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Abstract

We consider the motion by curvature of a network of curves in the plane and we discuss existence,
uniqueness, singularity formation, and asymptotic behavior of the flow.
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1 Introduction

In this work we give an overview of the state–of–the–art of the motion by curvature of planar networks
of curves, collecting known results and showing several new ones.

Figure 1.1: A planar network of curves in a convex domain.

The problem, proposed by Mullins [12] and discussed first in [12, 16, 17, 47, 63], attracted the interest
of many authors in recent years [11, 15, 21, 34, 42, 51, 58, 61, 76, 77, 79, 82, 83, 89, 94–97, 106]. One strong
motivation to study this flow is the analysis of models of two–dimensional multiphase systems, where
the problem of the dynamics of the interfaces between different phases arises naturally. As an example,
the model where the energy of a configuration is simply given by the total length of the interfaces has
proven useful to describe the growth of grain boundaries in a polycrystalline material (see [12, 47, 63]
and http://mimp.materials.cmu.edu).
A second motivation is more theoretical: the evolution by curvature of such a network of curves is the
simplest example of mean curvature flow of a set which is essentially singular. To consider such flow
not only for smooth submanifolds but also for non–regular sets, several generalized (weak) definitions
of the flow have been introduced in the literature [2, 16, 25, 35, 56, 101]. Anyway, while the smooth
case was largely studied and understood (even if still not completely), the evolution of generalized
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submanifolds, possibly singular (for instance varifolds), has not been analyzed in great detail.
In his seminal paper, K. Brakke [16] proved the existence of a global (very) weak solution, in a geometric
measure theory context, called “Brakke flow”. Recently, the work of Brakke has been improved by L. Kim
and Y. Tonegawa [61] (see also [105]) in the case of the evolution of grain boundaries in Rn (which
reduces to the evolution of networks when n = 2). They proved a global existence theorem and also
showed that there exists a finite family of open sets moving continuously with respect to the Lebesgue
measure, whose boundaries coincide with the space–time support of the flow (for further results, see
also the papers by K. Kasai and Y. Tonegawa [60] and Y. Tonegawa and N. Wickramasekera [106]).
Finally, in [62], Kim and Tonegawa also proved a regularity result for 1–dimensional Brakke flows,
showing that for almost all times, the evolving network consists of a finite number of embedded curves
of class W 2,2, meeting at junctions with angles of 60 or 120 degrees or with a common tangent.
For another global existence result in any codimension and with special regularity properties, obtained
adapting the elliptic regularization scheme of T. Ilmanen [55,56], we refer to the work of the last author
and B. White [98]. Despite these recent improvements, Brakke’s definition is anyway apparently too
weak (possibly too general) if one is interested in a detailed description of the flow.
A completely different definition of evolution is instead based on the so-called minimizing movements:
an implicit time–discrete variational scheme introduced in [2, 71] (see also [14, 18, 26]). In this context,
another discretization scheme was developed and studied by S. Esedoglu and F. Otto [34], T. Laux and
F. Otto [68, 69] (we motion also the more recent development [36]).
Finally, we mention the “level set” approach to motion by curvature by L. C. Evans and J. Spruck [35]
or, alternatively, Y. G. Chen, Y. Giga, and S. Goto [22], unfortunately not suitable for the motion of
networks since if at least a multi–point is present then an interior region immediately develops (the
so-called “fattening” phenomenon).
Even if all these approaches provide a globally defined evolution, the possible conclusions on the struc-
ture and regularity of the moving networks are actually quite weak. To obtain a detailed description
of the evolution and of the singularity formation, we tried to work in the smooth setting as much as
possible. The definition of the flow is then the first problem one has to face, due to the contrast between
such desire and the intrinsic singular geometric nature of a network. Consider for instance the network
described by two curves crossing each other, forming a 4–point. There are actually several possible
candidates for the flow: one cannot easily decide how the angles must behave, moreover, it could also
be allowed the four concurrent curves to separate into two pairs of curves moving independently of
each other and/or we could take into account the possible “birth” of new multi–points from such a sin-
gle one (all these choices are possible with Brakke’s definition). Actually, one would like a good/robust
definition of curvature flow giving uniqueness of the motion (at least for “generic” initial networks) and
forcing the evolving network, by an “instantaneous regularization” effect, with the possible exception
of some discrete set of times, to have only triple junctions with the three angles between the concurring
curves of 120 degrees. This last property (which was experimentally observed for the growth of grain
boundaries) is usually called Herring condition. These expectations are sustained also by the variational
nature of the problem since this evolution can be considered as the “gradient flow” in the “space of
networks” of the Length functional, which is the sum of the lengths of all the curves of the network
(see [16]). It must anyway be said that such a space does not share a natural linear structure and such a
“gradient” is not actually a well-defined “velocity” vector driving the motion at the multiple junctions,
in general. However, it follows that every point of a network different from its multi–points must move
with a velocity whose normal component is the curvature vector of the curve it belongs, in order to
decrease the Energy of the network (that is, the total length here) “most efficiently” (see [16]). From this
“energetic” point of view, it is then natural to expect also that configurations with multi–points of order
greater than three or 3–points with angles different from 120 degrees, being unstable for the length func-
tional, should be present only in the initial network or that they should appear only at some discrete
set of times, during the flow. This property is suggested also by numerical simulations and physical
experiments, see [12, 17, 47, 63] and the grain growth movies at http://facstaff.susqu.edu/brakke. One may
hope that some sort of “parabolic regularization” could play a role here: for instance, if a multi–point
has only two concurrent curves, it can be easily shown (see [4, 6, 8, 46]) that the two curves become
instantaneously a single smooth curve moving by curvature.
We mention that actually, it is always possible to find a Brakke flow sharing such property at almost
every time (see [16]), by the variational spirit of its definition which is the closest to the “gradient flow”
point of view. However, as uniqueness does not hold in this class, there are also Brakke flows start-
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ing from the same initial network which keeps their multi–points, or loose the connectedness of the
network: for instance, a 4–point can “open” as in the right side of Figure 11.1, or separate in two no
more concurring curves, or it can “persists” to be a 4–point where the two “crossing” curves move in-
dependently. Anyway, as we said, Brakke’s definition is too “weak” if one is interested in a detailed
description of the flow.
By this discussion it is then natural, due to their expected relevance, to call regular the networks with
only 3–points and where the three concurrent curves form angles of 120 degrees. Then, following the
“energetic” and experimental motivations mentioned above, we simply impose such regularity condi-
tion in the definition of a smooth curvature flow, for every positive time (at the initial time it could
fail). If the initial network is regular and smooth enough, we will see that this definition leads to an
almost satisfactory (in a way “classical”) short–time existence theorem of a flow by curvature. Trying
instead to let evolve an initial non–regular network, various complications arise related to the presence
of multi–points or of 3–points not satisfying the Herring condition. Notice also that, even starting with
an initial regular network, we cannot avoid to deal also with non–regular networks when we analyze
the global behavior of the flow. Indeed, during the flow, some of the triple junctions could “collide”
along a “vanishing” curve of the network, when the length of the latter goes to zero (hence, modifying
the topological structure of the network). In this case one has to “restart” the evolution with a different
set of curves, possibly describing a non–regular network, typically with multi–points of order higher
than three (consider, for instance, two 3–points collapsing along a single curve connecting them) or even
with “bad” 3–points with angles between the concurring curves, not all equal to 120 degrees (think of
three 3–points collapsing together with the “triangular” region delimited by three curves connecting
them). A suitable short–time existence (hence, “restarting”) result for this situation has been worked
out in [58] by T. Ilmanen, A. Neves and the fourth author and in [70] by J. Lira, R. Mazzeo, M. Saez
and the third author. In these papers, it is indeed shown that starting from any non–regular network
(with a natural technical hypothesis), there exists a “satisfactory” flow of networks by curvature which
is immediately regular and smooth, for every positive time. Section 10 is devoted to this topic.
The existence problem of a curvature flow for a regular network with only one 3–point and fixed end–
points, called triod (see Definition 3.2), was first considered by L. Bronsard and F. Reitich in [17]. To be
precise, they consider as initial datum any regular C2+2α triod satisfying some compatibility conditions
at the triple junctions and show short–time existence and uniqueness in the parabolic class C2+2α,1+α.
In [63] D. Kinderlehrer and C. Liu proved the global existence and convergence of a smooth solution if
the initial regular triod is sufficiently close to a minimal (Steiner) configuration.
After introducing regular networks, their flow by curvature, and some basic properties (Sections 2
and 2.3), we extend, in Section 3, the above well–posedness theorem to general regular networks (The-
orem 3.25). Moreover, we also show an analogous result in suitable Sobolev spaces (Theorem 3.6).
In Section 4 we generalize to any regular network the integral estimates proved in [82] for a triod, which
are needed to prove Theorem 5.8 and will be actually used throughout the whole paper. A consequence
of such estimates is the fact that if the lengths of the curves are bounded away from zero, as t goes to
the maximal time T of existence of the flow, the maximum of the modulus of the curvature must go to
+∞ (Corollary 4.15 and Theorem 5.7).
The uniqueness of the flow is quite delicate. Indeed, by Theorem 3.25, we only have that, for initial
regular networks of class C2+2α having the sum of the curvatures of the three concurring curves at
every triple junction equal to zero, there is uniqueness in the parabolic class C2+2α,1+α. In Section 5, by
combining Theorems 3.6 and 3.25 (the first mainly for the uniqueness, the second for the existence) we
then show a result of existence/geometric uniqueness for short time of the flow of an initial network of
classC2 (Theorem 5.8), in a subclass of the curvature flows which are simplyC2 in space andC1 in time.
In the same section, we will also see that the classical property of parabolic equations of instantaneous
regularization of solutions for positive times also holds for the motion by curvature of networks, in a
suitable sense.
The rest of the paper is devoted to the long-time behavior of the flow. For the sake of simplicity, in the
following overview, we will restrict ourselves only to the behavior in the interior of a convex domain of
a network flowing by curvature with fixed end–points on the boundary of such set, while in the whole
paper also the behavior at the boundary (hence, at the end–points of the network) is analyzed in the
same detail.
In Section 6 we recall Huisken’s monotonicity formula for mean curvature flow which holds also for
the evolution of a network and we introduce the rescaling procedures to get blow–up limit networks
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(discussed in Section 7) at the maximal time of smooth existence. Then, to “describe” the singularities
of the flow one needs to classify such possible blow–up limits. In some cases, arguing by contradiction
with geometric arguments, this “description” can be used to exclude at all the formation of singularities.
Key references for this method in the situation of a single smooth closed curve are [3, 49, 53, 54]. The
most relevant difference in dealing with networks is the difficulty in using the maximum principle,
which in the case of closed curves is the main tool for getting pointwise estimates on the geometric
quantities during the flow. For this reason, some crucial estimates which are straightforward in such
case are here much more difficult to obtain and we had to resort to the integral estimates of Section 4
(see also Section 9.3), which are similar to the ones in [3, 6, 8, 52], but require some extra work to deal
with the triple junctions.
One can reasonably expect that an embedded regular network does not develop singularities during
the flow if its “topological structure” does not change (for instance, in the case of a “collision” of two
or more 3–points). Our analysis in Sections 7, 8 and 9 will show that if no “multiplicities” larger than
one occur in the blow–up limit networks, this expectation is indeed true. Under the assumption that
the lengths of the curves are bounded away from zero the only possible blow–up limits (with multi-
plicity one by hypothesis) are either a straight line, a halfline, or a flat unbounded regular triod (called
“standard triod”) composed of three halflines through the origin of R2 forming angles of 120 degrees
(see Proposition 7.30 and Section 9). Then, a local regularity theorem for the flow (shown in [58]) to-
gether with such classification excludes the presence of singularities. This result, which is in the spirit
of White’s local regularity theorem for mean curvature flow in [111], is presented in detail in Section 8.
Thus, again in Section 9, we try to understand what happens at the maximal time, knowing that some
lengths of the curves composing the network cannot be uniformly bounded away from zero, hence at
least two 3–points get closer and closer.
First of all, we prove that under the hypothesis of multiplicity one of the blow–up limits, if more than
two triple junctions go to collide, then necessarily an entire region (the interior of a “loop” of the net-
work) vanishes, which implies that the curvature is necessarily unbounded getting close to the singular
time. Hence, if the curvature stays bounded it must happen that (locally) we are in the case of two triple
junctions (only) going to collide along a vanishing curve, forming a 4–point in the limit. Vice versa, we
are then able to show that in such a situation the curvature remains bounded. As a consequence, we
conclude that the curvature is uniformly bounded along the flow if and only if no region is collapsing
and that in such case only local vanishing of single curves can happen, with a formation of a 4–point
in the limit. This is clearly particularly relevant if the evolving network is a tree, that is, regions are not
present at all. More in detail, we first show that in such case, as t goes to the maximal time T , the net-
works St converge in C1–norm (up to reparametrization) to a unique limit set ST which is a degenerate
(collapsed) regular network (see Definition 7.1), that is, a smooth network possibly with multi–points
of order higher than three and some collapsed parts “hidden” in its vertices. Then, we show that ST
can have only 3–points with angles of 120 degrees or 4–points with angles of 120/60 degrees, like in the
left side of Figure 9.1.
In the other situation, when the curvature is not bounded and a region collapses (Section 9.3), we are
able to obtain a weaker conclusion. Assuming the uniqueness of the blow–up limit along any sequence
of rescalings (which can be instead proved in the above case), we can show that, as t → T , the net-
work St converges to some degenerate (see above) regular network, whose “non–collapsed” part ST is
a C1, possibly non–regular, network which is smooth outside its multi–points and whose curvature is
of order o(1/r), where r is the distance from its non–regular multi–points.
In several steps of the previous analysis the assumption of multiplicity one of the blow–up limits is
fundamental, we actually conjecture (Conjecture 9.1) that it holds in general, but up to now we can
prove it only in some special cases. Indeed, in Section 13 we discuss a scaling invariant, geometric
quantity associated with a network, first proposed in [50] (see also [54]) and later extended in [15, 82,
89], consisting in a sort of “embeddedness measure” which is positive when no self–intersections are
present. By a monotonicity argument, we show that this quantity is uniformly positively bounded
below along the flow, under the assumption that the number of 3–points of the network is at most two.
As a consequence, in such case every possible C1

loc–limit of rescalings of the networks of the flow is an
embedded network with multiplicity one. We underline that it is not clear to us how to obtain a similar
conclusion for a general network with several triple junctions, since the analogous quantity, if there are
more than two 3–points, does not satisfy a monotonicity property.
In Section 10 we state a short–time existence result for possibly non–regular initial networks (that is,
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with multi–points of order greater than 3 and/or non–regular 3–points), giving a flow that is immedi-
ately regular and smooth for every positive time. This result, which clearly also provides a “restarting
theorem”, was worked out independently in [58] by T. Ilmanen, A. Neves and the fourth author (Theo-
rem 10.9) and in [70] by J. Lira, R. Mazzeo, M. Saez and the third author (Theorem 10.26), here we only
give an outline of the arguments in the proofs (which are quite technical). The idea in Theorem 10.9 is to
locally desingularize the multi–points and the non–regular 3–points via regular self–similarly expand-
ing solutions. The argument hinges on a new monotonicity formula, which shows that such expanding
solutions are dynamically stable, using the fact that the evolution of curves and networks in the plane
are special cases of the Lagrangian mean curvature flow (these ideas have already been exploited by
A. Neves in the papers [84–86]). Theorem 10.26 relies instead on blow–up arguments from geometric
micro–local analysis. In this case, the same regular self–similarly expanding solutions naturally arise
from the underlying geometric structure of the problem.
In Section 11 it is explained how to combine Theorem 10.9 with the previous analysis of the singularities
in order to continue the flow after a singular time. Then, we analyze the preserved geometric quantities
and the possible changes in the topology of a network in passing through a singularity. This is applied
in Section 12 to study the long-time behavior of the flow, indeed, the restarting procedure allows us to
define an “extended” curvature flow with singularities at an increasing sequence of times. An important
open question is whether the maximal time interval of existence of such flow is finite or not, where the
main problem is the possible “accumulation” of the singular times (if they are not finite, which actually
we do not know). We mention that in the special case of symmetric networks with only two triple
junctions, it can be shown that the set of singular times is necessarily finite, see [88]. Clearly, if such
“extended” flow can be defined for every time (as the Brakke flow obtained by L. Kim and Y. Tonegawa
in [61]), we ask ourselves if the network converges, as t → +∞, to a stationary network for the length
functional (a Steiner network). In Proposition 12.6 we prove the convergence up to a subsequence of the
family of the evolving networks to a possibly degenerate one (some curves could disappear in the limit),
as t → +∞. If we then assume that such limit network is not degenerate, with the help of Łojasiewicz–
Simon gradient inequality, we are actually able to prove the full convergence of the flow, in Theorem 12.11.
We finally conclude Section 12 presenting a stability result: if a network is sufficiently close in W 2,2–
norm to a regular network S∗ composed of straight segments only, its motion by curvature exists for all
times and smoothly converges to a regular network still composed of straight segments and with the
same length of S∗.
Up to now, the study of the behavior of the flow at the first singularity (and immediately after) is
essentially complete when the network has at most two triple junctions, see [76, 79, 82, 89], holding in
this very special case the above mentioned multiplicity one conjecture, as it is shown in Section 13. In
Section 14 we will describe, up to the best of our knowledge, the global evolution of such “simple”
networks, which are actually interesting since most of the relevant phenomena of the general case are
already present. In particular, we will see that the evolution of a tree–like network with only one 3–point
and three fixed end–points (called triod) is smooth and asymptotically converges to a Steiner network,
if the lengths of the three curves stay uniformly bounded away from zero.
The last section of the paper is devoted to collecting and presenting the main open problems. Moreover,
by courtesy of T. Ilmanen, we include an appendix with pictures and computations of several examples
of regular shrinkers, due to him and J. Hättenschweiler.
We conclude this introduction by mentioning that there are several interesting variants and generaliza-
tions of the problem of the motion by curvature of networks whose study is only at the beginning. For
instance, one can consider the anisotropic version of the flow, as in [13, 45, 64] and/or take into account
the mismatch of the orientation of the grain in the model [32, 33, 59].
The analogous problem in higher dimensions (and codimensions) is still widely open. Besides the pa-
pers [61, 98], where a global weak solution in the Brakke sense is constructed, the short–time existence
of a smooth and regular solution in three dimensions has been established in [28] in some special cases
and in [98, Section 7] for the motion of a network in Rn with only triple junctions. In these cases, the
analysis of singularities and the subsequent possible restarting procedure are still open problems.
We also mention the works [37,38] where a graph evolving by mean curvature and meeting a horizontal
hyperplane with a fixed angle of 60 degrees is studied. By considering the union of such graph with its
reflection through the hyperplane, one gets an evolving symmetric lens–shaped domain. We remark that
in this particular case, the analysis is simpler since the maximum principle can be applied.
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2 Notation, definitions and basic computations

Given a C1 curve σ : [0, 1] → R2 we say that it is regular if σx = dσ
dx is never zero. It is then well

defined its unit tangent vector τ = σx/|σx|. We define its unit normal vector as ν = Rτ = Rσx/|σx| where
R : R2 → R2 is the counterclockwise rotation centered in the origin of R2 of angle π/2.
If the curve σ is of class C2 and regular its curvature vector is well defined as

k = τx/|σx| =
1

|σx|
dτ

dx
.

The arclength parameter of a curve σ is given by

s = s(x) =

∫ x

0

|σx(ξ)| dξ .

Notice that ∂s = |σx|−1∂x then τ = ∂sσ and k = ∂sτ , hence the curvature of σ is given by k = 〈k | ν〉, as
k = kν. We remind here that in the whole paper, we will use the word “curve” both for the parametriza-
tion and for the set (image of the parametrization in R2).

Let T > 0 and γ : [0, 1] × [0, T ) a time–dependent family regular C2 curve. Again, we let τ = τ (x, t)
be the unit tangent vector to the curve γ, ν = ν (x, t) = Rτ (x, t) be the unit normal vector and
k = k (x, t) = k (x, t) ν (x, t) its curvature vector, as previously defined.

Here and in the sequel we will denote by ∂xf , ∂sf and ∂tf the derivatives of a function f along a
curve γ with respect to the x variable, the arclength parameter s on such curve (defined by s(x, t) =∫ x

0
|γx(ξ, t)| dξ) and the time, respectively; ∂nxf , ∂ns f , ∂nt f are the higher order partial derivatives which

often we will also write as fx, fxx . . . , fs, fss, . . . and ft, ftt, . . . .

We will call v = γt = V ν + λτ , λ = λτ and V = V ν respectively the velocity, the normal velocity and the
tangential velocity of the curve γ. The scalar V and λ are the normal and tangential components of the
velocity. It is easy to see that v = V + λ and |v|2 = |V |2 + |λ|2 = (V )2 + (λ)2.

2.1 Networks

Definition 2.1. Let Ω be a smooth, convex, open set in R2. A network S =
⋃n
i=1 σ

i([0, 1]) in Ω is a
connected set in the plane described by a finite family of C1, regular curves σi : [0, 1]→ Ω such that

1. the “interior” of every curve σi, that is σi(0, 1), is embedded (hence, it has no self–intersections);
a curve can self–intersect itself only possibly “closing” at its end–points, that is σi(0) = σi(1);

2. two different curves can intersect each other only at their end–points;
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3. if a curve of the network touches the boundary of Ω at a point P , no other end–point of a curve
can coincide with that point.

If we interpret S as a planar graph, we call multi–points of the network the vertices O1, O2, . . . , Om ∈ Ω
where the order is greater than one. We call end–points of the network the vertices P 1, P 2, . . . , P l ∈ Ω of
S (on the boundary or not) with order one.

We say that a network is of class Ck or C∞ if all the n curves are respectively of class Ck or C∞.

Remark 2.2. We require Condition 3 for the sake of simplicity. It implies that the multi–points can be
only inside Ω and not on the boundary. The end–points can be both inside or on ∂Ω.

P 1
P 3

P 2

σ4

Ω

σ1

σ2

σ3

O1

O2

Figure 2.1: An example of “violation” of Condition 3 in the definition of network.

The curves σi have (non–zero) finite lengths Li =
∫ 1

0
|σix(ξ)| dξ.

Definition 2.3. Let S =
⋃n
i=1 σ

i be a network composed of n curves. We denote by

L = L1 + · · ·+ Ln

the global length of the network.

Definition 2.4. An open network S =
⋃n
i=1 σ

i(I) in R2 is a connected set in the plane composed of a finite
family of C1, regular curves σi : I → R2, where I can be the interval [0, 1] or [0, 1), such that

1. every “open” curve σi : [0, 1)→ R2 is C1–asymptotic to a half-line in R2 as x→ 1;

2. the “interior” of every curve σi is embedded (hence, it has no self–intersections). Only the
bounded curves σi : [0, 1]→ R2 can possibly self–intersect by “closing” at their end–points;

3. two different curves can intersect each other only at their end–points;

4. considering S as a planar graph, every end–point of a curve belongs to some multi–point of the
network with order at least two;

As before we say that an open network is of class Ck or C∞ if all its curves are respectively of class Ck

or C∞.

Remark 2.5. Since we called these unbounded networks “open”, we will adopt the word “closed” for
the previous networks in Definition 2.1 which are bounded and possibly have some end–points.

Given a network composed of n curves with l end–points P 1, P 2, . . . , P l ∈ Ω (if present) and m multi–
points O1, O2, . . . Om ∈ Ω, we will denote by σpi the curves of this network concurring at the multi–
pointOp, with the index i varying from one to the order of the multi–pointOp. This is clearly redundant
as some curves coincide, but it is a useful notation for the computations. A network of n curves with m
triple junctions only (without higher multiplicity junctions) will then be described by the family (with
possible repetitions) of curves σpi where p ∈ {1, 2, . . . ,m} and i ∈ {1, 2, 3}.
We now define a special class of networks that will play a key role in the analysis.
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Definition 2.6. We call a network (open or not) regular if all its multi–points O1, O2, . . . Om ∈ Ω have
order three and at each of them the three concurring curves {σpi}i=1,2,3 meet in such a way that the
external unit tangents τpi satisfy τp1 + τp2 + τp3 = 0, which means that the three curves form three
angles of 120 degrees at Op (Herring condition).
We call a network non–regular if at least a multi–point has order different from three or if it has order
three but the external unit tangents of the three concurring curves {σpi}i=1,2,3 do not satisfy τp1 + τp2 +
τp3 = 0. We will call such a point a non–regular multi–point.

O1

O2

O5

O3

P 1

P 2

O6

O4

P 7P 8

P 4

P 3

P 6

P 5

Figure 2.2: A regular network.

We will simply omit the indices of the curves of the network anytime there is no need to make them
explicit.
Moreover, given St =

⋃n
i=1 γ

i([0, 1], t) a time–dependent family of regular C2 network of curves, we
will adopt the following convention for integrals,∫

St
f(t, γ, τ, ν, k, ks, . . . , λ, λs . . . ) ds =

n∑
i=1

∫ 1

0

f(t, γi, τ i, νi, ki, kis, . . . , λ
i, λis . . . ) |γix| dx

as the arclength measure on every curve γi is given by ds = |γix| dx.

Sometimes we will also use the following notation for a time–dependent family of networks

St =

n⋃
i=1

γi([0, 1], t)

with t ∈ [0, T ) in Ω ⊆ R2. We let S ⊆ R2 be a “reference” network and suppose that for every t ∈ (0, T )
the network St is homeomorphic to S. We consider a map F : S× (0, T ) → R2 given by the “union” of
the maps γi : Ii × (0, T ) → Ω describing the time–dependent family of networks in the time interval
(0, T ), that is St = F (S, t).

2.2 Motion by curvature

We are now ready to define the evolution by curvature of a C2 regular network, assuming that either
it is open or all its end–points (if present) coincide with some points P 1, P 2, . . . , P l on the boundary of
Ω. As we have already said, in the “closed” case by Condition 3 in Definition 2.1 at most one curve of
the network can arrive at the point P r. We require the network to be regular during the flow and we
ask that the end–points P r ∈ ∂Ω stay fixed (Dirichlet boundary conditions). A similar problem is given
by letting such end–points “free” to move on the boundary of Ω, but asking that the curves intersect

9



orthogonally ∂Ω (Neumann boundary conditions).
In the “closed case”, the motion by curvature is the geometric gradient flow of the length functional, that
is, the sum of the lengths of all the curves of the network. Roughly speaking, a (solution to the) flow by
curvature of a network is a smooth family of embedded, planar networks, such that the normal compo-
nent of the velocity under the evolution law, at every point of every curve of the evolving network is
given by the curvature vector of the curve at the point.

Definition 2.7. We say that a family of homeomorphic, regular networks St, each one composed of n
curves γi(·, t) : Ii → Ω (where Ii is the interval [0, 1] or [0, 1) in case of an open network), in a smooth
convex, open set Ω ⊆ R2, moves by curvature in the time interval (0, T ) if the functions γi : Ii×(0, T )→ Ω
are at least of class C2 in space and C1 in time and for every x ∈ Ii, t ∈ (0, T ), i ∈ {1, 2, . . . , n}, they
satisfy

γit(x, t) = ki(x, t)νi(x, t) + λi(x, t)τ i(x, t) =
〈γixx(x, t) | νi(x, t)〉
|γix(x, t)|2

νi(x, t) + λi(x, t)τ i(x, t) (2.1)

for some continuous functions λi.

Remark 2.8. Notice that the normal velocity is given by the curvature vector of the curve γi at every point.
Remark 2.9. Another equivalent way to state evolution equation (2.1) is clearly

γit(x, t)
⊥ = ki(x, t)νi(x, t) = ki(x, t) =

〈γixx(x, t) | νi(x, t)〉
|γix(x, t)|2

νi(x, t) .

Remark 2.10. We spend some words on the above definition of motion by curvature. The evolution
equation (2.1) is not the usual way to describe the motion by curvature of a smooth curve. Indeed,
“classically” it is written as

γit = ki = kiνi =
〈γixx | νi〉
|γix|

2 νi . (2.2)

Both motions are driven by a system of quasilinear partial differential equations, in our definition “ad-
mitting a correction” by a tangential term. The two velocities differ only by a tangential component
λi = λiτ i. In the curvature evolution of a smooth curve, it is well–known that any tangential contribu-
tion to the velocity affects only the “inner motion” of the “single points” (Lagrangian point of view), but
it does not affect the motion of a curve as a whole subset of R2 forgetting its parametrization (Eulerian
point of view). It can be shown that a flow of a closed curve satisfying equation (2.1) can be globally
reparametrized (dynamically in time) in order it satisfies equation (2.2). However, in our situation, such
a global reparametrization is not possible due to the presence of the 3–points. It is necessary to consider
such extra tangential terms to allow the motion of the 3–points also. Indeed, if the velocity would be in
normal direction at every point of the three curves concurring at a 3–point, this latter should move in a
direction which is normal to all of them, then the only possibility would be that it does not move at all
(see also the discussions and examples in [16, 17, 63, 80]).

Definition 2.11. Given an initial, regular, C2 network S0, composed of n curves σi : [0, 1] → Ω, with
m triple junctions O1, O2, . . . Om ∈ Ω and (if present) l end–points P 1, P 2, . . . , P l ∈ ∂Ω in a smooth
convex, open set Ω ⊆ R2, we say that a family of homeomorphic networks St described by the family
of time–dependent curves γi(·, t) is a flow by curvature of S0 with fixed end–points in the time interval
[0, T ), if the functions γi : [0, 1] × [0, T ) → Ω are continuous, there holds γi(x, 0) = σi(x) for every
x ∈ [0, 1] and i ∈ {1, 2, . . . , n} (initial data), they are at least C2 in space and C1 in time in [0, 1]× (0, T )
and satisfy the following system of conditions for every x ∈ [0, 1], t ∈ (0, T ), i ∈ {1, 2, . . . , n},

γit = kiνi + λiτ i withλi continuous functions motion by curvature
γix(x, t) 6= 0 regularity
γr(1, t) = P r with 0 6 r 6 l fixed end–points condition∑3
j=1 τ

pj(Op, t) = 0 at every 3–point Op angles of 120 degrees

(2.3)

where we assumed conventionally (possibly reordering the family of curves and “inverting” their
parametrization) that the end–point P r of the network is given by γr(1, t) (by Condition 3 in Defini-
tion 2.1 this can be always done).
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Moreover, in the third equation, we abused a little the notation, denoting with τpj(Op, t) the respective
exterior unit tangent vectors at Op of the three curves γpj(·, t) in the family {γi(·, t)} concurring at the
3–point Op.

We also state the same problem for regular, open networks.

Definition 2.12. Given an initial, regular, C2 open network S0, composed of n curves σi : Ii → R2, we
say that a family of homeomorphic open networks St with the same structure as S0 (in particular, same
asymptotic half-lines at infinity) described by the family of time–dependent curves γi(·, t) is a flow by
curvature of S0 in the time interval [0, T ), if the functions γi : Ii× [0, T )→ R2 are continuous, there holds
γi(x, 0) = σi(x) for every x ∈ Ii and i ∈ {1, 2, . . . , n} (initial data), they are of class at least C2 in space
and C1 in time in Ii × (0, T ) (here Ii denotes the interval [0, 1] or [0, 1) depending on whether the curve
is unbounded or not) and satisfy the following system, for every x ∈ Ii, t ∈ (0, T ), i ∈ {1, 2, . . . , n},

γit = kiνi + λiτ i withλi continuous functions motion by curvature
γix(x, t) 6= 0 regularity∑3
j=1 τ

pj(Op, t) = 0 at every 3–point Op angles of 120 degrees
(2.4)

where, in the second equation, we used the same notation as in Definition 2.11.

Remark 2.13. In Definitions 2.11 and 2.12 the evolution equation (2.1) must be satisfied till the borders of
the intervals [0, 1] and [0, 1), that is, at the 3–points and the at end–points for every positive time. This
is not the usual way to state boundary conditions for parabolic problems (the parabolic nature of this
evolution problem is clear by Definition 2.7 – see also Remark 2.10 and it will be even clearer in Sec-
tion 3) where usually only continuity at the boundary is required. Anyway as is common in parabolic
problems, at every positive time such boundary conditions are satisfied by any “natural solution”.
This property of regularity at the boundary implies that

(kν + λτ)(P r) = 0, for every r ∈ {1, 2, . . . , l}

and

(kpiνpi + λpiτpi)(Op) = (kpjνpj + λpjτpj)(Op), for every i, j ∈ {1, 2, 3}, p ∈ {1, 2, . . .m}

(where we abused a little the notation), obtained by simply requiring that the velocity is zero at every
end–point and it is the same for any three curves at their concurrency 3–point.
Moreover, notice that in Definitions 2.11 and 2.12 the evolution equation (2.1) must be satisfied only for
t > 0. If we want that the maps γi are C2 in space and C1 in time till the whole parabolic boundary (given
by [0, 1]×{0}∪{0, 1}× [0, T ) in Definition 2.11 and [0, 1]×{0}∪{0, 1}× [0, T ) or [0, 1)×{0}∪{0}× [0, T )
in Definition 2.12), the above conditions must be satisfied also by the initial regular network S0, for
some functions λ0 extending continuously the functions λ which are defined only for t > 0.
For the moment we focus on regular networks. Several difficulties arise when we study problems (2.3)
and (2.4) with non–regular networks as initial data. The issues are related to the presence of multi–
points: if there are multi–points Op of order greater than three, there can be several possible candidates
for the flow. Considering for example the case of a network composed of two curves crossing each other
(presence of 4–point); one cannot easily decide how the angle at the meeting point must behave, indeed
one can allow the four concurrent curves to separate in two pairs of curves, moving independently of
each other and could even be taken into account the creation of new multi–points from a single one.
If there are several multi–points during the flow some of them can collapse together and the length of
at least one curve of the network can go to zero.
In these cases, one must possibly restart the evolution with a different set of curves and the topology
of the network changes dramatically, forcing to change the “structure” of the system of equations gov-
erning the evolution. Anyway, a very natural conjecture is that the curvature flow of a general network
(under a suitably good definition) should be non–regular only for a discrete set of times. We will get
back to this in the following sections.
Remark 2.14. One can clearly obtain solutions to system (2.1) by requiring each curve to fulfill the quasi-
linear partial differential equation:

γit =
γixx

|γix|
2 .
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In this case

vi = vi(x, t) =
γixx
|γix|

2 velocity of the point γi(x, t) ,

λi = λi(x, t) =
〈γixx | τ

i〉
|γix|

2 =
〈γixx | γ

i
x〉

|γix|
3 = −∂x 1

|γix|
tangential velocity of the point γi(x, t) ,

ki = ki(x, t) =
〈γixx | ν

i〉
|γix|

2 = 〈∂sτ i | νi〉 = −〈∂sνi | τ i〉 curvature at the point γi(x, t) .

Definition 2.15. A curvature flow γi for the initial, regular C2 network S0 =
⋃n
i=1 σ

i([0, 1]) which

satisfies γit =
γixx
|γix|2

for every t > 0 will be called a special curvature flow of S0. In this case, then we pass
from the general system (2.3) to the following:

γit(x, t) =
γixx(x,t)

|γix(x,t)|2 special motion by curvature

γix(x, t) 6= 0 regularity
γr(1, t) = P r with 0 6 r 6 l fixed end–points condition∑3
j=1

γpjx (Op,t)

|γpjx (Op,t)| = 0 at every 3–point Op angles of 120 degrees

γi(x, 0) = σi(x) initial data

(2.5)

Remark 2.16. There are classes of networks, whose topological structure is particularly simple, whose
evolution by curvature has been extensively studied in the literature.

• When the network consists of a single closed embedded curve, its motion by curvature was widely
studied [6–8, 39–41, 46]: the curve evolves smoothly, becomes convex, and shrinks to a point in
finite time, becoming rounder and rounder. Curves with an angle or a cusps (where the cusp is
the most “delicate” situation) can be dealt with by means of the works of Angenent [6–8]: the
curve becomes immediately smooth, flowing by curvature.

• The case in which two curves concur at a 2–point of the network forming an angle (or a cusp, if
they have the same tangent) can be analyzed as we said above: consider them as a single curve
with a “singular” point (the angle) that vanishes immediately under the flow.

• If a network is composed of a single embedded curve with fixed end–points, its evolution by
curvature is discussed in [54, 102, 103]. The curve converges to the straight segment connecting
the two fixed end–points in infinite time.

σ
P σ1

O

σ2
Q P 2

P 1

Ω

σ

Figure 2.3: Three special cases: a single closed curve, two curves forming an angle at their junction and
a single curve with two end–points on the boundary of Ω.

2.3 Basic computations

We work out some basic relations and formulas holding for a regular network evolving by curvature,
assuming that all the derivatives of the functions γi and λi that appear to exist.

Lemma 2.17. If γ is a curve moving by
γt = kν + λτ ,

then the following commutation rule holds

∂t∂s = ∂s∂t + (k2 − λs)∂s . (2.6)
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Proof. Let f : [0, 1]× [0, T )→ R be a smooth function, then

∂t∂sf − ∂s∂tf =
ftx
|γx|
− 〈γx | γxt〉fx

|γx|3
− ftx
|γx|

= −〈τ | ∂sγt〉∂sf

= − 〈τ | ∂s(λτ + kν)〉∂sf = (k2 − λs)∂sf

and the formula is proved.

Then, thanks to the commutation rule of the previous lemma for an evolving curve we can compute

∂tτ = ∂t∂sγ = ∂s∂tγ + (k2 − λs)∂sγ = ∂s(λτ + kν) + (k2 − λs)τ = (ks + kλ)ν , (2.7)
∂tν = ∂t(Rτ) = R ∂tτ = −(ks + kλ)τ ,

∂tk = ∂t〈∂sτ | ν〉 = 〈∂t∂sτ | ν〉 = 〈∂s∂tτ | ν〉+ (k2 − λs)〈∂sτ | ν〉 (2.8)

= ∂s〈∂tτ | ν〉+ k3 − kλs = ∂s(ks + kλ) + k3 − kλs
= kss + ksλ+ k3 .

Moreover, as anticipated in Remark 2.14, when the tangential velocity is λ = 〈γxx | γx〉
|γx|3

, the curve γ
evolves according to

γt =
γxx

|γx|2
= kν + λτ ,

so we can also compute

∂tλ = − ∂t∂x
1

|γx|
= ∂x

〈γx | γtx〉
|γx|3

= ∂x
〈τ | ∂s(λτ + kν)〉

|γx|
= ∂x

(λs − k2)

|γx|
(2.9)

= ∂s(λs − k2)− λ(λs − k2) = λss − λλs − 2kks + λk2 .

We consider the curvature flow given by a family of regular, C∞ networks St, composed of n moving
curves γi with m triple junctions O1, O2, . . . , Om and l end–points P 1, P 2, . . . , P l.
As we said, we parametrize the curves of the evolving network so that γi(1, t) = P i whenever P i is
an end–point where a curve γi arrives. Consider instead a triple junction, say Op, where three distinct
curves γp1, γp2 and γp3 meet. In general, we cannot always impose that

γp1(0, t) = γp2(0, t) = γp3(0, t) = Op(t) (2.10)

for all p ∈ {1, . . . ,m}, since (for instance) both the end–points of a curve could belong to the same triple
junction, or simply for combinatorial reasons (see the networks in the following figure).

P 1

γ1

γ2

γ1
P 2

P 3

P 4

P 1

γ2

γ1

γ3

γ4

γ5

O1

O2

Figure 2.4: Examples of networks.

Actually, in general, there holds

γp1(x1, t) = γp2(x2, t) = γp3(x3, t) = Op(t) ,
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for every p ∈ {1, . . . ,m} and some x1, x2, x3 ∈ {0, 1}. Then, the fact that x1, x2, x3 could be either 0 or 1
affects how the 120 degrees angle condition at Op reads, that is,

(−1)x1τp1(x1, t) + (−1)x2τp2(x2, t) + (−1)x3τp3(x3, t) = 0 .

For the sake of presentation and clarity, in the following analysis of the conditions holding at any 3–
point Op, with p ∈ {1, 2, . . . ,m}, we will suppose that the three curves are parametrized in such a way
that they all concur at Op for x1 = x2 = x3 = 0, hence formula (2.10) holds.
Differentiating in time the concurrency condition

γpi (0, t) = γpj (0, t) for every i and j,

where γpi denotes the i–th curve concurrent at the 3–point Op, we get

λpiτpi + kpiνpi = λpjτpj + kpjνpj ,

at every 3–point Op, with p ∈ {1, 2, . . . ,m} for every i, j ∈ {1, 2, 3}.
Multiplying these vector identities by τpl and νpl and varying i, j, l, thanks to the conditions

3∑
i=1

τpi =

3∑
i=1

νpi = 0 ,

we get the relations

λpi = −λp(i+1)/2−
√

3kp(i+1)/2

λpi = −λp(i−1)/2 +
√

3kp(i−1)/2

kpi = −kp(i+1)/2 +
√

3λp(i+1)/2

kpi = −kp(i−1)/2−
√

3λp(i−1)/2

with the convention that the second superscripts are to be considered “modulus 3”. Solving this system
we get

λpi =
kp(i−1) − kp(i+1)

√
3

kpi =
λp(i+1) − λp(i−1)

√
3

which implies
3∑
i=1

kpi =

3∑
i=1

λpi = 0 (2.11)

at any 3–point Op of the network St.
Moreover considering Kp = (kp1, kp2, kp3) and Λp = (λp1, λp2, λp3) as vectors in R3, we have seen that
Kp and Λp belong to the plane orthogonal to the vector (1, 1, 1) and

Kp = Λp ∧ (1, 1, 1)/
√

3 , Λp = −Kp ∧ (1, 1, 1)/
√

3 ,

that is, Kp = SΛp and Λp = −SKp where S is the rotation in R3 of an angle of π/2 around the axis
I = 〈(1, 1, 1)〉. Hence it also follows that

3∑
i=1

(kpi)2 =

3∑
i=1

(λpi)2 and
3∑
i=1

kpiλpi = 0 . (2.12)

at any 3–point Op of the network St.
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Now we differentiate in time the angular condition
∑3
i=1 τ

pi = 0 at every 3–point Op, with p ∈
{1, 2, . . . ,m}, by equation (2.7) for every pair i, j we get

kpis + λpikpi = kpjs + λpjkpj .

