
j=1
is the standard ¢*"-norm, and Pp(7) C M is the toric ball packing of M in which B?"(r;) is

embedded at the ;' fixed point of M for j = 1,...,x(M). Suppose that p: B2*(r) I M s
a symplectic T"-embedding into (M,w,®) for some r > 0. Then for any A € R\ {0} the map

ox: B2 (A7) I M given by

pa(z) = p(z/IN)
is a symplectic T"-embedding into (M, Aw, ¢). Thus if Py,(7) is a toric packing of (M,w, ¢) then
Prr(IA[ 71,5 [Al 7y (ary) s a toric ball packing of (M, \w, ¢) for any A € R\ {0}. This and the fact
that [|A7]|2n = [A| ||7]|l2n for all 7 € RX(M) and X € R imply that T is conformal. Now suppose that
M, M' e Sympgfn’w and p: M < M'. If P C M is a toric ball packing of M then p(P) C M’ is
a toric ball packing of M’ of the same volume so 7 (M) < T(M') and we see that 7 is monotonic.

Finally, suppose that there is a symplectic T"-embedding M I z2n, Then, since Z?" has only
one point fixed by the T"-action and recalling that cg’"(ZQ”) =1, it follows from Lemma 4.1 that

T(M) < (1) (22 = 1.
12



Finally, suppose that p: B?" N Misa symplectic T"-embedding. Then P = p(B?") C M is a
toric ball packing of M and thus

Hence T is tame. O

Example 4.3. Let M € Symp%"’w. In [17] it is shown that there exists a Z-valued function

Embys: R>g — [0, n!x(M)] such that the homotopy type of the space of symplectic T"-embeddings
from B2?"(r) into M is given by the disjoint union of Emby;(r) copies of T". Thus, for each r € R
I, . om, T .
we may define a symplectic T"-capacity & on Sympy~  given by
&+ Sympa™" = [0, o]
(M, w, ¢) — (vol(M))=Emby((vol(M))nr).

Since Emby is invariant up to T"-equivariant symplectomorphisms [17] and symplectic embeddings
in Symp~, are automatically symplectomorphisms we see that &, is monotonic and it is an
exercise to check that it is conformal. It is tame because the space of symplectic T"-embeddings

of B?" into Z*" is homotopic to n! disjoint copies of T". @

5. SYMPLECTIC (S! x R)-CAPACITIES

In this section we construct a symplectic (S x R)-capacity on the space of semitoric manifolds.
Let (M,w, F = (J, H)) be a simple semitoric manifold with my focus-focus singular points and let
{)‘j}?zfl C R be the image under J of these points ordered so that A\ < Ao < ... < )\mf. Let
(A\j,y;) be the image under F' of the j! focus-focus singular point and for € € {+1} let Ejj be those

(Aj,y) € £y, such that ey > ey;. Let 0F = (5, Y. U E;Tn’; A homeomorphism

f: F(M) = f(F(M)) C R?
is a straightening map for M [23] if for some choice of € € {+1}"™f we have the following: f] F(M)\£
is a diffeomorphism onto its image; f[py)\ 7 is affine with respect to the affine structure F(M)
inherits from action-angle coordinates on M and the affine structure f(F(M)) inherits as a subset
of R?; f preserves J, i.e. f(z,y) = (z, f®(z,9)); f|F(M)\e€ extends to a smooth multi-valued map
from F (M) to R? such that for any ¢ = (z9,y0) € £¢ we have
lim df(z,y) =T lm df(z,y);
(z,y)—c

(z,y)—c
<o r>x0

and the image of f is a rational convex polygon. Recall that 7" is the matrix given in Equation (4).

We say f is associated to €.
Let ¥ € AGL2(Z) be the subgroup including powers of 7' composed with vertical translations. It

was proved in [23] that a semitoric system (M, w, F') has a straightening map f: M — R? associated
to each € € {£1}"f, unique up to left composition with an element of T. Define
(6) Fu ={foF| fis a straightening map for M }.

If V,: R? — R? denotes vertical translation by a € R, then
{F(M)| F e Fy}={Va(A) CR?| Ais associated to M and a € R}

where a polygon is associated to M if it is an element of the affine invariant of M. Up to vertical
translations the set Fjs is the orbit of a single non-unique function under the action of G,, ;X g.
13



If F € Fy then there exists some € € {—1,+1}™f such that F|,;-: M€ — R? is a momentum map
for a T2-action ¢z: T? x M€ — M€ where M€ = M \ F~1(£°).

Corollary 5.1. The manifold M€ has on it a momentum map for a Hamiltonian T?-action unique
up to G. Thus M€ € Symp4’T2 and the given T?-action is unique up to composing the associated
momentum map with an element of G.

We call such actions of T? on M€ induced actions of T2. Given any p: N — M with p(N) c M¢
define pz: N — M€ by pe(p) = p(p) for p € N.

Definition 5.2. Let (M, w, F') be a semitoric manifold and let (N, wn, ¢) € Symp4’T2. A symplectic
embedding p: N < M is a semitoric embedding if there exists € € {£1}"f and an induced action

¢z : T2 x Mz — Mg such that p(N) € M€ and pg: (N,wy, d) SN (M€, w, ¢z) is a symplectic
T?-embedding.

Let (M,w, F') be a semitoric manifold. A semitoric ball packing of M is a disjoint union P =
| lpea Ba where B, C M is a semitoricly embedded ball in M. The semitoric packing capacity
ST: SympLSlng]R — [0, 00] is given by

sup{ vol(P) | P C M is a semitoric ball packing of M })‘11

ST(M) = ( vol(BY)

In order to show that ST is a (S' x R)-capacity we need the following lemmas.

Lemma 5.3. Fori=1,2 let (M;,w;) be a symplectic manifold, let f;: M; — R be a function, and
let Xy, denote the Hamiltonian vector field of f; on M;. If p: My — My is a symplectomorphism
such that p, X = Xy, then f1 — p* fo: My — R is constant.

