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Abstract

We consider the motion by curvature of a network of curves in the plane and we discuss existence,
uniqueness, singularity formation, and asymptotic behavior of the flow.
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1 Introduction

In this work we give an overview of the state—of-the—art of the motion by curvature of planar networks
of curves, collecting known results and showing several new ones.

Figure 1.1: A planar network of curves in a convex domain.

The problem, proposed by Mullins [12] and discussed first in [12,16, 17,47, 63], attracted the interest
of many authors in recent years [11, 15,21, 34,42,51,58,61,76,77,79,82,83,89,94-97,106]. One strong
motivation to study this flow is the analysis of models of two-dimensional multiphase systems, where
the problem of the dynamics of the interfaces between different phases arises naturally. As an example,
the model where the energy of a configuration is simply given by the total length of the interfaces has
proven useful to describe the growth of grain boundaries in a polycrystalline material (see [12,47, 63]
and http:/mimp.materials.cmu.edu).

A second motivation is more theoretical: the evolution by curvature of such a network of curves is the
simplest example of mean curvature flow of a set which is essentially singular. To consider such flow
not only for smooth submanifolds but also for non-regular sets, several generalized (weak) definitions
of the flow have been introduced in the literature [2, 16, 25, 35, 56, 101]. Anyway, while the smooth
case was largely studied and understood (even if still not completely), the evolution of generalized



submanifolds, possibly singular (for instance varifolds), has not been analyzed in great detail.

In his seminal paper, K. Brakke [16] proved the existence of a global (very) weak solution, in a geometric
measure theory context, called “Brakke flow”. Recently, the work of Brakke has been improved by L. Kim
and Y. Tonegawa [61] (see also [105]) in the case of the evolution of grain boundaries in R" (which
reduces to the evolution of networks when n = 2). They proved a global existence theorem and also
showed that there exists a finite family of open sets moving continuously with respect to the Lebesgue
measure, whose boundaries coincide with the space-time support of the flow (for further results, see
also the papers by K. Kasai and Y. Tonegawa [60] and Y. Tonegawa and N. Wickramasekera [106]).
Finally, in [62], Kim and Tonegawa also proved a regularity result for 1-dimensional Brakke flows,
showing that for almost all times, the evolving network consists of a finite number of embedded curves
of class W22, meeting at junctions with angles of 60 or 120 degrees or with a common tangent.

For another global existence result in any codimension and with special regularity properties, obtained
adapting the elliptic regularization scheme of T. Ilmanen [55,56], we refer to the work of the last author
and B. White [98]. Despite these recent improvements, Brakke’s definition is anyway apparently too
weak (possibly too general) if one is interested in a detailed description of the flow.

A completely different definition of evolution is instead based on the so-called minimizing movements:
an implicit time-discrete variational scheme introduced in [2,71] (see also [14, 18,26]). In this context,
another discretization scheme was developed and studied by S. Esedoglu and E. Otto [34], T. Laux and
E. Otto [68,69] (we motion also the more recent development [36]).

Finally, we mention the “level set” approach to motion by curvature by L. C. Evans and J. Spruck [35]
or, alternatively, Y. G. Chen, Y. Giga, and S. Goto [22], unfortunately not suitable for the motion of
networks since if at least a multi-point is present then an interior region immediately develops (the
so-called “fattening” phenomenon).

Even if all these approaches provide a globally defined evolution, the possible conclusions on the struc-
ture and regularity of the moving networks are actually quite weak. To obtain a detailed description
of the evolution and of the singularity formation, we tried to work in the smooth setting as much as
possible. The definition of the flow is then the first problem one has to face, due to the contrast between
such desire and the intrinsic singular geometric nature of a network. Consider for instance the network
described by two curves crossing each other, forming a 4-point. There are actually several possible
candidates for the flow: one cannot easily decide how the angles must behave, moreover, it could also
be allowed the four concurrent curves to separate into two pairs of curves moving independently of
each other and /or we could take into account the possible “birth” of new multi-points from such a sin-
gle one (all these choices are possible with Brakke’s definition). Actually, one would like a good /robust
definition of curvature flow giving uniqueness of the motion (at least for “generic” initial networks) and
forcing the evolving network, by an “instantaneous regularization” effect, with the possible exception
of some discrete set of times, to have only triple junctions with the three angles between the concurring
curves of 120 degrees. This last property (which was experimentally observed for the growth of grain
boundaries) is usually called Herring condition. These expectations are sustained also by the variational
nature of the problem since this evolution can be considered as the “gradient flow” in the “space of
networks” of the Length functional, which is the sum of the lengths of all the curves of the network
(see [16]). It must anyway be said that such a space does not share a natural linear structure and such a
“gradient” is not actually a well-defined “velocity” vector driving the motion at the multiple junctions,
in general. However, it follows that every point of a network different from its multi-points must move
with a velocity whose normal component is the curvature vector of the curve it belongs, in order to
decrease the Energy of the network (that is, the total length here) “most efficiently” (see [16]). From this
“energetic” point of view, it is then natural to expect also that configurations with multi-points of order
greater than three or 3—points with angles different from 120 degrees, being unstable for the length func-
tional, should be present only in the initial network or that they should appear only at some discrete
set of times, during the flow. This property is suggested also by numerical simulations and physical
experiments, see [12,17,47,63] and the grain growth movies at http://facstaff.susqu.edu/brakke. One may
hope that some sort of “parabolic regularization” could play a role here: for instance, if a multi-point
has only two concurrent curves, it can be easily shown (see [4, 6, 8, 46]) that the two curves become
instantaneously a single smooth curve moving by curvature.

We mention that actually, it is always possible to find a Brakke flow sharing such property at almost
every time (see [16]), by the variational spirit of its definition which is the closest to the “gradient flow”
point of view. However, as uniqueness does not hold in this class, there are also Brakke flows start-



ing from the same initial network which keeps their multi-points, or loose the connectedness of the
network: for instance, a 4-point can “open” as in the right side of Figure 11.1, or separate in two no
more concurring curves, or it can “persists” to be a 4-point where the two “crossing” curves move in-
dependently. Anyway, as we said, Brakke’s definition is too “weak” if one is interested in a detailed
description of the flow.

By this discussion it is then natural, due to their expected relevance, to call reqular the networks with
only 3-points and where the three concurrent curves form angles of 120 degrees. Then, following the
“energetic” and experimental motivations mentioned above, we simply impose such regularity condi-
tion in the definition of a smooth curvature flow, for every positive time (at the initial time it could
fail). If the initial network is regular and smooth enough, we will see that this definition leads to an
almost satisfactory (in a way “classical”) short-time existence theorem of a flow by curvature. Trying
instead to let evolve an initial non-regular network, various complications arise related to the presence
of multi-points or of 3—points not satisfying the Herring condition. Notice also that, even starting with
an initial regular network, we cannot avoid to deal also with non-regular networks when we analyze
the global behavior of the flow. Indeed, during the flow, some of the triple junctions could “collide”
along a “vanishing” curve of the network, when the length of the latter goes to zero (hence, modifying
the topological structure of the network). In this case one has to “restart” the evolution with a different
set of curves, possibly describing a non-regular network, typically with multi-points of order higher
than three (consider, for instance, two 3—points collapsing along a single curve connecting them) or even
with “bad” 3—points with angles between the concurring curves, not all equal to 120 degrees (think of
three 3—points collapsing together with the “triangular” region delimited by three curves connecting
them). A suitable short-time existence (hence, “restarting”) result for this situation has been worked
out in [58] by T. Ilmanen, A. Neves and the fourth author and in [70] by J. Lira, R. Mazzeo, M. Saez
and the third author. In these papers, it is indeed shown that starting from any non-regular network
(with a natural technical hypothesis), there exists a “satisfactory” flow of networks by curvature which
is immediately regular and smooth, for every positive time. Section 10 is devoted to this topic.

The existence problem of a curvature flow for a regular network with only one 3—point and fixed end-
points, called triod (see Definition 3.2), was first considered by L. Bronsard and F. Reitich in [17]. To be
precise, they consider as initial datum any regular C?2* triod satisfying some compatibility conditions
at the triple junctions and show short-time existence and uniqueness in the parabolic class C?+2*1+e,
In [63] D. Kinderlehrer and C. Liu proved the global existence and convergence of a smooth solution if
the initial regular triod is sufficiently close to a minimal (Steiner) configuration.

After introducing regular networks, their flow by curvature, and some basic properties (Sections 2
and 2.3), we extend, in Section 3, the above well-posedness theorem to general regular networks (The-
orem 3.25). Moreover, we also show an analogous result in suitable Sobolev spaces (Theorem 3.6).

In Section 4 we generalize to any regular network the integral estimates proved in [82] for a triod, which
are needed to prove Theorem 5.8 and will be actually used throughout the whole paper. A consequence
of such estimates is the fact that if the lengths of the curves are bounded away from zero, as ¢ goes to
the maximal time T of existence of the flow, the maximum of the modulus of the curvature must go to
+oo (Corollary 4.15 and Theorem 5.7).

The uniqueness of the flow is quite delicate. Indeed, by Theorem 3.25, we only have that, for initial
regular networks of class C?72* having the sum of the curvatures of the three concurring curves at
every triple junction equal to zero, there is uniqueness in the parabolic class C?T2:1+ In Section 5, by
combining Theorems 3.6 and 3.25 (the first mainly for the uniqueness, the second for the existence) we
then show a result of existence/geometric uniqueness for short time of the flow of an initial network of
class C? (Theorem 5.8), in a subclass of the curvature flows which are simply C? in space and C* in time.
In the same section, we will also see that the classical property of parabolic equations of instantaneous
regularization of solutions for positive times also holds for the motion by curvature of networks, in a
suitable sense.

The rest of the paper is devoted to the long-time behavior of the flow. For the sake of simplicity, in the
following overview, we will restrict ourselves only to the behavior in the interior of a convex domain of
a network flowing by curvature with fixed end—points on the boundary of such set, while in the whole
paper also the behavior at the boundary (hence, at the end—points of the network) is analyzed in the
same detail.

In Section 6 we recall Huisken’s monotonicity formula for mean curvature flow which holds also for
the evolution of a network and we introduce the rescaling procedures to get blow—up limit networks



(discussed in Section 7) at the maximal time of smooth existence. Then, to “describe” the singularities
of the flow one needs to classify such possible blow—up limits. In some cases, arguing by contradiction
with geometric arguments, this “description” can be used to exclude at all the formation of singularities.
Key references for this method in the situation of a single smooth closed curve are [3,49,53,54]. The
most relevant difference in dealing with networks is the difficulty in using the maximum principle,
which in the case of closed curves is the main tool for getting pointwise estimates on the geometric
quantities during the flow. For this reason, some crucial estimates which are straightforward in such
case are here much more difficult to obtain and we had to resort to the integral estimates of Section 4
(see also Section 9.3), which are similar to the ones in [3, 6,8, 52], but require some extra work to deal
with the triple junctions.

One can reasonably expect that an embedded regular network does not develop singularities during
the flow if its “topological structure” does not change (for instance, in the case of a “collision” of two
or more 3-points). Our analysis in Sections 7, 8 and 9 will show that if no “multiplicities” larger than
one occur in the blow—up limit networks, this expectation is indeed true. Under the assumption that
the lengths of the curves are bounded away from zero the only possible blow—up limits (with multi-
plicity one by hypothesis) are either a straight line, a halfline, or a flat unbounded regular triod (called
“standard triod”) composed of three halflines through the origin of R? forming angles of 120 degrees
(see Proposition 7.30 and Section 9). Then, a local regularity theorem for the flow (shown in [58]) to-
gether with such classification excludes the presence of singularities. This result, which is in the spirit
of White’s local regularity theorem for mean curvature flow in [111], is presented in detail in Section 8.
Thus, again in Section 9, we try to understand what happens at the maximal time, knowing that some
lengths of the curves composing the network cannot be uniformly bounded away from zero, hence at
least two 3—-points get closer and closer.

First of all, we prove that under the hypothesis of multiplicity one of the blow—up limits, if more than
two triple junctions go to collide, then necessarily an entire region (the interior of a “loop” of the net-
work) vanishes, which implies that the curvature is necessarily unbounded getting close to the singular
time. Hence, if the curvature stays bounded it must happen that (locally) we are in the case of two triple
junctions (only) going to collide along a vanishing curve, forming a 4-point in the limit. Vice versa, we
are then able to show that in such a situation the curvature remains bounded. As a consequence, we
conclude that the curvature is uniformly bounded along the flow if and only if no region is collapsing
and that in such case only local vanishing of single curves can happen, with a formation of a 4—point
in the limit. This is clearly particularly relevant if the evolving network is a tree, that is, regions are not
present at all. More in detail, we first show that in such case, as ¢ goes to the maximal time 7', the net-
works S; converge in C''-norm (up to reparametrization) to a unique limit set Sy which is a degenerate
(collapsed) regular network (see Definition 7.1), that is, a smooth network possibly with multi-points
of order higher than three and some collapsed parts “hidden” in its vertices. Then, we show that St
can have only 3—points with angles of 120 degrees or 4-points with angles of 120/60 degrees, like in the
left side of Figure 9.1.

In the other situation, when the curvature is not bounded and a region collapses (Section 9.3), we are
able to obtain a weaker conclusion. Assuming the uniqueness of the blow—up limit along any sequence
of rescalings (which can be instead proved in the above case), we can show that, as t — T, the net-
work S; converges to some degenerate (see above) regular network, whose “non—collapsed” part St is
a (!, possibly non-regular, network which is smooth outside its multi-points and whose curvature is
of order o(1/r), where r is the distance from its non-regular multi-points.

In several steps of the previous analysis the assumption of multiplicity one of the blow-up limits is
fundamental, we actually conjecture (Conjecture 9.1) that it holds in general, but up to now we can
prove it only in some special cases. Indeed, in Section 13 we discuss a scaling invariant, geometric
quantity associated with a network, first proposed in [50] (see also [54]) and later extended in [15, 82,
89], consisting in a sort of “embeddedness measure” which is positive when no self-intersections are
present. By a monotonicity argument, we show that this quantity is uniformly positively bounded
below along the flow, under the assumption that the number of 3—points of the network is at most two.
As a consequence, in such case every possible C{,_—limit of rescalings of the networks of the flow is an
embedded network with multiplicity one. We underline that it is not clear to us how to obtain a similar
conclusion for a general network with several triple junctions, since the analogous quantity, if there are
more than two 3—-points, does not satisfy a monotonicity property.

In Section 10 we state a short-time existence result for possibly non-regular initial networks (that is,



with multi-points of order greater than 3 and/or non-regular 3—points), giving a flow that is immedi-
ately regular and smooth for every positive time. This result, which clearly also provides a “restarting
theorem”, was worked out independently in [58] by T. Imanen, A. Neves and the fourth author (Theo-
rem 10.9) and in [70] by J. Lira, R. Mazzeo, M. Saez and the third author (Theorem 10.26), here we only
give an outline of the arguments in the proofs (which are quite technical). The idea in Theorem 10.9 is to
locally desingularize the multi-points and the non-regular 3—points via regular self-similarly expand-
ing solutions. The argument hinges on a new monotonicity formula, which shows that such expanding
solutions are dynamically stable, using the fact that the evolution of curves and networks in the plane
are special cases of the Lagrangian mean curvature flow (these ideas have already been exploited by
A. Neves in the papers [84-86]). Theorem 10.26 relies instead on blow—up arguments from geometric
micro-local analysis. In this case, the same regular self-similarly expanding solutions naturally arise
from the underlying geometric structure of the problem.

In Section 11 it is explained how to combine Theorem 10.9 with the previous analysis of the singularities
in order to continue the flow after a singular time. Then, we analyze the preserved geometric quantities
and the possible changes in the topology of a network in passing through a singularity. This is applied
in Section 12 to study the long-time behavior of the flow, indeed, the restarting procedure allows us to
define an “extended” curvature flow with singularities at an increasing sequence of times. An important
open question is whether the maximal time interval of existence of such flow is finite or not, where the
main problem is the possible “accumulation” of the singular times (if they are not finite, which actually
we do not know). We mention that in the special case of symmetric networks with only two triple
junctions, it can be shown that the set of singular times is necessarily finite, see [88]. Clearly, if such
“extended” flow can be defined for every time (as the Brakke flow obtained by L. Kim and Y. Tonegawa
in [61]), we ask ourselves if the network converges, as t — +00, to a stationary network for the length
functional (a Steiner network). In Proposition 12.6 we prove the convergence up to a subsequence of the
family of the evolving networks to a possibly degenerate one (some curves could disappear in the limit),
as t — +o0. If we then assume that such limit network is not degenerate, with the help of Lojasiewicz—
Simon gradient inequality, we are actually able to prove the full convergence of the flow, in Theorem 12.11.
We finally conclude Section 12 presenting a stability result: if a network is sufficiently close in W22
norm to a regular network S, composed of straight segments only, its motion by curvature exists for all
times and smoothly converges to a regular network still composed of straight segments and with the
same length of S..

Up to now, the study of the behavior of the flow at the first singularity (and immediately after) is
essentially complete when the network has at most two triple junctions, see [76,79,82,89], holding in
this very special case the above mentioned multiplicity one conjecture, as it is shown in Section 13. In
Section 14 we will describe, up to the best of our knowledge, the global evolution of such “simple”
networks, which are actually interesting since most of the relevant phenomena of the general case are
already present. In particular, we will see that the evolution of a tree-like network with only one 3—point
and three fixed end-points (called triod) is smooth and asymptotically converges to a Steiner network,
if the lengths of the three curves stay uniformly bounded away from zero.

The last section of the paper is devoted to collecting and presenting the main open problems. Moreover,
by courtesy of T. Ilmanen, we include an appendix with pictures and computations of several examples
of regular shrinkers, due to him and J. Hattenschweiler.

We conclude this introduction by mentioning that there are several interesting variants and generaliza-
tions of the problem of the motion by curvature of networks whose study is only at the beginning. For
instance, one can consider the anisotropic version of the flow, as in [13,45, 64] and/or take into account
the mismatch of the orientation of the grain in the model [32,33, 59].

The analogous problem in higher dimensions (and codimensions) is still widely open. Besides the pa-
pers [61,98], where a global weak solution in the Brakke sense is constructed, the short-time existence
of a smooth and regular solution in three dimensions has been established in [28] in some special cases
and in [98, Section 7] for the motion of a network in R™ with only triple junctions. In these cases, the
analysis of singularities and the subsequent possible restarting procedure are still open problems.

We also mention the works [37,38] where a graph evolving by mean curvature and meeting a horizontal
hyperplane with a fixed angle of 60 degrees is studied. By considering the union of such graph with its
reflection through the hyperplane, one gets an evolving symmetric lens—shaped domain. We remark that
in this particular case, the analysis is simpler since the maximum principle can be applied.
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2 Notation, definitions and basic computations

Given a C! curve o : [0,1] — R? we say that it is reqular if o, = 92 is never zero. It is then well
defined its unit tangent vector v = 0, /|o,|. We define its unit normal vector as v = R1 = Ro, /|0, | where
R : R? — R? is the counterclockwise rotation centered in the origin of R? of angle /2.

If the curve o is of class C? and regular its curvature vector is well defined as

1 dr

E:Tw/|a'x‘ = m@

The arclength parameter of a curve o is given by

st(x):/oz 0u(6)] de

Notice that 95 = |0,|70, then 7 = 950 and k = 9,7, hence the curvature of 7 is given by k = (k| v), as
k = kv. We remind here that in the whole paper, we will use the word “curve” both for the parametriza-
tion and for the set (image of the parametrization in R?).

LetT > 0and ~ : [0,1] x [0,T) a time-dependent family regular C? curve. Again, we let 7 = 7 (z,t)
be the unit tangent vector to the curve v, v = v(z,t) = Rr(z,t) be the unit normal vector and
k =k (z,t) =k (z,t) v (z,t) its curvature vector, as previously defined.

Here and in the sequel we will denote by 0, f, 0sf and 0, f the derivatives of a function f along a
curve v with respect to the = variable, the arclength parameter s on such curve (defined by s(z,t) =
foac |72 (€, t)| d§) and the time, respectively; 9 f, 97 f, Of f are the higher order partial derivatives which
often we will also write as [, fox - - -, fs, [sss--- and fy, fee, - .-

Wewill cally = v, = Vv 4+ A1, A = At and V. = Vv respectively the velocity, the normal velocity and the
tangential velocity of the curve 7. The scalar V and A are the normal and tangential components of the
velocity. It is easy to see thatv = V + A and [v|2 = V|2 + A2 = (V)2 + (V)%

2.1 Networks

Definition 2.1. Let Q be a smooth, convex, open set in R%. A network S = |J;_, ¢"([0,1]) in Q is a
connected set in the plane described by a finite family of C!, regular curves o' : [0, 1] — Q such that

1. the “interior” of every curve o', that is ¢%(0, 1), is embedded (hence, it has no self-intersections);
a curve can self-intersect itself only possibly “closing” at its end—points, that is ¢*(0) = o*(1);

2. two different curves can intersect each other only at their end—points;



3. if a curve of the network touches the boundary of 2 at a point P, no other end—point of a curve
can coincide with that point.

If we interpret S as a planar graph, we call multi-points of the network the vertices O',0?,...,0™ € Q
where the order is greater than one. We call end—points of the network the vertices P!, P2,..., P! € Q of
S (on the boundary or not) with order one.

We say that a network is of class C* or C* if all the n curves are respectively of class C* or C*°.

Remark 2.2. We require Condition 3 for the sake of simplicity. It implies that the multi-points can be
only inside € and not on the boundary. The end—points can be both inside or on 0.

PB
Pl

£

Figure 2.1: An example of “violation” of Condition 3 in the definition of network.

The curves o’ have (non-zero) finite lengths L' = fol loi (&)] d€.

Definition 2.3. Let S = |J!_, o be a network composed of n curves. We denote by
L=L'+.--+1L"

the global length of the network.

Definition 2.4. An open network S = |J;'_, o*(I) in R? is a connected set in the plane composed of a finite
family of C!, regular curves o' : I — R?, where I can be the interval [0, 1] or [0, 1), such that

1. every “open” curve ¢’ : [0,1) — R? is C'-asymptotic to a half-line in R? as z — 1;

2. the “interior” of every curve o' is embedded (hence, it has no self-intersections). Only the
bounded curves o' : [0, 1] — R? can possibly self-intersect by “closing” at their end—points;

3. two different curves can intersect each other only at their end—points;

4. considering S as a planar graph, every end—point of a curve belongs to some multi-point of the
network with order at least two;

As before we say that an open network is of class C* or C* if all its curves are respectively of class C*
or C°.

Remark 2.5. Since we called these unbounded networks “open”, we will adopt the word “closed” for
the previous networks in Definition 2.1 which are bounded and possibly have some end-points.

Given a network composed of n curves with [ end—points P!, P2, ..., P! € Q (if present) and m multi-
points O, 0?,...0™ € Q, we will denote by o’ the curves of this network concurring at the multi-
point O?, with the index ¢ varying from one to the order of the multi-point OP. This is clearly redundant
as some curves coincide, but it is a useful notation for the computations. A network of n curves with m
triple junctions only (without higher multiplicity junctions) will then be described by the family (with
possible repetitions) of curves o”* where p € {1,2,...,m}and i € {1,2,3}.

We now define a special class of networks that will play a key role in the analysis.



Definition 2.6. We call a network (open or not) regular if all its multi-points O, 0?,...0™ € Q) have
order three and at each of them the three concurring curves {o?'};—1 23 meet in such a way that the
external unit tangents 7F" satisfy 77! + 772 + 773 = (), which means that the three curves form three
angles of 120 degrees at OP (Herring condition).

We call a network non—regular if at least a multi-point has order different from three or if it has order

three but the external unit tangents of the three concurring curves {o?'},_ » 3 do not satisfy 77! + 772 +
773 = 0. We will call such a point a non—regular multi—point.

Figure 2.2: A regular network.

We will simply omit the indices of the curves of the network anytime there is no need to make them
explicit.

Moreover, given S; = |JI-, 7*([0,1],¢) a time-dependent family of regular C? network of curves, we
will adopt the following convention for integrals,

noo.1
f(t7ry’7-7l/7 k7k;s7"'7A7As"')ds:Z/ f(t7fyi’7—i’l/i7ki7kli’7"'7Ai7Ai.'.)|V;‘7|d‘r
St i=170

as the arclength measure on every curve ' is given by ds = |v%| dz.

Sometimes we will also use the following notation for a time-dependent family of networks
i=1

witht € [0,7) in Q C R?. We let S C R? be a “reference” network and suppose that for every ¢ € (0,7)
the network S; is homeomorphic to S. We consider amap F : S x (0,T) — R? given by the “union” of
the maps 7* : I; x (0,7) — Q describing the time-dependent family of networks in the time interval
(0,7), thatis S; = F(S,t).

2.2 Motion by curvature

We are now ready to define the evolution by curvature of a C? regular network, assuming that either
it is open or all its end—points (if present) coincide with some points P!, P2, ..., P! on the boundary of
). As we have already said, in the “closed” case by Condition 3 in Definition 2.1 at most one curve of
the network can arrive at the point P”. We require the network to be regular during the flow and we
ask that the end-points P" € 0} stay fixed (Dirichlet boundary conditions). A similar problem is given
by letting such end-points “free” to move on the boundary of €2, but asking that the curves intersect



orthogonally 0 (Neumann boundary conditions).

In the “closed case”, the motion by curvature is the geometric gradient flow of the length functional, that
is, the sum of the lengths of all the curves of the network. Roughly speaking, a (solution to the) flow by
curvature of a network is a smooth family of embedded, planar networks, such that the normal compo-
nent of the velocity under the evolution law, at every point of every curve of the evolving network is
given by the curvature vector of the curve at the point.

Definition 2.7. We say that a family of homeomorphic, regular networks S;, each one composed of n
curves 7'(+,t) : I; — Q (where I; is the interval [0, 1] or [0, 1) in case of an open network), in a smooth
convex, open set ) C R?, moves by curvature in the time interval (0, T') if the functions v : I; x (0,7) — Q
are at least of class C? in space and C'! in time and for every z € I;,t € (0,T),i € {1,2,...,n}, they
satisfy

(Vaw(,1) [V (2, 1))

i, t) = k' (2, )0 (x, Nz, )T (x,t) = . 5
Vi(@,t) = K (z, ) (z, 1) + X (z, 1) 7" (2, 1) (2.0

Vi@, t) + N(2, t)7 (2, 1) (2.1)

for some continuous functions \'.

Remark 2.8. Notice that the normal velocity is given by the curvature vector of the curve 4" at every point.
Remark 2.9. Another equivalent way to state evolution equation (2.1) is clearly

z,t) |V (1))

5 vi(z,t).

Y2
Vit = K ), 1) = K (o, 1) = el
72 (2,1)]
Remark 2.10. We spend some words on the above definition of motion by curvature. The evolution
equation (2.1) is not the usual way to describe the motion by curvature of a smooth curve. Indeed,
“classically” it is written as
2 Y2
V= k= k= <%m|;/ ) Ut 2.2)
7zl
Both motions are driven by a system of quasilinear partial differential equations, in our definition “ad-
mitting a correction” by a tangential term. The two velocities differ only by a tangential component
A" = A7, In the curvature evolution of a smooth curve, it is well-known that any tangential contribu-
tion to the velocity affects only the “inner motion” of the “single points” (Lagrangian point of view), but
it does not affect the motion of a curve as a whole subset of R? forgetting its parametrization (Eulerian
point of view). It can be shown that a flow of a closed curve satisfying equation (2.1) can be globally
reparametrized (dynamically in time) in order it satisfies equation (2.2). However, in our situation, such
a global reparametrization is not possible due to the presence of the 3—points. It is necessary to consider
such extra tangential terms to allow the motion of the 3—points also. Indeed, if the velocity would be in
normal direction at every point of the three curves concurring at a 3—point, this latter should move in a
direction which is normal to all of them, then the only possibility would be that it does not move at all
(see also the discussions and examples in [16,17,63, 80]).

Definition 2.11. Given an initial, regular, C* network Sy, composed of n curves o? : [0,1] — Q, with
m triple junctions O',0%,...0™ € Q and (if present) | end—points P, P?,..., P! € 9 in a smooth
convex, open set {2 C R2?, we say that a family of homeomorphic networks S; described by the family
of time-dependent curves (-, ) is a flow by curvature of Sp with fixed end-points in the time interval
[0,T), if the functions v* : [0,1] x [0,7) — Q are continuous, there holds ~(z,0) = o'(x) for every
z €]0,1]and i € {1,2,...,n} (initial data), they are at least C? in space and C' in time in [0, 1] x (0,T)
and satisfy the following system of conditions for every z € [0,1],t € (0,T),7 € {1,2,...,n},

v = kvt 4 Nt with A continuous functions motion by curvature

vi(z,t) #0 regularity 2.3)
~y(1,t) = P" with0 < r <1 fixed end—points condition

S0 TP(OP,t) =0  atevery 3—point O angles of 120 degrees

where we assumed conventionally (possibly reordering the family of curves and “inverting” their
parametrization) that the end—point P" of the network is given by 4"(1,¢) (by Condition 3 in Defini-
tion 2.1 this can be always done).
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Moreover, in the third equation, we abused a little the notation, denoting with 777 (OP, t) the respective
exterior unit tangent vectors at O? of the three curves v/ (-,¢) in the family {+*(-,¢)} concurring at the
3—point OP.

We also state the same problem for regular, open networks.

Definition 2.12. Given an initial, regular, C* open network Sy, composed of n curves ¢* : I, — R?, we
say that a family of homeomorphic open networks S; with the same structure as Sy (in particular, same
asymptotic half-lines at infinity) described by the family of time-dependent curves (-, t) is a flow by
curvature of Sy in the time interval [0, T'), if the functions * : I; x [0, T) — R? are continuous, there holds
v(x,0) = o'(z) for every x € I; and i € {1,2,...,n} (initial data), they are of class at least C? in space
and C' in time in I; x (0,7 (here I; denotes the interval [0, 1] or [0, 1) depending on whether the curve
is unbounded or not) and satisfy the following system, for every « € I;,t € (0,T),¢ € {1,2,...,n},

i =Kt Nirt with A’ continuous functions motion by curvature
Yi(z,t) #0 regularity (2.4)
E?Zl TPI(OP,t) =0  atevery 3—point OP angles of 120 degrees

where, in the second equation, we used the same notation as in Definition 2.11.

Remark 2.13. In Definitions 2.11 and 2.12 the evolution equation (2.1) must be satisfied till the borders of
the intervals [0, 1] and [0, 1), that is, at the 3-points and the at end—points for every positive time. This
is not the usual way to state boundary conditions for parabolic problems (the parabolic nature of this
evolution problem is clear by Definition 2.7 — see also Remark 2.10 and it will be even clearer in Sec-
tion 3) where usually only continuity at the boundary is required. Anyway as is common in parabolic
problems, at every positive time such boundary conditions are satisfied by any “natural solution”.
This property of regularity at the boundary implies that

(kv +AT)(P") =0, foreveryr € {1,2,...,1}
and
(KPTWPt 4 NPLTPHY(OP) = (KPIyPT 4 \PITPI)(OP), for every i, j € {1,2,3}, p € {1,2,...m}

(where we abused a little the notation), obtained by simply requiring that the velocity is zero at every
end-point and it is the same for any three curves at their concurrency 3—point.

Moreover, notice that in Definitions 2.11 and 2.12 the evolution equation (2.1) must be satisfied only for
t > 0. If we want that the maps +* are C? in space and C' in time till the whole parabolic boundary (given
by [0,1] x {0}U{0, 1} x [0,T) in Definition 2.11 and [0, 1] x {0}U{0,1} x [0,T) or [0,1) x {0} U{0} x [0, T)
in Definition 2.12), the above conditions must be satisfied also by the initial regular network Sy, for
some functions Ay extending continuously the functions A which are defined only for ¢ > 0.

For the moment we focus on regular networks. Several difficulties arise when we study problems (2.3)
and (2.4) with non-regular networks as initial data. The issues are related to the presence of multi—
points: if there are multi-points OP of order greater than three, there can be several possible candidates
for the flow. Considering for example the case of a network composed of two curves crossing each other
(presence of 4—point); one cannot easily decide how the angle at the meeting point must behave, indeed
one can allow the four concurrent curves to separate in two pairs of curves, moving independently of
each other and could even be taken into account the creation of new multi-points from a single one.

If there are several multi—points during the flow some of them can collapse together and the length of
at least one curve of the network can go to zero.

In these cases, one must possibly restart the evolution with a different set of curves and the topology
of the network changes dramatically, forcing to change the “structure” of the system of equations gov-
erning the evolution. Anyway, a very natural conjecture is that the curvature flow of a general network
(under a suitably good definition) should be non-regular only for a discrete set of times. We will get
back to this in the following sections.

Remark 2.14. One can clearly obtain solutions to system (2.1) by requiring each curve to fulfill the quasi-
linear partial differential equation: 4

’Yt_ 2
V%]
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In this case

vt =iz, t) = sz\zz velocity of the point~(z, t),
A= Ni(x,t) = <Vf;i‘|j> = W%;J‘Z;) = —8xﬁ tangential velocity of the point~'(z,t),
k' = ki(x,t) = <”f;,,"§l> = (0,7 | V) = — (91 | T) curvature at the pointy*(z, t) .

Definition 2.15. A curvature flow " for the initial, regular C? network Sq = [J;_, ¢*([0, 1]) which

i
™

satisfies 7 = iz for every ¢ > 0 will be called a special curvature flow of So. In this case, then we pass
from the general system (2.3) to the following;:

Vi (z,t) = g;ézt)t |)2 special motion by curvature

Yoz, t) #0 regularity

¥ (1,t) = P" with 0 < r <! fixed end-points condition (2.5)
Sy % =0 at every 3—point O? angles of 120 degrees

7' (x,0) = o' (x) initial data

Remark 2.16. There are classes of networks, whose topological structure is particularly simple, whose
evolution by curvature has been extensively studied in the literature.

e When the network consists of a single closed embedded curve, its motion by curvature was widely
studied [6-8,39-41, 46]: the curve evolves smoothly, becomes convex, and shrinks to a point in
finite time, becoming rounder and rounder. Curves with an angle or a cusps (where the cusp is
the most “delicate” situation) can be dealt with by means of the works of Angenent [6-8]: the
curve becomes immediately smooth, flowing by curvature.

e The case in which two curves concur at a 2—-point of the network forming an angle (or a cusp, if
they have the same tangent) can be analyzed as we said above: consider them as a single curve
with a “singular” point (the angle) that vanishes immediately under the flow.

e If a network is composed of a single embedded curve with fixed end-points, its evolution by
curvature is discussed in [54,102,103]. The curve converges to the straight segment connecting
the two fixed end—points in infinite time.

Q

Figure 2.3: Three special cases: a single closed curve, two curves forming an angle at their junction and
a single curve with two end-points on the boundary of Q.

2.3 Basic computations

We work out some basic relations and formulas holding for a regular network evolving by curvature,
assuming that all the derivatives of the functions «* and A* that appear to exist.

Lemma 2.17. If v is a curve moving by
ve = kv + A1,

then the following commutation rule holds

8tas = asat + (]f2 - /\5)65 . (26)

12



Proof. Let f : [0,1] x [0,T) — R be a smooth function, then

00sf — DuD0f — J;— e lutfe e g 000,

= —(7]0s(M\ + kv))Os f = (k% — Xs)Osf
and the formula is proved. O

Then, thanks to the commutation rule of the previous lemma for an evolving curve we can compute

T = 0,05y = 050y + (k2 — Xs)0sy = Os(AT + kv) + (k* — A\ )T = (ks + kN)v, (2.7)
v =0(R7) = RO = — (ks + kN7,
Ok = 8t<857— | I/> = <atas7— | V> = <8sat7— | V> + (kz - )‘s)<as7— | V> (2.8)

=0,(0,7| V) + E® — Xy = Og(ks + EXN) + E° — kX,
ks + kXA + K2

Moreover, as anticipated in Remark 2.14, when the tangential velocity is A = Wﬁ ‘|ZI>, the curve ~
evolves according to
Ve = %2 =kv+ A1,
|7zl

so we can also compute

(As — k?)

I\ = — 0,0 i — 0, (o [ Vi) _ o, (7]9:(A1 + kv)) -

! |'7x| |'7x|3 |'7w|
=0s(As — ]4:2) — A As — k‘2) = Ags — AN — 2kks + N2,

=0,

(2.9)

We consider the curvature flow given by a family of regular, C*° networks S;, composed of » moving
curves v with m triple junctions O', 0%, ..., O™ and [ end-points P!, P2,..., P

As we said, we parametrize the curves of the evolving network so that v/(1,¢) = P’ whenever P* is
an end—point where a curve 4" arrives. Consider instead a triple junction, say O?, where three distinct
curves P!, 472 and 773 meet. In general, we cannot always impose that

YPH0, ) = 472(0,1) = ¥73(0,t) = O(t) (2.10)

forallp € {1,...,m}, since (for instance) both the end—points of a curve could belong to the same triple
junction, or simply for combinatorial reasons (see the networks in the following figure).

Figure 2.4: Examples of networks.

Actually, in general, there holds

7p1($1’t) = 7p2($27t> = 7p3($37t> = Op(t)’

13



for every p € {1,...,m} and some z1, 22, z3 € {0,1}. Then, the fact that z1, 2, x3 could be either 0 or 1
affects how the 120 degrees angle condition at OP reads, that is,

(=1)" 7P (2, ) + (—1)"27P% (29, t) 4+ (—1)"37P3(23,1) = 0.

For the sake of presentation and clarity, in the following analysis of the conditions holding at any 3—
point O, with p € {1,2,...,m}, we will suppose that the three curves are parametrized in such a way
that they all concur at O? for 1 = z2 = 3 = 0, hence formula (2.10) holds.

Differentiating in time the concurrency condition

APH(0,t) = 477 (0,1) for every i and j,
where 77¢ denotes the i~th curve concurrent at the 3-point O?, we get
\Pipi + fPiyPt — \PJPJ + kP pi ,

at every 3—point O?, withp € {1,2,...,m} forevery i, j € {1,2,3}.
Multiplying these vector identities by 77! and v?! and varying i, j, [, thanks to the conditions

3 3

ZTM:ZVW:O,

i=1 i=1

we get the relations

A\Pi — 7>\p(i+1)/2 . \/gkp(i+1)/2
AP — _)\p(zel)/Q + \/gkp(iq)/Q
kPt — _kp(i+1)/2 + \/g)\p(i+1)/2
kpi _ _kp(i—l)/2 _ \/g)\p(z—l)/z

S,

with the convention that the second superscripts are to be considered “modulus 3”. Solving this system
we get

kp(i—=1) _ pp(i+1)

MPE =
V3
i AP(i+1) _ Ap(i—1)
- V3

which implies
3 3
DR =3 A =0 (2.11)
i=1 i=1

at any 3—point O of the network S;.
Moreover considering KP = (kP!, kP2, kP3) and AP = (AP, P2, A\P3) as vectors in R?, we have seen that
KP and AP belong to the plane orthogonal to the vector (1,1,1) and

K? = AP A (1,1,1)/V/3, AP = —KP A (1,1,1)/V3,

that is, K = SA? and A? = —SKP? where S is the rotation in R? of an angle of 7/2 around the axis
I={((1,1,1)). Hence it also follows that

3 3 3

DR =D () and D RPN =0, (2.12)

=1 =1 i=1

at any 3—point OP of the network S;.
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Now we differentiate in time the angular condition Z?:l TPt = 0 at every 3-point O?, with p €
{1,2,...,m}, by equation (2.7) for every pair i, j we get

KP! 4 NPLRPY = [PT NPT |PT
In terms of vectors in R?, as before, we can write
KP + APKP = (kP 4 APLEPY |P? 4 APPEP2 kD3 4 \PREP3) € 1.
Differentiating repeatedly in time all these vector relations we have

OIKP OIAP LT and Oi(KP|AP) =0,
OLAP = —9ISKP = —SOIKP, (2.13)
O™ (KP 4 APKP) €1,

which, making explicit the indices, give the following identities at every 3—point O?, withp € {1,2,...,m},

3 3 3 3 3
O K= "0k =01y N = 0N =0, kPN =0,
=1 =1 =1 =1 =1

3 3

Z(@ikzm)z = Z(Bﬁ)\pif forevery [ € N,

i=1 i=1
O (kP' 4 NPIEPY) = 9™ (KPI 4 \PIEPT) for every pair 4, j and m € N.
Moreover by the orthogonality relations with respect to the axis I we get also
OIKPO (KD + APKP) = 9} AP (KL + APKP) =0,
that is,

3 3
D OIEPT O (KD 4 NPEPT) = > " 9jAPT O (kP 4+ AP kP') = 0 for every I,m € N. (2.14)
i=1 1=1

Remark 2.18. By the previous computations, for every solution in Definitions 2.11 or 2.12 at t > 0 the

curvature at the end—points and the sum of the three curvatures at every 3—point has to be zero and the

same holds for the functions A.

Then, a necessary condition for the maps 7" to be C? in space and C! in time till the whole parabolic

boundary (given by [0,1] x {0} U {0,1} x [0,T") in Definition 2.11 and [0, 1] x {0} U {0,1} x [0,T) or

[0,1) x{0}U{0} x [0, T') in Definition 2.12) is that these conditions are satisfied also by the initial regular

network Sy, for some functions Ay (see Remark 2.13) extending continuously the functions A which are

defined only for ¢ > 0. That is, for the initial regular network S, there must hold

(kv + XoT)(P") =0, foreveryr € {1,2,...,1}

and
(KPWPE 4 NP P (OP) = (KPIuPT 4 \PIPT)(OP), for every i,j € {1,2,3}.

n

In particular for the initial network So = [J]__, 0*(;) the curvature at the end—points and the sum of the
three curvatures at every 3—point has to be zero.

These conditions on the curvatures of Sy = |J;—_, o%(I;) are clearly geometric, that is independent of the
parametrizations of the curves o’ but intrinsic to the set S and they are not satisfied by a generic regular,
C? network
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3 Short time existence I

We want to study existence and uniqueness of the flow by curvature of an initial regular network with
fixed end—points on the boundary of a smooth, convex, open set 2 C R?, as in Definition 2.11.

First of all, we need to discuss what we mean by uniqueness of the flow in our geometric context. If we
consider an evolving network S;, composed by curves 4 solutions of system (2.3), that is, satisfying
7¢ = k' + X' and dynamically reparametrize each curve v; with sufficiently regular maps ¢ : [0,1] x
[0,T) — [0,1] (for instance, C? in space and C' in time) such that ¢?(0,¢) = 0, p*(1,t) = 1, ¢*(2,0) =
and ¢ (z,t) # 0 for every (z,t) € [0,1]x [0, T), we get another solution of system (2.3) (see Remark 2.10).
This fact is related to the geometric nature of the problem: if *(z,t) = v*(%(x,t),t), we have indeed

with » _
A (2, 8) = X (9" (2, 0), ) + 7y (2, )y (2, 1) 5, () -

Hence, being 7(z,0) = v(x,0) = o(x), the flow of the networks S, given by the curves 7' is another
curvature flow for the initial network Sy = (J;__, % ([0, 1]).

For this reason, the natural notion of uniqueness of the curvature flow is “up to dynamic reparametriza-
tions”. Itis then also clear that we could have considered our networks simply as sets and their curvature
flows as flows of sets that could be parametrized in order to satisfy Definition 2.11. In [80] it actually
followed this possible alternative point of view.

Definition 3.1. We say that the curvature flow S; of an initial network Sg = J;"_, ¢*([0, 1]) is geometrically

unique in some regularity class E, if all the curvature flows in such class, solutions of system (2.3), with
the same initial network, can be obtained from each other using time-dependent reparametrizations.
More precisely, if S; and §t are two curvature flows of Sy, described by some maps v eEand~ €E,
there exists a family of sufficiently regular maps ¢° : [0,1] x [0,7) — [0,1] such that ¢©*(0,t) = 0,
o'(1,t) =1, ¢'(x,0) = x, % (2, t) # 0,7 (x,t) = v (¢ (x,t),t) for every (z,t) € [0,1] x [0,T).

If geometric uniqueness holds, any solution to the flow clearly describes a unique evolving network,
seen as a subset of R?, for every time ¢ € [0, 7).

One of the difficulties in getting existence and uniqueness of solutions in the sense of Definition 2.11
is the lack of the maximum principle, due to the presence of the 3—points which behave as “boundary”
points (whereas, by the Herring condition, from a “distributional point of view” they behave more like
“interior” points). This means, in particular, that differently from the case of the motion by curvature
of a smooth curve (or more in general, for the mean curvature flow of a smooth hypersurface — see [78])
we do not have a (geometric) comparison principle for solutions, the usual tool to show the uniqueness of
the flow. This is the reason why we will have to resort to integral a priori estimates, instead of pointwise
ones (see Section 4), the most “natural” ones in the smooth cases.

The “natural” initial regular networks are composed of curves of class C? and the “natural” regularity
of their flow is C! in time and C? in space. Unfortunately, without additional requirements on the initial
data, there is no hope of having a solution with curves in C%1([0,1] x [0,7')). The problem is due to
the way the evolving networks approach the initial one since they become immediately smooth (up to
reparametrization) for every positive time, by a “parabolic regularization” effect (that we will discuss
in Section 5) and satisfy some extra geometric properties which are stable under the C? convergence
ast — 0 (see Remark 3.20 and the related discussion in Section 3.2). Weakening such convergence at
time zero of the flow, as we actually did in defining in great generality the flow of an initial regular
network in Definition 2.11, asking only for the continuity of the curves v as t — 0, could possibly result
in the loss of uniqueness. We actually conjecture that uniqueness does not hold even if we ask for the
continuity of the maps 7, (or of the unit tangent vectors to the curves) up to time zero.
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In Section 5, by means of the results of this section, we will then show a quite satisfactory theorem of ex-
istence/geometric uniqueness for a short time of the flow of a regular C? initial network (Theorem 5.8)
in a space of solutions which can be considered “natural” for the analytic/geometric peculiarities of
the problem. It is well known that from a PDE'’s perspective, working directly with C? initial data and
looking for solutions of class C'! in time and C? in space is not a good choice, hence in this section we
start showing existence and uniqueness in suitable Sobolev and Holder spaces. Then, by means of these
two results (the first mainly for the uniqueness, the second for the existence problem) and the estimates
of the next section, we will show such Theorem 5.8. Indeed, roughly speaking, the space of flows C* in
time and C? in space are in a way “in the middle” between the flows in Sobolev and Holder spaces: if
the initial datum of class only C?, hence not necessarily in the Holder space C?, either one uses the
existence theorem in the Sobolev setting, or obtain a flow approximating such initial datum in C?*.
Then, in the first case, one obtains a Sobolev flow which could lack the property to be of class C*!, in
the second case, because of the approximation procedure, one cannot use the uniqueness in the Holder
setting to conclude. Moreover, as we said, in the same Section 5 we will also see that the “classical”
property of parabolic equations of “instantaneous regularization” of the solutions for every positive
time, also holds for the motion by curvature of networks.

The strategy of the proof is exactly the same for both the Sobolev and the Holder case, so we briefly
describe it below without specifying the spaces of the initial data and of the solutions, which we will
simply denote by Z and Er, respectively. Then, in the next sections, we will enter more into the details
of both cases, in particular where they differ a little bit.

We will first prove existence and (standard) uniqueness for system (2.5) in such spaces, giving the
special curvature flow of an initial network, then we will show the existence and geometric uniqueness
for the curvature flow Problem (2.3) in Definition 2.11 in the same spaces (“dropping” the continuity
requirement on the tangential velocity functions A\’ and allowing initial networks less smooth that C?, in
the Sobolev setting). For simplicity, we will deal in detail with the case of the simplest possible network,
a triod, and then we will explain how to adapt the arguments to the case of a general regular network.

Definition 3.2. A triod T = |J?_, °([0,1]) is a network composed of only three C' regular curves o :
[0,1] — Q where € is a smooth, convex, open subset of R?. These three curves intersect at a single
3-point O and have the other three end-points coinciding with three distinct points P? = (1) € Q.
A triod is regular if the unit tangents of the three curves form angles of 120 degrees at the 3—point O.

PS

Pl

P2

Figure 3.1: A regular triod.

For the reader’s convenience, we state Problem (2.3) in the case of a triod (without the continuity re-
quirement on the functions \*).

Definition 3.3. The one-parameter family of triods T = (v',~?,+?) is a flow by curvature in the time
interval [0, T] of the initial regular triod Ty = (o',02,0%) € T in a smooth convex, open set Q C R?,

if the three maps v* € Er satisfy the following system of conditions for every = € [0,1], ¢t € [0,7],
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i€{1,2,3},

=kt 4 N motion by curvature

yi(z,t) #0 regularity

Yi(1,t) = P? fixed end-points condition (3.1)
v10,t) = ~42(0,t) = v3(0,t) concurrency condition

S TH0,8) =0 angles of 120 degrees

and there holds v*(z,0) = o(z) for every x € [0, 1].

Then, to show the existence of a solution of this problem, we consider system (2.5) in the case of a
Yo
R
component. As we said in Remark 2.14, this a priori choice of the tangential velocity makes the problem
a system of non—degenerate quasilinear parabolic PDE’s.

triod, where we simply substitute k' + \i7% with as the two velocities differ only by a tangential

Definition 3.4 (Special flow of triods). The map v = (v',+?,~?) is a solution of the special flow in [0, T
with initial datum o = (0!, 0?2, 03) € T if it belongs to the space Er and satisfies the following system,

for every z € [0,1],t € [0,T) and ¢ € {1,2, 3}

Vi (@,t)

vé(m, t) = EACRIE special motion by curvature
Vol t) #0 regularity
yi(1,t) = P? fixed end—points condition (32)
v10,t) = ~42(0,t) = v3(0,t) concurrency condition ’
3 1(0t
Z.i=1 gzgo,t;‘ =0 angles of 120 degrees
¥4 (x,0) = o'(x) initial data
Noticing that we can write the equations of motion as
i Yaw 1 1 ) i N
AR (I%EI2 051
fori € {1,2,3} and the angle condition at the triple junction as (here 0% = ¢ (0) and 7% = v (0,))
AL ZK 11 ) iy olnlon)] g 34)
Lol e & \pa T o1 ?

aiming at showing the existence and uniqueness of the solutions of system (3.2), we are led to deal with
the following linearization of such system, with right-hand side data (f, n, b, ¢) in suitable spaces:

Yilw,t) — Ll = fila,t) tel0,T), z€0,1],ie{1,2,3}

Y (1,t) = n'(t) tel0,7],:€{1,2,3}

v10,t) —~42(0,t) = te0,7T] (3.5)
v2(0,t) —v3(0,t) =0 te[0,7) '
L (- SO o

vi(z,0) = Yi(x) z€10,1],i€{1,2,3}

Then, to apply Solonnikov’s theory in [100] (see also [31] and [66]), precisely Theorem 5.4 for the
Sobolev case and Theorem 4.9 for the Holder case, respectively, we have to show that this system
satisfies the so—called complementary conditions (see [100, Page 11] or [31, Chapter 1] where they are
also called Lopatinskii—-Shapiro condition), which are a sort of “algebraic” relations between the evolution
equation and the “boundary” constraints at the 3—point and at the end—points of the triod (see [17, Sec-
tion 3]). It is in general not so easy to show them, but in our case, the ones related only to the parabolic
operator are almost immediate since it is uncoupled, while the remaining ones follow by applying
the argument at pages 10-12, Lemma L1 in [31, Section 1.2]. Indeed, for this particular system, by

18



such argument they hold if at the triple junction, for every A € C with ®(\) > 0, every solution
z = (21,22 2%) € C?(]0, +00), C?) of the second order ODE’s system

A2 (s) — ot ((0))|2 =0 for every s € [0,+oc) and i € {1,2, 3}
z1(0) = 22(0) = 2°(0)
3 290) 0 (0)(2(0) | 04 (0))
S (o o) =0
which satisfies limg 4 00|2%(s)| = 01 1s the trivial solution and similarly, at the end—points, every solution
z = (21,22 2%) € C?(]0, +00), C?) of

Azt(s) — Ei(s)‘z =0 foreverys e [0,+00)and i€ {1,2,3}
210) =0 forevery i € {1,2,3}

which satisfies limg_, ;o |2%(s)| = 0 is the trivial solution.

These two conditions are clearly immediate to be checked, by directly writing the solutions to the above

ODE's.

Then, holding such complementary conditions, by Solonnikov’s theory, the linearized system has actu-

ally a unique solution for (f,, b, ¥) in suitable spaces if the initial datum ¢ € Z satisfies some “compat-

ibility conditions” which are different in the Sobolev and Holder cases. We will discuss them precisely

in the next sections.

Introducing the spaces

Er ={y € Er | '(0,t) = 4%(0,£) = +3(0,¢), fori € {1,2,3},¢ € [0,T] } C Er
Fr = {( f,m,b,1) in suitable spaces and v € 7 satisfies the compatibility conditions}

the existence and uniqueness of solutions of system (3.5) is then equivalent to the fact that the linear
map Ly : Er — Fr, defined as

k2

’Vé ‘Z'{/rz
Y |x 1
Lr(v) = _ZS Vi ol(vilok)
i=1 \ Joi] EZAR =0
¥
7' le=o i€{1,2,3}

is a continuous isomorphism.

To “get back” to the solutions of the special flow system (3.2), we then need “contraction” estimates in
order to apply a fixed point argument.

We define the space

]E?’P ={ye Er | Y|t=o = ¢ and v*(1,t) = P, fori € {1,2,3}}

and an operator Ny : EZ" — Fr that “contains all the information" about the non-linearity of our
problem, given by
Nz(y) = (N2 (7):7e=1,0,0, N7(7), Y=o )

where
fori € {1,2,3} and
3 . . .
Vo L1 N ob0)(i0,8)|04(0)
N() = Bl =2 (e~ oz 0.0+ = 67

are the functions at the right hand sides of equations (3.3) and (3.4), respectively.
We then introduce the operator K : E%’P — IE?P defined by Kr(v) = L;lNT(v), where Lt is the map
above. Hence, v is a solution for system (3.2) if and only if v € ]E?P and

Lr(y) =Nr(y) <  ~v=L3'Nr(y) =EKr(v).
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Thus, there exists a unique solution to system (3.2) if and only if K : EZ’" — E#"" has a unique fixed
point and to get this, it is enough to show that K is a contraction.

This clearly solves the existence problem of a curvature flow, Problem (3.1) in the space E7, when the
initial data belongs to Z (as we said, if the solution is not C? at least - like it will happen in the Sobolev
case — we must “drop” the requirement that the “tangential” part of the velocity is continuous).
Finally,we will have to deal with the geometric uniqueness of the flow, that is, if T; and ﬁ‘t are two
solutions in such spaces, at every time one is a reparametrization of the other. To conclude, we will
extend all the results to the case of a general regular network.

The next two sections will be devoted to exhibiting the details of this strategy of proof in suitable
Sobolev and Holder spaces, respectively obtaining Theorems 3.6 and 3.25.

3.1 Well-posedness in Sobolev spaces

We are going to show the existence and the geometric uniqueness of the solutions when the initial
datum is a regular network in the fractional Sobolev space W?2~2/P? (notice that here we are allowing
non—C? initial regular networks).