In terms of vectors in R3, as before, we can write

Kp
s + ΛpKp = (kp1s + λp1kp1, kp2s + λp2kp2, kp3s + λp3kp3) ∈ I .

Differentiating repeatedly in time all these vector relations we have

∂ltK
p , ∂ltΛ

p ⊥ I and ∂lt〈Kp |Λp〉 = 0 ,

∂ltΛ
p = −∂ltSKp = −S∂ltK

p , (2.13)
∂mt (Kp

s + ΛpKp) ∈ I ,

which, making explicit the indices, give the following identities at every 3–pointOp, with p ∈ {1, 2, . . . ,m},

∂lt

3∑
i=1

kpi =

3∑
i=1

∂ltk
pi = ∂lt

3∑
i=1

λpi =

3∑
i=1

∂ltλ
pi = ∂t

3∑
i=1

kpiλpi = 0 ,

3∑
i=1

(∂ltk
pi)2 =

3∑
i=1

(∂ltλ
pi)2 for every l ∈ N,

∂mt (kpis + λpikpi) = ∂mt (kpjs + λpjkpj) for every pair i, j and m ∈ N.

Moreover by the orthogonality relations with respect to the axis I we get also

∂ltK
p∂mt (Kp

s + ΛpKp) = ∂ltΛ
p∂mt (Kp

s + ΛpKp) = 0 ,

that is,
3∑
i=1

∂ltk
pi ∂mt (kpis + λpikpi) =

3∑
i=1

∂ltλ
pi ∂mt (kpis + λpikpi) = 0 for every l,m ∈ N. (2.14)

Remark 2.18. By the previous computations, for every solution in Definitions 2.11 or 2.12 at t > 0 the
curvature at the end–points and the sum of the three curvatures at every 3–point has to be zero and the
same holds for the functions λ.
Then, a necessary condition for the maps γi to be C2 in space and C1 in time till the whole parabolic
boundary (given by [0, 1] × {0} ∪ {0, 1} × [0, T ) in Definition 2.11 and [0, 1] × {0} ∪ {0, 1} × [0, T ) or
[0, 1)×{0}∪{0}× [0, T ) in Definition 2.12) is that these conditions are satisfied also by the initial regular
network S0, for some functions λ0 (see Remark 2.13) extending continuously the functions λ which are
defined only for t > 0. That is, for the initial regular network S0, there must hold

(kν + λ0τ)(P r) = 0, for every r ∈ {1, 2, . . . , l}

and
(kpiνpi + λpi0 τ

pi)(Op) = (kpjνpj + λpj0 τ
pj)(Op), for every i, j ∈ {1, 2, 3}.

In particular for the initial network S0 =
⋃n
i=1 σ

i(Ii) the curvature at the end–points and the sum of the
three curvatures at every 3–point has to be zero.
These conditions on the curvatures of S0 =

⋃n
i=1 σ

i(Ii) are clearly geometric, that is independent of the
parametrizations of the curves σi but intrinsic to the set S0 and they are not satisfied by a generic regular,
C2 network
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3 Short time existence I

We want to study existence and uniqueness of the flow by curvature of an initial regular network with
fixed end–points on the boundary of a smooth, convex, open set Ω ⊆ R2, as in Definition 2.11.
First of all, we need to discuss what we mean by uniqueness of the flow in our geometric context. If we
consider an evolving network St, composed by curves γi solutions of system (2.3), that is, satisfying
γit = ki + λi and dynamically reparametrize each curve γit with sufficiently regular maps ϕi : [0, 1] ×
[0, T ) → [0, 1] (for instance, C2 in space and C1 in time) such that ϕi(0, t) = 0, ϕi(1, t) = 1, ϕi(x, 0) = x
and ϕix(x, t) 6= 0 for every (x, t) ∈ [0, 1]×[0, T ), we get another solution of system (2.3) (see Remark 2.10).
This fact is related to the geometric nature of the problem: if γ̃i(x, t) = γi(ϕi(x, t), t), we have indeed

γ̃it(x, t) = ∂t[γ
i(ϕi(x, t), t)]

= γix(ϕi(x, t), t)ϕit(x, t) + γit(ϕ
i(x, t), t)

= γix(ϕi(x, t), t)ϕit(x, t) + ki(ϕi(x, t), t) + λi(ϕi(x, t), t)

= ki(ϕi(x, t), t) + λi(ϕi(x, t), t) + γ̃ix(x, t)ϕit(x, t)/ϕ
i
x(x, t)

= k̃
i
(x, t) + λ̃

i
(x, t) ,

with
λ̃
i
(x, t) = λi(ϕi(x, t), t) + γ̃ix(x, t)ϕit(x, t)/ϕ

i
x(x, t) .

Hence, being γ̃i(x, 0) = γi(x, 0) = σi(x), the flow of the networks S̃t given by the curves γ̃i is another
curvature flow for the initial network S0 =

⋃n
i=1 σ

i([0, 1]).
For this reason, the natural notion of uniqueness of the curvature flow is “up to dynamic reparametriza-
tions”. It is then also clear that we could have considered our networks simply as sets and their curvature
flows as flows of sets that could be parametrized in order to satisfy Definition 2.11. In [80] it actually
followed this possible alternative point of view.

Definition 3.1. We say that the curvature flow St of an initial network S0 =
⋃n
i=1 σ

i([0, 1]) is geometrically
unique in some regularity class E, if all the curvature flows in such class, solutions of system (2.3), with
the same initial network, can be obtained from each other using time–dependent reparametrizations.
More precisely, if St and S̃t are two curvature flows of S0, described by some maps γi ∈ E and γ̃i ∈ E,
there exists a family of sufficiently regular maps ϕi : [0, 1] × [0, T ) → [0, 1] such that ϕi(0, t) = 0,
ϕi(1, t) = 1, ϕi(x, 0) = x, ϕix(x, t) 6= 0, γ̃i(x, t) = γi(ϕi(x, t), t) for every (x, t) ∈ [0, 1]× [0, T ).
If geometric uniqueness holds, any solution to the flow clearly describes a unique evolving network,
seen as a subset of R2, for every time t ∈ [0, T ).

One of the difficulties in getting existence and uniqueness of solutions in the sense of Definition 2.11
is the lack of the maximum principle, due to the presence of the 3–points which behave as “boundary”
points (whereas, by the Herring condition, from a “distributional point of view” they behave more like
“interior” points). This means, in particular, that differently from the case of the motion by curvature
of a smooth curve (or more in general, for the mean curvature flow of a smooth hypersurface – see [78])
we do not have a (geometric) comparison principle for solutions, the usual tool to show the uniqueness of
the flow. This is the reason why we will have to resort to integral a priori estimates, instead of pointwise
ones (see Section 4), the most “natural” ones in the smooth cases.
The “natural” initial regular networks are composed of curves of class C2 and the “natural” regularity
of their flow isC1 in time andC2 in space. Unfortunately, without additional requirements on the initial
data, there is no hope of having a solution with curves in C2,1([0, 1] × [0, T )). The problem is due to
the way the evolving networks approach the initial one since they become immediately smooth (up to
reparametrization) for every positive time, by a “parabolic regularization” effect (that we will discuss
in Section 5) and satisfy some extra geometric properties which are stable under the C2 convergence
as t → 0 (see Remark 3.20 and the related discussion in Section 3.2). Weakening such convergence at
time zero of the flow, as we actually did in defining in great generality the flow of an initial regular
network in Definition 2.11, asking only for the continuity of the curves γ as t→ 0, could possibly result
in the loss of uniqueness. We actually conjecture that uniqueness does not hold even if we ask for the
continuity of the maps γx (or of the unit tangent vectors to the curves) up to time zero.
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In Section 5, by means of the results of this section, we will then show a quite satisfactory theorem of ex-
istence/geometric uniqueness for a short time of the flow of a regular C2 initial network (Theorem 5.8)
in a space of solutions which can be considered “natural” for the analytic/geometric peculiarities of
the problem. It is well known that from a PDE’s perspective, working directly with C2 initial data and
looking for solutions of class C1 in time and C2 in space is not a good choice, hence in this section we
start showing existence and uniqueness in suitable Sobolev and Hölder spaces. Then, by means of these
two results (the first mainly for the uniqueness, the second for the existence problem) and the estimates
of the next section, we will show such Theorem 5.8. Indeed, roughly speaking, the space of flows C1 in
time and C2 in space are in a way “in the middle” between the flows in Sobolev and Hölder spaces: if
the initial datum of class only C2, hence not necessarily in the Hölder space C2+α, either one uses the
existence theorem in the Sobolev setting, or obtain a flow approximating such initial datum in C2+α.
Then, in the first case, one obtains a Sobolev flow which could lack the property to be of class C2,1, in
the second case, because of the approximation procedure, one cannot use the uniqueness in the Hölder
setting to conclude. Moreover, as we said, in the same Section 5 we will also see that the “classical”
property of parabolic equations of “instantaneous regularization” of the solutions for every positive
time, also holds for the motion by curvature of networks.

The strategy of the proof is exactly the same for both the Sobolev and the Hölder case, so we briefly
describe it below without specifying the spaces of the initial data and of the solutions, which we will
simply denote by I and ET , respectively. Then, in the next sections, we will enter more into the details
of both cases, in particular where they differ a little bit.
We will first prove existence and (standard) uniqueness for system (2.5) in such spaces, giving the
special curvature flow of an initial network, then we will show the existence and geometric uniqueness
for the curvature flow Problem (2.3) in Definition 2.11 in the same spaces (“dropping” the continuity
requirement on the tangential velocity functions λi and allowing initial networks less smooth thatC2, in
the Sobolev setting). For simplicity, we will deal in detail with the case of the simplest possible network,
a triod, and then we will explain how to adapt the arguments to the case of a general regular network.

Definition 3.2. A triod T =
⋃3
i=1 σ

i([0, 1]) is a network composed of only three C1 regular curves σi :
[0, 1] → Ω where Ω is a smooth, convex, open subset of R2. These three curves intersect at a single
3–point O and have the other three end–points coinciding with three distinct points P i = σi(1) ∈ Ω.
A triod is regular if the unit tangents of the three curves form angles of 120 degrees at the 3–point O.

P 1

σ1
σ3

σ2

O

P 3

P 2

Figure 3.1: A regular triod.

For the reader’s convenience, we state Problem (2.3) in the case of a triod (without the continuity re-
quirement on the functions λi).

Definition 3.3. The one–parameter family of triods T =
(
γ1, γ2, γ3

)
is a flow by curvature in the time

interval [0, T ] of the initial regular triod T0 =
(
σ1, σ2, σ3

)
∈ I in a smooth convex, open set Ω ⊆ R2,

if the three maps γi ∈ ET satisfy the following system of conditions for every x ∈ [0, 1], t ∈ [0, T ],
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i ∈ {1, 2, 3}, 

γit = kiνi + λiτ i motion by curvature
γix(x, t) 6= 0 regularity
γi(1, t) = P i fixed end–points condition
γ1(0, t) = γ2(0, t) = γ3(0, t) concurrency condition∑3
i=1 τ

i(0, t) = 0 angles of 120 degrees

(3.1)

and there holds γi(x, 0) = σi(x) for every x ∈ [0, 1].

Then, to show the existence of a solution of this problem, we consider system (2.5) in the case of a
triod, where we simply substitute kiνi + λiτ i with γixx

|γix|
2 , as the two velocities differ only by a tangential

component. As we said in Remark 2.14, this a priori choice of the tangential velocity makes the problem
a system of non–degenerate quasilinear parabolic PDE’s.

Definition 3.4 (Special flow of triods). The map γ = (γ1, γ2, γ3) is a solution of the special flow in [0, T ]
with initial datum σ = (σ1, σ2, σ3) ∈ I if it belongs to the space ET and satisfies the following system,
for every x ∈ [0, 1], t ∈ [0, T ) and i ∈ {1, 2, 3}

γit(x, t) =
γixx(x,t)
|γix(x,t)|2 special motion by curvature

γix(x, t) 6= 0 regularity
γi(1, t) = P i fixed end–points condition
γ1(0, t) = γ2(0, t) = γ3(0, t) concurrency condition∑3
i=1

γix(0,t)
|γix(0,t)| = 0 angles of 120 degrees

γi(x, 0) = σi(x) initial data

(3.2)

Noticing that we can write the equations of motion as

γit −
γixx
|σix|2

=

(
1

|γix|2
− 1

|σix|2

)
γixx = f

i
[γixx, γ

i
x] , (3.3)

for i ∈ {1, 2, 3} and the angle condition at the triple junction as (here σix = σix(0) and γix = γix(0, t))

−
3∑
i=1

γix
|σix|
− σix〈γix |σix〉

|σix|3
=

3∑
i=1

[(
1

|γix|
− 1

|σix|

)
γix +

σix〈γix |σix〉
|σix|3

]
= b[γx] , (3.4)

aiming at showing the existence and uniqueness of the solutions of system (3.2), we are led to deal with
the following linearization of such system, with right-hand side data (f, η, b, ψ) in suitable spaces:

γit(x, t)−
γixx(x,t)
|σix(x)|2 = f i(x, t) t ∈ [0, T ), x ∈ [0, 1], i ∈ {1, 2, 3}

γi(1, t) = ηi(t) t ∈ [0, T ], i ∈ {1, 2, 3}
γ1(0, t)− γ2(0, t) = 0 t ∈ [0, T ]

γ2(0, t)− γ3(0, t) = 0 t ∈ [0, T ]

−
∑3
i=1

(
γix(0,t)
|σix(0)| −

σix(0)〈γix(0,t) |σix(0)〉
|σix(0)|3

)
= b(t) t ∈ [0, T ]

γi(x, 0) = ψi(x) x ∈ [0, 1], i ∈ {1, 2, 3}

(3.5)

Then, to apply Solonnikov’s theory in [100] (see also [31] and [66]), precisely Theorem 5.4 for the
Sobolev case and Theorem 4.9 for the Hölder case, respectively, we have to show that this system
satisfies the so–called complementary conditions (see [100, Page 11] or [31, Chapter I] where they are
also called Lopatinskii–Shapiro condition), which are a sort of “algebraic” relations between the evolution
equation and the “boundary” constraints at the 3–point and at the end–points of the triod (see [17, Sec-
tion 3]). It is in general not so easy to show them, but in our case, the ones related only to the parabolic
operator are almost immediate since it is uncoupled, while the remaining ones follow by applying
the argument at pages 10–12, Lemma I.1 in [31, Section I.2]. Indeed, for this particular system, by
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such argument, they hold if at the triple junction, for every λ ∈ C with <(λ) > 0, every solution
z = (z1, z2, z3) ∈ C2([0,+∞),C3) of the second order ODE’s system

λzi(s)− z̈i(s)
|σix(0)|2 = 0 for every s ∈ [0,+∞) and i ∈ {1, 2, 3}

z1(0) = z2(0) = z3(0)∑3
i=1

(
żi(0)
|σix(0)| −

σix(0)〈żi(0) |σix(0)〉
|σix(0)|3

)
= 0

which satisfies lims→+∞|zi(s)| = 0 is the trivial solution and similarly, at the end–points, every solution
z = (z1, z2, z3) ∈ C2([0,+∞),C3) of{

λzi(s)− z̈i(s)
|σix(0)|2 = 0 for every s ∈ [0,+∞) and i ∈ {1, 2, 3}

zi(0) = 0 for every i ∈ {1, 2, 3}

which satisfies lims→+∞|zi(s)| = 0 is the trivial solution.
These two conditions are clearly immediate to be checked, by directly writing the solutions to the above
ODE’s.
Then, holding such complementary conditions, by Solonnikov’s theory, the linearized system has actu-
ally a unique solution for (f, η, b, ψ) in suitable spaces if the initial datum ψ ∈ I satisfies some “compat-
ibility conditions” which are different in the Sobolev and Hölder cases. We will discuss them precisely
in the next sections.
Introducing the spaces

ẼT =
{
γ ∈ ET

∣∣ γ1(0, t) = γ2(0, t) = γ3(0, t), for i ∈ {1, 2, 3}, t ∈ [0, T ]
}
⊆ ET

FT =
{

(f, η, b, ψ) in suitable spaces and ψ ∈ I satisfies the compatibility conditions
}

the existence and uniqueness of solutions of system (3.5) is then equivalent to the fact that the linear
map LT : ẼT → FT , defined as

LT (γ) =


γit −

γixx
|σix|2

γi|x=1

−
∑3
i=1

(
γix
|σix|
− σix〈γ

i
x |σ

i
x〉

|σix|3

)∣∣∣
x=0

γi|t=0


i∈{1,2,3}

is a continuous isomorphism.
To “get back” to the solutions of the special flow system (3.2), we then need “contraction” estimates in
order to apply a fixed point argument.
We define the space

Eϕ,PT =
{
γ ∈ ẼT

∣∣ γ|t=0 = ϕ and γi(1, t) = P i, for i ∈ {1, 2, 3}
}

and an operator NT : Eϕ,PT → FT that “contains all the information" about the non–linearity of our
problem, given by

NT (γ) =
(
N1
T (γ), γ|x=1, 0, 0, N

2
T (γ), γ|t=0

)
where

N1
T (γ)i = f

i
[γixx, γ

i
x] =

(
1

|γix(x, t)|2
− 1

|σix(x)|2

)
γixx(x, t), (3.6)

for i ∈ {1, 2, 3} and

N2
T (γ) = b[γx] =

3∑
i=1

[(
1

|γix(0, t)|
− 1

|σix(0)|

)
γix(0, t) +

σix(0)〈γix(0, t) |σix(0)〉
|σix(0)|3

]
(3.7)

are the functions at the right hand sides of equations (3.3) and (3.4), respectively.
We then introduce the operatorKT : Eϕ,PT → Eϕ,PT defined byKT (γ) = L−1

T NT (γ), where LT is the map
above. Hence, γ is a solution for system (3.2) if and only if γ ∈ Eϕ,PT and

LT (γ) = NT (γ) ⇐⇒ γ = L−1
T NT (γ) = KT (γ) .

19



Thus, there exists a unique solution to system (3.2) if and only if KT : Eϕ,PT → Eϕ,PT has a unique fixed
point and to get this, it is enough to show that KT is a contraction.
This clearly solves the existence problem of a curvature flow, Problem (3.1) in the space ET , when the
initial data belongs to I (as we said, if the solution is not C2 at least – like it will happen in the Sobolev
case – we must “drop” the requirement that the “tangential” part of the velocity is continuous).
Finally,we will have to deal with the geometric uniqueness of the flow, that is, if Tt and T̃t are two
solutions in such spaces, at every time one is a reparametrization of the other. To conclude, we will
extend all the results to the case of a general regular network.
The next two sections will be devoted to exhibiting the details of this strategy of proof in suitable
Sobolev and Hölder spaces, respectively obtaining Theorems 3.6 and 3.25.

3.1 Well–posedness in Sobolev spaces

We are going to show the existence and the geometric uniqueness of the solutions when the initial
datum is a regular network in the fractional Sobolev space W 2−2/p,p (notice that here we are allowing
non–C2 initial regular networks).

Definition 3.5. Let p ∈ (3,+∞). Given an initial, regular, W 2−2/p,p network S0, composed of n curves
σi : [0, 1]→ Ω, with m triple junctions O1, O2, . . . Om ∈ Ω and (if present) l end–points P 1, P 2, . . . , P l ∈
∂Ω in a smooth convex, open set Ω ⊆ R2, we say that a family of homeomorphic networks St, described
by the family of time–dependent curves γi(·, t), is a Sobolev–solution of the motion by curvature problem
with fixed end–points for S0, in the time interval [0, T ), if (with a little abuse of notation, switching the
variables t and x inside γ)

γi ∈W 1,p([0, T );Lp([0, 1]; Ω)) ∩ Lp([0, T );W 2,p([0, 1]; Ω)) ,

there hold γi(x, 0) = σi(x) (in the sense of traces), for every x ∈ [0, 1] and i ∈ {1, 2, . . . , n} (initial data)
and the following system is (weakly) satisfied for every x ∈ [0, 1], t ∈ [0, T ), i ∈ {1, 2, . . . , n},

γit = kiνi + λiτ i motion by curvature
γix(x, t) 6= 0 regularity
γr(1, t) = P r with 0 6 r 6 l fixed end–points condition∑3
j=1 τ

pj(Op, t) = 0 at every 3–point Op angles of 120 degrees

where we used the same notation of Definition 2.11.

The goal of this section is to prove the following theorem.

Theorem 3.6. Let p ∈ (3,+∞) and let S0 be a regular initial network of class W 2−2/p,p. Then, there exists a
geometrically unique Sobolev–solution St of the motion by curvature problem for S0, as in the definition above,
in a maximal time interval [0, T ).

We let p ∈ (3,+∞) and we define the solutions space

ET = W 1,2
p ([0, T )× [0, 1]) = W 1,p([0, T );Lp([0, 1])) ∩ Lp([0, T );W 2,p([0, 1]))

endowed with the norm ‖·‖ET = ‖·‖W 1,2
p ([0,T )×[0,1]).

To keep the notation simple, here and in the following we avoid writing the “target” spaces of the
vector-valued functions, that is, for instance W 1,2

p ([0, T ) × [0, 1]);Rk) will be simply denoted with
W 1,2
p ([0, T )× [0, 1]), as the dimension of such target vector space is clear from the context.

The space ET is then the intersection of two Sobolev spaces of functions with values in a Banach space.
Let m ∈ N, I ⊆ R be an interval and X be a Banach space. For 1 6 p 6 +∞, the Sobolev space of order
m ∈ N is defined as

Wm,p(I;X) = {f ∈ Lp(I;X) | ∂kxf ∈ Lp(I;X) for all 1 6 k 6 m} ,

which is a Banach space with the norm

‖f‖Wm,p(I;X) =

( ∑
06k6m

‖∂kxf‖
p
Lp(I;X)

)1/p

.
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Elements in the solutions space ET are thus functions f ∈ Lp([0, T );Lp([0, 1])) that have one distribu-
tional derivative with respect to time ∂tf ∈ Lp([0, T );Lp([0, 1])). Furthermore, for almost every t ∈
[0, T ), the function f(t) lies in W 2,p([0, 1]) and thus has two space derivatives ∂xf(t), ∂2

xf(t) ∈ Lp([0, 1]).
One then easily sees that the functions t 7→ ∂kxf(t) belong to Lp([0, T );Lp([0, 1])), for k ∈ {1, 2}.
The space I of initial data is the time–trace of ET , given by the fractional Sobolev space W 2−2/p,p([0, 1]).
In general, if d ∈ N, p ∈ [1,+∞) and θ ∈ [0, 1] the Gagliardo semi–norm of an element f ∈ Lp([0, 1]) is
defined as

[f ]θ,p =

(∫ 1

0

∫ 1

0

|f(x)− f(y)|p

|x− y|θp+1
dx dy

)1/p

,

then, if s ∈ (0,+∞) is not integer, the fractional Sobolev space W s,p([0, 1]) is given by

W s,p([0, 1]) =
{
f ∈W bsc,p

(
[0, 1]

) ∣∣ [∂bscx f
]
s−bsc,p < +∞

}
,

with the norm
‖f‖W s,p([0,1]) = ‖f‖W bsc,p +

[
∂bscx f

]
s−bsc,p .

For p ∈ (3,+∞) and α ∈ (0, 1− 3/p ], the Sobolev embedding theorem [107, Theorem 4.6.1 (e)] implies

W 2−2/p,p([0, 1]) ↪→ C1+α([0, 1]) ,

thus, we have the continuous embeddings

W 1,2
p ([0, T )× [0, 1]) ↪→ C([0, T ];W 2−2/p,p([0, 1])) ↪→ C([0, T ];C1+α([0, 1])) .

In particular, any initial network in W 2−2/p,p is of class C1, hence the angle condition at every triple
junction is pointwise well–defined (classical). Similarly, we specify the spaces of boundary values, as
for p ∈ [1,+∞), the operators

f 7→ f(·, 0) and f 7→ f(·, 1) from W 1,2
p ([0, T )× [0, 1]) to W 1−1/2p,p([0, T ))

f 7→ fx(·, 0) from W 1,2
p ([0, T )× [0, 1]) to W 1/2−1/2p,p([0, T ))

are linear and continuous (Theorem 5.1 in [100]).

Now, to show Theorem 3.6, we “specialize” the line of proof illustrated in the previous section to this
Sobolev case, adding the missing details. As we said, we will deal with a triod and then we will explain
how all the conclusions extend to general networks.

3.1.1 Well–posedness of the linearized system (3.5) and of the special flow (3.2)

The first point to be made precise is what are the “compatibility conditions” that the initial datum must
satisfy so that the linearized system (3.5) has a unique solution.

Definition 3.7 (Linear compatibility conditions). A function ψ = (ψ1, ψ2, ψ3) ∈ I satisfies the linear
compatibility conditions for system (3.5) with respect to the functions η = (η1, η2, η3) and b if, for i, j ∈
{1, 2, 3}, there holds ψi(0) = ψj(0), ψi(1) = ηi(0) and

−
3∑
i=1

(
ψix(0)

|σix(0)|
− σix(0)〈ψix(0) |σix(0)〉

|σix(0)|3

)
= b(0) . (3.8)

Then, the following proposition is a consequence of Theorem 5.4 in the book of Solonnikov [100] (see
also [66] and [31]) keeping in mind that we know that system (3.5) satisfies the complementary condi-
tions.

Proposition 3.8. Let p ∈ (3,+∞). For every T > 0, system (3.5) has a unique solution γ ∈ ET provided that
f ∈ Lp([0, T );Lp([0, 1]), η ∈W 1−1/2p,p([0, T )), b ∈W 1/2−1/2p,p([0, T )) and ψ ∈W 2−2/p,p([0, 1]) fulfills the
linear compatibility conditions stated in Definition 3.7, with respect to η and b.
Moreover, there exists a constant C = C(T ) > 0 such that the following estimate holds:

‖γ‖ET 6 C(‖f‖Lp([0,T );Lp([0,1])) + ‖η‖W 1−1/2p,p([0,T )) + ‖b‖W 1/2−1/2p,p([0,T )) + ‖ψ‖W 2−2/p,p([0,1])) .
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This proposition can be restated by saying that the linear operator LT : ẼT → FT defined as

LT (γ) =


γit −

γixx
|σix|2

γi|x=1

−
∑3
i=1

(
γix
|σix|
− σix〈γ

i
x |σ

i
x〉

|σix|3

)∣∣∣
x=0

γi|t=0


i∈{1,2,3}

is a continuous isomorphism between the spaces

ẼT =
{
γ = (γ1, γ2, γ3) ∈ ET

∣∣ γ1(0, t) = γ2(0, t) = γ3(0, t), for i ∈ {1, 2, 3} and t ∈ [0, T )
}
⊆ ET

FT =

{
(f, η, b, ψ) ∈ Lp([0, T );Lp([0, 1]))×W 1−1/2p,p([0, T ))×W 1/2−1/2p,p([0, T ))×W 2−2/p,p([0, 1])

ψ satisfies the linear compatibility conditions of Definition 3.7 with respect to η and b

}

Moreover, it is possible to prove (Lemma 3.6 in [44]) that for every T0 > 0, there exists a constant
C(T0, p) such that

sup
T∈(0,T0]

∣∣∣∣∣∣L−1
T

∣∣∣∣∣∣
L (FT ,ẼT )

6 C(T0, p) .

As we said in the previous section, the well–posedness of the linearized system implies the same for
the special flow, by means of contraction estimates involving the operator NT : Eϕ,PT → FT , given by

NT (γ) =
(
N1
T (γ), γ|x=1, 0, 0, N

2
T (γ), γ|t=0

)
where N1

T and N2
T are defined by formulas (3.6) and (3.7), respectively and

Eϕ,PT =
{
γ ∈ ẼT

∣∣ γ|t=0 = ϕ and γi(1, t) = P i, for i ∈ {1, 2, 3}
}
.

The following result is proved in [44, Theorem 3.7], it gives the existence and uniqueness for the special
flow of a regular initial triod in the Sobolev setting.

Theorem 3.9. Let p ∈ (3,+∞) and let σ = (σ1, σ2, σ3) ∈ W 2−2/p,p([0, 1]) describes a regular triod. In
particular,

Lσ = L−1
1 (0, σ(1), 0, σ)

is well defined, as σ satisfies the linear compatibility conditions in Definition 3.7 with respect to the functions
t 7→ σ(1) and zero.
Then, there exists a positive time T̃ = T̃ (σ), depending on mini∈{1,2,3}, x∈[0,1] |σix(x)| and ‖σ‖W 2−2/p,p([0,1]),
such that for all T ∈ (0, T̃ ), the system (3.2) has a solution Eσ in ẼT which is unique in

BM = {γ ∈ ẼT | ‖γ‖ET 6M},

with

M = 2 max
{

sup
T∈(0,1]

∣∣∣∣∣∣L−1
T

∣∣∣∣∣∣
L (FT ,ẼT )

, 1
}

max
{
‖Lσ‖E1

, ‖(N1
1 (Lσ), σ(1), N2

1 (Lσ), σ)‖F1

}
.

3.1.2 Existence and geometric uniqueness

Once we have obtained the existence and uniqueness of solutions to the special flow (3.2), we can come
back to the geometric problem. The following theorem gives the “existence part” of Theorem 3.6.

Theorem 3.10. Let p ∈ (3,+∞) and T0 a regular initial triod parametrized by σ = (σ1, σ2, σ3) ∈W 2−2/p,p([0, 1]).
Then, for some T > 0, there exists a Sobolev–solution of the motion by curvature problem in Definition 3.5 with
initial datum T0, in the time interval [0, T ).

Proof. Proposition 3.9 implies that there exists T > 0 and a solution Eσ ∈ W 1,2
p ([0, T ) × [0, 1]) to the

special flow system (3.2) in [0, T ] with Eσ(0) = σ. Then, setting γ(x, t) = Eσ(t)(x), we have that Tt =⋃3
i=1 γ

i([0, 1], t) is a Sobolev–solution to the motion by curvature with initial triod T0 in [0, T ).
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Now we deal with the geometric uniqueness of the solution given by the previous theorem.

Theorem 3.11. Let p ∈ (3,+∞) and T0 a regular initial triod parametrized by σ = (σ1, σ2, σ3) ∈W 2−2/p,p([0, 1]).
If Tt, T̃t are two Sobolev–solutions to the motion by curvature problem in Definition 3.5 with initial datum T0,
in the time intervals [0, T ) and [0, T̃ ), respectively, then Tt and T̃t coincides up to reparametrization, for all
t ∈ [0,min{T, T̃}). In particular, Tt is geometrically unique.

Proof. By Proposition 3.9, we have a Sobolev–solution γ = Eσ of system (3.2) with initial datum σ,
which is unique in BM , with M as in such proposition. In particular, it gives a Sobolev–solution Tt to
the motion by curvature in [0, T ) with initial datum T0.
Suppose that there is another Sobolev–solution T̃t with initial datum T0 in [0, T̃ ), parametrized by
γ̃ ∈ ET̃ . We then want to show that there exists a family of time–dependent diffeomorphisms ϕi(·, t) :

[0, 1]→ [0, 1] with t ∈ [0, T̂ ) for some T̂ 6 min{T, T̃}, such that ϕi(·, 0) is the identity and the equality

γ̃i(ϕi(x, t), t) = γi(x, t)

holds in the space ET̂ , for every i ∈ {1, 2, 3}. In order to make use of the uniqueness conclusion in
Proposition 3.9, we construct the reparametrizations ϕ = (ϕ1, ϕ2, ϕ3) in such a way that the functions
(x, t) 7→ γ̃i(ϕi(x, t), t) are a solution to the special flow in ET̂ with initial datum σ.
Then, formal differentiation shows that the reparametrizations ϕi need to satisfy the following bound-
ary value problem:

ϕit(x, t) =
ϕixx(x, t)

|γ̃ix(ϕi(x, t), t)|2 ϕix(x, t)2
−
〈
γ̃it(ϕ

i(x, t), t)− γ̃ixx(ϕi(x, t), t)

| γ̃ix(ϕi(x, t), t)|2

∣∣∣∣ γ̃ix(ϕi(x, t), t)

|γ̃ix(ϕi(x, t), t)|2

〉
ϕi(0, t) = 0

ϕi(1, t) = 1

ϕi(x, 0) = x

(3.9)

We observe that the right-hand side of the motion equation in system (3.9) contains terms of the form
Qi(ϕi(x, t), t). To remove this dependence it is convenient to consider the associated problem for the
inverse diffeomorphisms ξ = (ξ1, ξ2, ξ3) given by ξi(·, t) = ϕi(·, t)−1, for every fixed t ∈ [0, T̂ ). Indeed,
suppose that ϕ ∈W 1,2

p ([0, T̃ )× [0, 1]; [0, 1]3) is a solution of system (3.9) with ϕi(·, t) : [0, 1]→ [0, 1] a C1–
diffeomorphism, then it is easy to show that also ξ is of class W 1,2

p ([0, T̃ )× [0, 1]; [0, 1]3) (and viceversa)
and the formulas

ξiy(y, t) = ϕix(ξi(y, t), t)−1

ξiyy(y, t) = −ξiy(y, t)3ϕixx(ξi(y, t), t)

yield the evolution equation

ξit(y, t) =− ϕit(ξi(y, t), t)ξiy(y, t)

=− ϕixx(ξi(y, t), t)

|γ̃ix(y, t)|2
ξiy(y, t)3 +

〈
γ̃it(y, t)−

γ̃ixx(y, t)

| γ̃ix(y, t)|2

∣∣∣∣ γ̃ix(y, t)

|γ̃ix(y, t)|2

〉
ξiy(y, t)

=
ξiyy(y, t)

|γ̃ix(y, t)|2
+

〈
γ̃it(y, t)−

γ̃ixx(y, t)

| γ̃ix(y, t)|2

∣∣∣∣ γ̃ix(y, t)

|γ̃ix(y, t)|2

〉
ξiy(y, t) .

Hence, we have the following linear system for ξ,

ξit(y, t) =
ξiyy(y, t)

|γ̃ix(y, t)|2
+

〈
γ̃it(y, t)−

γ̃ixx(y, t)

| γ̃ix(y, t)|2

∣∣∣∣ γ̃ix(y, t)

|γ̃ix(y, t)|2

〉
ξiy(y, t)

ξi(0, t) = 0

ξi(1, t) = 1

ξi(y, 0) = y
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for all t ∈ [0, T̃ ), y ∈ [0, 1] and i ∈ {1, 2, 3}.

We observe that this linear boundary value problem has a very similar structure to the linearization of
special flow system (3.5), with a perturbation in the evolution equation of lower order. Then, checking
that it satisfies the complementary conditions is analogous and the compatibility conditions for the ini-
tial data are simply ψi(0) = 0 and ψi(1) = 1, which are clearly satisfied by ξi(y, 0) = y. Hence, again
by Solonnikov’s theory (Theorem 5.4 in [100]), we have a solution ξi ∈ W 1,2

p ([0, T̂ ) × [0, 1]), for some
T̂ 6 T̃ , such that for every t ∈ [0, T̂ ] the map ξi(·, t) : [0, 1] → [0, 1] is a C1–diffeomorphism. Then, the
inverse functions ϕi(·, t) = ξi(·, t)−1 also belong to W 1,2

p ([0, T̂ ) × [0, 1]) and solve system (3.9). It is not
difficult to show (see [44, Lemma 3.17]) that the composition (x, t) 7→ γ̃i(ϕi(x, t), t) lies in ET̂ and by
construction, it is a solution to the special flow system (3.2) with initial datum σ. We may now choose
a possibly smaller T̂ such that (x, t) 7→ γ̃i(ϕi(x, t), t) belongs to BM , hence it must coincide with γ re-
stricted to the time interval [0, T̂ ).
Let now T 6 min{T, T̃} be the infimum of the times in which T̃t is not a reparametrization of Tt
and suppose T < min{T, T̃}. Then, T̃T is obtained via a reparametrization ϕ of TT and if we con-
sider the flow obtained reparametrizing all the networks Tt, for t > T , with the same fixed “static”
reparametrization ϕ, we obtain a Sobolev–solution with initial datum T̃T on some time interval [T , T +

δ). Then, by the previous discussion about uniqueness, it must coincide with the flow T̃t for t ∈
[T , T + δ′), for some δ′ > 0. This clearly shows that for t ∈ [T , T + δ′), all the networks T̃t are
reparametrizations of Tt, in contradiction with the infimum property of T and we are done.

Putting together these two theorems, we obtain Theorem 3.6 in the special case of a triod.

3.1.3 Extension to general regular networks

We explain here how to generalize the previous analysis for a triod to general networks.
We consider an initial regular network S0 composed of n curves, with l end–points γk(t, 1) = P k ∈ ∂Ω,
for k ∈ {1, . . . , l} and m triple junctions O1, O2, . . . Om ∈ Ω. As in Section 2.1 (recall the discussion just
after Remark 2.5), we will denote by σpj , for j ∈ {1, 2, 3}, the curves of this network concurring at Op,
for every p ∈ {1, . . . ,m}.
The equations of motion for the special flow system (2.5) for S0 and its linearization do not differ from
the version for a triod: formula (3.3) must hold for each curve γi of the network,

γit(x, t)−
γixx(x, t)

|σix(x)|2
=

(
1

|γix(x, t)|2
− 1

|σix(x)|2

)
γixx(x, t) ,

for every i ∈ {1, . . . , n} and we have formula (3.4) at each triple junction, that is, assuming that Op(t) =
γp1(0, t) = γp2(0, t) = γp3(0, t) and Op(0) = σp1(0) = σp2(0) = σp3(0),

3∑
j=1

γpjx

|σpjx |
− σpjx 〈γpjx |σpjx 〉

|σpjx |3
=

3∑
j=1

[(
1

|γpjx |
− 1

|σpjx |

)
γpjx +

σpjx 〈γx |σpjx 〉
|σpjx |3

]
,

where σpjx = σpjx (0) and γpjx = γpjx (0, t), for every p ∈ {1, . . . ,m}.
The analogous of the linearized system (3.5) is then the following,

γit(x, t)−
γixx(x,t)

|σix(x)|2 = f i(x, t) t ∈ [0, T ), x ∈ [0, 1], i ∈ {1, . . . , n}
γk(1, t) = ηk(t) t ∈ [0, T ], k ∈ {1, . . . , l}
γp1(0, t)− γp2(0, t) = 0 t ∈ [0, T ], p ∈ {1, . . . ,m}
γp2(0, t)− γp3(0, t) = 0 t ∈ [0, T ], p ∈ {1, . . . ,m}
−
∑3
j=1

(
γpjx (0,t)

|σpjx (0)|
− σpjx (0)〈γpjx (0,t) |σpjx (0)〉

|σpjx (0)|3

)
= bp(t) t ∈ [0, T ], p ∈ {1, . . . ,m}

γi(x, 0) = ψi(x) x ∈ [0, 1], i ∈ {1, . . . , n}

(3.10)

for a general right hand side (f, η, b, ψ), with η = (η1, . . . , ηl) and b = (b1, . . . , bm).
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Hence, in order to apply again Solonnikov’s theory to get the well–posedness of this linearized system,
the necessary complementary conditions are simply the same that we have seen for a single triple junc-
tion and only three end–points, repeated for each 3–point and end–point in this case and we can check
all of them exactly in the same way we did for a triod.
Then, the generalization of Definition 3.7 is as follows, which is simply asking that equation (3.8) holds
at every 3–point.

Definition 3.12. Let p ∈ (3,+∞). A function ψ = (ψ1, . . . , ψn) of classW 2−2/p,p([0, 1]) satisfies the linear
compatibility conditions for system (3.10), with respect to given functions η = (η1, . . . , ηl) ∈W 1−1/2p,p([0, T )
and b and b = (b1, . . . , bm) ∈ W 1/2−1/2p,p([0, T )) if, for every k ∈ {1, . . . , l} and p ∈ {1, . . . ,m}, there
holds ψk(1) = ηk(0) ψp1(0) = ψp2(0) = ψp3(0) and

−
3∑
j=1

(
ψpjx (0)

|σpjx (0)|
−
σpjx (0)

〈
ψpjx (0) |σpjx (0)

〉
|σpjx (0)|3

)
= bp(0) .

The rest of the proof leading to Theorem 3.6 then follows analogously to the case of a triod, in particular
the version of Theorem 3.9 for general initial regular networks. All this discussion concludes the proof
of Theorem 3.6.
Remark 3.13. We mention that a different argument to extend the conclusions from the case of a triod
to the one of a general network is to add some extra “fake boundary points” in the middle of every
curve “separating” it in two new curves so that each curve of the resulting new family always connects
one triple junction and one boundary point. Then, imposing “artificial” boundary conditions on such
“fake boundary points” forbidding two of the new curves concurring there to form an angle, we have
a new system which is “equivalent” to system (3.10) and easier (in terms of notation) to be dealt with.
Applying Solonnikov’s theory to such a system, one then gets the same conclusion that we obtained
above. This line was pursued in [108], where the author carries on this procedure in full detail.