Proof. Notice that
A(p* f2) = p*(Afz) = p" (g, 2) = P (1p.y, 2)
= wa(psXpy, pu()) = (PTw2) (Xpy, 1) = Ly w1 = dfy,
thus f1 and p* fy differ by a constant. O
Lemma 5.4. Let (M;,w;, F; = (J;, H;)) be semitoric manifolds for i =1,2. If p: M, <M> My is
a symplectic (S' x R)-embedding with respect to the Hamiltonian flow action on each system, then
p*Jy=eJi+cy and p*Hy=aJ; +bHy +cy
for some e € {£1} and a,b,cy,cy € R such that b # 0.

Proof. Since p is S! x R-equivariant there exists A € Aut(S' x R) such that p(¢(g,m1)) =
#(A(g),p(m1)) for all g € St x R and m; € Mj. Associate S' x R with R/Z x R and give it
coordinates (z,y) € R%2. Then A € Aut(S' x R) and A continuous means that A descends from a
linear invertible map from R? to itself, which we will also denote A € GL2(R). Write A = (A;;) for

A;j € Rand 4,5 € {1,2}. The automorphism A sends the identity to itself so A g € Z x {0}

for all choices of n € Z. This implies that A7 € Z and Ay = 0. Since A is invertible and
A7t € Aut(S? x R) we see that (A1)~ € Z and so Aj; = £1. Since A is invertible and upper
triangular we know that Aso # 0.

For a function f: M; — R let Xy denote the associated Hamiltonian vector field on M;, ¢ = 1,2.
Also, for v € g = Lie(S! x R), thought of as the tangent space to the identity, let vy, denote the
vector field on M; generated by v by the group action. Endow g with the coordinates (a, 3) so that
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the exponential map will send (o, ) € g to (o, 8) € R/Z x R. Now notice that X;, = (1,0),s, and
X, = (0,1) -
For m; € M;, i = 1,2, such that p(mi1) = mg we have

d
(el o m)) = 3 (90101 ma) = (TAG,0)), (m2)

Notice that Ty ) = (A11,0) € g. Then p Xy, = (TA(L,0)),, = A11(1,0)ar, = A1 Xp,. Similarly
we see that p. Xy, = A1aXy, + Ao Xp,. By Lemma 5.3 this implies that

By A

d
p*le (mQ) = a

t=0

1
2 14+ Hy +cn

P2 = A1y Jites and prHz = A11Ao Ao
for some cy,cy € R. Recalling that Aj; € {£1} and A1y, Az # 0 take e = (A11)~ !, a = A;ﬁi;,
and b = (Ag)~! to complete the proof. O
Proposition 5.5. The semitoric packing capacity, ST, is a symplectic (S x R)-capacity on
SympélflxR

Proof. The proof that ST is conformal and non-trivial is analogous to the proof of Proposition 4.2,
so we must only show that ST is monotonic. Let (M;,w;, F;) be semitoric for ¢ = 1,2 and suppose
¢: M <M> My is a symplectic (S! x R)-embedding. Recall that action-angle coordinates are local
Darboux charts in which the flow of the Hamiltonian vector fields are linear. Since ¢ is symplectic,
(S! x R)-equivariant, and ¢*(Fy) = A o F} where A: R? — R? is affine (Lemma 5.4), this means
that ¢ sends action-angle coordinates to action-angle coordinates. Since semitoric embeddings are
those which respect the action-angle coordinates, given any semitoric embedding p: B%*(r) < M
the map ¢ o p: B¥*(r) < Mj is a semitoric embedding. It follows that ST (M;) < ST (Ms). O

6. CONTINUITY OF SYMPLECTIC T"-CAPACITIES

In this section we study the continuity of the symplectic T"-capacity constructed in Section 4.
We will outline the procedure used in [18] to construct a natural metric on the moduli space of
toric manifolds. Since V': Hamgfn’w ~T1 — Pr is a bijection we can define a metric space structure
on Ham?rn’w /~t1 by defining a metric on Py and pulling it back via ¥. A natural metric on Pr is
given by the volume of the symmetric difference. For A, B C R" let AxB = (A\ B)U(B\ A) denote
the symmetric difference and let A denote the Lebesgue measure on R™. For A, Ay € Pr define
dp(A1,Ag) = MAy * Ay). Now let dp = U*dp. In [18] the authors show that (Ham?rn’w/%T, dr)
is a non-locally compact non-complete metric space.

The map

Ham?f"7Tn/%T — Symp?f"7Tn/~T
given by [(M,w, ¢, u)] — [(M,w, ¢)] is a quotient map and thus we can endow Sympgfn’Tn/NT with
the quotient topology. Since Symp%n’w /~1 is a quotient of Symp%n’w we can pull the topology
up from Syrnprzrn’qrn /~T to Symp%n’w by declaring that a set in Symp2Tn’Tn is open if and only if
it is the preimage of an open set from Symp%n’w/ ~7 under the natural projection. Two points
in Sympgfn’w are not separable if and only if they are T"-equivariantly symplectomorphic. Thus a
map c: Symp%n’Tn — [0, 0o] which descends to a well-defined map ¢ on Symp%”’w /~ is continuous
if and only if the map
é: Hamy""" Jap — [0, o0

is continuous, where ¢ is defined by the following commutative diagram:
15



Ham?rn’w _ Symp%n’w —— [0, 00]

l |

2n,T™ 2n,T™
Hamy"" /~p — Sympy” /~7

Next we define an operation on Delzant polytopes. Let n € Z~g. For g € R”, wy,...,w, € Z",
and ¢ > 0 define
(7) cho(wl,...,wn) = {a}(] —i—zjtjwj ’ t1,...,tn € R>0,th]’ > E}.