Definition 3.5. Let p € (3,+00). Given an initial, regular, W22/ network Sy, composed of n curves
o' :[0,1] — Q, with m triple junctions O, 0?,...0™ € ) and (if present) [ end—points P!, P?,... P! €
99 in a smooth convex, open set 2 C R?, we say that a family of homeomorphic networks S;, described
by the family of time-dependent curves v*(-, t), is a Sobolev—solution of the motion by curvature problem
with fixed end—points for Sy, in the time interval [0, T'), if (with a little abuse of notation, switching the
variables t and z inside )

'Vi € WLP([O?T); Lp([07 1]a§)) N Lp([o, T)? WQ’p([Ov 1]76)) )

there hold v*(z,0) = o%(x) (in the sense of traces), for every z € [0,1] and i € {1,2,...,n} (initial data)
and the following system is (weakly) satisfied for every z € [0,1],¢t € [0,T),i € {1,2,...,n},

Vi =kt Nirt motion by curvature
Va(z,t) #0 regularity
~v"(1,t) = P" with0 < r < fixed end-points condition

Zf.:l TPI(OP,t) = 0 at every 3—point O angles of 120 degrees
where we used the same notation of Definition 2.11.
The goal of this section is to prove the following theorem.

Theorem 3.6. Let p € (3,+00) and let Sy be a reqular initial network of class W?~2/P». Then, there exists a
geometrically unique Sobolev—solution S, of the motion by curvature problem for Sy, as in the definition above,
in a maximal time interval [0,T).

We let p € (3, +00) and we define the solutions space
Ep = W, 2([0,T) x [0,1]) = W?([0,T); ([0, 1])) N LP([0, T); W*P([0, 1]))

endowed with the norm ||-||g, = H'”WPI’Q([O,T)X[OJ])‘

To keep the notation simple, here and in the following we avoid writing the “target” spaces of the
vector-valued functions, that is, for instance W;-2([0,T)) x [0,1]); R*) will be simply denoted with
W,2([0,T) x [0,1]), as the dimension of such target vector space is clear from the context.

The space Er is then the intersection of two Sobolev spaces of functions with values in a Banach space.
Letm € N, I C R be an interval and X be a Banach space. For 1 < p < 400, the Sobolev space of order
m € Nis defined as

WmP(I; X) = {f € LP(I;X) | 0¥ f € LP(I; X) forall 1 < k < m},

which is a Banach space with the norm

1/p
s = (3 1087 ) -

0<k<m
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Elements in the solutions space E are thus functions f € LP([0,T); L?([0,1])) that have one distribu-
tional derivative with respect to time 0,f € L?([0,T); L”([0,1])). Furthermore, for almost every ¢ €
[0, T), the function f(t) lies in W27 ([0, 1]) and thus has two space derivatives 9, f(t), 92 f(t) € L?([0, 1]).
One then easily sees that the functions ¢ — 9 f(¢) belong to LP([0,T); LP([0,1])), for k € {1,2}.

The space Z of initial data is the time-trace of Er, given by the fractional Sobolev space W2=2/P-?([0, 1]).
In general, if d € N, p € [1,400) and 6 € [0, 1] the Gagliardo semi—norm of an element f € L?([0,1]) is

defined as
| p 1/p
(/’/ e d‘”) |

then, if s € (0, 4+00) is not integer, the fractional Sobolev space W*?([0, 1]) is given by

wer((o,1) = {f e whbr((o1]) | [o801],

—lslp < +oo},

with the norm
£ lwerqoan = I llweere + 081, -
Forp € (3,+00) and a € (0,1 — 3/p], the Sobolev embedding theorem [107, Theorem 4.6.1 (e)] implies

wE=2re([0,1]) < CH((0, 1)),
thus, we have the continuous embeddings

W, 2(10,T) x [0, 1]) < C([0, T]; W*=2/77([0,1])) < C([0,T]; &+ ([0,1])) -

In particular, any initial network in W2~2/P? is of class C, hence the angle condition at every triple
junction is pointwise well-defined (classical). Similarly, we specify the spaces of boundary values, as
for p € [1, +00), the operators

fr f(.0)and f = f(-,1) from W, ([0, T) x [0,1]) to W' =/2P2([0,T)
= f(:,0) from WI}’Q([O,T) x [0,1]) to W1/2_1/2””’([0,T))
are linear and continuous (Theorem 5.1 in [100]).

Now, to show Theorem 3.6, we “specialize” the line of proof illustrated in the previous section to this
Sobolev case, adding the missing details. As we said, we will deal with a triod and then we will explain
how all the conclusions extend to general networks.

3.1.1 Well-posedness of the linearized system (3.5) and of the special flow (3.2)

The first point to be made precise is what are the “compatibility conditions” that the initial datum must
satisfy so that the linearized system (3.5) has a unique solution.

Definition 3.7 (Linear compatibility conditions). A function ¢ = (!, 9?3 ) € T satisfies the linear
compatibility conditions for system (3.5) with respect to the functions n = (n*,7%,7%) and b if, for i,j €
{1,2,3}, there holds 1*(0) = ¢7(0), ¢*(1) = 1*(0) and

(0) al (0)(x2(0) | oL (0
‘ZQwo OEOIZ0)) 68)

Then, the following proposition is a consequence of Theorem 5.4 in the book of Solonnikov [100] (see
also [66] and [31]) keeping in mind that we know that system (3.5) satisfies the complementary condi-
tions.

Proposition 3.8. Let p € (3,+00). For every T > 0, system (3.5) has a unique solution v € Ep provided that
feLP([0,7); LP([0,1]), n € WI=1/2PP([0,T)), b € W/2=1202([0,T)) and ¢ € W2=2/P2((0,1]) fulfills the
linear compatibility conditions stated in Definition 3.7, with respect to 1 and b.

Moreover, there exists a constant C' = C(T') > 0 such that the following estimate holds:

I7ler < CUIfllze 0,120 (0,11)) + Inllwr=1720.0 0,1y + N0llwr/2=1/200 10, 7)) + 1 llw2=2/00((0,17)) -
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This proposition can be restated by saying that the linear operator Ly : E; — Fy defined as

i

P ez
Tt T Tor?

Lr(y) = ‘77"|z:.1 o
TV= oy (2 - oelnlod)
=t \Tof1 — ot )|
1
V' li=o i€{1,2,3}

is a continuous isomorphism between the spaces

Er ={v=(v"7%7%) € Er | v'(0,t) = 4*(0,t) =4°(0,t), fori € {1,2,3} and t € [0,T) } C E
Fp = {(f’”»bvw) € LP([0,T); LP([0,1])) x W=1/20p([0,T)) x WH/21/2P2([0,T)) x W2=2/P2([0,1]) }

1 satisfies the linear compatibility conditions of Definition 3.7 with respect to  and b

Moreover, it is possible to prove (Lemma 3.6 in [44]) that for every T, > 0, there exists a constant
C(Ty, p) such that

-1
s (15 e, 5,y < OT0n).

As we said in the previous section, the well-posedness of the linearized system implies the same for
the special flow, by means of contraction estimates involving the operator Ny : E2" — Fr, given by

NT(’Y) = (le“(’YL ’7|:E:1a 07 07 N%(,Y)v ’7|t:0 )
where N7 and N7 are defined by formulas (3.6) and (3.7), respectively and
E?JP ={v¢€ Er ‘ Ylt=o = p and v (1,t) = P*, fori € {1,2,3}}.

The following result is proved in [44, Theorem 3.7], it gives the existence and uniqueness for the special
flow of a regular initial triod in the Sobolev setting.

Theorem 3.9. Let p € (3,+00) and let ¢ = (0*,02,0%) € W22/PP([0,1]) describes a regular triod. In
particular,
Lo =L70,0(1),0,0)

is well defined, as o satisfies the linear compatibility conditions in Definition 3.7 with respect to the functions
t — o(1) and zero.

Then, there exists a positive time T = ZN“(U), depending on min;e (12,33, zeo,1] |05 (2)| and lollw2—2/p.5(0,1])
such that for all T € (0, T), the system (3.2) has a solution Eo in B which is unique in
By ={y €Er | [I7ler < M},
with
M= 2max {sup (15 e, 5,01 o {10l IOV (E0),0(0), NE (2, )}
€(o,
3.1.2 Existence and geometric uniqueness

Once we have obtained the existence and uniqueness of solutions to the special flow (3.2), we can come
back to the geometric problem. The following theorem gives the “existence part” of Theorem 3.6.

Theorem 3.10. Let p € (3, +00) and T a reqular initial triod parametrized by o = (o, 02, 0%) € W2=2/P2([0,1]).
Then, for some T' > 0, there exists a Sobolev—solution of the motion by curvature problem in Definition 3.5 with
initial datum T, in the time interval [0,T).

Proof. Proposition 3.9 implies that there exists 7' > 0 and a solution o € W,-*([0,T) x [0,1]) to the
special flow system (3.2) in [0, 7] with £0(0) = o. Then, setting v(z,t) = £o(t)(z), we have that T, =
U?Zl v%([0,1],t) is a Sobolev—solution to the motion by curvature with initial triod Ty in [0, T'). O
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Now we deal with the geometric uniqueness of the solution given by the previous theorem.

Theorem 3.11. Let p € (3, +00) and T a reqular initial triod parametrized by o = (0!, 02, 0%) € W2=2/P2([0, 1]).
If T;, T, are two Sobolev—solutions to the motion by curvature problem in Definition 3.5 with initial datum Ty,

in the time intervals [0, T) and [0,T), respectively, then T, and T, coincides up to reparametrization, for all

t € [0, min{T, T}). In particular, T, is geometrically unique.

Proof. By Proposition 3.9, we have a Sobolev-solution v = £ of system (3.2) with initial datum o,
which is unique in By, with M as in such proposition. In particular, it gives a Sobolev—solution T; to
the motion by curvature in [0, T") with initial datum T.

Suppose that there is another Sobolev—solution T; with initial datum Ty in [0, 7)), parametrized by
7 € Ez. We then want to show that there exists a family of time—dependent diffeomorphisms ' (-, t) :

[0,1] — [0,1] with ¢ € [0, 7)) for some T < min{T, T}, such that ©(-,0) is the identity and the equality

ﬁi(@l{x’t)?t) = Vi(x’t)

holds in the space Ez, for every i € {1,2,3}. In order to make use of the uniqueness conclusion in
Proposition 3.9, we construct the reparametrizations ¢ = (¢!, 9%, ¢?) in such a way that the functions
(z,t) = 7' (¢"(x, t),t) are a solution to the special flow in E+ with initial datum o.

Then, formal differentiation shows that the reparametrizations ¢* need to satisfy the following bound-
ary value problem:

i o (2.1) .y 50 (0 0).0) | A1), 1)
o) = e ) P <W @00 = 5 (o (w5, D2 W;<soi<x,t>,t>|2>
¢'(0,1) = (3.9)
e'(L,t) =
©'(x,0) =z

We observe that the right-hand side of the motion equation in system (3.9) contains terms of the form
Q' (¢'(x,1),t). To remove this dependence it is convenient to consider the associated problem for the

inverse diffeomorphisms & = (¢1,£2,¢3) given by (-, t) = ¢'(-,1)~}, for every fixed ¢ € [0,T). Indeed,
suppose that ¢ € W2([0, T) x [0, 1]; [0, 1]*) is a solution of system (3.9) with ¢?(-,) : [0,1] — [0,1] a C''-
diffeomorphism, then it is easy to show that also ¢ is of class W, ([0, T) x [0,1];[0,1]3) (and viceversa)
and the formulas

&y, t) = @b (&(y, 1))
;Zy(yv t) = _gé (y7 t)?’(plxm (51 (ya t)v t)
yield the evolution equation

ﬁ (ya t) == 901 (fl (y’ t)v t)ggl/ (y7 t)
— _ @;x(gl(y’t)7t) gé(y’t)S + <~§(y7t) ’Yazca:(yvt)

?;i(:%t) >£Z(yat)

A (y, 1) AW OR | iy, )P
_ &u(yst) ~i C Fea(yt) | Aa(y,t) i
“ R0 +< AR EATOE a;<y,t>|2>5y(y7”‘

Hence, we have the following linear system for &,

. Pyt B _
& (y,t) = M + <’y§(y,t)  Vaa(W:1)

ﬁ;(y’ t) >§;(y, t)

72 (y, )] ey, O | [7i(y, b))
€0,t) =0
E(1,t) =1
§(y,0) =y
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forallt € [0,T),y € [0,1] and i € {1,2,3}.

We observe that this linear boundary value problem has a very similar structure to the linearization of
special flow system (3.5), with a perturbation in the evolution equation of lower order. Then, checking
that it satisfies the complementary conditions is analogous and the compatibility conditions for the ini-
tial data are simply +*(0) = 0 and ¢*(1) = 1, which are clearly satisfied by £*(y,0) = y. Hence, again
by Solonnikov’s theory (Theorem 5.4 in [100]), we have a solution & € W, ([0, T) x [0,1]), for some
T < T, such that for every t € [0, T) the map £%(-,t) : [0,1] — [0,1] is a C'~diffeomorphism. Then, the
inverse functions ¢’ (-, t) = £(-,¢)~" also belong to W,-%([0, T) x [0,1]) and solve system (3.9). It is not
difficult to show (see [44, Lemma 3.17]) that the composition (z,t) — 5*(¢'(z,t),t) lies in E= and by
construction, it is a solution to the special flow system (3.2) with initial datum . We may now choose
a possibly smaller T such that (z,t) — 7*(¢'(,t), t) belongs to By, hence it must coincide with  re-
stricted to the time interval [0, 7).

Let now T < min{T, ZN“} be the infimum of the times in which T, is not a reparametrization of T,
and suppose T < min{T,T}. Then, ']TT is obtained via a reparametrization ¢ of T and if we con-
sider the flow obtained reparametrizing all the networks T, for ¢ > T, with the same fixed “static”
reparametrization ¢, we obtain a Sobolev—solution with initial datum ﬁ‘f on some time interval [T, T +
5). Then, by the previous discussion about uniqueness, it must coincide with the flow T, for ¢ €
[T,T + &), for some & > 0. This clearly shows that for t € [T,T + §’), all the networks T, are
reparametrizations of Ty, in contradiction with the infimum property of 7' and we are done. O

Putting together these two theorems, we obtain Theorem 3.6 in the special case of a triod.

3.1.3 Extension to general regular networks

We explain here how to generalize the previous analysis for a triod to general networks.

We consider an initial regular network Sy composed of n curves, with [ end-points v*(t,1) = P* € 90,
for k € {1,...,1} and m triple junctions O',0?,...0™ € Q. As in Section 2.1 (recall the discussion just
after Remark 2.5), we will denote by 0?7, for j € {1,2, 3}, the curves of this network concurring at O?,
for every p € {1,...,m}.

The equations of motion for the special flow system (2.5) for Sy and its linearization do not differ from
the version for a triod: formula (3.3) must hold for each curve ~? of the network,

% ’Y;;:w (x’ t) 1 1 )
e = 222 (- s ke,
ot @)]”  \hie, ) lob(@)?
for every i € {1,...,n} and we have formula (3.4) at each triple junction, that is, assuming that OP(t) =

YPH0,1) = 772(0,1) = #%(0,¢) and OP(0) = o”1(0) = 07(0) = o#*(0),

Z W ol 7’” o) (g~ [(L L oot
p] 3 - pi )= P |3 )
| oz’ | oz |

< Jo2] = [\

where 0?7 = ¢P7(0) and %7 = 4P7(0,t), forevery p € {1,...,m}.
The analogous of the linearized system (3.5) is then the following,

yil,t) rjfff;fz? = fi(a,t) €0,T), zc(0,1),i¢{l,....n}
Y (1,t) = n*(t) €0,7], ke{l,....1}
”1075 0,T],pe{1,...,
o wﬁ e {O,T}, S P G10)
S NP o e P 08
v (2,0) = ¢ (z) €[0,1],ie{1,...,n}

for a general right hand side (f,7,b,v), withn = (p',...,n') and b = (b},...,b™).
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Hence, in order to apply again Solonnikov’s theory to get the well-posedness of this linearized system,
the necessary complementary conditions are simply the same that we have seen for a single triple junc-
tion and only three end-points, repeated for each 3—point and end—point in this case and we can check
all of them exactly in the same way we did for a triod.

Then, the generalization of Definition 3.7 is as follows, which is simply asking that equation (3.8) holds
at every 3—point.

Definition 3.12. Letp € (3, +00). A function ¢ = (1%, ..., 9™) of class W?2~2/P(|0, 1]) satisfies the linear
compatibility conditions for system (3.10), with respect to given functions n = (n',...,n') € W'=1/2pr((0,T)
and band b = (b',...,b™) € WY/2=1/2p2([0, T)) if, for every k € {1,...,l} and p € {1,...,m}, there
holds v*(1) = 1*(0) ¥*'(0) = 9"*(0) = ¥**(0) and

3

B Pri0) oP3(0) (4P (0) | 27 (0))
>

. ) , =0P(0).
o' (0) oF O > .

The rest of the proof leading to Theorem 3.6 then follows analogously to the case of a triod, in particular
the version of Theorem 3.9 for general initial regular networks. All this discussion concludes the proof
of Theorem 3.6.

Remark 3.13. We mention that a different argument to extend the conclusions from the case of a triod
to the one of a general network is to add some extra “fake boundary points” in the middle of every
curve “separating” it in two new curves so that each curve of the resulting new family always connects
one triple junction and one boundary point. Then, imposing “artificial” boundary conditions on such
“fake boundary points” forbidding two of the new curves concurring there to form an angle, we have
a new system which is “equivalent” to system (3.10) and easier (in terms of notation) to be dealt with.
Applying Solonnikov’s theory to such a system, one then gets the same conclusion that we obtained
above. This line was pursued in [108], where the author carries on this procedure in full detail.

3.2 Well-posedness in Holder spaces

We want to show the existence and the geometric uniqueness of the flow, Problem (2.3) in Defini-
tion 2.11, when all the curves of the initial regular network belong to the Holder space C**2, with
a € (0,1/2) and satisfy some extra conditions. We underline that this section is based on the results of
Bronsard and Reitich in [17] (see also [82]).

We do not need a particular definition for these flows, that we are going to call Holder—solutions or
Holder—curvature flows , similarly as we did with Definition 3.5 for the Sobolev case, since the initial data
space Z will be the Holder space C?72%([0, 1]), which is a subspace of the “natural” space of initial C*
regular networks. Omitting, as before, the target vector space for simplicity of notation, we have

T =C*2([0,1])

and the solutions space,
Er = C?T2*([0,1] x [0,T)),

with a € (0,1/2), endowed the norm ||-||g,. = ||[|c2+20.1+a (0,1 [0,7))-
For the reader’s convenience, we recall the definition and some properties of these parabolic Holder
spaces (see [100, Sections 11 and 13]). For a function w : [0,1] x [0,7] — R, we define the Holder

semi-norms
lu(z,t) — uly,t)|

[ulgo = sup

z,y€[0,1], t€[0,T |z — y|ﬁ ,
and ju(z,8) = u(z, )]
u(x,t) —u(x, 7
[ulo,0 = sup 5 ,
z€[0,1] £,7€[0,T] [t — 7]

then C?+21te([0,1] x [0,7]) is the space of the functions u : [0,1] x [0,7] — R having continuous
derivatives 997 u, for every i,j € N with 2i 4+ j < 2 and such that the norm

2

lullczrannsaqoupom = D N0i0%ullc+ > [000u], 0+ D> [0i00u],,

2i45=0 2i+5=2 2i+5=2
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is finite.

As we did for the Sobolev case in the previous section, we now “specialize” the strategy of proof illus-
trated at the beginning to the Holder case. Again, we first deal with a triod and then we extend all the
results to general networks.

3.2.1 Well-posedness of the linearized system (3.5) and of the special flow (3.2)

Differently from the Sobolev case, to get well-posedness of system (3.2) in the above Holder spaces, the
initial datum cannot merely be a regular triod, but suitable “extra conditions” are necessary.

Definition 3.14. We say that the compatibility conditions of order 2 for system (3.2) are satisfied by the
(initial) C? regular triod Ty = U?Il o ([0,1]), if at the end-points and at the 3-point, there hold all
the relations on the space derivatives, up to second order, of the functions ¢* given by the boundary
conditions and their time derivatives, assuming that the evolution equation holds also at such points.
Explicitly, the compatibility conditions of order 0 at the 3—point are

a'(0) = a7 (0) for everyi,j € {1,2,3}
and 4 '
a'(l)y=P* for every i € {1,2,3},

that is, simply the concurrency and fixed end—points conditions.
The compatibility condition of order 1 is given by

03(0)

- =0,
2, |o2(0)]

i=1 z

that is, the 120 degrees condition at the 3—point.
To get the second order conditions, one has to differentiate in time the first ones, getting

01, (0) _ o, (0)
0t OF ~ lod(0)

for every i, j € {1,2,3}

and )
04 (1)

rxr
oz (1)
As in the Sobolev case, we consider the linearized system (3.5), which also needs more conditions on
the initial data in order to be well-posed.

=0 for every i € {1,2,3}.

Definition 3.15. A function v = (¢!, v¢?,?) € T satisfies the linear compatibility conditions of order 2 for
system (3.5) with respect to the functions f = (f1, f2, f3), n = (n',n?,n3) and b, if ¢ satisfies the linear
compatibility conditions as in Definition 3.7 and, in addition,

IO + (0,0) = o1 (0)2 + f7(0,0) orevery i,j € {1,2,3}
and v
|0;:9(01())2 + f4(1,0) = 5i(0) forevery i € {1,2,3}.

Then, the following proposition (analogous to Proposition 3.8) is a consequence of Theorem 4.9 in the
book of Solonnikov [100] (see also [66] and [31]), as we know that system (3.5) satisfies the complemen-
tary conditions.

Proposition 3.16. Let a € (0,1/2). For every T' > 0, system (3.5) has a unique solution v € Er provided
that f € C?*2([0,1] x [0,T]), n € C***([0,T]), b € CV/2T2([0,T]) and ¢p € C>+2([0,1]) fulfills the linear
compatibility conditions of order 2 stated in Definition 3.15. Moreover, there exists a constant C = C(T) > 0
such that the following estimate holds:

IVllEr < C(IIflc2eao,xo,17) + 11l cr+ao,rn + 10l cr/z+ao.ry + 19llc2t20(0,17)) -
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Arguing as in the Sobolev case, by means of contraction estimates, the work of Bronsard and Reitich [17]
then shows the well-posedness of the special curvature flow system (3.2) in the Holder setting.

Theorem 3.17. For any initial, reqular C**2% triod Ty = Uz L0([0,1]), with o € (0,1/2), satisfying the
compatibility conditions of order 2, there exists a positive time T such that system (3.2) has a unique solution in
Cr2e01+a ([0 1] x [0, T]). Moreover, every triod T, = | J;_, v*([0, 1], t) satisfies the compatibility conditions of
order 2.

Remark 3.18. In [17] the authors do not consider exactly system (3.2), but the analogous “Neumann
problem”. That is, they require that the end—points of the three curves meet the boundary of 2 orthog-
onally.

3.2.2 Existence and geometric uniqueness
Clearly, a solution of system (3.2) provides a Holder—solution to Problem (3.1).

Theorem 3.19. For any initial, regular C**2% triod Ty = Ul L0([0,1]), with a € (0,1/2), in a smooth,
convex, open set Q@ C R?, satisfying the compatibility conditions of order 2, there exists a Holder—curvature
flow of T of class C*T2*1T([0,1] x [0,T)) in a maximal positive time interval [0,T). Moreover, every triod
T, = Ule v4([0, 1], ¢) satisfies the compatibility conditions of order 2.

Proof. If v* € C?T21%a(]0,1] x [0, 7)) is a solution of system (3.2), then it solves Problem (3.1) with

Mo (@) | 7' (2,1) _ (aa(@,t) [v2 (@, 1))
I (. t)[? v (e, )]

Indeed, it follows immediately by the regularity properties of this flow that the relative functions \’
belong to the parabolic Holder space C2*:%([0, 1] x [0,T')) (hence, in C*(]0, 1] x [0, T')), thus continuous)
and all the triods T; are in C%*2%, satisfying the compatibility conditions of order 2.

The property that these evolving triods are regular follows by the standard fact that the maps +¢ are
continuous, belonging to C''*2:1/2+2([0, 1] x [0, T]) (see [65, Section 8.8]), hence, being ¢’ regular curves,
vi(x,t) # 0 still holds for every = € [0, 1] and for some positive interval of time.

The fact that a curve cannot self-intersect or two curves cannot intersect each other can be ruled out by
noticing that such an intersection cannot happen at the 3—point by geometric reasons, as the curvature
is locally bounded and the curves are regular, then it is well known for the motion by curvature that
strong maximum principle prevents such intersections for the flow of two embedded curves (or two
distinct parts of the same curve). A similar argument and again the strong maximum principle also
prevent a curve from “hitting” the boundary of ) at a point different from a fixed end—point of the
triod. O

No(z,t) =

Remark 3.20. Since every curve ~' of a special curvature flow T; satisfies 7 = &=

= i for every t > 0, by

the very Definition 3.14, every triod T; is 2-compatible.
If instead we have simply a C*! curvature flow T, it is not necessarily 2-compatible for every time. It
only has to satisfy kv 4 A7 = 0 at every end—point and

(K'v' + X't (0) = (kv + M 77)(0), for 4,5 € {1,2,3}.

These relations imply anyway that for every evolving triod T; the curvature is zero at the end—points
and the sum of the three curvatures at the 3—point is zero. We are going to see that this implies that by
reparametrizing T; by a C>° map we obtain a 2-compatible network.

The observations in this remark can be clearly extended to general networks, as well as Definition 3.14.

Definition 3.21. We say that a regular C? network Sq = {J;_, o ([0 1]) is 2-compatible if the maps o'
satisfy the compatibility conditions of order 2 for system (2.5), that is o7, = 0 at every end—point and

ob,(07) _ oB(0)
o5 (OP)2 |0k (07))?

for every pair of curves o?® and ¢’ concurring at any 3—point OP (where we abused a little the notation
like in Definition 2.11).
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Definition 3.22. We say that a regular C? network Sy = |J;—_, *([0, 1]) is geometrically 2—compatible if the
curvature is zero at every end-point and the sum of the three curvatures at every 3—point is zero.

By this definition, to be geometrically 2—compatible is a property invariant by reparametrization of the
curves of a network (it involves only the curvature, a geometric quantity invariant under reparametriza-
tion). Arguing as in Remark 3.20, we immediately have the following proposition.

Proposition 3.23. Given a curvature flow S; of an initial regular C? network Sy = |J;_, o*([0,1]) all the
networks S, for t > 0, are geometrically 2—compatible.

There is a clear relation between geometrically 2-compatible and 2—compatible networks that we give in
the following lemma.

Lemma 3.24. Let So = [J;_, 0%([0,1]) be a geometrically 2—compatible network. Then, it admits a regular
reparametrization by a C° map such that it becomes 2—compatible.

Proof. We look for some C* maps 6% : [0,1] — [0, 1], with 6% (z) # 0 for every = € [0,1] and 6?(0) = 0,
0%(1) = 1 such that the reparametrized curves ¢* = o' o 0 satisfy

Oza _

EARNEAE

for every pair of concurring curves o° and ¢/ at any 3-point and 5%, = 0 at every end-point of the

(Oge 10

network. Setting Xé = & |3;' ) this means

Eo+ N7 = B0 + N7

for every pair of concurring curves &° and 57 at any 3-point and k7% + \)7¢ = 0 at every end—-point of
the network. Since the curvature is invariant by reparametrization, using computations of Section 2.3
and the hypotheses on the curvature, these two conditions are satisfied if and only if N =0 at every
end-point of the network and

ki—l _ ki-‘,—l

V3

at every 3—point of the network, for i € {1,2, 3} (modulus 3).
Hence, we only need to find C*> reparametrizations 6% such that at the borders of [0, 1] the values of

% -

N = (Oor122) are given by these relations. This can be easily done since at the borders of the interval

EAR

[0,1] we have #(0) = 0 and #7(1) = 1, hence

< (@ [F) 1 1 (ol o) 9i , gi
Np= -zl = g = ariel e\ we
oL )3 ‘o] ot o 07167 ot |? ot ]16% ]2 ot []65 ]2

(ol lok)

where \) = , then we can simply choose any C*° functions 6 with 6:(0) = 0:(1) = 1, 0%, =

lo1?

—Ai|oi]|6%]? at every end—point and

) ki—l _ ki+1 ) ) )
e;=(—%)MWﬁ

V3
at every 3-point of the network (for instance, one can use a polynomial function). It follows that the
reparametrized network Sp = (J!, (¢ o 6%)((0, 1]) is 2—compatible. O

We are then ready to deal with networks with general topological structure, having as a goal the fol-
lowing final conclusion.

Theorem 3.25. For any initial, regular C**2* network Sy = J-_, o*((0,1]), with o € (0,1/2), in a smooth,
convex, open set Q0 C R2, which is geometrically 2-compatible, there exists a geometrically unique Holder—
C?H2edta((0, 1] x [0,T)) curvature flow S, (in the sense of Definition 3.1) in C**t21+2([0,1] x [0,T)), in a
maximal time interval [0, T). Moreover, all the networks S, are geometrically 2—compatible.

28



We first extend the short-time existence Theorem 3.19 to regular, C>*2“ initial networks which are
geometrically 2-compatible, hence showing the “existence part” of Theorem 3.25.

n

Proposition 3.26. For any initial reqular C*T2* network Sy = \J—, o*([0,1]) which is geometrically 2—
compatible, with o € (0,1/2), in a smooth, convex, open set Q C R?, there exists a Holder—curvature flow
of class C*+21%2([0,1] x [0, 7)) for a maximal positive time interval [0,T).

Proof. By Lemma 3.24, we can reparametrize the network Sy with some C*° maps ¢' to make it 2—
compatible. If the network Sy belongs to C2+2* the reparametrized one Sy is still in C2+2, then
we can argue step-by-step exactly as we did in Section 3.1.3 for the Sobolev setting, in order to ex-
tend Theorem 3.17 to general regular networks, getting the unique special curvature flow 5" for So =
U, a%([0,1]) = Ui, (c% o 6%)([0,1]) which is in C?*2*1F([0,1] x [0,T)) for a maximal positive time
interval [0, T'). Moreover, every network S; = |J_, 7/([0, 1], ¢) is 2-compatible.

If now we consider the maps ¢ given by ~(z,t) = 5([0]~!(x),t), we have that they still belong to
C?r2edtae((o,1] x [0,7T)) (as the maps [#°] ! are in C*), v*(-,0) = o’ and

with A (z,t) = X([07] (), t)7([0)] "' (z),t). Hence, ~' is a flow by curvature of the network Sy in
crr2eatte((o, 1] x [0,7)) 0

Finally, we address the geometric uniqueness of the flow in Holder space, obtaining Theorem 3.25.

Proof of Theorem 3.25. By Proposition 3.26, we have a Holder—curvature flow S; of Sy, given by the fam-
ily of moving curves ~'. We first show that if Sy = |J]__, 0%([0, 1]) satisfies the compatibility conditions
of order 2 then the solution given by Theorem 3.19 (which is the special flow given by the extension of
Theorem 3.17, as in the proof of the previous proposition) is geometrically unique among the curvature
flows in the class C2+2«:1 ([0, 1] x [0,7)).

Suppose that 57 : [0,1] x [0,T) — Q is another maximal solution in C2+2e:1+a ([0, 1] x [0,T))) satisfying
i = ki + X7 for some functions A in C2%([0, 1] x [0,T')), we want to see that it coincides with ¢ up
to a reparametrization of the curves 3(-, t) for every ¢ € [0, min{7, .

If we consider functions ' : [0,1] x [0, min{T, T}) — [0, 1] belonging to C2+2e:1+e ([0, 1]
and the reparametrizations 7' (x, t) = 5% (¢*(z,t), t), we have that 5* € C?+21+([0, 1]
and

[0, min{T, T}))

X ~
x [0, min{T,T}))

&
N
T~
S~—
S
NS
&
Nt
+
e
‘G& .
®
=
-
N~—
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>
G&
w®
~
:—/
~
~—

We choose now maps ¢’ € C2+21+e([0,1] x [0, 7)) which are solutions for some positive interval of
time [0, T') of the following quasilinear PDE’s

gy = oa (2@ 0),1) [5:(6" (@ ),1))  N(o(x,1), 1) Pho (1) -
et 7 (i), )" R 0] ' B o). O b0
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with ?(0,) =0, *(1,t) = 1 and ¢*(x,0) = = (hence, 7 (x,0) = 7*(z,0) = o'(x)).
To find such reparametrizations ¢, we consider, as in Section 3.1.2, the associated problem for the in-
verse diffeomorphisms ¢ = (£1,£2,£3) given by £4(-,t) = ¢'(-,t) !, for every fixed t € [0,T).

&y t) = M + <W§(y7t) - i;$(y’t) j“y’tl > & (y,t)

7% (y, 1) 17w OF | [7i(y,t)
i0,t) =0
gi(Lt) =1
£(y,0) =y

forallt € [0,T),y € [0,1] and i € {1,2,3}.

We already know, from Section 3.1.2, that this linear system satisfies the complementary conditions,
hence for the existence of a solution & € €221+ ([0, 1] x [0, min{T,T})), we only have to check that
the compatibility conditions of order 2 (as in Definition 3.15) for the initial data holds. By simplicity,
we show it for a triod: in such case, they are 1)*(0) = 0 and *(1) = 1, which are clearly satisfied by

€ (y,0) =yand

Y/ ~ 71,00,0) | 7(0,0) o
o (100 B0 B 4O =0
ﬂ i o) De(LO) | R0\ o

where, putting ¢(y) = ¢'(y, 0) = y, we get the equations

<%Z(0,o) - Zea(0.0) 7;<0’0)2> = <ﬁ§(0,0) - l"i@(o)

2:(0) > =0 (3.12)

720,00 | [72(0,0)] o: (O | |2 (0)[?
Y, 17 0) — ~ P = - ; X =
(00 - 2 | R ORI
Since o satisfies the compatibility conditions of order 2 for system (3.2), we have (Definition 3.14)
03:(0) _ 0,(0) 042 (1)
: == and e =0,
0L (0)> |02 (0)[2 los(1)[?

for every i j € {1,2, 3}, hence the second equation above is immediately verified and the vector v =

74(0,0) — o ((())|2 is independent of ¢ € {1, 2, 3}. It follows,
~i _ [~ . 74, (0) ~i _ T . 74.(0) ~i _

for every i € {1,2, 3}, which implies v = 0, thus equation (3.12) is also satisfied. In the case of a general
network, the above argument must simply be repeated for every triple junction and every end—point
(by means of Definition 3.21).

Then, again by Solonnikov’s theory (Theorem 4.9 in [100]), we have a solution § € C?r2eslrae((o 1] x

[0, min{T, T})), for some T < T, such that for every t € [0, T the map £(-,t) : [0,1] — [0,1] is a
C'-diffeomorphism. Hence, the inverse functions ¢*(-, ) = £(-,¢)~! also belong to C?T21+e([0, 1] x

[0, min{T, T'})) and are solutions of system (3.11). Moreover, by arguing as in the last part of the proof
of Theorem 3.11, we can show that T can be taken equal to min{7’, T'}.
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It follows that the reparametrizations 5 (, t) = 5°(¢*(x, t), t) satisfy the special flow system (3.2):

Pra (@ )F; (¢'(2,1), 1)
172 (9 (2, 1), )| o (s, )

Toa (9'(@,1):8) [F2(0"(2,0),8)) 5
(o (210, 0,1) 1P 0. D) ), 4
Vi (¢ (2, 1), 1)
Vow (0" (,1),) |7 (¢"(@,1),1))
(e (20 0. 1) 17000 0) s i 1)1
7: (¢ (2, 1), 1)
A’Y';:a: (pi(x,t)ﬂf ‘Fi((pi(%t)vt) ~i/ i
= Fee P00, 1P @ 0.0) iy )
REACUCHIN]
Vow ('@, 1), 1) [V (¢" (2, 1), 1)) ;
(e (#1000, ) 1P @0, 0) 53 i 1), 1
7; (1), 1))
_ e (@), 1) @b (@), (¢(21), 1)
7 (i), 0F 3L (1 (0,0 |9 (e, )
_ Fo(,1)
7 (2, 1)

We can then conclude that by the uniqueness part of (the extension to general networks of) Theorem 3.17
that 5* = 4 for every i € {1,2,...,n}, hence v'(z,t) = 3 (¢'(z,t),t) in the time interval [0, min{T,T'})
and since this “reparametrization relation” between any two maximal solutions of Problem (2.3) is
symmetric (by means of the maps ¢%), we have T' = T and we are done.
Assume now that the network Sy is only geometrically 2-compatible, then the proof of Proposition 3.26
gives a special solution ~* given by v (z,t) = 7'([0?]"!(z),t) where 6° are smooth maps and 7' is a
special solution as above for the 2-compatible network S, = U, o%([0,1]) = Ui_,(c* o 6°)([0,1])
which is in C?21%2([0, 1] x [0, T))) for a maximal positive time interval [0, T').
Suppose that 7" : [0,1]x[0,T) — Q is another maximal curvature flow for So in C**>*!+*([0,1] x [0, 7)),
satisfying ! = k' 7'+ X' 7 for some functions X' in C2%([0, 1] x [0, T')). If we consider the maps 7 (z, t) =
(0 (), t), they give a C?+21+([0, 1] x [0, T)) curvature flow of the initial network Sy which satisfies
the compatibility conditions of order 2, hence (by the above argument) 7' = T and the maps 7" and 7"
only differ by reparametrizations given by some maps ¢’ € C?2*1+2([0,1] x [0, T)) with ¢'(z,0) = x,
that is,

ii(xv t) -

(Pim (z, t)%; (‘pi (z,1), t)
7 (), ) | (, )]

+

~1

Y (1) = 7 (@ (2, 1), 1)
It follows that

7 (2, t) =7 (1017 (@), 1) =7 (" (0] (@), ), 1) = 7 (0" (" (16" (), 1)), 8)

which shows that the two flows 5° and 7 of the initial network S, coincide up to the time-dependent
reparametrizations (z,t) — (0°(¢*([0']71(2),1)),t).
The last assertion follows by Proposition 3.23. O

3.3 Initial data with higher regularity
We discuss the higher regularity of the flow when the initial network is of class C*°.

Definition 3.27. We say that the compatibility conditions of every order for system (2.5) are satisfied by
an (initial) regular C* network Sy = |J;_, o* ([0, 1]) and we call such a network smooth, if at every
end-points and every 3—point there hold all the relations on the space derivatives of the functions o*,
obtained repeatedly differentiating in time the boundary conditions and using the evolution equation

Yi(x,t) = Yo (D) 46 substitute time derivatives with space derivatives.
¢ 172 (z,0)]

We say that a C* flow by curvature S; is smooth if all the networks S; are smooth.

It is immediate by this definition that every network S; of a C'*® special curvature flow of an initial
regular network Sy is smooth for every t > 0.
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Remark 3.28. We underline that being a smooth network implies being regular and C'*° (composed of C*
curves), but it is way more restrictive than that. Analogously, a smooth curvature flow of networks is
not simply C* up to the parabolic boundary (see Remark 3.20). Anyway, similarly as before (Proposi-
tion 3.23), every network of a C* curvature flow can be reparametrized to be smooth.

If we assume that the initial regular network is smooth, we have the following higher regularity result.

Theorem 3.29. For any initial smooth network Sy in a smooth, convex, open set 0 C R? there exists a unique
C'* solution of system (2.5) in a maximal time interval [0, T).

Proof. Since the initial network Sy satisfies the compatibility condition at every order, the method of the
previous section actually provides, for every n € N, a unique solution in C?"T2*n+a ([0, 1] x [0,7,]) of
system (2.5) satisfying the compatibility conditions of order 0, 1,. .., 2n at every time.

So, if we have a solution ¢ € C?"+2«n+e([0 1] x [0,7,]) for n > 1, then the functions v’ belong to
C2r—1+2am=1/24a ([0 1] x [0,T5,]) (see [65, Section 8.8]). Considering the parabolic system satisfied by
vi(z,t) = i (z,t) (see [82, Page 250]), by Solonnikov results in [100] v* = ~} belongs to C?"2*:n+a ([0, 1] x
[0,T,]). Since v, = 7§ [v2|? with |72 |? € C?r—1+2an—1/2+a([0 1] x [0,T,]), we get also

W;I c 02n—1+2(1,n—1/2+a([07 1] > [O>Tn])

Following [74], we can then conclude that 7 € C?n+1+2en+1/24a ([0 1] x [0, T,]).

[terating this argument, we see that ¢ € C*°([0, 1] x[0, T},]). Moreover, since for every n € N the solution
obtained is unique, it must coincide with 4 and we can choose all the T;, to be the same positive value
T.

It follows that the solution is in C* till the parabolic boundary, hence, all the compatibility conditions
are satisfied at every time ¢ € [0, 7). O

As a consequence, we have the following theorem.

Theorem 3.30. For any initial smooth network Sy in a smooth, convex, open set Q0 C R2 there exists a smooth
curvature flow of Sy in a maximal positive time interval [0, T).

For C* networks we then introduce the concept of geometrically smoothness.

Definition 3.31. We say that a network So = |J7_, 0% ([0, 1]) of class C* is geometrically smooth if it
can be reparametrized to be smooth.

Remark 3.32. By arguments similar to the ones of Lemma 3.24, it can be shown that, like for geometrical
2-compeatibility, this property depends only on (some relations on) the curvature and its derivatives
at the end—points and at the 3—points of a C*> network (see [82] for more details), that is, geometrical
smoothness is again a geometric property (obviously invariant by C* reparametrizations, by the defi-
nition).

Moreover, as before (see Proposition 3.23), every C* curvature flow of an initial regular network Sy is
actually composed of geometrically smooth networks S, for every ¢ > 0.

The following short-time existence theorem holds, essentially with the same proof of Proposition 3.26.

Theorem 3.33. For any initial geometrically smooth network Sq in a smooth, convex, open set Q@ C R? there
exists a C°° curvature flow of Sy in a maximal positive time interval [0,T).

An immediate consequence is the following corollary.

Corollary 3.34. For any initial geometrically smooth network So = |J;_, 0%([0,1]) in a smooth, convex, open
set Q C R?, there exists a geometrically uniqgue solution of Problem (2.3) in the class of maps C*T2:1+([0,1] x
[0,T)) in a maximal positive time interval [0,T). Moreover, such a solution is C°° and if the initial network is
actually smooth, it can be chosen to be a special curvature flow.

Remark 3.35. Notice that it follows that any curvature flow as in the hypotheses of the above theorem
and corollary is a reparametrization (of class C?*2*!* in the first case and C* in the latter) of the
special curvature flow (which is C'* under the hypotheses of this corollary, by Theorem 3.29).

This corollary implies the geometric uniqueness of this flow in the class of smooth maps.
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4 Integral estimates

In this section, we work out some integral estimates for a special flow by curvature of a smooth regular
network. These estimates were previously proved for the case of the special curvature flow of a regular
smooth triod with fixed end-points, in [82]. We now extend them to the case of a smooth network with
“controlled” behavior of its end—points. An outline for such estimates with controlled behavior of the
end—points, for a general curvature flow, appeared in [58, Section 7]. We advise the reader that when
the computations are exactly the same we will refer directly to [82, Section 3], where it is possible to
find every detail.

In all this section we will assume that the special flow by curvature is given by a C* solution " of
system (2.5), that is, there holds

. ~i (.t
i@, t) = M
RENCAD]

(see Remark 2.14 and Definition 2.15 for the case of an initial C? network). The estimates, which only
involve geometric quantities and do not involve the tangential velocities A;, hold also for any smooth
flow (the ones where we do not use the special form of the functions \? given by this equation). To
use these estimates for a general smooth flow, because of geometric uniqueness (see Corollary 3.34
and Remark 3.35), one must reparametrize such a flow, preserving the boundary condition (4.1) below,
so it becomes special, then carry back the geometric (invariant by reparametrization) estimates to the
original flow. Alternatively, one can also directly prove these estimates without reparametrizing first to
a special flow, see [58, Section 7].

We will see that such a special flow of a regular smooth network with “controlled” end-points exists
smoothly as long as the curvature stays bounded and none of the lengths of the curves goes to zero
(Theorem 4.14).

We suppose that the special solution maps ' above exist and are of class C* in the time interval [0, T)
and that they describe the flow of a regular C*° network S; in €2, composed of n curves v(-,¢) : [0,1] —
Q with m 3-points O, 0?,...,0™ and [ end—points P*, P? ... P'. We will assume that either such
end-points are fixed or that there exist uniform (in time) constants C}, for every j € N, such that

|0Jk(P",t)] + [0IA(P",1)| < Cj, @.1)

foreveryt € [0,T)andr € 1,2,...,1.
The first computation we are going to show is the evolution in time of the total length of a network
under the curvature flow.

Proposition 4.1. The time derivative of the measure ds on any curve ~* of the network is given by the measure
(AL — (k%)?) ds. As a consequence, we have

dLi(t) i i i
7 :A(l,t)f)\((),t)f/ (k)% ds

Yi(t)

and l
dL(t) 9
B S Prot) —
I ;:1 A(PT,t) /Sf, k*ds,

where, with a little abuse of notation, \(P",t) is the tangential velocity at the end—point P" of the curve of the
network getting at such point, for any r € {1,2,...,1}.
In particular, if the end—points P" of the network are fixed during the evolution, we have

dl‘(t) 2
_ = d 4.2
tk 37 ( )

thus, in such case, the total length L(t) is decreasing in time and uniformly bounded above by the length of the
initial network Sy.
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Proof. The formula for the time derivative of the measure ds follows easily by the commutation for-
mula (2.6). Then,

dL(t d . . . . _
® _ 7/ 1ds :/ (AL — (K1Y2)ds = Ni(1, ) — A/(0,4) —/ (k)2 ds.
b dt Jyi 7 (-t) 7 (-1t)

Adding these relations for all the curves, the contributions of AP* at every 3—point O” vanish, by rela-
tion (2.11), and the formula of the statement follows. If the end-points are fixed all the terms A\(P",t)
are zero and the last formula follows. O

The following notation will be very useful for the next computations in this section.

Definition 4.2. We will denote with p, (87, 97k) a polynomial with constant coefficients in A, ..., 9\

and k, ..., 9"k such that every monomial it contains is of the form
J h J h
cI[@ N -TJ@k)% with > 1+ D+ > (1+1)8 =0,
1=0 1=0 1=0 1=0

we will call o the geometric order of p,.

Moreover, if one of the two arguments of p, does not appear, it means that the polynomial does not
contain it, for instance, p, (8k) does not contain neither A nor its derivatives.

We will denote with q, (87 \, 9"k) a polynomial as before in \,...,d{ X and k, ..., 0"k such that all its
monomials are of the form

J h J h
clf@n-T]@k) with > @+ Da+> (1+1)8 =o.

=0 =0 =0 =0

Finally, when we will write p, (|07 |, |0"k|) (or q, (|/ \|, |97k|)) we will mean a finite sum of terms like

J h J h
cILioia - T 10k with Y (1 + D+ > (1+1)8 =0,
1=0 =0 1=0 1=0

where C is a positive constant and the exponents o, §; are non negative real values (analogously for

do)-
Clearly we have p, (92X, 0"k) < p, (|07 N, |02 K]).

By means of the commutation rule (2.6), the relations in the next lemma are easily proved by induction
(Lemmas 3.7 and 3.8 in [82]), starting from the relations in Section 2.3.

Lemma 4.3. The following formulas hold for every curve of the evolving network S;:

010k = 032k + NIk + pj45(0%k) for every j € N,
Ok =0k + q;41 (0> "\, 09 1k) if j > 2 is even,
0k =09k, + q;1 (09 V2N, 007 1k) ifj =1 isodd,
OOIN = QIT2N — NOITIN — 2k0I Tk + p,3(0IN, OIk) for every j € N,
DIN =01\ +p,1(017 1N, 097 1k) ifj =2 is even,
OIN =02 N, 4 piy (091N, 09 k) if j > 1 is odd.

Remark 4.4. Notice that, by relations (2.13) at any 3-point O” of the network there holds 9/ AP =
(SO/K)P?, that is, the time derivatives of AP are expressible as time derivatives of the functions kP".
Then, by using repeatedly such relation and the first formula of Lemma 4.3, we can express these latter
as space derivatives of kPi. Hence, we will have the relation

3
> s3], Lk = po (O MIKP)

i=1 at the 3—point O” at the 3—point OP
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with the meaning that this last polynomial contains also a product of derivatives of different kP'’s,
because of the action of the linear operator S.
We will often make use of this identity in the computations of the sequel in the following form,

23: Qo (O AP, OLK™) < lpo (|02 R ) oo
i=1 at the 3—point OF
Remark 4.5. We state the following calculus rules which will be used extensively in the sequel,
Pa(DIN, OLK) - pp(OA, O'k) = pasp (0TI N, gpextliomig),
90 (00, OL) - Gp (01N, 0" k) = s (0N, 0T

We already saw that the time derivatives of k and X can be expressed in terms of space derivatives of
k at any 3—point, the same holds for the space derivatives of ), arguing by induction using the last two
formulas in Lemma 4.3. Hence, it follows that

O pa(DIN, OVE) = past(@IFNOLTR), Obpal(DIN,O1K) = Pasar(9I 72N, 01 F2E)
0100 (D)X, O1K) = o 20(@ TN 02 E) . qa(9]N, 0k) = pa (02N, O {m2= 1)

We are now ready to compute, for j € N,

— ' §=2 'k 0,07k ds + 4 s — s
d k> d k0 kd IEP(Ns — k%) d
dt S¢ St S
=2 [ Ok + NI KOk 4 pj3(07k) Olkds + [ |07k[*(Ns — K*) ds
St St
=2 [ |00 k|2 ds + aS(A\agk|2)ds+/ p2j+4(07k) ds
St St St
m 3 ) o ) l ) .
=23 N kP oIk +2) koI k
p=1i=1 at the 3—point OP r=1 at the end-point P"

< —2/ |a§+1k‘2d8+/ p2j+4(6gk) ds +1C;Cj1
St S¢
=D 200kP 0T P 4 AP OIK |

p=1 i=1

4.3)

at the 3—point OF

where we integrated by parts the first term on the second line and we estimated the contributions given
by the end—points P” by means of assumption (4.1).

In the case that we consider the end—points P!, P2, ..., P! to be fixed, we can assume that the terms
C;Cj 41 are all zero in the above conclusion, by the following lemma.

Lemma 4.6. If the end—points P" of the network are fixed, then there holds 87k = 9I\ = 0, for every even j € N.

Proof. The first case j = 0 simply follows from the fact that the velocity v = A7 + kv is always zero at
the fixed end-points P".

We argue by induction, we suppose that for every even natural [ < j — 2 we have 9k = 9.\ = 0, then,
by using the first equation in Lemma 4.3, we get

Ok = 0,012k — NOL "k — pj 11 (01 2k)

at every end—point P".

We already know that A = 0 and by the inductive hypothesis 872k = 0, thus 9,072k = 0. Since
pj+1(0772k) is a sum of terms like C [[/_7(9Lk)* with S37-2(1 + 1)y = j + 1 which is odd, at least one
of the terms of this sum has to be odd, hence at least for one index [, the product (I + 1)a; is odd. It
follows that at least for one even [ the exponent «; is nonzero. Hence, at least one even derivatives is
present in every monomial of p;1(8772k), which contains only derivatives up to the order (j — 2).
Again, by the inductive hypothesis, we then conclude that at the end—points 97k = 0.

We can deal with A similarly, by means of the relations in Lemma 4.3. O
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In the very special case j = 0 we get explicitly

m 3

d 2 2 4 % 1.D% i |2
dt/kds /stks| ds+/§tk ds — >N T 2kP 4 AP P

p=11i=1

+1CyCy

at the 3—point O”

where the two constants Cp and C; come from assumption (4.1).
Then, recalling relation (2.14), we have Zle kPURPT 4 AP EP?|? |
above,

at the 3-point O = 0, and substituting the

+1CyCh , (4.4)
at the 3—point OP

d 2 2 4 i %
di J, Kds < |k|ds+/kds+22)\p P72

p=1i=1

hence, we lowered the maximum order of the space derivatives of the curvature in the 3—point terms,
particular now it is lower than the one of the “nice” negative integral.

As we have just seen for the case j = 0, also for the general case we want to simplify the term
S0 200kPIOIH KT 4 AP |OT kP2 | . in order to control it.

at the 3—point OP’
Using formulas in Lemma 4.3, we have (see [82, Pages 258-259], for details)
207k 97k + M OZk|?
=20]"%k 0] (ke + kA) + 2 (0] N0 ) - 00 P + a2(07 7N, 008).

We now examine the term q;41 (85 / 271/\, k) - 8,{ / ijs, which, by using Lemma 4.3, can be written as
0211 (072N, 0971 k) + q2545(80/ %N, 01 k) (see [82, Pages 258-259], for details). It follows that

m 3
DD T 200kP 07T P 4+ NP [OJKRP P\

p=1i=1

at the 3—point O?

m 3
= ZzatqQJJrl 6]/2 1)‘1)1 6] 1kpl) +q2]+3(a]/ )‘pl ajkpl)

p=11i=1

at the 3—point OP

Resuming, if j > 2 is even, we have

d : ,
p \aﬂk|2ds< —Q/S |ag+1k\2ds+/s P2j14(07k) ds +1C;Cj 44

m 3
30 ez 1 (0P TINL OITRP) + 44 (00 PN BTK)

p=1i=1

at the 3—point OF .
Now, the key tool to estimate the terms [; p2;14(0]k)ds and S qaja(002APE 9 ) | Lt the 3-point OF
are the following Gagliardo—Nirenberg interpolation inequalities (see [87, Section 3, Pages 257-263]).

Proposition 4.7. Let v be a C*, reqular curve in R? with finite length L. If u is a C* function defined on ~
and m = 1, p € |2, 4+00], we have the estimates

—o . Bn,
103l o < O p 108wl G Nl 27 + e Nl (4.5)
forevery n € {0, ..., m — 1} where
n+1/2-1/p
n m
and the constants Cy, ., , and By, ,, ,, are independent of ~y. In particular, if p = 400,
_ B ; n+1/2
1
1076l e < Com |07 ull Gallull}a” + Tomllull o with o= "=, *6)
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After estimating the integral of every monomial of poj14(0?k) by mean of the Holder inequality, one
uses the Gagliardo-Nirenberg estimates on the result, concluding that

2j+3
p2jra(07k) ds < 1/4/ ag+1k|2ds+c</ kzds) +C,
St St St

where the constant C' depends only on j € N and the lengths of the curves of the network (see [82,
Pages 260-262], for details).

Any term 3% qa;45(07 /2 \pi| 9ipi | st the 5 point o» €an be estimated similarly.

Hence, for every even j > 2 we can finally write

2543
% |8ﬂk\2ds < - / |aﬂ“k2ds+0</8 k? ds> +C +1C;Cj11 4.7)
+&fZZq2j+1(3§'/271>\p’}5§_1/€’”’)
p=1i=1 at the 3—-point OP
2j+3 m 3 ‘
<C(/ o ds) 0 YD Gaa (02N 1R +O+1C;Cj41
St p=1i=1 at the 3-point OP

Recalling the computation in the special case j = 0, this argument gives the same final estimate without
the contributions coming from the 3—points:

d

3
p kzds C< / I<:2ds> +C + 10,01 . (4.8)
St

Integrating (4.7) in time on [0, t] and estimating we get
_ ) t 2j+3
07k ds < |8§k|2ds+0/ (/ k2ds) dt + Ct +1C;Cynt
St SO 0 S§

m 3
0D a0 TIN0.0), 007 (0,1))

1

p=11i

— Gay41 (8777 AP(0,0), 871 K7(0,0))

t 2j+3
gC/ </ k2d$> d€ + [lp2y+1 (100 k)| + Ot +1C;Cj4at + C,
Se

where in the last passage we used Remark 4.4. The constant C' depends only on j € N and on the
network Sy.
Interpolating again by means of inequalities (4.6), one gets

oo+ 1(1027 kD) 2= < 1/2(102K|72 + ClIKI ™.