3.2 Well–posedness in Hölder spaces

We want to show the existence and the geometric uniqueness of the flow, Problem (2.3) in Defini-
tion 2.11, when all the curves of the initial regular network belong to the Hölder space C2+2α, with
α ∈ (0, 1/2) and satisfy some extra conditions. We underline that this section is based on the results of
Bronsard and Reitich in [17] (see also [82]).
We do not need a particular definition for these flows, that we are going to call Hölder–solutions or
Hölder–curvature flows , similarly as we did with Definition 3.5 for the Sobolev case, since the initial data
space I will be the Hölder space C2+2α([0, 1]), which is a subspace of the “natural” space of initial C2

regular networks. Omitting, as before, the target vector space for simplicity of notation, we have

I = C2+2α([0, 1])

and the solutions space,
ET = C2+2α,1+α([0, 1]× [0, T )) ,

with α ∈ (0, 1/2), endowed the norm ‖·‖ET = ‖·‖C2+2α,1+α([0,1]×[0,T )).
For the reader’s convenience, we recall the definition and some properties of these parabolic Hölder
spaces (see [100, Sections 11 and 13]). For a function u : [0, 1] × [0, T ] → R, we define the Hölder
semi–norms

[u]β,0 = sup
x,y∈[0,1], t∈[0,T ]

|u(x, t)− u(y, t)|
|x− y|β

,

and
[u]0,θ = sup

x∈[0,1] t,τ∈[0,T ]

|u(x, t)− u(x, τ)|
|t− τ |θ

,

then C2+2α,1+α([0, 1] × [0, T ]) is the space of the functions u : [0, 1] × [0, T ] → R having continuous
derivatives ∂it∂jxu, for every i, j ∈ N with 2i+ j 6 2 and such that the norm

‖u‖C2+2α,1+α([0,1]×[0,T ]) =

2∑
2i+j=0

∥∥∂it∂jxu∥∥∞ +
∑

2i+j=2

[
∂it∂

j
xu
]
2α,0

+
∑

2i+j=2

[
∂it∂

j
xu
]
0,α

25



is finite.
As we did for the Sobolev case in the previous section, we now “specialize” the strategy of proof illus-
trated at the beginning to the Hölder case. Again, we first deal with a triod and then we extend all the
results to general networks.

3.2.1 Well–posedness of the linearized system (3.5) and of the special flow (3.2)

Differently from the Sobolev case, to get well–posedness of system (3.2) in the above Hölder spaces, the
initial datum cannot merely be a regular triod, but suitable “extra conditions” are necessary.

Definition 3.14. We say that the compatibility conditions of order 2 for system (3.2) are satisfied by the
(initial) C2 regular triod T0 =

⋃3
i=1 σ

i ([0, 1]), if at the end–points and at the 3–point, there hold all
the relations on the space derivatives, up to second order, of the functions σi given by the boundary
conditions and their time derivatives, assuming that the evolution equation holds also at such points.
Explicitly, the compatibility conditions of order 0 at the 3–point are

σi(0) = σj(0) for every i, j ∈ {1, 2, 3}

and
σi(1) = P i for every i ∈ {1, 2, 3},

that is, simply the concurrency and fixed end–points conditions.
The compatibility condition of order 1 is given by

3∑
i=1

σix(0)

|σix(0)|
= 0 ,

that is, the 120 degrees condition at the 3–point.
To get the second order conditions, one has to differentiate in time the first ones, getting

σixx(0)

|σix(0)|2
=

σjxx(0)

|σjx(0)|2
for every i, j ∈ {1, 2, 3}

and
σixx(1)

|σix(1)|2
= 0 for every i ∈ {1, 2, 3} .

As in the Sobolev case, we consider the linearized system (3.5), which also needs more conditions on
the initial data in order to be well–posed.

Definition 3.15. A function ψ = (ψ1, ψ2, ψ3) ∈ I satisfies the linear compatibility conditions of order 2 for
system (3.5) with respect to the functions f = (f1, f2, f3), η = (η1, η2, η3) and b, if ψ satisfies the linear
compatibility conditions as in Definition 3.7 and, in addition,

ψixx(0)

|σix(0)|2
+ f i(0, 0) =

ψjxx(0)

|σjx(0)|2
+ f j(0, 0) for every i, j ∈ {1, 2, 3}

and
ψixx(1)

|σix(1)|2
+ f i(1, 0) = ηit(0) for every i ∈ {1, 2, 3} .

Then, the following proposition (analogous to Proposition 3.8) is a consequence of Theorem 4.9 in the
book of Solonnikov [100] (see also [66] and [31]), as we know that system (3.5) satisfies the complemen-
tary conditions.

Proposition 3.16. Let α ∈ (0, 1/2). For every T > 0, system (3.5) has a unique solution γ ∈ ET provided
that f ∈ C2α,α([0, 1] × [0, T ]), η ∈ C1+α([0, T ]), b ∈ C1/2+α([0, T ]) and ψ ∈ C2+2α([0, 1]) fulfills the linear
compatibility conditions of order 2 stated in Definition 3.15. Moreover, there exists a constant C = C(T ) > 0
such that the following estimate holds:

‖γ‖ET 6 C
(
‖f‖C2α,α([0,1]×[0,T ]) + ‖η‖C1+α([0,T ]) + ‖b‖C1/2+α([0,T ]) + ‖ψ‖C2+2α([0,1])

)
.
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Arguing as in the Sobolev case, by means of contraction estimates, the work of Bronsard and Reitich [17]
then shows the well–posedness of the special curvature flow system (3.2) in the Hölder setting.

Theorem 3.17. For any initial, regular C2+2α triod T0 =
⋃3
i=1 σ

i([0, 1]), with α ∈ (0, 1/2), satisfying the
compatibility conditions of order 2, there exists a positive time T such that system (3.2) has a unique solution in
C2+2α,1+α([0, 1]× [0, T ]). Moreover, every triod Tt =

⋃3
i=1 γ

i([0, 1], t) satisfies the compatibility conditions of
order 2.

Remark 3.18. In [17] the authors do not consider exactly system (3.2), but the analogous “Neumann
problem”. That is, they require that the end–points of the three curves meet the boundary of Ω orthog-
onally.

3.2.2 Existence and geometric uniqueness

Clearly, a solution of system (3.2) provides a Hölder–solution to Problem (3.1).

Theorem 3.19. For any initial, regular C2+2α triod T0 =
⋃3
i=1 σ

i([0, 1]), with α ∈ (0, 1/2), in a smooth,
convex, open set Ω ⊆ R2, satisfying the compatibility conditions of order 2, there exists a Hölder–curvature
flow of T0 of class C2+2α,1+α([0, 1] × [0, T )) in a maximal positive time interval [0, T ). Moreover, every triod
Tt =

⋃3
i=1 γ

i([0, 1], t) satisfies the compatibility conditions of order 2.

Proof. If γi ∈ C2+2α,1+α([0, 1]× [0, T )) is a solution of system (3.2), then it solves Problem (3.1) with

λi(x, t) =
〈γixx(x, t) | τ i(x, t)〉
|γix (x, t)|2

=
〈γixx(x, t) | γix(x, t)〉
|γix (x, t)|3

.

Indeed, it follows immediately by the regularity properties of this flow that the relative functions λi

belong to the parabolic Hölder space C2α,α([0, 1]× [0, T )) (hence, in Cα([0, 1]× [0, T )), thus continuous)
and all the triods Tt are in C2+2α, satisfying the compatibility conditions of order 2.
The property that these evolving triods are regular follows by the standard fact that the maps γix are
continuous, belonging toC1+2α,1/2+α([0, 1]×[0, T ]) (see [65, Section 8.8]), hence, being σi regular curves,
γix(x, t) 6= 0 still holds for every x ∈ [0, 1] and for some positive interval of time.
The fact that a curve cannot self–intersect or two curves cannot intersect each other can be ruled out by
noticing that such an intersection cannot happen at the 3–point by geometric reasons, as the curvature
is locally bounded and the curves are regular, then it is well known for the motion by curvature that
strong maximum principle prevents such intersections for the flow of two embedded curves (or two
distinct parts of the same curve). A similar argument and again the strong maximum principle also
prevent a curve from “hitting” the boundary of Ω at a point different from a fixed end–point of the
triod.

Remark 3.20. Since every curve γi of a special curvature flow Tt satisfies γit =
γixx
|γix|2

for every t > 0, by
the very Definition 3.14, every triod Tt is 2–compatible.
If instead we have simply a C2,1 curvature flow Tt, it is not necessarily 2–compatible for every time. It
only has to satisfy kν + λτ = 0 at every end–point and

(kiνi + λiτ i)(O) = (kjνj + λjτ j)(O), for i, j ∈ {1, 2, 3} .

These relations imply anyway that for every evolving triod Tt the curvature is zero at the end–points
and the sum of the three curvatures at the 3–point is zero. We are going to see that this implies that by
reparametrizing Tt by a C∞ map we obtain a 2–compatible network.
The observations in this remark can be clearly extended to general networks, as well as Definition 3.14.

Definition 3.21. We say that a regular C2 network S0 =
⋃n
i=1 σ

i([0, 1]) is 2–compatible if the maps σi

satisfy the compatibility conditions of order 2 for system (2.5), that is σixx = 0 at every end–point and

σpixx(Op)

|σpix (Op)|2
=

σpjxx(Op)

|σpjx (Op)|2

for every pair of curves σpi and σpj concurring at any 3–point Op (where we abused a little the notation
like in Definition 2.11).
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Definition 3.22. We say that a regular C2 network S0 =
⋃n
i=1 σ

i([0, 1]) is geometrically 2–compatible if the
curvature is zero at every end–point and the sum of the three curvatures at every 3–point is zero.

By this definition, to be geometrically 2–compatible is a property invariant by reparametrization of the
curves of a network (it involves only the curvature, a geometric quantity invariant under reparametriza-
tion). Arguing as in Remark 3.20, we immediately have the following proposition.

Proposition 3.23. Given a curvature flow St of an initial regular C2 network S0 =
⋃n
i=1 σ

i([0, 1]) all the
networks St, for t > 0, are geometrically 2–compatible.

There is a clear relation between geometrically 2–compatible and 2–compatible networks that we give in
the following lemma.

Lemma 3.24. Let S0 =
⋃n
i=1 σ

i([0, 1]) be a geometrically 2–compatible network. Then, it admits a regular
reparametrization by a C∞ map such that it becomes 2–compatible.

Proof. We look for some C∞ maps θi : [0, 1] → [0, 1], with θix(x) 6= 0 for every x ∈ [0, 1] and θi(0) = 0,
θi(1) = 1 such that the reparametrized curves σ̃i = σi ◦ θi satisfy

σ̃ixx
|σ̃ix|2

=
σ̃jxx

|σ̃jx|2

for every pair of concurring curves σ̃i and σ̃j at any 3–point and σ̃ixx = 0 at every end–point of the
network. Setting λ̃i0 =

〈σ̃ixx |σ̃
i
x〉

|σ̃ix|3
this means

k̃iν̃i + λ̃i0τ̃
i = k̃j ν̃j + λ̃j0τ̃

j

for every pair of concurring curves σ̃i and σ̃j at any 3–point and k̃iν̃i + λ̃i0τ̃
i = 0 at every end–point of

the network. Since the curvature is invariant by reparametrization, using computations of Section 2.3
and the hypotheses on the curvature, these two conditions are satisfied if and only if λ̃i0 = 0 at every
end–point of the network and

λ̃i0 =
ki−1 − ki+1

√
3

at every 3–point of the network, for i ∈ {1, 2, 3} (modulus 3).
Hence, we only need to find C∞ reparametrizations θi such that at the borders of [0, 1] the values of
λ̃i0 =

〈σ̃ixx |σ̃
i
x〉

|σ̃ix|3
are given by these relations. This can be easily done since at the borders of the interval

[0, 1] we have θi(0) = 0 and θi(1) = 1, hence

λ̃i0 =
〈σ̃ixx |σ̃ix〉
|σ̃ix|3

= −∂x
1

|σ̃ix|
= −∂x

1

|σix ◦ θi|θix
=
〈σixx |σix〉
|σix|3

+
θixx

|σix||θix|2
= λi0 +

θixx
|σix||θix|2

where λi0 =
〈σixx |σ

i
x〉

|σix|3
, then we can simply choose any C∞ functions θi with θix(0) = θix(1) = 1, θixx =

−λi0|σix||θix|2 at every end–point and

θixx =

(
ki−1 − ki+1

√
3

− λi0
)
|σix||θix|2

at every 3–point of the network (for instance, one can use a polynomial function). It follows that the
reparametrized network S̃0 =

⋃n
i=1(σi ◦ θi)([0, 1]) is 2–compatible.

We are then ready to deal with networks with general topological structure, having as a goal the fol-
lowing final conclusion.

Theorem 3.25. For any initial, regular C2+2α network S0 =
⋃n
i=1 σ

i([0, 1]), with α ∈ (0, 1/2), in a smooth,
convex, open set Ω ⊆ R2, which is geometrically 2–compatible, there exists a geometrically unique Hölder–
C2+2α,1+α([0, 1] × [0, T )) curvature flow St (in the sense of Definition 3.1) in C2+2α,1+α([0, 1] × [0, T )), in a
maximal time interval [0, T ). Moreover, all the networks St are geometrically 2–compatible.
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We first extend the short–time existence Theorem 3.19 to regular, C2+2α initial networks which are
geometrically 2–compatible, hence showing the “existence part” of Theorem 3.25.

Proposition 3.26. For any initial regular C2+2α network S0 =
⋃n
i=1 σ

i([0, 1]) which is geometrically 2–
compatible, with α ∈ (0, 1/2), in a smooth, convex, open set Ω ⊆ R2, there exists a Hölder–curvature flow
of class C2+2α,1+α([0, 1]× [0, T )) for a maximal positive time interval [0, T ).

Proof. By Lemma 3.24, we can reparametrize the network S0 with some C∞ maps θi to make it 2–
compatible. If the network S0 belongs to C2+2α the reparametrized one S̃0 is still in C2+2α, then
we can argue step–by–step exactly as we did in Section 3.1.3 for the Sobolev setting, in order to ex-
tend Theorem 3.17 to general regular networks, getting the unique special curvature flow γ̃i for S̃0 =⋃n
i=1 σ̃

i([0, 1]) =
⋃n
i=1(σi ◦ θi)([0, 1]) which is in C2+2α,1+α([0, 1] × [0, T )) for a maximal positive time

interval [0, T ). Moreover, every network St =
⋃n
i=1 γ

i([0, 1], t) is 2–compatible.
If now we consider the maps γi given by γi(x, t) = γ̃i([θi]−1(x), t), we have that they still belong to
C2+2α,1+α([0, 1]× [0, T )) (as the maps [θi]−1 are in C∞), γi(·, 0) = σi and

γit(x, t) = ∂t[γ̃
i([θi]−1(x), t)]

= γ̃it([θ
i]−1(x), t)

= k̃
i
([θi]−1(x), t) + λ̃i([θi]−1(x), t)τ̃ i([θi]−1(x), t)

= ki(x, t) + λi(x, t) ,

with λi(x, t) = λ̃i([θi]−1(x), t)τ̃ i([θi]−1(x), t). Hence, γi is a flow by curvature of the network S0 in
C2+2α,1+α([0, 1]× [0, T ))

Finally, we address the geometric uniqueness of the flow in Hölder space, obtaining Theorem 3.25.

Proof of Theorem 3.25. By Proposition 3.26, we have a Hölder–curvature flow St of S0, given by the fam-
ily of moving curves γi. We first show that if S0 =

⋃n
i=1 σ

i([0, 1]) satisfies the compatibility conditions
of order 2 then the solution given by Theorem 3.19 (which is the special flow given by the extension of
Theorem 3.17, as in the proof of the previous proposition) is geometrically unique among the curvature
flows in the class C2+2α,1+α([0, 1]× [0, T )).
Suppose that γ̃i : [0, 1] × [0, T̃ ) → Ω is another maximal solution in C2+2α,1+α([0, 1] × [0, T̃ )) satisfying
γ̃it = k̃iν̃i + λ̃iτ̃ i for some functions λ̃i in C2α([0, 1]× [0, T̃ )), we want to see that it coincides with γi up
to a reparametrization of the curves γ̃i(·, t) for every t ∈ [0,min{T, T̃}).
If we consider functions ϕi : [0, 1]×[0,min{T, T̃})→ [0, 1] belonging toC2+2α,1+α([0, 1]×[0,min{T, T̃}))
and the reparametrizations γi(x, t) = γ̃i(ϕi(x, t), t), we have that γi ∈ C2+2α,1+α([0, 1]× [0,min{T, T̃}))
and

γit(x, t) = ∂t[γ̃
i(ϕi(x, t), t)]

= γ̃ix(ϕi(x, t), t)ϕit(x, t) + γ̃it(ϕ
i(x, t), t)

= γ̃ix(ϕi(x, t), t)ϕit(x, t) + k̃
i
(ϕi(x, t), t) + λ̃

i
(ϕi(x, t), t)

= γ̃ix(ϕi(x, t), t)ϕit(x, t) +

〈
γ̃ixx

(
ϕi(x, t), t

)
| ν̃i(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|2

ν̃i(ϕi(x, t), t)

+ λ̃i(ϕi(x, t), t)
γ̃ix(ϕi(x, t), t)

|γ̃ix (ϕi(x, t), t)|
.

We choose now maps ϕi ∈ C2+2α,1+α([0, 1] × [0, T̂ )) which are solutions for some positive interval of
time [0, T̂ ) of the following quasilinear PDE’s

ϕit(x, t) =

〈
γ̃ixx

(
ϕi(x, t), t

)
| γ̃ix(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|4

− λ̃i(ϕi(x, t), t)

|γ̃ix (ϕi(x, t), t)|
+

ϕixx(x, t)

|γ̃ix (ϕi(x, t), t)|2 |ϕix(x, t)|2
(3.11)
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with ϕi(0, t) = 0, ϕi(1, t) = 1 and ϕi(x, 0) = x (hence, γi(x, 0) = γi(x, 0) = σi(x)).
To find such reparametrizations ϕ, we consider, as in Section 3.1.2, the associated problem for the in-
verse diffeomorphisms ξ = (ξ1, ξ2, ξ3) given by ξi(·, t) = ϕi(·, t)−1, for every fixed t ∈ [0, T̂ ).

ξit(y, t) =
ξiyy(y, t)

|γ̃ix(y, t)|2
+

〈
γ̃it(y, t)−

γ̃ixx(y, t)

| γ̃ix(y, t)|2

∣∣∣∣ γ̃ix(y, t)

|γ̃ix(y, t)|2

〉
ξiy(y, t)

ξi(0, t) = 0

ξi(1, t) = 1

ξi(y, 0) = y

for all t ∈ [0, T̃ ), y ∈ [0, 1] and i ∈ {1, 2, 3}.
We already know, from Section 3.1.2, that this linear system satisfies the complementary conditions,
hence for the existence of a solution ξ ∈ C2+2α,1+α([0, 1] × [0,min{T, T̃})), we only have to check that
the compatibility conditions of order 2 (as in Definition 3.15) for the initial data holds. By simplicity,
we show it for a triod: in such case, they are ψi(0) = 0 and ψi(1) = 1, which are clearly satisfied by
ξi(y, 0) = y and

ψiyy(0)

|γ̃ix(0, 0)|2
+

〈
γ̃it(0, 0)− γ̃ixx(0, 0)

| γ̃ix(0, 0)|2

∣∣∣∣ γ̃ix(0, 0)

|γ̃ix(0, 0)|2

〉
ψiy(0) = 0

ψiyy(0)

|γ̃ix(1, 0)|2
+

〈
γ̃it(1, 0)− γ̃ixx(1, 0)

| γ̃ix(1, 0)|2

∣∣∣∣ γ̃ix(1, 0)

|γ̃ix(1, 0)|2

〉
ψiy(0) = 0

where, putting ψi(y) = ξi(y, 0) = y, we get the equations〈
γ̃it(0, 0)− γ̃ixx(0, 0)

| γ̃ix(0, 0)|2

∣∣∣∣ γ̃ix(0, 0)

|γ̃ix(0, 0)|2

〉
=

〈
γ̃it(0, 0)− σixx(0)

|σix(0)|2

∣∣∣∣ σix(0)

|σix(0)|2

〉
= 0 (3.12)

〈
γ̃it(1, 0)− γ̃ixx(1, 0)

| γ̃ix(1, 0)|2

∣∣∣∣ γ̃ix(1, 0)

|γ̃ix(1, 0)|2

〉
= −

〈
σixx(1)

|σix(1)|2

∣∣∣∣ σix(1)

|σix(1)|2

〉
= 0 .

Since σ satisfies the compatibility conditions of order 2 for system (3.2), we have (Definition 3.14)

σixx(0)

|σix(0)|2
=

σjxx(0)

|σjx(0)|2
and

σixx(1)

|σix(1)|2
= 0 ,

for every i, j ∈ {1, 2, 3}, hence the second equation above is immediately verified and the vector v =

γ̃it(0, 0)− σixx(0)
|σix(0)|2 is independent of i ∈ {1, 2, 3}. It follows,

〈v | ν̃i(0, 0)〉 =

〈
γ̃it(0, 0)− σixx(0)

|σix(0)|2

∣∣∣∣ ν̃i(0, 0)

〉
= k̃i(0, 0)−

〈
σixx(0)

|σix(0)|2

∣∣∣∣ ν̃i(0, 0)

〉
= 0

for every i ∈ {1, 2, 3}, which implies v = 0, thus equation (3.12) is also satisfied. In the case of a general
network, the above argument must simply be repeated for every triple junction and every end–point
(by means of Definition 3.21).
Then, again by Solonnikov’s theory (Theorem 4.9 in [100]), we have a solution ξ ∈ C2+2α,1+α([0, 1] ×
[0,min{T, T̃})), for some T̂ 6 T̃ , such that for every t ∈ [0, T̂ ] the map ξi(·, t) : [0, 1] → [0, 1] is a
C1–diffeomorphism. Hence, the inverse functions ϕi(·, t) = ξi(·, t)−1 also belong to C2+2α,1+α([0, 1] ×
[0,min{T, T̃})) and are solutions of system (3.11). Moreover, by arguing as in the last part of the proof
of Theorem 3.11, we can show that T̂ can be taken equal to min{T, T̃}.
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It follows that the reparametrizations γi(x, t) = γ̃i(ϕi(x, t), t) satisfy the special flow system (3.2):

γit(x, t) =

〈
γ̃ixx

(
ϕi(x, t), t

)
| γ̃ix(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|4

γ̃ix(ϕi(x, t), t) +
ϕixx(x, t)γ̃ix

(
ϕi(x, t), t

)
|γ̃ix (ϕi(x, t), t)|2 |ϕix(x, t)|2

+

〈
γ̃ixx

(
ϕi(x, t), t

)
| ν̃i(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|2

ν̃i(ϕi(x, t), t)

=

〈
γ̃ixx

(
ϕi(x, t), t

)
| τ̃ i(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|2

τ̃ i(ϕi(x, t), t) +
ϕixx(x, t)γ̃ix

(
ϕi(x, t), t

)
|γ̃ix (ϕi(x, t), t)|2 |ϕix(x, t)|2

+

〈
γ̃ixx

(
ϕi(x, t), t

)
| ν̃i(ϕi(x, t), t)

〉
|γ̃ix (ϕi(x, t), t)|2

ν̃i(ϕi(x, t), t)

=
γ̃ixx

(
ϕi(x, t), t

)
|γ̃ix (ϕi(x, t), t)|2

+
ϕixx(x, t)γ̃ix

(
ϕi(x, t), t

)
|γ̃ix (ϕi(x, t), t)|2 |ϕix(x, t)|2

=
γixx(x, t)

|γix(x, t)|2
.

We can then conclude that by the uniqueness part of (the extension to general networks of) Theorem 3.17
that γi = γi for every i ∈ {1, 2, . . . , n}, hence γi(x, t) = γ̃i(ϕi(x, t), t) in the time interval [0,min{T, T̃})
and since this “reparametrization relation” between any two maximal solutions of Problem (2.3) is
symmetric (by means of the maps ξi), we have T̃ = T and we are done.
Assume now that the network S0 is only geometrically 2–compatible, then the proof of Proposition 3.26
gives a special solution γi given by γi(x, t) = γ̃i([θi]−1(x), t) where θi are smooth maps and γ̃i is a
special solution as above for the 2–compatible network S̃0 =

⋃n
i=1 σ̃

i([0, 1]) =
⋃n
i=1(σi ◦ θi)([0, 1])

which is in C2+2α,1+α([0, 1]× [0, T )) for a maximal positive time interval [0, T ).
Suppose that γi : [0, 1]×[0, T̃ )→ Ω is another maximal curvature flow for S0 inC2+2α,1+α([0, 1]×[0, T̃ )),
satisfying γit = k

i
νi+λ

i
τ i for some functions λ

i
in C2α([0, 1]× [0, T̃ )). If we consider the maps γ̂i(x, t) =

γi(θi(x), t), they give a C2+2α,1+α([0, 1]× [0, T̃ )) curvature flow of the initial network S̃0 which satisfies
the compatibility conditions of order 2, hence (by the above argument) T̃ = T and the maps γ̂i and γ̃i

only differ by reparametrizations given by some maps ϕi ∈ C2+2α,1+α([0, 1]× [0, T )) with ϕi(x, 0) = x,
that is,

γ̂i(x, t) = γ̃i(ϕi(x, t), t) .

It follows that

γi(x, t) = γ̂i([θi]−1(x), t) = γ̃i(ϕi([θi]−1(x), t), t) = γi(θi(ϕi([θi]−1(x), t)), t)

which shows that the two flows γi and γi of the initial network S0 coincide up to the time–dependent
reparametrizations (x, t) 7→ (θi(ϕi([θi]−1(x), t)), t).
The last assertion follows by Proposition 3.23.

3.3 Initial data with higher regularity

We discuss the higher regularity of the flow when the initial network is of class C∞.

Definition 3.27. We say that the compatibility conditions of every order for system (2.5) are satisfied by
an (initial) regular C∞ network S0 =

⋃n
i=1 σ

i ([0, 1]) and we call such a network smooth, if at every
end–points and every 3–point there hold all the relations on the space derivatives of the functions σi,
obtained repeatedly differentiating in time the boundary conditions and using the evolution equation
γit(x, t) =

γixx(x,t)

|γix(x,t)|2 to substitute time derivatives with space derivatives.
We say that a C∞ flow by curvature St is smooth if all the networks St are smooth.

It is immediate by this definition that every network St of a C∞ special curvature flow of an initial
regular network S0 is smooth for every t > 0.
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Remark 3.28. We underline that being a smooth network implies being regular and C∞ (composed of C∞

curves), but it is way more restrictive than that. Analogously, a smooth curvature flow of networks is
not simply C∞ up to the parabolic boundary (see Remark 3.20). Anyway, similarly as before (Proposi-
tion 3.23), every network of a C∞ curvature flow can be reparametrized to be smooth.

If we assume that the initial regular network is smooth, we have the following higher regularity result.

Theorem 3.29. For any initial smooth network S0 in a smooth, convex, open set Ω ⊆ R2 there exists a unique
C∞ solution of system (2.5) in a maximal time interval [0, T ).

Proof. Since the initial network S0 satisfies the compatibility condition at every order, the method of the
previous section actually provides, for every n ∈ N, a unique solution in C2n+2α,n+α([0, 1] × [0, Tn]) of
system (2.5) satisfying the compatibility conditions of order 0, 1, . . . , 2n at every time.
So, if we have a solution γi ∈ C2n+2α,n+α([0, 1] × [0, Tn]) for n > 1, then the functions γix belong to
C2n−1+2α,n−1/2+α([0, 1] × [0, Tn]) (see [65, Section 8.8]). Considering the parabolic system satisfied by
vi(x, t) = γit(x, t) (see [82, Page 250]), by Solonnikov results in [100] vi = γit belongs toC2n+2α,n+α([0, 1]×
[0, Tn]). Since γixx = γit |γix|2 with |γix|2 ∈ C2n−1+2α,n−1/2+α([0, 1]× [0, Tn]), we get also

γixx ∈ C2n−1+2α,n−1/2+α([0, 1]× [0, Tn]) .

Following [74], we can then conclude that γi ∈ C2n+1+2α,n+1/2+α([0, 1]× [0, Tn]).
Iterating this argument, we see that γi ∈ C∞([0, 1]×[0, Tn]). Moreover, since for every n ∈ N the solution
obtained is unique, it must coincide with γi and we can choose all the Tn to be the same positive value
T .
It follows that the solution is in C∞ till the parabolic boundary, hence, all the compatibility conditions
are satisfied at every time t ∈ [0, T ).

As a consequence, we have the following theorem.

Theorem 3.30. For any initial smooth network S0 in a smooth, convex, open set Ω ⊆ R2 there exists a smooth
curvature flow of S0 in a maximal positive time interval [0, T ).

For C∞ networks we then introduce the concept of geometrically smoothness.

Definition 3.31. We say that a network S0 =
⋃n
i=1 σ

i ([0, 1]) of class C∞ is geometrically smooth if it
can be reparametrized to be smooth.

Remark 3.32. By arguments similar to the ones of Lemma 3.24, it can be shown that, like for geometrical
2–compatibility, this property depends only on (some relations on) the curvature and its derivatives
at the end–points and at the 3–points of a C∞ network (see [82] for more details), that is, geometrical
smoothness is again a geometric property (obviously invariant by C∞ reparametrizations, by the defi-
nition).
Moreover, as before (see Proposition 3.23), every C∞ curvature flow of an initial regular network S0 is
actually composed of geometrically smooth networks St for every t > 0.

The following short–time existence theorem holds, essentially with the same proof of Proposition 3.26.

Theorem 3.33. For any initial geometrically smooth network S0 in a smooth, convex, open set Ω ⊆ R2 there
exists a C∞ curvature flow of S0 in a maximal positive time interval [0, T ).

An immediate consequence is the following corollary.

Corollary 3.34. For any initial geometrically smooth network S0 =
⋃n
i=1 σ

i([0, 1]) in a smooth, convex, open
set Ω ⊆ R2, there exists a geometrically unique solution of Problem (2.3) in the class of maps C2+2α,1+α([0, 1]×
[0, T )) in a maximal positive time interval [0, T ). Moreover, such a solution is C∞ and if the initial network is
actually smooth, it can be chosen to be a special curvature flow.

Remark 3.35. Notice that it follows that any curvature flow as in the hypotheses of the above theorem
and corollary is a reparametrization (of class C2+2α,1+α in the first case and C∞ in the latter) of the
special curvature flow (which is C∞ under the hypotheses of this corollary, by Theorem 3.29).
This corollary implies the geometric uniqueness of this flow in the class of smooth maps.
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4 Integral estimates

In this section, we work out some integral estimates for a special flow by curvature of a smooth regular
network. These estimates were previously proved for the case of the special curvature flow of a regular
smooth triod with fixed end–points, in [82]. We now extend them to the case of a smooth network with
“controlled” behavior of its end–points. An outline for such estimates with controlled behavior of the
end–points, for a general curvature flow, appeared in [58, Section 7]. We advise the reader that when
the computations are exactly the same we will refer directly to [82, Section 3], where it is possible to
find every detail.
In all this section we will assume that the special flow by curvature is given by a C∞ solution γi of
system (2.5), that is, there holds

γit(x, t) =
γixx (x, t)

|γix (x, t)|2
,

(see Remark 2.14 and Definition 2.15 for the case of an initial C2 network). The estimates, which only
involve geometric quantities and do not involve the tangential velocities λi, hold also for any smooth
flow (the ones where we do not use the special form of the functions λi given by this equation). To
use these estimates for a general smooth flow, because of geometric uniqueness (see Corollary 3.34
and Remark 3.35), one must reparametrize such a flow, preserving the boundary condition (4.1) below,
so it becomes special, then carry back the geometric (invariant by reparametrization) estimates to the
original flow. Alternatively, one can also directly prove these estimates without reparametrizing first to
a special flow, see [58, Section 7].
We will see that such a special flow of a regular smooth network with “controlled” end–points exists
smoothly as long as the curvature stays bounded and none of the lengths of the curves goes to zero
(Theorem 4.14).
We suppose that the special solution maps γi above exist and are of class C∞ in the time interval [0, T )
and that they describe the flow of a regular C∞ network St in Ω, composed of n curves γi(·, t) : [0, 1]→
Ω with m 3–points O1, O2, . . . , Om and l end–points P 1, P 2, . . . , P l. We will assume that either such
end–points are fixed or that there exist uniform (in time) constants Cj , for every j ∈ N, such that

|∂jsk(P r, t)|+ |∂jsλ(P r, t)| 6 Cj , (4.1)

for every t ∈ [0, T ) and r ∈ 1, 2, . . . , l.
The first computation we are going to show is the evolution in time of the total length of a network
under the curvature flow.

Proposition 4.1. The time derivative of the measure ds on any curve γi of the network is given by the measure
(λis − (ki)2) ds. As a consequence, we have

dLi(t)

dt
= λi(1, t)− λi(0, t)−

∫
γi(·,t)

(ki)2 ds

and
dL(t)

dt
=

l∑
r=1

λ(P r, t)−
∫
St
k2 ds ,

where, with a little abuse of notation, λ(P r, t) is the tangential velocity at the end–point P r of the curve of the
network getting at such point, for any r ∈ {1, 2, . . . , l}.
In particular, if the end–points P r of the network are fixed during the evolution, we have

dL(t)

dt
= −

∫
St
k2 ds , (4.2)

thus, in such case, the total length L(t) is decreasing in time and uniformly bounded above by the length of the
initial network S0.
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Proof. The formula for the time derivative of the measure ds follows easily by the commutation for-
mula (2.6). Then,

dLi(t)

dt
=
d

dt

∫
γi(·,t)

1 ds =

∫
γi(·,t)

(λis − (ki)2) ds = λi(1, t)− λi(0, t)−
∫
γi(·,t)

(ki)2 ds .

Adding these relations for all the curves, the contributions of λpi at every 3–point Op vanish, by rela-
tion (2.11), and the formula of the statement follows. If the end–points are fixed all the terms λ(P r, t)
are zero and the last formula follows.

The following notation will be very useful for the next computations in this section.

Definition 4.2. We will denote with pσ(∂jsλ, ∂
h
s k) a polynomial with constant coefficients in λ, . . . , ∂jsλ

and k, . . . , ∂hs k such that every monomial it contains is of the form

C

j∏
l=0

(∂lsλ)αl ·
h∏
l=0

(∂lsk)βl with
j∑
l=0

(l + 1)αl +

h∑
l=0

(l + 1)βl = σ,

we will call σ the geometric order of pσ .
Moreover, if one of the two arguments of pσ does not appear, it means that the polynomial does not
contain it, for instance, pσ(∂hs k) does not contain neither λ nor its derivatives.
We will denote with qσ(∂jtλ, ∂

h
s k) a polynomial as before in λ, . . . , ∂jtλ and k, . . . , ∂hs k such that all its

monomials are of the form

C

j∏
l=0

(∂ltλ)αl ·
h∏
l=0

(∂lsk)βl with
j∑
l=0

(2l + 1)αl +

h∑
l=0

(l + 1)βl = σ.

Finally, when we will write pσ(|∂jsλ|, |∂hs k|) (or qσ(|∂jtλ|, |∂hs k|)) we will mean a finite sum of terms like

C

j∏
l=0

|∂lsλ|αl ·
h∏
l=0

|∂lsk|βl with
j∑
l=0

(l + 1)αl +

h∑
l=0

(l + 1)βl = σ,

where C is a positive constant and the exponents αl, βl are non negative real values (analogously for
qσ).
Clearly we have pσ(∂jsλ, ∂

h
s k) 6 pσ(|∂jsλ|, |∂hs k|).

By means of the commutation rule (2.6), the relations in the next lemma are easily proved by induction
(Lemmas 3.7 and 3.8 in [82]), starting from the relations in Section 2.3.

Lemma 4.3. The following formulas hold for every curve of the evolving network St:

∂t∂
j
sk = ∂j+2

s k + λ∂j+1
s k + pj+3(∂jsk) for every j ∈ N,

∂jsk = ∂
j/2
t k + qj+1(∂

j/2−1
t λ, ∂j−1

s k) if j > 2 is even,
∂jsk = ∂

(j−1)/2
t ks + qj+1(∂

(j−3)/2
t λ, ∂j−1

s k) if j > 1 is odd,
∂t∂

j
sλ = ∂j+2

s λ− λ∂j+1
s λ− 2k∂j+1

s k + pj+3(∂jsλ, ∂
j
sk) for every j ∈ N,

∂jsλ = ∂
j/2
t λ+ pj+1(∂j−1

s λ, ∂j−1
s k) if j > 2 is even,

∂jsλ = ∂
(j−1)/2
t λs + pj+1(∂j−1

s λ, ∂j−1
s k) if j > 1 is odd.

Remark 4.4. Notice that, by relations (2.13) at any 3–point Op of the network there holds ∂jtλpi =

(S∂jtK)pi, that is, the time derivatives of λpi are expressible as time derivatives of the functions kpi.
Then, by using repeatedly such relation and the first formula of Lemma 4.3, we can express these latter
as space derivatives of kpi. Hence, we will have the relation

3∑
i=1

qσ(∂jtλ
pi, ∂hs k

pi)

∣∣∣∣
at the 3–pointOp

= pσ(∂max{2j,h}
s Kp)

∣∣∣∣
at the 3–pointOp
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with the meaning that this last polynomial contains also a product of derivatives of different kpi’s,
because of the action of the linear operator S.
We will often make use of this identity in the computations of the sequel in the following form,

3∑
i=1

qσ(∂jtλ
pi, ∂hs k

pi)

∣∣∣∣
at the 3–pointOp

6 ‖pσ(|∂max{2j,h}
s k|)‖L∞ .

Remark 4.5. We state the following calculus rules which will be used extensively in the sequel,

pα(∂jsλ, ∂
h
s k) · pβ(∂lsλ, ∂

m
s k) = pα+β(∂max{j,l}

s λ, ∂max{h,m}
s k) ,

qα(∂jtλ, ∂
h
s k) · qβ(∂ltλ, ∂

m
s k) = qα+β(∂

max{j,l}
t λ, ∂max{h,m}

s k) .

We already saw that the time derivatives of k and λ can be expressed in terms of space derivatives of
k at any 3–point, the same holds for the space derivatives of λ, arguing by induction using the last two
formulas in Lemma 4.3. Hence, it follows that

∂lspα(∂jsλ, ∂
h
s k) = pα+l(∂

j+l
s λ, ∂h+l

s k) , ∂ltpα(∂jsλ, ∂
h
s k) = pα+2l(∂

j+2l
s λ, ∂h+2l

s k)

∂ltqα(∂jtλ, ∂
h
s k) = qα+2l(∂

j+l
t λ, ∂h+2l

s k) , qα(∂jtλ, ∂
h
s k) = pα(∂2j

s λ, ∂
max{h,2j−1}
s k) .

We are now ready to compute, for j ∈ N,

d

dt

∫
St
|∂jsk|2 ds = 2

∫
St
∂jsk ∂t∂

j
sk ds+

∫
St
|∂jsk|2(λs − k2) ds

= 2

∫
St
∂jsk ∂

j+2
s k + λ∂j+1

s k ∂jsk + pj+3(∂jsk) ∂jsk ds+

∫
St
|∂jsk|2(λs − k2) ds

= − 2

∫
St
|∂j+1
s k|2 ds+

∫
St
∂s(λ|∂jsk|2) ds+

∫
St
p2j+4(∂jsk) ds

− 2

m∑
p=1

3∑
i=1

∂jsk
pi ∂j+1

s kpi
∣∣∣∣

at the 3–pointOp
+ 2

l∑
r=1

∂jsk ∂
j+1
s k

∣∣∣∣
at the end–point P r

6 − 2

∫
St
|∂j+1
s k|2 ds+

∫
St
p2j+4(∂jsk) ds+ lCjCj+1

−
m∑
p=1

3∑
i=1

2∂jsk
pi ∂j+1

s kpi + λpi|∂jskpi|2
∣∣∣∣

at the 3–pointOp
(4.3)

where we integrated by parts the first term on the second line and we estimated the contributions given
by the end–points P r by means of assumption (4.1).
In the case that we consider the end–points P 1, P 2, . . . , P l to be fixed, we can assume that the terms
CjCj+1 are all zero in the above conclusion, by the following lemma.

Lemma 4.6. If the end–points P r of the network are fixed, then there holds ∂jsk = ∂jsλ = 0, for every even j ∈ N.

Proof. The first case j = 0 simply follows from the fact that the velocity v = λτ + kν is always zero at
the fixed end–points P r.
We argue by induction, we suppose that for every even natural l 6 j − 2 we have ∂lsk = ∂lsλ = 0, then,
by using the first equation in Lemma 4.3, we get

∂jsk = ∂t∂
j−2
s k − λ∂j−1

s k − pj+1(∂j−2
s k)

at every end–point P r.
We already know that λ = 0 and by the inductive hypothesis ∂j−2

s k = 0, thus ∂t∂j−2
s k = 0. Since

pj+1(∂j−2
s k) is a sum of terms like C

∏j−2
l=0 (∂lsk)αl with

∑j−2
l=0 (l+ 1)αl = j + 1 which is odd, at least one

of the terms of this sum has to be odd, hence at least for one index l, the product (l + 1)αl is odd. It
follows that at least for one even l the exponent αl is nonzero. Hence, at least one even derivatives is
present in every monomial of pj+1(∂j−2

s k), which contains only derivatives up to the order (j − 2).
Again, by the inductive hypothesis, we then conclude that at the end–points ∂jsk = 0.
We can deal with λ similarly, by means of the relations in Lemma 4.3.
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In the very special case j = 0 we get explicitly

d

dt

∫
St
k2 ds 6 −2

∫
St
|ks|2 ds+

∫
St
k4 ds−

m∑
p=1

3∑
i=1

2kpikpis + λpi|kpi|2
∣∣∣∣

at the 3–pointOp
+ lC0C1

where the two constants C0 and C1 come from assumption (4.1).
Then, recalling relation (2.14), we have

∑3
i=1 k

pikpis + λpi|kpi|2
∣∣
at the 3–pointOp = 0, and substituting the

above,

d

dt

∫
St
k2 ds 6 −2

∫
St
|ks|2 ds+

∫
St
k4 ds+

m∑
p=1

3∑
i=1

λpi|kpi|2
∣∣∣∣

at the 3–pointOp
+ lC0C1 , (4.4)

hence, we lowered the maximum order of the space derivatives of the curvature in the 3–point terms,
particular now it is lower than the one of the “nice” negative integral.
As we have just seen for the case j = 0, also for the general case we want to simplify the term∑3
i=1 2∂jsk

pi∂j+1
s kpi + λpi|∂jskpi|2

∣∣
at the 3–pointOp , in order to control it.