Suppose that A € Pr and zg € R" is a vertex of A. Let u; € Z™, i = 1,...,n, denote the
primitive vectors along which the edges adjacent to zy are aligned. The e-corner chop of A at xg
is the polygon Aj € Pr given by Af = ANH (u1,...,u,) where ¢ is sufficiently small so that
AZ, has exactly one more face than A does as is shown in Figure 5. One can check that if A € Pr

Zo

A | —> | As

Hs,
FIGURE 5. An e-corner chop at a vertex zg of A for some € > 0.

then A7 € Pr. Notice that lim. o dp(A, A% ) = 0. This means that given any element of Pr with
N vertices, corner chopping can be used to produce other polygons which are close in dp and all
polygons produced in this way will have more than N vertices. Let P%V denote the set of Delzant
polygons in R™ with exactly NV vertices. We will later need the following.

Proposition 6.1 ([7]). Let N € Z~y and A € P%V. Any sufficiently small neighborhood of A is a
subset of U(N/>N)77%V,.

FIGURE 6. (a) An image of A(1) C R%. (b) An image of an admissible, but not
maximal, packing.

We study ball packing problems about symplectic toric manifolds by instead studying packings of
the associated Delzant polygon. Let A € Pr be a Delzant polytope. Let AGL,(Z) = GL,(Z) x R™
denote the group of affine transformations in R™ with linear part in GL,(Z). For r > 0 let
A(r) = Conv{rey,...,re,, 0} \ Conv{rey,...,re, } where Conv(E) denotes the convex hull of the
set E C R™ and {ey,...,e,} denote the standard basis vectors in R™. Following [1(], a subset X
of A is an admissible simplex of radius r > 0 with center at a vertex xog of A if there exists some
A € AGL,,(Z) such that:

(1) AQAG) = 5
16



(2) A(0) = wo;
(3) A takes the edges of A(r"/?) meeting at the origin to the edges of A meeting at xg.

An admissible packing of A is a disjoint union R = | | ¢ 4 Xo C A where each X, is an admissible
simplex for A. This is illustrated in Figure 6. The half-plane 5 given in Equation (7) is designed
so that that an e-corner chop on a Delzant polytope corresponds to the removal of an admissible
simplex of radius e.

The function : Symp?rn’Tn/NT — (0, 1] given by

supq{ vol(P) | P is a toric ball packing of M }

UM) = vol(M) ’

known as the optimal toric density function, has been studied in [7, 16, 19]. In particular, in [7]
the first and third authors of the present article studied the regions of continuity of 2 and proved
the n = 2 case of Theorem 1.2 part (i). They stated the theorem in terms of €2, while we state it
in terms of T.

Let vol: Sympgrn’w — R denote the total symplectic volume of a symplectic toric manifold and let
volp: Pt — R denote Euclidean volume function of a polytope in R™. Let (B?"(r),ws, ¢, u) €

Ham%n’w denote the standard ball of radius » > 0 in C" with the standard action of T" and

suppose that (M,w, ¢, u) € Ham%"’qrn. Let Agp = up(B?*(r)) and A = u(M). Then, as shown
in [16], vol(M) = n!z"volp(A) and if f: B2"(r) % M is a symplectic T"-embedding then

vol(B?"(r)) = vol(f(B?"(r))) = n!x"volp(u o f(B*(r))) = n!z"volp(Ap).

Theorem 6.2 ([10]). Let (M,w,¢,un) € Ham%”’w and let A = p(M). Suppose ¢: B>"(r) < M
is a symplectic T™-embedding for some v > 0. Then pu(d(B**(r))) C A is an admissible simplex of
radius 2. Conversely, if ¥ C A is an admissible simplex of radius r* then there exists a symplectic
T"-embedding ¢: B>*(r) < M such that u(¢p(B**(r))) = X.

Moreover, if P is a toric ball packing of M, then pu(P) C A is an admissible packing of A.
Conversely, if R is an admissible packing of A then there exists a toric ball packing P of M such
that p(P) = R.

Since there is a toric ball packing P of M related to an admissible packing R of A by u(P) = R,
it follows that vol(P) = n!n"volp(R). To study packing of the manifold we will study packing of
the polygon. Thus, we define wr: P — (0,00) by

71 (A) = sup{ volp(R) | R is an admissible packing of A }.

Suppose that A € PY with vertices v1,...,o5 € R" and let 7h(A) be the supremum of volp(R)
over all admissible packings R of A in which v; ¢ R.
The following result generalizes [7, Theorem 7.1] to the case n > 3.

Theorem 6.3. Fixn € Z~g. For N € Z>1 and let 73%7 denote the set of Delzant polygons in R™
with exactly N vertices. Then:

(1) mp is discontinuous at each point in Pr;
(2) the restriction 7rT|p§V is continuous for each N > 1;

(3) if A € pgrv then P{y is the largest neighborhood of A in Pt in which w1 is continuous if
and only if mo(A) < wp(A) for all 1 <i < N.

Proof. First we show (1). Let A € PY and for any small enough ¢ > 0 perform an e-corner chop
(as in Section 6) at each corner to produce A, € ’P%N . Any admissible packing of A, can have at

most 2N simplices and each simplex must have one side with length at most € while the other sides
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are universally bounded by the maximal side length of A. The size of such simplices decreases to
zero as € does, so lim._,o m7(A:) = 0. Hence

lim dp (A, AL) =0
e—0

but
lim |7mp(A) — mp(A)| = 7 (A) > 0,

e—0
so 7T is discontinuous at A.
Now we prepare to show part (2). For any vy, ...,v, € Z" let [v1,...,v,] denote the n x n integer
matrix with i*" column given by v; for i = 1,...,n. Let n: SL,(Z) — GL,(R) given by
V1 Un
Voo yUp]) = | —, ..., —
77([ 1 ; n]) |:”U1‘7 5 "Un|:|

take a nonsingular integer matrix to its column normalization. Notice for any A = [v,...,v,] €
SL,(Z) that
det(A) = |v1|- - v - det(n(A)).