Hence, putting all together, for every even j € N, we conclude

t 25+3 2j+1
|a§k\2ds<0/ (/ k2ds> d§+C(/ k2ds> + Ct+1C;Cipat + C.
S 0 Se¢ S

Passing from integral to L> estimates, by using inequalities (4.6), we have the following proposition.

Proposition 4.8. If assumption (4.1) holds, the lengths of all the curves are uniformly positively bounded from
below and the L? norm of k is uniformly bounded on [0,T), then the curvature of S, and all its space derivatives
are uniformly bounded in the same time interval by some constants depending only on the L? integrals of the
space derivatives of k on the initial network Sy.
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By using the relations in Lemma 4.3, one then gets also estimates for every time and space derivatives of
A which finally imply estimates on all the derivatives of the maps ~?, stated in the next Proposition 4.10
(see [82, Pages 263-266] for details). We discuss here explicitly how, in the hypotheses of this proposi-
tion, we deal with A and the “velocity” v = v; = kv + At of the flow.

At every 3-point OP we have Y7 (\"))2 = S°2_ (kP")2, by relations (2.12), hence the squared modulus
of the velocity v? = |v|? is uniformly bounded at every 3—point, being k? uniformly bounded by some
constant C.

Then, since v? is also uniformly bounded at the end-points of S, by assumption (4.1), applying the
maximum principle to the equation for v, given by

O = (1) gs — 202 — 2k2 — A (v?)s + 20%K?,
which follows from equation (2.9)
DN = Ass — M — 2Kk + A2

and equation (2.8), we see that if v? gets larger than some fixed constant (independent of time), then its
maximum is taken in the interior of some curve of S; and
6tv?nax < 2vI2Ilan2 < 20111211&)( .

Hence, integrating this linear differential inequality, we obtain that v and hence A are also uniformly
bounded as k and its derivatives in the time interval [0, T').

Remark 4.9. Notice that the conclusion that v? is uniformly bounded follows simply knowing that the
curvature is uniformly bounded and assumption (4.1) holds. In particular, for the case of an evolving
network S, with fixed end—points and uniformly bounded curvature in an interval [0, T)

Proposition 4.10. IfS; is a C* special flow of the initial network So = \J-_, o', satisfying assumption (4.1),
such that the lengths of the n curves are uniformly bounded away from zero and the L* norm of the curvature is
uniformly bounded by some constant in the time interval [0,T), then

e all the derivatives in space and time of k and X are uniformly bounded in [0,1] x [0,T),
e all the derivatives in space and time of the curves ~'(z,t) are uniformly bounded in [0,1] x [0,T),
o the quantities |y (x,t)| are uniformly bounded from above and away from zero in [0, 1] x [0,T).

All the bounds depend only on the uniform controls on the L* norm of k, on the lengths of the curves of the
network from below, on the constants C; in assumption (4.1), on the L> norms of the derivatives of the curves
ot and on the bound from above and below on |0 (x,t)|, for the curves describing the initial network So.

Now, we work out a second set of estimates where everything is controlled - still under the assump-
tion (4.1) — only by the L? norm of the curvature and the inverses of the lengths of the curves at time
Zero.

As before we consider the C* special curvature flow S; of a smooth network Sy in the time interval
[0,T), composed of n curves 7'(-,¢) : [0,1] — Q with m 3—points O',0?,...,0™ and | end—points
P!, P2 ..., P!, satisfying assumption (4.1).

Proposition 4.11. For every M > 0 there exists a time Ty € (0,T), depending only on the structure of the
network and the constants Co and C4 in assumption (4.1), such that if the square of the L* norm of the curvature
and the inverses of the lengths of the curves of So are bounded by M, then the square of the L? norm of k and the
inverses of the lengths of the curves of S, are smaller than 2(n + 1) M + 1, for every time t € [0, Ths].

Proof. The evolution equations for the lengths of the n curves are given by

dLi(t)
dt

= \'(1,t) — \(0,t) — / k* ds,

Yi(t)
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then, recalling computation (4.4), we have

n

d 245 1 3 > 4 5 1 dL
dt(/stk d8+; Lz) /Sz ks ds""/stk ds + 6m||k|| 7 + 1CoCy Z (LH)? dt

i=1

= —2/ kfds+/ k' ds + 6m||k||3  +1CoCy
St St

mON(1,0) = N0, 8) + [y K2 ds

- Z (L1)2

72/ kfder/ k* ds + 6ml|k|3 « + 1CoCy
St St

N

fo k% ds

k|| + C
+22|| L + 0 Z (le')2

i=1

N

—2/ k?ds—k/ k*ds + (6m + 2n/3)||k||3 +1CoCy + 2nC3 /3
St S¢

+2 /k2d83+2i L
3\ Js, 34~ (Li)3

=1

where we used Young inequality in the last passage.
Interpolating as before (and applying again Young inequality) but keeping now in evidence the terms
depending on L in inequalities (4.5), we obtain

d 3 Ji, k2 ds
dt(/ k2d8+ZLZ> /stk3d8+c(/stk2ds) +CZ(U>
3

with a constant C' depending only on the structure of the network and on the constants Cj and C in
assumption (4.1).
This means that the positive function f(t) = [; k®ds+ >0/, iy +1 satisfies the differential inequality
I’ < Cf3, hence, after integration

20 £2(0)
1—-20tf2(0) = 1—2Ct[(n+1)M +1]

F2(t) <

then, if t < Ty = W we get f(¢) < 2f(0). Hence,

/~s2ds+ZLz /k2d3+QZLZ <2[(n+1)M]+1.

f

By means of this proposition, we can strengthen the conclusion of Proposition 4.10.

Corollary 4.12. In the hypothesis of the previous proposition, in the time interval [0, Tns) all the bounds in
Proposition 4.10 depend only on the L? norm of k on Sy, on the constants C; in assumption (4.1), on the L>
norms of the derivatives of the curves o', on the bound from above and below on |o’ (z,t)| and on the inverses of
the lengths of the curves of the initial network Sy.
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From now on we assume that the L% norm of the curvature and the inverses of the lengths of the curves
are bounded in the interval [0, T/].
Considering j € N even, if we differentiate the function

12 k2 7107 k|?
/k2+tk§+—“+~~+ |.S | ds,

and we estimate with interpolation inequalities as before (see [82, Pages 268-269], for details), we obtain

d t2k2 7|07 k|2
- k‘2 tk‘2 ss . s d 4.9
dt Js, +thg + o + i (4.9)
< - / k2 4 th2, +t2k2 + -+ 00T kP ds 4+ C
St
+8’fzzt2q5 APERET) 4 g (O AP KEE) + -+ ;41 (87T AP 007 R
p=11i=1 at the 3—point O”
+C thPRPL 4 3P KPT 4  tIT QI T P 9 Pt
Z; L:ZI at the 3-point OP

in the time interval [0, 7], where ¢ > 0 and C are two constants depending only on the L? norm of the
curvature, the constants in assumption (4.1) and the inverses of the lengths of the n curves of Sy.

We proceed as we did before for the computation of 4 fs |09k|* ds .

First, we deal with the last line,

88878888

3
D R RDL + kDL KD e ITIYITEP §I P .
i at the 3—point

7

at the 3—point

By formulas in Lemma 4.3 and by Remark 4.4, we can write, for any term Y7, t" 19"~ 119k

3
= Zth q2h+1(8 /2 1)\7' 8h lkl)

at the 3—point i=1

3
S th-1gh-lpigh

i=1

+ M TIORET - qu (9] TIN, 012

at the 3—point

<t ponar (1027 k) | Lo + t" 7108 Loo |pn (|07 2K]) || oo

(see [82, Page 270], for details).
The term "~ ||pap 11 (|0"~1k|)|| = is controlled as before by a small fraction of the term ¢! fSt |0 k|2 ds
and a possibly large multiple of t"~! times some power of the L? norm of k (which is bounded), whereas
th 1|08 k|| Lo |lpn (|07 ~2k|)|| Lo is the critical term.
Again by means of interpolation inequalities (4.6) one estimates ||07k| . , ||pn (0" ~2k)| L~ and ||0"k|| 12
with the L? norm of k and its derivatives. After some computation (see [82, Pages 270-271], for details),
one gets

3
St Lgh g <en)2 (th / 08 k2 ds 4+ ¢h ! / 01K ds + cﬁ) + Oyt

St S¢

i=1 at the 3—point

with 6, < 1 and some small g, > 0.
We apply this argument for every even h from 2 to j, choosing accurately small values ¢;.
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Hence, we can continue estimate (4.9) as follows,

d t2k2 9|07 k|2
- k2 th ss s d
= /S RS+ e s

< - 5/2/ k2 4+ th2 4 12k + -+ 907 P ds + C 4 O/t 4 4 C/tY%
St

3
+ 0> 1205(N KL) + thag (O Kiy,) -+ gy (077N, 0071k

i=1

at the 3—point

3
SCH+C/+0,) Pas(N KL + t*a9 (DN klyy) + - + i1 (072N, 9971k

i=1

at the 3—point

for some 6 < 1.
Integrating this inequality in time on [0, ] with ¢ < T, and taking into account Remark 4.4, we get

t2k2, 7|07 k|
k2 +tk‘f+786+-~-+¥ds
< | Krds+CTy + 0T "

So

3
+ 3 2as(N kD) + a9 (N kL) + -+ H gy (8], 007
=1 at the 3—point

< /S k2 ds + C + [lps (ks Dz + t*lpo(lksssDllzoe + -+ [0 (1077 K] -
0

Now we absorb all the polynomial terms, after interpolating each one of them between the correspond-
ing “good” integral in the left member and some power of the L? norm of k, as we did in showing
Proposition 4.8, hence we finally obtain for every even j € N,

1212 707 k|2 —
/kz2+tk§+Tss+~-~+ 'js, Cus<a, (4.10)
St : :

with t € [0, T] and a constant C'; depending only on the constants in assumption (4.1) and the bounds
on [ k*ds and on the inverses of the lengths of the curves of the initial network So.
This family of inequalities clearly implies
. C. il

|07 k|? ds < Z—J] for every even j € N.

Se
Then, passing as before from integral to L>° estimates by means of inequalities (4.6), we have the fol-
lowing proposition.

Proposition 4.13. For every (1 > 0 the curvature and all its space derivatives of S; are uniformly bounded in
the time interval [p, Tas] (where Ty is given by Proposition 4.11) by some constants depending only on p, the
constants in assumption (4.1) and the bounds on fSo k? ds and on the inverses of the lengths of the curves of the
initial network Sy.

By means of these a priori estimates, we can now work out some results about the smooth flow of
an initial regular geometrically smooth network Sy. Notice that these are examples of how to use the
previous estimates on special smooth flows to get the conclusion on general flows or even only C*
flows, as we mentioned in the beginning of this section.

Theorem 4.14. If [0, T), with T < 400, is the maximal time interval of existence of a C* curvature flow of an
initial geometrically smooth network Sy, then

1. either the inferior limit of the length of at least one curve of S is zero, ast — T,

2. orlimy_,p fs, k%2 ds = +o0.

41



Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this superior limit is
actually a limit and there exists a positive constant C such that

/k2ds> ¢ ,
S, T—1

Proof. We can C* reparametrize the flow S, in order that it becomes a special smooth flow S, in [0, T).
If the lengths of the curves of S; are uniformly bounded away from zero and the L? norm of k is

bounded, the same holds for the networks Svt, then, by Proposition 4.10 and Ascoli-Arzela Theorem, the

network S, converges in C* to a smooth network Sy as ¢ — T'. Then, applying Theorem 3.30 to S; we
could restart the flow obtaining a C'*° special curvature flow in a longer time interval. Reparametrizing
back this last flow, we get a €™ “extension” in time of the flow S;, hence contradicting the maximality
of the interval [0, T").

Now, considering again the flow St, by means of differential inequality (4.8), we have

3 3
i pdséC(/ E2d3> +C<C(1+/E2ds> ,
dt Js, 8, s,

which, after integration between ¢, € [0,T) with ¢ < r, gives

for every t € [0,T).

1 1
— 5 <C(r—t).

(14 J5, 2 d5)2 (14 J5 F2ds)

Then, if case (1) does not hold, we can choose a sequence of times r; — T  such that [5 k2 ds — +oc.

Putting r = r; in the inequality above and passing to the limit, as j — oo, we get

1

MWQC(T_@’

hence, for every ¢t € [0,T),

K ds > ———

/gt VT —t T—t’

for some positive constant C and limy_,7 f§t k2 ds = +o0.

By the invariance of the curvature by reparametrization, this last estimate implies the same estimate for
the flow S;. O

This theorem obviously implies the following corollary.

Corollary 4.15. If [0,T), with T < 400, is the maximal time interval of existence of a C*° curvature flow of
an initial geometrically smooth network Sy and the lengths of the curves are uniformly bounded away from zero,
then

max k> >

C
St vIT —t

— 400, (4.11)

ast —T.

Remark 4.16. In the case of the evolution v; of a single closed curve in the plane there exists a constant
C > 0 such that if at time 7" > 0 a singularity develops, then
C
k> ——

R
for every t € [0,T) (see [53]).
If this lower bound on the rate of blowing up of the curvature (which is clearly stronger than the one
in inequality (4.11)) holds also in the case of the evolution of a network is an open problem (even if the
network is a triod).
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We conclude this section with the following estimate from below on the maximal time of smooth exis-
tence.

Proposition 4.17. For every M > 0 there exists a positive time Tyy such that if the L? norm of the curvature
and the inverses of the lengths of the geometrically smooth network Sy are bounded by M, then the maximal time
of existence T > 0 of a C™° curvature flow of S is larger than T)y.

Proof. As before, considering again the reparametrized special curvature flow St, by Proposition 4.11
in the interval [0, min{T);,T}) the L2 norm of k and the inverses of the lengths of the curves of S, are
bounded by 2M? + 6.

Then, by Theorem 4.14, the value min{7s, T} cannot coincide with the maximal time of existence of §t
(hence of S;), so it must be T' > T,. O

5 Short-time existence II

In this section, we are going to prove the short-time existence and geometric uniqueness of a curvature
flow for a regular initial network Sy which is only C? in a “natural subclass” of the curvature flows
which are simply C? in space and C! in time. Before doing that, we discuss the property of parabolic
regularization for the flow.

Let Sy = U, 7°([0,1],¢) be a C> flow by curvature, we discuss what happens if we reparametrize
every curve of the network proportionally to arclength.

If we consider smooth functions ¢* : [0,1] x [0,7) — [0,1] and the reparametrizations 7'(x,t) =
v (' (z,t),t), imposing that |¥:| is constant, we must have that |y% (p!(x,t),t)|l (2, t) = L'(t) where
Li(t) is the length of the curve ' at time ¢. It follows that ¢’(z,t) can be obtained by integrating the

ODE
@y (a,t) = L'(1) /|y (¢ (z, 1), )]
with initial data ¢?(0,¢) = 0 and that it is C*° as L’ and 4 are C*°.
Being a reparametrization, 7° is still a C* curvature flow, thatis, 7} = kD A7 we want to determine

the functions \' = (3} | 7). Differentiating this equation in arclength and keeping into account that
oz, t) = L' ()7 (x, t), we get

. x| = ) ) LiNi =~
o= <,Ytil7— > + <"’tL |as,7":t> — <8t( IZ) |T>

S

oL 7.)2
o+

2l

This equation immediately says that X — (k%)% is constant in space. Moreover, by Proposition 4.1,
ALI(t) = No(1,t) — X¥(0,¢) — / (k)2 ds
(1)

and that the values of A’ at the end—points or 3-points of the network are (uniformly) linearly related to
(hence also bounded by) the values of k. Hence, we can conclude that \! is bounded by an expression
involving L'(t) and ||k(-, )| poo.

We show now that the geometrically unique solution obtained starting from an initial C**2* network
which is geometrically 2-compatible (which exists, as we proved in Theorem 3.25) can be actually
reparametrized to be a C*° curvature flow for every positive time (so that the geometric estimates of
Section 4 can be applied). This clearly can be seen as a (geometric) parabolic regularization property.

Theorem 5.1 (Existence, uniqueness and smoothness in Holder spaces). For any initial, regular C>+2*
network So = U, 0*([0,1]), with a € (0,1/2), which is geometrically 2—compatible, the geometrically unique
solution " found in Theorem 3.25 can be reparametrized to be a C>° curvature flow on (0, T), that is, the networks
St = Ui, ¥([0, 1], t) are geometrically smooth for every positive time (see Definition 3.31).

Proof. We first assume that Sy satisfies the compatibility conditions of order 2 for the special flow
(namely, it is 2-compatible).
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By analyzing the proof of Theorem 3.17 given in [17], one can see that the solution to system (2.5)
given by such theorem actually depends continuously in C?T2®1+2 on the initial data o in the C?2
norm. Then, we approximate the network Sy = [J;__, ¢%([0,1]) in C?72* with a family of smooth net-
works S; with the same end—points, composed of C*° curves a;- — o', as j — oo. Hence, for every
€ > 0, the smooth solutions of system (2.5) for these approximating initial networks, given by the curves
V() [0,1] x [0,T — &] — Q, converge as j — oo in C*F2@1+2([0, 1] x [0, T — €]) to the solution ~* for
the initial network Sy. By the C’”Qa—convergence, the inverses of the lengths of the initial curves, the
integrals fsj k? ds and |9,0%(x)| (from above and away from zero) for all the approximating networks
are equibounded, thus Proposition 4.13 gives uniform estimates on the L> norms of the curvature and
of all its derivatives in every “rectangle” [0, 1] x [y, Tar), with x> 0 and T < T

We now reparametrize every curve 7/(-,t) and (-, t) proportionally to arclength by some maps ¢
and ¢’ as above. Notice that, since v} and ~* are uniformly bounded in C**2®!*%, we have that the
maps 8377;- and 9,7" are uniformly bounded in C 1+2a,1/24a  Hence, by a standard ODE’s argument,
the reparametrizing maps ¢’ and ' above are also uniformly bounded in C**2*1/2+* in particular
they are uniformly Holder continuous in space and time. This means that the reparametrized maps 7’
converge uniformly to ¥* which is a (possibly only continuous in t) reparametrization of the original
flow. It is easy to see that these latter gives a curvature flow of the arclength reparametrized network
So = U, (0 0 ¢i(-,0))[0, 1] which then still belongs to C2+22,

As the curvature and all its arclength derivatives are invariant under reparametrization and the equi-
bounded lengths of the curves, the above uniform estimates hold also for the reparametrized maps 7
in every “rectangle” [0,1] x [u, Ths). Moreover, by the discussion about reparametrizing these curves
proportional to arclength, it follows that we have uniform estimates also on X; and all their arclength
derivatives for these flows in every “rectangle” [0,1] x [u, Tas). Hence, the curves 7}, possibly passing
to a subsequence, actually converge in C*°([0, 1] x [, Thr)), for every pu > 0, to the limit flow 3¢ which
then belongs to C*°([0, 1] x (0, 7)) N C°([0,1] x [0,T)).

If Sy is only geometrically 2-compatible, this procedure can be applied for the flow of its 2-compatible
reparametrization, giving the same resulting flow, as the arclength reparametrized flow is the same for
any two flows differing only for a reparametrization (the fact that the flow of a C?™2® geometrically
2-compatible initial network is a reparametrization of the flow of a 2-compatible C?*2* initial network
is stated in Remark 3.35).

The last step is to find extensions 6° : [0,1] x [0,T) — [0,1] of the arclength reparametrizing maps
©'(+,0) € C*2> which are in C*°([0,1] x (0,T)) and satisfy 6*(z,0) = ¢'(z,0), 6°(0,t) = 0, 6°(1,¢) = 1
and 0 (x,t) # 0 for every x and ¢. This can be done, for instance, by means of time-dependent con-
volutions with smooth kernels. Then, the maps 7'(-,t) = 5 ([0*(-,t)] !, ) give a curvature flow of the
network Sp = (J_, ¢*([0, 1]) which becomes immediately C* for every positive time ¢ > 0. O
As for every positive time, the flow obtained by this theorem is C* and hence every network §S; is
geometrically smooth, again by Remark 3.35 this flow can be reparametrized, from any positive time
on, to be a '™ special smooth flow.

This argument can clearly be applied to any C?*2*:1% curvature flow S; in a time interval (0, T), being
every network of this flow geometrically 2-compatible (Proposition 3.23), simply considering as initial
network any S, with ¢y > 0.

Corollary 5.2. Given any C*+2%1% cyrvature flow in an interval of time (0,T), for every u > 0, the restricted
flow S, for t € [, T') can be reparametrized to be a C° special curvature flow in [p, T).

In particular, this applies to any C* 21T cyrvature flow of an initial, reqular C*2* geometrically 2—compatible
network So = J;—, o*([0, 1]).

The parabolic regularization property of the flow also holds when the initial data is of class W?2~2/P,
We have the following result for the special flow, whose proof can be found in [44, Section 4].

Proposition 5.3. Let v € W,-*([0,T) x [0,1]) be a Sobolev—solution to the special flow in [0, T) with T > 0
and initial network in W2=2/P((0,1]). Then, S; = U, 7*([0, 1], t) are geometrically smooth for all positive
times.

Remark 5.4. The proof is based on the so called “parameter trick” of Angenent [6], which has been
generalized to several situations [72,73,93]. However, these works do not deal with fully non-linear
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boundary conditions like
Z %c 0,1) _
72(0, )]
as in the special flow of networks. An adaptation of such “parameter trick”, allowing also the treatment

of fully non-linear boundary conditions, is presented in [43, Section 6.6] and then modified for the
application in the Sobolev setting in [44, Section 4], to get the above result.

Thanks to the above proposition, we have a complete short-time existence, uniqueness and parabolic
smoothing result for Sobolev—solutions. Indeed, combining Theorem 3.6 and Proposition 5.3 we have
the following theorem.

Theorem 5.5 (Existence, uniqueness and smoothness in Sobolev spaces). Let p € (3,400) and Sy be a
regular network of class W?2=2/P:?. Then there exists a maximal Sobolev—solution S,c(o 1,,..) to the motion by
curvature with initial datum Sg in the maximal time interval [0, T') which is geometrically unique. Furthermore,
the networks Sy = \J;—, v*([0, 1], t) are geometrically smooth for all positive times.

We finally consider a general curvature flow. If we have a curvature flow S; in [0, 7) which is C? in space
and C! in time in [0,1] x (0,T), then for every positive time 4, the flow is of class C*1([0,1] x [u,T)),
in particular, it belongs to W}2([u1, T) x [0,1]), thus, it must coincide with the unique flow given by
the previous theorem of the initial network S,,. In particular, by parabolic regularization, it must be a
geometrically smooth flow. Being ;¢ > 0 is arbitrary, this must hold for such flow on (0, T), hence the
flow is smooth for every positive time.

This argument extends Theorem 5.1 to every curvature flow.

Theorem 5.6. Every curvature flow as in Definition 2.11 is geometrically smooth for every positive time.

A consequence of this “geometric” parabolic smoothing theorem is the extension of Theorem 4.14 and
Corollary 4.15 to any curvature flow. As before, we apply such results to the reparametrized C'* special
curvature flow given by Corollary 3.34 (or Corollary 5.2). The conclusions also hold for the original flow
since they are concerned only with the curvature and the lengths of the curves, which are invariant by
reparametrization.

Theorem 5.7. Let T' < +oo be the maximal time interval of existence of a curvature flow S; which is C? in space
and C1 in time in [0,1] x (0,T), then

1. either the inferior limit of the length of at least one curve of Sy is zero, ast — T,
2. or limy_,p fst k2 ds = +o00, hence the curvature is not bounded as t — T.

Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this superior limit is
actually a limit and there exists a positive constant C such that

k2 ds > and maxk?® > ¢

C
s, VTt s T VT —t

foreveryt € [0,T).

We can finally show the existence and geometric uniqueness of a curvature flow for a regular initial
network Sy of class C?, in a “quite natural” subclass of of the flows which are C? in space and C*
in time. The parabolic regularization allows us to use the integral estimates of Section 4 to prove the
existence of a solution to the motion by curvature when the initial datum is a regular network of class
C?, without requiring any extra condition at the triple junctions and at the end—points. Geometric
uniqueness is then obtained from the well-posedness in Sobolev spaces.

Theorem 5.8. For any initial C* reqular network So = \J;-_, o*([0, 1]) there exists a solution ~* of Problem (2.3)
in a maximal time interval [0, T'), which is continuous in [0,1] x [0, T) and such that

o the flow S, = J;—, v*([0,1],t) is a smooth flow for every t > 0,

e the unit tangents t* are continuous in [0,1] x [0,T),
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e the functions k(-,t) converge weakly in L? to k(-,0), ast — 0,
o the function t — fSt k? ds is continuous on [0,T).

Moreover, such flow is geometrically unique in the class N of the curvature flows of So which are C* in space and
C* in time, for t > 0 and such that

e the unit tangents t* are continuous in [0,1] x [0,T),
o theintegral [ k? ds is locally bounded for t € [0,T).

Proof. We can approximate in W%2(0,1) (hence in C*([0,1])) the network Sq = J_, ¢*([0,1]) with a
family of smooth networks S;, composed of C* curves o} — 0", as j — oo with the same end-points
and satisfying 9,07(0) = 0,0"(0), 9,075(1) = 0,0 (1).

By the convergence in W?? and in C?, the inverses of the lengths of the initial curves, the integrals
ij k*ds and |0,0%(z)| (from above and away from zero) for all the approximating networks are equi-

bounded, thus Proposition 4.17 assures the existence of a uniform interval [0, T") of existence of smooth
evolutions given by the curves ! (z,t) : [0,1] x [0,T) = Q.

Now, for the same reason, Proposition 4.13 gives uniform estimates on the L*>° norms of the curvature
and of all its derivatives in every rectangle [0, 1] x [u, Ths), with g > 0.

This means that if we reparametrize at every time all the curves ~ proportional to their arclength, by
means of a diagonal argument, we can find a subsequence of the family of reparametrized flows 7
which converges in C2,([0,1] x (0,7)) to some flow, parametrized proportional to its arclength, 3¢ in

loc

the time interval (0, 7). Moreover, by the hypotheses, the curves of the initial networks 77 converge
in W#2(0,1) to o* which are the reparametrizations, proportional to their arclength, of the curves o'

of the initial network Sy. If we show that the maps 7* are continuous up to the time ¢ = 0 we have

a curvature flow for the network Sy = U7, 7%([0,1]) which then gives a curvature flow for the orig-

inal network Sy in C*°([0, 1] x (0,T)), reparametrizing it back with some family of continuous maps
6" : [0,1] x [0,T) — [0,1] with 62 # 0 everywhere, 6" € C>([0,1] x (0,T)) and a*(6"(-,0)) = o* (this
can be easily done as the maps 6°(-,0) are of class C?, since in general, the arclength reparametrization
maps have the same regularity of the network).

Hence, we deal with the continuity up to ¢t = 0 of the maps 7°. By the uniform L? bound on the curva-
ture and the parametrization proportional to the arclength, the theorem of Ascoli-Arzela implies that
for every sequence of times t; — 0, the curves 7'(-,#;) have a converging subsequence in C*([0,1]) to
some family of limit curves ¢’ : [0,1] — ), still parametrized proportionally to arclength, by the C'-
convergence. Moreover, we can also assume that k(-, ;) converge weakly in L?(ds) to the curvature
function associated with the family of curves ¢?. We want to see that actually ¢’ = &*, hence showing
that the flow 4° : [0,1] x [0, T") — Q is continuous and that the unit tangent vector 7 : [0, 1] x [0, T") — R?
is a continuous map up to the time ¢t = 0 (this property is stable under the above reparametrization so
it then will hold also for the final curvature flow 7).

We consider a function ¢ € C*°(R?) and the time derivative of its integral on the evolving networks 7%,
that is,

d -~ - o~
— pds / ga()\s—kQ)ds+/ (Vo|k+ M) ds
dt Jg; ) 50 50

- _[ @Est—/~ <w\%>de+/~ (Voo |k +A) ds
S; () S;(t) S; ()

—/~ <pi<;/2ds—|—% <V@\E>ds,
S; () S;(t)

where we integrated by parts, passing from first to second line.

Let us consider now any sequence of times ¢, converging to zero as above, such that the curves (-, ;)
converge in C1([0, 1]) to some family of limit curves ¢* : [0,1] — Q (still parametrized proportionally
to arclength) as above, describing some regular network S and k(-, ;) converge weakly in L?(ds) to the
curvature function associated to the family of curves ¢*. Integrating this equality in the time interval
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[0,%] we get

t N 2 ~
/ <pds—/ (pdsz—/ / (kadsdt—i—/ / (Vo l|k)dsdt
§;(t1) §,(0) o J8; 0 JS;)

which clearly passes to the limit as j — oo, by the smooth convergence of the flows 7! to the flow
7% (and the uniform bound on f’s'j( 5 k2 ds) and of the initial networks S, (0) = I, a4([0,1]) to So =
Ui, a%([0,1]), hence,

t - t ~
l cpds—/ (pdS:—/ / cpkzdsdt—k/ /~<V<p|@>dsdt
Stl SO 0 St 0 St

By the uniform bound on the L? norm of the curvature, we then get

/g gmaﬁ,n>>ds]éow<a>ds

where we made explicit the integrands, for the sake of clarity. Sending [ — oo we finally obtain

Lwowiéwam

/ pds = / pds
S §U
for every function ¢ € C*°(R?).

Since, both the networks Sy = J, 5([0,1]) and S = /", ¢¥([0, 1]) are C?, regular and parametrized
proportionally to their arclength, this equality for every ¢ € C>°(R?) implies that ° = ¢?, which is what
we wanted.

Notice that, the continuity of 4% and 7 also implies that the measures H!L S; weakly* converge to
HIL Sy, where #H! is the one—dimensional Hausdorff measure, as t — 0.

Finally, integrating on [0, ) inequality (4.8) for the approximating flows 7}, and passing to the limit as
j — 0o, we see that

< Ot

:O’

that is,

limsup [ k2 ds < | k2 ds.
t—ot J§, So
Since the function ¢ — f's't k*ds is lower semicontinuous, we then get that such function is indeed
continuous on [0,T) (also at ¢ = 0). Being such integral invariant by reparametrization, this also holds
for the flow . The same for the weak convergence in L?(ds) of the functions k(-, t) to k(-,0) as ¢ — 0.
Let now S; be any curvature flow of Sy in [0, 7T’), belonging to the class N of flows as in the statement.
By estimates (4.10) (with j = 2) we have

/~ E* + th?ds < /~ k* 4 tk? + t2k%, ds < C hence ksl L2 < C/tY/? (5.1)
St St
for every t € [0,T), with a constant C' depending only on the inverses of the lengths of the curves of

the initial network Sy and on fSo k?* ds. Taking into account Proposition 4.11 uniformly bounding from

below the lenghts of the curves of the evolving network in a time interval [0, T) (with T depending only
on the initial network), by means of Gagliardo—Nirenberg interpolation inequalities in Proposition 4.7,
we have the estimate

1/2 1/2 1/2
Il e < ClEE RIS + Cllk] 2 < ClAIE +C

where the constant is independent of ¢ € [0, T). Hence, by inequality (5.1),

T T
[k, t)]| e < C/tY*+C  and / [ K72dsdt < C/ CHTyCdt < C
0 St 0
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meaning that £ € L7/2([0,1] x [0, 7). Reparametrizing the flow as at the beginning of this section so
that every curve becomes parametrized proportionally to its arclength, we have a new flow 7' (z,t) =
Y (' (z,t),t) with |¥| constantly equal to L(¢), the length of the curve " at time ¢ € [0,T), by means
of reparametrizations ' (x, t) = v*(¢"(, t), t) solving the ODE’s

(. t) = L' (t) /e (¢ (2, 1), 1)]
with initial data (0, ) = 0. Moreover, we have seen that letting 3/ = k's’' + Ai7%, we have

~. Lt
P

= -+ (k)2
S L’L +( )

This equation immediately says that AL — (k') is constant in space, then integrating

A(s, )] < X0, 8)] + [0 L (2)] +/ (k)? ds < ClIk (-, 0)][ 1= + C,
7 (t)
for every s € [0, L(t)], as |A(-, )| at the borders of any curve is estimated by C||k(-, )| -, Lyicn (k)2 ds

is invariant by reparametrization and bounded by hypotheses and

L) = L - N~ [ (k) ds| < RGOl +C

Yi(t)

It follows N N
N )L < CIRC, D) + C = Clk( )|~ + C < C/EY4 1 C,

hence, k, A € L7/2([0,1] x [0,T]). As a consequence, ¢ = kit + A7 € L7/2([0,1] x [0,7]) and being
i = kv/(L")?, also 7%, belongs to L7/2([0,1] x [0, T]), hence this flow 7 belongs to W;/i([o, T) x [0,1]),
thus it is geometrically uniquely determined, by Theorem 3.6 (or 5.5).

This argument shows that any two curvature flows in the class A/ can be reparametrized one to the
other, that is, we have geometric uniqueness in this class and we are done. O

Remark 5.9.

1. We underline that the initial network is not required to satisfy any compatibility condition, but
only to have angles of 120 degrees between the concurring curves at every 3—point, that is, to
be regular and C?. In particular, it is not necessary that the sum of the three curvatures at the
3—points is zero.

2. As for every positive time the flow obtained by this theorem is C'*°, hence every network S; is
geometrically smooth, arguing as before (by means of Remark 3.35), Corollary 5.2 applies: this
flow can be reparametrized, from any positive time on, to be a C'*° special smooth flow.

3. It should be noticed that if the initial curves o* are C°, the flow S, is smooth till ¢ = 0 far from the
3-points, that is, in any closed “rectangle” included in (0,1) x [0, T") we can locally reparametrize
the curves ' to get a smooth flow up to ¢ = 0. This follows from the local estimates for the motion
by curvature (see [30]).

4. A natural question is whether uniqueness of the curvature flow of an initial regular C? network
holds also “outside” of the subclass V, in the general class of curvature flows as in Definition 2.11
(or possibly asking only the continuity of the tangent vectors as t — 0). At the moment this is still
an open problem.

Now that we have gained the short-time existence for an initial regular C? network, the next important
question is what can be said if the initial network does not satisfy the 120 degrees condition, that is, it is
non-regular (even if all its curves are C'*°). We will face this question in Section 10 below. Clearly, the
unit tangent vectors of any curvature flow having as an initial network a configuration that does not
satisfy the 120 degrees condition cannot be continuous up to time ¢ = 0, being a curvature flow C? and
regular for positive time. Anyway, notice that in the definition of curvature flow, we require only that
the maps " are continuous in [0, 1] x (0, T') for some positive time 7', hence one could hope to be able to
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find a curvature flow such that the 120 degrees condition is satisfied instantaneously, at every positive
time ¢ > 0, as it happens for the geometrical smoothness in Theorem 5.1.

In Section 10 we will also treat the problem of the evolution of a non-regular network with multi-points
of order greater than three. In this case, the continuity condition at ¢ = 0 has to be suitably stated, since,
if we want the curvature flow to be regular for every positive time, the collection of maps describing
the network, as well as the topological structure of the network, must change.

6 Smooth flows are Brakke flows

To continue the flow when at some time a curve collapses and possibly some multi-points appear in
the (limit) network, one can consider a more general (weak) definition of curvature flow.

As mentioned in the introduction, there exist several weak definitions of motion by curvature of a
subset of R". Among the existing notions, the most suitable to our point of view is the one introduced
by Brakke in [16], which in general lacks uniqueness but at least maintains the (Hausdorff) dimension
of the evolving sets.

We introduce now the concept of Brakke flow (with equality) of a network.

Definition 6.1. A regular Brakke flow is a family of W2 networks S, in Q, satisfying the inequality

loc
%/ e(y,t)ds < —/ o(y, 1)k ds+/ (Veo(y,1) | k) d8+/ oi(v,t)ds, (6.1)

St S St St

for every non negative smooth function with compact support ¢ : 2 x [0,T7) — Rand ¢ € [0,T), where
4 is the upper derivative (the lim of the incremental ratios).
If the time derivative at the left-hand side exists and the inequality is equality, for every smooth function

with compact support ¢ : Q x [0,7) - Rand ¢t € [0,T), that s,

d
— | p(y,t)ds = —/ oy, 1)k ds+/ (Vo(y,t) | k) d8+/ wi(v,t)ds, (6.2)
dt Js, s, s, S,

we say that S; is a regular Brakke flow with equality.

Remark 6.2. The original definition of Brakke flow given in [16, Section 3.3] (in any dimension and
codimension) allows the networks S; to be simply one-dimensional countably rectifiable subsets of R?,
with possible integer multiplicity §; : S; — N and with a distributional notion of tangent space and
(mean) curvature, called rectifiable varifolds (see [99]). With such a general definition, the networks are
identified with the associated Radon measures p; = 6, H'L S;.

More precisely, the inequality

I ., o(x,1)0;(x) dH' (z) < — /St o(x, )k?(z, )0 (z) dH (x) + /St (Ve(z,t) | k(z,1))0: (x) dH (z)

+ /St o (2,1)0 () dH* (z)

must hold for every non-negative smooth function with compact support ¢ : Q x [0,7) — R and
t € [0,T), where H' is the Hausdorff one-dimensional measure in R2.

These weak conditions were introduced by Brakke in order to prove an existence result [16, Section 4.13]
for a family of initial sets much wider than networks of curves, but, on the other hand, it opens the
possibility of instantaneous vanishing of some parts of the sets during the evolution.

A big difference between Brakke flows and the evolutions obtained as solutions of Problem (2.3) is that
the former networks are simply considered as subsets of R? without any mention to their parametriza-
tion (that clearly is not unique). This means that actually a Brakke flow can be a family of networks
given by the maps ~/(z,t) which are C? in space, but possibly do not have absolutely any regularity
with respect to the time variable .

An open question is whether any Brakke flows with equality, possibly under some extra hypotheses,
admits a reparametrization such that it becomes a solution of Problem (2.3).

This problem is also related to the uniqueness of the Brakke flows with equality (maybe further restrict-
ing the candidates to a special class with extra geometric properties).
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Proposition 6.3. Any solution of Problem (2.3) in C*1([0,1] x [0, 7)) is a reqular Brakke flow with equality.
In particular, for every curve ~*(-, t) and for every time t € [0, T) we have
dL(t)
dt

= \(1,t) — \(0,t) f/ k*ds (6.3)

Y1)

dL(t) :—/ k? ds
Se

and
dt

that is, the total length L(t) is decreasing in time and it is uniformly bounded by the length of the initial network
So.

Proof. 1f the flow ~% is in C*°([0,1] x [0, 7)), we have
dLi(t)y d [*
Gt =5 [ il
1 | mi
o [l
1 %
0 |IYI‘

1
- / (Ouri | 7) da
0

= (L) |7'(1,8)) = (4 (0,) | 7(0, 1)) —/O (| 0x7") da.

Then, approximating the maps % with a family of maps v € C* such that 4** — ~‘ in C' and
vl — i, in CY ase — 0, we see that we can pass to the limit in this formula and conclude that it holds
for the original flow which is only in C%'([0, 1] x [0,T')). Finally, since 9, 7" = k'v*|v|, we get

L) _ N (1,t) — A0, 1) f/ k*ds
dt ~i (1)

as vy} = kiv' + \irt

The formula for the derivative of the total length of the evolving network then follows by the zero—sum

property of the functions \’ at every 3-point at the fact that all the A" are zero at the end—points.

A similar argument shows that formula (6.2) defining a regular Brakke flow with equality also holds.
O

Theorem 6.4. IfS; is a curvature flow of a C? initial network such that
e the unit tangents 7* are continuous in [0,1] x [0,T),
e the functions k(-,t) converge weakly in L? to k(-,0), ast — 0,
e the function t — fst k? ds is continuous on [0,T),

then Sy is a regular Brakke flow with equality.

Proof. By the previous Theorem 6.3, we only need to check Brakke equality (6.2) at t = 0.
For every positive time and for every smooth test function ¢ : 2 x [0,T") — R, we have

d

— gods:—/ <pk2ds+/<V<p|k>dsd+/ prds,
dt Js, St St St

hence, it suffices to show that the right member is continuous at ¢ = 0. By the hypotheses, the only term
that really need to be checked is [ ¢k ds, we separate it as the sum of [; ¢ k*ds and [ ¢~ k*ds
and we show the continuity of these two terms separately (here ™ = ¢ A0 and ¢~ = ¢ V 0). Thus,
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we assume that 0 < ¢ < 1, then, by the weak convergence in L?(ds) of k(-,t) to k(-,0), the integral
fo, v k? ds is lower semicontinuous in ¢, that is, fSo o k?ds < liminfy, o fst ¢ k? ds for every t; — 0, but
if this is not an equality for some sequence of times, it cannot happen that [ k*ds is continuous at
t = 0, indeed, we would have

lim [ k?ds > liminf [ @k*ds+liminf [ (1 —p)k?ds
t1—0 Jg, =0 Js, =0 Jg,

>/ gok2ds+/(l—go)k2ds:/ k*ds.
So So St

This concludes the proof. O

Corollary 6.5. The curvature flows whose short—time existence is proved in Theorems 3.25 and 3.33 are regular
Brakke flows with equality. The curvature flow of an initial C? regular network obtained in Theorem 5.8 is also a
reqular Brakke flow with equality. Any curvature flow of a reqular network is a reqular Brakke flow with equality
for every positive time.

We conclude this section with the following property of Brakke flows.

Proposition 6.6. For any regular Brakke flow with equality (hence, for every curvature flow of a regular network)
such that the curvature is uniformly bounded in a time interval [0,T), the lengths of the curves of the network
L(t) converge to some limit, ast — T.

In particular, if the flow satisfies the conclusions of Theorem 5.7 at the maximal time of existence T, there must be
at least one curve such that L'(t) — 0,ast — T.

Proof. 1f the curvature is bounded, by formula (6.3), any function L’ as a uniformly bounded derivative,
as k controls A at the end—points and 3—points of the network, thus the conclusion follows. O

sectionThe monotonicity formula and the rescaling procedures

Let F : S x [0,7) — R? be the curvature flow of a regular network in its maximal time interval of
existence. As before, with a little abuse of notation, we will write 7(P",t) and A(P",t) respectively
for the unit tangent vector and the tangential velocity at the end—point P” of the curve of the network
getting at such point, for any r € {1,2,...,1}.

A modified form of Huisken’s monotonicity formula for smooth hypersurfaces moving by mean cur-
vature (see [53]), holds. It can be proved to start by formula (6.2) and with a slight modification of the
computation in the proof of Lemma 6.3 in [82].

Let 2o € R?,ty € (0,+00) and py, 4, : R? X [—00,ty) be the one-dimensional backward heat kernel in R?

relative to (zo, to), that is,
_lz—=q|?
e 4(to—t)
Aty —t)
We will often write p,, (,t) to denote py, r(z,t) (or py, to denote p,, ), when T is the maximal (sin-
gular) time of existence of a smooth curvature flow.

Pz to ('757 t) =

Proposition 6.7 (Monotonicity formula). Assume ty > 0. For every zo € R? and t € [0, min{to, T'}) the
following identity holds
(x — xg

d
| o) ds = — LA
dt Stpuo,to(x ) S /St 2(t0—t)
_xO
+Z{< 2(to — 1)

Integrating between t, and ty with 0 < t; < to < min{ty, T'} we get

/t2 /
t1 St

)

k+ Pao.to (X,1) ds (6.4)

T(P",1) > - )\(Pr,t)] Pao.to(PT51).

95—:5‘0)L ?

2(tg — t)

Pro.to (T, 1) dsdt = / Paorto (T, t1) ds — / Paoto (T, t2) ds (6.5)

Sfl §1,2

D RlEess
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We need the following lemma to estimate the end—points contributions in this formula (its proof is
analogous to the one of Lemma 6.5 in [82]).

Lemma 6.8. Iftq € (0,77, for every r € {1,2,...,1} and zo € R?, the following estimate holds

[ e
t 2(to — &)
for every t € [0,1¢), where C is a constant depending only on the constant Cy in assumption (4.1) (independent
of to and t). It follows that the integral

[ G
¢ 2(to — €)
exists and it is finite, for every to € (0,T] and t € [0, o).

As a consequence, for every point xo € R? and to € (0, T, we have

LmZ/K S

By formula (6.5) and this lemma, we can then write

/ (z,t)d / (,0)d /t/ P
Poto (s s = Pzo.to (T, s — k+ —"—
5 5o T Se 2(to — §)
(s

/ Pao.to (€, 0) ds—/ /
S() 0 Sg

+z/[<%_
DY RIEEsT

to —
for every to € (0,T] and ¢ € [0, to). Now we notice that the first line on the right side of this formula is a
monotone non increasing functionin ¢ € [0, ¢), the second line is a constant and the third line converges

to zero as t — 1o, by Lemma 6.8. Hence, the non negative function ¢ =[5 pu,,1, (2, t) ds converges to
some limit as t — ty. Then, the following definition is well posed.

pZo,to(Prag) df < Ca

T(Prag) > - )‘(Plvg)

P76 ) AP0 | pas (P )

T(P", ) > - A(Pr,é)} Pao,to(P7,€)dE =0,

)L

Pao.to (2, §) ds dS

(P".) > - A(P’”,f)} o (P €) dE
(z —zo)**

t o 5) Pxg,to (ZU, 5) ds dg

HPTLE) ) = APE) | oo (P )

HPTE) ) NP8 | (P

Definition 6.9 (Gaussian densities). For every zy € R?,t;, € (0,+00) we define the Gaussian density
function ©,, ¢, : [0, min{ty,T}) — Ras

@I07t0 (t) = / pZL’o,to ('7 t) dS
St

and, provided ¢y < T, the limit Gaussian density function ©:R2 x (0,400) — R as
@(xo, to) = tlglt’lo @wo,to (t) .

which exists finite and non negative, for every (z¢,to) € R? x (0,77, by the above argument (under
assumption (4.1), or simply if the end—points P" of the network S, are fixed, hence A\(P",-) = 0).

We will often write O, (t) to denote O, r(¢) and O (o) for O (o, T).

Notice that the map ©:R2 5 Ris upper semicontinuous (see [76, Proposition 2.12]), being given by the
monotone limit of continuous functions “perturbed” by a sequence of functions pointwise converging
to zero.
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6.1 Parabolic rescaling of the flow

For a fixed ¢ > 0 the standard parabolic rescaling of a curvature flow is given by the map F above,
around a space-time point (x, o), is defined as the family of maps

Fl' = p(F (-, p "t + tg) — x0) (6.6)

where t € [—p?to, u?(T — to)). Notice that this is again a curvature flow in the domain u(Q — zo) with
new time parameter t.

Given a sequence p; * +oo and a space-time point (xg, tp), where 0 < t; < T, we then consider the
sequence of curvature flows F{* in the whole R? that we denote with S{".

Recall that the monotonicity formula implies

r—X
@Io7to( ) l‘o,to //‘k‘i‘ to _O ’ pwo,to(a )deO’

AT

Changing variables according to the parabolic rescaling, we obtain

| () > — (P, a)} pooto(P",0) do .

oopl2
k' — E‘ poo(,5)dsds

Ouwoto (to + 11 2t) — O (o, t) =

)> + (P )] po.o(P/,s)ds,

where P! = ;1;(P" — x¢) and k" and X\’ are the rescaled curvatures and tangential velocities.
Hence, sending i — oo, by Lemma 6.8, for every t € (—o0,0) we get

A —*’ p0,0(-,8)dsds =0.
1—00
t g

6.2 Huisken’s dynamical rescaling

We introduce the rescaling procedure of Huisken in [53] at the maximal time 7".
Fixed 7o € R?,let F,, : S x [~1/2log T, +o0) — R? be the map

- F(pat)fxO

F, (p,t) = 2T 1) t(t) = f% log (T —t)

then, the rescaled networks are given by

gwo,t = M (67)
2T —t)

and they evolve according to the equation

ann (p7 t) = ﬁ(p7 t) + ﬁfbo (p7 t)

where L
U(p,t) = V2T —t(t) - v(p, t(t)) =k + A= kv + At and t) =T —e 2.

Notice that we did not put the sign~over the unit tangent and normal, since they remain the same after
the rescaling.
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We will write OP(t) = F,,(OP,t) for the 3—points of the rescaled network gzo,t and P (t) = F,,(P",t)
for the end-points, when there is no ambiguity on the point .
The rescaled curvature evolves according to the following equation,

Ok = koo + ks A+ k° — k
which can be obtained by means of the commutation law
00 = D501 + (K> — X5 — 1)0s

where we denoted with s the arclength parameter for gmt.

Remark 6.10. 1t is easy to see that the relations between the two rescaling procedures are given by

et

St = V=248, 105 (u/v=y  and Sgp = 2 8L 22

in particular,

SAil/Q =Sy log (uv/3) -

By a straightforward computation (see [53]) we have the following rescaled version of the monotonicity
formula.

Proposition 6.11 (Rescaled monotonicity formula). Let zq € R? and set

For every t € [—1/2log T, +00) the following identity holds

4
dt Sy

l
playds == [ B+ ot Pia)ds + 30 (P10 7P t00)) = X2 2(0)] 5P (1)
t r=1

st Szoy

where PT(t) = ﬁ.

Integrating between ¢ and t; with —1/2logT < t; < t2 < +oo we get

to -
/ / |k +xF)?p(z) ds dt = /
t JS, S

zq,t

px) ds — /g Bz ds 6.8)

z0,t1 0, t2

+ i/‘ [< Pr(t) ’T(PT,t(t))> - X(pr,t(t))} S(P" (1) dt.

r=17t
We have also the analog of Lemma 6.8 (see Lemma 6.7 in [82]).

Lemma 6.12. Foreveryr € {1,2,...,1} and z € R?, the following estimate holds for all t € [—4 log T, +00),

/tm\@“@ |~(P".1©)) = AP, 1(€))| dg < C.

where C is a constant depending only on the constants Cy in assumption (4.1) (independent of t).
As a consequence, for every point xo € R?, we have

t—=+o0

in > / (B Py - X)) de —o.
r=171%
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7 Classification of possible blow—up limits

In this section we want to discuss the possible limits of an evolving network at the maximal time of
existence. When the curvature does not remain bounded, we are interested in the possible blow—up
limit networks after parabolic or Huisken’s rescaling procedure, using the rescaled monotonicity for-
mula (see Section 6). In some cases, such limit sets are no more regular networks, so we introduce the
following definition.

Definition 7.1 (Degenerate regular network). Consider a tuple (G, S) with the following properties:

e G =|J_, E'is an oriented graph with possible unbounded edges E’, such that every vertex has
only one or three concurring edges (we call end—points of G the vertices with order one);

e given a family of C*! curves o' : I' — R?, where I’ is the interval (0,1), [0, 1), (0,1] or [0,1], and
orientation preserving homeomorphisms ¢’ : E* — I, then S is the union of the images of I
through the curves o, thatis, S = |J!_, o*(I") (notice that the interval (0, 1) can only appear if
it is associated with an unbounded edge E’ without vertices, which is clearly a single connected

component of G);

e in the case that I’ is (0,1), [0, 1) or (0, 1], the map o is a regular C'! curve with unit tangent vector
field 7%,

e in the case that I = [0, 1], the map o' is either a regular C! curve with unit tangent vector field 7¢,
or a constant map and in this case it is “assigned” also a constant unit vector 7 : I* — R?, that we
still call unit tangent vector of o* (we call these maps ¢* “degenerate curves”);

e for every degenerate curve o’ : I — R? with assigned unit vector 7 : I* — R?, we call “assigned
exterior unit tangents” of the curve ¢* at the points 0 and 1 of I*, respectively the unit vectors —7*
and 7.

e themapI' : G — R? given by the union T = |J}_, (¢ 0 ¢") is well-defined and continuous;

e for every 3—point of the graph G, where the edges E‘, E’, E* concur, the exterior unit tangent
vectors (real or “assigned”) at the relative borders of the intervals I?, I, I* of the concurring
curves o*, 07 o* have zero sum (“degenerate 120 degrees condition”).

Then, we call S = J"_, o*(I?) a degenerate reqular network.

If one or several edges E' of G are mapped under the map I : G — R? to a single point p € R?, we call
this sub-network given by the union G’ of such edges E, the core of S at p.

We call multi-points of the degenerate regular network S, the images of the vertices of multiplicity three
of the graph G, by the map I'.

We call end—points of the degenerate regular network S, the images of the vertices of multiplicity one
of the graph G, by the map I".

Remark 7.2.
e A regular network is clearly a degenerate regular network.

e This definition will be useful to deal with the limit sets when at some time a curve of the network
collapses, namely, its length goes to zero (later on in Section 9).

e Seen as a subset in R?, a degenerate regular network S with underlying graph G, is a C! net-
work, not necessarily regular, that can have end—points and/or unbounded curves. Moreover
self-intersections and curves with integer multiplicities can be present. Anyway by the degen-
erate 120 degrees condition at the last point of the definition, at every image of a multi—point of
G the sum (possibly with multiplicities) of the exterior unit tangents (the “assigned” ones can-
cel each other in pairs) is zero. Notice that this implies that every multiplicity—one 3—point must
satisfy the 120 degrees condition.
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Lemma 7.3. Let S = |J;_, o*(I;) be a degenerate regular network in Q and X : R? — R? be a smooth vector
field with compact support. Then, there holds

I
—1 /["
[ ox(@) [y = = S (P
r=1
where P, P?, ..., P! are the end—points of S, 7(P'), 7(P?),...,7(P") are the exterior unit tangents at P" and
H' is the one—dimensional Hausdorff measure, counting multiplicities.

Proof. This is a consequence of the degenerate 120 degrees condition, implying that the sum of all the
contributions at a multi-point given by the boundary terms after the integration on every single curve
is zero (as the sum of the exterior unit tangents of the concurring curves). Thus the only remaining
terms are due to the end—points of the degenerate regular network. O

Definition 7.4. We say that a sequence of regular networks S, = |J/_, 0. (I}) converges in CL_ to a
degenerate regular network S = Ui.:l ol (I2,) with underlying graph G = Ué.:l E7 if:

e letting O',0?,..., 0™ be the multi—points of S, for every open set Q2 C R? with compact closure
in R?\ {O',0%,...,0™} the networks S;, restricted to €, for k large enough, are described by
families of regular curves which converge up to reparametrization to the family of regular curves
given by the restriction of S to €;

e for every multi-point O of S, image of one or more vertices of the graph G (if a core is present),

there is a sufficiently small R > 0 and a graph G = U;_, F", with edges F" associated to intervals
J", such that:

— the restriction of S to Br(OP) is a regular degenerate network described by a family of curves
ol J* — R? with (possibly “assigned”, if the curve is degenerate) unit tangent 77,

— for k sufficiently large the restriction of Sy, to Br(OP) is a regular network with underlying
graph G, described by the family of regular curves 5% : J" — R?,

— for every j, possibly after reparametrization of the curves, the sequence of maps J" > = —
(07 (z), 7} (x)) convergein C{ _tothe maps J" > x — (07 (z), 75 (2)) foreveryr € {1,2,...,s}.

loc

We will say that Sy, converges to S in C}. |
converge in the topology of E.

Remark 7.5.