Using formulas in Lemma 4.3, we have (see [82, Pages 258–259], for details)

2∂jsk ∂
j+1
s k + λ|∂jsk|2

= 2∂
j/2
t k · ∂j/2t (ks + kλ) + qj+1(∂

j/2−1
t λ, ∂j−1

s k) · ∂j/2t ks + q2j+3(∂
j/2
t λ, ∂jsk) .

We now examine the term qj+1(∂
j/2−1
t λ, ∂j−1

s k) · ∂j/2t ks, which, by using Lemma 4.3, can be written as
∂tq2j+1(∂

j/2−1
t λ, ∂j−1

s k) + q2j+3(∂
j/2
t λ, ∂jsk) (see [82, Pages 258–259], for details). It follows that

m∑
p=1

3∑
i=1

2∂jsk
pi ∂j+1

s kpi + λpi|∂jskpi|2λ
∣∣∣∣

at the 3–pointOp

=

m∑
p=1

3∑
i=1

∂tq2j+1(∂
j/2−1
t λpi, ∂j−1

s kpi) + q2j+3(∂
j/2
t λpi, ∂jsk

pi)

∣∣∣∣
at the 3–pointOp

Resuming, if j > 2 is even, we have

d

dt

∫
St
|∂jsk|2 ds 6 − 2

∫
St
|∂j+1
s k|2 ds+

∫
St
p2j+4(∂jsk) ds+ lCjCj+1

+

m∑
p=1

3∑
i=1

∂tq2j+1(∂
j/2−1
t λpi, ∂j−1

s kpi) + q2j+3(∂
j/2
t λpi, ∂jsk

pi)

∣∣∣∣
at the 3–pointOp

.

Now, the key tool to estimate the terms
∫
St p2j+4(∂jsk) ds and

∑3
i=1 q2j+3(∂

j/2
t λpi, ∂jsk

pi)
∣∣

at the 3–pointOp

are the following Gagliardo–Nirenberg interpolation inequalities (see [87, Section 3, Pages 257–263]).

Proposition 4.7. Let γ be a C∞, regular curve in R2 with finite length L. If u is a C∞ function defined on γ
and m > 1, p ∈ [2,+∞], we have the estimates

‖∂ns u‖Lp 6 Cn,m,p‖∂ms u‖
σ
L2‖u‖1−σL2 +

Bn,m,p
Lmσ

‖u‖L2 (4.5)

for every n ∈ {0, . . . ,m− 1} where

σ =
n+ 1/2− 1/p

m

and the constants Cn,m,p and Bn,m,p are independent of γ. In particular, if p = +∞,

‖∂ns u‖L∞ 6 Cn,m‖∂ms u‖
σ
L2‖u‖1−σL2 +

Bn,m
Lmσ

‖u‖L2 with σ =
n+ 1/2

m
. (4.6)
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After estimating the integral of every monomial of p2j+4(∂jsk) by mean of the Hölder inequality, one
uses the Gagliardo–Nirenberg estimates on the result, concluding that∫

St
p2j+4(∂jsk) ds 6 1/4

∫
St
|∂j+1
s k|2 ds+ C

(∫
St
k2 ds

)2j+3

+ C ,

where the constant C depends only on j ∈ N and the lengths of the curves of the network (see [82,
Pages 260–262], for details).
Any term

∑3
i=1 q2j+3(∂

j/2
t λpi, ∂jsk

pi)
∣∣

at the 3–pointOp can be estimated similarly.
Hence, for every even j > 2 we can finally write

d

dt

∫
St
|∂jsk|2 ds 6 −

∫
St
|∂j+1
s k|2 ds+ C

(∫
St
k2 ds

)2j+3

+ C + lCjCj+1 (4.7)

+ ∂t

m∑
p=1

3∑
i=1

q2j+1(∂
j/2−1
t λpi, ∂j−1

s kpi)

∣∣∣∣
at the 3–pointOp

6C

(∫
St
k2 ds

)2j+3

+ ∂t

m∑
p=1

3∑
i=1

q2j+1(∂
j/2−1
t λpi, ∂j−1

s kpi)

∣∣∣∣
at the 3–pointOp

+ C + lCjCj+1 .

Recalling the computation in the special case j = 0, this argument gives the same final estimate without
the contributions coming from the 3–points:

d

dt

∫
St
k2 ds 6 C

(∫
St
k2 ds

)3

+ C + lC0C1 . (4.8)

Integrating (4.7) in time on [0, t] and estimating we get∫
St
|∂jsk|2 ds 6

∫
S0
|∂jsk|2 ds+ C

∫ t

0

(∫
Sξ
k2 ds

)2j+3

dξ + Ct+ lCjCj+1t

+

m∑
p=1

3∑
i=1

q2j+1(∂
j/2−1
t λpi(0, t), ∂j−1

s kpi(0, t))

− q2j+1(∂
j/2−1
t λpi(0, 0), ∂j−1

s kpi(0, 0))

6C

∫ t

0

(∫
Sξ
k2 ds

)2j+3

dξ + ‖p2j+1(|∂j−1
s k|)‖L∞ + Ct+ lCjCj+1t+ C ,

where in the last passage we used Remark 4.4. The constant C depends only on j ∈ N and on the
network S0.
Interpolating again by means of inequalities (4.6), one gets

‖p2j+1(|∂j−1
s k|)‖L∞ 6 1/2‖∂jsk‖2L2 + C‖k‖4j+2

L2 .

Hence, putting all together, for every even j ∈ N, we conclude∫
St
|∂jsk|2 ds 6 C

∫ t

0

(∫
Sξ
k2 ds

)2j+3

dξ + C

(∫
St
k2 ds

)2j+1

+ Ct+ lCjCj+1t+ C .

Passing from integral to L∞ estimates, by using inequalities (4.6), we have the following proposition.

Proposition 4.8. If assumption (4.1) holds, the lengths of all the curves are uniformly positively bounded from
below and the L2 norm of k is uniformly bounded on [0, T ), then the curvature of St and all its space derivatives
are uniformly bounded in the same time interval by some constants depending only on the L2 integrals of the
space derivatives of k on the initial network S0.
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By using the relations in Lemma 4.3, one then gets also estimates for every time and space derivatives of
λ which finally imply estimates on all the derivatives of the maps γi, stated in the next Proposition 4.10
(see [82, Pages 263–266] for details). We discuss here explicitly how, in the hypotheses of this proposi-
tion, we deal with λ and the “velocity” v = γt = kν + λτ of the flow.
At every 3–point Op we have

∑3
i=1(λpi)2 =

∑3
i=1(kpi)2, by relations (2.12), hence the squared modulus

of the velocity v2 = |v|2 is uniformly bounded at every 3–point, being k2 uniformly bounded by some
constant C.
Then, since v2 is also uniformly bounded at the end–points of St, by assumption (4.1), applying the
maximum principle to the equation for v2, given by

∂tv
2 = (v2)ss − 2λ2

s − 2k2
s − λ(v2)s + 2v2k2 ,

which follows from equation (2.9)

∂tλ = λss − λλs − 2kks + λk2

and equation (2.8), we see that if v2 gets larger than some fixed constant (independent of time), then its
maximum is taken in the interior of some curve of St and

∂tv
2
max 6 2v2

maxk
2 6 2Cv2

max .

Hence, integrating this linear differential inequality, we obtain that v and hence λ are also uniformly
bounded as k and its derivatives in the time interval [0, T ).

Remark 4.9. Notice that the conclusion that v2 is uniformly bounded follows simply knowing that the
curvature is uniformly bounded and assumption (4.1) holds. In particular, for the case of an evolving
network St with fixed end–points and uniformly bounded curvature in an interval [0, T )

Proposition 4.10. If St is a C∞ special flow of the initial network S0 =
⋃n
i=1 σ

i, satisfying assumption (4.1),
such that the lengths of the n curves are uniformly bounded away from zero and the L2 norm of the curvature is
uniformly bounded by some constant in the time interval [0, T ), then

• all the derivatives in space and time of k and λ are uniformly bounded in [0, 1]× [0, T ),

• all the derivatives in space and time of the curves γi(x, t) are uniformly bounded in [0, 1]× [0, T ),

• the quantities |γix(x, t)| are uniformly bounded from above and away from zero in [0, 1]× [0, T ).

All the bounds depend only on the uniform controls on the L2 norm of k, on the lengths of the curves of the
network from below, on the constants Cj in assumption (4.1), on the L∞ norms of the derivatives of the curves
σi and on the bound from above and below on |σix(x, t)|, for the curves describing the initial network S0.

Now, we work out a second set of estimates where everything is controlled – still under the assump-
tion (4.1) – only by the L2 norm of the curvature and the inverses of the lengths of the curves at time
zero.
As before we consider the C∞ special curvature flow St of a smooth network S0 in the time interval
[0, T ), composed of n curves γi(·, t) : [0, 1] → Ω with m 3–points O1, O2, . . . , Om and l end–points
P 1, P 2, . . . , P l, satisfying assumption (4.1).

Proposition 4.11. For every M > 0 there exists a time TM ∈ (0, T ), depending only on the structure of the
network and the constants C0 and C1 in assumption (4.1), such that if the square of the L2 norm of the curvature
and the inverses of the lengths of the curves of S0 are bounded by M , then the square of the L2 norm of k and the
inverses of the lengths of the curves of St are smaller than 2(n+ 1)M + 1, for every time t ∈ [0, TM ].

Proof. The evolution equations for the lengths of the n curves are given by

dLi(t)

dt
= λi(1, t)− λi(0, t)−

∫
γi(·,t)

k2 ds ,
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then, recalling computation (4.4), we have

d

dt

(∫
St
k2 ds+

n∑
i=1

1

Li

)
6 − 2

∫
St
k2
s ds+

∫
St
k4 ds+ 6m‖k‖3L∞ + lC0C1 −

n∑
i=1

1

(Li)2

dLi

dt

= − 2

∫
St
k2
s ds+

∫
St
k4 ds+ 6m‖k‖3L∞ + lC0C1

−
n∑
i=1

λi(1, 0)− λi(0, t) +
∫
γi(·,t) k

2 ds

(Li)2

6 − 2

∫
St
k2
s ds+

∫
St
k4 ds+ 6m‖k‖3L∞ + lC0C1

+ 2

n∑
i=1

‖k‖L∞ + C0

(Li)2
+

n∑
i=1

∫
St k

2 ds

(Li)2

6 − 2

∫
St
k2
s ds+

∫
St
k4 ds+ (6m+ 2n/3)‖k‖3L∞ + lC0C1 + 2nC3

0/3

+
n

3

(∫
St
k2 ds

)3

+
2

3

n∑
i=1

1

(Li)3

where we used Young inequality in the last passage.
Interpolating as before (and applying again Young inequality) but keeping now in evidence the terms
depending on Li in inequalities (4.5), we obtain

d

dt

(∫
St
k2 ds+

n∑
i=1

1

Li

)
6 −

∫
St
k2
s ds+ C

(∫
St
k2 ds

)3

+ C

n∑
i=1

(∫
St k

2 ds
)2

Li

+ C

n∑
i=1

(∫
St k

2 ds
)3/2

(Li)3/2
+ C

n∑
i=1

1

(Li)3
+ C

6C

(∫
St
k2 ds

)3

+ C

n∑
i=1

1

(Li)3
+ C

6C

(∫
St
k2 ds+

n∑
i=1

1

Li
+ 1

)3

,

with a constant C depending only on the structure of the network and on the constants C0 and C1 in
assumption (4.1).
This means that the positive function f(t) =

∫
St k

2 ds+
∑n
i=1

1
Li(t) +1 satisfies the differential inequality

f ′ 6 Cf3, hence, after integration

f2(t) 6
f2(0)

1− 2Ctf2(0)
6

f2(0)

1− 2Ct[(n+ 1)M + 1]

then, if t 6 TM = 3
8C[(n+1)M+1] , we get f(t) 6 2f(0). Hence,∫
St
k2 ds+

n∑
i=1

1

Li(t)
6 2

∫
S0
k2 ds+ 2

n∑
i=1

1

Li(0)
+ 1 6 2[(n+ 1)M ] + 1 .

By means of this proposition, we can strengthen the conclusion of Proposition 4.10.

Corollary 4.12. In the hypothesis of the previous proposition, in the time interval [0, TM ] all the bounds in
Proposition 4.10 depend only on the L2 norm of k on S0, on the constants Cj in assumption (4.1), on the L∞

norms of the derivatives of the curves σi, on the bound from above and below on |σix(x, t)| and on the inverses of
the lengths of the curves of the initial network S0.
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From now on we assume that the L2 norm of the curvature and the inverses of the lengths of the curves
are bounded in the interval [0, TM ].
Considering j ∈ N even, if we differentiate the function∫

St
k2 + tk2

s +
t2k2

ss

2!
+ · · ·+ tj |∂jsk|2

j!
ds ,

and we estimate with interpolation inequalities as before (see [82, Pages 268–269], for details), we obtain

d

dt

∫
St
k2 + tk2

s +
t2k2

ss

2!
+ · · ·+ tj |∂jsk|2

j!
ds (4.9)

6 − ε
∫
St
k2
s + tk2

ss + t2k2
sss + · · ·+ tj |∂j+1

s k|2 ds+ C

+ ∂t

m∑
p=1

3∑
i=1

t2q5(λpi, kpis ) + t4q9(∂tλ
pi, kpisss) + · · ·+ tjq2j+1(∂

j/2−1
t λpi, ∂j−1

s kpi)

∣∣∣∣
at the 3–pointOp

+ C

m∑
p=1

3∑
i=1

tkpis k
pi
ss + t3kpisssk

pi
ssss + · · ·+ tj−1∂j−1

s kpi ∂jsk
pi

∣∣∣∣
at the 3–pointOp

in the time interval [0, TM ], where ε > 0 and C are two constants depending only on the L2 norm of the
curvature, the constants in assumption (4.1) and the inverses of the lengths of the n curves of S0.
We proceed as we did before for the computation of d

dt

∫
St |∂

j
sk|2 ds .

First, we deal with the last line,

3∑
i=1

tkpis k
pi
ss + t3kpisssk

pi
ssss + · · ·+ tj−1∂j−1

s kpi ∂jsk
pi

∣∣∣∣
at the 3–point

.

By formulas in Lemma 4.3 and by Remark 4.4, we can write, for any term
∑3
i=1 t

h−1∂h−1
s ki∂hs k

i

∣∣∣∣
at the 3–point

,

3∑
i=1

th−1∂h−1
s ki∂hs k

i

∣∣∣∣
at the 3–point

=

3∑
i=1

th−1q2h+1(∂
h/2−1
t λi, ∂h−1

s ki)

+ th−1∂hs k
i · qh(∂

h/2−1
t λi, ∂h−2

s ki)

∣∣∣∣
at the 3–point

6 th−1‖p2h+1(|∂h−1
s k|)‖L∞ + th−1‖∂hs k‖L∞‖ph(|∂h−2

s k|)‖L∞

(see [82, Page 270], for details).
The term th−1‖p2h+1(|∂h−1

s k|)‖L∞ is controlled as before by a small fraction of the term th−1
∫
St |∂

h
s k|2 ds

and a possibly large multiple of th−1 times some power of theL2 norm of k (which is bounded), whereas
th−1‖∂hs k‖L∞‖ph(|∂h−2

s k|)‖L∞ is the critical term.
Again by means of interpolation inequalities (4.6) one estimates ‖∂hs k‖L∞ , ‖ph(∂h−2

s k)‖L∞ and ‖∂hs k‖L2

with the L2 norm of k and its derivatives. After some computation (see [82, Pages 270–271], for details),
one gets

3∑
i=1

th−1∂h−1
s ki∂hs k

i

∣∣∣∣
at the 3–point

6 εh/2

(
th
∫
St
|∂h+1
s k|2 ds+ th−1

∫
St
|∂hs k|2 ds+ Cth

)
+ C/tθh

with θh < 1 and some small εh > 0.
We apply this argument for every even h from 2 to j, choosing accurately small values εj .
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Hence, we can continue estimate (4.9) as follows,

d

dt

∫
St
k2 + tk2

s +
t2k2

ss

2!
+ · · ·+ tj |∂jsk|2

j!
ds

6 − ε/2
∫
St
k2
s + tk2

ss + t2k2
sss + · · ·+ tj |∂j+1

s k|2 ds+ C + C/tθ2 + · · ·+ C/tθj

+ ∂t

3∑
i=1

t2q5(λi, kis) + t4q9(∂tλ
i, kisss) + · · ·+ tjq2j+1(∂

j/2−1
t λi, ∂j−1

s ki)

∣∣∣∣
at the 3–point

6C + C/tθ + ∂t

3∑
i=1

t2q5(λi, kis) + t4q9(∂tλ
i, kisss) + · · ·+ tjq2j+1(∂

j/2−1
t λi, ∂j−1

s ki)

∣∣∣∣
at the 3–point

for some θ < 1.
Integrating this inequality in time on [0, t] with t 6 TM and taking into account Remark 4.4, we get∫

St
k2 + tk2

s +
t2k2

ss

2!
+ · · ·+ tj |∂jsk|2

j!
ds

6
∫
S0
k2 ds+ CTM + CT

(1−θ)
M

+

3∑
i=1

t2q5(λi, kis) + t4q9(∂tλ
i, kisss) + · · ·+ tjq2j+1(∂

j/2−1
t λi, ∂j−1

s ki)

∣∣∣∣
at the 3–point

6
∫
S0
k2 ds+ C + t2‖p5(|ks|)‖L∞ + t4‖p9(|ksss|)‖L∞ + · · ·+ tj‖p2j+1(|∂j−1

s k|)‖L∞ .

Now we absorb all the polynomial terms, after interpolating each one of them between the correspond-
ing “good” integral in the left member and some power of the L2 norm of k, as we did in showing
Proposition 4.8, hence we finally obtain for every even j ∈ N,∫

St
k2 + tk2

s +
t2k2

ss

2!
+ · · ·+ tj |∂jsk|2

j!
ds 6 Cj (4.10)

with t ∈ [0, TM ] and a constant Cj depending only on the constants in assumption (4.1) and the bounds
on
∫
S0 k

2 ds and on the inverses of the lengths of the curves of the initial network S0.
This family of inequalities clearly implies∫

St
|∂jsk|2 ds 6

Cjj!

tj
for every even j ∈ N.

Then, passing as before from integral to L∞ estimates by means of inequalities (4.6), we have the fol-
lowing proposition.

Proposition 4.13. For every µ > 0 the curvature and all its space derivatives of St are uniformly bounded in
the time interval [µ, TM ] (where TM is given by Proposition 4.11) by some constants depending only on µ, the
constants in assumption (4.1) and the bounds on

∫
S0 k

2 ds and on the inverses of the lengths of the curves of the
initial network S0.

By means of these a priori estimates, we can now work out some results about the smooth flow of
an initial regular geometrically smooth network S0. Notice that these are examples of how to use the
previous estimates on special smooth flows to get the conclusion on general flows or even only C∞

flows, as we mentioned in the beginning of this section.

Theorem 4.14. If [0, T ), with T < +∞, is the maximal time interval of existence of a C∞ curvature flow of an
initial geometrically smooth network S0, then

1. either the inferior limit of the length of at least one curve of St is zero, as t→ T ,

2. or limt→T
∫
St k

2 ds = +∞.
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Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this superior limit is
actually a limit and there exists a positive constant C such that∫

St
k2 ds >

C√
T − t

,

for every t ∈ [0, T ).

Proof. We can C∞ reparametrize the flow St in order that it becomes a special smooth flow S̃t in [0, T ).
If the lengths of the curves of St are uniformly bounded away from zero and the L2 norm of k is
bounded, the same holds for the networks S̃t, then, by Proposition 4.10 and Ascoli–Arzelà Theorem, the
network S̃t converges in C∞ to a smooth network S̃T as t→ T . Then, applying Theorem 3.30 to S̃T we
could restart the flow obtaining a C∞ special curvature flow in a longer time interval. Reparametrizing
back this last flow, we get a C∞ “extension” in time of the flow St, hence contradicting the maximality
of the interval [0, T ).
Now, considering again the flow S̃t, by means of differential inequality (4.8), we have

d

dt

∫
S̃t
k̃2 ds 6 C

(∫
S̃t
k̃2 ds

)3

+ C 6 C

(
1 +

∫
S̃t
k̃2 ds

)3

,

which, after integration between t, r ∈ [0, T ) with t < r, gives

1(
1 +

∫
S̃t k̃

2 ds
)2 −

1(
1 +

∫
S̃r k̃

2 ds
)2 6 C(r − t) .

Then, if case (1) does not hold, we can choose a sequence of times rj → T such that
∫
S̃rj

k̃2 ds → +∞.

Putting r = rj in the inequality above and passing to the limit, as j →∞, we get

1(
1 +

∫
S̃t k̃

2 ds
)2 6 C(T − t) ,

hence, for every t ∈ [0, T ), ∫
S̃t
k̃2 ds >

C√
T − t

− 1 >
C√
T − t

,

for some positive constant C and limt→T
∫
S̃t k

2 ds = +∞.
By the invariance of the curvature by reparametrization, this last estimate implies the same estimate for
the flow St.

This theorem obviously implies the following corollary.

Corollary 4.15. If [0, T ), with T < +∞, is the maximal time interval of existence of a C∞ curvature flow of
an initial geometrically smooth network S0 and the lengths of the curves are uniformly bounded away from zero,
then

max
St

k2 >
C√
T − t

→ +∞ , (4.11)

as t→ T .

Remark 4.16. In the case of the evolution γt of a single closed curve in the plane there exists a constant
C > 0 such that if at time T > 0 a singularity develops, then

max
γt

k2 >
C

T − t

for every t ∈ [0, T ) (see [53]).
If this lower bound on the rate of blowing up of the curvature (which is clearly stronger than the one
in inequality (4.11)) holds also in the case of the evolution of a network is an open problem (even if the
network is a triod).
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We conclude this section with the following estimate from below on the maximal time of smooth exis-
tence.

Proposition 4.17. For every M > 0 there exists a positive time TM such that if the L2 norm of the curvature
and the inverses of the lengths of the geometrically smooth network S0 are bounded by M , then the maximal time
of existence T > 0 of a C∞ curvature flow of S0 is larger than TM .

Proof. As before, considering again the reparametrized special curvature flow S̃t, by Proposition 4.11
in the interval [0,min{TM , T}) the L2 norm of k̃ and the inverses of the lengths of the curves of S̃t are
bounded by 2M2 + 6M .
Then, by Theorem 4.14, the value min{TM , T} cannot coincide with the maximal time of existence of S̃t
(hence of St), so it must be T > TM .

5 Short–time existence II

In this section, we are going to prove the short–time existence and geometric uniqueness of a curvature
flow for a regular initial network S0 which is only C2 in a “natural subclass” of the curvature flows
which are simply C2 in space and C1 in time. Before doing that, we discuss the property of parabolic
regularization for the flow.

Let St =
⋃n
i=1 γ

i([0, 1], t) be a C∞ flow by curvature, we discuss what happens if we reparametrize
every curve of the network proportionally to arclength.
If we consider smooth functions ϕi : [0, 1] × [0, T ) → [0, 1] and the reparametrizations γ̃i(x, t) =
γi(ϕi(x, t), t), imposing that |γ̃ix| is constant, we must have that |γix(ϕi(x, t), t)|ϕix(x, t) = Li(t) where
Li(t) is the length of the curve γi at time t. It follows that ϕi(x, t) can be obtained by integrating the
ODE

ϕix(x, t) = Li(t)/|γix(ϕi(x, t), t)|

with initial data ϕi(0, t) = 0 and that it is C∞ as Li and γi are C∞.
Being a reparametrization, γ̃i is still a C∞ curvature flow, that is, γ̃it = k̃iν̃i+ λ̃iτ̃ i, we want to determine
the functions λ̃i = 〈γ̃it | τ̃ i〉. Differentiating this equation in arclength and keeping into account that
γ̃x(x, t) = Li(t)τ̃ i(x, t), we get

λ̃is =
〈γ̃itx | τ̃ i〉
|γ̃ix|

+ 〈γ̃it | ∂sτ̃ i〉 =
〈∂t(Liτ̃ i) | τ̃ i〉

Li
+ 〈k̃iν̃i + λ̃iτ̃ i | k̃iν̃i〉 =

∂tL
i

Li
+ (k̃i)2 .

This equation immediately says that λ̃is − (k̃i)2 is constant in space. Moreover, by Proposition 4.1,

∂tL
i(t) = λ̃i(1, t)− λ̃i(0, t)−

∫
γi(·,t)

(k̃i)2 ds

and that the values of λ̃i at the end–points or 3–points of the network are (uniformly) linearly related to
(hence also bounded by) the values of k̃i. Hence, we can conclude that λ̃is is bounded by an expression
involving Li(t) and ‖k̃(·, t)‖L∞ .

We show now that the geometrically unique solution obtained starting from an initial C2+2α network
which is geometrically 2–compatible (which exists, as we proved in Theorem 3.25) can be actually
reparametrized to be a C∞ curvature flow for every positive time (so that the geometric estimates of
Section 4 can be applied). This clearly can be seen as a (geometric) parabolic regularization property.

Theorem 5.1 (Existence, uniqueness and smoothness in Hölder spaces). For any initial, regular C2+2α

network S0 =
⋃n
i=1 σ

i([0, 1]), with α ∈ (0, 1/2), which is geometrically 2–compatible, the geometrically unique
solution γi found in Theorem 3.25 can be reparametrized to be aC∞ curvature flow on (0, T ), that is, the networks
St =

⋃n
i=1 γ

i([0, 1], t) are geometrically smooth for every positive time (see Definition 3.31).

Proof. We first assume that S0 satisfies the compatibility conditions of order 2 for the special flow
(namely, it is 2–compatible).
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By analyzing the proof of Theorem 3.17 given in [17], one can see that the solution to system (2.5)
given by such theorem actually depends continuously in C2+2α,1+α on the initial data σi in the C2+2α

norm. Then, we approximate the network S0 =
⋃n
i=1 σ

i([0, 1]) in C2+2α with a family of smooth net-
works Sj with the same end–points, composed of C∞ curves σij → σi, as j → ∞. Hence, for every
ε > 0, the smooth solutions of system (2.5) for these approximating initial networks, given by the curves
γij(x, t) : [0, 1]× [0, T − ε]→ Ω, converge as j →∞ in C2+2α,1+α([0, 1]× [0, T − ε]) to the solution γi for
the initial network S0. By the C2+2α–convergence, the inverses of the lengths of the initial curves, the
integrals

∫
Sj k

2
j ds and |∂xσij(x)| (from above and away from zero) for all the approximating networks

are equibounded, thus Proposition 4.13 gives uniform estimates on the L∞ norms of the curvature and
of all its derivatives in every “rectangle” [0, 1]× [µ, TM ), with µ > 0 and TM 6 T .
We now reparametrize every curve γij(·, t) and γi(·, t) proportionally to arclength by some maps ϕij
and ϕi as above. Notice that, since γij and γi are uniformly bounded in C2+2α,1+α, we have that the
maps ∂xγij and ∂xγ

i are uniformly bounded in C1+2α,1/2+α. Hence, by a standard ODE’s argument,
the reparametrizing maps ϕij and ϕi above are also uniformly bounded in C1+2α,1/2+α, in particular
they are uniformly Hölder continuous in space and time. This means that the reparametrized maps γ̃ij
converge uniformly to γ̃i which is a (possibly only continuous in t) reparametrization of the original
flow. It is easy to see that these latter gives a curvature flow of the arclength reparametrized network
S̃0 =

⋃n
i=1(σi ◦ ϕi(·, 0))[0, 1] which then still belongs to C2+2α.

As the curvature and all its arclength derivatives are invariant under reparametrization and the equi-
bounded lengths of the curves, the above uniform estimates hold also for the reparametrized maps γ̃ij
in every “rectangle” [0, 1] × [µ, TM ). Moreover, by the discussion about reparametrizing these curves
proportional to arclength, it follows that we have uniform estimates also on λ̃ij and all their arclength
derivatives for these flows in every “rectangle” [0, 1] × [µ, TM ). Hence, the curves γ̃ij , possibly passing
to a subsequence, actually converge in C∞([0, 1] × [µ, TM )), for every µ > 0, to the limit flow γ̃i which
then belongs to C∞([0, 1]× (0, T )) ∩ C0([0, 1]× [0, T )).
If S0 is only geometrically 2–compatible, this procedure can be applied for the flow of its 2–compatible
reparametrization, giving the same resulting flow, as the arclength reparametrized flow is the same for
any two flows differing only for a reparametrization (the fact that the flow of a C2+2α geometrically
2–compatible initial network is a reparametrization of the flow of a 2–compatible C2+2α initial network
is stated in Remark 3.35).
The last step is to find extensions θi : [0, 1] × [0, T ) → [0, 1] of the arclength reparametrizing maps
ϕi(·, 0) ∈ C2+2α which are in C∞([0, 1] × (0, T )) and satisfy θi(x, 0) = ϕi(x, 0), θi(0, t) = 0, θi(1, t) = 1
and θix(x, t) 6= 0 for every x and t. This can be done, for instance, by means of time–dependent con-
volutions with smooth kernels. Then, the maps γi(·, t) = γ̃i([θi(·, t)]−1, t) give a curvature flow of the
network S0 =

⋃n
i=1 σ

i([0, 1]) which becomes immediately C∞ for every positive time t > 0.

As for every positive time, the flow obtained by this theorem is C∞ and hence every network St is
geometrically smooth, again by Remark 3.35 this flow can be reparametrized, from any positive time
on, to be a C∞ special smooth flow.
This argument can clearly be applied to any C2+2α,1+α curvature flow St in a time interval (0, T ), being
every network of this flow geometrically 2–compatible (Proposition 3.23), simply considering as initial
network any St0 with t0 > 0.

Corollary 5.2. Given any C2+2α,1+α curvature flow in an interval of time (0, T ), for every µ > 0, the restricted
flow St for t ∈ [µ, T ) can be reparametrized to be a C∞ special curvature flow in [µ, T ).
In particular, this applies to anyC2+2α,1+α curvature flow of an initial, regularC2+2α geometrically 2–compatible
network S0 =

⋃n
i=1 σ

i([0, 1]).

The parabolic regularization property of the flow also holds when the initial data is of class W 2−2/p,p.
We have the following result for the special flow, whose proof can be found in [44, Section 4].

Proposition 5.3. Let γ ∈ W 1,2
p ([0, T ) × [0, 1]) be a Sobolev–solution to the special flow in [0, T ) with T > 0

and initial network in W 2−2/p,p([0, 1]). Then, St =
⋃n
i=1 γ

i([0, 1], t) are geometrically smooth for all positive
times.

Remark 5.4. The proof is based on the so called “parameter trick” of Angenent [6], which has been
generalized to several situations [72, 73, 93]. However, these works do not deal with fully non–linear
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boundary conditions like
3∑
i=1

γix(0, t)

|γix(0, t)|
= 0

as in the special flow of networks. An adaptation of such “parameter trick”, allowing also the treatment
of fully non–linear boundary conditions, is presented in [43, Section 6.6] and then modified for the
application in the Sobolev setting in [44, Section 4], to get the above result.

Thanks to the above proposition, we have a complete short–time existence, uniqueness and parabolic
smoothing result for Sobolev–solutions. Indeed, combining Theorem 3.6 and Proposition 5.3 we have
the following theorem.

Theorem 5.5 (Existence, uniqueness and smoothness in Sobolev spaces). Let p ∈ (3,+∞) and S0 be a
regular network of class W 2−2/p,p. Then there exists a maximal Sobolev–solution St∈[0,Tmax) to the motion by
curvature with initial datum S0 in the maximal time interval [0, T ) which is geometrically unique. Furthermore,
the networks St =

⋃n
i=1 γ

i([0, 1], t) are geometrically smooth for all positive times.

We finally consider a general curvature flow. If we have a curvature flow St in [0, T ) which isC2 in space
and C1 in time in [0, 1] × (0, T ), then for every positive time µ, the flow is of class C2,1([0, 1] × [µ, T )),
in particular, it belongs to W 1,2

p ([µ, T ) × [0, 1]), thus, it must coincide with the unique flow given by
the previous theorem of the initial network Sµ. In particular, by parabolic regularization, it must be a
geometrically smooth flow. Being µ > 0 is arbitrary, this must hold for such flow on (0, T ), hence the
flow is smooth for every positive time.
This argument extends Theorem 5.1 to every curvature flow.

Theorem 5.6. Every curvature flow as in Definition 2.11 is geometrically smooth for every positive time.

A consequence of this “geometric” parabolic smoothing theorem is the extension of Theorem 4.14 and
Corollary 4.15 to any curvature flow. As before, we apply such results to the reparametrized C∞ special
curvature flow given by Corollary 3.34 (or Corollary 5.2). The conclusions also hold for the original flow
since they are concerned only with the curvature and the lengths of the curves, which are invariant by
reparametrization.

Theorem 5.7. Let T < +∞ be the maximal time interval of existence of a curvature flow St which is C2 in space
and C1 in time in [0, 1]× (0, T ), then

1. either the inferior limit of the length of at least one curve of St is zero, as t→ T ,

2. or limt→T
∫
St k

2 ds = +∞, hence the curvature is not bounded as t→ T .

Moreover, if the lengths of the n curves are uniformly positively bounded from below, then this superior limit is
actually a limit and there exists a positive constant C such that∫

St
k2 ds >

C√
T − t

and max
St

k2 >
C√
T − t

for every t ∈ [0, T ).

We can finally show the existence and geometric uniqueness of a curvature flow for a regular initial
network S0 of class C2, in a “quite natural” subclass of of the flows which are C2 in space and C1

in time. The parabolic regularization allows us to use the integral estimates of Section 4 to prove the
existence of a solution to the motion by curvature when the initial datum is a regular network of class
C2, without requiring any extra condition at the triple junctions and at the end–points. Geometric
uniqueness is then obtained from the well–posedness in Sobolev spaces.

Theorem 5.8. For any initialC2 regular network S0 =
⋃n
i=1 σ

i([0, 1]) there exists a solution γi of Problem (2.3)
in a maximal time interval [0, T ), which is continuous in [0, 1]× [0, T ) and such that

• the flow St =
⋃n
i=1 γ

i([0, 1], t) is a smooth flow for every t > 0,

• the unit tangents τ i are continuous in [0, 1]× [0, T ),
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• the functions k(·, t) converge weakly in L2 to k(·, 0), as t→ 0,

• the function t 7→
∫
St k

2 ds is continuous on [0, T ).

Moreover, such flow is geometrically unique in the classN of the curvature flows of S0 which are C2 in space and
C1 in time, for t > 0 and such that

• the unit tangents τ i are continuous in [0, 1]× [0, T ),

• the integral
∫
St k

2 ds is locally bounded for t ∈ [0, T ).

Proof. We can approximate in W 2,2(0, 1) (hence in C1([0, 1])) the network S0 =
⋃n
i=1 σ

i([0, 1]) with a
family of smooth networks Sj , composed of C∞ curves σij → σi, as j → ∞ with the same end–points
and satisfying ∂xσij(0) = ∂xσ

i(0), ∂xσij(1) = ∂xσ
i(1).

By the convergence in W 2,2 and in C1, the inverses of the lengths of the initial curves, the integrals∫
Sj k

2 ds and |∂xσij(x)| (from above and away from zero) for all the approximating networks are equi-
bounded, thus Proposition 4.17 assures the existence of a uniform interval [0, T ) of existence of smooth
evolutions given by the curves γij(x, t) : [0, 1]× [0, T )→ Ω.
Now, for the same reason, Proposition 4.13 gives uniform estimates on the L∞ norms of the curvature
and of all its derivatives in every rectangle [0, 1]× [µ, TM ), with µ > 0.
This means that if we reparametrize at every time all the curves γij proportional to their arclength, by
means of a diagonal argument, we can find a subsequence of the family of reparametrized flows γ̃ij
which converges in C∞loc([0, 1] × (0, T )) to some flow, parametrized proportional to its arclength, γ̃i in
the time interval (0, T ). Moreover, by the hypotheses, the curves of the initial networks σ̃ij converge
in W 2,2(0, 1) to σ̃i which are the reparametrizations, proportional to their arclength, of the curves σi

of the initial network S0. If we show that the maps γ̃i are continuous up to the time t = 0 we have
a curvature flow for the network S̃0 =

⋃n
i=1 σ̃

i([0, 1]) which then gives a curvature flow for the orig-
inal network S0 in C∞([0, 1] × (0, T )), reparametrizing it back with some family of continuous maps
θi : [0, 1] × [0, T ) → [0, 1] with θix 6= 0 everywhere, θi ∈ C∞([0, 1] × (0, T )) and σ̃i(θi(·, 0)) = σi (this
can be easily done as the maps θi(·, 0) are of class C2, since in general, the arclength reparametrization
maps have the same regularity of the network).
Hence, we deal with the continuity up to t = 0 of the maps γ̃i. By the uniform L2 bound on the curva-
ture and the parametrization proportional to the arclength, the theorem of Ascoli–Arzelà implies that
for every sequence of times tl → 0, the curves γ̃i(·, tl) have a converging subsequence in C1([0, 1]) to
some family of limit curves ζi : [0, 1] → Ω, still parametrized proportionally to arclength, by the C1–
convergence. Moreover, we can also assume that k(·, tl) converge weakly in L2(ds) to the curvature
function associated with the family of curves ζi. We want to see that actually ζi = σ̃i, hence showing
that the flow γ̃i : [0, 1]× [0, T )→ Ω is continuous and that the unit tangent vector τ : [0, 1]× [0, T )→ R2

is a continuous map up to the time t = 0 (this property is stable under the above reparametrization so
it then will hold also for the final curvature flow γi).
We consider a function ϕ ∈ C∞(R2) and the time derivative of its integral on the evolving networks γ̃ij ,
that is,

d

dt

∫
S̃j(t)

ϕds =

∫
S̃j(t)

ϕ(λ̃s − k̃2) ds+

∫
S̃j(t)
〈∇ϕ | k̃ + λ̃〉 ds

= −
∫
S̃j(t)

ϕk̃2 ds−
∫
S̃j(t)
〈∇ϕ | τ̃〉λ̃ ds+

∫
S̃j(t)
〈∇ϕ | k̃ + λ̃〉 ds

= −
∫
S̃j(t)

ϕk̃2 ds+

∫
S̃j(t)
〈∇ϕ | k̃〉 ds ,

where we integrated by parts, passing from first to second line.
Let us consider now any sequence of times tl converging to zero as above, such that the curves γ̃i(·, tl)
converge in C1([0, 1]) to some family of limit curves ζi : [0, 1] → Ω (still parametrized proportionally
to arclength) as above, describing some regular network S and k(·, tl) converge weakly in L2(ds) to the
curvature function associated to the family of curves ζi. Integrating this equality in the time interval

46



[0, tl] we get ∫
S̃j(tl)

ϕds−
∫
S̃j(0)

ϕds = −
∫ tl

0

∫
S̃j(t)

ϕk̃2 ds dt+

∫ tl

0

∫
S̃j(t)
〈∇ϕ | k̃〉 ds dt

which clearly passes to the limit as j → ∞, by the smooth convergence of the flows γ̃ij to the flow
γ̃i (and the uniform bound on

∫
S̃j(t) k̃

2 ds) and of the initial networks S̃j(0) =
⋃n
i=1 σ̃

i
j([0, 1]) to S̃0 =⋃n

i=1 σ̃
i([0, 1]), hence,∫

S̃tl
ϕds−

∫
S̃0
ϕds = −

∫ tl

0

∫
S̃t
ϕk̃2 ds dt+

∫ tl

0

∫
S̃t
〈∇ϕ | k̃〉 ds dt

By the uniform bound on the L2 norm of the curvature, we then get∣∣∣∣∫
S̃tl
ϕ(γ̃(·, tl)) ds−

∫
S̃0
ϕ(σ̃) ds

∣∣∣∣ 6 Ctl ,

where we made explicit the integrands, for the sake of clarity. Sending l→∞we finally obtain∣∣∣∣∫
S
ϕ(ζ) ds−

∫
S̃0
ϕ(σ̃) ds

∣∣∣∣ = 0 ,

that is, ∫
S
ϕds =

∫
S̃0
ϕds

for every function ϕ ∈ C∞(R2).
Since, both the networks S̃0 =

⋃n
i=1 σ̃

i([0, 1]) and S =
⋃n
i=1 ζ

i([0, 1]) are C1, regular and parametrized
proportionally to their arclength, this equality for every ϕ ∈ C∞(R2) implies that σ̃i = ζi, which is what
we wanted.
Notice that, the continuity of γi and τ also implies that the measures H1 St weakly? converge to
H1 S0, whereH1 is the one–dimensional Hausdorff measure, as t→ 0.
Finally, integrating on [0, t) inequality (4.8) for the approximating flows γ̃ij , and passing to the limit as
j →∞, we see that

lim sup
t→0+

∫
S̃t
k2 ds ≤

∫
S̃0
k2 ds.

Since the function t →
∫
S̃t k

2 ds is lower semicontinuous, we then get that such function is indeed
continuous on [0, T ) (also at t = 0). Being such integral invariant by reparametrization, this also holds
for the flow γi. The same for the weak convergence in L2(ds) of the functions k(·, t) to k(·, 0) as t→ 0.
Let now St be any curvature flow of S0 in [0, T ), belonging to the class N of flows as in the statement.
By estimates (4.10) (with j = 2) we have∫

S̃t
k2 + tk2

s ds 6
∫
S̃t
k2 + tk2

s + t2k2
ss ds 6 C hence ‖ks‖L2 6 C/t1/2 (5.1)

for every t ∈ [0, T ), with a constant C depending only on the inverses of the lengths of the curves of
the initial network S0 and on

∫
S0 k

2 ds. Taking into account Proposition 4.11 uniformly bounding from
below the lenghts of the curves of the evolving network in a time interval [0, T̂ ] (with T̂ depending only
on the initial network), by means of Gagliardo–Nirenberg interpolation inequalities in Proposition 4.7,
we have the estimate

‖k‖L∞ 6 C‖ks‖1/2L2 ‖k‖1/2L2 + C‖k‖L2 6 C‖ks‖1/2L2 + C

where the constant is independent of t ∈ [0, T̂ ]. Hence, by inequality (5.1),

‖k(·, t)‖L∞ 6 C/t1/4 + C and
∫ T̂

0

∫
S̃t
k7/2 ds dt 6 C

∫ T̂

0

C/t7/8 + C dt 6 C
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meaning that k ∈ L7/2([0, 1] × [0, T̂ ]). Reparametrizing the flow as at the beginning of this section so
that every curve becomes parametrized proportionally to its arclength, we have a new flow γ̃i(x, t) =
γi(ϕi(x, t), t) with |γ̃ix| constantly equal to Li(t), the length of the curve γi at time t ∈ [0, T ), by means
of reparametrizations γ̃i(x, t) = γi(ϕi(x, t), t) solving the ODE’s

ϕix(x, t) = Li(t)/|γix(ϕi(x, t), t)|

with initial data ϕi(0, t) = 0. Moreover, we have seen that letting γ̃it = k̃iν̃i + λ̃iτ̃ i, we have

λ̃is =
∂tL

i

Li
+ (k̃i)2 .