Suppose A € Pr is n-dimensional. In a neighborhood around each vertex the polytope is described

by a collection of vectors vy, ...,v, € Z" with det(vy,...,v,) = 1 along which the edges adjacent
to this vertex are directed. So, associated to any vertex of a Delzant polytope, there is a matrix
A € SL,(Z) given by A = [v1,...,v,] which is unique up to even permutations of its columns and

thus, though A is not unique, the values determined by det(A) and det(n(A)) associated to a vertex
are well-defined. Fix A € P& and {A; 1524 C PY such that
J—00
For j large enough for each vertex V' of A there must be a corresponding vertex V; of A; so that
Vi =V as j — oco. Let A € SL,(Z) be a matrix corresponding to V' and let A; € SL,(Z) be
a matrix corresponding to V; for j € Z large enough. In particular, convergence in dp, which is
convergence in L!(R™), implies that locally these vertices must converge, so Equation (8) implies
that
lim [det(n(4)) — det(n(4,))] = 0.

Now we are ready to prove (2) by showing that the collection of possible vertices of Delzant
polytopes is discrete. Fix A € P%V with a vertex V at the origin and let € > 0. Choose § > 0 small
enough so that if A’ € P& with a vertex V' at the origin then dp(A, A’) < § implies that

(9) |det(n(A)) — det(n(A")] <e,

where A € SL,(Z) is a matrix associated to V and A" € SL,(Z) is a matrix associated to V'.
Suppose that ¢ < det(n(A)). Now let A" = [wy,...,w,] for w; € Z", i = 1,...,n. These are all
nonzero integer vectors so |w;| > 1 for ¢ = 1,...,n. For each i we have

1 =det(A") = |wy||wa] ... |w,|det(n(A") > |w;| det(n(A"))
and so by Equation (9)
1 1
< .
det(n(A’)) = det(n(A)) —e
Thus each w; € Z™ has length at most (det(n(A)) —e)~!, a value which does not depend on A’, and
so to be within § of A the vectors directing the edges coming out from the vertex V’ of A’ must
be chosen from only finitely many options. This means the set of possible local neighborhoods of
vertices is discrete. Thus, for small enough 6 > 0 we conclude that dp(A,A’) < § implies that
there exist open sets U,U’ C R™ around the vertices V' and V' such that
ANU=F.(A'nU")
18
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where F.: R — R is a translation by some fixed ¢ € R™. Now, let A € P%V be any Delzant polytope
in R™ with NV vertices. In a sufficiently small dp-neighborhood of A all polytopes must have the
same angles at the finitely many vertices by the argument above. Thus they are all related to A
by translating its faces in a parallel way (which includes as a special case rescaling the polytope),
which continuously changes 7. This proves (2) because 7 is continuous on such families.

Finally we show (3). Let A € PX and assume that 7r(A) = 74 (A) for some i € {1,...,N}.
Then there is an optimal packing of A which avoids the i*! vertex. For ¢ > 0 let A, € PFJFV 1 be the
e-corner chop of A at the i*" vertex. Since the optimal packing of A avoids the i*! vertex, we see
that lim._,o dp(A, As) = 0 and lim._,o 7p(A) = mp(A;) so there is a set larger than PJFV on which
7 is continuous around A.

Conversely assume that A € PY satisfies 74 (A) < 7p(A) for all i = 1,...,n. By Propo-
sition 6.1 we know that any small enough neighborhood of A only includes polytopes with N
vertices and polytopes with more than N vertices, which are produced from corner chops of A.
We must now only show that 71 cannot be continuous on any neighborhood of A which includes
any such polygons. For ¢ > 0 let A, € Pév *1 be the e-corner chop of A at the i vertex. Then
lim._o 77 (A:) = 745(A) < 77 so for small enough corner chops 7r(A.) is bounded away from
mr(A). Thus any set on which 77 is continuous around A cannot include any corner chops of A.
From this we conclude that any such set cannot include polytopes with greater than N vertices.
The result follows since is continuous on all of 73%[ . O

Theorem 1.2 part (i) follows from Theorem 6.2 and Theorem 6.3. In addition, these Theorems

also imply the following result. Let N > 1 and let Symp?rnj’\qfrn denote the set of symplectic toric

manifolds with exactly N points fixed by the T"-action. For (M,w,¢) € Symprzfn}\jfrn with fixed
points p1,...,pn € M let

sup{ vol(P) | P is a toric ball packing of M such that p; ¢ P}) 2

THM) = ( vol(B2n)

Proposition 6.4. The space Sympgrrf}\q,rn is the largest neighborhood of M in Symp?F”vT” in which
T is continuous if and only if T"(M) < T (M) for every 1 <i < N.

Theorem 1.2 part (i) and Proposition 6.4 are illustrated in Figure 7. If n = 2 Proposition 6.4
was proved in [7].

F1cUuRE 7. Continuous families of Delzant polygons on which (a) 7 is continuous
and (b) 7 is not continuous.
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7. CONTINUITY OF SYMPLECTIC (S! X R)-CAPACITIES

In this section we study the continuity of the symplectic (S! x R)-capacity constructed in Sec-
tion 5. In [15] the second author defines a metric space structure on the moduli space of simple
semitoric systems and in this section we will review this structure. We are only interested in the
topology of Sympéflx}R /~sT so, as is suggested in [15, Remark 1.31(3)], we will use a simplified
version of the metric. It is shown that while the simplified version produces a different metric
space structure on Sympé%quR /~gt it induces the same topology on Sympé’flx}R /~gsr as the full
metric [15, Section 2.6].

Let us recall how the metric is constructed, since it is essential for the proofs of the upcoming
results. One has a metric for every invariant (Definition 3.5) and then [15] constructs a “joint”
metric from these. The first metric is the one on the Taylor series invariants, which is given as
follows. A sequence {b,}7°, with b, € (0,00) is said to be linear summable if Z —ognby < 00. Let

{b,} be any such sequence and define d{b[[)}( Yo ((S1)°°, (S*)>) to be

™= |Ué,l - 08,1} 7b1)

Zmin ( ’al-l’j - 02j| ,bitj) + min ( ‘0671 =
i,520,(3,5)#(0,1)
where (S%)>® = > i>00i of JXYT e R[X,Y]]p for £ =1,2.
We denote the Lebesgue measure by A and use * to denote the symmetric difference. A measure
v on R? is admissible if it is in the same measure class as A (i.e. ¥ < A and A < v) and there
exists some g: R — R such that the Radon-Nikodym derivative of v with respect to A satisfies
S—K(w y) = g(z) for all z,y € R, where g is bounded and bounded away from ZEero.