N E, where E is some function space, if the above curves also

o If the limit regular network S is non-degenerate, the above convergence of a sequence of regular
networks Sy, to S is simply the CL _—convergence of the curves of Sj, to the relative ones of S. Any-
way, in general, if S is a degenerate regular network S, the above definition of C} —convergence
for a sequence of regular networks S, to S, is clearly stronger than that, by the last request at
the second point. Asking only the C _—convergence of the curves of a sequence of regular net-
works Si, would not guarantee that the limit degenerate network S is reqular, as the last point in
Definition 7.1 could possibly not being satisfied by S.

e Itis easy to see that if a sequence of regular networks Sj, converges in Cf. . to a degenerate regular
network S, the associated one-dimensional Hausdorff measures, counting multiplicities, weakly—
converge (as measures) to the one-dimensional Hausdorff measure associated with the set S seen
as a subset of R%.

e If a degenerate regular network S is the limit of a sequence of regular networks as above, being
these embedded, it clearly can have only fangent self-intersections but not a “crossing” of two of
its curves.

e If Sis the limit of a sequence of “rescalings” of the networks of a curvature flow S; with fixed end-
points, it can have only one end-point at the origin of R? and only if the center of the rescalings
coincides with an end—point of S;, otherwise, it has no end—points at all (they go to oo in the
rescaling).
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7.1 Self-similarly shrinking networks

Definition 7.6. A regular C? open network S = |J"_, 0*(1;) is called a reqular shrinker if at every point
x € S there holds
k+zt=0. (7.1)

This relation is called the shrinkers equation.

n

The name comes from the fact that if S = |J;"_, 0*(I;) is a shrinker, then the evolution given by S, =
Ui, 7 (1;,t) where vi(z,t) = /=2t o%(z) is a self-similarly shrinking curvature flow in the time inter-
val (—00,0) with S = S_; /5. Viceversa, if S; is a self-similarly shrinking curvature flow in the maximal
time interval (—o0,0), then S_; /, is a shrinker.

I
4 ’ !

Figure 7.1: Examples of regular shrinkers with zero or one triple junction: a line through the origin,
an unbounded triod composed of three halflines from the origin meeting at 120 degrees, that we call
standard triod and the unit circle S!.

Figure 7.2: Another example of a regular shrinker with one triple junction: a Brakke spoon.

In these figures, there are drawn all the regular shrinkers with at most one triple junction (see [51]). In
particular by the work of Abresch and Langer [1] it follows that the only regular shrinkers without triple
junctions (simply curves) are the lines through the origin and the unit circle. In the case of complete,
embedded, regular shrinker with two triple junctions it is not difficult to show that there are only two
possible topological shapes: the “lens/fish” shape and the Greek “Theta” letter (or “double cell”), as
depicted in the next figure (see also [9]).

Figure 7.3: A lens/fish-shaped and a ©-shaped network.
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It is well known that there exist unique (up to rotations) lens-shaped or fish-shaped, embedded, regular
shrinkers that are symmetric with respect to a line through the origin of R? (see [21,96]). Instead, there
are no regular ©-shaped shrinkers (see [11]).

Figure 7.4: The shrinking lens and the shrinking fish (up to rotations).

A “gallery” with these and other more complicated regular shrinkers can be found in the Appendix.

Definition 7.7 (Degenerate shrinkers). We call a degenerate regular network S = |J}_, 0% (I;) a degenerate
reqular shrinker if at every point x € S there holds

k+zt=0.

Clearly, a regular shrinker is a degenerate regular shrinker and, as before, the maps ' (z, t) = /=2t o*(z)
describe the self-similarly shrinking evolution of a degenerate regular network S; in the time interval
(*OO, O), with S = S—I/Z-

Definition 7.8. A standard cross is a degenerate regular network given the union of two straight lines
intersecting at the origin of R? and forming angles of 120 and 60 degrees, with an underlying graph G
as in the following figure. Its core consists of the degenerate curve mapping the “central” curve of G
constantly to the origin. The “assigned” tangent vector to the degenerate curve is one of the two unit
vectors that generates the bisector line of the 120 degrees angles.

Figure 7.5: A standard cross with angles of 60/120 degrees and its underlying graph G.

Remark 7.9. As every non-degenerate curve of a degenerate regular shrinker (or simply of a regular
shrinker) satisfies the equation k + 21 = 0, it must be a piece of a line through the origin or of the so
called Abresch—Langer curves. Their classification results in [1] imply that any of these non straight pieces
are compact, hence any unbounded curve of a shrinker must be a line or an halfline “pointing” towards
the origin. Moreover, it also follows that if a curve contains the origin, then it is a straight line through
the origin (if it is in the interior) or a halfline from the origin (if it is an end—point of the curve).

For a degenerate regular shrinker S, in analogy with Definition 6.9, we denote with
©: = B0o(~1/2) = [ pral~1/2)ds
s
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its Gaussian density (here ds denotes the integration with respect to the canonical measure on S, counting
multiplicities). Notice that the integral ©¢,o(t) = [5, po,0(",t) d5 is constant for ¢ € (—o0,0), hence equal

to ©(0) for the self-similarly shrinking curvature flow S; = /-2t S generated by S, as above.
The Gaussian density of a straight line through the origin is 1, of a halfline from the origin is 1/2, of
a standard triod T is 3/2, of a standard cross C is 2. The Gaussian density of the unit circle S! can be

easily computed to be
2
Qg1 = ,/g ~ 1,5203. 7.2)
Notice that O = 3/2 < Og1 < 2.

The Gaussian densities of several other regular shrinkers can be found in the Appendix.
We have the following two classification results for degenerate regular shrinkers, see Lemma 8.3 and 8.4
in [58].

Lemma 7.10. Let S = |J_, 0*(I;) be a degenerate reqular shrinker which is a C. . N W 2~limit of reqular
networks S; homeomorphic to the underlying graph G of S (as in Definition 7.1) and assume that G is a tree
without end—points. Then S consists of halflines from the origin, with possibly a core at the origin.

Moreover, if G is connected, without end—points and S is a network with unit multiplicity, this latter can only be

e 1 line (no cores),
e a standard triod (no cores),

e two lines intersecting at the origin forming angles of 120/60 degrees (the core is a collapsed segment in the
origin with “assigned” unit tangent vector bisecting the angles of 120 degrees), that is, a standard cross
(see Figure 7.5).

Proof. We assume that G is connected, otherwise, we argue on every single connected component. By
the hypothesis of approximation with regular (embedded) networks, G is a planar graph.

As we said in Remark 7.9, if a non—degenerate curve contains the origin, then it is a piece of a straight
line. Otherwise, it is contained in a compact subset of R? and has a constant winding direction with
respect to the origin. Aside from the circle, any other solution has a countable, non-vanishing number
of self-intersections (all these facts were shown in [1]).

We underline that the length of some curves of S; can go to zero in the limit, then any core of the limit
network is the union of some of these vanishing curves. Suppose that the network S has a core at some
point P € S, then, at least an edge of G is mapped into P and the length of at least one curve, let us
say 7;, goes to zero in the limit. Being the graph G a tree, if N > 2 triple junctions are contained in the
core, then N + 2 curves (counted with multiplicity) with strictly positive length concur at P. This fact
can be easily proved by induction: if N = 2, then two triple junctions are present in the core and hence
the length of the curve connecting the two junctions has gone to zero in the limit, but the other four
curves emanating from the two different junctions have still positive lengths. We suppose now that the
statement holds for N = N and we show it for N = N + 1. With respect to the situation in which N
triple junctions are in the core, we add an extra triple junction O to the core, but to do so one of the
original N + 2 curves emanating from the core has to go to zero. However, the other two concurring
curves to O have length bounded from below away from zero and now concur to P, thus there are
(N +2) — 142 = N + 3 curves with strictly positive length concurring at P and the claim is proved.
We can suppose (up to reparametrization) that for every i € N, any curve v; : [0,1] — R? of S; is
parametrized with constant modulus of its velocity, equal to its length. Then we get

lim  sup |m(x) —7(y)| =0,
100 x,yE[O,l]

indeed, given z, y € [0, 1], there holds

s(y)
/ 0,7 ds

and we obtain the conclusion, by passing to the limit. Hence, the vanishing curves of S; are straighter
and straighter, as i — oo and for ¢ € N large enough, so we can assume in the next argument that the

1/2
Iri(a) — ()| = </ ki|ds<( |ki|2ds) Liy)"2
Yi Yi
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unit tangent vectors are constant on each of such curves.

We describe the structure of the core. Let i € N be sufficiently large and consider the longest simple
“path” of curves of S; that go to the core of S at P. We then orient the path and follow its edges. The
“assigned” unit tangent vectors (possibly changed of sign on some edges in order to coincide with
the orientation of the path) cannot “turn” of an angle of 60 degrees in the same “direction” for two
consecutive times along the path, otherwise, since G is a tree with only triple junctions, without external
vertices and with non—compact branches, the approximating networks must have a self-intersection
(see Figure 7.6 below).

< >‘< 1<
P - . |
! The core of S
‘ G

Figure 7.6: If the assigned unit tangent vector “turns” of an angle of 60 degrees in the same direction
for two consecutive times, G has self-intersections. An example of such a pair (G, S).

Hence, if the assigned unit tangent vector “turns” of an angle of 60 degrees then it must “turn” back,
in passing from an edge to another along such longest path. This means that at the initial /final point
of such path, either the two assigned unit tangent vectors are the same (when the number of edges
is odd) or they differ of 60 degrees (when the number of edges is even). By a simple check, we can
then see that, in the first case the four curves images of the four non-collapsed edges exiting from such
initial/final points of the path, have four different exterior unit tangent vectors at P (opposite in pairs),
in the second case, they have three exterior unit tangent vectors at P which are non—proportional each

other.
1 2 B _ ! 1 B
- 1 - l 1
e S NG S

Figure 7.7: Examples of the edges at the initial/final points of the longest simple path in G and of the
relative curves in S, the numbers 1 and 2 denote their multiplicity.

If then there is a 3—point or a core at some point P # 0, since at most two of the four directions in the
first case above and at most one of the three directions in the second case, can belong to the straight line
through P and the origin, there are always at least two distinct non—straight Abresch-Langer curves
arriving/starting at P. Clearly, this property holds also if there is no core, but P is simply a 3—point.

Let us consider S’ C S, which consists of S with the interior of all the pieces of straight lines removed
and let o’ one of the two curves above. We follow ¢ till its other end—point Q. At this end—point, even
if there is a core at Q, there is always another different non-straight curve o7 to continue moving in S
avoiding the pieces of straight lines (hence staying far from the origin). Actually, either the underlying
intervals I; and I; are concurrent at the vertex corresponding to ) in the graph G or there is a pathin G
(collapsed in the core at ()) joining I; and I;. We then go on with this path on S (and on G) till, looking
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at things on the graph G, we arrive at an already considered vertex, which happens since the number of
vertices of G is finite, obtaining a closed loop, hence, a contradiction. Thus, S’ cannot contain 3—points
or cores outside the origin. If anyway S contains a non-straight Abresch-Langer curve, we can repeat
this argument getting again a contradiction, hence, we are done with the first part of the lemma, since
then S can only consist of halflines from the origin.

Now we assume that G is connected and S is a network with multiplicity one, composed of halflines
from the origin.

If there is no core, S is homeomorphic to G and composed only by halflines for the origin, hence G has
at most one vertex, by connectedness. If G has no vertices, then S must be a line, if it has a 3—point, S is
a standard triod.

If there is a core in the origin, by the definition of degenerate regular network it follows that the halflines
of S can only have six possible directions, by the 120 degrees condition, hence, by the unit multiplicity
hypothesis, the graph G is a tree in the plane with at most six unbounded edges. Arguing as in the
first part of the lemma, if N denotes the number (greater than one) of 3—points contained in the core,
it follows that N can only assume the values 2, 3, 4. Repeating the argument of the “longest path”, we
immediately also exclude the case N = 3, since there would be a pair of coincident halflines in S, against
the multiplicity—one hypothesis, while for N = 4 we have only two possible situations, described at the
bottom of the following figure.

// G \\ // S \\

The core of S The core of S
:§: N }& The longest
\ simple path

v G S The core of S in the core of S

Figure 7.8: The possible local structure of the graphs G, with relative networks S and cores, for N =
2,3,4.

Hence, if N = 4, in both two situations above there is in S at least one halfline with multiplicity two,
thus such case is also excluded.

Then, we conclude that the only possible network with a core is when N = 2 and S is given by two lines
intersecting at the origin forming angles of 120/60 degrees and the core consists of a collapsed segment
which must have an “assigned” unit tangent vector bisecting the two angles of 120 degrees formed by
the four halflines. O

Lemma 7.11. Let S = {J;_, 0*(1;) be a degenerate reqular shrinker which is C, —limit of regular networks
homeomorphic to the underlying graph G of S (as in Definition 7.1) and assume that ©g < ©Og1. Then, the graph
G of Sis a tree. Thus, S is either a multiplicity—one line or a standard triod.

Proof. By the hypotheses, we see that G is a planar graph. We assume that G is not a tree, that is, it
contains a loop, then we can find a (possibly smaller) loop bounding a region. If such loop is in a core at
some point P, it is easy to see, by the degenerate 120 degrees condition, that such region has six edges
and, arguing as in Lemma 7.10, that there must always be at least two non-collapsed, non-straight
Abresch-Langer curves arriving/starting at P in different directions.
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Then, if we assume that the complement of S in R? contains no bounded components, repeating the
argument in the proof of the previous lemma, it follows that S consists of a union of halflines for the
origin and the loops of G are all collapsed in the core. Then, by what we said above, there must be
at least six halflines emanating from (the core at) the origin. This implies that ©g > 3, which is a
contradiction.

Let now B be a bounded component of the complement of S and 7 a connected component of the sub—
network of S which bounds B, counted with unit multiplicity. Since ~ is an embedded, closed curve,
smooth with corners and no triple junctions, we can evolve it by “classical” curve shortening flow ~,,
for t € [-1/2,19) where we set y_; 5 = 7, until it shrinks at some ¢y > —1/2 to a “round” point z, € R?
(by the works of Angenent, Gage, Grayson, Hamilton [6-8,39-41,46], see Remark 2.16).

By the monotonicity formula, we have

/pio,to(" —1/2) ds 2 @Sl
y

and, by the work of Colding-Minicozzi [24, Section 7.2], there holds

Os = /Po,o(-,—l/Q)dEZ sup /pxo’to(-,—1/2)d§.
s

zo€ER2tp>—1/2JS
Then,

@s>/pwu,t(,<-,—1/2>d§>/pxo,t0<-,—1/2>ds>egl,
S

.
which is a contradiction and we are done. O

7.2 Geometric properties of the flow

Before proceeding, we show some geometric properties of the curvature flow of a network that we will
need in the sequel.

Proposition 7.12. Let S; be the curvature flow of a reqular network in a smooth, convex, bounded, open set
Q, with fixed end—points on the boundary of 0, for t € [0,T). Then for every time t € [0,T) the network S,
intersects the boundary of Q only at the end—points, and such intersections are transversal for every positive time.
Moreover, S; remains embedded.

Proof. By continuity the 3-points cannot hit the boundary of (2 at least for some time 7" > 0. The
convexity of Q2 and the strong maximum principle (see [92]) imply that the network cannot intersect the
boundary for the first time at an inner regular point. As a consequence, if ¢, > 0 is the “first time” when
the S; intersects the boundary at an inner point, this latter has to be a 3—point. The minimality of ¢ is
then easily contradicted by the convexity of 2, the 120 degrees condition and the nonzero length of the
curves of Sy, .

Even if some of the curves of the initial network are tangent to 9Q2 at the end-points, by the strong
maximum principle, as {2 is convex, the intersections become immediately transversal and stay so for
every subsequent time.

Finally, if the evolution S; loses embeddedness for the first time, this cannot happen either at a boundary
point, by the argument above, nor at a 3—point, by the 120 degrees condition. Hence it must happen at
interior regular points, but this contradicts the strong maximum principle. O

Proposition 7.13. In the same hypotheses of the previous proposition, if the smooth, bounded, open set Q is
strictly convex, for every fixed end—point P" on the boundary of Q, for r € {1,2,...,1}, thereisatimet, € (0,T)
and an angle o, smaller than /2 such that the curve of the network arriving at P form an angle less that o,
with the inner normal to the boundary of Q, for every time ¢t € (¢, T).

Proof. We observe that the evolving network S; is contained in the convex set 2, C (2, obtained by
letting 02 (which is a finite set of smooth curves with end—points P") move by curvature keeping fixed
the end—points P" (see [54,102,103]). By the strict convexity of Q2 and strong maximum principle, for
every positive t > 0, the two curves of the boundary of €2 concurring at P” form an angle smaller than
7 which is not increasing in time. Hence, the statement of the proposition follows. O
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We briefly discuss now the behavior of the area of regions enclosed by the evolving regular network
St. Let us suppose that a (moving) region A(¢) is bounded by some curves v,72,...,7™ and let A(t)
its area. Possibly reparametrizing these curves which form the loop ¢ = [J;-, 7" in the network, we
can assume that ¢ is parametrized counterclockwise, hence, the curvature k is positive at the convexity
points of the boundary of A(t). Then, we have

m

A’(t):—i/wwﬂu)ds:—ZLi<ky|u>ds:—i/ﬂ/ikds:—iA&

=1

where Af; is the difference in the angle between the unit tangent vector 7 and the unit coordinate vector
e; € R? at the final and initial point of the curve ¢, indeed (supposing the unit tangent vector of the
curve " “lives” in the second quadrant of R? — the other cases are analogous) there holds

(s |e1)

0s0; = 0s =
arccos(T | e1) P

:k’

SO
m

Al(t) = _Z/i 040 ds = _iMi

i=1"7 i=1

Being ¢ a closed loop and considering that at all the end—points of the curves 7' the angle of the unit
tangent vector “jumps” of 120 degrees, we have

mm/3+ Y Ab; :m7r/3+2/ kds=2m, (7.3)
i=1 i=177"
hence
Aty =—(2-m/3)r (7.4)

(this is called von Neumann rule, see [109]).

An immediate consequence is that the area of every region fully bounded by the curves of the network
evolves linearly and, more precisely, it increases if the region has more than six edges, it is constant with
six edges and it decreases if the edges are less than six. Moreover, this implies that if a region with less
than six edges is present, with area Aj at time ¢ = 0, the maximal time 7" of existence of a smooth flow

is finite and
Ap 340

I's — - < —
(2—m/3)m ™

Remark 7.14. Since every bounded region contained in a shrinker must decrease its area during the
curvature flow of such shrinker (since it is homothetically contracting), another consequence is that
the only compact regions that can be present in a regular shrinker are bounded by less than six curves
(actually this conclusion also holds for the “visible” regions — not the cores — of any degenerate regular
shrinker).

Moreover, letting a shrinker evolve, since every bounded region must collapse after a time interval
of 1/2, the area of such a region is only dependent on the number m of its edges (less than 6), by
equation (7.4), indeed

1/2 1/2
AO) = A0) - A2 =~ [ A= [ @ msmdi =2 m/3)m/2.
0 0

This implies that the possible structures (topology) of the shrinkers with equibounded diameter are
finite.

It is actually conjectured in [51, Conjecture 3.26] that there is an upper bound for the possible number
of bounded regions of a shrinker. This would imply that the possible topological structures of shrinkers
are finite.

We explain now a geometric construction that we will use several times in the following.
We consider the curvature flow of network S; in a strictly convex set 2, with fixed end—points on 0
labeled by {P!, P2, ..., P'}, in a maximal time interval [0, 7).

63



Figure 7.9: A network S; with the associated networks H;.

We recall that as the curves composing the network are at least C? and the boundary points are fixed,
at each P" both the velocity and the curvature are zero, namely, the compatibility conditions of order 2
(see Definition 3.22) are satisfied.

For every end-point P?, we define the “symmetrized” networks H: each one obtained as the union of
S; with its “reflection” Sf'i with respect to Pi. As the domain  is strictly convex and §; is inside (2,
this operation clearly does not introduce self-intersections in the union Hi =S, U Sf” and the number
of triple junctions of Hi is exactly twice the number of S;. Every network H is a regular network and
the flow is still in C?1, thanks to the compatibility conditions of order 2 satisfied at P?. The evolution
is clearly symmetric with respect to P*. If we have that the flow S; is smooth then also all the flows H
are smooth (see Definition 3.27) and viceversa.

7.3 Limits of rescaling procedures

Given a sequence p; , 400 and a space-time point (xg, %), where 0 < ¢ty < T, with T' the maximal
time of smooth existence, we consider as before in Section 6.1, the sequence of parabolically rescaled
curvature flows F}"" in the whole R?, that we denote with S*.

We know that, by rescaling the monotonicity formula (end of Section 6.1),

L2
hm//&———m@@%@:m (7.5)

17— 00

for every t € (—o0,0). We see now that this implies that there exists a subsequence of parabolic rescal-
ings which “converges” to a (possibly empty) degenerate, self-similarly shrinking network flow.

Definition 7.15. We say that a (possibly degenerate and with multiplicity) network S has bounded length
ratios by the constant C' > 0, if

H' (SN Br(@)) < CR,

foreveryz € R?and R > 0 (ﬁl is the one—dimensional Hausdorff measure counting multiplicities).

Notice that this is a scaling invariant property, with the same constant C. The following technical lemma
is due to Stone [104].
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Lemma 7.16. For any u > 0, let S} be the parabolically rescaled flow around some (xo,to) € R? x (0,T), as
defined in formula (6.6).

1. There exists a constant C' = C(So) such that, for every T € R?,t € [0,T) and R > 0 there holds
H' (S, N Br(%)) < CR.

That is, the family of networks S; has uniformly bounded length ratios by C.
It follows that for every T € R?, t € [—p*to, 0], w > 0 and R > 0, we have

H(S¥ N Br(Z)) < CR.

2. For any € > 0 there is a uniform radius R = R(e) such that

/ eflm‘2/2ds <e,
SY\Br(T)

that is, the family of measures e~1*1°/2 31 SI* is tight (see [27]).

Proof. By Definition 2.4, if Sy is an open network, the number of unbounded curves (C'-asymptotic to
straight lines) is finite. Then, it is easy to see that, open or not, Sg has bounded length ratios, that is,
there exists a constant C' > 0 such that

H'(So N Br(7)) < C'R, (7.6)

for all 7 € R? and R > 0. This implies that the entropy of S (see [24,75]) is bounded, that is,

_lz—72
E(Sg) = sup / © T ds= sup pz-(-,0)ds < C". (7.7)
TER2,7>0JS, 4T ZER2,7>0JS,

Indeed, for any 7 € R? and 7 > 0, changing variable as y = (z — 7) /27, we have

Je—m32 _lwl?

/ e Ir d / e 2 d
S = S
s, VATt So=% /27
o _lwi?
->/ © e ds
. =

=0 B EN (B (0\B,(0) V2T

i o /2941 (S(E%f A BnH(O))

Z e_nz/QHl (% (SO n BQT(n+1)(f) — f))

T

<

1

Vo

L

V21

- L ie*’”/?%l(g nB (@) =
Jon 0 27(n41) 5
\/% i 67712/2(71 + 1)’

:Cl

since the series converges (in the last inequality we applied estimate (7.6)).
Then, by the monotonicity formula (6.4), for any 7 € R?, ¢ € [0,T) and R > 0, by setting 7 = t + R?, we
have

z—7|2

/ g (1) d </ (-,0)ds < C"
Y as = z, 2 S X T 2" S X 5
5, InR 5, Pz t+R 5 Pz, t+R
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hence,

\T TP

HY(S, N Bp(T)) < VATeR ¢ < VArC"eR.
(S¢ N Br(7)) ) T?TR

Since this conclusion is scaling invariant, it also holds for all the rescaled networks S{* and the first
point of the lemma follows with C' = 47C"”e. The second point is a consequence of the first one,

indeed, we have
/ST" \BR(:L’)

Z/ ef‘m’f ds

n=1"S¢"N(B(n+1)r(@)\Bnr(T))
< Z e " R2/2H1 (SI,:1 N B(n+1)R(E))
n=1

<C Z e_”2R2/2(n + 1R

=f(R)
and the function f satisfies limp_, 1o f(R) = 0. O

Proposition 7.17. Given a sequence of parabolically rescaled curvature flows S, as above, there exists a sub-
sequence ju;; and a (possibly empty) degenerate regular self-similarly shrinking network flow Sg° such that for
almost all t € (—o0,0) and for any o € (0,1/2),

Hij 00
S¢ 7’ — SY

in Co® VW22, This convergence also holds in the sense of Radon measures for all t € (—o0,0).

Moreover, for every continuous function with compact support in space—time ¢ : R* x (—o00,0) — R there holds

lim / /; t)dsds = / / t)dsds, (7.8)
J—0 00,0) JS 17 0,0)

where ds denotes the integration with respect to the canonical measure on S¢°, counting multiplicities and

~

lim [, poo(,t)ds :/ poo(-t)ds = Ose , = O(zo, to), (7.9)

j—>oo S vj
for every t € (—o0,0).

Proof. We follow ideas in Ilmanen [57, Lemma 8] and [56, Section 7.1].

By the first point of Lemma 7.16, for every ball By centered at the origin of R?, we have the uniform
bound H!(S{"" N Br) < CR, for some constant C' independent of i € N and t € (—o0,0). Hence, we
can assume that the sequence of Radon measures defined by the left side of equation (7.8) are locally
equibounded and converges to some limit measure in the space-time ambient R? x (—o0, 0)
Considering the functions

)2
£ = [ = 5 oot vas.
ghi

the limit (7.5) implies that f; — 0in L{ (—oc,0). Thus, there exists a (not relabeled) subsequence such

that the sequence of functions f; converges pointwise almost everywhere to zero. We call A C (—o0,0)
such a convergence set.
Then, for any t € A, because of the uniform bound H! (S} N Br) < C'R, we have that for any R > 0

/ k*ds < Cgr(t),
S‘:’iﬂBR

for a constant Cr(t) independent of i. Hence, if t € A, reparametrizing the curves of the rescaled net-

works by arclength, we obtain curves in W with uniformly bounded first derivatives, which implies
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that any subsequence of the networks S} admits a further subsequence converging weakly in W22,

hence in C,.% to a degenerate regular network S{°. Moreover, such subsequence S/:ij actually converges
strongly in W2 by the weak convergence in W,>> and the fact that f;(t) — 0 in L\ . Finally, by the

loc*
. . i i =1
convergence in C %, the associated Radon measures A\’ = H'L Sf 7 weakly converge to \Z° = H L S{°

loc 7

77 . . . . . TR
(where H L S{° is the one—-dimensional Hausdorff measure restricted to S{°, counting multiplicities).
Since the integral functional

S— [ |k e d

_ ) ds.

/’* 2t‘p0"0(’)s
S

is lower semicontinuous with respect to this convergence (see [99], for instance), the limit S{° satisfies

in W;>?, hence, by a bootstrap argument, each non-degenerate curve of S° is actually smooth. Thus,
for every t € A the network S¢° is a degenerate regular shrinker, up to a dilation factor.

By a standard diagonal argument we can assume that for t in a dense countable subset B; C A the

i . 2.2 1 . . . .
subsequence S; ’ converges in W)~ and C/ to a limit degenerate regular shrinker S{°, with associated

Radon measure A\{° = HL S¢°, as above.

When t € A\ B; we consider as S{° the limit degenerate regular shrinker of an arbitrary converging
subsequence of the networks Sfij and A\{° = H'L See.

When t € (—00,0) \ A we instead consider as A¢° the limit Radon measure of an arbitrary weakly-
converging subsequence of the Radon measures \;{ = H!L S/:i'j .

In this way we defined the limit network S° for every t € A and the limit Radon measures A{° for every
t € (—o00,0).

If F is a countable dense family of smooth functions in the cone of non negative functions in C?(R?),
by the above convergence and the rescaled monotonicity formula, it follows that for every ¢ € F, there
holds (by Proposition 6.3 and formula (6.2))

a4 . gads:—/“v @k2d5+/“, (Vo |k)ds
dt Jglii s g/

v 2
ds + /N_ Ve ds
st A

\%
— _/M_ 50’]{;_90
S, 2

1 V|2
<Z/,r. Vo) ds
s, 7 P

< (max [V2¢]/2) X ({g > 0})
<Clp, Vi),

2

where we used the estimate |Vp|?/¢ < 2max |[V2p|, holding for every ¢ € C?(R™) (where ¢ > 0),
proved in [56, Lemma 6.6] and the uniform bound H!(S{" N Br) < CR, for some constant C indepen-
dentofi € Nand t € (—o0,0).

Hence, fixing a single ty € (—0,0) \ Bi, the function

/“1._ pds — C(p, Vo)t
S¢ J

is monotone non increasing once restricted to By U {to}. Passing to the limit (on the t;—special subse-
quence such that A\’ converges to A{°) the same holds for the function

t [ pd\® - Clp, Vo),
R2

restricted to By U {to}. By the arbitrariness of ty € (—o00,0) \ By, we then conclude that such function
is monotone non increasing on the whole (—o0,0). Thus, for every ¢ € F the function t — [, ¢ dA®
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has an at most countable set of (jump) discontinuities, that we call B,. Hence, we have that outside a
countable subset B = |J,,¢ » By, of (—o0,0), all the functions

t— wdA®
R2

are continuous, for every ¢ € F. This clearly implies that if t € (—o0,0) \ B, then the value of the
integral [,, ¢ dA{° is uniquely determined and independent of the t-subsequence chosen to define A°,
for every ¢ € F. An immediate consequence is that (by the density of F),

e if t € (—00,0) \ B, the Radon measure A\° is uniquely determined and the full sequence A’
converges to A\{°

e if t € A, the network S¢{° is uniquely determined and the full sequence Sfij converges to S¢° in

2,2 1a
Wiland C,
as j — oo.

Then, we can conclude by a diagonal argument on the sequences of networks S " when t € B, that we
have a subsequence (not relabeled) of 1;, such that for every t € A the networks S, converge in W 3

and C:% and as Radon measures to ${°, as j — oo and for every t € (—o0,0) we have A\ — A{® a
Radon measures.
By Proposition 6.3, every rescaled flow is a regular Brakke flow with equality, hence, the integrated

version of equation (6.2) holds, that is,

[ et [ etwang = | [— Lo, ettt ds [, (ot 0 ds+ [, wtw,t)ds} .
R2 R2 ta S, s, s,

for every smooth function with compact support ¢ : R? x (—00,0) — R and t;, t2 € (—00,0).
By the I/Vlif —convergence almost everywhere (for t in the set A) and the limit (7.5) (which allows us to
use the dominated convergence theorem) we can pass to the limit to get

t1
[etwdg - [ stuaz= [ [— [ _etiowas+ [ (vetoimas+ [ gom,wds] dt,
R2 R2 to e Sg° Sg°

where ds denotes the integration with respect to the canonical measure on S¢°, counting multiplicities.
This shows that the function t — [, (-, t) dA{® is absolutely continuous on (—o0,0) and for almost
every t € (—o0, 0), there holds

G Letone == [ conpat [ Genpas [ aoas. @10

We then consider, for every t € (—o0, 0), the Radon measures defined by

v(D) = A\°(vV—2tD)//—2t.

It is easy to see that showing that \® = H 'L (V—=2tS>, /o) for every t € (—00,0), is equivalent to prove
that the measures v, are all the same and this means that S{° is a degenerate regular self-similarly
shrinking network flow.

We have, for every smooth function with compact support ¢ : R? - R,

) dxE (@),

d
[ = 2 [ (A
hence, choosing ¢(z,t) = w(\/%%), at every time t such that equality (7.10) holds (almost every t €
(—00,0)), we have

d 1 1 ~
el d - - _r
at Jo, V@) o) = o= /oo F> T /Sm w<\/—2t)

+ =g [V () |9+ [ (el )

k2 ds
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Substituting k = - /2t, we obtain

a
dt Jy

1 B 1 (E[yh)
S VER MR S E TN

_/S?O<V¢(\/th) 4t2>d8+/5?0<v¢(\/72) )

1 B 1 (k|~vH)
—QtM/fcw(\/;zt)dS\/—Tt g?od](\/;QJ 2? ds
R EnT

—Qt\/i/m ﬁ)”’(my )+ (v ( _2)‘m> r|7)]ds,

@) dn(a) =

where we denoted with 7" the tangential component of the vector v € R?, thatis, v/ = (7|)7.
Noticing now that

we conclude J

- 1/)( )dv(z) = %\/_72{; /?o Os [%/1(\/%%)@ \ ’Y>} ds

and this last integral is zero by Lemma 7.3 and the last point of Remark 7.5.

Since for every map ¢ : R? — R the function t — [, ¢(z) dv(z) is absolutely continuous on (—oo, 0)
with zero derivative almost everywhere, it is constant and we are done.

Equation (7.8) clearly follows by the convergence assumption on the sequence of Radon measures in
R? x (—00,0) and this conclusion.

Finally, for every t € (—00,0), by the second point of Lemma 7.16, we can pass to the limit in the
Gaussian integral and we get

—~

,t)ds:/ P0,0( )CF Ogoo g
SOO

t

lim [, poo

Jj—ro0 S‘ v
since the right integral is constant in t, being S¢° a self-similarly shrinking flow.
Recalling that (see Section 6.1)

/M. pO,O(" t) ds = ewoyto(to + Mi—jzt) - é(l‘o,to),
S 7

t

as j — oo, equality (7.9) follows. O

Remark 7.18. We underline that even if the limit flow is composed of homothetic rescalings of a single
degenerate regular network, we cannot conclude that the convergence of St to §¢ s in W% and CL°

loc

for every t € (—o0,0) but only for almost every t € (—o0,0). For the ”other" times the convergence
could be only as Radon measures.

We deal now with the possible blow-up limits arising from Huisken’s dynamical procedure. We recall
that

|z|2

pla) = e
The following technical lemma is the exact analogue of Lemma 7.16 for Huisken’s rescaling procedure.
It follows in the same way by the first point of such lemma.

Lemma 7.19. Let S,  be the family of rescaled networks, obtained via Huisken’s dynamical procedure around
some xo € R?, as defined in formula (6.7).
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1. There exists a constant C' = C(Sy) such that, for every T, zo € R?, t € [—4 log T, +00) and R > 0 there
holds B
H'(S4,.« N Br(T)) < CR.

2. Forany € > 0 there is a uniform radius R = R(e) such that

/~ e““’lz/stgs,
Szq. ¢ \Br(T)

that is, the family of measures e~1*1"/29{1_S, ( is tight (see [27]).

Proposition 7.20. Let S; = |, 7*([0, 1], ¢) be a C** curvature flow of regular networks in the time interval
[0, T. Then for every zo € R? and for every subset T of [—1/2log T, +oc) with infinite Lebesgue measure there

exists a sequence of rescaled times t; — +oo, with t; € Z, such that the sequence of rescaled networks gxo’tj
(obtained via Huisken's dynamical procedure) converges in CLS N W22, for any a € (0,1/2), to a (possibly

loc loc”
empty) limit network which is a degenerate regular shrinker See ( possibly with multiplicity). Moreover, we have

1 ~
lim — = — pdoc =0z =0 . 7.11
i om / N /s;w pd7 =05, = Olw) 71D

where do denotes the integration with respect to the canonical measure on Seor counting multiplicities.

Proof. Letting t; = —1/2logT and t; — +oc in the rescaled monotonicity formula (6.8) by Lemma 6.12

we get
—+oo
/ / |k + 2t |?pdo dt < +o0,

71/210gT'§z0 .

/ / |k + a2t ?pdo dt < 400

T Sepit

which implies

Being the last integral finite and being the integrand a non negative function on a set of infinite Lebesgue
measure, we can extract within 7 a sequence of times t; — +o0, such that

lim |k + 2t ?pdo =0. (7.12)
]—>+o<>~

Szo,tj

It follows that for every ball By of radius R in R?, the networks Smo ¢, have curvature uniformly
bounded in L?(Bg). Moreover by the first point of Lemma 7.19 for every ball B r centered at the origin

of R? we have the uniform bound #! ( z0,t; N Br) < CR, for some constant C' independent of j € N.
Then reparametrizing the rescaled networks in arclength, we obtain curves with uniformly bounded
first derivatives and with second derivatives in L7 .

By a standard compactness argument (see [53, 67]) the sequence FSV‘TO,{J. of reparametrized networks ad-
mits a subsequence vao,tjl which converges, weakly in Wf)f and strongly in Clloca, to a (possibly empty)
limit regular degenerate C' network Soo (possibly with multiplicity).

Since the integral functional

S /|E+xl|25da

is lower semicontinuous with respect to this convergence (see [99] for instance), the limit S, satisfies
k., + z+ = 0 in the sense of distributions.

A priori the limit network is composed of curves in W2,

o 2 but from the relation k + 21 = 0it follows
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that the curvature Eoo is continuous. By a bootstrap argument, it is then easy to see that Sec is actually
composed of C'*° curves.

By means of the second point of Lemma 7.19 we can pass to the limit in the Gaussian integral and we
get

1
1 pd pdc = Og
JEEO\/%/W pao= m/gw” 7T
Recalling that

~

1 5 — . . s = . T
L o= [ ) ds = 0n(6) - Oeo)

as j — oo, equality (7.11) follows.
The convergence in W,>” is implied by the weak convergence in W2 and equation (7.12). O

Remark 7.21. A singularity in which the curvature is unbounded is called of Type I if there exists a
constant C' such that o
2
< — .

ms?xk ST (7.13)
for every t € [0,T). Otherwise, the singularity is called of Type II.
If the singularity is of Type I, then the proof of this proposition gets easier and we get a stronger conver-
gence to the limit network. Indeed, thanks to the Type I estimate (7.13) one obtains a uniform pointwise
bound on the curvature (and consequently on its derivatives) of the rescaled network (see [82, Section 6,
Proposition 6.16], for instance). Similarly, with the right choice of the sequence 1;;, the same holds also
for Proposition 7.17.

Remark 7.22. Even if the two rescaling procedures are different (and actually one can use the more suit-
able for an argument) the family of blow—up limit shrinkers Soo arising from Huisken’s one coincides
with the family of shrinkers S, ,, where St is any self- similarly shrinking curvature flow coming
from Proposition 7.17. This can be easily seen by Remark 6.10, since if $" /2 = 5%y, then setting

t; = log (fuz) we have Smo t — S > /2 AS 1 — 00, hence S X = S for such sequence. Vice versa, if

SgwJ G — Soo, setting p; = et /v/2 V2, by means of Proposition 7.17, we have a converging (not relabeled)

subsequence of rescaled curvature flows S{" — S¢° such that S 2 = SOO, as i — oo, hence S =8% /2

As a consequence, for every blow—up limit shrinker Seo and any self-similarly shrinking curvature flow
S¢° there holds

= @Seo = é(xo) 5

—1/2
by formulas 7.9 and 7.11.

Notice that in the first implication, for simplicity, we assumed the convergence at time t = —1/2 of
the parabolically rescaled flows, which actually is not guaranteed by Proposition 7.17. To be precise one
should argue by considering a time t, such that the sequence of networks S{"* converges to S{° = AS™ J2r
for some factor A > 0.

Remark 7.23. By means of Proposition 7.20, it is easy to see that, if t; < 7', hence the flow is smooth
in [0, tp] and the curvature is bounded, we have (:)(xo, to) = 0if g € Sy, since every blow—up limit is
clearly empty and that @(:vo, to) = 1,if g € S4, and it is neither a 3—point nor an end-point of S;,, as
every blow-up limit must be a multiplicity—one line through the origin of R? (see [78, Remark 3.2.15]).
Then, by means of the “reflection argument” at the end of Section 7.2, if z( is an end—point there holds
@(mo, to) = 1/2, being the Gaussian density of a halfline. Finally, if xy € S;, is a triple junction, we see
that ©(zo, to) = 3/2, indeed, if O (t) is the 3-point such that O%(ty) = o, since the curvature is bounded
every blow—up limit shrinker must be non—-degenerate, without end-points and have zero curvature,
moreovet, it is a tree locally around z( as no region collapses (the flow is smooth up to ). Being the
modulus of the velocity v*(t) of O%(t) bounded by some constant C, for ¢ € [0,#y) we have

. . . tO . t[] .
0"(t) — 20| = |O*(to) = O*(1)| = /t vl(ﬁ)d€‘</t W' (€] dE < Clto — ¢,
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which implies, after performing Huisken’s rescaling procedure, that its image O’ (t) satisfy

— |O (t(t) — xOl < CItO - t(t)l —C (tO _ t(t))/2,
V20t —t(1)  V/2(to — t(1))
which tends to zero, as t — +o0. In particular, the image of the 3—point cannot “disappear” in the

limit regular shrinker (for instance, going to infinity), then Lemma 7.10 tells us that the only possible
blow—up limit shrinkers are standard triods T which have Gaussian density Ot equal to 3/2.

10" (1)

The following lemma is helpful in strengthening the convergence in the previous proposition.

Lemma 7.24. Given a sequence of smooth curvature flows of networks S in a time interval (t,ts) with uni-
formly bounded length ratios, if in a dense subset of times t € (t1,ts) the networks S} converge ina ball B C R? in
CL., as i — oo, to a multiplicity—one, embedded, C°°—curve ~, moving by curvature in B’ 2 B, fort € (t1, o]
(hence, the curvature of ~; is uniformly bounded), then for every (zo,to) € B X (t1,ts], the curvature of S} is
uniformly bounded in a neighborhood of (o, to) in space—time. It follows that, for every (zo,to) € B X (t1,12),
we have St — ~y; smoothly around (zo, to) in space—time (possibly, up to local reparametrizations of the networks
)

Proof. Being ~: a smooth flow of an embedded curve in B, we have C:)(xo, to) = 1 (by Remark 7.23),
hence, for (z,t) in a suitably small neighborhood of (zg,ty) € B X (t1,t2] we have that O, (1) <
1+4+¢/2 < 3/2, for every 7 € (79,t) and some 75 > 0, where € > 0 is smaller than the “universal”
constant given by White’s local regularity theorem for mean curvature flow in [111]. Then, in a possibly
smaller space-time neighborhood of (o, o), for a fixed time 7 € (7o, t) where the C|} .—convergence of
the networks St — ~7 holds (such a subset of times is dense), for i large enough, the Gaussian density
functions of SL satisfy ©7, ,(T) < 1+ & < 3/2 (the Gaussian density functions are clearly continuous
under the C} . convergence with uniform length ratios estimate, by the exponential decay of backward
heat kernel). Hence, by Proposition 6.7, Lemma 6.8 and the subsequent discussion (possibly choosing
a larger 7), this also holds for every 7 € (7,t). In other words, O ,(t — r?) < 1+ ¢ < 3/2, for every
(z,t) in a space-time neighborhood of (¢, %), 0 < r < ro and i > 4y, for some ¢ > 0. By Remark 7.23,
this “forbids” the presence of a 3—point of S} in such space-time neighborhood, hence we are dealing
simply with (classical) curvature flows of curves. Then, White’s local regularity theorem gives a uniform,
local (in space-time) estimate on the curvature of all S, which actually implies uniform bounds on all
its higher derivatives (for instance, by Ecker and Huisken interior estimates in [30]), around (o, to).
Hence the statement of the lemma follows (see also [111, Theorem 7.3]). O

As a consequence, the convergence of Sflj to the limit degenerate regular self-similarly shrinking net-
work flow S¢° in Proposition 7.17 is smooth locally in space-time around every interior point of the
multiplicity—one curves of the network Sg°.

Moreover if S¢° is non-degenerate (no cores) and with only multiplicity—one curves, then actually
Sf” — Sg° smoothly, locally in space-time (also around the 3—points). This can be shown by following
the argument of the proof of Lemma 8.6 in [58] (see anyway the proof in the special case of Lemma 8.1).
Analogously, also for Huisken’s dynamical procedure it can be shown that the convergence of the
rescaled networks gggo,tj to S is locally smooth far from the cores and non multiplicity—one curves
of §oo. B

Notice that the blow—up limit degenerate shrinker S, obtained by Proposition 7.20 a priori depends on
the chosen sequence of rescaled times t; — 4oc. If such a limit is a multiplicity—one line (or a halfline,
if zo is an end—point of the network), we have O(zo) = 1 ((:)(:co) = 1/2 in the case of a halfline), then
by White’s result [111, Theorem 3.5], locally around x, the curvature is uniformly bounded in time and
the flow is smooth up to time 7" (using the “reflection argument” at the end of Section 7.2, if x( is an
end—point), hence, the limit is unique. In general, uniqueness of such a limit is actually unknown.

Open Problem 7.25 (Uniqueness of Blow—up Assumption — U). The limit degenerate regular shrinker
Se is independent of the chosen converging sequence of rescaled networks S,, ¢, in Proposition 7.20.
More precisely, the full family Szo ¢ converges in C{. _ to Seo, as t — +00.

In Section 9 we will partially address this problem, concluding that it has a positive answer in the case

of tree-like networks (see Remark 9.34). Moreover, some positive partial results were recently obtained
in [90].
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Remark 7.26. A similar (actually equivalent, in view of Remark 6.10) problem can be stated for the limit
degenerate regular self-similarly shrinking flow S¢° given by a converging subsequence Sfij of the
family of the parabolically rescaled curvature flows S} in Proposition 7.17, about the independence of
S¢° of the sequence p; and subsequence ;. Namely, do we have the full convergence of the family of
flows S{ to S$°, as p — +00?

Remark 7.27. A regular shrinker is said to be multiplicity—one if it has no cores and none of its curves has
multiplicity higher than one. In case the limit degenerate regular shrinker S, is actually a multiplicity—
one regular shrinker (or the same for the limit degenerate regular self-similarly shrinking flow S¢°)
the above uniqueness assumption implies that the singularity is of Type I (see the Remark 7.21 above).

Indeed, by Lemma 7.24 the convergence of the rescaled networks to S.; is smooth which implies that
the curvature is locally uniformly bounded by C/+/T — ¢.

It is then natural in view of this remarks to state also the following open problems.

Open Problem 7.28 (Non-degeneracy of the blow—up).

e Any blow—up limit shrinker Swo different from a standard cross (see Figure 7.5 and Lemma 7.10)
is non—degenerate (the same for the limit self-similarly shrinking flow S¢g°)?

e There can be curves with multiplicity larger than one?
e If S, is degenerate, there can be any cores outside the origin?

Open Problem 7.29 (Type I Conjecture). Every singularity is of Type I (there exists a constant C' > 0
such that inequality (7.13) is satisfied, for every ¢ € [0,T)).

7.4 Blow—up limits under hypotheses on the lengths of the curves of the network

Proposition 7.30. Let S; = |J;—, v ([0, 1], t) be the curvature flow of a regular network with fixed end—points in
a smooth, convex, bounded open set Q@ C R? such that three end—points of the network are never aligned. Assume
that the lengths L(t) of the curves of the networks satisfy
L

e = o
for every i € {1,2,...,n}. Then any limit degenerate regular shrinker S, obtained by Proposition 7.20, if non—
empty, is one of the following networks:
if the rescaling point belongs to €

o a straight line through the origin with multiplicity m € N (in this case O(xo) = m);

e a standard triod centered at the origin with multiplicity 1 (in this case O(x0) = 3/2);
if the rescaling point is a fixed end—point of the evolving network (on the boundary of Q)

e a halfline from the origin with multiplicity 1 (in this case © () = 1/2).

Moreover, we have
pds =05 =0(x0), (7.14)

lim

1 1
J—oo \/ 21 /§ V2T /§oo

and the L*~norm of the curvature of gzmtj Qoes to zero in every ball Br C R?, as j — oc.

pdo =

z0,t;

Proof. We assume, by Proposition 7.20, that the sequence FvaO’tj of reparametrized networks converges

inCL.N VVif to the limit regular shrinker network Soo composed of C* curves (with possibly mul-
tiplicity), which are actually non—degenerate as the bound from below on their lengths prevents any
collapsing along the rescaled sequence.

If the point 2y € R? is distinct from all the end—points P", then S has no end—points, since they go
to infinity along the rescaled sequence. If o = P" for some r, the set S has a single end-point at the
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origin of R%.

Moreover, from the lower bound on the length of the curves it follows that all the curves of g@@ have
infinite length, hence, by Remark 7.9, they must be pieces of straight lines from the origin, because of
the uniform bound H'(S{"" N Br) < Ckg, for every ball B C R2.

This implies that every connected component of the graph underlying S, can contain at most one 3—
point and in such case such component must be mapped to a standard triod (the 120 degrees condition
must satisfied) with multiplicity one since the sequence of converging networks is all embedded (to
get in the CL_-limit a triod with multiplicity higher than one it is necessary that the approximating
networks have self-intersections). Moreover, again since the converging networks are all embedded, if
a standard triod is present, a straight line or another triod cannot be there, since they would intersect
transversally (see Remark 7.5). Vice versa, if a straight line is present, a triod cannot be present.

If an end-point is not present, that is, we are rescaling around a point in €2 (not on its boundary) and
a 3—point is not present, the only possibility is a straight line (possibly with multiplicity) through the
origin of R2.

If an end—point is present, we are rescaling around an end-point of the evolving network, hence, by
the convexity of 2 (which contains all the networks) the limit See must be contained in a halfplane with
boundary a straight line H for the origin. This excludes the presence of a standard triod since it cannot
be contained in any halfplane. Another halfline is obviously excluded, since they “come” only from
end—points and they are all distinct. In order to exclude the presence of a straight line, we observe that
the argument of Proposition 7.13 implies that, if {2, C €2 is the evolution by curvature of 0§} keeping
fixed the end—points P", the blow—up of €, at an end—point must be a cone spanning angle strictly less
then 7 (here we use the fact that three end—points are not aligned) and Sse is contained in such a cone.
It follows that S, cannot contain a straight line.

In every case the curvature of Seo is zero everywhere and the last statement follows by the I/Vlif -
convergence.

Finally, formula (7.14) is a special case of equation (7.11). O

Remark 7.31. If the two curves describing the boundary of 2 around an end—point P" are actually seg-
ments of the same line, namely the three end—points are P"~!, P", P"*! aligned, the argument of Propo-
sition 7.13 does not work and we cannot conclude that taking a blow—up at P” we only get a halfline
with unit multiplicity. It could also be possible that a straight line (possibly with multiplicity) through
the origin is present, coinciding with H. Moreover in such special case, it forces also the halfline to be
contained in H, since the only way to get a line, without self-intersections in the sequence of converging
networks contained in (2 is that the curves that are converging to the straight line “pushes” the curve
getting to the end—point of the network, toward the boundary of (2.

With the same arguments of the proof of Proposition 7.30, an analogous proposition holds for the self—
similarly shrinking limit network flow obtained by the parabolic rescaling procedure.

Proposition 7.32. Under the hypotheses of Proposition 7.30, the degenerate reqular self-similarly shrinking
network flow S¢°, obtained in Proposition 7.17 by parabolically rescaling around the point (xq, T) in space—time,
is (if non—empty) one of the following “static” flows.

If the rescaling point belongs to 2

e a straight line through the origin with multiplicity m € N (in this case O(x0) = m);

e a standard triod centered at the origin with multiplicity 1 (in this case O(x0) = 3/2).
If the rescaling point is a fixed end—point of the evolving network (on the boundary of ):

e a halfline from the origin with multiplicity 1 (in this case O(x0) = 1/2).

Open Problem 7.33. Is it possible to classify in general all the possible limit degenerate shrinkers Seo
or self-similarly shrinking flows Sg°, obtained respectively by Huisken’s dynamical procedure or by
parabolic rescaling?

Remark 7.34. If the evolving network is a tree, every connected component of a limit degenerate regular
shrinker (possibly with multiplicities) is still a tree. Hence by Lemma 7.10 and the same argument of
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the proof of Proposition 7.30 such a network has zero curvature and it is a union of halflines from the
origin, possibly with multiplicity and a core.

Remark 7.35. In Section 9 we will discuss under what hypotheses the (unscaled) evolving networks S;
converge to some limit (well-behaved) set Sp C R2, as t — T and what are the relations between such

St and any limit degenerate shrinker S, or self-similarly shrinking flow S{°.

8 Local regularity

In this section, we first show that any smooth, curvature flow of regular networks which is only C},
close to the static flow given by a standard triod, is actually smoothly close. An important ingredient
here is the estimates from Proposition 4.11, under the hypotheses (4.1), which make it possible to control
the evolution of the L?-norm of k locally.

Then this result together with the classification of tangent flows from Lemma 7.11 yield a local regularity
theorem. As a consequence, locally (in space-time) around the points with limit Gaussian density not
greater than 3/2, the curvature of the evolving network S, is bounded and the flow is smooth, meaning
that locally S; converges smoothly to a limit smooth network S, as ¢ — T

Lemma 8.1. Let T be the static flow given by a standard triod centered at the origin and let S} for t € (—1,0)
be a sequence of smooth curvature flows of networks with uniformly bounded length ratios (see Definition 7.15).
Suppose that the sequence S; converges to T in C{. _ for almost every t € (—1,0), as i — oo. Then the convergence
is smooth on any subset of the form Br(0) x [t,0) where R > 0and —1 < t < 0.

Proof. As the length ratios are uniformly bounded, the exponential decay of the backward heat kernels

po,0(-,t) and the Cf, —convergence imply that for almost every —1 < ¢ < 0 we have

3
/ poo(st)ds — / poo(-t)ds = < +o0,
A T 2

hence by (7.5) it follows that the sequence of functions

fi(t) Z/

8¢

k a2 d
. ot
g Qt‘ p0,0(a ) S,

converges to zero in L{. .(—1,0).

Arguing as in the proof of Proposition 7.17, we see that we can choose a further subsequence (not
relabeled) such that Si — T in Cllo’? N Wlif forall t € A where A C (—1,0) is a set of full measure.
Choose R > 0, t € (—1,0) and ty € A such that ¢, < t. Lemma 7.24, with a compactness argument,
implies that the curvature of the networks S} with all its derivatives are uniformly bounded and the
convergence S; — T is smooth and uniform in (Bg1(0) \ Bg(0)) x [to,0). We can thus introduce three
“artificial” boundary points P/ (t) € Si N (Br+1(0) \ Br(0)), r = 1,2,3, for t € [t,0) along the three
rays such that the estimates (4.1) are satisfied, more precisely, we can assume that

PN(PI(t),t) =0 and  |3k(PF(t), 1) <1,

foralli > igandall j > 0.
Let 71 > 0 be the constant from Proposition 4.11 for M = 1 and let 6 = T3/2. Then, choose #; € A, for
=1,2,...,N =[§"1] + 1, such that

t <tig1, ‘tN‘éé/Q and |tl+1—tl|<6/27

foral0 <IN —1.
By increasing iy, if necessary, we can assume that

/ k2ds <1
S},NBr+1(0)

and that S}, is 1/100—close in C** to T on Br11(0), foralll = 0,..., N and i > io.
Proposition 4.13 then implies uniform estimates on k; and all its space derivatives on Bx(0) x [t,0), for
all ¢ > iy. This clearly implies the convergence conclusion in the statement. O
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Remark 8.2. With a similar argument it can be shown that if S{ converge as above to a self-similarly
shrinking regular network flow, non-degenerate and with unit multiplicity, then the convergence is
smooth and uniform on any compact subset of R? x (—1,0) (Lemma 8.6 in [58]).

We now show a local regularity result in the spirit of the analogous White’s theorem for mean curvature
flow in [111], actually being an extension of such theorem to the network flow, roughly saying that (like
in the case of the motion of smooth curves) the “regular” points are the ones with limit Gaussian density
smaller than Og: (which is greater than 3/2 and less than 2, see formula (7.2)).

We follow here the alternative proof of Ecker [29, Theorem 5.6].