This equation immediately says that λ̃is − (k̃i)2 is constant in space, then integrating

|λ̃(s, t)| 6 |λ̃(0, t)|+ |∂tLi(t)|+
∫
γi(·,t)

(k̃i)2 ds 6 C‖k̃(·, t)‖L∞ + C,

for every s ∈ [0, Li(t)], as |λ̃(·, t)| at the borders of any curve is estimated by C‖k̃(·, t)‖L∞ ,
∫
γi(·,t)(k̃

i)2 ds

is invariant by reparametrization and bounded by hypotheses and

|∂tLi(t)| =
∣∣∣∣λi(1, t)− λi(0, t)− ∫

γi(·,t)
(ki)2 ds

∣∣∣∣ 6 ‖k̃(·, t)‖L∞ + C.

It follows
‖λ̃(·, t)‖L∞ 6 C‖k̃(·, t)‖L∞ + C = C‖k(·, t)‖L∞ + C 6 C/t1/4 + C,

hence, k̃, λ̃ ∈ L7/2([0, 1] × [0, T̂ ]). As a consequence, γ̃it = k̃iν̃i + λ̃iτ̃ i ∈ L7/2([0, 1] × [0, T̂ ]) and being
γ̃ixx = k̃ν̃/(Li)2, also γ̃ixx belongs to L7/2([0, 1]× [0, T̂ ]), hence this flow γ̃ belongs to W 1,2

7/2([0, T̂ )× [0, 1]),
thus it is geometrically uniquely determined, by Theorem 3.6 (or 5.5).
This argument shows that any two curvature flows in the class N can be reparametrized one to the
other, that is, we have geometric uniqueness in this class and we are done.

Remark 5.9.

1. We underline that the initial network is not required to satisfy any compatibility condition, but
only to have angles of 120 degrees between the concurring curves at every 3–point, that is, to
be regular and C2. In particular, it is not necessary that the sum of the three curvatures at the
3–points is zero.

2. As for every positive time the flow obtained by this theorem is C∞, hence every network St is
geometrically smooth, arguing as before (by means of Remark 3.35), Corollary 5.2 applies: this
flow can be reparametrized, from any positive time on, to be a C∞ special smooth flow.

3. It should be noticed that if the initial curves σi are C∞, the flow St is smooth till t = 0 far from the
3–points, that is, in any closed “rectangle” included in (0, 1)× [0, T ) we can locally reparametrize
the curves γi to get a smooth flow up to t = 0. This follows from the local estimates for the motion
by curvature (see [30]).

4. A natural question is whether uniqueness of the curvature flow of an initial regular C2 network
holds also “outside” of the subclassN , in the general class of curvature flows as in Definition 2.11
(or possibly asking only the continuity of the tangent vectors as t→ 0). At the moment this is still
an open problem.

Now that we have gained the short–time existence for an initial regular C2 network, the next important
question is what can be said if the initial network does not satisfy the 120 degrees condition, that is, it is
non–regular (even if all its curves are C∞). We will face this question in Section 10 below. Clearly, the
unit tangent vectors of any curvature flow having as an initial network a configuration that does not
satisfy the 120 degrees condition cannot be continuous up to time t = 0, being a curvature flow C2 and
regular for positive time. Anyway, notice that in the definition of curvature flow, we require only that
the maps γi are continuous in [0, 1]× (0, T ) for some positive time T , hence one could hope to be able to
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find a curvature flow such that the 120 degrees condition is satisfied instantaneously, at every positive
time t > 0, as it happens for the geometrical smoothness in Theorem 5.1.
In Section 10 we will also treat the problem of the evolution of a non–regular network with multi–points
of order greater than three. In this case, the continuity condition at t = 0 has to be suitably stated, since,
if we want the curvature flow to be regular for every positive time, the collection of maps describing
the network, as well as the topological structure of the network, must change.

6 Smooth flows are Brakke flows

To continue the flow when at some time a curve collapses and possibly some multi–points appear in
the (limit) network, one can consider a more general (weak) definition of curvature flow.
As mentioned in the introduction, there exist several weak definitions of motion by curvature of a
subset of Rn. Among the existing notions, the most suitable to our point of view is the one introduced
by Brakke in [16], which in general lacks uniqueness but at least maintains the (Hausdorff) dimension
of the evolving sets.
We introduce now the concept of Brakke flow (with equality) of a network.

Definition 6.1. A regular Brakke flow is a family of W 2,2
loc networks St in Ω, satisfying the inequality

d

dt

∫
St
ϕ(γ, t) ds 6 −

∫
St
ϕ(γ, t)k2 ds+

∫
St
〈∇ϕ(γ, t) | k〉 ds+

∫
St
ϕt(γ, t) ds , (6.1)

for every non negative smooth function with compact support ϕ : Ω × [0, T ) → R and t ∈ [0, T ), where
d
dt is the upper derivative (the lim of the incremental ratios).
If the time derivative at the left-hand side exists and the inequality is equality, for every smooth function
with compact support ϕ : Ω× [0, T )→ R and t ∈ [0, T ), that is,

d

dt

∫
St
ϕ(γ, t) ds = −

∫
St
ϕ(γ, t)k2 ds+

∫
St
〈∇ϕ(γ, t) | k〉 ds+

∫
St
ϕt(γ, t) ds , (6.2)

we say that St is a regular Brakke flow with equality.

Remark 6.2. The original definition of Brakke flow given in [16, Section 3.3] (in any dimension and
codimension) allows the networks St to be simply one–dimensional countably rectifiable subsets of R2,
with possible integer multiplicity θt : St → N and with a distributional notion of tangent space and
(mean) curvature, called rectifiable varifolds (see [99]). With such a general definition, the networks are
identified with the associated Radon measures µt = θtH1 St.
More precisely, the inequality

d

dt

∫
St
ϕ(x, t)θt(x) dH1(x) 6 −

∫
St
ϕ(x, t)k2(x, t)θt(x) dH1(x) +

∫
St
〈∇ϕ(x, t) | k(x, t)〉θt(x) dH1(x)

+

∫
St
ϕt(x, t)θt(x) dH1(x) ,

must hold for every non-negative smooth function with compact support ϕ : Ω × [0, T ) → R and
t ∈ [0, T ), whereH1 is the Hausdorff one–dimensional measure in R2.
These weak conditions were introduced by Brakke in order to prove an existence result [16, Section 4.13]
for a family of initial sets much wider than networks of curves, but, on the other hand, it opens the
possibility of instantaneous vanishing of some parts of the sets during the evolution.
A big difference between Brakke flows and the evolutions obtained as solutions of Problem (2.3) is that
the former networks are simply considered as subsets of R2 without any mention to their parametriza-
tion (that clearly is not unique). This means that actually a Brakke flow can be a family of networks
given by the maps γi(x, t) which are C2 in space, but possibly do not have absolutely any regularity
with respect to the time variable t.
An open question is whether any Brakke flows with equality, possibly under some extra hypotheses,
admits a reparametrization such that it becomes a solution of Problem (2.3).
This problem is also related to the uniqueness of the Brakke flows with equality (maybe further restrict-
ing the candidates to a special class with extra geometric properties).
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Proposition 6.3. Any solution of Problem (2.3) in C2,1([0, 1]× [0, T )) is a regular Brakke flow with equality.
In particular, for every curve γi(·, t) and for every time t ∈ [0, T ) we have

dLi(t)

dt
= λi(1, t)− λi(0, t)−

∫
γi(·,t)

k2 ds (6.3)

and
dL(t)

dt
= −

∫
St
k2 ds ,

that is, the total length L(t) is decreasing in time and it is uniformly bounded by the length of the initial network
S0.

Proof. If the flow γi is in C∞([0, 1]× [0, T )), we have

dLi(t)

dt
=
d

dt

∫ 1

0

|γix| dx

=

∫ 1

0

〈γixt | γix〉
|γix|

dx

=

∫ 1

0

〈
∂xγ

i
t

∣∣∣∣ γix|γix|
〉
dx

=

∫ 1

0

〈∂xγit | τ i〉 dx

= 〈γit(1, t) | τ i(1, t)〉 − 〈γit(0, t) | τ i(0, t)〉 −
∫ 1

0

〈γit | ∂xτ i〉 dx .

Then, approximating the maps γi with a family of maps γiε ∈ C∞ such that γiε → γi in C1 and
γiεxx → γixx in C0, as ε→ 0, we see that we can pass to the limit in this formula and conclude that it holds
for the original flow which is only in C2,1([0, 1]× [0, T )). Finally, since ∂xτ i = kiνi|γix|, we get

dLi(t)

dt
= λi(1, t)− λi(0, t)−

∫
γi(·,t)

k2 ds

as γit = kiνi + λiτ i.
The formula for the derivative of the total length of the evolving network then follows by the zero–sum
property of the functions λi at every 3–point at the fact that all the λi are zero at the end–points.
A similar argument shows that formula (6.2) defining a regular Brakke flow with equality also holds.

Theorem 6.4. If St is a curvature flow of a C2 initial network such that

• the unit tangents τ i are continuous in [0, 1]× [0, T ),

• the functions k(·, t) converge weakly in L2 to k(·, 0), as t→ 0,

• the function t 7→
∫
St k

2 ds is continuous on [0, T ),

then St is a regular Brakke flow with equality.

Proof. By the previous Theorem 6.3, we only need to check Brakke equality (6.2) at t = 0.
For every positive time and for every smooth test function ϕ : Ω× [0, T )→ R, we have

d

dt

∫
St
ϕds = −

∫
St
ϕk2 ds+

∫
St
〈∇ϕ | k〉 ds d+

∫
St
ϕt ds ,

hence, it suffices to show that the right member is continuous at t = 0. By the hypotheses, the only term
that really need to be checked is

∫
St ϕk

2 ds, we separate it as the sum of
∫
St ϕ

+ k2 ds and
∫
St ϕ
− k2 ds

and we show the continuity of these two terms separately (here ϕ+ = ϕ ∧ 0 and ϕ− = ϕ ∨ 0). Thus,
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we assume that 0 6 ϕ 6 1, then, by the weak convergence in L2(ds) of k(·, t) to k(·, 0), the integral∫
St ϕk

2 ds is lower semicontinuous in t, that is,
∫
S0 ϕk

2 ds 6 lim inftl→0

∫
St ϕk

2 ds for every tl → 0, but
if this is not an equality for some sequence of times, it cannot happen that

∫
St k

2 ds is continuous at
t = 0, indeed, we would have

lim
tl→0

∫
St
k2 ds > lim inf

tl→0

∫
St
ϕk2 ds+ lim inf

tl→0

∫
St

(1− ϕ) k2 ds

>

∫
S0
ϕk2 ds+

∫
S0

(1− ϕ) k2 ds =

∫
St
k2 ds .

This concludes the proof.

Corollary 6.5. The curvature flows whose short–time existence is proved in Theorems 3.25 and 3.33 are regular
Brakke flows with equality. The curvature flow of an initial C2 regular network obtained in Theorem 5.8 is also a
regular Brakke flow with equality. Any curvature flow of a regular network is a regular Brakke flow with equality
for every positive time.

We conclude this section with the following property of Brakke flows.

Proposition 6.6. For any regular Brakke flow with equality (hence, for every curvature flow of a regular network)
such that the curvature is uniformly bounded in a time interval [0, T ), the lengths of the curves of the network
Li(t) converge to some limit, as t→ T .
In particular, if the flow satisfies the conclusions of Theorem 5.7 at the maximal time of existence T , there must be
at least one curve such that Li(t)→ 0, as t→ T .

Proof. If the curvature is bounded, by formula (6.3), any function Li as a uniformly bounded derivative,
as k controls λ at the end–points and 3–points of the network, thus the conclusion follows.

sectionThe monotonicity formula and the rescaling procedures
Let F : S × [0, T ) → R2 be the curvature flow of a regular network in its maximal time interval of
existence. As before, with a little abuse of notation, we will write τ(P r, t) and λ(P r, t) respectively
for the unit tangent vector and the tangential velocity at the end–point P r of the curve of the network
getting at such point, for any r ∈ {1, 2, . . . , l}.
A modified form of Huisken’s monotonicity formula for smooth hypersurfaces moving by mean cur-
vature (see [53]), holds. It can be proved to start by formula (6.2) and with a slight modification of the
computation in the proof of Lemma 6.3 in [82].
Let x0 ∈ R2, t0 ∈ (0,+∞) and ρx0,t0 : R2 × [−∞, t0) be the one–dimensional backward heat kernel in R2

relative to (x0, t0), that is,

ρx0,t0(x, t) =
e
− |x−x0|

2

4(t0−t)√
4π(t0 − t)

.

We will often write ρx0
(x, t) to denote ρx0,T (x, t) (or ρx0

to denote ρx0,T ), when T is the maximal (sin-
gular) time of existence of a smooth curvature flow.

Proposition 6.7 (Monotonicity formula). Assume t0 > 0. For every x0 ∈ R2 and t ∈ [0,min{t0, T}) the
following identity holds

d

dt

∫
St
ρx0,t0(x, t) ds = −

∫
St

∣∣∣∣ k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0(x, t) ds (6.4)

+

l∑
r=1

[〈
P r − x0

2(t0 − t)

∣∣∣∣ τ(P r, t)

〉
− λ(P r, t)

]
ρx0,t0(P r, t) .

Integrating between t1 and t2 with 0 6 t1 6 t2 < min{t0, T} we get∫ t2

t1

∫
St

∣∣∣∣ k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2ρx0,t0(x, t) ds dt =

∫
St1

ρx0,t0(x, t1) ds−
∫
St2

ρx0,t0(x, t2) ds (6.5)

+

l∑
r=1

∫ t2

t1

[〈
P r − x0

2(t0 − t)

∣∣∣∣ τ(P r, t)

〉
− λ(P r, t)

]
ρx0,t0(P r, t) dt .
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We need the following lemma to estimate the end–points contributions in this formula (its proof is
analogous to the one of Lemma 6.5 in [82]).

Lemma 6.8. If t0 ∈ (0, T ], for every r ∈ {1, 2, . . . , l} and x0 ∈ R2, the following estimate holds∫ t0

t

∣∣∣∣〈 P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

∣∣∣∣ ρx0,t0(P r, ξ) dξ 6 C ,

for every t ∈ [0, t0), where C is a constant depending only on the constant C0 in assumption (4.1) (independent
of t0 and t). It follows that the integral∫ t0

t

[〈
P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

]
ρx0,t0(P r, ξ) dξ

exists and it is finite, for every t0 ∈ (0, T ] and t ∈ [0, t0).
As a consequence, for every point x0 ∈ R2 and t0 ∈ (0, T ], we have

lim
t→t0

l∑
r=1

∫ t0

t

[〈
P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

]
ρx0,t0(P r, ξ) dξ = 0 .

By formula (6.5) and this lemma, we can then write∫
St
ρx0,t0(x, t) ds =

∫
S0
ρx0,t0(x, 0) ds−

∫ t

0

∫
Sξ

∣∣∣∣ k +
(x− x0)⊥

2(t0 − ξ)

∣∣∣∣2 ρx0,t0(x, ξ) ds dξ

+

l∑
r=1

∫ t

0

[〈
P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

]
ρx0,t0(P r, ξ) dξ ,

=

∫
S0
ρx0,t0(x, 0) ds−

∫ t

0

∫
Sξ

∣∣∣∣ k +
(x− x0)⊥

2(t0 − ξ)

∣∣∣∣2 ρx0,t0(x, ξ) ds dξ

+

l∑
r=1

∫ t0

0

[〈
P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

]
ρx0,t0(P r, ξ) dξ ,

−
l∑

r=1

∫ t0

t

[〈
P r − x0

2(t0 − ξ)

∣∣∣∣ τ(P r, ξ)

〉
− λ(P r, ξ)

]
ρx0,t0(P r, ξ) dξ ,

for every t0 ∈ (0, T ] and t ∈ [0, t0). Now we notice that the first line on the right side of this formula is a
monotone non increasing function in t ∈ [0, t0), the second line is a constant and the third line converges
to zero as t → t0, by Lemma 6.8. Hence, the non negative function t 7→

∫
St ρx0,t0(x, t) ds converges to

some limit as t→ t0. Then, the following definition is well posed.

Definition 6.9 (Gaussian densities). For every x0 ∈ R2, t0 ∈ (0,+∞) we define the Gaussian density
function Θx0,t0 : [0,min{t0, T})→ R as

Θx0,t0(t) =

∫
St
ρx0,t0(·, t) ds

and, provided t0 6 T , the limit Gaussian density function Θ̂ : R2 × (0,+∞)→ R as

Θ̂(x0, t0) = lim
t→t0

Θx0,t0(t) .

which exists finite and non negative, for every (x0, t0) ∈ R2 × (0, T ], by the above argument (under
assumption (4.1), or simply if the end–points P r of the network St are fixed, hence λ(P r, ·) = 0).
We will often write Θx0

(t) to denote Θx0,T (t) and Θ̂(x0) for Θ̂(x0, T ).

Notice that the map Θ̂ : R2 → R is upper semicontinuous (see [76, Proposition 2.12]), being given by the
monotone limit of continuous functions “perturbed” by a sequence of functions pointwise converging
to zero.
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6.1 Parabolic rescaling of the flow

For a fixed µ > 0 the standard parabolic rescaling of a curvature flow is given by the map F above,
around a space–time point (x0, t0), is defined as the family of maps

Fµt = µ
(
F (·, µ−2t + t0)− x0

)
, (6.6)

where t ∈ [−µ2t0, µ
2(T − t0)). Notice that this is again a curvature flow in the domain µ(Ω − x0) with

new time parameter t.
Given a sequence µi ↗ +∞ and a space–time point (x0, t0), where 0 < t0 6 T , we then consider the
sequence of curvature flows Fµit in the whole R2 that we denote with Sµit .
Recall that the monotonicity formula implies

Θx0,t0(t)− Θ̂(x0, t0) =

t0∫
t

∫
Sσ

∣∣∣k +
(x− x0)⊥

2(t0 − σ)

∣∣∣2ρx0,t0(·, σ) ds dσ

−
l∑

r=1

∫ t0

t

[〈
P r − x0

2(t0 − σ)

∣∣∣∣ τ(P r, σ)

〉
− λ(P r, σ)

]
ρx0,t0(P r, σ) dσ .

Changing variables according to the parabolic rescaling, we obtain

Θx0,t0(t0 + µ−2
i t)− Θ̂(x0, t0) =

0∫
t

∫
Sµis

∣∣∣ki − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds

+

l∑
r=1

0∫
t

[〈
P ri
2s

∣∣∣∣ τ(P ri , s)

〉
+ λi(P ri , s)

]
ρ0,0(P ri , s) ds ,

where P ri = µi(P
r − x0) and ki and λi are the rescaled curvatures and tangential velocities.

Hence, sending i→∞, by Lemma 6.8, for every t ∈ (−∞, 0) we get

lim
i→∞

0∫
t

∫
Sµis

∣∣∣ki − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds = 0 .

6.2 Huisken’s dynamical rescaling

We introduce the rescaling procedure of Huisken in [53] at the maximal time T .
Fixed x0 ∈ R2, let F̃x0

: S× [−1/2 log T,+∞)→ R2 be the map

F̃x0(p, t) =
F (p, t)− x0√

2(T − t)
t(t) = −1

2
log (T − t)

then, the rescaled networks are given by

S̃x0,t =
St − x0√
2(T − t)

(6.7)

and they evolve according to the equation

∂

∂t
F̃x0(p, t) = ṽ(p, t) + F̃x0(p, t)

where
ṽ(p, t) =

√
2(T − t(t)) · v(p, t(t)) = k̃ + λ̃ = k̃ν + λ̃τ and t(t) = T − e−2t .

Notice that we did not put the sign˜over the unit tangent and normal, since they remain the same after
the rescaling.
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We will write Õp(t) = F̃x0
(Op, t) for the 3–points of the rescaled network S̃x0,t and P̃ r(t) = F̃x0

(P r, t)
for the end–points, when there is no ambiguity on the point x0.
The rescaled curvature evolves according to the following equation,

∂tk̃ = k̃ss + k̃sλ̃+ k̃3 − k̃

which can be obtained by means of the commutation law

∂t∂s = ∂s∂t + (k̃2 − λ̃s − 1)∂s ,

where we denoted with s the arclength parameter for S̃x0,t.

Remark 6.10. It is easy to see that the relations between the two rescaling procedures are given by

Sµt =
√
−2t S̃x0,log (µ/

√
−t) and S̃x0,t =

et

µ
√

2
Sµ−µ2e−2t ,

in particular,
Sµ−1/2 = S̃x0,log (µ

√
2) .

By a straightforward computation (see [53]) we have the following rescaled version of the monotonicity
formula.

Proposition 6.11 (Rescaled monotonicity formula). Let x0 ∈ R2 and set

ρ̃(x) = e−
|x|2
2

For every t ∈ [−1/2 log T,+∞) the following identity holds

d

dt

∫
S̃x0,t

ρ̃(x) ds = −
∫
S̃x0,t
| k̃ + x⊥|2ρ̃(x) ds +

l∑
r=1

[〈
P̃ r(t)

∣∣∣ τ(P r, t(t))
〉
− λ̃(P r, t(t))

]
ρ̃(P̃ r(t))

where P̃ r(t) = P r−x0√
2(T−t(t))

.

Integrating between t1 and t2 with −1/2 log T 6 t1 6 t2 < +∞ we get∫ t2

t1

∫
S̃x0,t
| k̃ + x⊥|2ρ̃(x) ds dt =

∫
S̃x0,t1

ρ̃(x) ds−
∫
S̃x0,t2

ρ̃(x) ds (6.8)

+

l∑
r=1

∫ t2

t1

[〈
P̃ r(t)

∣∣∣ τ(P r, t(t))
〉
− λ̃(P r, t(t))

]
ρ̃(P̃ r(t) dt .

We have also the analog of Lemma 6.8 (see Lemma 6.7 in [82]).

Lemma 6.12. For every r ∈ {1, 2, . . . , l} and x0 ∈ R2, the following estimate holds for all t ∈
[
− 1

2 log T,+∞
)
,∫ +∞

t

∣∣∣〈 P̃ r(ξ) ∣∣∣ τ(P r, t(ξ))
〉
− λ̃(P r, t(ξ))

∣∣∣ dξ 6 C ,

where C is a constant depending only on the constants C0 in assumption (4.1) (independent of t).
As a consequence, for every point x0 ∈ R2, we have

lim
t→+∞

l∑
r=1

∫ +∞

t

[〈
P̃ r(ξ)

∣∣∣ τ(P r, t(ξ))
〉
− λ̃(P r, t(ξ))

]
dξ = 0 .
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7 Classification of possible blow–up limits

In this section we want to discuss the possible limits of an evolving network at the maximal time of
existence. When the curvature does not remain bounded, we are interested in the possible blow–up
limit networks after parabolic or Huisken’s rescaling procedure, using the rescaled monotonicity for-
mula (see Section 6). In some cases, such limit sets are no more regular networks, so we introduce the
following definition.

Definition 7.1 (Degenerate regular network). Consider a tuple (G,S) with the following properties:

• G =
⋃n
i=1E

i is an oriented graph with possible unbounded edges Ei, such that every vertex has
only one or three concurring edges (we call end–points of G the vertices with order one);

• given a family of C1 curves σi : Ii → R2, where Ii is the interval (0, 1), [0, 1), (0, 1] or [0, 1], and
orientation preserving homeomorphisms ϕi : Ei → Ii, then S is the union of the images of Ii

through the curves σi, that is, S =
⋃n
i=1 σ

i(Ii) (notice that the interval (0, 1) can only appear if
it is associated with an unbounded edge Ei without vertices, which is clearly a single connected
component of G);

• in the case that Ii is (0, 1), [0, 1) or (0, 1], the map σi is a regular C1 curve with unit tangent vector
field τ i;

• in the case that Ii = [0, 1], the map σi is either a regular C1 curve with unit tangent vector field τ i,
or a constant map and in this case it is “assigned” also a constant unit vector τ i : Ii → R2, that we
still call unit tangent vector of σi (we call these maps σi “degenerate curves”);

• for every degenerate curve σi : Ii → R2 with assigned unit vector τ i : Ii → R2, we call “assigned
exterior unit tangents” of the curve σi at the points 0 and 1 of Ii, respectively the unit vectors −τ i
and τ i.

• the map Γ : G→ R2 given by the union Γ =
⋃n
i=1(σi ◦ ϕi) is well-defined and continuous;

• for every 3–point of the graph G, where the edges Ei, Ej , Ek concur, the exterior unit tangent
vectors (real or “assigned”) at the relative borders of the intervals Ii, Ij , Ik of the concurring
curves σi, σj σk have zero sum (“degenerate 120 degrees condition”).

Then, we call S =
⋃n
i=1 σ

i(Ii) a degenerate regular network.
If one or several edges Ei of G are mapped under the map Γ : G→ R2 to a single point p ∈ R2, we call
this sub–network given by the union G′ of such edges Ei, the core of S at p.
We call multi–points of the degenerate regular network S, the images of the vertices of multiplicity three
of the graph G, by the map Γ.
We call end–points of the degenerate regular network S, the images of the vertices of multiplicity one
of the graph G, by the map Γ.

Remark 7.2.

• A regular network is clearly a degenerate regular network.

• This definition will be useful to deal with the limit sets when at some time a curve of the network
collapses, namely, its length goes to zero (later on in Section 9).

• Seen as a subset in R2, a degenerate regular network S with underlying graph G, is a C1 net-
work, not necessarily regular, that can have end–points and/or unbounded curves. Moreover
self–intersections and curves with integer multiplicities can be present. Anyway by the degen-
erate 120 degrees condition at the last point of the definition, at every image of a multi–point of
G the sum (possibly with multiplicities) of the exterior unit tangents (the “assigned” ones can-
cel each other in pairs) is zero. Notice that this implies that every multiplicity–one 3–point must
satisfy the 120 degrees condition.
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Lemma 7.3. Let S =
⋃n
i=1 σ

i(Ii) be a degenerate regular network in Ω and X : R2 → R2 be a smooth vector
field with compact support. Then, there holds∫

S
∂s〈X(σ) |τ〉 dH1

= −
l∑

r=1

〈X(P r) |τ(P r)〉 ,

where P 1, P 2, . . . , P l are the end–points of S, τ(P 1), τ(P 2), . . . , τ(P l) are the exterior unit tangents at P r and
H1

is the one–dimensional Hausdorff measure, counting multiplicities.

Proof. This is a consequence of the degenerate 120 degrees condition, implying that the sum of all the
contributions at a multi–point given by the boundary terms after the integration on every single curve
is zero (as the sum of the exterior unit tangents of the concurring curves). Thus the only remaining
terms are due to the end–points of the degenerate regular network.

Definition 7.4. We say that a sequence of regular networks Sk =
⋃n
i=1 σ

i
k(Iik) converges in C1

loc to a
degenerate regular network S =

⋃l
j=1 σ

j
∞(Ij∞) with underlying graph G =

⋃l
j=1E

j if:

• letting O1, O2, . . . , Om be the multi–points of S, for every open set Ω ⊆ R2 with compact closure
in R2 \ {O1, O2, . . . , Om} the networks Sk restricted to Ω, for k large enough, are described by
families of regular curves which converge up to reparametrization to the family of regular curves
given by the restriction of S to Ω;

• for every multi–point Op of S, image of one or more vertices of the graph G (if a core is present),
there is a sufficiently small R > 0 and a graph G̃ =

⋃s
r=1 F

r, with edges F r associated to intervals
Jr, such that:

– the restriction of S toBR(Op) is a regular degenerate network described by a family of curves
σ̃r∞ : Jr → R2 with (possibly “assigned”, if the curve is degenerate) unit tangent τ̃ r∞,

– for k sufficiently large the restriction of Sk to BR(Op) is a regular network with underlying
graph G̃, described by the family of regular curves σ̃rk : Jr → R2,

– for every j, possibly after reparametrization of the curves, the sequence of maps Jr 3 x 7→(
σ̃rk(x), τ̃ rk (x)

)
converge inC0

loc to the maps Jr 3 x 7→
(
σ̃r∞(x), τ̃ r∞(x)

)
for every r ∈ {1, 2, . . . , s}.

We will say that Sk converges to S in C1
loc ∩E, where E is some function space, if the above curves also

converge in the topology of E.

Remark 7.5.

• If the limit regular network S is non–degenerate, the above convergence of a sequence of regular
networks Sk to S is simply the C1

loc–convergence of the curves of Sk to the relative ones of S. Any-
way, in general, if S is a degenerate regular network S, the above definition of C1

loc–convergence
for a sequence of regular networks Sk to S, is clearly stronger than that, by the last request at
the second point. Asking only the C1

loc–convergence of the curves of a sequence of regular net-
works Sk would not guarantee that the limit degenerate network S is regular, as the last point in
Definition 7.1 could possibly not being satisfied by S.

• It is easy to see that if a sequence of regular networks Sk converges in C1
loc to a degenerate regular

network S, the associated one–dimensional Hausdorff measures, counting multiplicities, weakly–
converge (as measures) to the one–dimensional Hausdorff measure associated with the set S seen
as a subset of R2.

• If a degenerate regular network S is the limit of a sequence of regular networks as above, being
these embedded, it clearly can have only tangent self–intersections but not a “crossing” of two of
its curves.

• If S is the limit of a sequence of “rescalings” of the networks of a curvature flow St with fixed end–
points, it can have only one end–point at the origin of R2 and only if the center of the rescalings
coincides with an end–point of St, otherwise, it has no end–points at all (they go to ∞ in the
rescaling).
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7.1 Self–similarly shrinking networks

Definition 7.6. A regular C2 open network S =
⋃n
i=1 σ

i(Ii) is called a regular shrinker if at every point
x ∈ S there holds

k + x⊥ = 0. (7.1)

This relation is called the shrinkers equation.

The name comes from the fact that if S =
⋃n
i=1 σ

i(Ii) is a shrinker, then the evolution given by St =⋃n
i=1 γ

i(Ii, t) where γi(x, t) =
√
−2t σi(x) is a self–similarly shrinking curvature flow in the time inter-

val (−∞, 0) with S = S−1/2. Viceversa, if St is a self–similarly shrinking curvature flow in the maximal
time interval (−∞, 0), then S−1/2 is a shrinker.

O OO

Figure 7.1: Examples of regular shrinkers with zero or one triple junction: a line through the origin,
an unbounded triod composed of three halflines from the origin meeting at 120 degrees, that we call
standard triod and the unit circle S1.

O

Figure 7.2: Another example of a regular shrinker with one triple junction: a Brakke spoon.

In these figures, there are drawn all the regular shrinkers with at most one triple junction (see [51]). In
particular by the work of Abresch and Langer [1] it follows that the only regular shrinkers without triple
junctions (simply curves) are the lines through the origin and the unit circle. In the case of complete,
embedded, regular shrinker with two triple junctions it is not difficult to show that there are only two
possible topological shapes: the “lens/fish” shape and the Greek “Theta” letter (or “double cell”), as
depicted in the next figure (see also [9]).

O1

O2

γ2

γ1
γ4

γ3

O2

γ2

γ1

γ3

O1

Figure 7.3: A lens/fish–shaped and a Θ–shaped network.
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It is well known that there exist unique (up to rotations) lens–shaped or fish–shaped, embedded, regular
shrinkers that are symmetric with respect to a line through the origin of R2 (see [21, 96]). Instead, there
are no regular Θ–shaped shrinkers (see [11]).

O O

Figure 7.4: The shrinking lens and the shrinking fish (up to rotations).

A “gallery” with these and other more complicated regular shrinkers can be found in the Appendix.

Definition 7.7 (Degenerate shrinkers). We call a degenerate regular network S =
⋃n
i=1 σ

i(Ii) a degenerate
regular shrinker if at every point x ∈ S there holds

k + x⊥ = 0 .

Clearly, a regular shrinker is a degenerate regular shrinker and, as before, the maps γi(x, t) =
√
−2t σi(x)

describe the self–similarly shrinking evolution of a degenerate regular network St in the time interval
(−∞, 0), with S = S−1/2.

Definition 7.8. A standard cross is a degenerate regular network given the union of two straight lines
intersecting at the origin of R2 and forming angles of 120 and 60 degrees, with an underlying graph G
as in the following figure. Its core consists of the degenerate curve mapping the “central” curve of G
constantly to the origin. The “assigned” tangent vector to the degenerate curve is one of the two unit
vectors that generates the bisector line of the 120 degrees angles.

C

O

G

Figure 7.5: A standard cross with angles of 60/120 degrees and its underlying graph G.

Remark 7.9. As every non–degenerate curve of a degenerate regular shrinker (or simply of a regular
shrinker) satisfies the equation k + x⊥ = 0, it must be a piece of a line through the origin or of the so
called Abresch–Langer curves. Their classification results in [1] imply that any of these non straight pieces
are compact, hence any unbounded curve of a shrinker must be a line or an halfline “pointing” towards
the origin. Moreover, it also follows that if a curve contains the origin, then it is a straight line through
the origin (if it is in the interior) or a halfline from the origin (if it is an end–point of the curve).

For a degenerate regular shrinker S, in analogy with Definition 6.9, we denote with

ΘS = Θ0,0(−1/2) =

∫
S
ρ0,0(·,−1/2) ds
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its Gaussian density (here ds denotes the integration with respect to the canonical measure on S, counting
multiplicities). Notice that the integral Θ0,0(t) =

∫
St ρ0,0(·, t) ds is constant for t ∈ (−∞, 0), hence equal

to Θ̂(0) for the self–similarly shrinking curvature flow St =
√
−2tS generated by S, as above.

The Gaussian density of a straight line through the origin is 1, of a halfline from the origin is 1/2, of
a standard triod T is 3/2, of a standard cross C is 2. The Gaussian density of the unit circle S1 can be
easily computed to be

ΘS1 =

√
2π

e
≈ 1,5203 . (7.2)

Notice that ΘT = 3/2 < ΘS1 < 2.
The Gaussian densities of several other regular shrinkers can be found in the Appendix.
We have the following two classification results for degenerate regular shrinkers, see Lemma 8.3 and 8.4
in [58].

Lemma 7.10. Let S =
⋃n
i=1 σ

i(Ii) be a degenerate regular shrinker which is a C1
loc ∩ W

2,2
loc –limit of regular

networks Si homeomorphic to the underlying graph G of S (as in Definition 7.1) and assume that G is a tree
without end–points. Then S consists of halflines from the origin, with possibly a core at the origin.
Moreover, if G is connected, without end–points and S is a network with unit multiplicity, this latter can only be

• a line (no cores),

• a standard triod (no cores),

• two lines intersecting at the origin forming angles of 120/60 degrees (the core is a collapsed segment in the
origin with “assigned” unit tangent vector bisecting the angles of 120 degrees), that is, a standard cross
(see Figure 7.5).

Proof. We assume that G is connected, otherwise, we argue on every single connected component. By
the hypothesis of approximation with regular (embedded) networks, G is a planar graph.
As we said in Remark 7.9, if a non–degenerate curve contains the origin, then it is a piece of a straight
line. Otherwise, it is contained in a compact subset of R2 and has a constant winding direction with
respect to the origin. Aside from the circle, any other solution has a countable, non–vanishing number
of self–intersections (all these facts were shown in [1]).
We underline that the length of some curves of Si can go to zero in the limit, then any core of the limit
network is the union of some of these vanishing curves. Suppose that the network S has a core at some
point P ∈ S, then, at least an edge of G is mapped into P and the length of at least one curve, let us
say γi, goes to zero in the limit. Being the graph G a tree, if N > 2 triple junctions are contained in the
core, then N + 2 curves (counted with multiplicity) with strictly positive length concur at P . This fact
can be easily proved by induction: if N = 2, then two triple junctions are present in the core and hence
the length of the curve connecting the two junctions has gone to zero in the limit, but the other four
curves emanating from the two different junctions have still positive lengths. We suppose now that the
statement holds for N = Ñ and we show it for N = Ñ + 1. With respect to the situation in which Ñ
triple junctions are in the core, we add an extra triple junction O to the core, but to do so one of the
original Ñ + 2 curves emanating from the core has to go to zero. However, the other two concurring
curves to O have length bounded from below away from zero and now concur to P , thus there are
(Ñ + 2)− 1 + 2 = Ñ + 3 curves with strictly positive length concurring at P and the claim is proved.
We can suppose (up to reparametrization) that for every i ∈ N, any curve γi : [0, 1] → R2 of Si is
parametrized with constant modulus of its velocity, equal to its length. Then we get

lim
i→∞

sup
x,y∈[0,1]

|τi(x)− τi(y)| = 0 ,

indeed, given x, y ∈ [0, 1], there holds

|τi(x)− τi(y)| =
∣∣∣∣ ∫ s(y)

s(x)

∂sτi ds

∣∣∣∣ 6 ∫
γi

|ki| ds 6
(∫

γi

|ki|2 ds
)1/2

L(γi)
1/2

and we obtain the conclusion, by passing to the limit. Hence, the vanishing curves of Si are straighter
and straighter, as i → ∞ and for i ∈ N large enough, so we can assume in the next argument that the
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unit tangent vectors are constant on each of such curves.
We describe the structure of the core. Let i ∈ N be sufficiently large and consider the longest simple
“path” of curves of Si that go to the core of S at P . We then orient the path and follow its edges. The
“assigned” unit tangent vectors (possibly changed of sign on some edges in order to coincide with
the orientation of the path) cannot “turn” of an angle of 60 degrees in the same “direction” for two
consecutive times along the path, otherwise, sinceG is a tree with only triple junctions, without external
vertices and with non–compact branches, the approximating networks must have a self–intersection
(see Figure 7.6 below).

G S
The core of S

S

Figure 7.6: If the assigned unit tangent vector “turns” of an angle of 60 degrees in the same direction
for two consecutive times, G has self–intersections. An example of such a pair (G,S).

Hence, if the assigned unit tangent vector “turns” of an angle of 60 degrees then it must “turn” back,
in passing from an edge to another along such longest path. This means that at the initial/final point
of such path, either the two assigned unit tangent vectors are the same (when the number of edges
is odd) or they differ of 60 degrees (when the number of edges is even). By a simple check, we can
then see that, in the first case the four curves images of the four non–collapsed edges exiting from such
initial/final points of the path, have four different exterior unit tangent vectors at P (opposite in pairs),
in the second case, they have three exterior unit tangent vectors at P which are non–proportional each
other.

G

2
1

1

S G

1
1

1

1

S

Figure 7.7: Examples of the edges at the initial/final points of the longest simple path in G and of the
relative curves in S, the numbers 1 and 2 denote their multiplicity.

If then there is a 3–point or a core at some point P 6= 0, since at most two of the four directions in the
first case above and at most one of the three directions in the second case, can belong to the straight line
through P and the origin, there are always at least two distinct non–straight Abresch–Langer curves
arriving/starting at P . Clearly, this property holds also if there is no core, but P is simply a 3–point.
Let us consider S′ ⊆ S, which consists of S with the interior of all the pieces of straight lines removed
and let σi one of the two curves above. We follow σi till its other end–point Q. At this end–point, even
if there is a core at Q, there is always another different non–straight curve σj to continue moving in S
avoiding the pieces of straight lines (hence staying far from the origin). Actually, either the underlying
intervals Ii and Ij are concurrent at the vertex corresponding to Q in the graph G or there is a path in G
(collapsed in the core at Q) joining Ii and Ij . We then go on with this path on S (and on G) till, looking
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at things on the graphG, we arrive at an already considered vertex, which happens since the number of
vertices of G is finite, obtaining a closed loop, hence, a contradiction. Thus, S′ cannot contain 3–points
or cores outside the origin. If anyway S contains a non–straight Abresch–Langer curve, we can repeat
this argument getting again a contradiction, hence, we are done with the first part of the lemma, since
then S can only consist of halflines from the origin.
Now we assume that G is connected and S is a network with multiplicity one, composed of halflines
from the origin.
If there is no core, S is homeomorphic to G and composed only by halflines for the origin, hence G has
at most one vertex, by connectedness. If G has no vertices, then S must be a line, if it has a 3–point, S is
a standard triod.
If there is a core in the origin, by the definition of degenerate regular network it follows that the halflines
of S can only have six possible directions, by the 120 degrees condition, hence, by the unit multiplicity
hypothesis, the graph G is a tree in the plane with at most six unbounded edges. Arguing as in the
first part of the lemma, if N denotes the number (greater than one) of 3–points contained in the core,
it follows that N can only assume the values 2, 3, 4. Repeating the argument of the “longest path”, we
immediately also exclude the caseN = 3, since there would be a pair of coincident halflines in S, against
the multiplicity–one hypothesis, while for N = 4 we have only two possible situations, described at the
bottom of the following figure.

G S The core of S G S The core of S

G S The core of S G S

The longest
simple path

in the core of S

Figure 7.8: The possible local structure of the graphs G, with relative networks S and cores, for N =
2, 3, 4.

Hence, if N = 4, in both two situations above there is in S at least one halfline with multiplicity two,
thus such case is also excluded.
Then, we conclude that the only possible network with a core is whenN = 2 and S is given by two lines
intersecting at the origin forming angles of 120/60 degrees and the core consists of a collapsed segment
which must have an “assigned” unit tangent vector bisecting the two angles of 120 degrees formed by
the four halflines.