Fix an admissible measure v. For my € Z>q and ke Zm let Polygmf ’ ( o denote the set of
(RQ) denote

primitive semitoric polygons with complexity m and twisting index k and let Polygmf '

the set of semitoric polygons Wthh are the orblt of a primitive semitoric polygon in PolygST (RZ)O.
We may define df,: Polygmf ’ (R2) X Polygmf ’ (RQ) — [0, 00) by showing how it acts on orbits [A%]

elements A = (AZ, (4yi, +1,kj) ) € Polygg (R?)o. If ms >0,
J

dp([AL)1A%) = > v(th (AN «th,(A%)

ze{0,1}™f

my,k

and, if my =0,
([ A ]) :V(AI*A2)

7 7 ) ) vi{bn}nl
For I' = (my, ((52)°)7,, [AL] (W)7) €1, i = 1,2 define d {ﬁk} o(I', I?) to be

dp([Al] A2 +Z< {b[)]éy]} ((Sl) (52 )+ ‘hl ‘)
7j=1

if 11, 1% € ]Imf i for some my € Z>o,k € Z™ and otherwise define d;{b%}fzo(ﬂ,p) = 00 (so

systems in different ]Imf i will be in different components of the resulting topological space). The

metric Dst on Sympé?lXR /~sr is the pullback of this one by ®. It was shown in [15, Theorem A]

that the topology induced on (SympélleR /~sT1, Dgr) by the metric does not depend on the choice
of vor {by}. 1.

4,81 % 4,581

/ ~gT is a quotient of Hamgry, *B we can pull the topology up from Hamgr
4,STxR .

Since Hamgrp 4,51 xR

4,81 ><IR

/ST

to Hamgrp by declaring that a set in Hamgyp is open if and only if it is the preimage of an
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,STXR

open set from HamST / ~gT under the natural projection. We endow Symp4 with the quo-

LETXR LSRG hich forgets the momentum map.

STxR

tient topology relative to the map Hamg — Sympgr

4,81 XR

Thus a map c: Sympgr — [0, 0] Wthh descends to a well-defined map ¢ on SympS

/~sT
is continuous if and only if the map ¢: HamST / ~gT — [0, 00] is continuous where ¢ is defined

by the commutative diagram:

4,S'xR 4,51 xR c

Hamg —— Sympgp ——— [0, 0]
| | 7
Haméf xR AT Symp4 St XR/NST

Let Ay = (A, (Ly;, +1, K ) 1) be a primitive semitoric polygon, and let v € A be a vertex.

Definition 7.1. An admissible semitoric simplex of radius r > O with center at v is a subset 3 of
A such that there exist some A € AGL2(Z) and @ € {0, 1} satisfying:

- AAGY) = ()

- A(0) = #(v);

- A takes the edges of A(r"/2) meeting at the origin to the edges of t%(A) meeting at t%(v);

- Y C A" where

—av{ @ ea

An admissible semitoric packing of A, is a disjoint union R = | | ¢ 4 Xa where each X, is an
admissible simplex of some radius, where the radii of the simplices are allowed to be different.

= A;j and (=24 + 1)y > mingy, ) Yo + h;
forsomeje{l,...,mf} '

Such a simplex cannot exist at a fake corner.

FI1GURE 8. An admissible semitoric packing. Here ¢ denotes ti%.

Lemma 7.2 ([17]). Let FB be a momentum map for the usual T™-action on B2"(r), r > 0, and let
(M,w, ¢, F) be a Hamiltonian T"-manifold of dimension 2n. If p: B®*(r) < M is a symplectic T"-
embedding with respect to some A € Aut(T™) then there exists some x € R™ such that the following
diagram commutes:

B (r) —— M
FB lF

9 (At)—ler

R R?
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where (AY)~! + x is the affine map with linear part (AY)~! which takes 0 to x.

In [13] a proper Hamiltonian T™-manifold is a quadruple (Q,w®, FQ, T) where (Q,w®) is a
connected 2n-dimensional symplectic manifold with momentum map F for an action of T" and
I' C Lie(T™)* is an open convex subset with F?(Q) C T and such that F? is proper as a map to
I". A proper Hamiltonian T"™-manifold is centered about p € T if p is an element of each component
of FR(QX) for each subgroup K C T", where Q¥ is the set of all points in @ which are fixed by
the action of all elements of K.

Lemma 7.3 ([13]). Let (Q,w®, FQ,T) be a proper Hamiltonian T"-manifold of dimension 2n. If
(Q,w?, FQ. 1) is centered about p € T and (F?)™1({p}) = {q}, then Q is equivariantly symplecto-
morphic to {z € C" | p+ 37, ’%"277? e I'}, where ni,... 0k € Lie(T™)* are the weights of the
isotropy representation of T on T,Q).

We use Lemma 7.2 and Lemma 7.3 to prove the following.

Proposition 7.4. Let (M,w, F = (J, H)) be a semitoric manifold such that
(ID((Mv w, F)) = (mf7 ((Sj)oo);lzfla [Aw]v (hj);il)

where Ay, = (A, (EA].,—Fij)?:fl) is primitive with associated momentum map F € Fy such that
F(M) = A. Then:

(1) Suppose p: Bi(r) < M is a semitoric embedding for some r > 0. Then F(p(B*(r))) C A
is an admissible semitoric simplex with radius r>. Conversely, if ¥ C A is an admissible
semitoric simplex with radius r* then there exists a semitoric embedding p: B*(r) — M
such that F(p(B*(r))) = X.