Theorem 8.3 (Theorem 1.3 in [58]). LetS; for t € (Ty,T) be a curvature flow of a smooth, regular network in
R? with uniformly bounded length ratios by some constant L (see Definition 7.15). Let (z¢,to) € R? x (Ty,T)
such that xy € Sy, then for every e,n > 0 there exists a constant C = C(e, n, L) such that if

O,4(t—1%) <Ozt — ¢, (8.1)
forall (z,t) € B,(z0) x (to — p*,to) and 0 < r < np, for some p > 0, where Ty + (1 + n)p* < to < T, then
C

2

< —
k% (z,t) < =
forall o € (0,1) and every (z,t) such that t € (to — (1 — 0)?p?, o) and x € Sy N B(1—-o,(20).

Proof. By translation and scaling we can assume that zp = 0, ¢ = 0 and p = 1. We can now follow more
or less verbatim the proof of Theorem 5.6 in [29].
We argue by contradiction. Supposing that the statement is not correct we can find a sequence of smooth

curvature flows of regular open networks S7, defined for ¢t € [—1 — 7, 0], satisfying the above conditions
for every (z,t) € B1(0) x (—1,0), but with

CJZ: sup | o? sup sup ka — 400
o€[0,1] te(=(1-0)%,0) s/ NB; _,

as j — oo.
Hence, we can find ¢; € (0, 1] such that

CJZ = 0]2- sup sup ka
te(—(1=04)2,0) SiNB1 o,

and y; € S, N B, atatime 7; € [-(1 —0;)?,0] so that
G =02k (y;.75)
We now take
Aj = [ki(y5,7)]

(clearly A\; — 400 as j — oo) and define

SIS s

Se=4 (SA;QHTj yﬂ) ’
for t € [-A307 /4, 0], following the proof of Theorem 5.6 in [29]. We can then see that

0eS),  kX0,00=1 (8.2)
and

sup sup EJQ <4 (8.3)
(E€(-X202/4.0)FINBy, . /2

for every j > 1. By direct computation, we have
o’ = (- = - ey
O :(t) = /5{ Pzt ds = /SZ Pyt a2 (1) ds @yﬁf,\;l,rﬁaf(t)
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wheret = t(t) = 7; + t/\;2 and ©7 are the Gaussian densities relative to the flows S7. Since, by hypoth-

esis, @J < Ogt —eforevery j € N, y,; + f/\j_1 € B1(0) and 7; + {/\;2 € (—1,0), we

Yi+TA; 1,7’ +t)\_z( )
conclude that 6%1( ) < Og1 —e¢, for j sufficiently large, for all (7, ) € R? x (—o0, 0] and —A\30% /4 < t < L.
This implies that for every t € (=\307/4,0), we have

R? /4t elel?/4t ~;
d5</ ds < | poo(,t)ds =6p,(t) < Os1 —¢,
/gghBR(o) V—4mt SinBr(0) vV —4mt 8 0.0

hence, for j sufficiently large,

HY(SI N Br(0)) < Cr(t) = e /% “irt(0g —¢). (8.4)

Moreover, the family of networks S! has uniformly bounded length ratios by L, since this holds for the
unscaled networks and such condition is scaling invariant.

Since \jo3 = (7 — +00, by the length estimate (8.4), arguing as in Proposition 7.17, we see that up to a
subsequence, labeled again the same, for every t € (—o0,0), we have

g{ — gfc
in CL_ and weakly in W2, for almost every t € (0,—00), to a limit C'~flow S¢°. Actually, the
uniform bound on the curvature, everywhere in space-time, implies that such convergence holds for
every t € (—o0,0] and it is locally uniform in time. Such flow (which is not a priori a curvature flow)
of networks is possibly degenerate, that is, cores and higher density lines can develop, it moves with
normal velocity bounded by 4, by estimates (8.3) and it is not empty as 0 € S} for every j € N, hence
0e SO also.

Because of the uniformly bounded length ratios of the family of networks S7 and the exponential decay
of the backward heat kernels, we can pass to the limit in the Gaussian densities, as j — oo, that is,

ates J J —

Ot = lim O (6)= lm ©) (1) <O~
forall (7, %) € R2x (—oc, 0] and t < I, where we denoted with ©7 and ©> the Gaussian density functions
relative to the flows S] and S{°, respectively.
Moreover, 0 € S? implies ©7 (OLO.) > 1, hence 6} ((t) > ©7(0,0) > 1 for every t < 0, by monotonicity. It
follows that ©F% (t) = lim; o 6 (1) > 1, thus,

©°(0,0) = Pj%é(ofo( ) = lim lim @00( y> 1.

t—0j—00

We want now to show that S§° is actually a static self-similarly shrinking flow given by either a
multiplicity—one line or a standard triod.

As in Section 6.1, we consider the rescaled monotonicity formula for the curvature flows S?, that is,
considered T € R? we have

to L
9%,0("1) - @%0("2) = // ‘Ej — %’ pz.0(-,6)dsds
65

hence, passing to the limit, as j — oo, we get (here d5 denotes the integration with respect to the
canonical measure on Sg°, counting multiplicities)

00 ~oo . 7 > zt |2 7 ~ 2
Ox(t) ~ O%u(te) = tim [ [[E = 5[ pmotidsds> [ [ |bw =G| pratordsas 65)

t fg‘i t1 ggc
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for every t; < t; < 0 and T € R?, by the lower semicontinuity of the L?~integral of the curvature under

the W, >°~weak convergence. It follows that the Gaussian density function (:)%_’O(t) is non increasing in

t € (—o0, 0], then, as we know that it is uniformly bounded above by Og: — ¢, there exists the limit

OF0(—00) = Jim é%?o(t) <Og1 —e.
Notice that (:)8?0(—00) > 1, as we know that égf’o(t) > 1, for every t < 0.

Parabolically rescaling the flow S¢° around the point (7, 0) (following the proof of Proposition 7.17) by
means of inequality (8.5), the uniform bound on the curvature and the uniform bound on the length
ratios, we obtain that the limit (which exists by the monotonicity of t — ©3%(t))

6> (x,0) = lim ©2() < O (—00) < Og1 —¢

coincides with the Gaussian density of a limit degenerate regular shrinker (possibly empty). Being such
a limit bounded by ©g: — ¢, the only possibilities are 0, 1 and 3/2, by Lemma 7.11 (an empty limit, a
line, or a standard triod).
Since S§° is not empty, we notice that if it contains a 3-point, let us say at 7 € R?, then by the bound on
the velocity, also all the networks S¢° contain a 3-point at distance less than —5t from . This implies
that parabolically rescaling as above around 7, we get a limit self-similarly shrinking network flow
with zero curvature and with a 3—point, then it must be a static standard triod and Ch (z,0) = 3/2. We
then take a point 7 € R? such that ©>(z,0) is maximum, hence either 1 or 3/2 by what we said above
and we consider the sequence of translated and rescaled flows for 7 € (—o0, 0] defined as

—n 1 (= _

S = ﬁ(sm 7)),
forn e N.
This family of flows still has uniformly bounded length ratios (since this holds for the flows S¢°) and
rescaling the monotonicity formula for the flows gf", for every 71 < 12 < 0, there holds
T2

T1 g:

)

E, = 5| ool o) dsdo <85(m1) = 85 () = 62 (nm) — O (nr) — 0

as n — oo, since lim_, (:)%?O(t) — (:)%fo(—oo) as t — —oo (here we denoted with ©" the Gaussian
density functions relative to the flows S).

Then, repeating the argument of the proof of Proposition 7.17, we can extract a subsequence, not rela-
beled, of the flows S/’ converging in C{ . N WIQO’CQ, for almost every 7 € (—o0,0), to a limit self-similarly
shrinking flow S_°, as n — oo, which is called “tangent flow at —co” to the flow Sge.

Since,

Shor) = [ malsr)ds = [ paol-onr) ds = 85
§; e

T

it follows that, passing to the limit as n — oo (again because of the uniformly bounded length ratios
and the exponential decay of the backward heat kernels), for almost every 7 € (—o0, 0), there holds

Ogeo

= Bpo(T) = lim 035 (n7) = O3 (~00) < Og1 — ¢

which implies that the limit flow S_° is not empty, as @%?0(—00) > 1 and it is a static self-similarly
shrinking flow, given by either a multiplicity—one line or a standard triod, by Lemma 7.11.

If @S,C o(T) =1, then (:)%f’o(—oo) = 1 which forces é%f’o(t) to be constant equal to one for every t € (—o0,0),
since ©°(z, 0) must be equal to 1.

If @8? o(T) = 3/2, being S.° a standard triod, it follows that a 3-point is present in the flow S;°, hence
also in Sg°. Then, if we choose 7 to coincide with such 3—point, we would have ©>(z,0) = 3/2 and
again the Gaussian density @)%fo(t) is constant equal to 3/2, for t € (—o0, 0).
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In both cases we conclude that S{° is a self-similarly shrinking flow around the point z € R?, by
formula 8.5, given by a multiplicity—one line in the first case and a standard triod in the second one.

If gfo is aline for every t € (—o0, 0], hence with zero curvature, Lemma 7.24 implies that the convergence
of the flows S/ — S® is locally smooth. This gives a contradiction since, by formula (8.2), it would
follow that 0 € S3° and k2,(0,0) = 1.

If S{° is a static standard triod, then Lemma 8.1 gives a contradiction as before. O

Remark 8.4.

1. The result is still true if the flow is only defined on the ball By, (z), by localizing Huisken’s mono-
tonicity formula with a suitable cut-off function. This makes the result applicable for curvature
flows of networks with fixed end-points on the boundary of a domain 2 C R?, once assuming that
there are no boundary points in Ba, (o) X (to — (141)p?, to). We refer the reader to [110, Section 10
] and Remark 4.16 together with Proposition 4.17 in [29].

2. By an easy contradiction argument, one can show that the bound on the curvature, together with
the 120 degrees condition and assumption (8.1), imply that there is a constant £ = ¢(g,1,p) > 0
such that for ¢ € (tg — (1 — 0)?p?, to) the length of each curve of S; which intersects B _,),(z0)
is bounded from below by ¢ - op. This implies, using Proposition 4.13, corresponding scaling
invariant estimates on all the higher derivatives of the curvature.

The following corollary is then an extension of White’s result [111, Theorem 3.5] to the curvature flow
S of a network in a smooth, convex, bounded open set 2 C R?, with fixed end-points on df2.

Corollary 8.5. If at a point xo € ) there holds O(x0) < 3/2, then the curvature is uniformly bounded along the
flow'Sy, for t € [0,T), in a neighborhood of xo. Then, the flow is smooth in such a neighborhood, in the sense that
St converges smoothly to a limit smooth network St there, as t — T

Proof. First, by Lemma 7.16, the family of networks S; has uniformly bounded length ratios. Then,
as O(xz¢) = O(z0,T) < 3/2, by Proposition 6.7, Lemma 6.8 and the subsequent discussion about the
behavior of O, r(t), there exists p1 € (0,1) such that ©,, r(T — p?) < 3/2 + §/2, for some small
§ > 0. The function (z,t) — O, +(t — p?) is continuous, hence, we can find p < p; such that if (z,t) €
B,(z0) x (T — p*,T), then ©,,(t — p?) < 3/2 + 6, thus, again by by Proposition 6.7, Lemma 6.8 and
the subsequent discussion (possibly choosing smaller p; and p), also O, +(t — r?) < 3/2 + §, for any
r € (0,p/2), as clearly (t —r2) > (t — p?).

This implies that if § > 0 is small enough such that 3/246 < Os: = /27 /e ~ 1,5203 (see equation (7.2)),
for any ¢, close enough to T" the hypotheses of Theorem 8.3 (see the first point of Remark 8.4) are satisfied
at (zg,to), forn =3/4and e = O1 — 3/2 — 6 > 0. Choosing o = 1/2, we conclude that

K2 () < 40(5,23/4)
o

for every (,t) such that ¢ € (to — p?/4,t9) and = € S; N B, /2(x0). Since this estimate on the curvature is
independent of ¢y < T, it must hold for every ¢ € (T' — p?/4,T) and & € S; N B,,/2(o) and we are done.
We now show the smoothness of the flow up to time 7" in a neighborhood of z. Since the curvature of
St is bounded in B, 5(x0), the modulus of the velocity v*(t) of any triple junction O(t) in such ball is
uniformly bounded by some constant D, hence, if for ¢ in an interval of time [t1, t2], such triple junction
belongs to the ball B, 5(x0), there holds

|0'(t2) = O'(t1)| =

[ e dg‘s [ 1@ < Dl ] (8.6)

t1

This implies that if for some ¢, close enough to 7', the triple junction O’ (o) belongs to the ball B, 4 (o),
then it can no more “escape” from the ball B,/;(¢), hence such estimate holds for every ¢ € [to,T)
implying that O'(t) is a Cauchy sequence and O'(t) — x;, for some x; € B, 5(x0). As a consequence,
since the family of the limit points {x;} of the triple junctions in B, 4(x0) is finite, possibly taking a
smaller p, we can assume that only z( (possibly) belongs to such family. Hence, for any ¢ € (0, p/4), the
annulus As = B, 4(x0) \ Bs(xo) does not contains triple junctions O’ (t) for ¢ larger than some € [0, T).
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This clearly means that the “restriction” of the flow S; to the open set A; is a smooth (classical) flow by
curvature of curves in a domain of the plane with uniformly bounded curvature. By standard estimates
(for instance, by Ecker and Huisken interior estimates in [30]) then S; N A; converges smoothly to
some limit family of embedded and non-intersecting smooth curves in A;. Since this holds for every
§ € (0, p/4), we can conclude that S; converges (possibly after reparametrization) in C'! to a degenerate
regular network St in B, 4(¢) (with possibly a core only at ) and locally smoothly in B, /4(x0) \ {z0}.
It is then easy to see, possibly considering a smaller p, that we can find 5 < p/8 such that

e the network Sy N B, /() is connected;
e the curves of the networks S; intersect transversally the circle 0B5(xo).

Then, by the uniform bound on the velocity and the smooth convergence of S; to St in B, 4(z0) \ {z0},
possibly choosing a larger ¢, we can conclude that for every ¢ € [¢,T),

e the “topologic structure” of S; in Bj(xo) is “stable” and that the network St N B, /4(x0) is con-
nected, that is, no “new” 3—points or pieces of curves can “get into” Bz(xo);

e the curves of the networks S; intersect transversally the circle 0 Bz(zo).

The last property implies then that condition (4.1) are satisfied (possibly after reparametrizing the net-
works in order to deal with A and its derivatives).

If now S; N Bj(xo) contains more than a triple junction, all of them must converge to zo, as t — T, by
what we said above, moreover, by equation (8.6), we have

|O*(t) — x| < D|T — 1],
hence, they images O’ (t), after performing Huisken’s rescaling procedure, satisfy

o't —w| _ DIT—t(9)] _
VAT 1) AT - 1)

which tends to zero, as t — 400, in particular they cannot “disappear” in the limit degenerate regular
shrinker (going to infinity). This is in contradiction with the fact that, by Lemma 7.11, since © () < 3/2,
the only possible blow—up limit shrinkers at x are the empty set, a line or a standard triod, hence,
with at most one triple junction. Containing then S; N B;(x) at most one 3—point, possibly choosing
smaller p,p and larger ¢, if S; N B5(x) is not empty (when (:)(xo) = 0), it follows that we are dealing,
either with the (classical) motion with uniformly bounded curvature of a single smooth curve (case
without triple junctions, O(zo) = 1) or with the motion of a triod (when ©(z) = 3/2) with uniformly
bounded curvature and conditions (4.1) satisfied. Moreover, in both cases the lengths of all the curves
of S; N B(x) are uniformly positively bounded below, by the construction (the choice of p).

Then, if S;N B5(z0) is empty, there is nothing to show, in the case of the motion of a single curve the flow
is locally smooth up to time 7', since the curvature is locally bounded (again by using Ecker and Huisken
interior estimates in [30]), while in the case of an evolving triod, the local smoothness of the flow up to
time T follows by the estimates on all the derivatives of the curvature given by Proposition 4.13 (see the
second point of Remark 8.4). O

|0° ()

(T —t(1)/2,

This corollary can be extended to the points on the boundary of 2 by the “reflection argument” at the
end of Section 7.2.

Corollary 8.6. If at a point x( € OS2 there holds O(x0) < 3/4, then the curvature is uniformly bounded along
the flow Sy, for t € [0,T'), in a neighborhood of xy. Then, the flow is smooth in such neighborhood, in the sense
that Sy converges smoothly to a limit smooth network St there, ast — T

9 The behavior of the flow at a singular time

By means of the tools of the previous sections we want to discuss now the behavior of the network
approaching a singular time.
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Let T < +oo be the maximal time of existence of the curvature flow S; of an initial regular C? network
with fixed end—points in a smooth, strictly convex, bounded open set 2 C R2. Then, by Theorem 5.7, as
t — T, either the curvature is not bounded, or the inferior limit of the lengths L‘(¢) of at least one curve
of S; is zero.

Hence if all the lengths of the curves of the network are uniformly positively bounded from below, the
curvature is not bounded (actually again by Theorem 5.7) the maximum of the absolute value of the
curvature goes to +00). By Proposition 6.6 we also know that if the curvature is uniformly bounded, all
the lengths of the curves converge as t — T, thus at least some L’(t) must go to zero.

We will then divide our analysis into the following three cases:

e all the lengths of the curves of the network are uniformly positively bounded from below and the
maximum of the modulus of the curvature goes to +o00, ast — T

e the curvature is uniformly bounded along the flow and the length L(¢) of at least one curve of S;
goes to zero when t — T;

e the curvature is not bounded and the length of at least one curve of the network is not positively
bounded from below, ast — T

In all three cases, the possible blow—up limits will play a key role, with the obvious consequence that
the fewer possibilities we have, the easier we can get conclusions. In particular, it is crucial to exclude
the onset of blow—up limits of multiplicity larger than one, in particular “multiple lines”, exactly as in
the study of the evolution of a single smooth closed curve (see [54], for instance). In the case of curves
this can be done by means of some “embeddedness” or “non-collapsing” quantities (see [50,54]) that
actually inspired our results in Section 13.

Unfortunately, in the case of regular networks proving that any blow—up limit has multiplicity one
without asking for any extra assumption is still an open problem, maybe the major one.

Open Problem 9.1 (Multiplicity-One Conjecture — M1). Every blow-up limit shrinker arising from
Huisken’s rescaling procedure or limit of parabolic rescalings at a point z € €2 is an embedded network
with multiplicity one.

This conjecture is implied by the two equivalent statements in the following open problem.
Open Problem 9.2 (Strong Multiplicity—One Conjecture — SM1/No Double-Line Conjecture — L1).

SM1: Every possible C} ~limit of rescalings of networks of the flow is an embedded network with
multiplicity one.

L1: A straight line with multiplicity larger than one cannot be obtained as a Cf —limit of rescalings of
networks of the flow.

While it is obvious that the first statement implies both M1 and L1, the fact that the second one implies
the first can be seen as follows: if SM1 does not hold, since the networks of the flow are all embedded,
any limit of rescalings S; can lose embeddedness only if two curves in the limit network “touch” each
other at some point 7y € R? with a common tangent (or they locally coincide, if they “produce” a piece
of curve with multiplicity larger than one). Then, “slowly” dilating the networks S; around zg, in order
that the distance between such two curves and z still go to zero, we would get a multiplicity—two line,
contradicting L1.

We will see in Section 13 some cases in which we are able to show that the strong multiplicity—one
conjecture holds:

e If during the flow the triple junctions stay uniformly far from each other, then SM1 is true.
o If the initial network has at most two triple junctions, then SM1 is true.

Remark 9.3. If M1 holds, the flow S¢° in Proposition 7.17 is composed of embedded, multiplicity—one

network and the same holds for the limit network S,, in Proposition 7.20. In particular under the
hypotheses of Proposition 7.30 any blow—up limit network at a point z¢ and singular time 7', obtained
by Huisken'’s procedure, or self-similarly shrinking network flow, obtained by the parabolic rescaling
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procedure, is (if not empty) a “static” straight line through the origin (then O(z9) = 1) or a standard
triod (then O(zp) = 3/2), if the rescaling point belongs to (2. If the rescaling point is instead a fixed
end-point of the evolving network on the boundary of 2, then such limit can only be a single halfline
from the origin (and O(z0) = 1/2).

Before analyzing the three situations above, we set some notation and we show some general properties
of the flow at the singular time.

Welet F : S x [0,T) — Q, with T < 400, represent the curvature flow S; of a regular network moving
by curvature in its maximal time interval of smooth existence. We let O, 0?,..., O™ the 3-points of S.
We define the set of reachable points of the flow as follows:

R = {:z: € R? ‘ there exist p; € Sand t; /T such that lim F(p;,t;) = :c} .
11— 00

Such a set is easily seen to be closed and contained in Q (hence compact as (2 is bounded). Moreover
the following lemma holds:

Lemma 9.4. A point x € R? belongs to R if and only if for every time t € [0,T) the closed ball with center x
and radius \/2(T — t) intersects S;.

Proof. One of the two implications is trivial. We have to prove thatif z € R, then F'(S,t)NB m(z) #
(). If = is one of the end—points, the result is obvious, otherwise we define the function

(t) = inf |F -
d(t) é%s' (p,t) — =,

where, due to the compactness of S the infimum is actually a minimum and as ¢t — T, let us say for
t > t,, it cannot be achieved at an end—point, by the assumption z € R and « different from an end-
point, such a maximum cannot be either achieved at a 3-point, by the 120 degrees angle condition.
Since the function d,, : [0,7') — R is locally Lipschitz, we can then use Hamilton’s trick (see [48] or [78,
Lemma 2.1.3]), to compute its time derivative and get (for any point ¢, different from an end—point,
where at time ¢ the minimum of |F(p,t) — x| is attained)

<k(qa t)V(q, t) + )‘(qa t)T(qa t)7 F(q7 t) - .’L’>

Opdy(t) = Oi|F (g, t) — x| >

[F(g,t) — |
_ (kg t)v(e,t), Flg, ) —z) 1
\F(q,t)—x| - dm(t) 7
since é.lt a point of minimum distance the vector % is parallel to v(qg, t). Integrating this inequality
over time, we get
d2(t) — d2(s) < 2(s —t) fors>t>t,.

We now use the hypothesis that z is reachable (lim,_,7 d,(¢;) = 0) and we conclude

@2 () = Jim [@3(1) — d2(t)] < 2 Jim (1 — 1) = 2T — 1),

i—00
for every t > t,. O

As a consequence, when we consider the blow—up limits of the evolving networks by Huisken’s rescal-
ing procedure around points of 2, we have a dichotomy among these latter. If the blow—up point
belongs to R, this lemma ensures that any rescaled network contains at least one point of the closed
unit ball of R?, hence the limit of any sequence is not empty (and clearly vice versa). If the point does
not belong to R any blow—up limit is empty, since the distance of the evolving network from the point
of blow—up is positively bounded below (by the very definition of R) and rescaling, the whole dilated
networks go to infinity. By Lemma 7.22, the same conclusion holds for the self- similarly, shrinking
curvature flows coming from the parabolic rescaling procedure.

Lemma 9.5. The family of blow-up limit shrinkers S, arising from Proposition 7.20 and the family of self-
similarly shrinking curvature flows coming from Proposition 7.17 are not empty, if and only if the blow—-up point

w0 belongs to R. It follows that the set of reachable points of the flow coincides with {z € Q | ©(z) > 0}.
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We now show that, assuming the multiplicity—one conjecture, as ¢ — T', all the 3—points of the network
St converge.

Lemma 9.6. If M1 holds, there exists a radius R = R(S;, zo) > 0, such that if a blow—-up limit regular shrinker
S (o1 Si°1/2) at the point xo has no triple junctions in the ball Br(0), then it is a line through the origin ofR2
or the unit circle.

Proof. Assume that the conclusion is false, then there is a sequence R; — +oo and blow—up limit regular
shrinkers S; at z, all different from a line or circle, such that each S; has no triple junctions in Bg, (0),
forevery i € N.

As we said in the discussion above, any shrinker S; must intersect the unit circle, hence, by the shrinkers
equation (7.1), we can extract a subsequence of S; locally converging in C'! to a non empty limit shrinker
S without triple junctions at all. By the work of Abresch and Langer [1], then S must be a line through
the origin or the unit circle and this latter case is excluded, since, for i large enough also S; would be a
circle, which is a contradiction. If the limit S is a line, by the multiplicity—one conjecture, its multiplicity
must be one, being any limit of blow—up limits of S, at the point z, again a blow—up limit at .

Then, by the second point of Lemma 7.16, the contribution of S; \ Br(0) to the Gaussian density of
the whole S; is small as we want, for every i € N, by choosing a value R large enough, while, for
sufficiently large i, the contribution of S; N Bg(0) is smaller than one, as S; — S, which is a multiplicity—
one line. Hence, we conclude that the Gaussian density of S; is close to one for sufficiently large ¢, then
Lemma 7.11 implies that S; is also a line through the origin, which is again a contradiction and we are
done. O

Remark 9.7. It is actually possible to find a uniform value of R > 0 in this lemma, also independent of
the flow S; (Tom Ilmanen, personal communication).

Lemma 9.8. If M1 holds, there exist the limits x; = lim,_,7 O'(t), for i € {1,2,...,m} and the set {z; =
limy_,7 O(t) | i = 1,2,...,m} is the union of the set of the points x in Q where ©(x) > 1 with the set of the
end—points of S; such that the curve getting there collapses as t — T

Proof. Let D = {z € Q| O(x) > 1}, O(t) = {O'(t),0%(t),...,0™(t)} and P = {P', P2,..., P'}. Let
R > 0 be given by the previous lemma and consider a finite subset D C D, supposing that the set

Iz = {te [—1/2log T, 400) | maxd(z, O(t(t))) = R\/2(T — t(t))}

z€D

has infinite Lebesgue measure, there must be xy € D such that

Tso = {t€[-1/210gT,+00) | d(zo, O(t(t))) = R\/2(T — t(t)) }

has infinite Lebesgue measure. Hence, by rescaling with Huisken’s procedure around z, by Proposi-
tion 7.20, we can extract a sequence of times t; € Z,, such that the rescaled networks gwo’tj converge
in C . to a line through the origin of R?, by Lemma 9.6 (if the limit is the unit circle, the network is a
closed curve and there is nothing to prove, as there are no 3—points), since in any ball centered at the
origin, there cannot be 3—points, by the construction of Z,, and holding M1. This clearly implies that
O(x0) = 1, contradicting the hypothesis xy € D, hence, 755 must have finite Lebesgue measure. It is
then easy to see that this implies that the points of D and thus of D, cannot be more than the number m
of the 3—points of the evolving network S;.

If now we consider a small 6 > 0, as every point z in the open set

Qs =0\ {z€Q|dz,DUP) <4}

satisfies O(z) < 1, by compactness and Corollary 8.5 (or White’s local regularity theorem in [111]), it
follows that the networks S;; restricted to the set {25 have uniformly bounded curvature and smoothly
converge to a limit smooth network in {25 without 3—points, otherwise at any of such 3—points we would
have a Gaussian density equal to 3/2, larger than one.

This argument clearly implies that choosing § small enough (as D U P is finite), every 3—point O'(t), for
every i € {1,2,...,m}, has to “choose” a point z; € D U P to stay close and actually converges there.

83



Finally, if € D, there must be a multi-point in any blow—up limit shrinker, otherwise we can only
have a line, by Lemma 9.6 (the unit circle is excluded, as we said before), that would imply (:)(x) =1,
against the definition of D. Hence, for some i € {1,2,...,m} and t,, — T there must hold O%(t,,) — z;
that forces lim;_,7 O'(t) = x;, by the previous discussion..

If the curve of S; getting to an end—point P" collapses along a sequence of times ¢t; — T, clearly, as
before, for some k € {1,2,...,m} there must hold O*(¢;) — P" = z;, and we have the same conclusion
hmt_g“ Ok(t) =P = Tk. O

9.1 Regularity without vanishing of curves

Let T' < 400 be the maximal time of existence and assume that the lengths of all the curves of the
network are uniformly positively bounded from below, hence as ¢ — T' the maximum of the modulus
of the curvature goes to +oco. We are going to show that if M1 holds, T' cannot be a singular time, hence
we conclude that this case simply cannot happen. This conclusion justifies the title of this section: to
have a singularity (assuming the multiplicity-one conjecture) some curves must disappear.

Such result follows by the local regularity Theorem 8.3 (precisely, by Corollary 8.5, see also the first
point of Remark 8.4), implying that the curvature is locally bounded around every point of Q, as t — T
Indeed, performing a parabolic rescaling at any reachable, interior point zy € Q2 (at the other interior
points of ) the blow-up limits are empty, so O(x¢) = 0), since we assumed that the multiplicity—one
conjecture holds, by the discussion in Remark 9.3, we can obtain as blow—up limits only a straight lines
with unit multiplicity, so @(mo) = 1, or standard triods, hence (:)(xo) = 3/2. By Corollary 8.5, we then
conclude that the curvature is uniformly locally bounded along the flow, around such point .

If we instead rescale at an end—point P” we get a halfline and this case can be treated as above by means
of the “reflection construction” at the end of Section 7.2. That is, for the flow Hj the point P" is no more
an end—point and a blow—up there gives a straight line, hence implying that the curvature is locally
bounded also around P, as before.

By the compactness of the set of reachable points R, this argument clearly implies that the curvature of
the whole S; is uniformly bounded, as ¢ — T, which is a contradiction.

Proposition 9.9. Assuming M1, if T' < +oo is the maximal time of existence of the curvature flow of a regular
network with fixed end—points, then the inferior limit of the length of at least one curve is zero, as t — T

Remark 9.10. Proposition 9.9 can be seen as the global (in space) version of the local regularity Theo-
rem 8.3 which deals with the situation of a single 3—point. Usually in analytic problems local and global
(in space) regularity coincides, actually in this case the tool to pass from one to the other is the validity
of the multiplicity—one conjecture.

In all the analysis of the following sections we will assume that M1 holds. Moreover, we assume that the bounded
open set §) is strictly convex.

We remark that, with minor modifications in the proofs, all the following results also hold for the flow of open
networks in R?, ignoring the conclusions about the behavior at the end—points that are not present in such case.

By the above discussion, we will have to analyze the behavior of the flow S; around the points z; =
lim; 7 O%(t), limits of the triple junctions in 2 (see Lemma 9.8) where O(z) > 3/2 and the end-points
of S; such that the curve getting there collapses, as t — T'. Notice that if a limit point z; is the limit of
a single 3-point O(t), then the other ones must “stay far” and locally around z; there cannot be the
collapse of a curve, then, by the same argument as above, we conclude that O(x;) = 3/2. It follows that
the only limit points z; € 2 we have to deal with are the ones which are limit of more than one triple
junction, ast — 7.

9.2 Limit networks with bounded curvature

The analysis in this case consists in understanding the possible limit networks that can arise, as t — T,
under the assumption that the curvature is uniformly bounded along the flow. This to find out how to
continue the flow (if possible) as discussed in Section 9.4.
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As we said, at least one curve of the network S; has to “vanish”, approaching the singular time 7. We
show that in this case, as ¢ — T, assuming the multiplicity-one conjecture, S; converges to a unique
limit degenerate regular network S, containing in the interior of Q2 only regular triple junctions or 4—
points with four concurring curves whose exterior unit tangents form four angles of 120, 60, 120 and
60 degrees (any of them coming from two 3—points going to “collide” each other along a single isolated
collapsing curve) and at any end—point on 92, either a regular single curve or two curves “exiting”
from such end—-point, forming an angle of 120 degrees among them (coming from the single isolated
collapse of the curve of the network getting there). The cores of such limit degenerate regular network
are thus given only by the isolated collapsed curves.

We will see in Proposition 9.19 in the next section that viceversa, when locally only a single isolated
curve collapses, the curvature stays bounded (see also the example in Proposition 9.31).

Proposition 9.11. If M1 holds and S; = |J;_, v*([0,1],¢) is the curvature flow of a regular network in €
with fixed end—points in a maximal time interval [0, T') such that the curvature is uniformly bounded along the
flow, then the networks Sy, up to reparametrization proportional to arclength, converge in C* to some degenerate

regular network Sy = U, 7%(10,1]) in Q,as t — T.
The non—degenerate curves of St belong to C* N W2 and they are smooth outside the multi-points. Moreover,

denoting with St the C* network described by the family of the non—degenerate curves of St, every multi—point
of the St is either a reqular triple junction or an end—point of S; or

o a 4—point where the four concurring curves have opposite exterior unit tangent vectors in pairs and form
angles of 120/60 degrees between them — collapse of a curve in the “interior” of S,,

e a 2—point at an end—point of the network S; where the two concurring curves form an angle of 120 degrees
among them — collapse of the curve getting to such end-point of S;.

.’ \ P ,' Q
\ \
H >< }w PT PT
I ! ! I
/ 1 I 1 /
!

Figure 9.1: Collapse of a curve in the interior and at an end—point of S;.

Definition 9.12. By their clear importance, we call reqular 4—points the ones like in this proposition.

Proof. By Proposition 6.6, since S; is the curvature flow of a regular network, there exist the limits of the
lengths of the curves LY(T') = lim;_,7 L'(t), for every i € {1,2,...,n}. Moreover every limit of S; is a
connected, bounded subset of R2.

Recalling the third point of Remark 5.9 (or directly Corollary 5.2), we reparametrize the networks so
that the flow is a special smooth flow, then, by Remark 4.9, all the velocities yi are uniformly bounded
in space and time by some constant D, hence we have,

t
() — 7, B)] < / i, 6| dé < Dlt — ¥

uniformly for any = € [0, 1] and every pair ¢, € [0, T). This clearly implies that v*(-,¢) : [0,1] — R?isa
Cauchy sequence in C°([0, 1]), hence the network S, converges uniformly to a limit family of continuous
curves 74 : [0,1] — R?, as t — T, composing the set S7 = [J/_, 7%([0,1]). As the curvature and
the total length of all S; are uniformly bounded by some constant C, reparametrizing instead all the
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curves (-, t) proportionally to their arclength, getting the maps 7°(-,¢) : [0,1] — R?, these latter are
a family of uniformly Lipschitz curves with curvature uniformly bounded in space and time, hence
relatively compact in C. Itis then easy to see that for every C'—converging subsequence, the curves 3% :
[0,1] — R?2 of any limit family Sy = U, 7%([0, 1]) have the same supports of the curves i, : [0,1] —
R? and either are constant (the limits of collapsing curves) or are also parametrized proportionally to
arclength. Hence, this argument implies that the whole family of curves composing the networks S,
reparametrized proportionally to arclength, converges in C', as ¢ — T, to the family 7% composing Sr.
Clearly, by the uniform bound on the curvature, all the curves 7} belong to W?*° and, by Lemma 7.24,
they are smooth outside the multi—points.

According to Definition 7.4, we have to deal now with the convergence of the unit tangent vectors. We
observe that if we denote with s the arclength parameter, we have

’(r“)?i(x,t)‘ B ‘BTi(s,t)

7 o 7 1 7 2
o S| = s 0l < o) < €2, ©1)

for some constant C, hence, every sequence of times ¢,, — 7" have a — not relabeled — subsequence such
that the maps 7°(, ¢,,) converge uniformly to some maps 7.

If the curve 77 is a regular curve (that is, L'(¢) does not go to zero), it is easy to see that the limit maps
74 must coincide with the unit tangent vector field to the curve 5%, hence, the full sequence 7(-,t)
converges to .

If Li(t) converges to zero, as t — T, by inequality (9.1), the maps 7*(-, t,) converge to a constant unit
vector 7% which, if it is independent of the subsequence t,, it will be the “assigned” constant unit
vector to the degenerate constant curve 44 of the network §T, as in Definition 7.1, then it follows (see
Remark 7.5) that gT is a degenerate regular network and that S; converges in C L to gT, ast — T.

We start dealing with the behavior of the curves without end—points on the boundary of €.

If a region is “collapsing”, that is, its area is going to zero, as ¢ — T, being €2 strictly convex, we have
that the region must be completely “inside” {) (not bounded by curves getting to the end—points of the
networks P” which are all distinct, hence a “collapse” on 052 is impossible by the strong maximum
principle) and, by the computations in Section 7.2, it can have at most m < 5 bounding curves v/(-, )

and its area satisfies
Alt)=2—-m/3)n(T —1t)/2,

by equation (7.4). By Lemma 9.8 the 3—points of the region converge to some limit points, as t — T,
if these limits are not all coincident with a single point zo € €, the limit family of C* curves ~% must
bound a “region” with zero area not given by a single point, hence there would be at least two non-
degenerate (non—constant) curves with the same support, which is forbidden by the multiplicity—one
conjecture M 1. Hence, we conclude that all such 3-points converge to the point x5 € © and the whole
region vanishes at zg, as t — 7. In particular, all the lengths of the bounding curves v/(-, ) also go to
zero, as t — T'. Since, by equation (7.3) we have

i/ kds=(2—m/3)m >n/3,
=17

it follows that we have a contradiction with the fact that the curvature is bounded and the perimeter
of the region goes to zero. Hence, with bounded curvature, which is our case, no regions can collapse,
which implies that around every point the network is locally a tree, as ¢ gets close to T'. Recalling now
Lemma 9.8, we only have to check things locally around every point zo which belongs to the set of the
limits of the triple junctions {O7(t)}, as t — T, since outside such (finite) set the network converges
smoothly to St (which is composed of regular smooth curves there), by Lemma 7.24. If the point x is
the limit point of a single triple junction O (t), clearly locally around xo no curve is collapsing and the
convergence of S; to St is smooth (see the comments at the end of the previous section). Assuming then
that the curve 7'(-, t) (at least) collapses with its end—points going to = and performing the Huisken’s
rescaling procedure at xy, we can only get as blow—up limit degenerate shrinkers which are trees with
zero curvature (being bounded, by the rescaling, the curvature converges uniformly to zero). Moreover,
these shrinkers have unit multiplicity since we assumed M1, hence they must be among the ones of
Lemma 7.10: a line, a standard triod or a standard cross. The first two cases are clearly excluded, since
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it would hold (:)(xo) < 3/2, then Corollary 8.5 would tell us that the flow is locally smooth and there is
no collapse of curves. Hence, the only possibility is a standard cross (which has a core composed only
of a collapsed curve), this actually implies that at z( there are no other collapsing curves other than
7*(-,t) and only its end—points (among the triple junctions) are converging to z(. Indeed, arguing as in
Corollary 8.5, since there holds

|07 (t2) — O (t1)| =

ta to )
[ @< [Tl < i -l
ty t1
for every triple junction O’ (t) converging to zo, for every t1,t2 € [0,T), hence
|O7(t) — a0 < D|T — t|

for every ¢ € [0,T), we have that its image O(t), after performing Huisken’s rescaling procedure,
satisfies )

_ 109t ~wo| _ DT —1(y)] _
VAT —10) -~ V2AT 1)
which tends to zero, as t — +o0, in particular, all the triple junctions converging to zp cannot “dis-
appear” in the limit degenerate regular shrinker (going to infinity). As the core of the standard cross
is a single line (the underlying graph has only two triple junctions), the above claim follows and the
collapsing curve (-, ) is “isolated”. As a consequence, around x the curve v(-, ) collapses and other
four curves v/(-,t) converge in C* (smoothly outside ), as t — T, to four regular curves 7% with an
end—point at z, forming a 4-point. By the C'—convergence of the four curves and the 120 degrees con-
dition at the two converging triple junctions, if for a sequence ¢, — T we have that 7' (-, ¢,,) converge to
a constant unit vector 74, this unit vector is uniquely determined by the (unique) exterior unit tangents
at z¢ of the four concurring curves, hence we conclude that 7% it is independent of the sequence t,, — T,
as we wanted to show. Then, it is the “assigned” constant unit vector to the degenerate constant curve
%p of the network §T, as in Definition 7.1. It follows (see Remark 7.5) that §T is a degenerate regular

network and that S; converges in C L to §T, ast —T.

By this argument, we can also conclude that xz is a 4-point of St (or of St) where the four concurring
curves have opposite unit tangents in pairs and form angles of 120/60 degrees between them, as in the
statement.

Finally, in the case of a collapsing curve arriving at an end—point P" of S;, we get the statement of the
proposition by considering the network H, obtained by the union of S; with its “reflection” with respect
to the point P" (see the end of Section 7.2) and applying the previous conclusions to such network. [

07 (1)] (T —t(1)/2,

The next corollary follows from this proof.

Corollary 9.13. Every core (there could be more than one) of Sris composed of a single collapsed curve. In the
case of bounded curvature, only “isolated” curves can collapse.

Moreover, during the proof, we also showed the following intuitive fact about a collapsing region, that
is, with its area is going to zero, as t — T..

Lemma 9.14. If M1 holds and a region is collapsing as t — T, then the curvature of the network cannot be
bounded.

Remark 9.15. Notice that if at an end-point the two curves of the boundary of the convex set (2 form an
angle (or the whole network is contained in an angle whose vertex is such end—point) with amplitude
less than 120 degrees, then the collapse situation described in Proposition 9.11 cannot happen at such
end-point. This is, for instance, the case of an initial triod contained in a triangle with angles less than
120 degrees and fixed end-points in the vertices.

The same conclusion holds, by the argument in the proof of Proposition 7.13, calling €2, C Q the evolu-
tion by curvature of 012, keeping fixed the end—points of S;, if the angle formed by €2; at such end—point
becomes smaller than 120 degrees.

Remark 9.16. Notice that, even if Sy is smooth outside its multi—points and W2 we cannot say at the
moment that its curves are of class C2. This will be actually a consequence of the analysis of the next
section, see Theorem 9.26 and Remark 9.27.
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All the previous arguments can be easily localized and we have the following conclusion.

Proposition 9.17. If M1 holds and the curvature of S, is locally uniformly bounded around a point xo € €, as
t — T, the networks S, up to reparametrization, converge in C\L . locally around x to some degenerate reqular
network Sy whose non—degenerate curves form a C* network St, having possibly some non—regular multi-points
which are among the ones described in Proposition 9.11.

Moreover, the curves of St belong to C* N W2, in a neighborhood of xo, and are smooth outside the multi—
points.

Remark 9.18. Referring to Remark 7.21, we can call these singularities with bounded curvature Type 0
singularities. They are peculiar to the network flow, as they cannot appear in the motion by curvature
of a single curve.

9.3 Vanishing of curves with unbounded curvature

Suppose now that, as t — T, the curvature is not bounded and the length of at least one curve of the
flow S, is not positively bounded from below. This last case is the most delicate.

Performing, as before, any of the blow—up procedures, even assuming the multiplicity—one conjecture,
there can be several shrinkers as possible blow—up limits given by Propositions 7.17, 7.20 and we need
to classify them in order to understand the behavior of the flow S, approaching the singular time 7.
In doing that, the (local) structure (topology) of the evolving network plays an important role in the
analysis since it restricts the family of possible shrinkers obtained as blow—up limits of S;. A very
relevant case is when the evolving network has no loops, namely, it is a tree, studied in detail in [81]).

Proposition 9.19. If M1 holds and the evolving regular network S, is a tree in a neighborhood of o € €, for t
close enough to T, then the curvature of S is locally uniformly bounded around x,, during the flow. Hence, the
conclusions of Proposition 9.17 apply.

Proof. Let S; be a smooth flow in the maximal time interval [0, T) of the initial network Sg. Let zg € Q
be a reachable point for the flow and let B be a ball containing x¢ where S, is a tree, for ¢ close enough
to T' (we clearly only need to consider reachable points).

Let us consider a sequence of parabolically rescaled curvature flows S{"* around (z¢,T’), as in Proposi-
tion 7.17. Then, as i — oo, it converges to a degenerate regular self-similarly shrinking network flow
S°, in CL® N W22, for almost all t € (—o0, 0) and for any a € (0,1/2).

Thanks to the multiplicity—one hypothesis M1 and to the topology of the network (locally a tree, see
Lemma 7.10), if we suppose that zy ¢ 012, then S{° can only be the “static” flow given by:

e astraight line;
e astandard triod;

e four concurring halflines with opposite unit tangent vectors in pairs, forming angles of 120/60
degrees between them, that is, a standard cross.

By White’s local regularity theorem in [111], if the sequence of rescaled curvature flows converges to a
straight line, the curvature is uniformly bounded for ¢t € [0,7") in a ball around the point zy. Thanks
to Theorem 8.3 the same holds in the case of the standard triod. Hence, the only situation we have to
deal with to complete the proof in this case is the collapse of two triple junctions at a point of €2, when
the limit flow is given by the static degenerate regular network composed of four concurring halflines
with opposite unit tangents in pairs forming angles of 120/60 degrees between them, a standard cross.
We claim that also in this case the curvature is locally uniformly bounded during the flow, around the
point z (the next proposition and lemmas are devoted to prove this fact).

If instead x¢ € 052, the only two possibilities for S¢° are the static flows given by:

e a halfline;
e two concurring halflines forming an angle of 120 degrees.

For both these two situation the thesis is obtained by going back to the case in which zy € 2, with the
“reflection construction” we described at the end of Section 7.2. O
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Remark 9.20. Obviously, the conclusion of this proposition holds when Sy is a tree (globally), since it
remains so during the flow.

Proposition 9.21. Let S; be a smooth flow in the maximal time interval [0,T') for the initial network Sy. Let
xo be a reachable point for the flow such that the sequence of rescaled curvature flows S{* around (xo,T), as in
Proposition 7.17, as i — oo, converges, in C:* N W22, for almost all t € (—oo,0) and for any a € (0,1/2), to

a limit degenerate static flow S¢°© given by a standard cross. Then,
|k(z,t)] < C < +o0
forallt € [0,T) and x in a neighborhood of x.

We briefly outline the proof of this proposition. First, in Lemma 9.22 and 9.23, we show that for any
tree, if we assume a uniform control on the motion of its end—points, the L2?-norm of its curvature is
uniformly bounded in a time interval depending on its initial value. Moreover, we also bound the L>—
norm of the curvature in terms of its L?-norm and of the L?-norm of its derivative.

Then, we prove that for a special tree, composed of only five curves, two triple junctions and four end-
points on the boundary of €2 open, convex and regular (see Figure 9.2), uniformly controlling, as before,
its end—points and the lengths of the “boundary curve” from below, the L2-norm of k; is bounded until
|Ik|| 2 stays bounded. The statement of the proposition will follow by localizing these estimates.

Lemma 9.22. Let Q be a convex open reqular set and Sg a tree with end—points P, P2, ... P! (not necessarily
fixed during its motion) on OQ2. Let S; be a smooth evolution by curvature for t € [0,T') of the network So such
that the square of the curvature at the end—points of S is uniformly bounded in time by some constant C. Then,

Ikl Zoe < 4"71C + Dullkl 2 [1ks] 2 ©.2)

where n € N is such that for every point Q) € Sy there is a path to get from Q to an end—point passing by at most
n curves (clearly, n is smaller than the total number of curves of Sy) and the constant D,, depends only on n.

Proof. Let us first consider a network Sy with five curves, two triple junctions O', 0% and four end—
points P!, P2, P3, P4 In this case n is clearly equal to two. We call 7, for i < 4, the curve connecting
P with one of the two triple junctions and +® the curve connecting the two triple junctions (see the
following Figure 9.2).

Pl

P2
Figure 9.2: A tree-like network with five curves.
Fixed atime t € [0,7), let Q € 4 C S, for some i < 4. We compute
, o Q
F(QUP = (P +2 [~ buds < C -+ 2kl 22
pPi

hence, for every Q € S; \ v* we have

£ (Q)]* < C + 2|k]| 2| ksl 2 -
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Assume now instead that Q € 7°. Recalling that Zle k* = 0 at each triple junction, by the previous
argument we have [k(O1))2, [k'(0?)]? < C + 2||k||p2||ks| 12, for all i € {1,2,3,4}, then it follows that
[k°(O1)]2, [k°(0%)]? < 4C + 8||k|| 12 || ks|| 2. Hence, arguing as before, we get

Q Q
(@) = [k (0N + 2/01 kks ds < AC + 8|k L2 | Ks 2 + 2/01 ks ds,

In conclusion, we get the uniform in time inequality for S;

IklZoe < 4C + 0]kl 2l | 2

In the general case, since S; are all trees homeomorphic to Sy, we can argue similarly to get the conclu-
sion by induction on n. O

Lemma 9.23. Let Q C R2 pe open, convex and regular, let Sy be a tree with end—points P P2 ... Plon o
that satisfy assumption (4.1) and let S, for t € [0,T') be a smooth evolution by curvature of the network Sy. Then

k|12 is uniformly bounded on [0,T) by v/2[||k(-,0)|2. + 1], where
T = min {T, 1/8C (|[k(-0)[12 + 1)2} .
Here the constant C' depends only on the number n € N of Lemma 9.22 and the constants in assumption (4.1).

Proof. By inequality (4.4) we have

i 2 _ 2 4 LA pi (1.pi\2
ai J, K < 2/Stksds+/stk ds+Y > AP (k)

p=1i=1

+C

at the 3—point OP

< —2/ k2 ds+||k||%oo/ k?ds + C|lk|3e + C. (9.3)
St S¢
By estimate (9.2) and the Young inequality, we then obtain

Cn + CnllkHz2||kSH[2,2 <Cp+ 5||k5||2L2 + Cn,€||k||%2 )
CullklI72 + DallEll72llksll2 < CullklIZ2 + ellksll 72 + CncllEIG:

17

<
%I 7o 1ElI7 <

for every small € > 0 and a suitable constant C,, ..
Plugging these estimates into inequality (9.3) we get

d
@ ) kds < = 2||ks || + K[| 2o 15]* + Cllk] 2 +C
t

< = 20|ksll* + CullklZe + ellksl|Zs + CuellkllZ> + Cu + ellksllZs + Crellklz> + Ca

<C(/S k2d5)3+0, (9.4)

Where we chose ¢ = 1/2 and the constant C' depends only on the number n € N of Lemma 9.22 and the
constants in condition (4.1).
Calling y(t) = fSt k*ds + 1, we can rewrite inequality (9.4) as the differential ODE

y'(t) < 2C5°(1),

hence, after integration, we get

1
y(t) < Y Er——
2o — 40t
and, choosing T as in the statement, the conclusion is straightforward. O
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Lemma 9.24. Let Q C R? be open, convex and reqular, let Sy be a tree with five curves, two triple junctions
O, 02 and four end-points P', P2, P3, P* on 09, as in Figure 9.2, satisfying assumption (4.1) and assume that
S, fort € [0,T), is a smooth evolution by curvature of the network Sy such that || k|| 12 is uniformly bounded on
[0, 7).

If the lengths of the curves of the network arriving at the end—points are uniformly bounded below by some
constant L > 0, then ||ks|| .2 is uniformly bounded on [0,T).

Proof. We first estimate ||k ||% - in terms of ||ks||z2 and || kss]| 2
Fixed atime t € [0,7), let Q € 4 C Sy, for some i < 4. We compute

. o Q
[kzq(Q)]Q = [k;(PZ)]z +2/P' kskss ds < C + 2|[ks|| L2 || kssll 22,

hence, in this case, 4
[k (Q)]? < C + 2|kl L2 | sl 2

for every Q € S; \ 7.
Assume now instead that Q € 7°. Recalling that k. + X\’k* = kJ + A7k at each triple junction, we get

k(0 = k(O1) + N (ONE(O) = X*(0)E*(01),

hence,

by Lemma 9.23. Then, .
[£S(ON)]* < 2k (0N + C (1 + [[ks|72)

and it follows

Q
QP = (0P +2 [ ks
) Q
< 2[k;(01)]2+0(1+||ks|\%2)+2/ kkgs ds
Ol
S OOl + 2kl e solze

since, by the previous argument, we have [k (O')]?, [k1(0%)]? < C+2|ks||12/kss|| 12, foralli € {1,2,3,4}.
Hence, we conclude
[ksllZoe < C+ Cllksll72 + 2l[ksl| 22 [[Kssl| 2 -

We now pass to estimate ||k ||z2. Making computation (4.3) explicit for j = 1, we have
2 3

at/ k2 ds < —2/ k2, ds+7/ KkZds — > Y 2kDKDL + AP (k7%)° +C.  (95)
St St St

p=1i=1 at the 3—point O”
Then, as in Section 4 we work to lower the differentiation order of the boundary term 0 | kiki_ at

i=1"s"ss
each 3—point.
We claim that the following equality holds at each 3—point,

3 3
3N N =0, N (k) (9.6)
=1 =1
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—1_git1 . .
k k™" with the convention

Keeping in mind that, at every 3—-point, we have > | k% = 0 and \' =
that the superscripts are considered “modulus 3” (see Section 2.3), we obtains
3

3
VB Nk = (kT — k) Kk
i=1

i=1

_ Zk1+l k,erl + k’L 1) ]41 k‘l 1 (kz+1 + k’L 1) k,z

=1
_Z[Wl ()] &

and

3 3
V30, SN ()7 = VBT AL (k) + 2Nk K
=1 =1

I
SO

3
(ki = B ()" 4230 (W — K KR
1 =1

.
Il

I
NE

{(ki+1)2 _ (k,ifl)Q Lokigi=l _ ka‘kiﬂ} ki
1

.
Il

|
KM“

~
Il
—

{(ki—&-l)Q _ (ki—l)Q _ Q(ki—l + ki-‘,—l)ki—l + 2(ki—1 + ki+1)ki+1 k:;

I
.E’%w

(417 = ()] ki

=1

thus, equality (9.6) is proved.
Now we use such equality to lower the differentiation order of the term ZZ L kikL,. Recalling the
formula 0;k = kg, + kA + k3 and that 2121 ki = 0, ZZ: =0, we get

3 3
SRk, = SRR - AR - (1))
=1 =1

3 3
= S O(K N - NEYE =3O (R () K
=1 =1
3 3 3
= D (KL NR)R = Y ONRE = Y ON () 4 ()
i=1 i=1 i=1

= —atZAZ )*/3 - ZX (k)* K

at the triple junctions O' and O?, where we used the fact that k! + \’k" is independent of i € {1,2,3}.
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Substituting this equality into estimate (9.5), we obtain

+C

2 3
O | k2ds< — 2/ Kds+7 [ K2 ds+ )Y 2 (k)7 K24 AP (kE)?
St St at the 3—point OP

St

p=11i=1

+20, ZQ: 23: N (k) /3

p=1i=1

at the 3—point O”
2 3

fz/ k2 ds + Cllk[|72 ksl Fe + > 0> 2 (k77) TRP AP (k)
St

p=1i=1
2 3
+20, 33 A (k)73

p=1i=1

IN

at the 3—point O?

+C. 9.8)

at the 3—point O”

Using the previous estimate on ||k, the hypothesis of uniform boundedness of ||k||;> and Young
inequality, we get

< C+Cllksl|Zs + Cllks|l 2 [lkss|l 2

< C+ Cllks|172 + Cellks |72 + ellkssl 72

=C+ CEHkSHQH + €||k55||%2 )

1172 (s 17 o

for any small value € > 0 and a suitable constant C-.
We deal now with the boundary term °°_, 2 (k 4)3 KL+ X (ki)2
By the fact that ki + ik’ = ki + X k7, for every pair i, j, it follows that (ks + Ak)* 327 A" = 0, hence,

3

DN ()" == 3 () ()" + 2 () k'

i=1

then, we can write
3
o2 (k) KN (kD) =2 (k) K - (W) (k)7 -2 (V) KK
=1
3 3
=2k - (A KR - S0 (N

i=1 i=1
3
2(ks +AR) D (K1) — (V) k‘+z A (K1) — 2 (k)

At the triple junction O!, where the curves 7',7? and +® concur, there exists i € {1,2} such that
k'(0Y)] > &, where K = max;e(1 2,3} |k (O')|, hence at the 3—point O'

w

2(ks +Ak) Y (K sz (V) (W) — 20 (1)

=1

K° + ClkL(OY)| K

HONP + ClEL (O (0N
IWIILx JrOHk;HL“’(v")”kZH?[),OO(w?)'