Lemma 7.11. Let S =
⋃n
i=1 σ

i(Ii) be a degenerate regular shrinker which is C1
loc–limit of regular networks

homeomorphic to the underlying graph G of S (as in Definition 7.1) and assume that ΘS < ΘS1 . Then, the graph
G of S is a tree. Thus, S is either a multiplicity–one line or a standard triod.

Proof. By the hypotheses, we see that G is a planar graph. We assume that G is not a tree, that is, it
contains a loop, then we can find a (possibly smaller) loop bounding a region. If such loop is in a core at
some point P , it is easy to see, by the degenerate 120 degrees condition, that such region has six edges
and, arguing as in Lemma 7.10, that there must always be at least two non–collapsed, non–straight
Abresch–Langer curves arriving/starting at P in different directions.
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Then, if we assume that the complement of S in R2 contains no bounded components, repeating the
argument in the proof of the previous lemma, it follows that S consists of a union of halflines for the
origin and the loops of G are all collapsed in the core. Then, by what we said above, there must be
at least six halflines emanating from (the core at) the origin. This implies that ΘS > 3, which is a
contradiction.
Let now B be a bounded component of the complement of S and γ a connected component of the sub–
network of S which bounds B, counted with unit multiplicity. Since γ is an embedded, closed curve,
smooth with corners and no triple junctions, we can evolve it by “classical” curve shortening flow γt,
for t ∈ [−1/2, t0) where we set γ−1/2 = γ, until it shrinks at some t0 > −1/2 to a “round” point x0 ∈ R2

(by the works of Angenent, Gage, Grayson, Hamilton [6–8, 39–41, 46], see Remark 2.16).
By the monotonicity formula, we have∫

γ

ρx0,t0(·,−1/2) ds > ΘS1

and, by the work of Colding–Minicozzi [24, Section 7.2], there holds

ΘS =

∫
S
ρ0,0(·,−1/2) ds = sup

x0∈R2,t0>−1/2

∫
S
ρx0,t0(·,−1/2) ds .

Then,

ΘS >
∫
S
ρx0,t0(·,−1/2) ds >

∫
γ

ρx0,t0(·,−1/2) ds > ΘS1 ,

which is a contradiction and we are done.

7.2 Geometric properties of the flow

Before proceeding, we show some geometric properties of the curvature flow of a network that we will
need in the sequel.

Proposition 7.12. Let St be the curvature flow of a regular network in a smooth, convex, bounded, open set
Ω, with fixed end–points on the boundary of Ω, for t ∈ [0, T ). Then for every time t ∈ [0, T ) the network St
intersects the boundary of Ω only at the end–points, and such intersections are transversal for every positive time.
Moreover, St remains embedded.

Proof. By continuity the 3–points cannot hit the boundary of Ω at least for some time T ′ > 0. The
convexity of Ω and the strong maximum principle (see [92]) imply that the network cannot intersect the
boundary for the first time at an inner regular point. As a consequence, if t0 > 0 is the “first time” when
the St intersects the boundary at an inner point, this latter has to be a 3–point. The minimality of t0 is
then easily contradicted by the convexity of Ω, the 120 degrees condition and the nonzero length of the
curves of St0 .
Even if some of the curves of the initial network are tangent to ∂Ω at the end–points, by the strong
maximum principle, as Ω is convex, the intersections become immediately transversal and stay so for
every subsequent time.
Finally, if the evolution St loses embeddedness for the first time, this cannot happen either at a boundary
point, by the argument above, nor at a 3–point, by the 120 degrees condition. Hence it must happen at
interior regular points, but this contradicts the strong maximum principle.

Proposition 7.13. In the same hypotheses of the previous proposition, if the smooth, bounded, open set Ω is
strictly convex, for every fixed end–point P r on the boundary of Ω, for r ∈ {1, 2, . . . , l}, there is a time tr ∈ (0, T )
and an angle αr smaller than π/2 such that the curve of the network arriving at P r form an angle less that αr
with the inner normal to the boundary of Ω, for every time t ∈ (tr, T ).

Proof. We observe that the evolving network St is contained in the convex set Ωt ⊆ Ω, obtained by
letting ∂Ω (which is a finite set of smooth curves with end–points P r) move by curvature keeping fixed
the end–points P r (see [54, 102, 103]). By the strict convexity of Ω and strong maximum principle, for
every positive t > 0, the two curves of the boundary of Ω concurring at P r form an angle smaller than
π which is not increasing in time. Hence, the statement of the proposition follows.
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We briefly discuss now the behavior of the area of regions enclosed by the evolving regular network
St. Let us suppose that a (moving) region A(t) is bounded by some curves γ1, γ2, . . . , γm and let A(t)
its area. Possibly reparametrizing these curves which form the loop ` =

⋃m
i=1 γ

i in the network, we
can assume that ` is parametrized counterclockwise, hence, the curvature k is positive at the convexity
points of the boundary of A(t). Then, we have

A′(t) = −
m∑
i=1

∫
γi
〈γit | ν〉 ds = −

m∑
i=1

∫
γi
〈kν | ν〉 ds = −

m∑
i=1

∫
γi
k ds = −

m∑
i=1

∆θi

where ∆θi is the difference in the angle between the unit tangent vector τ and the unit coordinate vector
e1 ∈ R2 at the final and initial point of the curve γi, indeed (supposing the unit tangent vector of the
curve γi “lives” in the second quadrant of R2 – the other cases are analogous) there holds

∂sθi = ∂s arccos〈τ | e1〉 = − 〈τs | e1〉√
1− 〈τ | e1〉2

= k ,

so

A′(t) = −
m∑
i=1

∫
γi
∂sθi ds = −

m∑
i=1

∆θi

Being ` a closed loop and considering that at all the end–points of the curves γi the angle of the unit
tangent vector “jumps” of 120 degrees, we have

mπ/3 +

m∑
i=1

∆θi = mπ/3 +

m∑
i=1

∫
γi
k ds = 2π , (7.3)

hence
A′(t) = −(2−m/3)π (7.4)

(this is called von Neumann rule, see [109]).
An immediate consequence is that the area of every region fully bounded by the curves of the network
evolves linearly and, more precisely, it increases if the region has more than six edges, it is constant with
six edges and it decreases if the edges are less than six. Moreover, this implies that if a region with less
than six edges is present, with area A0 at time t = 0, the maximal time T of existence of a smooth flow
is finite and

T 6
A0

(2−m/3)π
6

3A0

π
.

Remark 7.14. Since every bounded region contained in a shrinker must decrease its area during the
curvature flow of such shrinker (since it is homothetically contracting), another consequence is that
the only compact regions that can be present in a regular shrinker are bounded by less than six curves
(actually this conclusion also holds for the “visible” regions – not the cores – of any degenerate regular
shrinker).
Moreover, letting a shrinker evolve, since every bounded region must collapse after a time interval
of 1/2, the area of such a region is only dependent on the number m of its edges (less than 6), by
equation (7.4), indeed

A(0) = A(0)−A(1/2) = −
∫ 1/2

0

A′(t) dt =

∫ 1/2

0

(2−m/3)π dt = (2−m/3)π/2 .

This implies that the possible structures (topology) of the shrinkers with equibounded diameter are
finite.
It is actually conjectured in [51, Conjecture 3.26] that there is an upper bound for the possible number
of bounded regions of a shrinker. This would imply that the possible topological structures of shrinkers
are finite.

We explain now a geometric construction that we will use several times in the following.
We consider the curvature flow of network St in a strictly convex set Ω, with fixed end–points on ∂Ω
labeled by {P 1, P 2, . . . , P l}, in a maximal time interval [0, T ).
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Figure 7.9: A network St with the associated networks Hit.

We recall that as the curves composing the network are at least C2 and the boundary points are fixed,
at each P r both the velocity and the curvature are zero, namely, the compatibility conditions of order 2
(see Definition 3.22) are satisfied.
For every end–point P i, we define the “symmetrized” networks Hit each one obtained as the union of
St with its “reflection” SRit with respect to P i. As the domain Ω is strictly convex and St is inside Ω,
this operation clearly does not introduce self–intersections in the union Hit = St ∪ SRit and the number
of triple junctions of Hit is exactly twice the number of St. Every network Hit is a regular network and
the flow is still in C2,1, thanks to the compatibility conditions of order 2 satisfied at P i. The evolution
is clearly symmetric with respect to P i. If we have that the flow St is smooth then also all the flows Hit
are smooth (see Definition 3.27) and viceversa.

7.3 Limits of rescaling procedures

Given a sequence µi ↗ +∞ and a space–time point (x0, t0), where 0 < t0 6 T , with T the maximal
time of smooth existence, we consider as before in Section 6.1, the sequence of parabolically rescaled
curvature flows Fµit in the whole R2, that we denote with Sµit .
We know that, by rescaling the monotonicity formula (end of Section 6.1),

lim
i→∞

0∫
t

∫
Sµis

∣∣∣k − x⊥

2s

∣∣∣2ρ0,0(·, s) ds ds = 0 , (7.5)

for every t ∈ (−∞, 0). We see now that this implies that there exists a subsequence of parabolic rescal-
ings which “converges” to a (possibly empty) degenerate, self–similarly shrinking network flow.

Definition 7.15. We say that a (possibly degenerate and with multiplicity) network S has bounded length
ratios by the constant C > 0, if

H1
(S ∩BR(x)) 6 CR ,

for every x ∈ R2 and R > 0 (H1
is the one–dimensional Hausdorff measure counting multiplicities).

Notice that this is a scaling invariant property, with the same constantC. The following technical lemma
is due to Stone [104].
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Lemma 7.16. For any µ > 0, let Sµt be the parabolically rescaled flow around some (x0, t0) ∈ R2 × (0, T ), as
defined in formula (6.6).

1. There exists a constant C = C(S0) such that, for every x ∈ R2, t ∈ [0, T ) and R > 0 there holds

H1(St ∩BR(x)) 6 CR .

That is, the family of networks St has uniformly bounded length ratios by C.
It follows that for every x ∈ R2, t ∈ [−µ2t0, 0], µ > 0 and R > 0, we have

H1(Sµt ∩BR(x)) 6 CR .

2. For any ε > 0 there is a uniform radius R = R(ε) such that∫
Sµt \BR(x)

e−|x|
2/2 ds 6 ε ,

that is, the family of measures e−|x|
2/2H1 Sµt is tight (see [27]).

Proof. By Definition 2.4, if S0 is an open network, the number of unbounded curves (C1–asymptotic to
straight lines) is finite. Then, it is easy to see that, open or not, S0 has bounded length ratios, that is,
there exists a constant C > 0 such that

H1(S0 ∩BR(x)) 6 C ′R , (7.6)

for all x ∈ R2 and R > 0. This implies that the entropy of S0 (see [24, 75]) is bounded, that is,

E(S0) = sup
x∈R2,τ>0

∫
S0

e−
|x−x|2

4τ

√
4πτ

ds = sup
x∈R2,τ>0

∫
S0
ρx,τ (·, 0) ds 6 C ′′ . (7.7)

Indeed, for any x ∈ R2 and τ > 0, changing variable as y = (x− x)/2τ , we have

∫
S0

e−
|x−x|2

4τ

√
4πτ

ds =

∫
S0−x
2τ

e−
|y|2
2

√
2π

ds

=

∞∑
n=0

∫
S0−x
2τ ∩(Bn+1(0)\Bn(0))

e−
|y|2
2

√
2π

ds

6
1√
2π

∞∑
n=0

e−n
2/2H1

(S0 − x
2τ

∩Bn+1(0)
)

=
1√
2π

∞∑
n=0

e−n
2/2H1

( 1

2τ

(
S0 ∩B2τ(n+1)(x)− x

))
=

1√
2π

∞∑
n=0

e−n
2/2H1

(
S0 ∩B2τ(n+1)(x)

) 1

2τ

6
1√
2π

∞∑
n=0

e−n
2/2(n+ 1)C ′

=C ′

since the series converges (in the last inequality we applied estimate (7.6)).
Then, by the monotonicity formula (6.4), for any x ∈ R2, t ∈ [0, T ) and R > 0, by setting τ = t+R2, we
have ∫

St

e−
|x−x|2

4R2

√
4πR

ds =

∫
St
ρx,t+R2(·, t) ds 6

∫
S0
ρx,t+R2(·, 0) ds 6 C ′′ ,
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hence,

H1(St ∩BR(x)) 6
√

4πeR

∫
St∩BR(x)

e−
|x−x|2

4R2

√
4πR

ds 6
√

4πC ′′eR .

Since this conclusion is scaling invariant, it also holds for all the rescaled networks Sµit and the first
point of the lemma follows with C =

√
4πC ′′e. The second point is a consequence of the first one,

indeed, we have ∫
Sµit \BR(x)

e−
|x|2
2 ds =

∞∑
n=1

∫
Sµit ∩(B(n+1)R(x)\BnR(x))

e−
|x|2
2 ds

6
∞∑
n=1

e−n
2R2/2H1

(
Sµit ∩B(n+1)R(x)

)
6C

∞∑
n=1

e−n
2R2/2(n+ 1)R

= f(R)

and the function f satisfies limR→+∞ f(R) = 0.

Proposition 7.17. Given a sequence of parabolically rescaled curvature flows Sµit , as above, there exists a sub-
sequence µij and a (possibly empty) degenerate regular self–similarly shrinking network flow S∞t such that for
almost all t ∈ (−∞, 0) and for any α ∈ (0, 1/2),

S
µij
t → S∞t

in C1,α
loc ∩W

2,2
loc . This convergence also holds in the sense of Radon measures for all t ∈ (−∞, 0).

Moreover, for every continuous function with compact support in space–time ϕ : R2× (−∞, 0)→ R there holds

lim
j→∞

∫
(−∞,0)

∫
S
µij
t

ϕ(·, t) ds ds =

∫
(−∞,0)

∫
S∞t

ϕ(·, t) ds ds , (7.8)

where ds denotes the integration with respect to the canonical measure on S∞t , counting multiplicities and

lim
j→∞

∫
S
µij
t

ρ0,0(·, t) ds =

∫
S∞t

ρ0,0(·, t) ds = ΘS∞−1/2
= Θ̂(x0, t0) , (7.9)

for every t ∈ (−∞, 0).

Proof. We follow ideas in Ilmanen [57, Lemma 8] and [56, Section 7.1].
By the first point of Lemma 7.16, for every ball BR centered at the origin of R2, we have the uniform
bound H1(Sµit ∩ BR) 6 CR, for some constant C independent of i ∈ N and t ∈ (−∞, 0). Hence, we
can assume that the sequence of Radon measures defined by the left side of equation (7.8) are locally
equibounded and converges to some limit measure in the space–time ambient R2 × (−∞, 0)
Considering the functions

fi(t) =

∫
Sµit

∣∣∣k − x⊥

2t

∣∣∣2ρ0,0(·, t) ds ,

the limit (7.5) implies that fi → 0 in L1
loc(−∞, 0). Thus, there exists a (not relabeled) subsequence such

that the sequence of functions fi converges pointwise almost everywhere to zero. We call A ⊆ (−∞, 0)
such a convergence set.
Then, for any t ∈ A, because of the uniform boundH1(Sµit ∩BR) 6 CR, we have that for any R > 0∫

Sµit ∩BR

k2 ds 6 CR(t) ,

for a constant CR(t) independent of i. Hence, if t ∈ A, reparametrizing the curves of the rescaled net-
works by arclength, we obtain curves in W 2,2

loc with uniformly bounded first derivatives, which implies
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that any subsequence of the networks Sµit admits a further subsequence converging weakly in W 2,2
loc ,

hence in C1,α
loc to a degenerate regular network S∞t . Moreover, such subsequence S

µij
t actually converges

strongly in W 2,2
loc by the weak convergence in W 2,2

loc and the fact that fi(t) → 0 in L1
loc. Finally, by the

convergence in C1,α
loc , the associated Radon measures λijt = H1 S

µij
t weakly converge to λ∞t = H1 S∞t

(whereH1 S∞t is the one–dimensional Hausdorff measure restricted to S∞t , counting multiplicities).
Since the integral functional

S 7→
∫
S

∣∣∣k − x⊥

2t

∣∣∣2ρ0,0(·, t) ds .

is lower semicontinuous with respect to this convergence (see [99], for instance), the limit S∞t satisfies

k − x⊥

2t
= 0 ,

in W 2,2
loc , hence, by a bootstrap argument, each non–degenerate curve of S∞t is actually smooth. Thus,

for every t ∈ A the network S∞t is a degenerate regular shrinker, up to a dilation factor.
By a standard diagonal argument we can assume that for t in a dense countable subset B1 ⊆ A the
subsequence S

µij
t converges inW 2,2

loc and C1,α
loc to a limit degenerate regular shrinker S∞t , with associated

Radon measure λ∞t = H1 S∞t , as above.
When t ∈ A \ B1 we consider as S∞t the limit degenerate regular shrinker of an arbitrary converging
subsequence of the networks S

µij
t and λ∞t = H1 S∞t .

When t ∈ (−∞, 0) \ A we instead consider as λ∞t the limit Radon measure of an arbitrary weakly–
converging subsequence of the Radon measures λijt = H1 S

µij
t .

In this way we defined the limit network S∞t for every t ∈ A and the limit Radon measures λ∞t for every
t ∈ (−∞, 0).
If F is a countable dense family of smooth functions in the cone of non negative functions in C0

c (R2),
by the above convergence and the rescaled monotonicity formula, it follows that for every ϕ ∈ F , there
holds (by Proposition 6.3 and formula (6.2))

d

dt

∫
S
µij
t

ϕds = −
∫
S
µij
t

ϕk2 ds+

∫
S
µij
t

〈∇ϕ | k〉 ds

= −
∫
S
µij
t

ϕ

∣∣∣∣ k − ∇ϕ2ϕ

∣∣∣∣2 ds+

∫
S
µij
t

|∇ϕ|2

4ϕ
ds

6
1

4

∫
S
µij
t

|∇ϕ|2

ϕ
ds

6 (max |∇2ϕ|/2)λ
ij
t ({ϕ > 0})

6C(ϕ,∇2ϕ) ,

where we used the estimate |∇ϕ|2/ϕ 6 2 max |∇2ϕ|, holding for every ϕ ∈ C2
c (Rn) (where ϕ > 0),

proved in [56, Lemma 6.6] and the uniform bound H1(Sµit ∩ BR) 6 CR, for some constant C indepen-
dent of i ∈ N and t ∈ (−∞, 0).
Hence, fixing a single t0 ∈ (−∞, 0) \B1, the function∫

S
µij
t

ϕds− C(ϕ,∇2ϕ)t

is monotone non increasing once restricted to B1 ∪ {t0}. Passing to the limit (on the t0–special subse-
quence such that λijt0 converges to λ∞t0 ) the same holds for the function

t 7→
∫
R2

ϕdλ∞t − C(ϕ,∇2ϕ)t ,

restricted to B1 ∪ {t0}. By the arbitrariness of t0 ∈ (−∞, 0) \ B1, we then conclude that such function
is monotone non increasing on the whole (−∞, 0). Thus, for every ϕ ∈ F the function t 7→

∫
R2 ϕdλ

∞
t
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has an at most countable set of (jump) discontinuities, that we call Bϕ. Hence, we have that outside a
countable subset B =

⋃
ϕ∈F Bϕ of (−∞, 0), all the functions

t 7→
∫
R2

ϕdλ∞t

are continuous, for every ϕ ∈ F . This clearly implies that if t ∈ (−∞, 0) \ B, then the value of the
integral

∫
R2 ϕdλ

∞
t is uniquely determined and independent of the t–subsequence chosen to define λ∞t ,

for every ϕ ∈ F . An immediate consequence is that (by the density of F),

• if t ∈ (−∞, 0) \ B, the Radon measure λ∞t is uniquely determined and the full sequence λijt
converges to λ∞t ,

• if t ∈ A, the network S∞t is uniquely determined and the full sequence S
µij
t converges to S∞t in

W 2,2
loc and C1,α

loc ,

as j →∞.
Then, we can conclude by a diagonal argument on the sequences of networks S

µij
t when t ∈ B, that we

have a subsequence (not relabeled) of µij such that for every t ∈ A the networks S
µij
t converge in W 2,2

loc

and C1,α
loc and as Radon measures to S∞t , as j → ∞ and for every t ∈ (−∞, 0) we have λijt → λ∞t as

Radon measures.
By Proposition 6.3, every rescaled flow is a regular Brakke flow with equality, hence, the integrated
version of equation (6.2) holds, that is,∫
R2

ϕ(·, t1) dλ
ij
t1
−
∫
R2

ϕ(·, t2) dλ
ij
t2

=

∫ t1

t2

[
−
∫
S
µij
t

ϕ(γ, t)k2 ds+

∫
S
µij
t

〈∇ϕ(γ, t) | k〉 ds+

∫
S
µij
t

ϕt(γ, t) ds

]
dt ,

for every smooth function with compact support ϕ : R2 × (−∞, 0)→ R and t1, t2 ∈ (−∞, 0).
By the W 2,2

loc –convergence almost everywhere (for t in the set A) and the limit (7.5) (which allows us to
use the dominated convergence theorem) we can pass to the limit to get∫
R2

ϕ(·, t1) dλ∞t1 −
∫
R2

ϕ(·, t2) dλ∞t2 =

∫ t1

t2

[
−
∫
S∞t

ϕ(γ, t)k2 ds+

∫
S∞t
〈∇ϕ(γ, t) | k〉 ds+

∫
S∞t

ϕt(γ, t) ds

]
dt ,

where ds denotes the integration with respect to the canonical measure on S∞t , counting multiplicities.
This shows that the function t 7→

∫
R2 ϕ(·, t) dλ∞t is absolutely continuous on (−∞, 0) and for almost

every t ∈ (−∞, 0), there holds

d

dt

∫
R2

ϕ(·, t) dλ∞t = −
∫
S∞t

ϕ(γ, t)k2 ds+

∫
S∞t
〈∇ϕ(γ, t) | k〉 ds+

∫
S∞t

ϕt(γ, t) ds . (7.10)

We then consider, for every t ∈ (−∞, 0), the Radon measures defined by

νt(D) = λ∞t (
√
−2tD)/

√
−2t .

It is easy to see that showing that λ∞t = H1
(
√
−2tS∞−1/2) for every t ∈ (−∞, 0), is equivalent to prove

that the measures νt are all the same and this means that S∞t is a degenerate regular self–similarly
shrinking network flow.
We have, for every smooth function with compact support ψ : R2 → R,∫

R2

ψ(x) dνt(x) =
1√
−2t

∫
R2

ψ
( x√
−2t

)
dλ∞t (x) ,

hence, choosing ϕ(x, t) = ψ
(

x√
−2t

)
, at every time t such that equality (7.10) holds (almost every t ∈

(−∞, 0)), we have

d

dt

∫
R2

ψ(x) dνt(x) =
1

−2t
√
−2t

∫
S∞t

ψ
( γ√
−2t

)
ds− 1√

−2t

∫
S∞t

ψ
( γ√
−2t

)
k2 ds

+
1

−2t

∫
S∞t

〈
∇ψ
( γ√
−2t

) ∣∣∣ k〉 ds+

∫
S∞t

〈
∇ψ
( γ√
−2t

) ∣∣∣ γ
4t2

〉
ds .
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Substituting k = γ⊥/2t, we obtain

d

dt

∫
R2

ψ(x) dνt(x) =
1

−2t
√
−2t

∫
S∞t

ψ
( γ√
−2t

)
ds− 1√

−2t

∫
S∞t

ψ
( γ√
−2t

) 〈 k | γ⊥〉
2t

ds

−
∫
S∞t

〈
∇ψ
( γ√
−2t

) ∣∣∣ γ⊥
4t2

〉
ds+

∫
S∞t

〈
∇ψ
( γ√
−2t

) ∣∣∣ γ
4t2

〉
ds

=
1

−2t
√
−2t

∫
S∞t

ψ
( γ√
−2t

)
ds− 1√

−2t

∫
S∞t

ψ
( γ√
−2t

) 〈 k | γ⊥〉
2t

ds

+

∫
S∞t

〈
∇ψ
( γ√
−2t

) ∣∣∣ γ>
4t2

〉
ds

=
1

−2t
√
−2t

∫
S∞t

[
ψ
( γ√
−2t

)
+ ψ

( γ√
−2t

)
〈 k | γ〉+

〈
∇ψ
( γ√
−2t

) ∣∣∣ τ√
−2t

〉
〈τ | γ〉

]
ds ,

where we denoted with γ> the tangential component of the vector γ ∈ R2, that is, γ> = 〈τ | γ〉τ .
Noticing now that

∂s

[
ψ
( γ√
−2t

)
〈τ | γ〉

]
=
〈
∇ψ
( γ√
−2t

) ∣∣∣ τ√
−2t

〉
〈τ | γ〉+ ψ

( γ√
−2t

)
〈 k | γ〉+ ψ

( γ√
−2t

)
〈τ | τ〉

=
〈
∇ψ
( γ√
−2t

) ∣∣∣ τ√
−2t

〉
〈τ | γ〉+ ψ

( γ√
−2t

)
〈 k | γ〉+ ψ

( γ√
−2t

)
,

we conclude
d

dt

∫
R2

ψ(x) dνt(x) =
1

−2t
√
−2t

∫
S∞t

∂s

[
ψ
( γ√
−2t

)
〈τ | γ〉

]
ds

and this last integral is zero by Lemma 7.3 and the last point of Remark 7.5.
Since for every map ϕ : R2 → R the function t 7→

∫
R2 ϕ(x) dνt(x) is absolutely continuous on (−∞, 0)

with zero derivative almost everywhere, it is constant and we are done.
Equation (7.8) clearly follows by the convergence assumption on the sequence of Radon measures in
R2 × (−∞, 0) and this conclusion.
Finally, for every t ∈ (−∞, 0), by the second point of Lemma 7.16, we can pass to the limit in the
Gaussian integral and we get

lim
j→∞

∫
S
µij
t

ρ0,0(·, t) ds =

∫
S∞t

ρ0,0(·, t) ds = ΘS∞−1/2
,

since the right integral is constant in t, being S∞t a self–similarly shrinking flow.
Recalling that (see Section 6.1)∫

S
µij
t

ρ0,0(·, t) ds = Θx0,t0(t0 + µ−2
ij

t)→ Θ̂(x0, t0) ,

as j →∞, equality (7.9) follows.

Remark 7.18. We underline that even if the limit flow is composed of homothetic rescalings of a single
degenerate regular network, we cannot conclude that the convergence of S

µij
t to S∞t is in W 2,2

loc and C1,α
loc

for every t ∈ (−∞, 0) but only for almost every t ∈ (−∞, 0). For the “other” times the convergence
could be only as Radon measures.

We deal now with the possible blow–up limits arising from Huisken’s dynamical procedure. We recall
that

ρ̃(x) = e−
|x|2
2 .

The following technical lemma is the exact analogue of Lemma 7.16 for Huisken’s rescaling procedure.
It follows in the same way by the first point of such lemma.

Lemma 7.19. Let S̃x0,t be the family of rescaled networks, obtained via Huisken’s dynamical procedure around
some x0 ∈ R2, as defined in formula (6.7).
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1. There exists a constant C = C(S0) such that, for every x, x0 ∈ R2, t ∈
[
− 1

2 log T,+∞
)

and R > 0 there
holds

H1(S̃x0,t ∩BR(x)) 6 CR .

2. For any ε > 0 there is a uniform radius R = R(ε) such that∫
S̃x0,t\BR(x)

e−|x|
2/2 ds 6 ε ,

that is, the family of measures e−|x|
2/2H1 S̃x0,t is tight (see [27]).

Proposition 7.20. Let St =
⋃n
i=1 γ

i([0, 1], t) be a C2,1 curvature flow of regular networks in the time interval
[0, T ]. Then for every x0 ∈ R2 and for every subset I of [−1/2 log T,+∞) with infinite Lebesgue measure there
exists a sequence of rescaled times tj → +∞, with tj ∈ I, such that the sequence of rescaled networks S̃x0,tj

(obtained via Huisken’s dynamical procedure) converges in C1,α
loc ∩ W

2,2
loc , for any α ∈ (0, 1/2), to a (possibly

empty) limit network which is a degenerate regular shrinker S̃∞ (possibly with multiplicity). Moreover, we have

lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = ΘS̃∞ = Θ̂(x0) . (7.11)

where dσ denotes the integration with respect to the canonical measure on S̃∞, counting multiplicities.

Proof. Letting t1 = −1/2 log T and t2 → +∞ in the rescaled monotonicity formula (6.8) by Lemma 6.12
we get

+∞∫
−1/2 log T

∫
S̃x0,t

| k̃ + x⊥|2ρ̃ dσ dt < +∞ ,

which implies ∫
I

∫
S̃x0,t

| k̃ + x⊥|2ρ̃ dσ dt < +∞ .

Being the last integral finite and being the integrand a non negative function on a set of infinite Lebesgue
measure, we can extract within I a sequence of times tj → +∞, such that

lim
j→+∞

∫
S̃x0,tj

| k̃ + x⊥|2ρ̃ dσ = 0 . (7.12)

It follows that for every ball BR of radius R in R2, the networks S̃x0,tj have curvature uniformly
bounded in L2(BR). Moreover by the first point of Lemma 7.19 for every ball BR centered at the origin
of R2 we have the uniform bound H1(S̃x0,tj ∩ BR) 6 CR, for some constant C independent of j ∈ N.
Then reparametrizing the rescaled networks in arclength, we obtain curves with uniformly bounded
first derivatives and with second derivatives in L2

loc.
By a standard compactness argument (see [53, 67]) the sequence S̃x0,tj of reparametrized networks ad-
mits a subsequence S̃x0,tjl

which converges, weakly in W 2,2
loc and strongly in C1,α

loc , to a (possibly empty)
limit regular degenerate C1 network S̃∞ (possibly with multiplicity).
Since the integral functional

S̃ 7→
∫
S̃

| k̃ + x⊥|2ρ̃ dσ

is lower semicontinuous with respect to this convergence (see [99] for instance), the limit S̃∞ satisfies
k̃∞ + x⊥ = 0 in the sense of distributions.
A priori the limit network is composed of curves in W 2,2

loc but from the relation k̃∞ + x⊥ = 0 it follows
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that the curvature k̃∞ is continuous. By a bootstrap argument, it is then easy to see that S̃∞ is actually
composed of C∞ curves.
By means of the second point of Lemma 7.19 we can pass to the limit in the Gaussian integral and we
get

lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = ΘS̃∞ .

Recalling that
1√
2π

∫
S̃x0,tj

ρ̃ dσ =

∫
St(tj)

ρx0
(·, t(tj)) ds = Θx0

(t(tj))→ Θ̂(x0)

as j →∞, equality (7.11) follows.
The convergence in W 2,2

loc is implied by the weak convergence in W 2,2
loc and equation (7.12).

Remark 7.21. A singularity in which the curvature is unbounded is called of Type I if there exists a
constant C such that

max
St

k2 6
C

T − t
(7.13)

for every t ∈ [0, T ). Otherwise, the singularity is called of Type II.
If the singularity is of Type I, then the proof of this proposition gets easier and we get a stronger conver-
gence to the limit network. Indeed, thanks to the Type I estimate (7.13) one obtains a uniform pointwise
bound on the curvature (and consequently on its derivatives) of the rescaled network (see [82, Section 6,
Proposition 6.16], for instance). Similarly, with the right choice of the sequence µij , the same holds also
for Proposition 7.17.

Remark 7.22. Even if the two rescaling procedures are different (and actually one can use the more suit-
able for an argument) the family of blow–up limit shrinkers S̃∞ arising from Huisken’s one coincides
with the family of shrinkers S∞−1/2 where S∞t is any self– similarly shrinking curvature flow coming
from Proposition 7.17. This can be easily seen by Remark 6.10, since if Sµi−1/2 → S∞−1/2, then setting

ti = log (
√

2µi) we have S̃x0,ti → S∞−1/2, as i → ∞, hence S∞−1/2 = S̃∞ for such sequence. Vice versa, if

S̃x0,ti → S̃∞, setting µi = eti/
√

2, by means of Proposition 7.17, we have a converging (not relabeled)
subsequence of rescaled curvature flows Sµit → S∞t such that Sµi−1/2 → S̃∞, as i→∞, hence S̃∞ = S∞−1/2.

As a consequence, for every blow–up limit shrinker S̃∞ and any self–similarly shrinking curvature flow
S∞t there holds

ΘS̃∞ = ΘS∞−1/2
= Θ̂(x0) ,

by formulas 7.9 and 7.11.
Notice that in the first implication, for simplicity, we assumed the convergence at time t = −1/2 of
the parabolically rescaled flows, which actually is not guaranteed by Proposition 7.17. To be precise one
should argue by considering a time t, such that the sequence of networks Sµit converges to S∞t = λS∞−1/2,
for some factor λ > 0.

Remark 7.23. By means of Proposition 7.20, it is easy to see that, if t0 < T , hence the flow is smooth
in [0, t0] and the curvature is bounded, we have Θ̂(x0, t0) = 0 if x0 6∈ St0 , since every blow–up limit is
clearly empty and that Θ̂(x0, t0) = 1, if x0 ∈ St0 and it is neither a 3–point nor an end–point of St0 , as
every blow–up limit must be a multiplicity–one line through the origin of R2 (see [78, Remark 3.2.15]).
Then, by means of the “reflection argument” at the end of Section 7.2, if x0 is an end–point there holds
Θ̂(x0, t0) = 1/2, being the Gaussian density of a halfline. Finally, if x0 ∈ St0 is a triple junction, we see
that Θ̂(x0, t0) = 3/2, indeed, ifOi(t) is the 3–point such thatOi(t0) = x0, since the curvature is bounded
every blow–up limit shrinker must be non–degenerate, without end–points and have zero curvature,
moreover, it is a tree locally around x0 as no region collapses (the flow is smooth up to t0). Being the
modulus of the velocity vi(t) of Oi(t) bounded by some constant C, for t ∈ [0, t0) we have

|Oi(t)− x0| = |Oi(t0)−Oi(t)| =
∣∣∣∣∫ t0

t

vi(ξ) dξ

∣∣∣∣6 ∫ t0

t

|vi(ξ)| dξ 6 C|t0 − t| ,
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which implies, after performing Huisken’s rescaling procedure, that its image Õi(t) satisfy

|Õi(t)| = |O
i(t(t)− x0|√
2(t0 − t(t))

6
C|t0 − t(t)|√
2(t0 − t(t))

= C
√

(t0 − t(t))/2 ,

which tends to zero, as t → +∞. In particular, the image of the 3–point cannot “disappear” in the
limit regular shrinker (for instance, going to infinity), then Lemma 7.10 tells us that the only possible
blow–up limit shrinkers are standard triods T which have Gaussian density ΘT equal to 3/2.
The following lemma is helpful in strengthening the convergence in the previous proposition.

Lemma 7.24. Given a sequence of smooth curvature flows of networks Sit in a time interval (t1, t2) with uni-
formly bounded length ratios, if in a dense subset of times t ∈ (t1, t2) the networks Sit converge in a ballB ⊆ R2 in
C1

loc, as i→∞, to a multiplicity–one, embedded, C∞–curve γt moving by curvature in B′ ⊇ B, for t ∈ (t1, t2]
(hence, the curvature of γt is uniformly bounded), then for every (x0, t0) ∈ B × (t1, t2], the curvature of Sit is
uniformly bounded in a neighborhood of (x0, t0) in space–time. It follows that, for every (x0, t0) ∈ B × (t1, t2],
we have Sit → γt smoothly around (x0, t0) in space–time (possibly, up to local reparametrizations of the networks
Sit).

Proof. Being γt a smooth flow of an embedded curve in B, we have Θ̂(x0, t0) = 1 (by Remark 7.23),
hence, for (x, t) in a suitably small neighborhood of (x0, t0) ∈ B × (t1, t2] we have that Θx,t(τ) 6
1 + ε/2 < 3/2, for every τ ∈ (τ0, t) and some τ0 > 0, where ε > 0 is smaller than the “universal”
constant given by White’s local regularity theorem for mean curvature flow in [111]. Then, in a possibly
smaller space–time neighborhood of (x0, t0), for a fixed time τ ∈ (τ0, t) where the C1

loc–convergence of
the networks Siτ → γτ holds (such a subset of times is dense), for i large enough, the Gaussian density
functions of Siτ satisfy Θi

x,t(τ) < 1 + ε < 3/2 (the Gaussian density functions are clearly continuous
under the C1

loc convergence with uniform length ratios estimate, by the exponential decay of backward
heat kernel). Hence, by Proposition 6.7, Lemma 6.8 and the subsequent discussion (possibly choosing
a larger τ ), this also holds for every τ ∈ (τ , t). In other words, Θi

x,t(t − r2) < 1 + ε < 3/2, for every
(x, t) in a space–time neighborhood of (x0, t0), 0 < r < r0 and i > i0, for some r0 > 0. By Remark 7.23,
this “forbids” the presence of a 3–point of Sit in such space–time neighborhood, hence we are dealing
simply with (classical) curvature flows of curves. Then, White’s local regularity theorem gives a uniform,
local (in space–time) estimate on the curvature of all Sit, which actually implies uniform bounds on all
its higher derivatives (for instance, by Ecker and Huisken interior estimates in [30]), around (x0, t0).
Hence the statement of the lemma follows (see also [111, Theorem 7.3]).

As a consequence, the convergence of S
µij
t to the limit degenerate regular self–similarly shrinking net-

work flow S∞t in Proposition 7.17 is smooth locally in space–time around every interior point of the
multiplicity–one curves of the network S∞t .
Moreover if S∞t is non–degenerate (no cores) and with only multiplicity–one curves, then actually
S
µij
t → S∞t smoothly, locally in space–time (also around the 3–points). This can be shown by following

the argument of the proof of Lemma 8.6 in [58] (see anyway the proof in the special case of Lemma 8.1).
Analogously, also for Huisken’s dynamical procedure it can be shown that the convergence of the
rescaled networks S̃x0,tj to S̃∞ is locally smooth far from the cores and non multiplicity–one curves
of S̃∞.
Notice that the blow–up limit degenerate shrinker S̃∞, obtained by Proposition 7.20 a priori depends on
the chosen sequence of rescaled times tj → +∞. If such a limit is a multiplicity–one line (or a halfline,
if x0 is an end–point of the network), we have Θ̂(x0) = 1 (Θ̂(x0) = 1/2 in the case of a halfline), then
by White’s result [111, Theorem 3.5], locally around x0 the curvature is uniformly bounded in time and
the flow is smooth up to time T (using the “reflection argument” at the end of Section 7.2, if x0 is an
end–point), hence, the limit is unique. In general, uniqueness of such a limit is actually unknown.

Open Problem 7.25 (Uniqueness of Blow–up Assumption – U). The limit degenerate regular shrinker
S̃∞ is independent of the chosen converging sequence of rescaled networks S̃x0,tj in Proposition 7.20.
More precisely, the full family S̃x0,t converges in C1

loc to S̃∞, as t→ +∞.

In Section 9 we will partially address this problem, concluding that it has a positive answer in the case
of tree–like networks (see Remark 9.34). Moreover, some positive partial results were recently obtained
in [90].
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Remark 7.26. A similar (actually equivalent, in view of Remark 6.10) problem can be stated for the limit
degenerate regular self–similarly shrinking flow S∞t given by a converging subsequence S

µij
t of the

family of the parabolically rescaled curvature flows Sµit in Proposition 7.17, about the independence of
S∞t of the sequence µi and subsequence µij . Namely, do we have the full convergence of the family of
flows Sµt to S∞t , as µ→ +∞?

Remark 7.27. A regular shrinker is said to be multiplicity–one if it has no cores and none of its curves has
multiplicity higher than one. In case the limit degenerate regular shrinker S̃∞ is actually a multiplicity–
one regular shrinker (or the same for the limit degenerate regular self–similarly shrinking flow S∞t )
the above uniqueness assumption implies that the singularity is of Type I (see the Remark 7.21 above).
Indeed, by Lemma 7.24 the convergence of the rescaled networks to S̃∞ is smooth which implies that
the curvature is locally uniformly bounded by C/

√
T − t.

It is then natural in view of this remarks to state also the following open problems.

Open Problem 7.28 (Non–degeneracy of the blow–up).

• Any blow–up limit shrinker S̃∞ different from a standard cross (see Figure 7.5 and Lemma 7.10)
is non–degenerate (the same for the limit self–similarly shrinking flow S∞t )?

• There can be curves with multiplicity larger than one?

• If S̃∞ is degenerate, there can be any cores outside the origin?

Open Problem 7.29 (Type I Conjecture). Every singularity is of Type I (there exists a constant C > 0
such that inequality (7.13) is satisfied, for every t ∈ [0, T )).

7.4 Blow–up limits under hypotheses on the lengths of the curves of the network

Proposition 7.30. Let St =
⋃n
i=1 γ

i([0, 1], t) be the curvature flow of a regular network with fixed end–points in
a smooth, convex, bounded open set Ω ⊆ R2 such that three end–points of the network are never aligned. Assume
that the lengths Li(t) of the curves of the networks satisfy

lim
t→T

Li(t)√
T − t

= +∞ ,

for every i ∈ {1, 2, . . . , n}. Then any limit degenerate regular shrinker S̃∞ obtained by Proposition 7.20, if non–
empty, is one of the following networks:
if the rescaling point belongs to Ω

• a straight line through the origin with multiplicity m ∈ N (in this case Θ̂(x0) = m);

• a standard triod centered at the origin with multiplicity 1 (in this case Θ̂(x0) = 3/2);

if the rescaling point is a fixed end–point of the evolving network (on the boundary of Ω)

• a halfline from the origin with multiplicity 1 (in this case Θ̂(x0) = 1/2).

Moreover, we have

lim
j→∞

1√
2π

∫
S̃x0,tj

ρ̃ dσ =
1√
2π

∫
S̃∞

ρ̃ dσ = ΘS̃∞ = Θ̂(x0) , (7.14)

and the L2–norm of the curvature of S̃x0,tj goes to zero in every ball BR ⊆ R2, as j →∞.