(2) Let P be a semitoric ball packing of M. Then ﬁ’(P) C A is an admissible packing of Ay, .
Conversely, if R is an admissible packing of A, then there exists a semitoric ball packing

P of M such that F(P) = R.

Proof. Part (2) follows from Part (1) since the semitoric simplices associated to disjoint semitoricly
embedded balls are disjoint. This follows from the fact that ﬁ_l(p) is a 2-dimensional submanifold
of M for any regular point p € A and the embedded balls are 2-dimensional.

Suppose that B C M is a semitoricly embedded ball of radius r > 0. Then for some € €
{—1,4+1}™ the map pe: B4(r) < M€ is a T?-embedding with respect to some A € Aut(T?).
Recall M€ is a Hamiltonian T?-manifold and denote a momentum map for this action by F€. Let
p = F(p(0)) and let A€ = F¢(M¢). Hence by Lemma 7.2 the diagram

BY(r) —— M*

N

=1y
AB(A)_JSAE

commutes for some z € Lie(T?)*. Since A is an automorphism so is (A?)~!, hence it sends the
weights of the isotropy representation of T2 on Tp(B4(r)) to the weights of the isotropy represen-
tation on T,M. Since (A?)™! is linear and Ap is the convex hull of the isotropy weights of the
representation on Tp(B4(r)) and the origin, we find that

5 = [(A) + 2)(Ap)

is the convex hull of p, p+72ay, and p+1r2as, minus the convex hull of p+72a; and p+1r2as, where
a1 and g are the weights of the isotropy representation of T? on T,M. For @ = %(1 — €) recall
22



that t?(A) = A%and let ¥ = (tg)_l(Eg). Notice that ¥ = F(p(B*(r))) C A and is an admissible
semitoric simplex.

To prove the converse let ¥ C A be an admissible semitoric simplex. This means that there
exists some € € {—1,41}"™f such that

Y= tH(X)

satisfies the requirements of Definition 7.1, where @ = 1(1—¢€). Let A’ = t%(A). Let p be the unique
vertex of ¥/. Thus, ¥’ is the convex hull of p, p + r?aq, and p + r2as, minus the convex hull of
p+r2a; and p+r2as, for some a; € R?, 5 =1,2. Let I' C R? be the unique open half plane satisfying
FTUA' =3 Let N = F~1(X) and let w™ = w|y. We can see that N C M is open and by the proof
of the Atiyah-Guillemin-Sternberg Convexity Theorem [1, 10] we know that N is connected. The
map Fis proper because its first component, J, is proper and thus FN .= t”/% (ﬁ\N> N — Y is
proper. Therefore FN: N — T is proper because (ﬁN)_l(F \ ¥') = @, and hence (N, w", FN, ) is
a proper Hamiltonian T2-manifold. Since (N, w®, FN, I') is centered about p € R? by Lemma 7.3
we conclude that N is equivariantly symplectomorphic to

{zeC?|p+|z1]P a1+ |2Pas €T} = BY(r).

It follows that there exists a symplectic T2.-embedding p: B4(r) < M€ with image N so F(p(B*(r))) =
F(N) =3 O

Define the optimal semitoric polygon packing function wst: Polyger(R?) — [0, 00] by
ms1([Ay]) = sup{ volp(P) | P is an admissible semitoric packing of A, }.

It is well-defined because any two primitive semitoric polygons in the same orbit are related to one
another by a transformation in G,, X G which sends semitoric packings to semitoric packings and
preserves volume.

Definition 7.5. We call a € (0,7) a smooth angle if it can be obtained as an angle in a Delzant
polygon.

Equivalently, o € (0, 7) is smooth if and only if it is the angle at the origin of A,(A(1)) for some
A, € SLo (Z)

Lemma 7.6. The set of smooth angles is discrete in (0,7) C R.

Proof. Fix a smooth angle a € (0, 7) and fix some € > 0 small enough so that (o« —¢,a+¢) C (0, 7).
Let

B.(a) ={B € (0,7) | B is a smooth angle and |o — | < e}
and let d. > 0 be such that if 8 € B.(«) then |sin(«) — sin(f)| < d.. Now fix any 8 € B.(«). This
means there exists some Ag € SLy(Z) such that 3 is the angle at the origin of A = Ag(A(1)). Let

l1,0> € R denote the lengths of two edges of the simplex A which are adjacent to the vertex at the
origin. These each represent the magnitude of a vector in Z" so ¢; > 1 for ¢ = 1,2. By the choice

of d. we have that sin(8) > sin(a) — d.. Since A has area /2 we know that M = £ and so
for i = 1,2 we conclude that 1 = ¢1¢3sin(/3) > ¢; sin(/3) which implies that
1 1
4 < — < - :
" T sin(B) T sin(a) — 4.

Therefore associated to each 3 € B.(«) there is a pair of vectors in Z? each with length less than
(sin(a) —d.) !, a value which does not depend on 3. There are only finitely many such vectors. [J
23



The proof of Lemma 7.6 is taken from the proof of [7, Theorem 7.1] and is a two-dimensional
version of the strategy used in Theorem 6.3. Let a € (0,7) be called a hidden smooth angle if it
can be obtained as a hidden corner in a primitive semitoric polygon.

Corollary 7.7. The set of hidden smooth angles is discrete in (0,7) C R.

It is important to notice that a sequence of smooth angles can approach w. This must be the
case, for example, if a semitoric polygon has infinitely many vertices.

Definition 7.8. We say that a vertex v of (A, ({y;, +1, k:j);lzfl)) is non-fake if it is either Delzant or
hidden in one, and hence all, elements of the affine invariant. For N > 1 let Polygd(R?)o denote
the set of primitive polygons with exactly N non-fake vertices and let Polyg]sVT (R?) denote the set
of (G, x G)-orbits of elements of Polygr(R?)g. Let TV be the set of all semitoric ingredients for
which the affine invariant is an element of Polygd(R?) and let

4,51 xR —
Sympdf v = &1(1Y)

where @ is as in Equation (5).