<C
< Clk
<C

We estimate now C'|k||% Loo(yiy T Cllksll oo (s
equalities in Proposition 4.7. Letting u = k%, p = +00, m = 2 and n = 0, 1 in formula (4.5), we get

via the Gagliardo-Nirenberg interpolation in-

1
||kZHL°°('y IS C” HLz(W )sz”p (v?) + 1 HkZ”L%w DX C” ||£2(71) +CL

. .3
1Ko iy < ClE oo IILQ(V)+ 3|WIIL2 < Cllkgl z2gyy + Cr s
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hence,

15 i ; i3 i i
CIR I (1 + O iy IRl e () < Ol ey + Ol ey + Co < kL) + Cre

Thus, finally,
3 . 4 .
2(ky + Ak Z (N7) kl+z Az k)" =20 (K')" < ellkiglZ2(yi) + CLe <éellkssliz + CLe -
i=1

Coming back to computation (9.8), we have

2 3

a(/ K2ds —23° 37w (k7)? /3

p=1i=1

at the 3-point OP )

<2 / K2,ds + Cllka|2a + ellka] 22 + Cre
S

<=2 [ Kds+ Cllhls + 260l - CrclWilE s + Cie
St

2 3
CLE</ K2ds -2 S A (k) /3

p=11i=1

) +CL,€a

at the 3—point OP

where we chose € < 1. )
By Gronwall’s Lemma, it follows that k|3, — 2 2;123:1 S0 (kP /3 is uniformly
at the 3—point O?

bounded, for ¢ € [0,T), by a constant depending on L and its value on the initial network Sy. Then,
applying Young inequality to estimate (9.2) of Lemma 9.22, there holds

3/2 3 2
kl3e0 < C + CRIEE k175 < C 4 C|kl|S2 + ellks| 22 < Ce + &lks]|22

as || k|| .2 is uniformly bounded in [0, T"). Choosing ¢ > 0 small enough, we conclude that also ||k|| 12 is
uniformly bounded in [0, T").

Proof of Proposition 9.21. By the hypotheses, we can assume that the sequence of rescaled networks
St J(2+5) CONverges in W1 as i — oo, to a standard cross (which has zero curvature), for some 6 > 0
as small as we want.

Arguing as in the proof of Lemma 8.1, by means of Lemma 7.24, we can also assume that, for R > 0
large enough, the sequence of rescaled flows S{* converges smoothly and uniformly to the flow S{°
given by the four halflines, in (B3r(0) \ Bg(0)) x [~1/2,0). Hence, there exists iy € N such that for
every i > ig the flow S; in the annulus Bsg/,, (z0) \ Br/,, (7o) has equibounded curvature, no 3-points
and a uniform bound from below on the lengths of the four curves, for ¢t € [T — u;?/(2+6),T). Setting
ti=T—p; 2 /(24 6), we have then a sequence of times ¢; — T such that, when i > i, the above conclu-
sion holds for the flow S, in the annulus Bmm(:co) \ BRm(;vo) and with ¢ € [t;,T), we can
thus introduce four “artificial” moving boundary points P"(t) € S, with |P"(t) — xo| = 2R/2(T — t;),
with r € {1,2,3,4} and ¢t € [t;,T), such that the estimates (4.1) are satisfied, that is, the hypotheses
about the end-points P*(t) of Lemmas 9.22, 9.23 and 9.24 hold

As we the sequence of networks $"/ J(2+5) CONVerges in W22 to a limit network with zero curvature, as
1 — 0o, we have

oc’

lim 11|24 (090 5" =0, that is, / K do <e;,
(Bsr(ONS~s/a4s)) Bsr(0)ns"? " (216) o

for a sequence €; — 0 as ¢ — co. Rewriting this condition for the non-rescaled networks, we have

/ Kds < ——0t
B 20)MSe, 2(T - t;)

3R 2(Tft,i}(
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Applying now Lemma 9.23 to the flow of networks S; in the ball B, , m(xo) in the time interval

[t;, T), we have that ||k|| .25 y is uniformly bounded, up to time

2R«/2(T—ti)(z0)ngt

. 2
T, = to+min {T,1/8C (1kl32(5,,, o s + 1)}

We want to see that actually T; > T for i large enough, hence, k|| 12(B,(20)ns,) is uniformly bounded
for ¢ € [t;, T). If this is not true, we have

1
T, =t; +

5 2
8C (Hk”LQ(BQR 2(T—ti)($0)mgti) + 1)

>t

1
o 8C (Ei/\/Q(T—ti) + ].)2
2T —t;)

=t; + 5
8C (g + /2(T — t;))

Q»(SC(&-% zcr—tn)2_1>7

=T+ (2T -

which is clearly larger than 7', as ¢; — 0, when i — oo.
Choosing then i; > i( large enough, since ||I<:HL2(B2R\/W(QCU)m St)

t € [t;,,T) and the length of the four curves that connect the junctions with the “artificial” bound-
ary points P7(t) are bounded below by a uniform constant, Lemma 9.24 applies, hence, thanks to
Lemma 9.22, we have a uniform bound on ”kHLw(BQR\/m(IO)“ s, fort € [0,7). O
As we proved Proposition 9.21, Proposition 9.19 follows. An obvious consequence is that evolving trees
do not develop this kind of singularity, hence their curvature flow is smooth till a curve collapses with
uniformly bounded curvature. Moreover it is also easy to see that if no region collapses, the network is
locally a tree around every point of €2, for ¢ close enough to 7', so Proposition 9.19 applies globally.

is uniformly bounded for all times

Corollary 9.25. If M1 holds and Sy is a tree, the curvature of S is uniformly bounded during the flow (hence
we are in the case of Proposition 9.11 in the previous section).

Combining Propositions 9.17 and 9.19, we have the following local conclusion.

Theorem 9.26. If M1 holds and S, is a tree in a neighborhood of z¢ € €, for t close enough to T, the curvature
is uniformly locally bounded and either the flow S; is locally smooth or, up to reparametrization proportional
to arclength, converge in C' locally around xq, as t — T, to some degenerate regular network St whose non—
degenerate curves form a C* network Sy with a possibly non—regular multi-point which is among the ones
described in Proposition 9.11, coming from the collapse of single “isolated” curve of S;.

Moreover, the curves of St, in a neighborhood of x, are smooth outside the multi—point.

Obviously, the conclusion holds when Sy is a tree.

Proof. We only have to show that the curves of St are actually C?. By means of Lemma 9.24, | k|| .2 is
locally uniformly bounded on [0, T"), which implies that the convergence of the non—collapsing curves
of S; to St, as t — T, is actually in C’12OC and we are done. The smooth convergence outside the multi—
points then follows by the interior estimates of Ecker-Huisken in [30]. O

Remark 9.27. We expect that, by extending the estimates of Lemmas 9.22, 9.23 and 9.24 to the higher
order derivatives of the curvature, one should actually get the smoothness of the curves of Sy and
of the convergence of the non—collapsing curves of S; to S;. Moreover, the collapsing curve should

converges in C° to a constant map, hence also the local convergence of S; to St would be actually
smooth.

Corollary 9.28. If M1 holds, the curvature is uniformly bounded along the flow for t € [0,T), if and only if no
region collapses as t — T'. Equivalently, in every neighborhood S is a tree, for t close enough to T.
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Proof. By Lemma 9.14 when the curvature is bounded, regions cannot collapse. Viceversa, if no region
collapses the network is locally a tree around every point of €2, hence by compactness and Proposi-
tion 9.19, the curvature is uniformly bounded. O

Remark 9.29. This corollary holds also locally.

Corollary 9.30. If M1 holds and no region collapses as t — T, the C* network St has only multi-points like
the ones described in Proposition 9.11, coming from the collapse of a family of single “isolated” curves of S;.

Another consequence of the previous analysis is the existence of Type 0 singularities (see Remark 9.18).
Proposition 9.31. If M1 holds, Type 0 singularities actually exist.

Proof. Let us consider an initial (regular) smooth network Sy, which is centrally symmetric, in the con-
vex domain (2 (also centrally symmetric) as in the following figure:

S P——

M

Figure 9.3: The networks Sy and M.

where in gray we drew the minimal network M connecting the four end—points of Sy on the boundary
of Q. Assuming that 2 is very “long and thin”, it can be shown that M is the only “stationary” (regular
and with zero curvature) network connecting the four end—points of Sy.

By Corollary 9.25, during the smooth curvature flow S; of Sy (given by Theorem 3.29, maintaining the
central symmetry) the curvature is bounded and either a singularity develops or the flow S; is smooth
for every positive time. Then, it is easy to guess and actually it will be a consequence of Proposition 12.6
that, ast — 400, the network S; converges in C' I to M, which is a contradiction because of their different
structures. Hence, at some time 7' < 400 a Type 0 singularity must develop and the only possibility is
the collapse of the “central” curve of S;, by its symmetry. O

Bounded curvature is not actually the case if some loops are present in S;, indeed a region bounded
by less than six curves possibly collapses, then in such case the curvature cannot stay bounded, by
Corollary 9.28.

St ST

t—=1T

Figure 9.4: Homothetic collapse of a (symmetric) pentagonal region of S; (five-ray star).
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Determining what asymptotically happens in detail in the general case can be quite complicated be-
cause of the difficulty in classifying all the regular shrinkers with loops. Anyway, some special cases
with “few” triple junctions can be fully understood. We will show an example of this analysis in
Section 14, considering networks with at most two triple junctions. We underline that the interest in
these very special cases is because of the multiplicity—one conjecture holds for such networks (Corol-
lary 13.10).

However, even if we cannot describe all the possible shrinkers S, , or See, arising respectively from
the parabolic or Huisken’s rescaling procedure at the singular time 7" < +o00, we can get enough in-
formation in order to restart the flow by means of Theorem 10.9 in the next section (actually by its
extension discussed in Remark 10.19). The point is to connect the information on the possible blow-up
limit networks g@@ to the existence and the structure of a network St which is the limit of S;, as ¢t — T

We recall that assuming the multiplicity-one conjecture, by Lemma 9.8, there exist the limits z; =
lim; 7 O%(t), fori € {1,2,...,m} and correspond to the (finitely many) points in 2 where (:)(xo) >1
and to the end—points of S; such that the curve getting there collapsesast — T'.

We first discuss what happens around an end—point P" of the network S, if z; = P" for some (possibly
more than one) ¢ € {1,2,...,m}. As before, we consider the network HJ, obtained by the union of S;
with its “reflection” with respect to the point P" (see the end of Section 7.2). If 2 is strictly convex, by
Proposition 7.13, every blow-up limit network H’,, obtained rescaling around the end—point P”, must
be symmetric and contained in the union of two cones for the origin of R?. Then, by an argument similar
to the one in the proof of Lemma 7.11, either H”, is a tree, or it contains a loop around the origin, which
is clearly impossible by such property. Hence, we conclude that H”, is a tree and the same the blow-up
limit network §00, which means that we are in the previous case, considered in Proposition 9.19, in
particular, the curvature is locally bounded.

Then, by Proposition 9.17, Theorem 9.26 and Remark 9.27, we have a complete description of the be-
havior of S; locally around its end—point, as ¢t — T..

Theorem 9.32. If M1 holds and the open set ) is strictly convex, then in a neighborhood of its fixed end—points
on 0N}, the evolving regular network S, is a tree, for t close enough to T' and its curvature is uniformly locally
bounded during the flow. Hence, around any end—point P" either the flow is smooth, or the curve of S; getting to
P collapses and the network S, locally converges in C*°, as t — T, to two concurring curves at such end—point
forming an angle of 120 degrees, as in the right side of Figure 9.1.

Remark 9.33. We remark that the hypothesis of strict convexity of €2 can actually be weakened by asking
that € is convex and that there do not exist three aligned end—points of the initial network Sy on 9€.

We now deal with the situation of a point zg = lim;_,7 O*(t), for some i € {1,2,...,m}, with zg € Q.
Assuming that around zy € {2 the network is not definitively a tree for ¢ close enough to 7" (which
would imply that the curvature is locally bounded, by Proposition 9.19), there must be at least one
bounded region of S; collapsing to z( at the singular time. By the estimates in Section 7.2, then the area
A(t) of any such region must satisfy A(t) = C(T — t), for some constant C' depending on the number
of its edges. Hence, all the rescaled networks gzo,t must contain the rescalings of such regions that will
have a respective constant area. These rescaled regions cannot “go all to infinity” and disappear in the
blow—up limit network Soor along any converging sequence gwmtj — Swe, otherwise Lemma 7.10 would
apply and we could repeat the argument of the proof of Proposition 9.19, concluding that the curvature
is uniformly bounded around x.

We now suppose that the full rescaled family of networks S,, ( converges to S.,, for instance, if the
uniqueness of blow—up assumption U in Problem 7.25, that we recall here below for the reader’s conve-
nience, holds (see also Remark 7.26):

U: In Proposition 7.20, the full family of rescaled regular networks S,, ( converges in CL . to the limit
degenerate regular shrinker S, as t — +occ.
Equivalently, the full family of parabolically rescaled curvature flows S{ converges to the degen-
erate regular self-similarly shrinking flow Sg°, as 1 — +o00, in Proposition 7.17.

Then, we can separate gw in two parts:

e a compact subnetwork M., of S, given by the union of the cores and the bounded curves (which
are pieces of Abresch-Langer curves or straight segments passing by the origin of R?),
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e the union Noo = gw \ I\7JIOo of the unbounded curves of goo, which must be halflines “pointing”
towards the origin (but not necessarily containing it), by Remark 7.9.

Soo

Figure 9.5: The subnetwork M, (in gray) of a 4—symmetric regular shrinker Seo (four—ray star).

Then, by rescaling-back (dynamically contracting) the flow gxo,t — Soo, by the uniqueness assumption,

the subnetwork M of S; corresponding to the compact subnetwork of S, ; converging to M, is con-
tained in the ball B , Ne=TE (x0) for every ¢ € [0,T), for some constant C independent of ¢ (dependent

on M,). In particular, M, completely collapses to the point z, “disappearing” in the limit, as ¢ — T.
We want now to describe the local behavior of the rest N; of the network S; (corresponding to the union
of the curves of S,,, ¢ neither collapsing, nor entirely going to infinity, converging to the halflines of Soo),
around the point zg,ast — 7.

Remark 9.34. Notice that, inspecting the proof of Proposition 9.11, it is easy to see that the uniqueness
assumption U holds at every point where the curvature is locally uniformly bounded. In particular, it
holds in general if the network is a tree, by Corollary 9.25.

Proposition 9.35. If M1 and the above uniqueness assumption U of the blow-up limit shrinker Sec hold, then,
ast — T, the family ~} of curves of N, converges in C1(U) and in C°°(U \ {zo}), where U is a neighborhood of
xg, as t — T, to an embedded, possibly non—reqular network St, composed of C curves ~i. concurring at x.
The directions of the halflines of So. coincide with the inner unit tangent vectors of the limit curves ~i. at x,
hence, these latter are all distinct.

Moreover, the curvature of every curve & is of order o(1/r), as r — 0, where r is the distance from the multi—
point g € St.

Proof. Since rescaling the evolving networks S, the inner unit tangent vectors at the end—points of the
curves in N; do not change and Nzo’t — Noo, the inner unit tangent vectors of the set of curves o
converge to the unit vectors generating the halflines of S,. More precisely, if the sequence of rescalings
i, of a curve v/ € N, converges in C. to a halfline H* C Noo, the inner unit tangent vectors at the
end-point of 7} converge to the unit vector generating H*, as t — T'.

As, by Lemma 9.8 and the collapse of the subnetwork M, there is a neighborhood U of z, such that for
every p > 0in U \ B,(xo), for t close enough to T there are no triple junctions, hence, by Lemma 7.24,
the networks S; converge in C{2.(U \ {zo}) to a smooth network S composed of smooth curves v} with
an end—point at .

We notice that the smoothness of Sy and of 7% holds in U \ {z¢}, not in the whole U. We want to show
that these curves are actually C' in U, that is, till the point z¢ and that their curvature is of order o(1/r),
where r is the distance from x.

We consider one of the curves of N; (dropping the superscript by simplicity, from now on) 7, which
converges (possibly, after reparametrization), as t — T, to a limit C° curve yr and such convergence is
also in C22. (U \ {x0}).

loc
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As the full rescaled sequence S, converges to the blow—up limit S, as t — 400, also the full sequence
of parabolically rescaled flows S}’ converges in C{. _ for every t € (—0c0,0), as u — +00, to the limit self-
similarly shrinking flow S{° = /=2t Seo (see Remark 6.10). Then, the curves v, which are the parabolic
rescalings of the curves v, converge to the halfline H, as u — +00. We choose ty < 0 and 1o > 0 such
that the parabolic rescalings M{' of the subnetwork M, of S; are contained in B; /2(0), for every u > po
and t € (to,0). Then, the rescaled curves 7{ smoothly converge (by Lemma 7.24), as 1 — +o0, to the
halfline H (which has zero curvature) in B,(0) \ B1(0), for every t € [ty,0). Moreover, repeating the
above argument, we have that, as t — 0, the curves 7' locally smoothly converge in B4(0) \ {0} to some
limit curves ~y, smooth in B3(0) \ {0}, for every fixed p > pp.

We are now going to apply the following special case of the pseudolocality theorem for mean curvature
flow (see [58, Theorem 1.5]) and the subsequent remark.

Theorem 9.36. Let vy, for t € [0,T), be a smooth curvature flow of an embedded curve in R? with bounded
length ratios by a constant D (see Definition 7.15) and let

QT(ZCanO) = {(33'7:1/) € R2 | |JI —(Eo‘ <r, |y_y0| < T}'

Then, for any € > 0, there exists n € (0,¢) and 6 € (0, 1), depending only on € and D, such that if (zo,y0) € Yo
and vy N Q1 (o, yo) can be written as the graph of a function u : (xg — 1,20 + 1) — R with Lipschitz constant
less than n, then

v N Qs(20,%0), for every t € [0,5%) N [0,T),

is a graph over (xzg — §, xo + 0) of a function with Lipschitz constant less than € and “height” bounded by &4.

Remark 9.37. Then, the local estimates of Ecker and Huisken [30] imply that, for every m > 0 there is a
constant o = 0(d,e,m) > 0 and a constant n = 1(d, e, m) > 0 such that if the curvature of vo N Qs(x0, yo)
is bounded by o, then the curvature of v; N Qs/2(0, yo) is bounded by m, for every ¢ € [0,1) N [0,T).

By a rotation, we can assume that H = {(z,0) | z > a} and let H = {(z,0) | > 0}. Taken any £ > 0,
let  and & be given by this theorem, we consider t; € (to,0) such that t; + §2/8 > 0, then if p is large
enough, say larger than some yi; > 0, the curve v¢ in B3(0) \ B1(0) is a graph of a function u over the
interval [1, 3] x {0} C H (with a small “error” at the borders), with gradient smaller than 1 > 0. Hence,
its evolution in the smaller annulus By 5(0) \ B2—5(0) is still a graph over H of a function with gradient
smaller than ¢, for every t € [t;, min{t; + §2,0}), hence for every t € [t;,0), by the assumption on ;.
Notice that, it follows that also ) in B245(0) \ B2_s(0) is a graph of a function over H with gradient
smaller than e, when p > .

Rescaling back, since the C l_norm is scaling invariant, we see that v, for t € [T + pu=2t;,T], can be
written as a graph with C'-norm less than e over zg + H in B(a1s)/.(20) \ B(a—s)/u(20), for every
w > p1. Hence, this conclusion holds for every pair (4, t) in

U (B(2+5)/#(x0) \ B(Q,(;)/#(.’L'O)) X [T+/1,_2f1,T] - R? x [07T]7

B> 2

for every p2 > pq and this union contains the set

_ 26
A= Bass)p(@0) % [T+ g ty, T \{(x,t)€R2><[O,T] o =0l < T 2<T_t)}.

Choosing now ps > 11 large enough, we know that there exists some t5 > t; such;:hat for every t > t,
the rescaled curves 7/ can be written as graphs with C'-norm less than ¢ over H in the ball centered

at the origin with radius 2 \/Q:Tét]‘ That is, for ¢ € [T + py 2tz T}, the curve 7; can be written as a graph

with C'-norm less than ¢ over zy + H in the ball of center z, and radius 2 \/Q:T‘il \/2(T — t), hence, for

every (y,t) in

. 2 -2 _ 2-9 _
B—{(at,t)eR x [T + 13 tg,T)’|x w0l < 2T /AT t)},

The union of the sets .4 and B clearly contains the set

B(2+5)/#2 ((L‘o) x [T + M;zt%T] \ {(l‘o, T)} )
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hence, in other words, for every ¢ > 0 there exists a radius R, > 0 and a time ¢. < T such that the
curve v; in the ball B_(z() can be written as a graph with C'-norm less than ¢, for every ¢ € [t.,T).
Moreover, this also holds for the limit curve 77 on the union

U (Bass)/u(@0) \ Bia—s)/u(0)) = Biass) /s (w0) \ {zo} -

H> 2

This fact, recalling that the inner unit tangent vector of the curve v; at its end—point (the one going to
xo) converges to the direction of H, ast — T, clearly shows that, locally around xy, we can write vy as a
graph of a function over xp + H whose C'-norm decays like o(1), as the distance from z, goes to zero.
In particular, we conclude that all the curves 4., hence the limit network Sr, are of class C! and that all
the sequences of curves 7 converge in C? to 7% (possibly after reparametrization in arclength).
Arguing similarly for the curvature by means of Remark 9.37, we have that the curvature of the curve
Yy in Bay5/2(0) \ Ba_s/2(0) is smaller than any m > 0, if we choose p large enough, say 1 > g > pio. It
follows, rescaling back, that

pu2 sup K <m,

STNB(245/2)/u(0)\B(2—5/2) /1 (%0)
for every 1 > ps. This implies that the curvature of St is of order o(1/r), as r — 0, where r is the
distance from the multi-point z¢ € St.
Finally, Sp cannot have two concurring curve at a multi-point with the same unit tangent, since this
would imply that the limit shrinker S., had halflines of multiplicity larger than one. O

It follows by this proposition that the networks S, converge in C*(U) to a degenerate regular network

Sr having St as non—collapsed part, with underlying graph homeomorphic to S, and core given by the
collapsing subnetwork M;.

Remark 9.38. Notice that the limit Gaussian density (:)(aro) = O(xo, T) (see Definition 6.9) at 7 (and time
T) of the flow S; is the Gaussian density of the blow—up limit shrinker Soo = S, ), and can be different
from the number of curves of Sy concurring at o, divided by two. This does not happen when the
network S; is a tree in a neighborhood of z, for ¢ close enough to 7" and the singularity is given by
the collapsing of a single curve producing a 4—point with angles of 60/120 degrees between the four
concurring curves, as described in Proposition 9.11 (after applying Proposition 9.19), in such case the
blow—up limit shrinker is a standard cross and the limit Gaussian density O(xo,T) is clearly equal to
two.

We actually expect that the curvature of the curves in N; and of St is bounded, not only of order o(1/7),
close to the non-regular multi-points.

Open Problem 9.39.
e The curvature of St is bounded?
e The curvature of the subnetwork N; is locally uniformly bounded around x, as t — 1?

We can finally describe the local behavior of the whole network S;, as ¢ — T, around a point zy €
where S; is not a tree for ¢ close enough to 7'.

Theorem 9.40. Let z; = lim, .7 O'(t) € Q, fori € {1,2,...,m}, and let xo one of such points such that
xo € Q and the blow—up limit at xo, as t — T, is not a line, a standard triod or a standard cross. Then, under
the uniqueness assumption U and the multiplicity—one conjecture M1, there exists a C', possibly non—regular
network S¢ in a neighborhood U of o, which is smooth in U \ {xo} and whose curvature is of order o(1/r), as
r — 0, where r is the distance from x, such that

N, — St in Clloc(U) and Sy = St in C2L(U\ {z0}),

where N, is the subnetwork of the non—collapsing curves of S;.

Moreover, at the multi—point xo of St any two concurring curves cannot have the same exterior unit tangent
vectors. N

The network St is the non—collapsed part of a C* degenerate regqular network St in U with underlying graph
homeomorphic to S and core given by the collapsed subnetwork M, which is the C1~limit of Sy, as t — T.
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Remark 9.41. It is easy to see that, thanks to the uniformly bounded length ratios of S;, the one-
dimensional Hausdorff measures associated to S; weakly—converge (as measures) to the one-dimensional
Hausdorff measure associated to St (see Remark 7.5).

9.4 Continuing the flow

We summarize in the following two theorems the behavior of the evolving regular network at a sin-
gular time, worked out in the previous sections, assuming the multiplicity—one conjecture 9.1 and the
uniqueness assumption 7.25.

Theorem 9.42. If M1 is true and the uniqueness assumption U holds, then the (possibly simultaneous) singu-
larities, as t — T, of the curvature flow of a regular network S, in a strictly convex, open subset Q@ C R? are
locally given by:

o the “isolated” collapse with bounded curvature of a “boundary curve” getting to a fixed end—point on 0Q
(regions cannot collapse to boundary point); indeed, around any end—point P" either the flow is smooth, or
the curve of S; getting to P" collapses letting two concurring curves forming an angle of 120 degrees at
such end—point;

e the collapse with bounded curvature of an “isolated” curve with the formation of a reqular 4—point, locally
around a point xy € €

e the collapse with unbounded curvature locally around a point xo € §2 of a group of bounded regions (each
one of them with less than six edges), producing a possibly non—regular multi—point.

IF{y1, Y2, s Yn, 21, 22, - - -, Zm } are the points of Q where such singularities occur (which are a subset of the
limits, as t — T, of the 3—points of S;), where we denoted with y; the “cross” or “boundary” singularities and
with z; the other singularities, then there exists a possibly non—regular C* limit network St such that:

e the network S; converges locally in C! to §T in Q, ast — T, where §T is a degenerate reqular net-
work having St as non—collapsed part, moreover, the network S; converges locally smoothly to Sy in

Q\ {21, 22, 2m });

e the non—collapsing subnetwork Ny of S, converges locally in C* to Sp in Q, as t — T, moreover, the
convergence is locally smooth in Q\ {z1, 22, ..., 2m});

o the network St is smooth in Q\ {21, 22, ., 2m});
e cvery two concurring curves at a multi—point of St have distinct exterior unit tangent vectors;

e the curvature of St is of order o(1/r), as r — 0, where r is the distance from the set of points {z;}.

The case of a tree is special (for instance, the uniqueness assumption U is not needed in this case).

Theorem 9.43. If M1 is true and the evolving reqular network S, is a tree (or no regions are collapsing, as
t — T), then the curvature is uniformly bounded and the only possible singularities, as t — T, are given by the
collapses of “isolated” curves in Q, producing a reqular 4—point or the collapse of some “boundary curves” getting
to the fixed end—points of the network, letting two concurring curves forming at such end—point an angle of 120
degrees. The network S, converges locally smoothly with uniformly bounded curvature to a degenerate reqular
network Sr in Q, ast — T, having a network St as non—collapsed part, composed of smooth curves with distinct
exterior unit tangents at the multi—points. Such multi—points can be only reqular 3—points and reqular 4—points
in Q2 and end-points on 002 with two concurring curves forming an angle of 120 degrees between their exterior
unit tangents. Clearly. the non—collapsing subnetwork of S; converges locally smoothly to S, as t — T.

The next step, after this description, is to understand how the flow can continue after a singular time.
There are clear situations where the flow simply ends, for instance if all the network collapses to a single
point, like a circle shrinks down to a point in the evolution of a closed embedded single curve, see for
instance the following example.
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t—T

Figure 9.6: A Mercedes—Benz shrinker (see the Appendix) collapsing to a single point.

In other situations how the flow should continue is easy to guess or define. For instance, the case when
a part of the network collapses forming a 2—-point, that can be also seen simply as an interior corner
point of a single curve (see the following figure).

St ST
')’1
Ol
2
0 t—=T
73

Figure 9.7: Collapse of both curves 7!, % and the region they enclose to the point O' = 02, leaving a
closed curve 3, possibly with a corner at O' = O%.

Here, we can restart the flow by means of the work of Angenent [6] where the evolution of curves with
corners is treated (see Remark 2.16). In general, one would need an analogue of the short-time existence
Theorem 5.8 for networks with 2—points or with curves with corners. This will be actually a particular
case of Theorem 10.9 in the next section (see the beginning of Section 10.4).

Instead, a situation that really needs a “decision” about whether and how the flow should continue
after the singularity is depicted in the following figures.

St ST
P’V‘ P’I‘
t—1T
Figure 9.8: A limit network with two curves arriving at the same end—point on 0€2.
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Sz ST
1 1 1
P J P'=0
t—T

Figure 9.9: Collapse of the curve 7! leaving a closed curve 7? with an angle of 120 degrees at an end-
point.

One can decide that the flow stops at ¢ = T or that the curves become extremal curves of a new network
that must have, for every ¢t > T, a fixed end in the end—point P" (this would require some analogs of the
short-time existence Theorem 5.8 for this class of non-regular networks, which are actually possible to
be worked out). Anyway, the subsequent analysis becomes more troublesome because of such concur-
rency at the same end—point, indeed, it should be allowed that, at some time ¢ > T, a new curve and a
new 3—point possibly “emerges” from such end—point (it would be needed a “boundary” extension of
Theorem 10.9 in the next section).

Another situation that also needs a decision, which in this case is easier, is described in the following

figures.
St ST
72
02
t—T

Figure 9.10: Collapse of the curves v* and the region enclosed to the point O? leaving a curve +? with a
1-point as an end—point.

St ST
71
1 1
p o p
t—T

Figure 9.11: Collapse of the curves 72 and the region enclosed to the point O! leaving a curve v! with a
1-point as an end—point.

If the limit network St contains a curve (or curves) which ends in a 1-point, it is actually natural to
impose that such curve vanishes for every future time, so considering only the evolution of the network
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of the rest of the network St according to the above discussion (cutting away such a curve will produce
a 2-point or the empty set, in the figures above, for instance).

Theorem 10.9 in the next section will give a way to restart the flow in the “nice” singularity situation
described in Theorem 9.43, when the curvature remains bounded and a single curve collapses to an
interior point of €2 forming a non-regular network with a regular 4-point..

St ST

t—T

Figure 9.12: A limit “nice” collapse of a single curve v producing a non-regular network Sr.

Finally if we are in the situation of a non-regular limit network Sy described by Theorem 9.42, after the
collapse of a region of S;, as t — T (see for instance the following figures), in order to restart the flow
one will need either an extension of Theorem 10.9 (mentioned in Remark 10.19) or an improvement of
Proposition 9.35 (the curvature of the non-degenerate limit curves is bounded).

St ST

t—T

St ST

t—T

<30
Se)

Figure 9.13: Less “nice” examples of collapse and convergence to non-regular networks.

We conclude this section by discussing the (conjectural) “generic” situation of singularity formation, in
the sense that it should happen for a dense set of initial networks.

By numerical evidence (computing the lowest relevant eigenvalue of the Jacobi-field operator of the
candidates — Dominic Descombes and Tom Ilmanen, personal communication) the dynamically stable shrinkers
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(meaning that “perturbing” the flow, the blow—up limit network remains the same) should be only the
line, the unit circle, the standard triod, the standard cross, the Brakke spoon, the lens and the “three-ray
star” (see the figure below).

Figure 9.14: A “three-ray star” regular shrinker.

Conjecture 9.44. The “generic” singularities of the curvature flow of a network are (locally) asymptot-
ically described by one of the above shrinkers.

We remark that if rescaling around a singular point zo we get one of the listed above shrinkers, the limit
network Sy is locally quite “nice”. If the shrinker is a line or a standard triod, there is no singularity. If
it is a circle, it means that the flow ends at the singularity. If it is a Brakke spoon, locally the flow pro-
duces a curve with an end-point in Q (see Figures 9.10 and 9.11), which we can reasonably “assume” it
disappears at subsequent times and we have to deal with an empty network or with a curve containing
an angle (as in Figure 9.7) that has a “natural” unique evolution, immediately smooth. In the case of
a standard cross, we can deal with the “new” 4-point by means of Theorem 10.9. If we get a lens, Sp
will be (locally) given by two C! curves (smooth outside z) concurring at the singular point without
forming an angle (even if their curvature could be unbounded, getting to z, if Problem 9.39 has a neg-
ative answer). Finally, if the shrinker is a three—ray star, the limit network St is locally a triod at z( with
angles of 120 degrees, by Proposition 9.35 (also, in this case, the curvature could be unbounded getting
close to x¢). Notice that in these last two cases, even if apparently “nice”, we have to use Theorem 10.9
(and possibly its extension mentioned in Remark 10.19) in order to restart the flow, since the curves are
not necessarily C? up to z.

However, we remark that in all these cases (and in particular in the most “delicate” ones: cross, lens
and three-ray star, when we need to apply Theorem 10.9, or its extension mentioned in Remark 10.19)
the associated limit network St (if not empty and “cutting” away a curve if it ends in a 1-point in Q)
has either a regular 4-point (with angles of 120/60 degrees) or a regular 3—point, or a 2-point with no
angle. In particular, the cone generated by inner unit tangent vectors of the concurring curves at such
point form, respectively, is either a standard cross, a regular triod, or a line. Since, as we will see in the
next section, the curvature flow produced by Theorem 10.9 is associated with a regular self-similarly
expanding network (see Definition 10.1) originating from such cone, which in these special cases it is
unique (see the end of Section 10.1 and Problems 10.31, 10.32, 10.33), it is natural to expect that also the
flow produced by such theorem is unique, which would give a unique “canonical” way to continue the
flow in the (conjectural) generic situation.

10 Short time existence III - Non-regular networks

In this section we consider the problem of defining and finding a curvature flow (as smooth as possible)
starting from an initial possibly non-regular network, that is, having multiple points of order greater
than three or triple junctions where the 120 degrees condition is not satisfied. As we have seen in the
previous sections, this is naturally related to the “restarting” of the flow after a singularity. To deal with
such problem, we clearly need a definition of solution slightly different from Definitions 2.11 and 2.12
in a positive time interval [0, T'), asking anyway that Definition 2.7 still holds for every positive time.
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We are going to present two short—time existence results for general networks, the first by T. Ilmanen,
A. Neves and the last author in [58], Theorem 10.9, the second by J. Lira, M. Mazzeo, M. Saez and the
third author in [70], Theorem 10.26. Both theorems are based on the existence and the properties of the
self-similarly expanding networks and provide a “nice” motion by curvature if the initial datum belongs
to the class of non-regular networks with bounded curvature, such that at every multiple point the
exterior unit tangent vectors are mutually distinct. Notice that the second assumption is not restrictive
for the “restarting” problem, taking into account the conclusions of Theorems 9.42 and 9.43.

10.1 Self-similarly expanding networks

Definition 10.1. A regular C? open network E is called a reqular expander if at every point = € E there
holds
k=at. (10.1)

This relation is called the expanders equation.

The name comes from the fact that if E is a regular expander, then E; = /2t E describes a self-similarly
expanding curvature flow of regular networks in (0, +oc), with E = E, /. Viceversa, if E; is a self-
similarly expanding curvature flow of regular networks in the time interval (0, +o0), then E;/, is a
regular expander, that is, E, /, satisfies equation (10.1).

N ’ \ ’
\ ’ \ ’
\ / \ G

L ¥0) O

Figure 10.1: Examples of tree-like regular expanders with 3, 4, 5 asymptotic halflines (in gray).

By studying the ODE satisfied along each curve, one can easily show that an expander cannot be com-
pact, all its curves are smooth and each noncompact curve must be asymptotic to a halfline. Moreover,
it is trivial that the family of the asymptotic halflines of the open networks of a self-similarly expanding
curvature flow E, is the same for all ¢ € (0, 4+00) and, by a direct maximum principle argument, one can
prove exponential decay of the functions representing the network as graphs on such halflines, outside
a large ball.

Lemma 10.2. Let P be a finite union of distinct halflines meeting at the origin and E a regular expander, such
that each noncompact curve of E is asymptotic in Hausdorff distance to one of the halflines of P. Then, there
exists an ro > 0 large enough such that each noncompact curve o of E corresponds to a connected component of
E\ B,,(0) and can be parametrized as

o(l) = Le™ +u(0)e" T2 for £ > 1.
where { L™ | £ > 0} is a halfline of P and limy_, o u(¢) = 0. Moreover, the decay of  is given by
u(0)] < Coe™ /2, u/(0)] < Cot™e™ /2, " (0)] < Coe™" /2

and 2 ,
|u///(€)| < Cgfe_é /27 |u////(€)| < C4€2€_e /2’

where each constant C; depends only on o, u(re) and v’ (ro).
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Then, it is easy to see that for every smooth self-similarly expanding curvature flow E;, letting P be the
network given by the finite union of the distinct (common) asymptotic halflines of E;, meeting at the
origin, we have E; — P, ast — 0, in C2° (R? \ {0}). We say that P is the generator of the flow E; or that
[, is a (possibly not unique) curvature flow of P in the time interval [0, +00).

Conversely, if we consider a network P given by a finite number of distinct halflines meeting at the
origin and we assume that we have a smooth curvature flow S, for t € (0,7'), such that S; — P in

Cee (R?\ {0}), as t — 0, then the parabolically rescaled flows

loc
SIJ: - /14 SN—Q{:

also satisfy S — P, as t — 0, for any p > 0, since P is invariant under rescalings. Thus, supposing that
the flow S; is unique in some “appropriate class” with initial condition P, we obtain that 7" = +o0 and
St =S¥, for any p,t > 0. This is like to say that S; = V2tS, /2, that is, S; is a self-similarly expanding
curvature flow of regular networks, for ¢t € (0,+00) and P is its generator. As we said, the family of
distinct (common) asymptotic halflines of all S; coincides with the family of halflines of P.

Remark 10.3. Notice that the generator of a self-similarly expanding curvature flow of networks is
uniquely defined, while, for a network P composed of a finite number of halflines for the origin, there
could be several self-similarly expanding curvature flows of regular networks having P as a generator,
as in the following figure.

N ’
N s N s
N s N ’

s N

Figure 10.2: An example of two different tree-like regular expanders (not in the same “topological class”
— see below) with the same asymptotic halflines (in gray).

Given P = |J;_, Pj, where P; are halflines from the origin, in [97] it was shown that for n = 3 there
exists a unique tree-like, regular expander E asymptotic to P (if P is a standard triod such an expander
E is P itself), in the case n > 3 the existence of such tree-like, connected, regular expanders was shown
by Mazzeo-Saez [83]. This result is based on the following simple lemma.

Lemma 10.4. A regular expander is a critical point of the length functional with respect to the negatively curved
metric ,
g = el (dx% + dm%) .

Proof. See [83, Proposition 2.3] or [58, Lemma 4.1]. O

To be precise, such a network is a stable critical point of the length functional in (R?, g) (where, as usual,
it suffices to look at the length of the networks in any large ball Bx(0)).

The geodesic arcs and rays for the metric g are qualitatively similar to the geodesics in the hyperbolic
space, as one can expect, since the curvature of g is everywhere negative. For instance, if P; and P/ are
any two halflines emanating from the origin, then there is a unique complete geodesic for the metric g
which is asymptotic to these halflines along its two ends. A way to see this is to consider the “geodesic
compactification” of (R?, g) as a closed ball B. A limiting direction (i.e., the asymptotic limit of any
halfline P;) then corresponds to a point ¢; € dB. Thus, any P = J;_, P; is uniquely determined by the
choice of n distinct points ¢1, ..., ¢, € 0B.
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We remind the reader that, given a collection of points ¢, ..., ¢, a solution of the so called Steiner
problem in (R?, g) is a connected set that contains the points q1, . . . , ¢, and minimize the length functional
(with respect to the metric g). One can prove that for any collection of points ¢, ..., g, there exists a
solution to the Steiner problem and it is a “geodesic” and regular network. In particular, a minimizer
of the Steiner problem is an expander.

This observation leads to the following result of Mazzeo-Saez [83, Main Theorem)].

Proposition 10.5. Let P = U?:l P; be a set of halflines from the origin in R? and q1, . . . , g, the corresponding
points (listed in cyclic order) on OB, as above. Then, the set of expanding self-similar solutions of the network flow
with initial datum P is in one—to—one correspondence with the set of (possibly disconnected) regular networks on
B with end—points {q1, . . ., qn }, whose arcs are geodesics for the metric g.

Moreover, for each choice of P = |J;_, P; there exists at least one self-similar expanding solution whose non—
compact branches are asymptotic to the halflines P;.

Another key fact is that two regular expanders with the same “topological structure” and which are
asymptotic to the same family of halflines, have to be identical.

Definition 10.6. We say that two regular expanders E, and E; are asymptotic one to each other if their
ends are asymptotic to the same halflines.
We say that two regular expanders Eq and E; are in the same topological class, if there is a smooth family
of maps

Fy:Ey—R?% 0<60<1

such that Fj is the identity, 3 (Eq) = E;, the distance between any two triple junctions of Fy(E) is
uniformly bounded below and

lim sup {|0Fy(x)/90| | x € Eo \ By,(0)} =0, forevery0<6<1.

70—+00
Notice that two regular expanders in the same topological class are asymptotic to each other.
Theorem 10.7. If Eq and E, are two reqular expanders in the same topological class, then they coincide.

Proof. We work in the negatively curved metric in the plane
g= elx‘2(d:1c% + da3),

such that each curve of a regular expander is a geodesic in this metric.

Let {z?} and {z}} denote the triple junctions (a finite set) of Ey and E;, respectively. As the networks
are in the same topological class, we can rearrange the elements of {2V} so that each z? is connected
to ! by the existing deformation Fj of E, into E;. Denote by %, for & € [0,1], the unique geodesic
connecting these points.

For each ¢, we consider the network E¢ such that if 2 is connected to 2 by a geodesic, then =
connected to xi through a geodesic as well. To handle the noncompact curves we proceed as follows.
Let P; denote a common asymptotic halfline to Eq and E;, which means that there are geodesics 1y C
Eo, 11 C E; asymptotic to P; at infinity and starting at some points 29 and z;} respectively. Define then,
for every ¢ € (0,1), the curve ¢¢ C E to be the unique geodesic starting at 2° and asymptotic to P;.
This gives a deformation of the curve v to ;.

Hence, we have constructed a smooth family of networks with only triple junctions E¢, for £ € [0,1],
“connecting” Eq and E; and such that:

13

i

is

1. The triple junctions {2%} of E, connect the triple junctions of E, to the ones of E; and, for each
index i fixed, the path z$, with ¢ € [0,1], is a geodesic with respect to the metric g.

2. Each curve of E; is a geodesic of (R?, g).

3. There is ry > 0 large enough so that E; \ B,,(0) has n connected components, each asymptotic
to a halfline P;, for j = 1,2,...,n. We can find angles w; such that each end of E; becomes
parametrized as

Ee(0) = e + uj e (£)e @i +™/2  for £ > ry.

This follows from Lemma 10.2.
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4. The vector field along E¢,

Xe(t) = 3-Be(0)

is continuous, smooth when restricted to each curve and
IXe(0)] = O(e™C/?),  |VXe(0)] = O e 072,

uniformly in & € [0, 1], where the gradient is computed along E¢ with respect to the metric g.

Moreover,
Ouje(f
ozj@(é) = JZ( )

satisfies 2 2
e (O] = 0(e™/2) (O] = O 1e™" /%),

It is enough to provide justification for the second set of estimates. For ease of notation we omit
the indices j and £ on «; ¢ and u; ¢. By linearizing the equation for an expanding graph, see [97,
equation (2.3)], we have

o =1+ W) (a—Lla') +2u'a/ (u — ).

We can assume without loss of generality that a(r¢) > 0. Moreover, it follows from our construc-
tion that
lim |a(0)]+ |/ (€)] = 0.

{—+oo

A simple application of the maximum principle shows that o can not have a negative local mini-
mum or a positive local maximum. Hence, o > 0 and o’ < 0. We can assume that v’ < 0 (see the
proof of Lemma 10.2). The function 8 = « — ¢a/ thus satisfies

B =—L(1+[u)})B -2/ < —2
and integration of this inequality gives the conclusion.

Denote by L the length functional with respect to the metric g and consider the family of functions

n

W, (€) = L(E¢ N Bayy (0)) + Z/Q el V2 1y, (02 de — n/z 12 qp.

j=172r0
The decays given in Lemma 10.2 imply the existence of a constant C' such that for every r <7
Wy = Wellcs < Ce™, (10.2)

so, when r — 400, the sequence of functions W, : [0,1] — R converges uniformly in C? to a function
W :[0,1] — R. Furthermore, if { = 0 or £ = 1, we have, combining Lemma 10.2 with point 4 above, that

. dWL(§)
LHm dé =0,

thus, W has a critical point when £ = 0or £ = 1.
A standard computation shows that on each compact curve of E;, we have (after reparametrization
proportional to arclength)

d2

b
e a

b b
/ g@uwﬂ:/erwwg&%FAmmu@m,g&»ﬂﬂmrww&&ﬂ@

b
— [ B (V5 X0 2 — Riem(Xe, B4 By, X0) .
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where E; = dE¢/dl, we used property 1 above and all the geometric quantities are computed with
respect to the metric g (Riem is the Riemann tensor of (R?, g)). Combining this identity with property 4,
we have

W, (€)

— :/ B 72 (I(Ve, X¢) ™| — Riem(X¢, By, By, X¢)) dl + O(e™") .
dg§ EeN B, (0) <

As (R?, g) is negatively curved, more precisely, its Gaussian curvature is equal to —e~l71%, the integrals
above are bounded independently of r > 2. Therefore, by means of estimate (10.2), we obtain
W(€)
dg?

:/E |]Ef§-\’2(\(VE/€X§)L|2—Riem(Xg,Eé,E'g,Xg)) dl >0,
3

where the last inequality comes form the fact that (R?, g) is negatively curved. It follows that W :
[0,1] — R is a convex function with two critical points at { = 0 and £ = 1, hence, it is identically
constant. The last formula above then implies that the vector field X, must be a constant multiple of E,
hence, it must vanish at all triple junctions. The fact that X is continuous implies that X is identically
zero and this proves that all the networks E, coincide, for £ € [0, 1], in particular Ey = E;, which is the
desired result. O

Corollary 10.8. If P = Uj'=1 P; is a standard cross, then there exists a unique, connected, treelike, regular
expander asymptotic to P.

Proof. In this case, it is easy to see that there are only two possible topological classes of connected regu-
lar expanders asymptotic to P (analogous to the two situations depicted in Figure 10.2), but since every
unbounded curve cannot change its convexity (as for the shrinkers, by analyzing the expanders equa-
tion (10.1)), if two such curves are contained in the angle of 120 degrees of the standard cross, when they
concur at a 3-point they must form an angle larger than 120 degrees, which is a contradiction, hence
such topological class is forbidden.

Thus, only one topological class is allowed and it contains only one regular expander (with two sym-
metry axes), by Theorem 10.7. O

We recall that the same conclusion of this corollary also holds when P is composed of three halflines
from the origin.

10.2 A short-time existence theorem for non-regular networks

The first result we present ([58, Theorem 1.1]) requires the notion of convergence in the sense of varifolds
and can be stated as follows.

Theorem 10.9. Let Sy be a possibly non—regular, embedded, C L network with bounded curvature, which is C?
away from its multi—points and such that the exterior unit tangent vectors of the concurring curves at every
multi—point are mutually distinct. Then, there exist T > 0 and a smooth curvature flow of connected regqular
networks Sy, locally tree-like, for t € (0,T), such that S, for t € [0,T) is a regular Brakke flow. Moreover, away
from the multi-points of Sy the convergence of Sy to So, as t — 0, is in CZ . (or as smooth as Sp).

Furthermore, there exists a constant C' > 0 such that sups, |k| < C/+/t and the length of the shortest curve of S,

is bounded from below by C+/t.

Remark 10.10. To be more precise, we define the sets G, as
Gy = {(z,7(z,t)) |z € S} U{(z, —7(x,t)) | x € S;} C R? x S,

for every t € [0,T), where 7(x,t) is the unit tangent vector at € S;. The convergence of S; — Sy in the
previous theorem is in the sense of varifolds, that is, as t — 0, the Hausdorff measures H!L. G, converge
to H'L Go, as measures on R? x S! (see [99] for the general definition). It is easy to see that this implies
that H'L S; — H'L So, as t — 0, as measures on R?, hence there is no instantaneous loss of mass of the
network at the starting time.

Around a non-regular multi—point the C'—convergence is not possible: for every ¢ > 0, the networks
S; are regular, so they satisfy the 120 degrees condition and that would pass to the limit. Varifold-
convergence is anyway a sort of “weak” C'—convergence, slightly stronger than simply asking that
HULS; — HIL Sy, ast — 0.
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We aim to present now an outline of the proof of Theorem 10.9 which depends crucially on an ex-
pander monotonicity formula implying that self-similarly expanding flows are “dynamically stable”.
The monotone integral quantity we will consider has been applied previously by A. Neves in the setting
of Lagrangian mean curvature flow [84-86]. Other main ingredients are the local regularity Theorem 8.3
and the pseudolocality Theorem 9.36 (see [58, Theorem 1.5]). We underline that for curves moving in
the plane, this latter can be replaced by S. Angenent’s intersection counting theorem, see [8, Proposi-
tion 1.2], [7, Section 2] and [5] for the proof.

By the assumptions at any multi—point of an initial network Sy, the cone generated (at such point) by
the interior unit normal vectors of the concurring curves consist of a finite number of distinct halflines.
The natural evolution of such a cone is a self-similarly expanding curvature flow, due to the scaling
invariance of this particular initial network. The strategy is then as follows: we “glue in”, around
each possibly non-regular multi—point of the initial network Sy, a (piece of a) smooth, self-similarly
expanding, tree-like, connected regular network at the scale /¢ (in a ball of radius proportional to /),
corresponding to the cone generated by the interior unit tangent vectors of the concurring curves of
So at the multi-point, to obtain an approximating C? regular network S (satisfying the compatibility
conditions of every order, see Definition 3.27). The curvature of Sg is thus of order 1/+/€ and the shortest
curve has length proportional to /€. Then, the standard short-time existence result yields a smooth
curvature flow S} up to a positive time T¢.

To prove that these approximating flows exist for a time 7" > 0, independent of &, we make use of
the expander monotonicity formula to show that the flows S} stay close to the corresponding self—
similarly expanding flows, in an integral sense, around each multi-point. This gives that the curvature
is bounded by C/+v/t up to a fixed time T > 0, together with a lower bound on the length of the shortest
curve. Thus, we can pass to the limit, as £ — 0, to obtain the desired curvature flow.

Remark 10.11. The Brakke flow provided by the above theorem is not necessarily with equality (see
Definition 6.1). Indeed, assume for instance that Sy is a standard cross (see Figure 7.5) and ¢ a test
function such that 0 < ¢ < 1,0 = 1 on B;(0) and ¢ = 0 outside of By(0). Let S; = v/2tSy be the
regular expander “exiting” from Sy (which is the curvature flow given by Theorem 10.9). Suppose
by contradiction that S; is a regular Brakke flow with equality. Since Sy has no curvature, by using
equation (6.2) we have

d 2
¢ @ds‘ :—/ ok ds—i—/(Vga\@)ds:O.
dt Sy t=0 So So

Anyway, by the mean value theorem for any ¢ > 0 there holds

ds — ds
fs, ¢ Js, © _ _/ ok? ds +/ (Vo, k) ds,
t Se Se

for some 0 < @ < t. By the self-similarity property of S, = /2t Sy, it is then easy to see that the first
term on the right-hand side of this formula goes to —co and the second one stays bounded, hence,

' fst ods — fSo pds
= lim sup = —00,
t=0 t—0 t

d
[ pd
dt Js, 7

which is a contradiction.

Remark 10.12. In writing this paper, we got informed that the hypothesis on the non—-coincidence of two
(but no more than two) exterior unit tangent vectors can actually be removed (Tom Ilmanen, personal
communication).

Remark 10.13. The a priori choice of gluing in only connected regular self-similarly expanding networks,
hence obtaining a connected network flows, has a physical meaning: it ensures that initially separated
regions remain separated during the flow while using only tree-like self-similarly expanding networks
excludes the formation of new bounded regions.

Indeed, from a 7-point one could try (this is only conjectural, the line of Theorem 10.9 does not work in
this case) to get a flow with a new heptagonal region, by gluing in a symmetric self-similarly expanding
network with a heptagonal region, following the construction of Theorem 10.9 described above.
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Anyway, it can be seen that all the connected, regular self-similarly expanding networks containing a
bounded region must have at least seven unbounded halflines. This because, by means of the same
arguments of Section 7.2 (Remark 7.14), every bounded region of a regular self-similarly expanding
network is bounded by at least seven curves. This clearly implies that from a multi-point of order
less than six, the flow produced by Theorem 10.9 is always locally tree-like, even if the line of proof
(and at the moment it is not) could be adapted to “glue in” any self-similarly expanding network (that
is, possibly also a non tree-like one, in general). It is then a natural question if a multi-point with
more than five (or possibly more than six) concurring curve can appear in the limit network Sz, as
t — T, described in Theorem 9.42 of the previous section. This is related to finding a regular (possibly
degenerate) shrinker with more than five (or maybe six) unbounded halflines.

Open Problem 10.14. Do there exist (possibly degenerate) regular shrinkers with more that five (or six)
unbounded halflines?

10.3 The expander monotonicity formula

Let S; be a curvature flow of tree-like regular networks. The tangent vector of S; makes with the z—axis
an angle 0; which, away from the triple junctions, is a well defined function up to a multiple of , since
we do not care about orientation. Because at the triple junctions, the angle jumps by 27 /3, there is a
well defined function 6, which is continuous on S; and coincides with 6, up to a multiple of 7/3. We
identify the plane R? with C, thus

k=J10s0; =v 00 ,

where J is the complex structure.
Let ¥ = xzdy — ydz be the Liouville form on R?. Since we assumed that S; has no loops, we can find a
function f;, unique up to a time-dependent constant, such that

dﬂt :g‘st .

We can modify the time-dependent constant so that the following evolution equations hold, see [58,
Lemma 3.1].

Lemma 10.15. The following evolution equations hold away from the triple junctions:

do
7; = 920, + 0,0, (1| X,

d
W _ 526, + 0.8, (1 X) 201,

where X = k + At is the velocity of the evolution.

Notice that this implies that the function «; = ; + 2t, satisfies the evolution equation

do
th = 8%a; + Dsy (1] X) .
Furthermore, J7 0sa; = vOsa; = —xt + 2tk, which exactly vanishes on a self-similarly expanding

network. With a computation similar to the one leading to Huisken’s monotonicity formula (6.4), we
arrive at the following result, see [58, Lemma 3.2].

Lemma 10.16 (Expander monotonicity formula). The following identity holds

(r — o)t 2

k ~ 7
e — 1)

d 2
O‘%pmoyto(‘rat) ds = */ 2|xl *2tk| on,t0($,t) dS*/ atz pzo,to(zvt)dsa

dt S S¢ S

for some constant C.

In the later applications, the evolving networks will be only locally tree-like, that is, only locally without
loops. In order to apply the above monotonicity formula, it will need to be localized. We assume that
St N B4(xo) does not contain any closed loop for all 0 < ¢t < T'. We define j; locally on S; N By () and
we let ¢ : R? — R be a smooth cut-off function such that ¢ = 1 on By (z0), ¢ = 0 on R? \ Bs(x() and
0 < ¢ < 1. Then, we have the following localized version of Lemma 10.16, see [58, Lemma 3.3].
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Lemma 10.17 (Localized expander monotonicity formula). The following estimate holds,

df gOOé? pwo,to(a:?t) ds < _/ <)0|37L _2tk|2pwo,to($at) ds+C O‘? pl‘o,to(xat) ds.
tJs, St S¢N(Bs(z0)\B2(z0))

10.4 Outline of the proof of Theorem 10.9

Now let Sy be a non-regular initial network with bounded curvature. For simplicity, let us assume that
S has only one non-regular multi—point at the origin.