Proof. We assume, by Proposition 7.20, that the sequence S̃x0,tj of reparametrized networks converges
in C1

loc ∩W
2,2
loc to the limit regular shrinker network S̃∞ composed of C∞ curves (with possibly mul-

tiplicity), which are actually non–degenerate as the bound from below on their lengths prevents any
collapsing along the rescaled sequence.
If the point x0 ∈ R2 is distinct from all the end–points P r, then S̃∞ has no end–points, since they go
to infinity along the rescaled sequence. If x0 = P r for some r, the set S̃∞ has a single end–point at the
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origin of R2.
Moreover, from the lower bound on the length of the curves it follows that all the curves of S̃∞ have
infinite length, hence, by Remark 7.9, they must be pieces of straight lines from the origin, because of
the uniform boundH1(Sµit ∩BR) 6 CR, for every ball BR ⊆ R2.
This implies that every connected component of the graph underlying S̃∞ can contain at most one 3–
point and in such case such component must be mapped to a standard triod (the 120 degrees condition
must satisfied) with multiplicity one since the sequence of converging networks is all embedded (to
get in the C1

loc–limit a triod with multiplicity higher than one it is necessary that the approximating
networks have self–intersections). Moreover, again since the converging networks are all embedded, if
a standard triod is present, a straight line or another triod cannot be there, since they would intersect
transversally (see Remark 7.5). Vice versa, if a straight line is present, a triod cannot be present.
If an end–point is not present, that is, we are rescaling around a point in Ω (not on its boundary) and
a 3–point is not present, the only possibility is a straight line (possibly with multiplicity) through the
origin of R2.
If an end–point is present, we are rescaling around an end–point of the evolving network, hence, by
the convexity of Ω (which contains all the networks) the limit S̃∞ must be contained in a halfplane with
boundary a straight line H for the origin. This excludes the presence of a standard triod since it cannot
be contained in any halfplane. Another halfline is obviously excluded, since they “come” only from
end–points and they are all distinct. In order to exclude the presence of a straight line, we observe that
the argument of Proposition 7.13 implies that, if Ωt ⊆ Ω is the evolution by curvature of ∂Ω keeping
fixed the end–points P r, the blow–up of Ωt at an end–point must be a cone spanning angle strictly less
then π (here we use the fact that three end–points are not aligned) and S̃∞ is contained in such a cone.
It follows that S̃∞ cannot contain a straight line.
In every case the curvature of S̃∞ is zero everywhere and the last statement follows by the W 2,2

loc –
convergence.
Finally, formula (7.14) is a special case of equation (7.11).

Remark 7.31. If the two curves describing the boundary of Ω around an end–point P r are actually seg-
ments of the same line, namely the three end–points are P r−1, P r, P r+1 aligned, the argument of Propo-
sition 7.13 does not work and we cannot conclude that taking a blow–up at P r we only get a halfline
with unit multiplicity. It could also be possible that a straight line (possibly with multiplicity) through
the origin is present, coinciding with H . Moreover in such special case, it forces also the halfline to be
contained inH , since the only way to get a line, without self–intersections in the sequence of converging
networks contained in Ω is that the curves that are converging to the straight line “pushes” the curve
getting to the end–point of the network, toward the boundary of Ω.

With the same arguments of the proof of Proposition 7.30, an analogous proposition holds for the self–
similarly shrinking limit network flow obtained by the parabolic rescaling procedure.

Proposition 7.32. Under the hypotheses of Proposition 7.30, the degenerate regular self–similarly shrinking
network flow S∞t , obtained in Proposition 7.17 by parabolically rescaling around the point (x0, T ) in space–time,
is (if non–empty) one of the following “static” flows.
If the rescaling point belongs to Ω:

• a straight line through the origin with multiplicity m ∈ N (in this case Θ̂(x0) = m);

• a standard triod centered at the origin with multiplicity 1 (in this case Θ̂(x0) = 3/2).

If the rescaling point is a fixed end–point of the evolving network (on the boundary of Ω):

• a halfline from the origin with multiplicity 1 (in this case Θ̂(x0) = 1/2).

Open Problem 7.33. Is it possible to classify in general all the possible limit degenerate shrinkers S̃∞
or self–similarly shrinking flows S∞t , obtained respectively by Huisken’s dynamical procedure or by
parabolic rescaling?

Remark 7.34. If the evolving network is a tree, every connected component of a limit degenerate regular
shrinker (possibly with multiplicities) is still a tree. Hence by Lemma 7.10 and the same argument of
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the proof of Proposition 7.30 such a network has zero curvature and it is a union of halflines from the
origin, possibly with multiplicity and a core.
Remark 7.35. In Section 9 we will discuss under what hypotheses the (unscaled) evolving networks St
converge to some limit (well–behaved) set ST ⊆ R2, as t → T and what are the relations between such
ST and any limit degenerate shrinker S̃∞ or self–similarly shrinking flow S∞t .

8 Local regularity

In this section, we first show that any smooth, curvature flow of regular networks which is only C1
loc–

close to the static flow given by a standard triod, is actually smoothly close. An important ingredient
here is the estimates from Proposition 4.11, under the hypotheses (4.1), which make it possible to control
the evolution of the L2–norm of k locally.
Then this result together with the classification of tangent flows from Lemma 7.11 yield a local regularity
theorem. As a consequence, locally (in space–time) around the points with limit Gaussian density not
greater than 3/2, the curvature of the evolving network St is bounded and the flow is smooth, meaning
that locally St converges smoothly to a limit smooth network ST , as t→ T .

Lemma 8.1. Let T be the static flow given by a standard triod centered at the origin and let Sit for t ∈ (−1, 0)
be a sequence of smooth curvature flows of networks with uniformly bounded length ratios (see Definition 7.15).
Suppose that the sequence Sit converges to T inC1

loc for almost every t ∈ (−1, 0), as i→∞. Then the convergence
is smooth on any subset of the form BR(0)× [t̃, 0) where R > 0 and −1 < t̃ < 0.

Proof. As the length ratios are uniformly bounded, the exponential decay of the backward heat kernels
ρ0,0(·, t) and the C1

loc–convergence imply that for almost every −1 < t < 0 we have∫
Sit
ρ0,0(·, t) ds→

∫
T
ρ0,0(·, t) ds =

3

2
< +∞ ,

hence by (7.5) it follows that the sequence of functions

fi(t) =

∫
Sit

∣∣∣ki − x⊥

2t

∣∣∣2ρ0,0(·, t) ds ,

converges to zero in L1
loc(−1, 0).

Arguing as in the proof of Proposition 7.17, we see that we can choose a further subsequence (not
relabeled) such that Sit → T in C1,α

loc ∩ W
2,2
loc for all t ∈ A where A ⊆ (−1, 0) is a set of full measure.

Choose R > 0, t̃ ∈ (−1, 0) and t0 ∈ A such that t0 < t̃. Lemma 7.24, with a compactness argument,
implies that the curvature of the networks Sit with all its derivatives are uniformly bounded and the
convergence Sit → T is smooth and uniform in

(
BR+1(0) \BR(0)

)
× [t0, 0). We can thus introduce three

“artificial” boundary points P ri (t) ∈ Sit ∩ (BR+1(0) \ BR(0)), r = 1, 2, 3, for t ∈ [t0, 0) along the three
rays such that the estimates (4.1) are satisfied, more precisely, we can assume that

∂jsλi(P
r
i (t), t) = 0 and |∂jski(P ri (t), t)| 6 1 ,

for all i > i0 and all j > 0.
Let T1 > 0 be the constant from Proposition 4.11 for M = 1 and let δ = T1/2. Then, choose tl ∈ A, for
l = 1, 2, . . . , N = [δ−1] + 1, such that

tl < tl+1 , |tN | 6 δ/2 and |tl+1 − tl| 6 δ/2,

for all 0 6 l 6 N − 1.
By increasing i0, if necessary, we can assume that∫

Sitl∩BR+1(0)

k2
i ds 6 1

and that Sitl is 1/100–close in C1,α to T on BR+1(0), for all l = 0, . . . , N and i > i0.
Proposition 4.13 then implies uniform estimates on ki and all its space derivatives on BR(0)× [t̃, 0), for
all i > i0. This clearly implies the convergence conclusion in the statement.
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Remark 8.2. With a similar argument it can be shown that if Sit converge as above to a self–similarly
shrinking regular network flow, non–degenerate and with unit multiplicity, then the convergence is
smooth and uniform on any compact subset of R2 × (−1, 0) (Lemma 8.6 in [58]).

We now show a local regularity result in the spirit of the analogous White’s theorem for mean curvature
flow in [111], actually being an extension of such theorem to the network flow, roughly saying that (like
in the case of the motion of smooth curves) the “regular” points are the ones with limit Gaussian density
smaller than ΘS1 (which is greater than 3/2 and less than 2, see formula (7.2)).
We follow here the alternative proof of Ecker [29, Theorem 5.6].

Theorem 8.3 (Theorem 1.3 in [58]). Let St for t ∈ (T0, T ) be a curvature flow of a smooth, regular network in
R2 with uniformly bounded length ratios by some constant L (see Definition 7.15). Let (x0, t0) ∈ R2 × (T0, T )
such that x0 ∈ St0 , then for every ε, η > 0 there exists a constant C = C(ε, η, L) such that if

Θx,t(t− r2) 6 ΘS1 − ε , (8.1)

for all (x, t) ∈ Bρ(x0)× (t0 − ρ2, t0) and 0 < r < ηρ, for some ρ > 0, where T0 + (1 + η)ρ2 6 t0 < T , then

k2(x, t) 6
C

σ2ρ2
,

for all σ ∈ (0, 1) and every (x, t) such that t ∈ (t0 − (1− σ)2ρ2, t0) and x ∈ St ∩B(1−σ)ρ(x0).

Proof. By translation and scaling we can assume that x0 = 0, t0 = 0 and ρ = 1. We can now follow more
or less verbatim the proof of Theorem 5.6 in [29].
We argue by contradiction. Supposing that the statement is not correct we can find a sequence of smooth
curvature flows of regular open networks Sjt , defined for t ∈ [−1− η, 0], satisfying the above conditions
for every (x, t) ∈ B1(0)× (−1, 0), but with

ζ2
j = sup

σ∈[0,1]

(
σ2 sup

t∈(−(1−σ)2,0)

sup
Sjt∩B1−σ

k2
j

)
→ +∞

as j →∞.
Hence, we can find σj ∈ (0, 1] such that

ζ2
j = σ2

j sup
t∈(−(1−σj)2,0)

sup
Sit∩B1−σj

k2
j

and yj ∈ Sjτj ∩B1−σj at a time τj ∈ [−(1− σj)2, 0] so that

ζ2
j = σ2

jk
2
j (yj , τj) .

We now take
λj = |kj(yj , τj)|

(clearly λj → +∞ as j →∞) and define

S̃jt = λj

(
Sj
λ−2
j t+τj

− yj
)
,

for t ∈ [−λ2
jσ

2
j /4, 0], following the proof of Theorem 5.6 in [29]. We can then see that

0 ∈ S̃j0 , k̃2
j (0, 0) = 1 (8.2)

and
sup

t∈(−λ2
jσ

2
j/4,0)

sup
S̃jt∩Bλjσj/2

k̃2
j 6 4 (8.3)

for every j > 1. By direct computation, we have

Θ̃j

x,t
(t) =

∫
S̃jt
ρx,t(·, t) ds =

∫
Sjt
ρyj+xλ−1

j ,τj+tλ−2
j

(·, t) ds = Θj

yj+xλ
−1
j ,τj+tλ−2

j

(t)
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where t = t(t) = τj + tλ−2
j and Θj are the Gaussian densities relative to the flows Sjt . Since, by hypoth-

esis, Θj

yj+xλ
−1
j ,τj+tλ−2

j

(t) 6 ΘS1 − ε for every j ∈ N, yj + xλ−1
j ∈ B1(0) and τj + tλ−2

j ∈ (−1, 0), we

conclude that Θ̃j

x,t
(t) 6 ΘS1−ε, for j sufficiently large, for all (x, t) ∈ R2×(−∞, 0] and−λ2

jσ
2
j /4 < t < t.

This implies that for every t ∈ (−λ2
jσ

2
j /4, 0), we have∫

S̃jt∩BR(0)

eR
2/4t

√
−4πt

ds 6
∫
S̃jt∩BR(0)

e|x|
2/4t

√
−4πt

ds 6
∫
S̃jt
ρ0,0(·, t) ds = Θ̃j

0,0(t) 6 ΘS1 − ε ,

hence, for j sufficiently large,

H1(S̃jt ∩BR(0)) 6 CR(t) = e−R
2/4t
√
−4πt(ΘS1 − ε) . (8.4)

Moreover, the family of networks S̃jt has uniformly bounded length ratios by L, since this holds for the
unscaled networks and such condition is scaling invariant.
Since λ2

jσ
2
j = ζ2

j → +∞, by the length estimate (8.4), arguing as in Proposition 7.17, we see that up to a
subsequence, labeled again the same, for every t ∈ (−∞, 0), we have

S̃jt → S̃∞t

in C1
loc and weakly in W 2,∞

loc , for almost every t ∈ (0,−∞), to a limit C1,1–flow S̃∞t . Actually, the
uniform bound on the curvature, everywhere in space–time, implies that such convergence holds for
every t ∈ (−∞, 0] and it is locally uniform in time. Such flow (which is not a priori a curvature flow)
of networks is possibly degenerate, that is, cores and higher density lines can develop, it moves with
normal velocity bounded by 4, by estimates (8.3) and it is not empty as 0 ∈ S̃j0 for every j ∈ N, hence
0 ∈ S̃∞0 also.
Because of the uniformly bounded length ratios of the family of networks S̃jt and the exponential decay
of the backward heat kernels, we can pass to the limit in the Gaussian densities, as j →∞, that is,

Θ̃∞
x,t

(t) = lim
j→∞

Θ̃j

x,t
(t) = lim

j→∞
Θj

yj+xλ
−1
j ,τj+tλ−2

j

(t) 6 ΘS1 − ε

for all (x, t) ∈ R2×(−∞, 0] and t < t, where we denoted with Θ̃j and Θ̃∞ the Gaussian density functions
relative to the flows S̃jt and S̃∞t , respectively.
Moreover, 0 ∈ S̃j0 implies Θ̂j(0, 0) > 1, hence Θ̃j

0,0(t) > Θ̂j(0, 0) > 1 for every t < 0, by monotonicity. It
follows that Θ̃∞0,0(t) = limj→∞ Θ̃j

0,0(t) > 1, thus,

Θ̂∞(0, 0) = lim
t→0

Θ̃∞0,0(t) = lim
t→0

lim
j→∞

Θ̃j
0,0(t) > 1 .

We want now to show that S̃∞t is actually a static self–similarly shrinking flow given by either a
multiplicity–one line or a standard triod.
As in Section 6.1, we consider the rescaled monotonicity formula for the curvature flows S̃jt , that is,
considered x ∈ R2 we have

Θ̃j
x,0(t1)− Θ̃j

x,0(t2) =

t2∫
t1

∫
S̃js

∣∣∣k̃j − x⊥

2s

∣∣∣2ρx,0(·, s) ds ds

hence, passing to the limit, as j → ∞, we get (here ds denotes the integration with respect to the
canonical measure on S̃∞t , counting multiplicities)

Θ̃∞x,0(t1)− Θ̃∞x,0(t2) = lim
j→∞

t2∫
t1

∫
S̃js

∣∣∣k̃j − x⊥

2s

∣∣∣2ρx,0(·, s) ds ds >
t2∫

t1

∫
S̃∞s

∣∣∣k̃∞ − x⊥

2s

∣∣∣2ρx,0(·, s) ds ds (8.5)
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for every t1 < t2 6 0 and x ∈ R2, by the lower semicontinuity of the L2–integral of the curvature under
the W 2,∞

loc –weak convergence. It follows that the Gaussian density function Θ̃∞x,0(t) is non increasing in
t ∈ (−∞, 0], then, as we know that it is uniformly bounded above by ΘS1 − ε, there exists the limit

Θ̂∞x,0(−∞) = lim
t→−∞

Θ̃∞x,0(t) 6 ΘS1 − ε .

Notice that Θ̂∞0,0(−∞) > 1, as we know that Θ̃∞0,0(t) > 1, for every t < 0.
Parabolically rescaling the flow S̃∞t around the point (x, 0) (following the proof of Proposition 7.17) by
means of inequality (8.5), the uniform bound on the curvature and the uniform bound on the length
ratios, we obtain that the limit (which exists by the monotonicity of t 7→ Θ̃∞x,0(t))

Θ̂∞(x, 0) = lim
t→0

Θ̃∞x,0(t) 6 Θ̂∞x,0(−∞) 6 ΘS1 − ε

coincides with the Gaussian density of a limit degenerate regular shrinker (possibly empty). Being such
a limit bounded by ΘS1 − ε, the only possibilities are 0, 1 and 3/2, by Lemma 7.11 (an empty limit, a
line, or a standard triod).
Since S̃∞0 is not empty, we notice that if it contains a 3–point, let us say at x ∈ R2, then by the bound on
the velocity, also all the networks S̃∞t contain a 3–point at distance less than −5t from x. This implies
that parabolically rescaling as above around x, we get a limit self–similarly shrinking network flow
with zero curvature and with a 3–point, then it must be a static standard triod and Θ̂∞(x, 0) = 3/2. We
then take a point x ∈ R2 such that Θ̂∞(x, 0) is maximum, hence either 1 or 3/2 by what we said above
and we consider the sequence of translated and rescaled flows for τ ∈ (−∞, 0] defined as

Snτ =
1√
n

(
S̃∞nτ − x

)
,

for n ∈ N.
This family of flows still has uniformly bounded length ratios (since this holds for the flows S̃∞t ) and
rescaling the monotonicity formula for the flows S̃∞t , for every τ1 < τ2 < 0, there holds

τ2∫
τ1

∫
Snσ

∣∣∣kn − x⊥

2σ

∣∣∣2ρ0,0(·, σ) ds dσ 6 Θ
n

0,0(τ1)−Θ
n

0,0(τ2) = Θ̃∞x,0(nτ1)− Θ̃∞x,0(nτ2)→ 0

as n → ∞, since limt→−∞ Θ̃∞x,0(t) → Θ̂∞x,0(−∞) as t → −∞ (here we denoted with Θ
n

the Gaussian
density functions relative to the flows Snτ ).
Then, repeating the argument of the proof of Proposition 7.17, we can extract a subsequence, not rela-
beled, of the flows Snτ converging in C1

loc ∩W
2,2
loc , for almost every τ ∈ (−∞, 0), to a limit self–similarly

shrinking flow S∞τ , as n→∞, which is called “tangent flow at −∞” to the flow S̃∞t .
Since,

Θ
n

0,0(τ) =

∫
Snτ

ρ0,0(·, τ) ds =

∫
S̃∞nτ

ρx,0(·, nτ) ds = Θ̃∞x,0(nτ) ,

it follows that, passing to the limit as n → ∞ (again because of the uniformly bounded length ratios
and the exponential decay of the backward heat kernels), for almost every τ ∈ (−∞, 0), there holds

ΘS∞−1/2
= Θ

∞
0,0(τ) = lim

n→∞
Θ̃∞x,0(nτ) = Θ̂∞x,0(−∞) 6 ΘS1 − ε

which implies that the limit flow S∞τ is not empty, as Θ̂∞x,0(−∞) > 1 and it is a static self–similarly
shrinking flow, given by either a multiplicity–one line or a standard triod, by Lemma 7.11.
If Θ

∞
0,0(τ) = 1, then Θ̂∞x,0(−∞) = 1 which forces Θ̃∞x,0(t) to be constant equal to one for every t ∈ (−∞, 0),

since Θ̂∞(x, 0) must be equal to 1.
If Θ

∞
0,0(τ) = 3/2, being S∞τ a standard triod, it follows that a 3–point is present in the flow S̃∞t , hence

also in S̃∞0 . Then, if we choose x to coincide with such 3–point, we would have Θ̂∞(x, 0) = 3/2 and
again the Gaussian density Θ̃∞x,0(t) is constant equal to 3/2, for t ∈ (−∞, 0).
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In both cases we conclude that S̃∞t is a self–similarly shrinking flow around the point x ∈ R2, by
formula 8.5, given by a multiplicity–one line in the first case and a standard triod in the second one.
If S̃∞t is a line for every t ∈ (−∞, 0], hence with zero curvature, Lemma 7.24 implies that the convergence
of the flows S̃jt → S̃∞t is locally smooth. This gives a contradiction since, by formula (8.2), it would
follow that 0 ∈ S̃∞0 and k̃2

∞(0, 0) = 1.
If S̃∞t is a static standard triod, then Lemma 8.1 gives a contradiction as before.

Remark 8.4.

1. The result is still true if the flow is only defined on the ballB2ρ(x0), by localizing Huisken’s mono-
tonicity formula with a suitable cut–off function. This makes the result applicable for curvature
flows of networks with fixed end–points on the boundary of a domain Ω ⊆ R2, once assuming that
there are no boundary points inB2ρ(x0)×(t0−(1+η)ρ2, t0). We refer the reader to [110, Section 10
] and Remark 4.16 together with Proposition 4.17 in [29].

2. By an easy contradiction argument, one can show that the bound on the curvature, together with
the 120 degrees condition and assumption (8.1), imply that there is a constant ` = `(ε, η, ρ) > 0
such that for t ∈ (t0 − (1 − σ)2ρ2, t0) the length of each curve of St which intersects B(1−σ)ρ(x0)
is bounded from below by ` · σρ. This implies, using Proposition 4.13, corresponding scaling
invariant estimates on all the higher derivatives of the curvature.

The following corollary is then an extension of White’s result [111, Theorem 3.5] to the curvature flow
St of a network in a smooth, convex, bounded open set Ω ⊆ R2, with fixed end–points on ∂Ω.

Corollary 8.5. If at a point x0 ∈ Ω there holds Θ̂(x0) 6 3/2, then the curvature is uniformly bounded along the
flow St, for t ∈ [0, T ), in a neighborhood of x0. Then, the flow is smooth in such a neighborhood, in the sense that
St converges smoothly to a limit smooth network ST there, as t→ T .

Proof. First, by Lemma 7.16, the family of networks St has uniformly bounded length ratios. Then,
as Θ̂(x0) = Θ̂(x0, T ) 6 3/2, by Proposition 6.7, Lemma 6.8 and the subsequent discussion about the
behavior of Θx0,T (t), there exists ρ1 ∈ (0, 1) such that Θx0,T (T − ρ2

1) < 3/2 + δ/2, for some small
δ > 0. The function (x, t) 7→ Θx,t(t − ρ2

1) is continuous, hence, we can find ρ < ρ1 such that if (x, t) ∈
Bρ(x0) × (T − ρ2, T ), then Θx,t(t − ρ2

1) < 3/2 + δ, thus, again by by Proposition 6.7, Lemma 6.8 and
the subsequent discussion (possibly choosing smaller ρ1 and ρ), also Θx,t(t − r2) < 3/2 + δ, for any
r ∈ (0, ρ/2), as clearly (t− r2) > (t− ρ2

1).
This implies that if δ > 0 is small enough such that 3/2+δ < ΘS1 =

√
2π/e ≈ 1,5203 (see equation (7.2)),

for any t0 close enough to T the hypotheses of Theorem 8.3 (see the first point of Remark 8.4) are satisfied
at (x0, t0), for η = 3/4 and ε = ΘS1 − 3/2− δ > 0. Choosing σ = 1/2, we conclude that

k2(x, t) 6
4C(ε, 3/4)

ρ2

for every (x, t) such that t ∈ (t0− ρ2/4, t0) and x ∈ St ∩Bρ/2(x0). Since this estimate on the curvature is
independent of t0 < T , it must hold for every t ∈ (T − ρ2/4, T ) and x ∈ St ∩Bρ/2(x0) and we are done.
We now show the smoothness of the flow up to time T in a neighborhood of x0. Since the curvature of
St is bounded in Bρ/2(x0), the modulus of the velocity vi(t) of any triple junction Oi(t) in such ball is
uniformly bounded by some constant D, hence, if for t in an interval of time [t1, t2], such triple junction
belongs to the ball Bρ/2(x0), there holds

|Oi(t2)−Oi(t1)| =
∣∣∣∣∫ t2

t1

vi(ξ) dξ

∣∣∣∣6 ∫ t2

t1

|vi(ξ)| dξ 6 D|t2 − t1| . (8.6)

This implies that if for some t0 close enough to T , the triple junction Oi(t0) belongs to the ball Bρ/4(x0),
then it can no more “escape” from the ball Bρ/2(x0), hence such estimate holds for every t ∈ [t0, T )
implying that Oi(t) is a Cauchy sequence and Oi(t) → xi, for some xi ∈ Bρ/2(x0). As a consequence,
since the family of the limit points {xi} of the triple junctions in Bρ/4(x0) is finite, possibly taking a
smaller ρ, we can assume that only x0 (possibly) belongs to such family. Hence, for any δ ∈ (0, ρ/4), the
annulusAδ = Bρ/4(x0)\Bδ(x0) does not contains triple junctionsOi(t) for t larger than some t ∈ [0, T ).
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This clearly means that the “restriction” of the flow St to the open set Aδ is a smooth (classical) flow by
curvature of curves in a domain of the plane with uniformly bounded curvature. By standard estimates
(for instance, by Ecker and Huisken interior estimates in [30]) then St ∩ Aδ converges smoothly to
some limit family of embedded and non–intersecting smooth curves in Aδ . Since this holds for every
δ ∈ (0, ρ/4), we can conclude that St converges (possibly after reparametrization) in C1 to a degenerate
regular network ST inBρ/4(x0) (with possibly a core only at x0) and locally smoothly inBρ/4(x0)\{x0}.
It is then easy to see, possibly considering a smaller ρ, that we can find ρ < ρ/8 such that

• the network ST ∩Bρ/4(x0) is connected;

• the curves of the networks St intersect transversally the circle ∂Bρ(x0).

Then, by the uniform bound on the velocity and the smooth convergence of St to ST in Bρ/4(x0) \ {x0},
possibly choosing a larger t, we can conclude that for every t ∈ [t, T ),

• the “topologic structure” of St in Bρ(x0) is “stable” and that the network ST ∩ Bρ/4(x0) is con-
nected, that is, no “new” 3–points or pieces of curves can “get into” Bρ(x0);

• the curves of the networks St intersect transversally the circle ∂Bρ(x0).

The last property implies then that condition (4.1) are satisfied (possibly after reparametrizing the net-
works in order to deal with λ and its derivatives).
If now St ∩ Bρ(x0) contains more than a triple junction, all of them must converge to x0, as t → T , by
what we said above, moreover, by equation (8.6), we have

|Oi(t)− x0| 6 D|T − t| ,

hence, they images Õi(t), after performing Huisken’s rescaling procedure, satisfy

|Õi(t)| = |O
i(t(t)− x0|√
2(T − t(t))

6
D|T − t(t)|√

2(T − t(t))
= D

√
(T − t(t))/2 ,

which tends to zero, as t → +∞, in particular they cannot “disappear” in the limit degenerate regular
shrinker (going to infinity). This is in contradiction with the fact that, by Lemma 7.11, since Θ̂(x0) 6 3/2,
the only possible blow–up limit shrinkers at x0 are the empty set, a line or a standard triod, hence,
with at most one triple junction. Containing then St ∩ Bρ(x0) at most one 3–point, possibly choosing
smaller ρ, ρ and larger t, if St ∩ Bρ(x0) is not empty (when Θ̂(x0) = 0), it follows that we are dealing,
either with the (classical) motion with uniformly bounded curvature of a single smooth curve (case
without triple junctions, Θ̂(x0) = 1) or with the motion of a triod (when Θ̂(x0) = 3/2) with uniformly
bounded curvature and conditions (4.1) satisfied. Moreover, in both cases the lengths of all the curves
of St ∩Bρ(x0) are uniformly positively bounded below, by the construction (the choice of ρ).
Then, if St∩Bρ(x0) is empty, there is nothing to show, in the case of the motion of a single curve the flow
is locally smooth up to time T , since the curvature is locally bounded (again by using Ecker and Huisken
interior estimates in [30]), while in the case of an evolving triod, the local smoothness of the flow up to
time T follows by the estimates on all the derivatives of the curvature given by Proposition 4.13 (see the
second point of Remark 8.4).

This corollary can be extended to the points on the boundary of Ω by the “reflection argument” at the
end of Section 7.2.

Corollary 8.6. If at a point x0 ∈ ∂Ω there holds Θ̂(x0) 6 3/4, then the curvature is uniformly bounded along
the flow St, for t ∈ [0, T ), in a neighborhood of x0. Then, the flow is smooth in such neighborhood, in the sense
that St converges smoothly to a limit smooth network ST there, as t→ T .

9 The behavior of the flow at a singular time

By means of the tools of the previous sections we want to discuss now the behavior of the network
approaching a singular time.
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Let T < +∞ be the maximal time of existence of the curvature flow St of an initial regular C2 network
with fixed end–points in a smooth, strictly convex, bounded open set Ω ⊆ R2. Then, by Theorem 5.7, as
t→ T , either the curvature is not bounded, or the inferior limit of the lengths Li(t) of at least one curve
of St is zero.
Hence if all the lengths of the curves of the network are uniformly positively bounded from below, the
curvature is not bounded (actually again by Theorem 5.7) the maximum of the absolute value of the
curvature goes to +∞). By Proposition 6.6 we also know that if the curvature is uniformly bounded, all
the lengths of the curves converge as t→ T , thus at least some Li(t) must go to zero.
We will then divide our analysis into the following three cases:

• all the lengths of the curves of the network are uniformly positively bounded from below and the
maximum of the modulus of the curvature goes to +∞, as t→ T ;

• the curvature is uniformly bounded along the flow and the length Li(t) of at least one curve of St
goes to zero when t→ T ;

• the curvature is not bounded and the length of at least one curve of the network is not positively
bounded from below, as t→ T .

In all three cases, the possible blow–up limits will play a key role, with the obvious consequence that
the fewer possibilities we have, the easier we can get conclusions. In particular, it is crucial to exclude
the onset of blow–up limits of multiplicity larger than one, in particular “multiple lines”, exactly as in
the study of the evolution of a single smooth closed curve (see [54], for instance). In the case of curves
this can be done by means of some “embeddedness” or “non–collapsing” quantities (see [50, 54]) that
actually inspired our results in Section 13.
Unfortunately, in the case of regular networks proving that any blow–up limit has multiplicity one
without asking for any extra assumption is still an open problem, maybe the major one.

Open Problem 9.1 (Multiplicity–One Conjecture – M1). Every blow–up limit shrinker arising from
Huisken’s rescaling procedure or limit of parabolic rescalings at a point x0 ∈ Ω is an embedded network
with multiplicity one.

This conjecture is implied by the two equivalent statements in the following open problem.

Open Problem 9.2 (Strong Multiplicity–One Conjecture – SM1/No Double–Line Conjecture – L1).

SM1: Every possible C1
loc–limit of rescalings of networks of the flow is an embedded network with

multiplicity one.

L1: A straight line with multiplicity larger than one cannot be obtained as a C1
loc–limit of rescalings of

networks of the flow.

While it is obvious that the first statement implies both M1 and L1, the fact that the second one implies
the first can be seen as follows: if SM1 does not hold, since the networks of the flow are all embedded,
any limit of rescalings Si can lose embeddedness only if two curves in the limit network “touch” each
other at some point x0 ∈ R2 with a common tangent (or they locally coincide, if they “produce” a piece
of curve with multiplicity larger than one). Then, “slowly” dilating the networks Si around x0, in order
that the distance between such two curves and x0 still go to zero, we would get a multiplicity–two line,
contradicting L1.
We will see in Section 13 some cases in which we are able to show that the strong multiplicity–one
conjecture holds:

• If during the flow the triple junctions stay uniformly far from each other, then SM1 is true.

• If the initial network has at most two triple junctions, then SM1 is true.

Remark 9.3. If M1 holds, the flow S∞t in Proposition 7.17 is composed of embedded, multiplicity–one
network and the same holds for the limit network S̃∞ in Proposition 7.20. In particular under the
hypotheses of Proposition 7.30 any blow–up limit network at a point x0 and singular time T , obtained
by Huisken’s procedure, or self–similarly shrinking network flow, obtained by the parabolic rescaling
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procedure, is (if not empty) a “static” straight line through the origin (then Θ̂(x0) = 1) or a standard
triod (then Θ̂(x0) = 3/2), if the rescaling point belongs to Ω. If the rescaling point is instead a fixed
end–point of the evolving network on the boundary of Ω, then such limit can only be a single halfline
from the origin (and Θ̂(x0) = 1/2).

Before analyzing the three situations above, we set some notation and we show some general properties
of the flow at the singular time.
We let F : S × [0, T ) → Ω, with T < +∞, represent the curvature flow St of a regular network moving
by curvature in its maximal time interval of smooth existence. We let O1, O2, . . . , Om the 3–points of S.
We define the set of reachable points of the flow as follows:

R =
{
x ∈ R2

∣∣ there exist pi ∈ S and ti ↗ T such that lim
i→∞

F (pi, ti) = x
}
.

Such a set is easily seen to be closed and contained in Ω (hence compact as Ω is bounded). Moreover
the following lemma holds:

Lemma 9.4. A point x ∈ R2 belongs to R if and only if for every time t ∈ [0, T ) the closed ball with center x
and radius

√
2(T − t) intersects St.

Proof. One of the two implications is trivial. We have to prove that if x ∈ R, then F (S, t)∩B√
2(T−t)(x) 6=

∅. If x is one of the end–points, the result is obvious, otherwise we define the function

dx(t) = inf
p∈S
|F (p, t)− x| ,

where, due to the compactness of S the infimum is actually a minimum and as t → T , let us say for
t > tx, it cannot be achieved at an end–point, by the assumption x ∈ R and x different from an end–
point, such a maximum cannot be either achieved at a 3–point, by the 120 degrees angle condition.
Since the function dx : [0, T )→ R is locally Lipschitz, we can then use Hamilton’s trick (see [48] or [78,
Lemma 2.1.3]), to compute its time derivative and get (for any point q, different from an end–point,
where at time t the minimum of |F (p, t)− x| is attained)

∂tdx(t) = ∂t|F (q, t)− x| > 〈k(q, t)ν(q, t) + λ(q, t)τ(q, t), F (q, t)− x〉
|F (q, t)− x|

=
〈k(q, t)ν(q, t), F (q, t)− x〉

|F (q, t)− x|
> − 1

dx(t)
,

since at a point of minimum distance the vector F (q,t)−x
|F (q,t)−x| is parallel to ν(q, t). Integrating this inequality

over time, we get
d2
x(t)− d2

x(s) 6 2(s− t) for s > t > tx .

We now use the hypothesis that x is reachable (limti→T dx(ti) = 0) and we conclude

d2
x(t) = lim

i→∞
[d2
x(t)− d2

x(ti)] 6 2 lim
i→∞

(ti − t) = 2(T − t) ,

for every t > tx.

As a consequence, when we consider the blow–up limits of the evolving networks by Huisken’s rescal-
ing procedure around points of Ω, we have a dichotomy among these latter. If the blow–up point
belongs to R, this lemma ensures that any rescaled network contains at least one point of the closed
unit ball of R2, hence the limit of any sequence is not empty (and clearly vice versa). If the point does
not belong to R any blow–up limit is empty, since the distance of the evolving network from the point
of blow–up is positively bounded below (by the very definition of R) and rescaling, the whole dilated
networks go to infinity. By Lemma 7.22, the same conclusion holds for the self– similarly, shrinking
curvature flows coming from the parabolic rescaling procedure.

Lemma 9.5. The family of blow–up limit shrinkers S̃∞ arising from Proposition 7.20 and the family of self–
similarly shrinking curvature flows coming from Proposition 7.17 are not empty, if and only if the blow–up point
x0 belongs toR. It follows that the set of reachable points of the flow coincides with {x ∈ Ω | Θ̂(x) > 0}.
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We now show that, assuming the multiplicity–one conjecture, as t→ T , all the 3–points of the network
St converge.

Lemma 9.6. If M1 holds, there exists a radius R = R(St, x0) > 0, such that if a blow–up limit regular shrinker
S̃∞ (or S∞−1/2) at the point x0 has no triple junctions in the ball BR(0), then it is a line through the origin of R2

or the unit circle.

Proof. Assume that the conclusion is false, then there is a sequenceRi → +∞ and blow–up limit regular
shrinkers Si at x0, all different from a line or circle, such that each Si has no triple junctions in BRi(0),
for every i ∈ N.
As we said in the discussion above, any shrinker Si must intersect the unit circle, hence, by the shrinkers
equation (7.1), we can extract a subsequence of Si locally converging inC1 to a non empty limit shrinker
S without triple junctions at all. By the work of Abresch and Langer [1], then S must be a line through
the origin or the unit circle and this latter case is excluded, since, for i large enough also Si would be a
circle, which is a contradiction. If the limit S is a line, by the multiplicity–one conjecture, its multiplicity
must be one, being any limit of blow–up limits of St at the point x0 again a blow–up limit at x0.
Then, by the second point of Lemma 7.16, the contribution of Si \ BR(0) to the Gaussian density of
the whole Si is small as we want, for every i ∈ N, by choosing a value R large enough, while, for
sufficiently large i, the contribution of Si∩BR(0) is smaller than one, as Si → S, which is a multiplicity–
one line. Hence, we conclude that the Gaussian density of Si is close to one for sufficiently large i, then
Lemma 7.11 implies that Si is also a line through the origin, which is again a contradiction and we are
done.

Remark 9.7. It is actually possible to find a uniform value of R > 0 in this lemma, also independent of
the flow St (Tom Ilmanen, personal communication).

Lemma 9.8. If M1 holds, there exist the limits xi = limt→T O
i(t), for i ∈ {1, 2, . . . ,m} and the set {xi =

limt→T O
i(t) | i = 1, 2, . . . ,m} is the union of the set of the points x in Ω where Θ̂(x) > 1 with the set of the

end–points of St such that the curve getting there collapses as t→ T .

Proof. Let D = {x ∈ Ω | Θ̂(x) > 1}, O(t) = {O1(t), O2(t), . . . , Om(t)} and P = {P 1, P 2, . . . , P l}. Let
R > 0 be given by the previous lemma and consider a finite subset D ⊆ D, supposing that the set

ID =
{
t ∈ [−1/2 log T,+∞) | max

x∈D
d(x,O(t(t))) > R

√
2(T − t(t))

}
has infinite Lebesgue measure, there must be x0 ∈ D such that

Ix0 =
{
t ∈ [−1/2 log T,+∞) | d(x0,O(t(t))) > R

√
2(T − t(t))

}
has infinite Lebesgue measure. Hence, by rescaling with Huisken’s procedure around x0, by Proposi-
tion 7.20, we can extract a sequence of times tj ∈ Ix0

such that the rescaled networks S̃x0,tj converge
in C1

loc to a line through the origin of R2, by Lemma 9.6 (if the limit is the unit circle, the network is a
closed curve and there is nothing to prove, as there are no 3–points), since in any ball centered at the
origin, there cannot be 3–points, by the construction of Ix0 and holding M1. This clearly implies that
Θ̂(x0) = 1, contradicting the hypothesis x0 ∈ D, hence, ID must have finite Lebesgue measure. It is
then easy to see that this implies that the points of D and thus of D, cannot be more than the number m
of the 3–points of the evolving network St.
If now we consider a small δ > 0, as every point x in the open set

Ωδ = Ω \
{
x ∈ Ω | d(x,D ∪ P) 6 δ

}
satisfies Θ̂(x) 6 1, by compactness and Corollary 8.5 (or White’s local regularity theorem in [111]), it
follows that the networks Stj restricted to the set Ωδ have uniformly bounded curvature and smoothly
converge to a limit smooth network in Ωδ without 3–points, otherwise at any of such 3–points we would
have a Gaussian density equal to 3/2, larger than one.
This argument clearly implies that choosing δ small enough (as D ∪P is finite), every 3–point Oi(t), for
every i ∈ {1, 2, . . . ,m}, has to “choose” a point xi ∈ D ∪ P to stay close and actually converges there.
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Finally, if x ∈ D, there must be a multi–point in any blow–up limit shrinker, otherwise we can only
have a line, by Lemma 9.6 (the unit circle is excluded, as we said before), that would imply Θ̂(x) = 1,
against the definition of D. Hence, for some i ∈ {1, 2, . . . ,m} and tn → T there must hold Oi(tn) → xi
that forces limt→T O

i(t) = xi, by the previous discussion..
If the curve of St getting to an end–point P r collapses along a sequence of times tj → T , clearly, as
before, for some k ∈ {1, 2, . . . ,m} there must hold Ok(tj)→ P r = xk and we have the same conclusion
limt→T O

k(t) = P r = xk.

9.1 Regularity without vanishing of curves

Let T < +∞ be the maximal time of existence and assume that the lengths of all the curves of the
network are uniformly positively bounded from below, hence as t → T the maximum of the modulus
of the curvature goes to +∞. We are going to show that if M1 holds, T cannot be a singular time, hence
we conclude that this case simply cannot happen. This conclusion justifies the title of this section: to
have a singularity (assuming the multiplicity–one conjecture) some curves must disappear.
Such result follows by the local regularity Theorem 8.3 (precisely, by Corollary 8.5, see also the first
point of Remark 8.4), implying that the curvature is locally bounded around every point of Ω, as t→ T .
Indeed, performing a parabolic rescaling at any reachable, interior point x0 ∈ Ω (at the other interior
points of Ω the blow–up limits are empty, so Θ̂(x0) = 0), since we assumed that the multiplicity–one
conjecture holds, by the discussion in Remark 9.3, we can obtain as blow–up limits only a straight lines
with unit multiplicity, so Θ̂(x0) = 1, or standard triods, hence Θ̂(x0) = 3/2. By Corollary 8.5, we then
conclude that the curvature is uniformly locally bounded along the flow, around such point x0.
If we instead rescale at an end–point P r we get a halfline and this case can be treated as above by means
of the “reflection construction” at the end of Section 7.2. That is, for the flow Hrt the point P r is no more
an end–point and a blow–up there gives a straight line, hence implying that the curvature is locally
bounded also around P r, as before.
By the compactness of the set of reachable pointsR, this argument clearly implies that the curvature of
the whole St is uniformly bounded, as t→ T , which is a contradiction.