Recall H (v) defined in Equation (7). The following are two operations which can be performed
on [A,] to produce a new element of Polyggy(R?)o.

mf

Definition 7.9. Let A, = (A, (€, +1,kj);2;). Let p € A be a vertex and let vi,vp € 72 be
the primitive inwards pointing normal vectors to the two edges which meet at p ordered so that
det(vy,vg) > 0.

If p is a Delzant vertex of A, then the e-corner chop of A, at p is the primitive semitoric
polygon

ALF = (ANHG (01 +v2), (b, +1, k)1 )
Similarly, given [A,] we say that [AL"] is the e-corner chop of [Ay] at p.

Suppose p is a hidden corner of A, and thus there exists j € {1,...,my } such that p € £y,.
The e-hidden corner chop of A, at p is the primitive semitoric polygon

APE = (A Ntgl (HE(v1 +v2)), (b, +1, kj)?:q) .
J
We say that [A%°] is the e-hidden corner chop of [Ay] at p.

The hidden corner chop of a hidden corner amounts to acting on the polygon with t%x to
J
transform the hidden corner into a Delzant corner, performing the usual corner chop on this Delzant

corner, and then transforming the polygon back with te_;. This is shown in Figure 9.
J

(a) (d)

FIGURE 9. In (a) a hidden corner is shown. In (b) we unfold it by reversing the sign
of the associated ¢; resulting in a Delzant corner. In (¢) we perform corner chop on
this corner and in (d) the ¢; returns to its original sign.
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Lemma 7.10. Fiz N € Zq. Each [Ay)] € Polygdt(R?) has an open neighborhood in Polygly (R?)
which consists exclusively of transformations of [Ay] in which its sides are moved in a paral-
lel way. Moreover, any sufficiently small neighborhood of [Ay] in Polyger(R?) is contained in

UinrsnPolygdT(R?).

Proof. The angles of non-fake corners are discrete by Lemma 7.6 and Corollary 7.7. This means
that there exists a neighborhood of [A,,] in which all elements which have N non-fake vertices must
have all of the same angles as [A,]. This is the open neighborhood described in the Lemma. Any
semitoric polygon with fewer non-fake vertices than [A,] is bounded away from [A,,] because the
only ways to change the number of non-fake vertices are a corner chop or introducing a smooth
angle into an edge of infinite length but by Lemma 7.6 smooth angles are discrete. O

Lemma 7.11. The map 7sr: Polyggr(R?) — [0, 00] is discontinuous at every point.

Proof. Primitive semitoric polygons must have at least one non-fake vertex. Let
[Aw] = [(A7 (ﬁkja +17 k]);nzfl)]

be a semitoric polygon. First assume that [A,] € Polygd (R?) for some N > 1 and that
msT([Aw]) < co. Then for € > 0 small enough define [A$] to be the semitoric polygon produced by
performing an e-corner chop at each non-fake vertex of [A,]. We have that

(10) lim dgr([A], [AL]) = 0.

A packing of [Af ] has at most 2N disjoint admissible simplices. Since their side lengths are deter-
mined by the lengths of the adjacent edges, one of which is length €, we have that lim._,o w1 ([AS)]) =
0. Since every semitoric polygon has positive optimal packing we have

lim |msr([Aw]) = m37(AL)| = 751 ([Aw]) > 0

and thus, in light of Equation (10), 7st is discontinuous at [A,].

Suppose [A,] € Polygd(R?) for some N > 1 and mg1([A,]) = oo. Since [A,] has only finitely
many non-fake vertices, any admissible packing has only finitely many admissible simplices. Hence
there is a vertex at which an arbitrarily large simplex fits. The only possible case is that N = 1 and
the polygon is of complexity zero. Taking a corner chop of any size at the single non-fake vertex
produces a polygon on which gy evaluates to a finite number, so 7gr is discontinuous at [A,].

Now suppose that g1 ([Ay]) < 0o and [A,] € Polyggr(R?)\ Uns1 Polygl; (R?). For i € Zx let
I; C R be given by I; = [-n,n|\ (—=(n—1),n—1) and let N; € Z>, denote the number of non-fake
vertices of [A,] with z-coordinate in I;. This number is finite by the definition of a convex polygon
and it is invariant under the action of Gy,, x G. For ¢ > 0 small enough let [AF] be a semitoric
polygon which has a small corner chop at each non-fake vertex such that, at each vertex in I; for
i € Z>1, the largest possible admissible simplex that can fit into that vertex has volume at most
¢/(N;st+1). Then an admissible packing R of [AS)] satisfies

00
9

i=1""

Therefore
lim dip([Au], [AL]) = 0
e—0
while
lim |7st([Aw]) = 7s7([A%])] = Ts7([Aw]) > 0
and thus 7g is not continuous at [A,]. O
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For [A,] = [(A, (f,\j,—kl,kj);n:fl)} € Polygl(R?) with non-fake vertices vy, ..., vy, let ng’f(A)
be the total volume of the optimal packing excluding all packings which have a simplex centered
at v;.

Theorem 7.12. Let mgr: Polyggr(R?) — [0, 00] be the optimal semitoric polygon packing function.
Then:

(1) gt is discontinuous at each point in Polygsr(R?);

(2) the restriction TrST|POlygéVT(R2) is continuous for each N € Zx;

(3) if [Aw] € Polygd(R?) then Polygd(R?) is the largest neighborhood of Ay, in Polygit(R?)
in which wgr is continuous if and only if T ([Aw]) < msT([Aw]) for all 1 < i< N.

Proof. Part (1) is the content of Lemma 7.11.

By Lemma 7.10, given any [A,,] € Polygd(R?), there exists a neighborhood of [A,,] in Polygd (R?)
containing exclusively orbits of polygons formed by translating the sides of A, in a parallel way.
Hence part (2) follows from this because 7gr is continuous on such transformations.