If the multi-point consists of only two curves meeting at an angle different from 7 (remember that a
zero angle is not allowed), then, by the work of Angenent [6-8], there exists a curvature flow starting at
So, satisfying the statement of Theorem 10.9: actually the angle is immediately smoothed and the two
curves become a single smooth one.

So we can assume that at the origin at least three curves meet and let 7;, for j = 1,2,...,n, be the
exterior unit tangent vectors. We denote with

Pj:{—gTj|€>0}

the corresponding halflines and P = |J_, P;. Since Sy has bounded curvature, we can assume, by
scaling Sy if necessary, that Sy N B5(0) consists of n curves o; corresponding to the tangents 7; and if w;
is the angle that P; makes with the z—axis, there is a function u; such that o; can be parametrized (with
a small error at the boundary of the ball B5(0)) as

oj = {Zei“f + uj(Z)ei(“j+”/2) [0< 4 < 5} .
Notice that the assumption that Sy has bounded curvature implies

(0] <CP and  |u(0)] < CE,

for some constant C.

As already mentioned, in [97] it was shown that for n = 3 there exists a unique tree-like regular ex-
pander E asymptotic to P = [J;_, P;. In the case n > 3, the existence of tree-like, connected, regular
expanders was shown by Mazzeo—Saez [83].

We remind that, thanks to Lemma 10.2, there exists o > 0 such that outside the ball B,,(0) the n
noncompact curves ; of the regular expander E can be parametrized as

v; = {e™i +v; (0)et@it™/2) | g > o},
where the functions v; have the following decay:

[ (O < Coe™ i <t e (0] < Cpe 2.

Consider now the rescaled expander E; = 1/2¢ E, call 0; ¢ be the curve of E; asymptotic to P;, for every
i=1,2,...,n,then . 4
i = {£e™T + v (O 1 = rg\/26}

and we have the estimates
i) < CV2Ee /4 ) (0] < Cety/26e™ % (0] < Ce 4 \/2€.

In particular, choosing ¢ small enough, we have ry/2¢ < 4 and this holds in the annulus A(ry/2¢, 4) =
Ba(0)\ By, 2 (0)-

We now aim to construct the network S§ by gluing E¢ = /2€ E into Sy (more precisely E¢ N B, /z(0),
for £ small enough). We define the network S5 that coincides with E¢ in B, 5¢(0) and with Sy outside
B4(0), while in the “gluing” annulus A(r¢/2¢,4), in a way we “interpolate” between the two networks.
Precisely, letting ¢ : RT — [0, 1] be a cut—off function such that ¢ = 1 on (0, 1] and ¢ = 0 on [2, +0), we
define S5 in A(roy/2€,4) via the graph function u; ¢ as follows, for ¢ € [ro/2€,4),

uje(0) = @(E 0 () + (1= o(E71/40))uy(0) .
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That is,
S§ N A(ro\/2€,4) = {ee™i + wj e (£)e@rt™/2 1oy /26 < U< 4}
(with a small error at the borders of the annulus A(rg/2€, 4)).
By construction, every network Sj has the same regularity of Sy, it is regular and satisfies all the com-

patibility conditions of every order (see Definition 3.27), it is locally a tree and it can be checked easily
that it satisfies the following properties, for every £ smaller than some £y > 0:

P1. Thereis a constant D;, independent of &, such that
HY(S§ N B,.(x)) < Dy,
forall z € R and r > 0.

P2. There is a constant Dy independent of £, such that for every = € Sg,
165 (2)| + |85 ()] < Daj2* + 1),

where 65 and 35 are the “angle function” and a primitive for the Liouville form of the network S§,
as defined in Section 10.3.

P3. The curvature of S is bounded by C/+/€ and S§ — Sy in CL_(R2\ {0}), as & — 0.

P4. The connected components of P N A(rgv/2,4) are in one—to-one correspondence with the con-

nected components of S5 N A(rg+/2€,4) and there is a constant D3, independent of &, such that the
functions u; ¢ satisfy

(O] + €l (O] + Pl o (0)] < Dy (£ + /28 /1),

for every ¢ € [ro\/2€,4].

P5. The sequence of rescaled networks S = S5/+/2€ converges in C2%(B,, (0)) to E, for « € (0,1), as
&E—0.
Without loss of generality we can also assume that locally

lim(gg + Bg) =0,
£—0
where 55 and Bg are relative to §g

Let Sf, for ¢t € [0, T¢), be a maximal smooth curvature flow starting at the initial network SS and let
0% 10 () = [ papy (1) ds
8§

be the Gaussian density function with respect to the flow S5.
We fix eg > 0 such that 3/2 + ¢y < Og:. The main estimate, which will imply short-time existence, is
given by the following proposition.

Proposition 10.18. There are constants &1, 61 and 1y depending on Dy, Do, D3, E, o and e, such that if
t <6y, r? < ity and £ < &,

then,
@E

z,t+r2

(t) <3/2+eo,
for every x € B1(0).

We will sketch the proof after showing how this implies Theorem 10.9.
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Proof of Theorem 10.9. Considering the smooth curvature flows S{ in the time interval [0, T¢), for some
T¢ > 0, discussed above, we now aim to show that there exists T > 0 such that Ty > T, for all £ € (0,&;)
and that there are interior estimates on the curvature and all its higher derivatives for all positive times,
independent of £ € (0,&;).

By [58, Theorem 1.5], there exists ¢ > 0 such that if Sg can be written with respect to suitably chosen
coordinate system as a graph with a small gradient in a ball Bg(z), then S§ remains a graph in this
coordinate system in B.g(x) with small gradient, for ¢t € [0,cR?]. Combining this fact with the in-
terior estimates of Ecker—-Huisken in [30] for the curvature and its higher derivatives, we can choose

a parametrization of the evolving network and a smooth family of points Ff» e S in the annulus
B1/5(0) \ By/3(0) along each curve corresponding to P;, for j = 1,...,n, such that

NP5, 1) = 0 and |9'k(P5,1)| < G,

for all [ > 0 with constants C; independent of £ for 0 < ¢t < min{T¢, §}, where § > 0 does not depend on
&. Then, Corollary 4.12 gives estimates on the curvature and its derivatives, independent of £ and ¢, on
SE\ B1/2(0), for t € (0,min{7¢, d}) (possibly taking a smaller ¢ > 0).
To get the desired estimates on S N B, /2(0) we now apply Proposition 10.18 and Theorem 8.3. Let
€1,61,m be given by Proposition 10.18. If we choose 0 < to < min{T¢,d1,6,1/2} and z¢ € By/2(0),
Proposition 10.18 implies that if £ < &;, we have

@E

z,t+r2

(t) <3/2+ ¢,

— 2
forallz € Bl(O): t € (0,t9) and 72 < n3t. In particular, we see that if £ € (to/2,t), choosing 72 < 2(71’1;‘;%)
and setting t = ¢ — r?, we have t < ty < §; and r? < nit. Hence, the above estimate holds and it can be
equivalently written as

@if(f —r?)<3/2+¢0,

for such pairs (Z, 7). Letting p = /to/2 (notice that B,(z¢) C B;(0)), such estimate holds for all (z,t) €

By (o) x (to — 0% to) and r < fjrm p. Hence, by Theorem 8.3 with o = 1/2, there exists a constant C,

depending only on €y and 7); (by property P1 above, the length ratios are uniformly bounded) such that

|k (2, 1)] < C/ Vo,

for every t € (to/8,tp) and z € S% N Bm(o). Sending t — to, we get

|k£($07t0)| < C/Vio .

Hence, by the arbitrariness of z, this estimates holds for all 2y € Sfo N By /2(0) and to small enough,
together with the corresponding estimates on all higher derivatives. Moreover, by the second point of
Remark 8.4, there is a constant C; > 0, depending only on ¢ and 7, such that the length of the shortest
curve of Sfo is bounded from below by C4 v/#y. By the arbitrariness of the choice, these estimates hold
for every to > 0 small enough.

Together with the estimates on S \ B, /2(0) for every ¢t € (0,min{7¢,0}), this implies that T > T, for
some T' > 0, for every ¢ < &;. By the estimates on the curvature, which are independent of £, we can
then take a subsequential limit of the flows S¢ on [0,7), as € — 0, to obtain a smooth limit curvature
flow S; in a positive time interval, starting from the non-regular network Sy.

Notice that, by [58, Theorem 1.5] and the interior estimates of Ecker-Huisken, away from any multi—
point, the flow S, attains the initial network Sy in C? (or in the class of regularity of Sy, if it is better than
C? away from the multi-point).

Furthermore, by the above estimate on the curvature and Theorem 8.3, we have

|k(z,t)| < C/VE,

for every = € S;. The estimate on the length of the shortest curve passes to the limit as well. O
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Remark 10.19. The conclusions of Theorem 10.9 also hold if the initial network Sy is a C* non-regular
network, smooth away from the multi-points where the exterior unit tangent vectors of the concurring
curves are mutually distinct and the curvature is of order o(1/r), where r is the distance from the set
of the multi—points of Sy. The modifications in the proof are not completely trivial, the details of such
result will appear elsewhere.

We will now give a sketch of the proof of Proposition 10.18. Since the estimates are rather technical we
only outline it and refer the interested reader to [58]. However we want to underline the main three
steps of the proof.

Step 1. Estimates far from the origin and for a short time.

The following estimates are a direct consequence of Huisken’s monotonicity formula (6.4): the first
one says that the flow is well controlled at a point z away from the origin up to a time proportional
to |z|?. This follows by observing that in the annulus A(K(+/2¢, 1), where K, is sufficiently large, the
initial network Sg is close to the collection of halflines P for all 0 < ¢ < & . Even more, for 1 > |z| >
Ko\/2(§ +t) we see that in By 2) \/2(57”)(%) the initial network is C'—close to a unit density line. By
the monotonicity formula, this gives a control up to time ¢.

The second one shows that if we “glue in” the regular expander at scale £, then we get control in ¢ up
to a time proportional to ¢. This estimate follows from observing that scaling the initial network S, by
1/4/2¢€, each point on the network is uniformly C 1_close, in a ball of fixed size, either to a unit density
line or to a standard triod. The estimate then follows from the monotonicity formula.

For details of the proof see [58, Lemma 5.2].

Lemma 10.20.

o (Far from origin estimate) There are 61, Ko > 0 such that if r2 <t < 6y, then
@E

T, t+7r2
for every x with 1 > |z| > Ko/2(§ + 1).
e (Short time estimate) There are &1, q1 > 0 such that if € < &, 72,t < 1€, then

(t) <3/2+ ¢,

@E

w,t+r2(t) < 3/24‘507
for every x € B1(0).

It is convenient to introduce a rescaling of the flow which makes the expander “stationary”. We set (see
property P5 above)

S _ S
V264D
and let
Gio,to (t) = /§£ Pzq,to ('7 t) ds.
Notice that N
Of (=05 . . (1) (10.3)
Va@etn ' 2(EFD
Remark 10.21.

1. It follows from the second estimate in Lemma 10.20 that we need only to prove Proposition 10.18
when t > ¢ €.

2. By formula (10.3) and the previous point, it suffices to find &;,; and #; such that for every £ <
&, € <t <0y, 2 < n? and y with |y| < 1/4/2(€ +t), we have

©° . 2(t) <3/2+ &0
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3. We set n? = q1/(2(¢q1 + 1)). The second estimate in Lemma 10.20 implies that for £ < &, t < ¢1€
and r? < n? we have
éﬁ

€ (D) <3/24 20,

for every |y| < 1/4/2(§ +1).

The first estimate in Lemma 10.20 implies that for r* < n},£ < & and 1€ <t < 4y,

©° . 2(t) <3/2+e0,

for every y with Ko < |y| < 1//2(£ +1).

Step 2. Controlling the asymptotic behavior of St.

By some rather delicate estimates, but which only use the asymptotics P4 and again the monotonicity
formula, one can show that the following holds (see Lemma [58, Lemma 5.4]). It is important here that
r1 does not depend on v.

Lemma 10.22 (Proximity to P). There are constants Cy and 1 such that, for every v > 0, we can find {3, 92 > 0
such that the following holds. If £ < &2, < dy and r < 2, then

dist(y, P) < v+ Cre” /O if y e §E 0 Ay, (6 +1)7F)

and

Of () S1teo/24v if ye A(r, (€ +6)7V/%),

where A(ry, (& + t)71/8) is the annulus Bg 1)-15(0) \ By, (0).

The next step is to combine these estimates with the uniqueness of the regular expander in its topo-
logical class, given by Theorem 10.7 and a compactness argument (see [58, Corollary 4.6]) to show the
following:

Lemma 10.23. Let Cy and ry be the constants given by Lemma 10.22 and let E be a reqular expander. Set
ro = max{rg,r1,1}, R = /14 2q1 Ko + ro. Then there exist Ry > R, o,v > 0 such that if S is a reqular
network with controlled length ratios such that:

1. fSﬂBRl(O) |k — a7 ds < o,

2. Sand E are in the same topological class (see Definition 10.6),

then S must be e—close in C**(Bpg, (0)) to E, for a fixed o € (0,1/2) and a suitably small & > 0, depending on
E.

Notice that € has to be chosen sufficiently small, so that the monotonicity formula guarantees a control
of the Gaussian densities for a network C'**—close to E.

Step 3. Application of the expander monotonicity formula.
The next lemma is essential to prove Proposition 10.18. Its content is that the proximity of S to the
self-similarly expanding curvature flow generated by E can be controlled in an integral sense. This is
the only point where the expander monotonicity formula is used.
We notice that by property P5 above, we have that S§ = /2€S; — E in C\.%(B,,(0)), as ¢ — 0 and
recall that the rescaled quantity

ay = By +0; ,
of the expander monotonicity formula, converges locally to zero along this limit. Localizing the ex-

pander monotonicity formula (Lemma 10.16), choosing (o, to) appropriately and estimating carefully,
one arrives at the following (see [58, Lemma 5.6]). Choose ¢ > 1 such (1 + 2¢;)/a > 1 and set ¢ = ¢1/a.

Lemma 10.24. There are constants do and &y such that for every £ < & and Ty € [¢€, do, we have

1 aTo L2
1 k- ot dsdt < o.
(a — 1)TO /To /gmeRl(O)
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Take 4o, £ for which this lemma holds, consider also 1, £; for which Lemma 10.20 holds and & = &> (v),
d2 = J2(v) given by Lemma 10.22. Set {3 = min{&, &1,&2}, 03 = min{dy, d1, 2} and then, decrease &3
and 43, if necessary, so that (&3 + 63) 78 > 2Ry, ¢1&3 < J3.
Having all the constants properly defined, we can now finish the proof. Set

Ty =sup{ T | 6% (t) <3/2+¢ey forallz € By, (0), > <n}, t<T}.

x,t+r2

It suffices to show that T} > d3, for every £ < &3. The first point of Remark 10.21 implies that 77 > ¢:1€.
Suppose that T1 < 3 and set T, = T /a. Lemma 10.24 implies the existence of ¢, € [T, T7] such that

/~ |k —zt)?ds < o.
§{,NBr, (0)

One can now check that all the conditions for the previous step are met with S being §§1 Therefore, we
obtain that Sfl is e—close in C1%(Bg, (0)) to E. Denote by S¢, for I > 0, the curvature flow with initial
condition Sfl. A simple computation shows that

Q€ Q¢
Sf=Vi+as; .,

where p? = 2(¢ +t;). Since gfl is e—close in C1*(Bg, (0)) to E, we again use the monotonicity formula
to conclude that for every ! < g1, we have

ot 2y _ ¢
®$7t1+lu2+r2 (tl +lp ) - Gwm’ l+r2(1+2l)(l) < 3/2 +¢€o,

provided
1+2lz| <R —1 and (1+20)r* <q.

Hence, for all t; < ¢t < t1(1 + 2¢1), there holds

%3
@x,t+r2

(t) < 3/2 + €0,
for every z in Bk, (0) and r? < n?, which implies that 71 > ¢1(1 + 2¢1). This is a contradiction because
ti(14+2q1) > To(14+2q1) =T1(14+2q1)/a > Ty .

This concludes the proof of Proposition 10.18.
Remark 10.25.

e Combining Theorem 10.9 and Theorem 5.8 (or Theorem 3.33, if Sy is geometrically smooth) we
have a curvature flow (in the sense of Brakke) smooth for every positive time for every initial C*
network Sy (satisfying the hypothesis that at every multi—point the exterior unit tangent vectors
of the concurring curves are mutually distinct — see anyway Remark 10.12).

e Notice that in the above proof, we do not perform the “gluing in” construction at the regular 3-

points of the initial network. Hence, since the approximating flows are obtained from Theorem 5.8
(or Theorem 3.33 if Sy is smooth), the convergence of S; to Sy, as ¢ — 0, locally around a regular
3—point of Sy is the one given by such theorems.
Clearly, one could apply the “gluing in” procedure also at the regular 3—points (in such case the
regular expander E to be “glued in” is simply a standard triod). Then, a natural question is if the
convergence of S; — S locally around such regular 3-point is at least C'! or better (depending on
the regularity of Sy and the level of compatibility conditions it satisfies) and what is the relation
between this curvature flow and the one instead obtained by Theorem 5.8.

e In the special situation when we want to use Theorem 10.9 to “restart” a limit non-regular net-
work Sr, after a singularity at time 7 (if possible), far from its multi-points O',0%,...,0™ such
network is smooth, hence, S; — Sy in C52 (R*\ {O',02,...,0™}),ast — T.
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10.5 Another approach to short-time existence of the flow for non-regular net-
works

One may wonder if it is possible to define the motion by curvature of a non-regular initial network
without introducing the notions of varifolds and of Brakke flow. The answer is actually positive, as it
was shown in [70, Theorem 1.1].

Theorem 10.26. Let Sy be an initial network where all curves are of class C2. Then, there exists a time T > 0
and an evolving family of regular networks S, for t € (0,T), such that Sy — So, ast — 0, in a certain “strong”
sense.

Moreover, the set of the possible flows is classified by the collection of all (appropriate) self-similarly expanding
networks coming out from each junction.

Remark 10.27. The convergence toward the initial datum as ¢ — 0, which we are going to describe
in detail below, in particular, implies that the set S; converges to Sy in Hausdorff distance or that the
collection of maps (77, . ..,7") composing the networks S; converges uniformly to the family of maps
(14, ---,7dY) that describes Sy (we underline that some of the 7§ could be constant maps).

The method used to prove the previous result relies on a central tool in geometric microlocal analysis:
the blow—up of the domain and range spaces. One interprets the “non-regular” junctions as “singu-
larities of the space” and “desingularise” them by blowing—up the domain [0, 1] of each curve and the
ambient R?. We are going to try to describe the ideas and give an outline of the proof, addressing the
interested reader to the original paper [70] for the full detail.

For simplicity, we consider the special case of an initial network Sy = (¢, ...,73) composed by only
four curves, each one given by a smooth map [0, 1] — R?, meeting at a non-regular junction 7} (0) =
72(0) = 73(0) = 73(0). The eventual solution will be an evolving network with five curves.

We first define the blow—up of the domain. We may regard the entire network as a collection of mappings
from a disjoint union of regions in the (z,t) plane. Forany j = 1,...,4,let Q9 = {(z,t) € R? | 0 <
t, 0 < z < 1} be the domain parametrizing the evolution of the initial curve ~j. We introduce parabolic
polar coordinates defined near (0,0) as

p=Vt+z2>0, w = arcsin(t/p?) = arccos(z/p) € [0,7/2],

hence,
(t,2) = (pcosw, p? sinw).

We define ‘ ‘
Q} = [Q7,(0,0): df] C R x R

as the set obtained by replacing the corner point (0, 0) with the corresponding “faces” {p = 0,0 < w <
7/2}. These are called the front faces of @], and are denoted with Ff. Each @) has then as a boundary: a
front face Ff, two side faces Lf, Rf and the bottom face Bf (see the following figure).

t t
Lf Rf
Ff
(0,0) ° (0,1)
Bf

Figure 10.3: The spaces Q7 and Q7.

The front face Ff is given by p = 0 in local parabolic polar coordinates; the left and right faces are the
vertical sides “above” the corresponding front face where w = 7/2 and the bottom face is the initial face
t=0,atw =0.
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The solution 7 (¢, ) will be defined on @} rather than Q7. Tt has initial condition +}(z) on Bf and
satisfies the “matching” (Herring) conditions along the left and right faces. Its behavior on the front
face is the key issue to address.

The evolving network S; will also include a new curve +* which is defined on the set P° = {(t,z) €
R2 |0<t, 0<z< \/f} The fact that this region shrinks to a point at t = 0 corresponds to the fact that
indeed the curve (¢, ) disappears, as t — 0.

We also blow-up the region P° parabolically at (0,0), obtaining

Py = [P?,(0,0); dt].

In parabolic polar coordinates defined exactly as above, this space has coordinates (p,w), with p > 0
and 0 < w < arcsin(1/2) = 7/6.
We then define ., A

n=]@,. e=]]e

j=1 j=1

The space Q|| P,i’ is the “desingularized domain” of the evolving network S,.
Similarly, we now consider the blow-up of the range. The dilation properties of the self-similar expanding
networks suggest that the homogeneity in the range should also be emphasized. In other words, we
have to introduce the change of variable z € RZtow = z/ V2t in the range. We formalize this as follows.
We define Z = R} x R? and we consider the space Z;, = [Z, (0,0); dt] obtained from Z by taking the
parabolic blow—up of Z at the junction O at ¢ = 0. This parabolic blow-up is defined exactly as before,
by replacing each (0, O) with the inward—pointing spherical parabolic normal bundle. As above, this
becomes more tangible in locally defined parabolic polar coordinates. Suppose that O = (0,0) and

define

R=/t+|z?, O = (t/R* 2/R) = (09,0’),
then Z, has a front face Ff = {R = 0} and a bottom face Bf = {6y = 0}. There is a codimension-two
corner where these two faces intersect.

t t

> ‘ >’

1 1

Figure 10.4: From Z = R, x R? to Z),

Now we regard each 7/ as a map into R™ xR? via (¢, z) — (t,77 (¢, z)). We “lift” this map by blowing—up
both the domain and the range. In other words, each “lift” should be regarded as a map

'yj(t,x) : Q{L — 7.

We then want to write the equation satisfied by the “lifted” map. In the computations it is usually sim-
pler to work in coordinate systems different than the parabolic polar coordinates above, in particular,
we introduce two sets of projective coordinates near the front face at (0,0). We define 7 = /2t and
s=ux/ V/2t. Then, (1, s) is a nondegenerate coordinate system on Q{L near Ff away from Bf, moreover,
we may also use these coordinates in P} near its front face where p = 0. Notice that in each Q7 , we
have s € [0, 400), while in Pf;’, 0 < s < 1. The variable 7 is a defining function for the front face in each
of these cases, in the sense that it vanishes exactly on Ff and is “comparable” with p on any compact set

in @} which does not intersect Rf and on the entirety of PJ. The variable s is a defining function for Lf
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or Rf and identifies the interior of Ff with R*.

The (7, s) coordinates are not valid near the bottom face where ¢ = 0 and in particular, near the inter-
section of Ff and Bf. Near this corner we introduce an alternate set of projective coordinates y = x and
T = t/2?. These are singular along the positive t—axis; the variable y is now the defining function for Ff
and T is the defining function for Bf.

There are useful projective coordinates for Zj, too, namely

=2t w = z/V2t,

thus, 7 = 0 is a defining function for Ff, while w is a projectively natural linear coordinate for Ff. These
coordinates are valid away from Bf. Thus (¢, (¢, x)) “lifts” to (72/2, 7qn’ (7, 5)).
We now consider the evolution equation in terms of these blow-ups: we “lift” the maps 7/ to maps
between @} and Z;, by simply writing
0z

T
using the coordinate systems (7, s) on Qfl and (7,w) on Zj,.
We set v/ = 717, which corresponds to the introduction of the projective coordinate on Z;, and, for
simplicity, we drop the superscript j for the time being. As we noticed earlier, if v is an arc in an
expanding soliton, then 1 depends only on s.
Since 9; = 772(10; — s0s) and 9, = 7719, equation (10.4) becomes

(10.4)

1 202 ()
ﬁ(Taf — 805)(mn) = W7
or finally,
d%n
7_87' + 1 - Sas = £ .
( "= TP
In particular, if v is an expander, so 7 = 7(s), this yields the dimensionally reduced expander equation
0%y
£= 4 (s0s — 1)n=0.
e * Y

Clearly, the equations are complemented with suitable boundary conditions which are naturally speci-
fied along all of the side faces.

Finally, it is not immediate how to specify an “initial” condition along any of the front faces. To deter-
mine this, we remark that we expect the “lifted” map 77 (7, s) to be bounded as 7 — 0, hence, we assume
that 7/ is actually smooth up to the front face. This means that it has a boundary value 7} (s). Noticing
that 70,77 |,—o = 0, we deduce that

852770
0510/

which is precisely the expander equation. In other words, expander arise naturally as the initial condi-
tions for the flow along the front faces.

+ (Sas - 1)770 = 07

Remark 10.28. We can now specify in which sense S; — Sy in Theorem 10.26. In the blown—up spaces,
the number of curves of the initial datum and of the evolving network S, for ¢ > 0, coincides. Hence,
we can consider a suitable convergence of the maps 'yZ to the initial ones 76, for each i, for instance, we
can require that the convergence is in C?, or even smooth, as t — 0.

Our last step is then solving the “lifted” PDE’s system. A rather delicate part of the proof is the con-
struction of approximate solutions, i.e., a family of networks §t which converges to the initial datum
So and which satisfies the flow equations up to an error that vanishes for all orders at t = 0. To do
so, we proceed at follow: by blowing—up the non-regular junctions we can determine the entire Taylor
series of the solution whose first term satisfies the expanders equation. We are then able to prove that,
once the first term of the series is determined, all the other term (up to an error) can be obtained with
a recursion argument. Thus, to determine the entire series one choose a specific expander at the non—
regular junction which actually captures the geometry of the evolving network, in particular how the
non-regular junction breaks apart. Then, we still need to get rid of the rapidly vanishing error term to
get an exact solution. This is accomplished by an existence proof using a priori estimates.
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Remark 10.29. It is clear from the strategy of the proof, that with this alternative approach (and this
quite strong definition of solutions) we have as many different flows as choices, for every non-regular
junction of the initial network, of a self-similar expanders compatible with the junction. In particular,
when at every junction there exists a unique expander coming out from the cone P generated by the
inner unit tangent vectors of the concurring curves, the produced solution is unique. As a remarkable
example, there is a unique tree-like, connected, regular expander, asymptotic to a standard cross, see
Corollary 10.8 (composed of four halflines from the origin with opposite directions pairs and forming
angles of 120/60 degrees between them), generated by the exterior unit tangents of the four concurring
curves at the 4—point which arises as the collapse with bounded curvature of a curve in the “interior”
of Sy, as t — T, described in Proposition 9.11. The same conclusion holds also when P is composed of
three halflines from the origin [97].

Hence, if all the junctions of the network are of these types, by means of this theorem, the flow can be
started (or restarted, for instance in the situation of the collapse of single isolated curves with bounded
curvature, as we said above) in a unique way.

Remark 10.30.

e One could apply the procedure of Theorem 10.26 also at any regular 3—point and in such case
the associated regular expander is simply a standard triod, hence the resulting flow is unique,
moreover, it must coincide with the one obtained by means of Theorem 5.8, as it can be shown
that it is among the flows of the class A defined in such theorem.

e When we use Theorems 10.9 or 10.26 to “restart” a limit non-regular network St after a singularity
at time T (if possible), if such network is smooth far from its multi-points O, 0%, ..., 0™, there
holds S; — Sy in CF%, (R? \ {O*,0%,...,0™}), as t — T, by the local estimates for the motion by

curvature (see [30]).

Differently from Theorem 10.26, it is not clear if Theorem 10.9 produces a unique solution when the
expander associated to every junction is unique. This is related to the use of the varifold convergence
to the initial network in place of a stronger one.

Open Problem 10.31. If there is a unique regular expander asymptotic to the family of halflines gen-
erated by the inner unit tangent vectors of the concurring curves to a multi-point of Sy, then does
Theorem 10.9 produce a unique curvature flow?

We can also state the open problem in the specific case of a triod and of a standard cross.

Open Problem 10.32. In the case of a single triple junction (possibly non regular), Theorem 10.9 pro-
duces a unique curvature flow?

Open Problem 10.33. If the inner unit tangent vectors of the concurring curves to a 4-point of Sy gen-
erate a standard cross, Theorem 10.9 produces a unique curvature flow?

We underline here that whatever procedure one decides to apply to have a curvature flow of a general
network such that the networks of the flow are regular for every (small) positive time, uniqueness can
be impossible, as is shown in the following figure:
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Figure 10.5: An example of non—-uniqueness of the flow.

indeed, by the symmetry of the initial network with respect to rotations of 90 degrees, the rotation of
any admissible evolution must still be a solution.

Remark 10.34.

e In general, given the set P composed of a finite union of n halflines for the origin, with n > 3,
there are many regular expander asymptotic to P, even restricting ourselves to the class of the
tree-like ones (see Figure 10.2, for instance). One would like to have, at least for the “generic”
family of halflines P, a sort of “selection principle” to choose the “best” regular expander E at a
multi-point with more than 3 concurring curves, in both procedures.

e A simple uniqueness statement (which can hold, by what we said, only for a “generic” initial
network) for the curvature flow obtained by Theorem 10.9 or by Theorem 10.26 is missing at the
moment.

Open Problem 10.35. For a “generic” family of networks P given by n halflines for the origin, does
there exist a “selection principle” to choose the “best” regular expander E asymptotic to P, to use in
performing the procedure of Theorem 10.9 or Theorem 10.26?

Open Problem 10.36. In what class of curvature flows, for a “generic” initial non-regular network Sy,
is the flow given by Theorem 10.9 or Theorem 10.26 unique?

11 Restarting the flow after a singular time

By means of the analysis of Section 9.4 and the description of the limit network St at a singular time
in Theorems 9.42 and 9.43, we can continue the flow by applying the “restarting” Theorem 10.9 (or
possibly its extension, see Remark 10.19). We then have an “extended” curvature flow for some positive
time 7" > T (if we are not in some of the situations, discussed in Section 9.4, when the flow “naturally
ends” — for instance, if the whole network collapses and vanishes, as ¢ — 1) which is a Brakke flow
(possibly without equality, see Remark 10.11) in the time interval (0,7”) and a smooth curvature flow
in (0,7)U(T,T").

The passage through a singularity when (locally) a single curve vanishes and two triple junctions
collapse forming a regular 4—point in §) is particularly interesting, as this type of singularities with
bounded curvature, that we called of Type-0 (see Remark 9.18), is the only possible one for the motion
of a tree-like network, assuming that M1 holds. We call this change in the structure of the network a
“standard transition” (see Figures 11.1, 11.2).

We recall that while the curvature stays uniformly bounded for ¢t < T, itis of order 1/v/T —tast > T
(and the “new” curve has length of order /1" — t).
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Figure 11.1: The local description of a “standard” transition.

1/ \
h |
St St St
t—T t>T

Figure 11.2: A “standard” transition for a ©-shaped network (double cell).

We remark that such transition, passing by Sr, is not symmetric: when S; — Sr,as ¢t — T~, the exterior
unit tangent vectors, hence the four angles between the curves, are continuous, while when S; — Sr,
ast — T, there is a “jump” in such angles, precisely there is an instantaneous “switch” between the
angles of 60 degrees and the angles of 120 degrees at time T'.

Remark 11.1. Since there is a single expander “coming out” from the cone of the inner unit tangent

vectors generated by the four concurring curves, we expect that by restarting the flow by means of
Theorem 10.9, we get a unique evolution (see Problem 10.33).

Coming back to the general situation, we list a series of facts when passing through a singularity.

¢ The total length of the evolving network S; is non increasing and continuous for every ¢ € (0,7").
Hence as a Brakke flow in the time interval [0,7”) it does not suffer from the phenomenon of
“sudden mass loss” (see [16] and the recent work [61]).

e Forevery zp € R? and ¢ € (0, +00), the Gaussian density function ©,, ;,(t) : [0, min{to,7'}) — R
is still non-increasing. The same for the entropy of S;, see formula (7.7).

e The uniform bound on length ratios survives the “restarting” procedure with the same constant.

These points follow easily by the (weak) continuity of the Hausdorff measures #'L_ S;, see Remarks 9.41
and 10.10 (it is clear in the case of a standard transition).

e By the construction in the “restarting” Theorem 10.9, no new regions are created passing a sin-
gularity, their total number is non-increasing. In particular, a tree remains a tree after restarting
(even if its “structure” changes).

e The number of curves of the network is not increasing. To be more precise, if at least a region
vanishes the total number of curves decreases by at least three. In a standard transition, it remains
the same.

e The number of triple junctions of the network is non-increasing. To be more precise, if at least
a region vanishes the total number of triple junctions decreases by at least two. In a standard
transition, it remains the same.
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The fact that no new regions arise follows by the fact that we “desingularise” a multi-point, in The-
orem 10.9, by gluing in a tree-like, connected, regular expander (which is an a priori choice, see Re-
mark 10.13). In doing that, by means of Euler’s formula for trees, we can see that if the multi-point has
order n, being the number of the regions equal to n, the number of triple junctions we will have in the
restarted network in place of the single multiple junction is equal to n — 2 and the number of curves is
2n — 3.

It is then easy to check the above statements if only one bounded region is collapsing since it must be
bounded by n curves. If instead, a group of regions is collapsing, we can get the conclusion by apply-
ing the same argument to the bounded “macro-region” that we obtain considering their union, which
will be bounded by a piecewise smooth loop (in a way, we are “forgetting” the interior curves to such
“macro-region” which will anyway be “lost” in the collapse).

Clearly, all these facts say that, in a sense, the “topological complexity” of the network is “non-increasing”
passing through a singular time.

We finally mention here that also the bound on the “embeddedness measure” E(t), which we will
introduce in Section 13, survives the “restarting” procedure.

12 Long time behavior

Since we can repeat the restarting procedure at every singular time, either the flow naturally ends
at some time T (for instance, if the whole network collapses and vanishes, as t — f) or we found
ourselves in some of the situations described in Section 9.4 where we have to decide how to continue
the flow (related to the behavior at the boundary of €2), or we have an increasing sequence of singular—
restarting times T; for the evolution of the network S;. In this latter case it follows by the “topological”
conclusions in the previous section that among these times 7}, the number of the ones such that we
have a non-standard transition is actually finite and depends only on Sy (indeed, if a transition is non—
standard, then at least one region vanishes during the transition and Sy can have only a finite number
of regions). Instead, we cannot conclude the same for the number of standard transitions that a priori
could be infinite. Even worse, notice that Theorem 10.9 does not give any estimate on the (short) time of
existence of the restarted flow, which means that we are not able to say in general if and when another
singularity could appear after the restarting time. In particular, we are also not able to exclude that the
singular times (associated to standard transitions) “accumulate”, not even for a tree-like network when
all the possible singularities are standard transitions.

The following figures show some examples of these (maybe) possible situations.

SRODE

Figure 12.1: A tree-like network with four fixed end—points switching between its two possible topo-
logical classes.

@M>@M>@M>@M>@
Figure 12.2: Standard transitions switching a lens-shaped network to an “island—shaped” (with a

bridge) one and viceversa.
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Figure 12.3: Switching by standard transitions of a ©-shaped network to an “eyeglasses—shaped” one
and viceversa.

In all these examples (where there is a sort of “duality” between the two involved networks: lens—
island, theta—eyeglasses and between the only two possible trees connecting four points) we do not
know if this kind of “oscillatory phenomenon” can happen infinitely many times.

Open Problem 12.1. Let us assume that the “boundary” curves do not collapse during the flow.
e The set of singular times is finite?
o The set of singular times is discrete (i.e. it has no accumulation points)?
e Can the flow be defined for every positive time?

Remark 12.2. The last question concerns the possibility that the other two have a negative answer. In
such case, we could still hope to be able to find a “well-behaved” limit network S5, ast — 7', even when

the singular times 7; accumulate at T, to possibly restart again the flow with Theorem 10.9 or some
extension. Indeed, by restarting the flow at every singularity we can define an extended curvature flow
of networks on some maximal time interval [0, f) Then, either the whole network vanishes or there is
an accumulation of singular times at T, if it is finite. This extended curvature flow is a Brakke flow, by
Theorem 10.9 and actually, it is easy to see that only singular times when a standard transition happens
can accumulate at 7' (the number of regions is non increasing, hence the number of singular times when
at least one of them collapses is finite). We also mention that it would be quite interesting to compare
this extended curvature flow with the globally defined one introduced by L. Kim and Y. Tonegawa
in[61].

Remark 12.3. In the recent paper [88], it is shown that the previous questions have positive answers
in the special case of axially symmetric networks with only two triple junctions. More precisely, it is
proved that the number of singular times is necessarily finite. We point out that, under these conditions,
there are only four possible topological types of networks: the tree, the lens, the theta and the eyeglasses
(of “type A”) shapes, as in the following figure (see the discussion at the beginning of Section 14.2).
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Figure 12.4: The four possible types of axially symmetric networks with two triple junctions: the tree,
the lens, the theta and the eyeglasses.

We now discuss the long-time behavior of the curvature flow of a regular network, assuming that
there is no accumulation of the singular times or, even better, that the flow definitely does not have
singularities after some time. We see in the following proposition that this latter case can only happen
for networks without regions with less than six edges.

Proposition 12.4. Let [0,T') be the maximal time interval of existence of a smooth curvature flow S, of a network
that has at least one loop ( of length L(t), enclosing a region of area A(t) composed of m curves with m < 6.

Then, T < (g’fﬁ?))ﬂ and the equality holds if and only if lim,_,p A(t) = 0. Moreover, if lim;_,7 L(t) = 0, then

1ithT fSt 1{32 ds = +o0.

Proof. Integrating in time the equation (7.4), we have

A(t) — A(0) = (—27r +m (g)) ‘.

Therefore, T < 3400)_ ith equality if and only if lim; . A(t) = 0.

=N (6—m)w’

A
Suppose now that lim;_,7 L(t) = 0. Then we necessarily have lim;_,; A(t) = 0, hence T' = 7(63 (ﬁr(;)) .
- Y
Combining equation (7.4) and Holder inequality, we get
m dA(t) 1 9 %
— —_ = | —| = < 2
‘ 27r+m(3)‘ ’ o ‘ ’/Ztkds < (L(1)) </£tk: ds |
which gives
6 —m)” 72
k?ds > k% ds > (7
S; 0 9L(t)
Since lim;_,7 L(t) = 0, it follows that lim; 7 fSt k2 ds = +o0. O

Remark 12.5.

1. If aloop is composed of six or more curves, then by equation (7.4), either the enclosed area remains
constant or increases during the evolution.

2. The previous proposition does not exclude the possibility that a singularity appears at a time

3A(0)
T< (6—m)m*
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3. We expect that, if T' = (Sff,?))ﬂ

cannot be bounded and we expect that lim;_,7 L(¢) = 0 and lim;_,7 fSt k% ds = +00.

, then the region is collapsing, hence, by Corollary 9.28 the curvature

For a general network, even assuming that there is no accumulation of the singular times, if the bound-
ary curves do not collapse, we cannot anyway exclude that there could be an infinite sequence of stan-
dard transitions with some loops present and regions (with more that five edges) never collapsing. We
now deal with tree-like networks that after some time have no more singularities.

Proposition 12.6. Suppose that S, is a smooth curvature flow in [0, +o00) of a tree-like network. Then for every
sequence of times t; — oo, there exists a (non relabeled) subsequence such that the evolving networks S, converge
in > N W22, for every o € (0,1/2), to a possibly degenerate (and non—embedded) regular network with zero
curvature, that is, “stationary” for the length functional, as i — oo.

Proof. From equation (4.2) we have the estimate

+oo
/ / k*dsdt < L(0) < +00. (12.1)
0 St

Suppose by contradiction that for a sequence of times t; ,* 400 we have foA k*ds > & for some § > 0.

By the following estimate, which is inequality (9.4) in Lemma 9.23,

% SthdsgC(l—k(/&kQ))S,

holding (in the case of fixed end-points) with a uniform constant C' independent of time, we would
have [, k*ds > 6/2, for every t in a uniform neighborhood of every ¢;. This is clearly in contradiction

with the estimate (12.1). Hence, lim;_, | o fSt k*ds = 0 and, consequently, for every sequence of times
t; — oo, there exists a subsequence (not relabeled) such that the evolving networks S;, converge in
Ch* N W22, for every a € (0,1/2), to a possibly degenerate regular network with zero curvature, as
7 — 00. O

Remark 12.7. The previous proposition shows that, up to subsequences, the sequence of evolving net-
works S;, converge, as t; — +oo, to a “stationary” network for the length functional (which is not
necessarily a global minimum). We do not know if such a stationary network can be non-embedded,
that is, some segments have multiplicity greater than one and we underline that actually it can be de-
generate, that is, taking the limit of S;, when ¢; — 400, one or more curves collapse, as shown in the
following example. Suppose that Sy is the regular network in Figure 12.5. It is a smooth regular net-
work composed of five curves, symmetric with respect to the horizontal and vertical axes, the middle
curve Y is a vertical segment and the remaining four curves are convex, i.e., their oriented curvature
has a sign. The network has four end-points located at the vertices of a rectangle of sides of length 2

and 2v/3.

T~ o7 !

Figure 12.5: The initial network Sy.

Thanks to the symmetries, we can reduce to study the flow of Sy to the evolution of a single curve,
for instance, !. The flow S; starting from S exists for every time with no singularities, the length of
each curve +* is strictly positive for any time, the curvature of each curve 7" is uniformly bounded and
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ast — +oo, the flow smoothly converges to the degenerate network composed of the two segments
joining the opposite pairs of end-points and a core at the origin, given by the collapse of the vertical
curve 7°, whose length goes to zero, as t — +oo (see [91]).

Open Problem 12.8.

e Can the tree-like hypothesis be removed in Proposition 12.6?
e Is the limit network embedded?

e What are the possible degeneracies of the limit network? We conjecture that it belongs to the
class of networks described in Proposition 9.11, in particular, it is embedded and it can only have
as degeneracies some regular 4—points, hence each one with a core given by a single isolated
collapsed curve (as in the previous example).

Remark 12.9. 1If we do not assume that the number of singularities is finite and/or that the network
becomes a tree, but only that the flow exists for every ¢ € [0, +00), being globally a Brakke flow (see the
previous section), inequality (12.1) still holds (by the defining formula (6.1)) and we can always find a
sequence of networks S;, converging in C* N W2, for every a € (0,1/2), to a possibly degenerate
regular network with zero curvature, as ¢ — oco. As said before, such limit network could be non—
embedded.

It is natural to ask ourselves if actually, the full flow of networks S; converges to a limit network, as
t — +oo (moreover, as we said, we expect that such a limit network is embedded and that the tree—
like hypothesis in Proposition 12.6 is actually superfluous). We are able to show the full convergence
assuming that the limit network is not degenerate. A key result to get such convergence is the following
Lojasiewicz-Simon inequality for regular networks, proved in [91].

Theorem 12.10. Let S, = (v.,...,v™) be a regular network composed of straight segments. Then, there exist
Crs,e > 0and 0 € (0,1/2] such that if S = (v',...,4™) is a reqular network of class W*? with the same
topological structure, the same end—points of S, and such that

Sy = Aillwas <,
i=1
then,
1/2
IL(S) — L(S.)| % < Cus < / = ds) . 12.2)
S

We state now the convergence result.

Theorem 12.11 (Theorem 5.3 in [91]). Suppose that S, is a smooth curvature flow in [0, +o00) and let S, be
a regular (non—degenerate) network with zero curvature, composed of straight segments such that S;, — S in
W22, for some sequence t,, /* +0oc, asn — oo. Then, up to reparametrization, S; — So smoothly, as t — +oc.

We refer the reader to the original paper [91] for the proofs of these two results. We just give here
an idea of the application of the Lojasiewicz—-Simon inequality in order to get the full convergence of
the sequence of networks. Let S; = (v}, ...,7/") be a smooth network flow defined on [0, +00) and let
Seo = (74 - -+, 7%) be the regular C1:* MW 22-limit network along a sequence of times ¢, — +00, given
by Proposition 12.6, which we assume to be non-degenerate. Then, by the evolution equation of the
length, we have

d
—(L(St) — L(Sx0)) = — | k*ds
dt 6,
and for all times for which Y"1, [|7f — 7i |22 < &, we get
d 0

L(Si) — L(Sx))” = 0(L(Sy) — L(Sm))o’l/S k2 ds

0 -1/2
> — k2 ds) k2 ds
CLs </st S:

1/2
:9(/ I<:2ds) ,
Crs \ Js,
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where we used the Eojasiewicz-Simon inequality (12.2). Then, we can take t € [0, +0c) and to > t; >t
such that for every ¢ € [f, t,], there holds 27, [[7i — ~vi|lw=2> < /4 and |L(S;) — L(Sxo)|” < /4. We

([ (o)) = ([ ([ o) )
[ ([
IRIEDN
o

1/2
k2 ds) dt
eCLs

IL(Se) — L(S=)|” < =

[=)

S¢
CLS

This implies that v*(-,¢) : [0,1] — R? is a Cauchy sequence and from it we can deduce the desired
convergence.

After all this discussion, the following questions are rather natural.
Open Problem 12.12.

e In the hypotheses of Theorem 12.11, does the whole sequence of networks S; converge in C1* N
W22, for every a € (0,1/2), also if the limit network is a degenerate (embedded) regular network
with zero curvature, as t — 4+00?

e The conclusions can be extended to the general situation described in Remark 12.9? For instance,
if the flow of networks has an infinite sequence of singular times going to +o00?

12.1 Stability

Exploiting the Lojasiewicz-Simon inequality (12.2), it is also possible to prove a stability result: if a flow
starts sufficiently close to a regular network with zero curvature composed of straight segments, then
it exists for every time and smoothly converges to a (possibly different) network with zero curvature.

Theorem 12.13 (Theorem 5.3 in [91]). Let S, = (vl,...,~4%) be a reqular network with zero curvature,
composed of straight segments. Then, there exists § > 0 such that if S = (v¢,...,&) is a smooth regular
network with the same topological structure and the same end—points of S, such that

n
> e = Aillwae <6,
i=1

the flow by curvature of the network Sy exists smooth for all times and smoothly converges, as t — —+o0, to a
reqular network Soo = (v ,...,7"%) with zero curvature (that is, composed of straight segments) satisfying
L(Seo) = L(S.).

Remark 12.14. The special case in which S, is a triod was first considered in [63] and one can actually
adapt such proof to the case in which S, is an isolated critical point of the length functional.

Remark 12.15. It is not necessarily true that S, = S, but there are some cases in which we are able to
determine S

e If the network S, is an isolated critical point of the length functional, then S, must coincide with
S. and this is always the case if S, is a tree.
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e Suppose that S, is a network composed of a regular hexagon H with area A, and six straight
segments connecting the vertices of a bigger regular hexagon. Then, S, is not an isolated critical
point of the length functional, indeed, all the networks composed of concentric hexagons and
straight segments connecting the end-points give a one—parameter family of critical points with
the same length, see Figure 12.6. We underline that there are no other critical points of the length
functional with this topology and with the same end—points.

Figure 12.6: Three different networks with zero curvature with the same end—points and topology. They
all have the same length.

Suppose now that Sy is regular network with the same end-points and the same topology of
S., sufficiently close to S, and such that the area enclosed by the loop is equal to Ag. Then, S
coincides with S, if and only if Ay = A,, as the area enclosed by any loop of six curves is preserved
during the evolution and S, is the unique network with zero curvature and area A, among the
possible limit critical networks. We remark that if Ay # A,, we then have an example where the
limit network S, is different by S,, indeed S, must be the unique network of such family with a
central regular hexagon of area Ay.

We conclude this section with a couple of open problems.

Open Problem 12.16. Is it possible to replace the W?2—closedness condition in the stability Theo-
rem 12.13 with some “small distance” condition between the networks that allows also topological
changes, for instance, the Hausdorff distance?

Open Problem 12.17. It is possible to “identify” the limit network S, in the stability Theorem 12.13,
in general? This question is relevant in the non-trivial case when S, belongs to a continuous family of
critical points for the length functional.

13 An isoperimetric estimate

Given the smooth flow S, = F'(S,t), we take two points p = F(x,t) and ¢ = F(y, t) belonging to S;. A
couple (p, q) is “admissible” if the segment joining p and ¢ does not intersect the network S, in other
points. We call  the class of the admissible couple. Given an admissible pair (p, ¢) we consider the set
of the embedded curves I';, ;, contained in S; connecting p and ¢, forming with the segment pg a Jordan
curve. Thus, it is well defined the area of the open region A,, ; enclosed by any Jordan curve constructed
in this way and, for any pair (p, ¢), we call A, , the smallest area of all such possible regions A, ,. If p
and ¢ are both points of a set of curves forming a loop, we define ¥(A4, ;) as

V(Apq) = ?sin (%Ap,q) )

where A = A(t) is the area of the connected component of 2 \ S; which contains the open segment
joining p and q.
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We consider the function ®; : S x S - RU {+c0} as

?LIZ;%’S) if x # y and z, y are points of a loop;

p—q : : .

By (2,y) = 4 Ao if z # y and z, y are not both points of a loop; |
43 if z and y coincide with one of the 3—points O* of S;
+00 ifr =y # O

where p = F(xz,t) and ¢ = F(y,t).

Remark 13.1. Following the argument of Huisken in [54], in the definition of the function ®; we in-
troduce the function ¢(4, ,), when the two points belong to a loop because we want to maintain the
function smooth also when A4, , is equal to A/2.

In the following, with a little abuse of notation, we consider the function ®; defined on S; x S; and we
speak of admissible pair for the couples of points (p, q) € S; x S; instead of (z,y) € S x S.
We define E(t) as the infimum of ®, between all admissible couple of points p = F(x,t) and ¢ = F(y,t):

E(t)= inf &
() (paex
forevery t € [0, 7).
We call E(t) “embeddedness measure”. We underline that similar geometric quantities have already
been applied to analogous problems in [23, 50, 54].
The following lemma holds, for its proof in the case of a compact network see [23, Theorem 2.1].

Lemma 13.2. The infimum of the function ®, between all admissible couples (p, q) is actually a minimum.
Moreover, assuming that 0 < E(t) < 44/3, for any minimizing pair (p,q) we have p # q and neither p nor q
coincides with one of the 3—points O (t) of S;.

Remark 13.3. In the case of an open network without end—points, since the network is asymptotically
C'—close to a family of halflines (and during its curvature motion such halflines are fixed), there holds
that if the infimum of @, is less than a “structural” constant depending only on such halflines, then it is
a minimum. By means of such modification to this lemma, all the rest of the analysis of this chapter also
holds for the evolution of open networks, we let the details and the easy modifications of the arguments
to the reader.

Notice that it follows that the network S; is embedded if and only if E(t) > 0. Moreover, E(t) < 4v/3
always holds, thus when E(¢) > 0 the two points (p, ¢) of a minimizing pair can coincide if and only if
p=q=O0Yt).

Finally, since the evolution is smooth, it is easy to see that the function E : [0,7) — Rislocally Lipschitz,
in particular, d%t) > 0 exists for almost every time ¢ € [0, ).

If the curvature flow S; has fixed end-points {P!, P2, ..., P'} on the boundary of a strictly convex set
), we consider the flows H! each obtained as the union of S; with its reflection Sfi with respect to the
end-point P?, as we described at the end of Section 7.2.

We underline that this is still a smooth curvature flow (as the compatibility conditions of every order in
Definition 3.27 are satisfied by S; at its end—points) without self-intersections, where P’ is no more an
end—point and the number of triple junctions of H is exactly twice the number of the ones of S;.
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Figure 13.1: A tree-like network S; with the associated networks H.

We define for the networks H the functions E* : [0,T) — R, analogous to the function E : [0, T) — R of
S¢ and, for every t € [0,7), we call II(¢) the minimum of the values E‘(¢). The function I : [0,7) — R
is still a locally Lipschitz function (hence, differentiable for almost every time), clearly satisfying II(¢) <
Ei(t) < E(t) forall t € [0,T). Moreover, as there are no self-intersections, by construction, we have
I1(0) > 0. If we prove that II(¢) > C > 0 for all ¢t € [0,T), form some constant C' € R, then, we can

conclude that also E(t) > C > 0, forallt € [0,T).

Theorem 13.4. Let Q be an open, bounded, strictly convex subset of R?. Let Sy be an initial regular network
with at most two triple junctions and let the S; be a smooth evolution by curvature of Sy, defined in a maximal

time interval [0,T).

Then, there exists a constant C' > 0 depending only on Sy such that E(t) > C > 0, for every t € [0,T). In
particular, the networks Sy remain (uniformly, in a sense) embedded during the flow.

To prove this theorem we first show the next proposition and lemma.
Proposition 13.5. Let t € [0,T') such that

e 0< E(t) <1/4,

e for at least one minimizing pair (p,q) of ®,, the curve Ty, , contains at most two triple junctions with

neither p nor q coinciding with one of the end—points P*.

dE(t)

Then, if the derivative =,

exists, it is positive.

Proof. By simplicity, we consider in detail only the case shown in Figure 13.2. The computations in the

other situations are analogous.
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Pl m
Q P2

Figure 13.2: The situation considered in the computations of Proposition 13.5.

Let0 < E(t) < 1/4 and let (p, ¢) a minimizing pair for ®; such that the two points are both distinct from
the end—points P?. We choose a value ¢ > 0 smaller than the “geodesic” distances of p and ¢ from the
3—points of S; and between them.

Possibly taking a smaller ¢ > 0, we fix an arclength coordinate s € (—¢,¢) and a local parametrization
p(s) of the curve containing p such that p(0) = p, with the same orientation as the original one. Let

n(s) = |p(s) — g, since
n(s)  _ n*(0)

min )
s€(—e,¢) w(Ap(s),q) 1/1(141741)

B(t) =

if we differentiate in s we obtain

dn?(0)
ds

dip(A
P(Ap0).q) = %n%o» (13.1)

We underline that we are considering the function ¢ because we are doing all the computation for the
case shown in Figure 13.2, where there is a loop. For a network without loops the computations are
simpler: instead of formula (13.1), one has

d'f]2 O dA 0),
2O 00 = LEO2(0),

see [82, Page 281], for instance.

As the intersection of the segment pg with the network is transversal, we have an angle a(p) € (0,7)
determined by the unit tangent 7(p) and the vector ¢ — p.

We compute

dn?(s
77d( ) = —2(r(p) |¢ —p) = —2|p — q| cos a(p)
§ s=0
dA(s) _ 0
ds |—p
dAp(S)vq _ 1 . 1 B 1 .
is |, 2Tn@=pl= 50 la=p) = glp—dsnalp)
dw(Ap(s),q) . dAp’q T
— o s €08 (ZAWI)

1 . T
= §|p — ¢| sin a(p) cos (ZAWI) .

Putting these derivatives in equation (13.1) and recalling that n*(0)/¢(4, ,) = E(t), we get

—q|? E
cot a(p) = _4|Z(Ai|q) cos (%Ap,q) = —% cos (%Ap’q) . (13.2)
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Since 0 < E(t) < 1 < 4(2 — V/3), we have V3 — 2 < cot a(p) < 0, which implies

™ T

5 < a(p) < 13 (13.3)
The same argument clearly holds for the point ¢, hence defining a(q) € (0, 7) to be the angle determined
by the unit tangent 7(¢) and the vector p—g, by equation (13.2) it follows that «(p) = a(g) and we simply
write « for both.

We consider now a different variation, moving at the same time the points p and ¢, in such a way that
et = 7(p(s)) and = 7(g(s)).

ds ds
As above, letting n(s) = [p(s) — ¢(s)|, by minimality we have
dn*(0) dp(Ap(s).q(s)) 2
V(Ap(s)a()) | mp = : n*(0) and

. p().as)) | = e

20?0 PP(Ap(s).q(s))
d82( ) ¢(AP(3)7Q(5))|5:0 2 ( dl;(z) £ ) 772(0)' (13.4)

s=0

Computing as before,

W) -] ()~ (@) = ~4lp - gleosa
s=0
% o %<p—q\1/(p) +v(q)) = +lp—qlsina
2,,2 s
T =2 =) 70) () + 20— a K (e) — Ka)v(a)

=2|r(p) — 7(q)* + 2(p — q| k(p)v(p) — k(q)v(q))
=8cos’ a+ 2(p — q| k(p)v(p) — k(q)v(q))
d*Ap(s),4(s)

= — 5t [v(a) + %<T(Q) lv(p)) + 5 (p—a|k(p)T(p) + k(9)7(q))

2
= —2sinacosa — 1/2|p — q|(k(p) — k(q)) cos &

d [ dAp(s),q(s) ™
st{ P cos (5 Aperacs) B

. 1 ™
=(—2sinacosa — §|p —q|(k(p) — k(q)) cos @) cos (ZAp’q)

PP(Ap(s) a(s))
ds?

s=0
s . (T
— Z|p — gq|*sin® acsin (ZAp’q) .

Substituting the last two relations in inequality (13.4), we get
(8 cos” at2(p — q| k(p)v(p) — k(a)v(9)))¢(4p.q)

. 1 T
> 1~ af*{ (=2sinacosa— Jlp—al(k(p) — h(a)) cosa) cos (54,

—%\p — q|*sin® acsin (%Ap’q)} )
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—4

we obtain
E(t) cos( 5 Ap(s).a())

hence, keeping in mind that tan o =

2(Apq)(p — q| k(p)v(p) — k(q)v(q)) + 1/2|p — q*(k(p) — k(q)) cos o cos (%Ap,q)

> — 2sinacosalp — ¢|? cos (zAp_’q)

A
—8¢(A, ) cos®>a+ |p—q|*sin® a [—% sin (%Ap,q)}
p—q? m
= — (A4, ,)cos’a (tana | cos (—A + 4>
( 107(1) ql)(Ap,q) <A P’Q)
) T T
+|p — q|*sin® @ [—Z sin (ZAP’QH
—lp—al4sinal-Tsin (T
=|p—q|*sin®« [ ASIH(AAp’q)} . (13.5)
We now compute the derivative dgit) by means of the Hamilton’s trick (see [48] or [78, Lemma 2.1.3]),
that is,
dE({) 0 . _ _
=\ _ 2P
dt at t(pa q) )
for any minimizing pair (p, ¢) for ®,. In particular, d%gt) = 2.®,(p,q) and, we recall, 1/‘11()23‘;) = E(t).

Notice that by minimality of the pair (p, ¢), we are free to choose the “motion” of the points p(s), ¢(s)
“inside” the networks I'; in computing such partial derivative, that is,

dE(t) 0 d
=% =9

dt ot t(pa Q) ds t(p($)7q(s)) —
Since locally the networks are moving by curvature and we know that neither p nor ¢ coincides with
the 3—point, we can find ¢ > 0 and two smooth curves p(s), ¢(s) € T's for every s € (t —¢,t + ¢) such

that

=p and P k) v(s) ).
dy=a and i) ) vla(s).9)
Then,
s) —q(s)]? A 5),q(s
Lgit) = %(I)t(pa q) = [w(Alp,q)]Q <7/’(Ap,q)d|p( )dsq( ) - |p*Q‘2d¢( il(s% ( ))) - (13.6)

With a straightforward computation, we get the following equalities,

d|p(s) — q(s)]?
W) Z A oty g k(pvlr) — Ko (@)
s=t
dA(s) _ A
ds |, 3
dAp(s),q(s 1
T [ () I, ) ds + 1o~ al P [KBIVE) + ka)v()
§ s=t Tpq 2
r 1
=2a — — — 5 lp — al(k(p) — k(g)) cos
dip(Ap(s).q(s)) _ Am1 Apg 7"
ds |, 3 Lrbm (Gg4na) = 5% cos (AAM)}

+ (205 = gl allk00) — k@) cosa) cos (5 4,)
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where we wrote v¢, - and vy, 4 for the exterior unit normal vectors to the region A, ,, respectively at the

points of the geodesic ¢, , and of the segment 7.

We remind that in general dA()

= —(2 — m/3)m where m is the number of triple junctions of the loop
(see formula (7.4)), hence, we have d‘zgt) = —47”, since we are referring to the situation in Figure 13.2,
where there is a loop with exactly two triple junctions.
Substituting these derivatives in equation (13.6) we get

dE(t) _ 2(p — q|k(p)v(p) — k(a)v(a))

dt U(Apq)
Ip — Q|2 a7 [1 . A, 77
{8 (54, - 520 ()

+(2a- %” = 3l = allk(e) — @) eosa ) cos (G ) |

and, by equation (13.5),

dE(t) Ip — q|? 4 A Ay 4 v
22Ny W d4l ) 2 il = b h
Z T WA, ) 350 (G Ava) + 3 5 c0s (F40a)

4
+ <2a — ;) cos (%Ap,q) + %|p — ¢|? sin®(a) sin (ZA,MI)} .
It remains to prove that the quantity

%sin (%Apﬁq) - 4%% cos (%Apyq) + (4; = 2a> cos (%Apﬁq)

™ . LT
— Z\p — q|2 51n2(a) sin (ZAp’q)

is positive.

_ p—a® _ __ Ip—qf? .
As E(t) = Ay = Esin(za,,) Wecan write

gsin (%Anq) - %TAZ’Q cos (%AWJ + (4; - 2a> cos (%Ap,q)
- %|p — q|?*sin’*(a) sin (%Ap,q)

= % sin (%AIMZ) - %T% cos (%AWJ + (4; - 2a> cos (ZAWZ)
— E(t)sin?(a) sin® (%Am) .

Notice that using inequality (13.3), we can evaluate T — 2 € (7/6,7/3), in particular, it is positive.
dE(t)

We finally conclude the estimate of and the proof of this proposition by separating the analysis
into two cases, depending on the value of Z‘Z .

If0 < 2pe <

we have

aE(t) |
dt

31

b () o (500
+ ( — 2a) cos ( A, ) (t) sin®(c) sin® (%Ap,q)
> (4; - 2a) cos (%Anq) — E(t) sin?(a) sin? (%Ap,q)

> (%) cos (g) — E(t) sin? (g) >0.
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dE(t) > % sin (zAp,q> - 4%% cos (%Anq)
+ (4; - 2a> cos (%A%q) — E(t) sin?(a) sin? (%Ap,q>

b () () - 0 ()
4
3

> (sin (g) - gcos (g)) —E(t) >0.

O

Remark 13.6. We want to stress here the reason why we are able to prove Proposition 13.5 only whenT',, ,
contains at most two triple junctions and so Theorem 13.4 only for networks with at most two 3-points.
If we try to repeat the computations of the final part of this proof considering a situation such that I, ,

contains more than two triple junctions, as the value of d‘sz) changes according to d’zit) =—(2—m/3)7,
when m > 3, we only have d’;‘lgt) > — (instead of being equal to —4/3), which is not sufficient to get

to the inequality dEdgt) > 0.

Lemma 13.7. Let Q be an open, bounded, strictly convex subset of R?. Let Sy be an initial regular network
with two triple junctions and let the S, be the evolution by curvature of Sy defined in a maximal time interval
[0,T"). Then, there cannot be a sequence of times t; — T such that, along such sequence, the two triple junctions
converge to the same end—point of the network.

Proof. Let O'(t) and O?(t) be the two triple junctions of S; and P? the end-points on d2. Suppose, by
contradiction, that lim; .., O7(¢;) = P?, for j € {1,2}. Notice that if S; is not a tree, then it has the
structure either of a “lens/fish—shaped” network (see Figure 7.3) or of an “island-shaped” network.

Figure 13.3: An island—shaped network.

If we consider the sequence of rescaled networks ]ﬁ[},l _ obtained via Huisken’s dynamical procedure

ot
applied to H}, as in Proposition 7.20, centered in P?, it converges in C,u¢ N W2, for any a € (0,1/2)
to a (not empty) limit degenerate regular shrinker Heo. We analyze the possible H,, without using the
multiplicity—one conjecture M1, to avoid a “circular argument”. Moreover, we consider among all the
possible blow—up limits Ho,, one with the maximum number of 3—points (which can only be 0, 2 or 4).
We first consider the case when H., (hence, also the underlying graph) is a tree, then it is a symmetric
family of halflines from the origin, by Lemma 7.10.

If H, has no 3-points, then it is a line through the origin, which means that in the rescaling procedure
all the 3—points go to infinity, hence it must be that the curves 4" of S; not going to infinity, in the
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sequence of rescalings, satisfy ‘
lim )
j—oo /T — tj
then, repeating the argument of Proposition 7.30 (leading to Proposition 7.32), such a line must have
multiplicity one, being composed of the “reflection” of two halflines with unit multiplicity.

:+OO’

If H contains only two 3—points (hidden in its core at the origin), recalling the argument in the proof
of Lemma 7.10, it is given by four halflines forming angles of 120/60 degrees.

In both these two cases the curvature of the non-rescaled networks H; (hence, of S;) is locally uniformly
bounded around P! (by White’s regularity theorem in [111] and Proposition 9.21, which are both inde-
pendent of M1), then (in the second case, by arguing as in Lemma 7.24) the presence of another 3—point
of S; in a space—-time neighborhood of (P1 T) is “forbidden”, clearly contradicting the hypotheses.

The remaining case of four 3—points in H.., is when the (symmetric) core of H., is given by three degen-
erate curves (and four 3-points) at the origin. In this case it is straightforward to see that S, contains
a straight line through the origin, which is not possible since See must be contained in an angle with
opening less than 7, by the strict convexity of (), as it is shown in Proposition 7.13.

If instead H,, contains a loop (actually, two symmetric ones coming from a collapsing loop in S;, as
t — T and its “reflection”), pushing a little the analysis in Section 7.1 (see also the Appendix), it could
only have the structure of a Brakke spoon (see Figure 7.2) or of a shrinking lens/fish (see Figure 7.4).
Then, it would contains the origin of R? in its inside, which is clearly not possible in our situation of
blow—up around an end—point of the network S;. O

Remark 13.8. As before, we remark that the strictly convexity hypothesis on (2 can actually be weakened
by asking that (2 is convex and that there does not exist three aligned end—points of the initial network
Sp on 9€).

Proof of Theorem 13.4. If S, is the evolution of a network with only one triple junction, any of the evolving
networks H has exactly two 3—points. Let ¢t € [0,7) a time such that 0 < II(¢) < 1/4 and II and all
embeddedness measures E?, associated to the networks H, are differentiable at ¢ (this clearly holds for
almost every time).

Let Ei(t) = II(t) < 1/4 and E‘(t) is realized by a pair of points p and ¢ in H{, we separate the analysis
in the following cases:

e If the points p and ¢ of the minimizing pair are both end—points of H}, by construction |[p—gq| > ¢ >
0. Moreover, the area enclosed in the Jordan curve formed by the segment pg and by the geodesic
curve I', ; can be uniformly bounded by above by a constant C > 0, for instance, the area of a ball
containing all the networks H:. Since ¢ > 0 and C depend only on €2 and on the structure of the
initial network Sy (more precisely on the position of the end-points on the boundary of , that

stay fixed during the evolution and that do not coincide), the ratio Jf(’ Aql 5 (or 2= ?‘ , if p, ¢ do not

= >0 uniformly, hence the same

belong to a loop) is greater or equal than some constant C; = <

holds for II(¢).

e If one point is internal and the other is an end—point of H:, we consider the following two situa-

tions. If one of the two point pand ¢isin S, C H: and the other is in the reflected network Sff‘,
then, we obtain, by construction, a uniform bound from below on II(¢) as in the case in which p
and ¢ are both boundary points of H.
Otherwise, if p and ¢ are both in S; and one of them coincides with P’ with j # i, either the other
point coincides with P?and we have again a uniform bound from below on II(t), as before, or both
p and q are points of H both not coinciding with its end—points and E’(t) = E*(t) = TI(t) < 1/4,
so we can apply the argument at the next point.

dIi(t)

o If p and g are both “inside” H}, by Hamilton's trick (see [48] or [78, Lemma 2.1.3]), we have T

dE (t dE"(t) dIi(t)
dt dt

and, by Proposition 13.5, > 0, hence > 0.

All this discussion implies that at almost every point ¢t € [0,T") such that II(¢) is smaller than some

dII(t)
dt >

uniform constant depending only on 2 and on the structure of the initial network Sy, then
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0, which clearly proves the theorem in the case a network with a single triple junction (see also [82,
Section 4]).

Let now S; be a flow of regular networks with two triple junctions. If there are no end-points, the
conclusion follows immediately from Proposition 13.5. Hence, we assume that S; has two or four end-
points (in the first case there is a loop, and in the second S, is a tree), which are the only possibilities.
The analysis is the same as above, with only a delicate point to be addressed, that is, in the last case,
when the two points p and ¢ of the minimizing pair are “inside” H: and we apply Proposition 13.5.
Indeed, since H: has four 3—points it can happen that the geodesic curve I',, , contains more than two
3—points, hence this case requires special treatment. Notice that if the points p and ¢ are both “inside”
St C Hi, then Proposition 13.5 applies and we are done. We then assume that p € S;, ¢ € Sf, and T, ,
contains more than two triple junctions.

We want to show that there exists a uniform positive constant ¢ such that [p — ¢| > ¢ > 0, which implies
a uniform positive estimate from below on E'(t), as above. This will conclude the proof.

Assume by contradiction that such a bound is not possible, then, for a sequence of times t; — T, the
Euclidean distance between the two points p; and ¢; of the associated minimizing pair of ®;, goes to
zero, as j — oo and this can happen only if p;, ¢; — P*. It follows, by the maximum principle that the
two 3—points O (t) and O?(t) converge to P’ on some sequence of times t;, — T (possibly different from
tj), which is forbidden by Lemma 13.7 and we are done. O

Remark 13.9. Notice, by inspecting the previous proof, that in the case that S; has a single 3—point, the
strict convexity of (2 is not necessary, convexity is sufficient.

13.1 Consequences for the multiplicity—one conjecture

The quantity E(¢) considered in the previous section is clearly, by definition, dilation and translation
invariant, moreover it is continuous under C|} —convergence of networks. Hence, if E(t) > C > 0 for

loc
every t € [0,7), the same holds for every C}, ~limit of rescalings of networks of the flow S;. This clearly

loc
implies the strong multiplicity—one conjecture SM1.

Corollary 13.10. If Q is strictly convex and the initial network So has at most two triple junctions, then the
strong multiplicity—one conjecture SM1 is true for the flow S;.

A by—product of the proofs of Proposition 13.5 and Theorem 13.4 is actually that also the function II(¢)
is positively uniformly bounded from below during the flow.

Corollary 13.11. If Q is strictly convex and the initial network So has at most two triple junctions, then the
strong multiplicity—one conjecture SM1 is true for all the “symmetrized” flows H.

Remark 13.12. Actually, in general, if we are able to show the (strong) multiplicity-one conjecture for
a curvature flow S; in a strictly convex open set (2, then, by construction and Proposition 7.13, it also
holds for all the “symmetrized” flows H:. This remark is in order since in the analysis of the flow S;
in the previous sections, we used the “reflection” argument at the end—points of the network S;, then
we argued applying M1 to the resulting networks H (to be precise, in Section 9.1 and in the proofs of
Proposition 9.11 and of Proposition 9.19).

Another situation that can be analyzed by means of the ideas of this section is the following.

Proposition 13.13. If during the curvature flow of a network S, the triple junctions stay uniformly far from each
other and from the end—points, then SM1 is true for the flows S; and all Hi. As a consequence, the evolution of
S does not develop singularities.

Proof. We divide all the pairs of curves of the evolving network S, in two families, depending on the
curve of a pair have a common 3—point or not. In the second case, by means of maximum principle and
the assumption on the 3—points, there is a uniform constant C' > 0 such that any couple of points, one
on each curve of such pair, have distance bounded below by C. Then, if the pair of points of S, realizing
the quantity E(t) stay on such curves it follows E(t) > C’ > 0 for some uniform constant C’. In case
E(t) < (', it follows that such a pair of points either stay on the same curve or on two curves with a
common 3-point. Hence, the “geodesic” curve I',, , contains at most one 3—point, since otherwise the
distance between p and ¢ would be at least C, contradicting the fact that E(t) < C’. This implies that
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dggt) > 0 by Proposition 13.2. Then, the strong multiplicity—one conjecture follows for S; and all the

“symmetrized” flows HY, by the same argument in the proof of Theorem 13.4, taking into account the
hypothesis that the triple junctions stay uniformly far also from the end—points.

It follows that the only possible singularities of the flow are given by the collapse of a curve of the
network, but this is excluded by the assumption. O

14 The flow of networks with at most two triple junctions

In what follows we present, up to the best of our knowledge, the description of the evolution of the
networks with at most two triple junctions. For simplicity, we let them evolve in a strictly convex, open
and smooth subset Q2 C R?. These are not only simple examples of a complete analysis of the flow, but
they are interesting since most of the relevant phenomena of the motion by curvature of networks are
already present.

All the results are based on the content of the previous sections. We underline that in the current
situations the strong multiplicity—one conjecture SM1 holds (see Section 13.1), hence it is not necessary
to assume it. We require instead the uniqueness of blow—up assumption U, stated in Problem 7.25, to hold,
which is still conjectural, even if some positive partial results were recently obtained in [91].

We recall that if the maximal time of smooth existence is finite, either a curve is vanishing with bounded
curvature, or there exists at least a point zy € 2 where the curvature is not bounded, that is, at least a
region of the network collapses at such point and we have there a blow—up limit network which cannot
have zero curvature.

Since the multiplicity—one conjecture holds for these networks, when a region collapses, also the loop
that encloses the region must collapse, with its length going to zero.

14.1 Networks with only one triple junction

If we consider the possible (topological) structures of regular networks with only one triple junction,
we see that there are only two cases: the friod and the spoon—shaped network. The motion of a triod
can be regarded as the simplest example of the evolution by curvature of a tree-like configuration of an
“essentially” singular one-dimensional set, the motion of a spoon is the simplest one with a loop.

PS

P2

Figure 14.1: Networks with only one triple junction: triod and spoon network.

In what follows we present a complete description of the evolution of networks with these two shapes
(from [76,82,89]). We will see that in the case of the triod, we can exclude the presence of singularities
till the lengths of the three curves stay positively bounded from below, while in the case of the spoon
instead, a singularity develops.

As defined in Section 3, fixed a smooth, open, strictly convex set Q C R?, a triod is a network (a tree)
T composed only of three regular, embedded C! curves 7' : [0,1] — Q. These curves intersects each
other only at a single 3-point O, that is, 7! (0) = v*(0) = 7' (0) = O and have the other three end-points
Pl P2 P3 on the boundary of 2 with v%(1) = P?, for i € {1,2,3}. The triod is regular if the three
concurring curves form angles of 120 degrees.

A spoon T' = 41([0, 1]) U~2([0, 1]) is the union of two regular, embedded C! curves y',~% : [0,1] —
which intersect each other only at a triple junction O, with angles of 120 degrees, thatis, v (0) = (1

I 2l
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¥2(0) = O € Qand 73(1) = P € 9Q. We call 4! the “closed” curve and 72 the “open” curve of
the spoon and we denote with A the area of the region enclosed by the loop. A spoon is regular if
71(0) + 72(0) — 71(1) = 0, which means that the three angles at O are of 120 degrees.

For simplicity, we will assume in the following that all the initial networks are smooth, hence Theo-
rem 3.30 applies and gives a smooth curvature flow in a maximal time interval [0, T"). As we discussed
in the previous sections, to start the flow if the curves of the initial network are only C? but the Herring
condition is still satisfied, we need Theorem 5.8. If the initial network is not regular, we need to apply
Theorem 10.9 to have a curvature flow. Anyway, in all these cases, the flow is smooth for every positive
time. If the network is regular, thanks to Theorem 5.8, we have uniqueness (geometric uniqueness to be
more precise, see Definition 3.1). If these networks with only triple junctions are not regular but their
curves are smooth, we still get geometric uniqueness (see Remark 10.29).

Collecting and specializing the results for a smooth initial network to the cases of a triod or of a spoon
(Theorem 3.30), we have the following proposition.

Proposition 14.1. Let Q C R? be a smooth, open, strictly convex set, then, for any smooth reqular initial triod
To or any smooth regular initial spoon 'y in €2, there exists a geometrically unique smooth (and special) curvature
flow in a maximal time interval [0,T).

Before proceeding, we also recall that during the flow the evolving networks stay embedded and inter-
sect the boundary of €2 only at the fixed end—points (transversally), see Section 7.2.

14.1.1 The triod

Suppose that T < +oo, then, by Proposition 9.9, the lengths of the three curves cannot be uniformly
positively bounded from below. Hence, as {2 is strictly convex, Corollary 9.25 and Theorem 9.32 imply
that the curvature of T, is uniformly bounded and there must be a collapse of a curve to a fixed end-
point on 02, when ¢t — T, as depicted in the right side of Figure 9.1 or Figure 9.8.

Suppose instead that 7' = +oo. Then, by Proposition 12.6, for every sequence of times ¢; — 400,
there exists a (not relabeled) subsequence such that the evolving triod T;, converge in C' to a possibly
degenerate regular triod, embedded (by Theorem 13.4) and with zero curvature, as i — oo, that is, a
Steiner configuration connecting the three fixed points P’ on 99 (which possibly have a zero-length
degenerate curve, for instance if the three end—points are the vertices of a triangle with an angle of 120
degrees). Moreover, as the Steiner configuration (which is length minimizing) connecting three points
is unique (if it exists), for every subsequence of times, we have the same limit triod, hence, the full
sequence of triods T; converge to such limit, as t — +o0.

We notice that there is an obvious example where the length of one curve goes to zero in finite time: the
case of an initial triod Ty with the boundary points P’ on 92 such that one angle of the triangle with
vertices P!, P?, P? is greater than 120 degrees. In this case the Steiner triod does not exist, hence the
maximal time of a smooth evolution must be finite.

Instead, if the angles of the triangle with vertices P!, P?, P3 are all smaller than 120 degrees and the
initial triod Ty is contained in the convex envelope of P!, P2, P3, then no length can go to zero during
the evolution, by Remark 9.15, the maximal time of existence is +o00 and the triods T; tend, as ¢ — 400,
to the unique Steiner triod.

When the maximal time 7’ is finite and a curve collapses to an end-point (see Figures 9.1, 9.8 and the
above discussion), it is not clear how to continue/restart the flow. Indeed, although the curvature is
bounded, Theorem 10.9 does not apply and we need some “boundary” extension (see the discussion in
Section 9.4, after Figure 9.8).

14.1.2 The spoon

In Section 7.2 we discussed the behavior of the area A of a bounded region enclosed by a loop of an
evolving regular network. In the case of the spoon, the loop is composed of one curve and there is only

one triple junction. Then, equation (7.4) gives A’(t) = —57/3, which implies that the maximal time T of
3A(0)

existence of a smooth flow of a spoon is finite and T" <
the loop (see Proposition 12.4).

where A(0) is the initial area enclosed in

Ast — T, the only possible limit regular shrinkers I, arising from Huisken’s rescaling procedure at a
reachable point z( € (2 are given by
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e a halfline from the origin,

e astraight line through the origin,
e astandard triod,

e a Brakke spoon (see Figure 7.2).

This follows by the simple topological structure of I'; and the uniqueness (up to rotation) of the Brakke
spoon among the shrinkers in its topological class (see Section 7.6). We remind that all the possible
blow—up limits are non-degenerate networks with multiplicity one, thanks to Corollary 13.10.

We first notice that, if the curve 7! collapses, then the curvature clearly cannot be bounded. Moreover,
by Proposition 9.32, it is not possible that both lengths of 4! and 72 go to zero, as t — 7.

Suppose that the length of the “open” curve 2 is uniformly positively bounded from below for all
t € [0,7T), then the curve 7! must collapse and the maximum of the curvature goes to +oo as t — T
(indeed, lim;_,r fo k* ds = +00, by Proposition 12.4). Then, if zo = lim;_,7 O(t), taking a blow-up limit

' at 2o € €2, we can only get a Brakke spoon, since in the other cases (a halfline is obviously excluded)
the curvature would be locally bounded and the flow regular. Hence, as t — T, the length of the closed
curve v goes to zero and the area A(t) enclosed in the loop goes to zero since (as U holds) we have
a limit network I'r, as t — T, composed only by a C! curve 72 connecting P with z, (and curvature
going as o(1/dy,)), as in Figure 9.11. Moreover, from the evolution law A(t) = A(0) — 57t/3, we obtain
that T = 419,

If instead the length of the curve +? is not positively bounded from below then, as t — T', by Proposi-
tion 9.32 such curve collapses to the end—point P, the curvature stays bounded and the network I'; is
locally a tree around every point, uniformly in ¢ € [0,7). Hence, the region enclosed by the curve ~
does not vanishes and the triple junction O has collapsed onto the boundary point P, maintaining the
120 degrees condition and with bounded curvature (see Proposition 9.21). The networks I'; converge in
C',ast — T, to a limit network I'y, as in Figure 9.9.

We actually do not have a natural way to restart the flow in the first situation. In the second one, a
natural “choice” is to assume that the flow ends and the whole network vanishes for ¢t > T

We conclude this example with a couple of open questions.

Open Problem 14.2 (Special case of Problem 7.25). Is the limit Brakke spoon obtained in the previous
theorem (in the second situation) independent of the chosen sequence of times t;, — +00? That is, is the
direction of its unbounded halfline unique?

Open Problem 14.3. Having in mind the “convexification” result for simple closed curves by Grayson [46]
(see Remark 2.16), a natural question is: if we consider an initial spoon moving by curvature with the
length of the non—closed curve uniformly positively bounded below during the evolution, does the
closed curve become eventually convex and then remain convex?

These two open problems are related: the uniqueness of the blow—up limit (which is a Brakke spoon,
hence with a convex region) would imply that the region at some time becomes convex and then re-
mains so, by the smooth convergence of the rescaled networks to the Brakke spoon (this follows from
the argument of Lemma 8.6 in [58], see the discussion just after the proof of Lemma 7.24).

14.2 Networks with two triple junctions

We consider now regular networks with exactly two triple junctions and we focus on their topological
classification. We parametrize the curves composing the network by v : [0, 1] — R2. At each 3-point
either three different not closed curves concur (for instance O' = 41(0) = 42(0) = +3(0)) or two curves,
one of which closed (that is O' = v(0) = ~!(1) = ?(0)). As we do not consider here open networks
(with branches that go to infinity asymptotic to halflines, see Definition 2.4), if a curve is not closed
(hence v'(0) # +!(1)), there are only two possibilities for its end—point not concurring in O': either it is
an end—point on the boundary of ©, or it belongs to the other triple junction O?. If we repeat the above
reasoning for every end—point, we obtain all the cases shown in Figure 14.2.

When we say that a network has a loop ¢, we mean that there is a Jordan curve in S that encloses an
area A. For networks with two triple junctions, there are two cases (see Figure 14.2):
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e the loop ¢ is composed of a single curve v : [0,1] — R?, v(0) = (1) forming an angle of 120
degrees. The length L of ¢ coincides with the length of .

e the loop / is composed of two curves v, +? : [0,1] — R?, that meet each other at their end-points
and at both junctions there is an angle of 120 degrees. The length L of ¢ is the sum of the lengths
of the two curves.

0 closed curves 1 closed curve 2 closed curves

0 end—points
on 0f)

Theta Eyegfz;sses

2 end—points
on 0N

Lens 7 Island

4 end-points
on 02

Tree

Figure 14.2: Networks with two triple junctions.

Proposition 14.4. Let Q C R? be a smooth, open, strictly convex set, then, for any smooth regular initial network
in the above family, there exists a geometrically unique smooth (and special) curvature flow in a maximal time
interval [0, T). During the flow, the evolving networks stay embedded and intersect the boundary of Q only at the
fixed end—points (transversally).

We first analyze the possible blow—up limits at a singular time of the evolution of networks with two
triple junctions of general topological type, then we discuss in detail all the possible topologies, case by
case.

It is crucial that all the possible blow—up limits Soos arising from Huisken’s rescaling procedure, are
embedded networks with multiplicity—one, by Corollary 13.10 in Section 13.

Proposition 14.5. If the rescaling point x belongs to Q, then the blow—-up limit network S, (if not empty) is
one of the following (see Section 7.1):

e astraight line through the origin;
e a standard triod centered at the origin;

e g standard cross;
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e a Brakke spoon;
e ashrinking lens;
e a shrinking fish.

If the rescaling point x is a fixed end—point of the evolving network (on the boundary of Q2), then the blow-up
limit network S (if not empty) is one of the following:

o a halfline from the origin;
e two halflines from the origin forming an angle of 120 degrees (“half” of a standard cross).

Proof. The limit (possibly degenerate) network Seo has to satisfy the shrinkers equation ko, + 2z~ = 0
for all z € S., (see the proof of Proposition 7.20).

If we assume that goo is a degenerate regular shrinkers, it must be a standard cross, if o € Q, or two
halflines from the origin forming an angle of 120 degrees, when o € 0 (“half” of a standard cross).
Then, its core is composed of a single curve (connecting the two triple junctions or a triple junction with
an end—point, by Lemma 13.7) “collapsed” in the limit.

If S, is not degenerate and the curvature koo is constantly zero, the network is composed only of
halflines or straight lines. Then, the possible regular shrinkers are either a straight line through the
origin or a standard triod, if zo € €2, or a halfline, if g € 0Q.

If instead the curvature is not constantly zero and the network S, is not degenerate, by the classification
of regular shrinkers with two triple junctions, we can only have either the Brakke spoon, the shrinking
lens, or the shrinking fish. In all these three cases, the center of the homothety is inside the enclosed
region, hence z( cannot be an end—point on the boundary of 2. O

Proposition 14.6. Let Sy be a network with two triple junctions and with a loop ¢ of length L, enclosing a region
of area A and let Sy be a smooth evolution by curvature of such network in the maximal time interval [0, T). Then,
T is finite and if lim;_,7 L(t) = 0, there holds lim;_,r fS,, k% ds = +o0.

Proof. If a loop is present, by the above classification of the possible topological structures of the net-
works with two triple junctions, it must be composed of m curves, with m < 6, hence, Proposition 12.4
applies. O

Theorem 14.7. Let Q C R2 be a smooth, strictly convex, open set. Let Sg be a compact initial network with two
triple junctions and with possibly fixed end—points on 02 and let S, be the smooth evolution by curvature of Sy
in a maximal time interval [0,T).

If the network Sy has at least one loop, then the maximal time of existence T is finite and one of the following
situations occurs:

1. the limit of the length of a curve that connects the two 3—points goes to zero, as t — T, and the curvature
remains bounded;

2. the limit of the length of a curve that connects the 3—point with an end—point goes to zero, as t — T and
the curvature remains bounded;

3. a region enclosed by a loop collapses with the length of the loop going to zero (since SM1 holds), ast — T

and lim [ k?ds = +oo.
=T Js,
If the network is a tree and T is finite, the curvature is uniformly bounded and only one of the first two situations
listed above can happen. If instead T = +o0, for every sequence of times t; — +o00, there exists a subsequence
(not relabeled) such that the evolving networks S, converge in C* N W?2?2, for every o € (0,1/2), to a possibly
degenerate, regular network with zero curvature (hence, “stationary” for the length functional), as i — oo.

Proof. If a loop is present, by Proposition 12.4, the maximal time of smooth existence 7' > 0 is finite.
If such time is smaller than the “natural” time at which the loop shrinks (depending on the number of
curves composing the loop, as in Proposition 12.4), the network is locally a tree, uniformly for ¢ € [0, T).
Hence, every blow—up limit at any point zo € Q cannot contain loops, then Proposition 14.5 shows that
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it must have zero curvature, thus, by Proposition 9.19 the curvature of S, is uniformly bounded along
the flow and converges, as t — T, to a degenerate regular network Sy with vertices that are either a
regular triple junction, an end—point, or

e a 4-point where the four concurring curves have opposite unit tangents in pairs and form angles
of 120/60 degrees between them (collapse of the curve joining the two triple junctions of S;);

e a2-point at an end—point of the network S; where the two concurring curves form an angle of 120
degrees among them (collapse of the curve joining a triple junction to such end—point of S;).

The same conclusion clearly holds if Sy is a tree and 7’ is finite.
If instead the time T coincides with the vanishing time of a loop of the network, by Proposition 12.4,
the curvature is unbounded and there must exist a reachable point for the flow x¢ € {2 and a sequence

of times t; — T such that, the associate sequence of rescaled networks AS'QCMJ, as in Proposition 7.20,

converges in C\o% N W22, for any a € (0,1/2), to a limit degenerate regular shrinker Seo that is either a

Brakke spoon, a shrinking lens, or a shrinking fish.

If T = +o00, hence Sy must be a tree, then S, converges, as t — 00, to a (possibly degenerate) regular

network with zero curvature (a stationary point for the length functional), thanks to Proposition 12.6
O

To now proceed with a more detailed analysis of the behavior of the flow of these networks, we consider
each topological type separately.
14.2.1 The theta

We call A; the area enclosed by the curves v! and 72 and A, the area enclosed by 2 and ~3, as in the
following figure.

Figure 14.3: Theta.

Let o € 2 be a reachable point of the flow, from Proposition 7.20, we know that the sequence of

rescaled networks §107¢j converges in C\.% N W22, for any o € (0,1/2), to a blow—up limit shrinker Soo-

By Proposition 14.5, the possible S, are:
e astraight line through the origin;
e astandard triod;

e astandard cross;

a shrinking lens;

a shrinking fish,

146



where we excluded the Brakke spoon for topological reasons.

We know from Proposition 12.4 that the maximal time 7" of existence of a smooth flow is finite and
bounded by % min{A4;(0), A2(0)}. Indeed, from equation (7.4), we know that the areas enclosed in the
two loops are linearly decreasing in time, precisely, A/ (t) = A/ (t) = —4n/3.

If T < 2 min{A4,(0), A2(0)}, then the evolving network is locally a tree for all times, hence the analysis
of Sections 9.2 and 9.3 (in particular, Theorem 9.26) applies and the curvature stays bounded while the
length of only one curve is going to zero, as t — T, forming a regular 4—point, where the two triple
junctions converge.

Suppose that 7' = 2 min{A4;(0), A2(0)}. Suppose by contradiction that 4;(0) = A5(0). Clearly the two
regions should collapse both at T. Taking a blow—up limit S, at a hypothetical vanishing point z, € €,
such limit must contain two contiguous regions with a common edge and with equal finite area. Indeed,
every rescaled network of the sequence S,, ( contain two contiguous regions and the two loops cannot
vanish in the limit (neither collapsing to a core because of the enclosed constant area), since at least one
is present in the possible blow—up limit shrinker. Then, since there are no possible limit shrinkers with
two bounded regions, by Proposition 14.5, this situation is not possible.

So, in the case T = 2 min{A;(0), A2(0)}, the two areas A4;(0) and A(0) must be different. The curva-

ture cannot stay bounded, hence there must exist a singular point o € 2 where Sw is a non-straight
shrinker, thus, a shrinking lens or a shrinking fish. The resulting possible limit network Sr, ast — T,
will then be given by a C* curve, “closing” at x¢, possibly forming an angle. As we supposed that the
uniqueness of blow—up assumption U in Problem 7.25 holds, such angle is either the one between the two
“halfilnes” of the shrinking fish, if this is the blow—up limit shrinker, or the curve is C ! (no angle), if the
blow—up limit shrinker is a shrinking lens (see Figure 9.7).

In the first case, we “pass through” the (topological) Type-0 singularity by a standard transition, as
described in Section 11 (see Figure 11.1) and we actually conjecture that this can be done in a unique
way, see Remark 11.1. After the transition, the network becomes eyeglasses—shaped (of “type A” or
of “type B”, depending on whether the collapsed curve was the central one, or one of the other two,
respectively), as in Figure 11.2 or in the left side of Figure 12.3.

In the case St isa C* closed curve with possibly an angle, by the results of Angenent in [6] (see also [30]),
we can (uniquely) restart the evolution by means of the “classical” curve shortening flow, obtaining an
evolving closed embedded curve, which becomes immediately smooth. After some time it becomes
convex and then shrinks in finite time to a “round” point of 2, by the well-known works of Gage,
Grayson and Hamilton [39-41,46]

14.2.2 The eyeglasses

We analyze the two different “types” of these networks, as in the following Figure 14.4.

From equation (7.4) we know that the area enclosed by any loop is linearly decreasing in time. Hence,
being present some regions, by Proposition 12.4 it follows that the maximal time 7' > 0 of existence
of a smooth flow is finite and bounded by 2 min{4;(0), A2(0)}, where A; and A, are the areas of the
regions respectively enclosed by the curves 'yl and 72, in the “type A” case, by 3‘45#, where A; is the
area enclosed by the “internal” loop, in the “type B” case (in the case of collapse of a region also its

boundary loop must vanish, hence the “internal” region is forced to collapse).

147



Figure 14.4: Eyeglasses — “type A” and “type B”.

Considering a reachable point for the flow z( € Q, the possible blow—up limit shrinkers Secsast — T,
by Proposition 14.5 are:

e astraight line through the origin;
e astandard triod;

e astandard cross;

e a Brakke spoon,

where we excluded the shrinking lens and fish, since are not topological compatible with the possible
limits of eyeglasses—shaped network (limit regions cannot “increase” the number of edges).

We first analyze the behavior of a “type A” eyeglasses—shaped network.

If T < 2 min{A;(0), A2(0)}, no region has collapsed, then the evolving network is locally a tree for
all times, hence (as in the analogous case for a ©-shaped network), the curvature stays bounded while
only the length of the single “open” curve is going to zero, as t — T, forming a regular 4—point, where

the two triple junctions converge.

If T = 2 min{A4,(0), A2(0)}, then at last one of the two region collapses (with unbounded curvature)

at some point zp € Q and the blow—up limit shrinker gm must be a Brakke spoon. We underline that,
differently from the case of the ©-shaped network, if A;(0) = A2(0), we do not have an argument to
exclude that both regions collapse to a single common point, as t — T (even if it seems quite implausi-
ble).

Hence, we have the following possibilities, in the case of a collapse of a region, as t — T

e if A;(0) # A2(0), then the limit network St is a spoon with an “open” C! curve ending at the
collapse point, see Figure 9.10;

e if A;(0) = A2(0) and the two regions collapse at two different points of 2, the limit network St is
a C! curve connecting such two points;

e if A;(0) = A2(0) and the two regions collapse at a common point of 2, then the limit network
St is a closed C! curve, starting and ending at the collapse point and there possibly forming an
angle, if the length of the “open” curve does not go to zero, otherwise, all the network collapses
at such point, if also the length of the “open” curve goes to zero.

Anyway, we conjecture that this last situation and in particular, a complete “vanishing” of the network,
as t — T, is not possible.

We now deal with a “type B” eyeglasses—shaped network.
From what we said above, if T' < %750), no region has collapsed, then the evolving network is locally
a tree for all times, hence (as above), the curvature stays bounded while only the length of the single
“open” curve is going to zero, as ¢t — T, forming a regular 4-point, where the two triple junctions

converge.

148



T = 3‘%1750), then the “internal” region collapses (with unbounded curvature) at some point zq € Q

and the blow-up limit shrinker S, must be a Brakke spoon. Since, arguing as in Proposition 12.4, we
have that the area A; of the region between the inner and the outer closed curve of the network satisfies
Ay = =27 /3, while A} = —57/3, if A;1(0)/A2(0) > 5/2, we have a contradiction since A, would go
to zero before A; and this cannot happen (it would contradict what we said at the beginning of this
section). Hence, in this case, the initial areas must satisfy A;(0)/A3(0) < 5/2.

If we have the equality A;(0)/A2(0) = 5/2, at time T, both regions are collapsing, as t — T and they
cannot “disappear” in the blow—up limit shrinker Swe, since in the rescaled sequence they have constant
area and, being one contained in the other, no one of them can “go to infinity”. Hence, the blow—up limit
shrinker would have two regions, which is impossible, as it must a Brakke spoon, by Proposition 14.5.
Thus, it must be 4;(0)/A2(0) < 5/2 and the network cannot completely “vanish” at a single point of
2. We have instead that only the “interior” region collapses at a point and the limit network Sr is a
closed C! curve, starting and ending at the collapse point and there forming an angle of 120 degrees, if
the length of the “open” curve goes to zero, otherwise, there is also a C! curve connecting the collapse
point with the angle of the limit of the curve 72 (see Figure 14.4), if the length of the “open” curve does
not go to zero.

In case of collapse of the “open” curve, for both types, we “pass through” the singularity as before, with
a standard transition, getting a ©-shaped network after the time 7" (see the right side of Figure 12.3).
In the other cases, imposing that after the time 7', all the “open” curves with a “free” end—point vanish
in the subsequent evolution, we have only to deal with the remaining part of the network (if present)
and we can restart the flow with the same arguments discussed above for the limits at a singular time
of a ©-shaped network.

14.2.3 Thelens

The main difference between this case (and also the next ones) with the theta and the eyeglasses cases,
is that boundary points are present.

Figure 14.5: Lens.

This increases the list of the possible blow—up limit networks Sso. Indeed, by Proposition 14.5, if the
blow—-up point ¢ € £, they can be:

e astraight line through the origin;
e astandard triod;
e a standard cross;
e ashrinking lens;
e a shrinking fish,

where we excluded the Brakke spoon for topological reasons and, if z¢ € 012,
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e a halfline from the origin;
e two halflines from the origin that form an angle of 120 degrees.

As we have a region with two edges in this network, the maximal time of existence 7 is finite and

bounded by %20), by Proposition 12.4.

T < 3‘2;0) , no region collapses, the evolving network is locally a tree for all times and the curvature
stays bounded. Then, we can have two cases: either the length of one of the two “central” curves goes to
zero, or this happens for one or both the “boundary” curves. In the first case, the limit network St has a
regular 4-point connected with the two end—points and with a closed C! curve, starting and ending at
such point, forming an angle of 60 degrees. In the second case, St can have either two curves between
the two end—points bounding a region, or a curve from an end-point with a triple junction at its other
end, which is connected with the other end—point by two curves bounding a region. At the end points,

the curves form an angle of 120 degrees.

Ifr = 3‘35(0) the central region is collapsing (with unbounded curvature) and the sequence §$0,tj con-
verges to a shrinking lens or to a shrinking fish, hence giving as a limit network Sy, either a C' curve
connecting the two end—points (if the blow—up limit shrinker is a shrinking lens), or two curves from
the two end—points to the collapse point in 2, where they form and angle like the one between the two
“halfilnes” of the shrinking fish (if this is the blow—up limit shrinker). We remind that the collapse at
the same time of both triple junctions (and the central region) to an end—point on 012 is excluded by

Lemma 13.7.

In the first case, we “pass through” the singularity as before, with a standard transition, getting an
island-shaped network, after the time 7" (see the left side of Figure 12.2).

If one or both the boundary curves collapses to an end—point, we actually do not have a natural way to
restart the flow (as in the case of the spoon, when the “open” curve collapses).

If the central region collapses, hence St is a piecewise C! curve with possibly a single angle and (fixed)
end-points on 052, by the results in [30] and [6], we can (uniquely) restart the evolution by means of the
curve shortening flow with fixed end-points, obtaining an evolving embedded curve, which becomes
immediately smooth and converges as t — +00, to the segment connecting such end—points.

14.2.4 The island

As for the previous networks with a closed curve, for an island—-shaped network, the maximal time of
3A(0)
5w °

existence 7" of a smooth flow in bounded by

Figure 14.6: Island.

By Theorem 5.7, if the blow—up point zy € €2, the blow—up limit networks g@@ can be:

e astraight line through the origin;
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e a standard triod;
e astandard cross;
e a Brakke spoon,

where we excluded the standard lens and fish (as the limit cannot have a region with more than one
edge) and, if =y € 012,

e a halfline from the origin;

e two halflines from the origin that form an angle of 120 degrees.

T < 327(:)) , no region collapses, the evolving network is locally a tree for all times and the curvature
stays bounded. Then, we can have two cases: either the curve 72 in the figure collapses with O! and O?
forming a 4-point, or the length of one of the two “boundary” curves goes to zero. In the first case, the
limit network St has a regular 4-point connected with the two end-points and with a closed C* curve,
starting and ending at such point, forming an angle of 120 degrees. In the second case, St is formed
by the union of a spoon and a C* curve connecting the two end-point. The “open” curve of the spoon
form an angle of 120 degrees with such connecting curve at the end—point where they concur.

T = 3‘27(70), the region is collapsing (with unbounded curvature) and the sequence fSVIO,tj converges
to a Brakke spoon. Hence, since the collapse at the same time of both triple junctions (and the central
region) to an end—point on J{2 is excluded by Lemma 13.7, the limit network St must be either a triod
composed by two curves connecting the two end—points to the triple junctions and an “open” curve,
or (if the curve ~? also collapses — see Figure 14.6) two curves from the two end—points to the collapse
point in ). In both cases the two “boundary” curves form an angle of 120 degrees.

In the first case, no region collapses, we “pass through” the singularity with a standard transition,
getting an lens—shaped network, after the time T’ (see the right side of Figure 12.2), if the “open” curve
collapses in 2. If instead, it is a “boundary” curve which collapses, we do not have a natural way to
continue the flow.

In the second case, as before, we “forget” the possibly present “open” curve, imposing that after the
time 7 it vanish and we can (uniquely) restart the evolution of the piecewise C' curve with a single
angle by means of the curve shortening flow with fixed end—points (as in the case of a lens—shaped
network when the central region collapses), obtaining an evolving embedded curve, which becomes
immediately smooth and converges, as t — 400, to the segment connecting such end-points.

14.2.5 The tree

This is the only network with two triple junctions which does not present loops. Consequently, it is the
only case where we could have the global existence of the flow.

Figure 14.7: Tree.

Being a tree, by the analysis of Sections 9.2 and 9.3 the curvature stays bounded till a possible singular
time and we can only have a formation of a 4-point or one or two non—concurrent “boundary” curve
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collapse to their respective end—point, forming an angle of 120 degrees. In this latter case, as we said,
we do not have a natural way to continue the flow, while in the first case, we have a standard transition,
getting another tree, with the only other possible structure with the same end—points (see Figure 12.1).
If T' = 400 or the number of standard transition during the “extended” flow is finite, S; tends, as ¢t — oo,
to the Steiner configuration of minimal length, connecting the four fixed end—points.

14.2.6 The symmetric tree

Following [88,91], if we add a symmetry assumption, we get a complete description of the evolution of
a tree with two triple junctions. Suppose Sy is the smooth regular network in Figure 14.8. The network
has four end—points located at the vertices of a rectangle, it is composed of five curves, symmetric with
respect to the horizontal and vertical axes, the middle curve ~1° is a segment.

Figure 14.8: A symmetric tree network.

Thanks to the symmetries, we can reduce to study the evolution of a single curve, for instance, v!. In
this case one can prove (see [88]) that the network flow encounters only a finite number of standard
transitions, so that it is eventually regular and globally defined. The limit, as ¢ — +o0, is therefore a
Steiner tree or a standard cross (only when the ratio between the longer and shorter side of the rectangle
is equal to v/3). In the latter case, the length of 7° goes to zero and the curvature of the network remains
bounded.

Remark 14.8. Taking into account the discussion at the beginning of Section 12, one should actually
consider the flow of theta—eyeglasses and lens-island coupled, as a standard transition “switches” the
shape/topology of two networks from one to the other (like for the only two possible trees connecting
four points, as we said above), as in the Figures 12.1, 12.2 and 12.3).

Let us assume that

i) singular times are finite;
ii) there is no collapse of “boundary” curves;
iii) any “open” curve generated by a singularity, immediately disappears when we restart the flow;
then, at some time at least one region must collapse and

e in the case theta—eyeglasses, either we get a closed curve with possibly an angle that evolves
smoothly by curve shortening flow and shrinks in finite time to a “round” point of €, or the
network completely vanishes (we actually think this last scenario is not possible),

e in the case lens—island, we get a piecewise C'! curve with possibly a single angle connecting the
two end—points, which then evolves smoothly by curve shortening flow with fixed end—points
and converges, as t — 400, to the segment connecting such end—points.

We observe that in both cases, these are the last singular times of the flows (before the “vanishing” in
the first case).

15 Open problems

In this section we recall some problems that we find the most important among the several open ques-
tions scattered in the text.
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1. Definition of the flow.

Our “parametric” approach gives a good definition for the curvature flow of a network, compared
with the existing notions of generalized evolutions for singular objects, more general but allow-
ing weaker conclusions. The only unsatisfactory point is that we impose the presence of only triple
junctions and the 120 degrees angle condition. Thanks to them, we have the well-posedness of
the system of PDE'’s (2.5), hence the short-time existence Theorems 3.6 and 3.25, in Sobolev and
Holder spaces, respectively.

Nevertheless, one may wonder if these two conditions are automatically satisfied instantaneously,
for every positive time, by choosing a different suitable definition of the curvature flow of a net-
work.

2. Multiplicity—one conjecture.
Maybe the main open problem in the subject is the multiplicity—one conjecture, that is, whether
every blow-up limit shrinker is an embedded network with multiplicity one (see Problem 9.1).
Several of the arguments and results in this work depend on such conjecture, we mention its fun-
damental role in the description of the limit network at a singular time and, consequently, in the
possibility to implement the restarting procedure in order to continue the evolution, moreover, it
is also a key ingredient in showing that the curvature of a tree-like network is uniformly bounded
during the flow for all times and that one has only to deal with “standard transitions” at the sin-
gular times (see Section 9).
At the moment, we are able to prove the (strong) multiplicity—one conjecture only for networks
with at most two triple junctions (see Section 13).

3. Uniqueness of blow—up limits.
According to Proposition 7.20, the sequence of rescaled networks S,, ¢, associated to a sequence

of rescaled times t; — 400, converges to a degenerate regular shrinker Seor only up to a subse-
quence. Analogously, in Proposition 7.17, the sequence of rescaled curvature flows S{"* converges
to a degenerate regular self-similarly shrinking flow S¢°, up to a subsequence.

One would like to prove that the limit degenerate regular shrinker S (and/or the degenerate
regular self-similarly shrinking flow S¢°) is actually independent of the chosen converging sub-
sequences, that is, the full family gwo,t C} .—converges to See, as t = +oc. This is what we called
uniqueness assumption in Problem 7.25 and it is fundamental for the conclusions of Proposition 9.35
and Theorem 9.42, necessary to restart the flow when a region collapses at a singular time.

Some positive partial results were recently obtained in [90], in particular, uniqueness holds if the
blow—up limit shrinker is compact (some examples are given in the Appendix).

4. Behavior when a region collapses.

The singularities when a whole region collapses and then vanishes are the most difficult to deal
with, in particular because the curvature is unbounded. We are not able, at the moment, to give
a complete picture of the behavior of the evolving network, getting close to the singular time. A
couple of conjectures are stated in Problems 7.28 and 7.29, in particular, we expect that the non-
collapsing curves “exiting” from the collapsing regions (and converging to the concurring curves
at the new multi—point of the limit network) have locally uniformly bounded curvature during
the flow and that, anyway, such singularities are actually all Type I singularities, see Remark 7.21
(in other words, the curvature flow of embedded networks does not develop Type II singulari-
ties).

Anyway, hypothetically admitting the possibility of Type II singularities, one is led to consider
and try to analyze/classify also Type II blow—up limits (see [82, Section 7]), which are actually
“eternal” curvature flows of regular networks (for instance, the “translating” ones, see [82, Sec-
tion 5.2], that possibly coincide with them).

5. Classification of shrinkers.
Several questions (also of independent interest) arise in trying to classify the (embedded) regular
shrinkers. Such a classification is complete for shrinkers with at most two triple junctions [9-11],
or for the shrinkers with a single bounded region [11,20,21,96], see the following figure.
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O >0 b,

= K

Figure 15.1: The regular shrinkers with a single bounded region.

A lot of numerical computations, partial results and conjectures can be found in [51]. We mention
the very natural question whether there exist regular shrinkers with more than five halflines.
Moreover, interesting stability /instability results were recently obtained in [19].

6. The set of singular times.
An important point to be understood, in order to define a curvature flow in a maximal time inter-
val, passing through singular times by means of the restarting procedure described in Section 11,
is whether the set of singular times is discrete or even finite (as it happens for symmetric net-
works with two triple junctions, see [88]), or if they can accumulate in some particular situation
(see Problem 12.1). In this latter case, at the moment we actually do not know how to continue
the flow.

7. Asymptotic convergence.
In the case of global existence in time of an “extended” curvature flow (see Section 12), we would
like to show the convergence of the evolving network, as t — 400, to a stationary network for the
length functional (Problem 12.12). At the moment, we are able to face this problem only under the
assumption that the structure of the network stops changing after some time, that is, there are no
singularities of the flow for large times, see [91].
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Appendix — A regular shrinkers gallery (courtesy of Tom Ilmanen)

The following figures of regular shrinkers with their Gaussian density are based on numerical compu-
tations due to J. Hattenschweiler (see [51] where one can also find other positive and negative examples
and several conjectures) and T. [Imanen. We remark that this is not an exhaustive list, only the shrinkers
with at most one bounded region are completely classified, by the work of Chen and Guo [21] (and ac-
tually they are the only ones in this gallery whose existence is rigorously proved). Moreover, all the
shrinkers shown below have at least one symmetry axis, we do not know of examples without any

symmetries at all.

No regions:

Line Triod

1 region:

Circle Spoon Lens Fish

O = /27/e = 1.520 O ~ 1.699 O ~ 1.789 O ~ 2.026
3-ray star Rocket 4-ray star o-ray star
O ~ 2.031 0=" O ~ 2.295 O ~ 2.606
2 regions:

Cisgeminate eye
="

Cisgeminate 4-ray star
0=
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3 regions:

&
&

Mercedes-Benz 1-ray Mercedes-Benz 3-ray Mercedes—-Benz Cisgeminate 3-ray star
O ~ 2.532 O ~ 2.598 O ~ 2.762 0="
4 regions:

)
3>

3-leaf clover 2-ray 2-floc
0 ~ 3.064 O ~ 3.249
5 regions:

8
i

4-leaf clover 2-ray 4-leaf clover 4—petal flower
O~ 3.234 O =~ 3.365 O~ 3.474
6 regions:

&
g8

5-leaf clover 3—floc 3-ray three—floc 5—petal flower
O =~ 3.455 O ~ 3477 © = 3.517 O = 3.907

156



9 regions:

9—floc 3-ray 9-floc
O ~ 4.194 O ~ 4.321

Non-embedded regular shrinkers:

@ C D

Antispoon Bowtie
© ~ 2.365 © ~ 2.503

Impossible regular shrinkers:

(1| k&=

Conjecturally, by numerical evidence in [51], there are no regular shrinkers with these topological
shapes. The only one whose non—existence is rigorously proved is the first one, the ©-shaped (dou-
ble cell) shrinker, in [11].
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