For Part (3) suppose first that mgr([Ay]) = 70 ([Ay]) for some i € {1,...,N }. This means
that there exists some optimal packing avoiding the i*" non-fake vertex. For e > 0 let [A%] be
the result of an e-corner chop at the i vertex and notice that lim._,o d4p([Ay], [AS]) = 0 and
lim. o 7s1([A%)]) = msT([Ay]). Thus there exists some set larger than Polygd}(R?) on which 7gr
is continuous, as shown in Figure 10.

%

Ficure 10. Corner chop of a corner not used in the optimal packing.

Finally, to show the converse assume that [A, ] satisfies ﬂgT’z([Aw]) < 7l ([Ay]) forall 1 <i < N.
By Lemma 7.10 there is an open set around [A,,] in which the only elements not in PolygéVT(RQ)o are
obtained from [A,] by iterations of corner chops, parallel translations of the edges, and introducing
a smooth angle into an edge of infinite length. For € > 0 let [AS] be any e-corner chop at the ith
non-fake vertex of [A,,]. Then

lim 757 ([AL]) = mér([Aw]) < 757 ((Aw])

and the result follows. 0
1
Notice that the quotient map Sympég xR Polyggr(R?) is continuous and the metric on

1
Sympg’f9 R is the sum of the metric on Polyggr(R?) and the metric on the remaining components.

Thus, Theorem 1.2 part (ii) follows from Theorem 7.12. For (M,w, F) € Sympé’gl]\?R with fixed
points p1,...,pn € M let

sup{ vol(P) | P C M is a semitoric ball packing of M and p; ¢ P} i
vol(B4) '

ST (M) = (

Proposition 7.13. Let N > 1. If (M,w,F) € Sympg%gl]\?ﬂg then Sympé’gl]\?R is the largest neigh-

borhood of M in Sympéflx}R in which ST is continuous if and only if ST*(M) < ST (M) for all
1<i<N.

Theorem 1.2 part (ii) and Proposition 7.13 are illustrated in Figure 11.
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FIGURE 11. Continuous families of primitive semitoric polygons on which (a) ST
is continuous and (b) ST is not continuous.

4,8t xR

Definition 7.14. The semitoric radius capacity is the symplectic (S xR)-capacity ST vaq: Sympgr
[0, 00| given by

STrad(M) = sup{r > 0 | there exists a semitoric embedding B*(r) < M }.

It can be shown that ST ,.q is a (S x R)-capacity in the same way that it was shown that ST
is a (S! x R)-capacity. Recall that Symp%n’Rn is the symplectic R"-category which is the collection
of toric manifolds with their T™-action lifted to an R™-action. Let SymeTn]’?fn denote those systems
with exactly N points fixed by the R™-action. By repeating the proofs’of the continuity results
Theorem 1.2 part (i), Proposition 6.4, Theorem 1.2 part (ii), and Proposition 7.13 we immediately
have the following result, that yields Theorem 1.2 part (iii).

Theorem 7.15. The maps cg’n| ongn and ST aq are discontinuous everywhere on their do-
T

Symp

ongn and ST pad| w.51xe are both continuous. For (M,w,F) €
T,N Sympsﬁ“,N

. . . n.mn
mains and the restrictions cg ‘S
ymp,

Sympgﬁj’g{n the set Symp?ﬁ?}?}n is not the largest neighborhood of M in Symp?fn’Rn in which ¢y

1 1
is continuous and for (M,w, F') € Sympé’f]\?R the set Symplsl’r‘rgj\?]R is the largest neighborhood of M

mn Sympé’rqu]R in which ST raq is continuous if and only if N = 1.

Remark 7.16. There are many examples of classical symplectic capacities (see for instance [3]),
and it would be of interest to adapt these capacities to the equivariant category. It would also
be useful to construct symplectic G-capacities for more general integrable systems. In particular,
integrable systems where a complete list of invariants is not known (that is, the vast majority).

In [8] the authors give a lower bound on the number of fixed points of a circle action on a compact
almost complex manifold M with nonempty fixed point set, under the condition that the Chern
number ¢j¢,—1[M] vanishes. These results apply to a class of manifolds which do not support any
Hamiltonian circle action with isolated fixed points, and which includes all symplectic Calabi-Yau
manifolds [20] (see [8, Proposition 2.15]). The class of symplectic Calabi-Yau manifolds is thus of
particular interest because they do not admit integrable systems of toric or semitoric type. Also,
there is work extending the classification in [20] and related results to higher dimensions [21], so
one could extend the semitoric packing capacity to higher dimensional semitoric systems, for which
there is currently no classification.

Another interesting direction would be to generalize the work in [I1] to our setting. There,
the author constructs infinite dimensional symplectic capacities for a general class of Hamiltonian
PDEs. In case the PDEs preserves some GG-action, one may expect to construct also G-capacities in
such infinite dimensional setting, and this may give new interesting result on the long time behavior
of solutions.
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Symplectic capacities are also of interest from a physical view point, for instance in [1] the authors
describe interrelations between symplectic capacities and the uncertainty principle. It would be
interesting to explore similar connections to symplectic G-capacities. @

Remark 7.17. In this paper G can be a compact Lie group (like in the case of symplectic toric
manifolds) or a non-compact Lie group (like in the case of semitoric systems). In general there are
obstructions to the existence of effective G-actions on compact and non-compact manifolds, even
in the case that the G-action is only required to be smooth. For instance, in [25, Corollary in page
242] it is proved that if N is an n-dimensional manifold on which a compact connected Lie group
G acts effectively and there are o1, ...,0, € H'(M,Q) such that o1 U...Ud, # 0 then G is a torus
and the G-action is locally free. In [25] Yau also proves several other results giving restrictions
on G, M, and the fixed point set M. If the G-action is moreover assumed to be symplectic or
Kahler, there are even more non-trivial constraints. Therefore the class of symplectic manifolds for
which one can define a notion of symplectic G-capacity with G non-trivial is in general much more
restrictive than the class of all symplectic manifolds. %)
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