Proposition 9.9. Assuming M1, if T < +∞ is the maximal time of existence of the curvature flow of a regular
network with fixed end–points, then the inferior limit of the length of at least one curve is zero, as t→ T .

Remark 9.10. Proposition 9.9 can be seen as the global (in space) version of the local regularity Theo-
rem 8.3 which deals with the situation of a single 3–point. Usually in analytic problems local and global
(in space) regularity coincides, actually in this case the tool to pass from one to the other is the validity
of the multiplicity–one conjecture.

In all the analysis of the following sections we will assume that M1 holds. Moreover, we assume that the bounded
open set Ω is strictly convex.
We remark that, with minor modifications in the proofs, all the following results also hold for the flow of open
networks in R2, ignoring the conclusions about the behavior at the end–points that are not present in such case.

By the above discussion, we will have to analyze the behavior of the flow St around the points xi =

limt→T O
i(t), limits of the triple junctions in Ω (see Lemma 9.8) where Θ̂(x) > 3/2 and the end–points

of St such that the curve getting there collapses, as t → T . Notice that if a limit point xi is the limit of
a single 3–point Oi(t), then the other ones must “stay far” and locally around xi there cannot be the
collapse of a curve, then, by the same argument as above, we conclude that Θ̂(xi) = 3/2. It follows that
the only limit points xi ∈ Ω we have to deal with are the ones which are limit of more than one triple
junction, as t→ T .

9.2 Limit networks with bounded curvature

The analysis in this case consists in understanding the possible limit networks that can arise, as t→ T ,
under the assumption that the curvature is uniformly bounded along the flow. This to find out how to
continue the flow (if possible) as discussed in Section 9.4.
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As we said, at least one curve of the network St has to “vanish”, approaching the singular time T . We
show that in this case, as t → T , assuming the multiplicity–one conjecture, St converges to a unique
limit degenerate regular network S, containing in the interior of Ω only regular triple junctions or 4–
points with four concurring curves whose exterior unit tangents form four angles of 120, 60, 120 and
60 degrees (any of them coming from two 3–points going to “collide” each other along a single isolated
collapsing curve) and at any end–point on ∂Ω, either a regular single curve or two curves “exiting”
from such end–point, forming an angle of 120 degrees among them (coming from the single isolated
collapse of the curve of the network getting there). The cores of such limit degenerate regular network
are thus given only by the isolated collapsed curves.
We will see in Proposition 9.19 in the next section that viceversa, when locally only a single isolated
curve collapses, the curvature stays bounded (see also the example in Proposition 9.31).

Proposition 9.11. If M1 holds and St =
⋃n
i=1 γ

i([0, 1], t) is the curvature flow of a regular network in Ω
with fixed end–points in a maximal time interval [0, T ) such that the curvature is uniformly bounded along the
flow, then the networks St, up to reparametrization proportional to arclength, converge in C1 to some degenerate
regular network ŜT =

⋃n
i=1 γ̂

i
T ([0, 1]) in Ω, as t→ T .

The non–degenerate curves of ŜT belong to C1 ∩W 2,∞ and they are smooth outside the multi–points. Moreover,
denoting with ST the C1 network described by the family of the non–degenerate curves of ŜT , every multi–point
of the ST is either a regular triple junction or an end–point of St or

• a 4–point where the four concurring curves have opposite exterior unit tangent vectors in pairs and form
angles of 120/60 degrees between them – collapse of a curve in the “interior” of St,

• a 2–point at an end–point of the network St where the two concurring curves form an angle of 120 degrees
among them – collapse of the curve getting to such end–point of St.

P r

Ω

P r

Ω

Figure 9.1: Collapse of a curve in the interior and at an end–point of St.

Definition 9.12. By their clear importance, we call regular 4–points the ones like in this proposition.

Proof. By Proposition 6.6, since St is the curvature flow of a regular network, there exist the limits of the
lengths of the curves Li(T ) = limt→T L

i(t), for every i ∈ {1, 2, . . . , n}. Moreover every limit of St is a
connected, bounded subset of R2.
Recalling the third point of Remark 5.9 (or directly Corollary 5.2), we reparametrize the networks so
that the flow is a special smooth flow, then, by Remark 4.9, all the velocities γit are uniformly bounded
in space and time by some constant D, hence we have,

|γi(x, t)− γi(x, t)| 6
∫ t

t

|γit(x, ξ)| dξ 6 D|t− t|

uniformly for any x ∈ [0, 1] and every pair t, t ∈ [0, T ). This clearly implies that γi(·, t) : [0, 1]→ R2 is a
Cauchy sequence inC0([0, 1]), hence the network St converges uniformly to a limit family of continuous
curves γiT : [0, 1] → R2, as t → T , composing the set ST =

⋃n
i=1 γ

i
T ([0, 1]). As the curvature and

the total length of all St are uniformly bounded by some constant C, reparametrizing instead all the
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curves γi(·, t) proportionally to their arclength, getting the maps γ̂i(·, t) : [0, 1] → R2, these latter are
a family of uniformly Lipschitz curves with curvature uniformly bounded in space and time, hence
relatively compact inC1. It is then easy to see that for everyC1–converging subsequence, the curves γ̂iT :

[0, 1] → R2 of any limit family ŜT =
⋃n
i=1 γ̂

i
T ([0, 1]) have the same supports of the curves γiT : [0, 1] →

R2 and either are constant (the limits of collapsing curves) or are also parametrized proportionally to
arclength. Hence, this argument implies that the whole family of curves composing the networks St,
reparametrized proportionally to arclength, converges in C1, as t→ T , to the family γ̂iT composing ŜT .
Clearly, by the uniform bound on the curvature, all the curves γ̂iT belong to W 2,∞ and, by Lemma 7.24,
they are smooth outside the multi–points.
According to Definition 7.4, we have to deal now with the convergence of the unit tangent vectors. We
observe that if we denote with s the arclength parameter, we have∣∣∣∣∂τ̂ i(x, t)∂x

∣∣∣∣ =

∣∣∣∣∂τ i(s, t)∂s

∣∣∣∣Li(t) = |ki(s, t)|Li(t) 6 CLi(t) 6 C2 , (9.1)

for some constant C, hence, every sequence of times tn → T have a – not relabeled – subsequence such
that the maps τ̂ i(·, tn) converge uniformly to some maps τ̂ iT .
If the curve γ̂iT is a regular curve (that is, Li(t) does not go to zero), it is easy to see that the limit maps
τ̂ iT must coincide with the unit tangent vector field to the curve γ̂iT , hence, the full sequence τ̂ i(·, t)
converges to τ̂ iT .
If Li(t) converges to zero, as t → T , by inequality (9.1), the maps τ̂ i(·, tn) converge to a constant unit
vector τ̂ iT which, if it is independent of the subsequence tn, it will be the “assigned” constant unit
vector to the degenerate constant curve γ̂iT of the network ŜT , as in Definition 7.1, then it follows (see
Remark 7.5) that ŜT is a degenerate regular network and that St converges in C1 to ŜT , as t→ T .
We start dealing with the behavior of the curves without end–points on the boundary of Ω.
If a region is “collapsing”, that is, its area is going to zero, as t → T , being Ω strictly convex, we have
that the region must be completely “inside” Ω (not bounded by curves getting to the end–points of the
networks P r which are all distinct, hence a “collapse” on ∂Ω is impossible by the strong maximum
principle) and, by the computations in Section 7.2, it can have at most m 6 5 bounding curves γ`(·, t)
and its area satisfies

A(t) = (2−m/3)π(T − t)/2 ,

by equation (7.4). By Lemma 9.8 the 3–points of the region converge to some limit points, as t → T ,
if these limits are not all coincident with a single point x0 ∈ Ω, the limit family of C1 curves γiT must
bound a “region” with zero area not given by a single point, hence there would be at least two non–
degenerate (non–constant) curves with the same support, which is forbidden by the multiplicity–one
conjecture M1. Hence, we conclude that all such 3–points converge to the point x0 ∈ Ω and the whole
region vanishes at x0, as t → T . In particular, all the lengths of the bounding curves γ`(·, t) also go to
zero, as t→ T . Since, by equation (7.3) we have

m∑
`=1

∫
γ`t

k ds = (2−m/3)π > π/3 ,

it follows that we have a contradiction with the fact that the curvature is bounded and the perimeter
of the region goes to zero. Hence, with bounded curvature, which is our case, no regions can collapse,
which implies that around every point the network is locally a tree, as t gets close to T . Recalling now
Lemma 9.8, we only have to check things locally around every point x0 which belongs to the set of the
limits of the triple junctions {Oj(t)}, as t → T , since outside such (finite) set the network converges
smoothly to ŜT (which is composed of regular smooth curves there), by Lemma 7.24. If the point x0 is
the limit point of a single triple junction Oj(t), clearly locally around x0 no curve is collapsing and the
convergence of St to ŜT is smooth (see the comments at the end of the previous section). Assuming then
that the curve γi(·, t) (at least) collapses with its end–points going to x0 and performing the Huisken’s
rescaling procedure at x0, we can only get as blow–up limit degenerate shrinkers which are trees with
zero curvature (being bounded, by the rescaling, the curvature converges uniformly to zero). Moreover,
these shrinkers have unit multiplicity since we assumed M1, hence they must be among the ones of
Lemma 7.10: a line, a standard triod or a standard cross. The first two cases are clearly excluded, since
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it would hold Θ̂(x0) 6 3/2, then Corollary 8.5 would tell us that the flow is locally smooth and there is
no collapse of curves. Hence, the only possibility is a standard cross (which has a core composed only
of a collapsed curve), this actually implies that at x0 there are no other collapsing curves other than
γi(·, t) and only its end–points (among the triple junctions) are converging to x0. Indeed, arguing as in
Corollary 8.5, since there holds

|Oj(t2)−Oj(t1)| =
∣∣∣∣∫ t2

t1

vj(ξ) dξ

∣∣∣∣6 ∫ t2

t1

|vj(ξ)| dξ 6 D|t2 − t1| ,

for every triple junction Oj(t) converging to x0, for every t1, t2 ∈ [0, T ), hence

|Oj(t)− x0| 6 D|T − t|

for every t ∈ [0, T ), we have that its image Õj(t), after performing Huisken’s rescaling procedure,
satisfies

|Õj(t)| = |O
j(t(t)− x0|√
2(T − t(t))

6
D|T − t(t)|√

2(T − t(t))
= D

√
(T − t(t))/2 ,

which tends to zero, as t → +∞, in particular, all the triple junctions converging to x0 cannot “dis-
appear” in the limit degenerate regular shrinker (going to infinity). As the core of the standard cross
is a single line (the underlying graph has only two triple junctions), the above claim follows and the
collapsing curve γi(·, t) is “isolated”. As a consequence, around x0 the curve γi(·, t) collapses and other
four curves γ`(·, t) converge in C1 (smoothly outside x0), as t → T , to four regular curves γ`T with an
end–point at x0, forming a 4–point. By the C1–convergence of the four curves and the 120 degrees con-
dition at the two converging triple junctions, if for a sequence tn → T we have that τ̂ i(·, tn) converge to
a constant unit vector τ̂ iT , this unit vector is uniquely determined by the (unique) exterior unit tangents
at x0 of the four concurring curves, hence we conclude that τ̂ iT it is independent of the sequence tn → T ,
as we wanted to show. Then, it is the “assigned” constant unit vector to the degenerate constant curve
γ̂iT of the network ŜT , as in Definition 7.1. It follows (see Remark 7.5) that ŜT is a degenerate regular
network and that St converges in C1 to ŜT , as t→ T .
By this argument, we can also conclude that x0 is a 4–point of ŜT (or of ST ) where the four concurring
curves have opposite unit tangents in pairs and form angles of 120/60 degrees between them, as in the
statement.
Finally, in the case of a collapsing curve arriving at an end–point P r of St, we get the statement of the
proposition by considering the network Hrt , obtained by the union of St with its “reflection” with respect
to the point P r (see the end of Section 7.2) and applying the previous conclusions to such network.

The next corollary follows from this proof.

Corollary 9.13. Every core (there could be more than one) of ŜT is composed of a single collapsed curve. In the
case of bounded curvature, only “isolated” curves can collapse.

Moreover, during the proof, we also showed the following intuitive fact about a collapsing region, that
is, with its area is going to zero, as t→ T .

Lemma 9.14. If M1 holds and a region is collapsing as t → T , then the curvature of the network cannot be
bounded.

Remark 9.15. Notice that if at an end–point the two curves of the boundary of the convex set Ω form an
angle (or the whole network is contained in an angle whose vertex is such end–point) with amplitude
less than 120 degrees, then the collapse situation described in Proposition 9.11 cannot happen at such
end–point. This is, for instance, the case of an initial triod contained in a triangle with angles less than
120 degrees and fixed end–points in the vertices.
The same conclusion holds, by the argument in the proof of Proposition 7.13, calling Ωt ⊆ Ω the evolu-
tion by curvature of ∂Ω, keeping fixed the end–points of St, if the angle formed by Ωt at such end–point
becomes smaller than 120 degrees.

Remark 9.16. Notice that, even if ST is smooth outside its multi–points and W 2,∞, we cannot say at the
moment that its curves are of class C2. This will be actually a consequence of the analysis of the next
section, see Theorem 9.26 and Remark 9.27.
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All the previous arguments can be easily localized and we have the following conclusion.

Proposition 9.17. If M1 holds and the curvature of St is locally uniformly bounded around a point x0 ∈ Ω, as
t → T , the networks St, up to reparametrization, converge in C1

loc locally around x0 to some degenerate regular
network ŜT whose non–degenerate curves form aC1 network ST , having possibly some non–regular multi–points
which are among the ones described in Proposition 9.11.
Moreover, the curves of ST belong to C1 ∩W 2,∞, in a neighborhood of x0, and are smooth outside the multi–
points.

Remark 9.18. Referring to Remark 7.21, we can call these singularities with bounded curvature Type 0
singularities. They are peculiar to the network flow, as they cannot appear in the motion by curvature
of a single curve.

9.3 Vanishing of curves with unbounded curvature

Suppose now that, as t → T , the curvature is not bounded and the length of at least one curve of the
flow St is not positively bounded from below. This last case is the most delicate.
Performing, as before, any of the blow–up procedures, even assuming the multiplicity–one conjecture,
there can be several shrinkers as possible blow–up limits given by Propositions 7.17, 7.20 and we need
to classify them in order to understand the behavior of the flow St approaching the singular time T .
In doing that, the (local) structure (topology) of the evolving network plays an important role in the
analysis since it restricts the family of possible shrinkers obtained as blow–up limits of St. A very
relevant case is when the evolving network has no loops, namely, it is a tree, studied in detail in [81]).

Proposition 9.19. If M1 holds and the evolving regular network St is a tree in a neighborhood of x0 ∈ Ω, for t
close enough to T , then the curvature of St is locally uniformly bounded around x0, during the flow. Hence, the
conclusions of Proposition 9.17 apply.

Proof. Let St be a smooth flow in the maximal time interval [0, T ) of the initial network S0. Let x0 ∈ Ω
be a reachable point for the flow and let B be a ball containing x0 where St is a tree, for t close enough
to T (we clearly only need to consider reachable points).
Let us consider a sequence of parabolically rescaled curvature flows Sµit around (x0, T ), as in Proposi-
tion 7.17. Then, as i → ∞, it converges to a degenerate regular self–similarly shrinking network flow
S∞t , in C1,α

loc ∩W
2,2
loc , for almost all t ∈ (−∞, 0) and for any α ∈ (0, 1/2).

Thanks to the multiplicity–one hypothesis M1 and to the topology of the network (locally a tree, see
Lemma 7.10), if we suppose that x0 6∈ ∂Ω, then S∞t can only be the “static” flow given by:

• a straight line;

• a standard triod;

• four concurring halflines with opposite unit tangent vectors in pairs, forming angles of 120/60
degrees between them, that is, a standard cross.

By White’s local regularity theorem in [111], if the sequence of rescaled curvature flows converges to a
straight line, the curvature is uniformly bounded for t ∈ [0, T ) in a ball around the point x0. Thanks
to Theorem 8.3 the same holds in the case of the standard triod. Hence, the only situation we have to
deal with to complete the proof in this case is the collapse of two triple junctions at a point of Ω, when
the limit flow is given by the static degenerate regular network composed of four concurring halflines
with opposite unit tangents in pairs forming angles of 120/60 degrees between them, a standard cross.
We claim that also in this case the curvature is locally uniformly bounded during the flow, around the
point x0 (the next proposition and lemmas are devoted to prove this fact).
If instead x0 ∈ ∂Ω, the only two possibilities for S∞t are the static flows given by:

• a halfline;

• two concurring halflines forming an angle of 120 degrees.

For both these two situation the thesis is obtained by going back to the case in which x0 ∈ Ω, with the
“reflection construction” we described at the end of Section 7.2.
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Remark 9.20. Obviously, the conclusion of this proposition holds when S0 is a tree (globally), since it
remains so during the flow.

Proposition 9.21. Let St be a smooth flow in the maximal time interval [0, T ) for the initial network S0. Let
x0 be a reachable point for the flow such that the sequence of rescaled curvature flows Sµit around (x0, T ), as in
Proposition 7.17, as i→∞, converges, in C1,α

loc ∩W
2,2
loc , for almost all t ∈ (−∞, 0) and for any α ∈ (0, 1/2), to

a limit degenerate static flow S∞t given by a standard cross. Then,

|k(x, t)| 6 C < +∞

for all t ∈ [0, T ) and x in a neighborhood of x0.

We briefly outline the proof of this proposition. First, in Lemma 9.22 and 9.23, we show that for any
tree, if we assume a uniform control on the motion of its end–points, the L2–norm of its curvature is
uniformly bounded in a time interval depending on its initial value. Moreover, we also bound the L∞–
norm of the curvature in terms of its L2–norm and of the L2–norm of its derivative.
Then, we prove that for a special tree, composed of only five curves, two triple junctions and four end–
points on the boundary of Ω open, convex and regular (see Figure 9.2), uniformly controlling, as before,
its end–points and the lengths of the “boundary curve” from below, the L2–norm of ks is bounded until
‖k‖L2 stays bounded. The statement of the proposition will follow by localizing these estimates.

Lemma 9.22. Let Ω be a convex open regular set and S0 a tree with end–points P 1, P 2, . . . , P l (not necessarily
fixed during its motion) on ∂Ω. Let St be a smooth evolution by curvature for t ∈ [0, T ) of the network S0 such
that the square of the curvature at the end–points of St is uniformly bounded in time by some constant C. Then,

‖k‖2L∞ 6 4n−1C +Dn‖k‖L2‖ks‖L2 , (9.2)

where n ∈ N is such that for every point Q ∈ S0 there is a path to get from Q to an end–point passing by at most
n curves (clearly, n is smaller than the total number of curves of S0) and the constant Dn depends only on n.

Proof. Let us first consider a network S0 with five curves, two triple junctions O1, O2 and four end–
points P 1, P 2, P 3, P 4. In this case n is clearly equal to two. We call γi, for i 6 4, the curve connecting
P i with one of the two triple junctions and γ5 the curve connecting the two triple junctions (see the
following Figure 9.2).

P 1

P 2

P 3

P 4

γ1

γ4

γ2

γ3

γ5

O1

O2

Figure 9.2: A tree–like network with five curves.

Fixed a time t ∈ [0, T ), let Q ∈ γi ⊆ St, for some i 6 4. We compute

[ki(Q)]2 = [ki(P i)]2 + 2

∫ Q

P i
kksds 6 C + 2‖k‖L2‖ks‖L2 ,

hence, for every Q ∈ St \ γ5 we have

[ki(Q)]2 6 C + 2‖k‖L2‖ks‖L2 .
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Assume now instead that Q ∈ γ5. Recalling that
∑3
i=1 k

i = 0 at each triple junction, by the previous
argument we have [ki(O1)]2, [ki(O2)]2 6 C + 2‖k‖L2‖ks‖L2 , for all i ∈ {1, 2, 3, 4}, then it follows that
[k5(O1)]2, [k5(O2)]2 6 4C + 8‖k‖L2‖ks‖L2 . Hence, arguing as before, we get

[k5(Q)]2 = [k5(O1)]2 + 2

∫ Q

O1

kks ds 6 4C + 8‖k‖L2‖ks‖L2 + 2

∫ Q

O1

kks ds ,

In conclusion, we get the uniform in time inequality for St

‖k‖2L∞ 6 4C + 10‖k‖L2‖ks‖L2 .

In the general case, since St are all trees homeomorphic to S0, we can argue similarly to get the conclu-
sion by induction on n.

Lemma 9.23. Let Ω ⊆ R2 be open, convex and regular, let S0 be a tree with end–points P 1, P 2, . . . , P l on ∂Ω
that satisfy assumption (4.1) and let St for t ∈ [0, T ) be a smooth evolution by curvature of the network S0. Then
‖k‖2L2 is uniformly bounded on [0, T̃ ) by

√
2
[
‖k(·, 0)‖2L2 + 1

]
, where

T̃ = min
{
T, 1

/
8C
(
‖k(·, 0)‖2L2 + 1

)2}
.

Here the constant C depends only on the number n ∈ N of Lemma 9.22 and the constants in assumption (4.1).

Proof. By inequality (4.4) we have

d

dt

∫
St
k2 ds 6 − 2

∫
St
k2
s ds+

∫
St
k4 ds+

m∑
p=1

3∑
i=1

λpi
(
kpi
)2 ∣∣∣∣

at the 3–pointOp
+ C

≤ − 2

∫
St
k2
s ds+ ‖k‖2L∞

∫
St
k2 ds+ C‖k‖3L∞ + C . (9.3)

By estimate (9.2) and the Young inequality, we then obtain

‖k‖3L∞ ≤ Cn + Cn‖k‖
3
2

L2‖ks‖
3
2

L2 6 Cn + ε‖ks‖2L2 + Cn,ε‖k‖6L2 ,

‖k‖2L∞‖k‖2L2 ≤ Cn‖k‖2L2 +Dn‖k‖3L2‖ks‖L2 6 Cn‖k‖2L2 + ε‖ks‖2L2 + Cn,ε‖k‖6L2 ,

for every small ε > 0 and a suitable constant Cn,ε.
Plugging these estimates into inequality (9.3) we get

d

dt

∫
St
k2ds 6 − 2‖ks‖2 + ‖k‖2L∞‖k‖2 + C‖k‖3L∞ + C

6 − 2‖ks‖2 + Cn‖k‖2L2 + ε‖ks‖2L2 + Cn,ε‖k‖6L2 + Cn + ε‖ks‖2L2 + Cn,ε‖k‖6L2 + Cn

6C
(∫

St
k2ds

)3

+ C , (9.4)

Where we chose ε = 1/2 and the constant C depends only on the number n ∈ N of Lemma 9.22 and the
constants in condition (4.1).
Calling y(t) =

∫
St k

2 ds+ 1, we can rewrite inequality (9.4) as the differential ODE

y′(t) 6 2Cy3(t) ,

hence, after integration, we get

y(t) 6
1√

1
y2(0) − 4Ct

and, choosing T̃ as in the statement, the conclusion is straightforward.
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Lemma 9.24. Let Ω ⊆ R2 be open, convex and regular, let S0 be a tree with five curves, two triple junctions
O1, O2 and four end–points P 1, P 2, P 3, P 4 on ∂Ω, as in Figure 9.2, satisfying assumption (4.1) and assume that
St, for t ∈ [0, T ), is a smooth evolution by curvature of the network S0 such that ‖k‖L2 is uniformly bounded on
[0, T ).
If the lengths of the curves of the network arriving at the end–points are uniformly bounded below by some
constant L > 0, then ‖ks‖L2 is uniformly bounded on [0, T ).

Proof. We first estimate ‖ks‖2L∞ in terms of ‖ks‖L2 and ‖kss‖L2 .
Fixed a time t ∈ [0, T ), let Q ∈ γi ⊆ St, for some i 6 4. We compute

[kis(Q)]2 = [kis(P
i)]2 + 2

∫ Q

P i
kskss ds 6 C + 2‖ks‖L2‖kss‖L2 ,

hence, in this case,
[kis(Q)]2 6 C + 2‖ks‖L2‖kss‖L2 ,

for every Q ∈ St \ γ5.
Assume now instead that Q ∈ γ5. Recalling that kis + λiki = kjs + λjkj at each triple junction, we get

k5
s(O1) = kis(O

1) + λi(O1)ki(O1)− λ5(O1)k5(O1) ,

hence,

|k5
s(O1)| 6 |kis(O1)|+ C‖k‖2L∞

6 |kis(O1)|+ C‖k‖L2‖ks‖L2 + C

6 |kis(O1)|+ C (1 + ‖ks‖L2) ,

by Lemma 9.23. Then,
[k5
s(O1)]2 6 2[kis(O

1)]2 + C
(
1 + ‖ks‖2L2

)
and it follows

[k5
s(Q)]2 = [k5

s(O1)]2 + 2

∫ Q

O1

kskss ds

≤ 2[kis(O
1)]2 + C

(
1 + ‖ks‖2L2

)
+ 2

∫ Q

O1

kskss ds

≤ C + C‖ks‖2L2 + 2‖ks‖L2‖kss‖L2 ,

since, by the previous argument, we have [kis(O
1)]2, [kis(O

2)]2 6 C+2‖ks‖L2‖kss‖L2 , for all i ∈ {1, 2, 3, 4}.
Hence, we conclude

‖ks‖2L∞ 6 C + C‖ks‖2L2 + 2‖ks‖L2‖kss‖L2 .

We now pass to estimate ‖ks‖L2 . Making computation (4.3) explicit for j = 1, we have

∂t

∫
St
k2
s ds 6 −2

∫
St
k2
ss ds+ 7

∫
St
k2k2

s ds−
2∑
p=1

3∑
i=1

2kpis k
pi
ss + λpi

(
kpis
)2 ∣∣∣∣

at the 3–pointOp
+ C . (9.5)

Then, as in Section 4 we work to lower the differentiation order of the boundary term
∑3
i=1 k

i
sk
i
ss at

each 3–point.
We claim that the following equality holds at each 3–point,

3

3∑
i=1

λikikit = ∂t

3∑
i=1

λi
(
ki
)2
. (9.6)
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Keeping in mind that, at every 3–point, we have
∑3
i=1 k

i = 0 and λi = ki−1−ki+1
√

3
, with the convention

that the superscripts are considered “modulus 3” (see Section 2.3), we obtains

√
3

3∑
i=1

λikikit =

3∑
i=1

(
ki−1 − ki+1

)
kikit

=

3∑
i=1

ki+1
(
ki+1 + ki−1

)
kit − ki−1

(
ki+1 + ki−1

)
kit

=

3∑
i=1

[(
ki+1

)2 − (ki−1
)2]

kit ,

and

√
3∂t

3∑
i=1

λi
(
ki
)2

=
√

3

3∑
i=1

λit
(
ki
)2

+ 2λikikit

=

3∑
i=1

(
ki−1
t − ki+1

t

) (
ki
)2

+ 2

3∑
i=1

(
ki−1 − ki+1

)
kikit

=

3∑
i=1

[(
ki+1

)2 − (ki−1
)2

+ 2kiki−1 − 2kiki+1
]
kit

=

3∑
i=1

[(
ki+1

)2 − (ki−1
)2 − 2(ki−1 + ki+1)ki−1 + 2(ki−1 + ki+1)ki+1

]
kit

= 3

3∑
i=1

[(
ki+1

)2 − (ki−1
)2]

kit ,

thus, equality (9.6) is proved.
Now we use such equality to lower the differentiation order of the term

∑3
i=1 k

i
sk
i
ss. Recalling the

formula ∂tk = kss + ksλ+ k3 and that
∑3
i=1 k

i
t = ∂t

∑3
i=1 k

i = 0, we get

3∑
i=1

kisk
i
ss =

3∑
i=1

kis
[
kit − λikis −

(
ki
)3]

=

3∑
i=1

(
kis + λiki − λiki

)
kit −

3∑
i=1

λi
(
kis
)2

+
(
ki
)3
kis

=

3∑
i=1

(
kis + λiki

)
kit −

3∑
i=1

λikikit −
3∑
i=1

λi
(
kis
)2

+
(
ki
)3
kis

= −∂t
3∑
i=1

λi
(
ki
)2/

3−
3∑
i=1

λi
(
kis
)2

+
(
ki
)3
kis ,

at the triple junctions O1 and O2, where we used the fact that kis + λiki is independent of i ∈ {1, 2, 3}.
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Substituting this equality into estimate (9.5), we obtain

∂t

∫
St
k2
s ds ≤ − 2

∫
St
k2
ss ds+ 7

∫
St
k2k2

s ds+

2∑
p=1

3∑
i=1

2
(
kpi
)3
kpis + λpi

(
kpis
)2 ∣∣∣∣

at the 3–pointOp
+ C

+ 2∂t

2∑
p=1

3∑
i=1

λpi
(
kpi
)2/

3

∣∣∣∣
at the 3–pointOp

≤ − 2

∫
St
k2
ss ds+ C‖k‖2L2‖ks‖2L∞ +

2∑
p=1

3∑
i=1

2
(
kpi
)3
kpis + λpi

(
kpis
)2 ∣∣∣∣

at the 3–pointOp

+ 2∂t

2∑
p=1

3∑
i=1

λpi
(
kpi
)2/

3

∣∣∣∣
at the 3–pointOp

+ C . (9.8)

Using the previous estimate on ‖ks‖L∞ , the hypothesis of uniform boundedness of ‖k‖L2 and Young
inequality, we get

‖k‖2L2‖ks‖2L∞ 6 C + C‖ks‖2L2 + C‖ks‖L2‖kss‖L2

6 C + C‖ks‖2L2 + Cε‖ks‖2L2 + ε‖kss‖2L2

= C + Cε‖ks‖2L2 + ε‖kss‖2L2 ,

for any small value ε > 0 and a suitable constant Cε.
We deal now with the boundary term

∑3
i=1 2

(
ki
)3
kis + λi

(
kis
)2.

By the fact that kis + λiki = kjs + λjkj , for every pair i, j, it follows that (ks + λk)
2∑3

i=1 λ
i = 0, hence,

3∑
i=1

λi
(
kis
)2

= −
3∑
i=1

(
λi
)3 (

ki
)2

+ 2
(
λi
)2
kikis ,

then, we can write

3∑
i=1

2
(
ki
)3
kis + λi

(
kis
)2

=

3∑
i=1

2
(
ki
)3
kis −

(
λi
)3 (

ki
)2 − 2

(
λi
)2
kikis

=

3∑
i=1

2
[(
ki
)3 − (λi)2 ki]kis − 3∑

i=1

(
λi
)3 (

ki
)2

= 2(ks + λk)

3∑
i=1

(
ki
)3 − (λi)2 ki +

3∑
i=1

(
λi
)3 (

ki
)2 − 2λi

(
ki
)4
.

At the triple junction O1, where the curves γ1, γ2 and γ5 concur, there exists i ∈ {1, 2} such that
|ki(O1)| > K

2 , where K = maxj∈{1,2,3} |kj(O1)|, hence at the 3–point O1

2(ks + λk)

3∑
i=1

(
ki
)3 − (λi)2 ki +

3∑
i=1

(
λi
)3 (

ki
)2 − 2λi

(
ki
)4

6 CK5 + C|kis(O1)|K3

6 C|ki(O1)|5 + C|kis(O1)||ki(O1)|3

6 C‖ki‖5L∞(γi) + C‖kis‖L∞(γi)‖ki‖3L∞(γi) .

We estimate now C‖k‖5L∞(γi) + C‖ks‖L∞(γi)‖k‖3L∞(γi) via the Gagliardo–Nirenberg interpolation in-
equalities in Proposition 4.7. Letting u = ki, p = +∞, m = 2 and n = 0, 1 in formula (4.5), we get

‖ki‖L∞(γi) 6 C‖kiss‖
1
4

L2(γi)‖k
i‖

3
4

L2(γi) +
B

L
1
2

‖ki‖L2(γi) 6 C‖kiss‖
1
4

L2(γi) + CL

‖kis‖L∞(γi) 6 C‖kiss‖
3
4

L2(γi)‖k
i‖

1
4

L2(γi) +
B

L
3
2

‖ki‖L2(γi) 6 C‖kiss‖
3
4

L2(γi) + CL ,
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hence,

C‖ki‖5L∞(γi) + C‖ki‖3L∞(γi)‖k
i
s‖L∞(γi) 6 C‖kiss‖

5
4

L2(γi) + C‖kiss‖
3
2

L2(γi) + CL 6 ε‖kiss‖2L2(γi) + CL,ε .

Thus, finally,

2(ks + λk)

3∑
i=1

(
ki
)3 − (λi)2 ki +

3∑
i=1

(
λi
)3 (

ki
)2 − 2λi

(
ki
)4

6 ε‖kiss‖2L2(γi) + CL,ε 6 ε‖kss‖2L2 + CL,ε .

Coming back to computation (9.8), we have

∂t

(∫
St
k2
s ds− 2

2∑
p=1

3∑
i=1

λpi
(
kpi
)2 /

3

∣∣∣∣
at the 3–pointOp

)
6 −2

∫
St
k2
ssds+ C‖ks‖2L2 + ε‖kss‖2L2 + CL,ε

6 −2

∫
St
k2
ssds+ C‖ks‖2L2 + 2ε‖kss‖2L2 − CL,ε‖ki‖3L∞(γi) + CL,ε

6 CL,ε

(∫
St
k2
s ds− 2

2∑
p=1

3∑
i=1

λpi
(
kpi
)2 /

3

∣∣∣∣
at the 3–pointOp

)
+ CL,ε ,

where we chose ε < 1.
By Gronwall’s Lemma, it follows that ‖ks‖2L2 − 2

∑2
p=1

∑3
i=1 λ

pi
(
kpi
)2 /

3
∣∣∣

at the 3–pointOp
is uniformly

bounded, for t ∈ [0, T ), by a constant depending on L and its value on the initial network S0. Then,
applying Young inequality to estimate (9.2) of Lemma 9.22, there holds

‖k‖3L∞ 6 C + C‖k‖3/2L2 ‖ks‖3/2L2 6 C + Cε‖k‖6L2 + ε‖ks‖2L2 6 Cε + ε‖ks‖2L2 ,

as ‖k‖L2 is uniformly bounded in [0, T ). Choosing ε > 0 small enough, we conclude that also ‖ks‖L2 is
uniformly bounded in [0, T ).

Proof of Proposition 9.21. By the hypotheses, we can assume that the sequence of rescaled networks
Sµi−1/(2+δ) converges in W 2,2

loc , as i → ∞, to a standard cross (which has zero curvature), for some δ > 0

as small as we want.
Arguing as in the proof of Lemma 8.1, by means of Lemma 7.24, we can also assume that, for R > 0
large enough, the sequence of rescaled flows Sµit converges smoothly and uniformly to the flow S∞t ,
given by the four halflines, in

(
B3R(0) \ BR(0)

)
× [−1/2, 0). Hence, there exists i0 ∈ N such that for

every i > i0 the flow St in the annulus B3R/µi(x0) \BR/µi(x0) has equibounded curvature, no 3–points
and a uniform bound from below on the lengths of the four curves, for t ∈ [T − µ−2

i /(2 + δ), T ). Setting
ti = T −µ−2

i /(2 + δ), we have then a sequence of times ti → T such that, when i > i0, the above conclu-
sion holds for the flow St in the annulus B

3R
√

2(T−ti)
(x0) \B

R
√

2(T−ti)
(x0) and with t ∈ [ti, T ), we can

thus introduce four “artificial” moving boundary points P r(t) ∈ St with |P r(t) − x0| = 2R
√

2(T − ti),
with r ∈ {1, 2, 3, 4} and t ∈ [ti, T ), such that the estimates (4.1) are satisfied, that is, the hypotheses
about the end–points P i(t) of Lemmas 9.22, 9.23 and 9.24 hold.
As we the sequence of networks Sµi−1/(2+δ) converges in W 2,2

loc to a limit network with zero curvature, as
i→∞, we have

lim
i→∞

‖k̃‖L2(B3R(0)∩ Sµi−1/(2+δ)
) = 0 , that is,

∫
B3R(0)∩ Sµi−1/(2+δ)

k̃2 dσ 6 εi ,

for a sequence εi → 0 as i→∞. Rewriting this condition for the non–rescaled networks, we have∫
B

3R
√

2(T−ti)
(x0)∩Sti

k2 ds 6
εi√

2(T − ti)
.
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Applying now Lemma 9.23 to the flow of networks St in the ball B
2R
√

2(T−ti)
(x0) in the time interval

[ti, T ), we have that ‖k‖L2(B
2R
√

2(T−ti)
(x0)∩St) is uniformly bounded, up to time

Ti = ti + min
{
T, 1

/
8C
(
‖k‖2L2(B

2R
√

2(T−ti)
(x0)∩Sti )

+ 1
)2}

.

We want to see that actually Ti > T for i large enough, hence, ‖k‖L2(B2R(x0)∩St) is uniformly bounded
for t ∈ [ti, T ). If this is not true, we have

Ti = ti +
1

8C
(
‖k‖2L2(B

2R
√

2(T−ti)
(x0)∩Sti )

+ 1
)2

> ti +
1

8C
(
εi/
√

2(T − ti) + 1
)2

= ti +
2(T − ti)

8C
(
εi +

√
2(T − ti)

)2
=T + (2(T − ti))

(
2

8C
(
εi +

√
2(T − ti)

)2 − 1

)
,

which is clearly larger than T , as εi → 0, when i→∞.
Choosing then i1 > i0 large enough, since ‖k‖L2(B

2R
√

2(T−ti1 )
(x0)∩ St) is uniformly bounded for all times

t ∈ [ti1 , T ) and the length of the four curves that connect the junctions with the “artificial” bound-
ary points P r(t) are bounded below by a uniform constant, Lemma 9.24 applies, hence, thanks to
Lemma 9.22, we have a uniform bound on ‖k‖L∞(B

2R
√

2(T−ti1 )
(x0)∩ St) for t ∈ [0, T ).

As we proved Proposition 9.21, Proposition 9.19 follows. An obvious consequence is that evolving trees
do not develop this kind of singularity, hence their curvature flow is smooth till a curve collapses with
uniformly bounded curvature. Moreover it is also easy to see that if no region collapses, the network is
locally a tree around every point of Ω, for t close enough to T , so Proposition 9.19 applies globally.

Corollary 9.25. If M1 holds and S0 is a tree, the curvature of St is uniformly bounded during the flow (hence
we are in the case of Proposition 9.11 in the previous section).

Combining Propositions 9.17 and 9.19, we have the following local conclusion.

Theorem 9.26. If M1 holds and St is a tree in a neighborhood of x0 ∈ Ω, for t close enough to T , the curvature
is uniformly locally bounded and either the flow St is locally smooth or, up to reparametrization proportional
to arclength, converge in C1 locally around x0, as t → T , to some degenerate regular network ŜT whose non–
degenerate curves form a C2 network ST with a possibly non–regular multi–point which is among the ones
described in Proposition 9.11, coming from the collapse of single “isolated” curve of St.
Moreover, the curves of ST , in a neighborhood of x0, are smooth outside the multi–point.
Obviously, the conclusion holds when S0 is a tree.

Proof. We only have to show that the curves of ST are actually C2. By means of Lemma 9.24, ‖ks‖L2 is
locally uniformly bounded on [0, T ), which implies that the convergence of the non–collapsing curves
of St to ST , as t → T , is actually in C2

loc and we are done. The smooth convergence outside the multi–
points then follows by the interior estimates of Ecker–Huisken in [30].

Remark 9.27. We expect that, by extending the estimates of Lemmas 9.22, 9.23 and 9.24 to the higher
order derivatives of the curvature, one should actually get the smoothness of the curves of ST and
of the convergence of the non–collapsing curves of St to ST . Moreover, the collapsing curve should
converges in C∞ to a constant map, hence also the local convergence of St to ŜT would be actually
smooth.

Corollary 9.28. If M1 holds, the curvature is uniformly bounded along the flow for t ∈ [0, T ), if and only if no
region collapses as t→ T . Equivalently, in every neighborhood St is a tree, for t close enough to T .
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Proof. By Lemma 9.14 when the curvature is bounded, regions cannot collapse. Viceversa, if no region
collapses the network is locally a tree around every point of Ω, hence by compactness and Proposi-
tion 9.19, the curvature is uniformly bounded.

Remark 9.29. This corollary holds also locally.

Corollary 9.30. If M1 holds and no region collapses as t → T , the C2 network ST has only multi–points like
the ones described in Proposition 9.11, coming from the collapse of a family of single “isolated” curves of St.

Another consequence of the previous analysis is the existence of Type 0 singularities (see Remark 9.18).

Proposition 9.31. If M1 holds, Type 0 singularities actually exist.

Proof. Let us consider an initial (regular) smooth network S0, which is centrally symmetric, in the con-
vex domain Ω (also centrally symmetric) as in the following figure:

Ω

S0

M

Figure 9.3: The networks S0 and M.

where in gray we drew the minimal network M connecting the four end–points of S0 on the boundary
of Ω. Assuming that Ω is very “long and thin”, it can be shown that M is the only “stationary” (regular
and with zero curvature) network connecting the four end–points of S0.
By Corollary 9.25, during the smooth curvature flow St of S0 (given by Theorem 3.29, maintaining the
central symmetry) the curvature is bounded and either a singularity develops or the flow St is smooth
for every positive time. Then, it is easy to guess and actually it will be a consequence of Proposition 12.6
that, as t→ +∞, the network St converges inC1 to M, which is a contradiction because of their different
structures. Hence, at some time T < +∞ a Type 0 singularity must develop and the only possibility is
the collapse of the “central” curve of St, by its symmetry.

Bounded curvature is not actually the case if some loops are present in St, indeed a region bounded
by less than six curves possibly collapses, then in such case the curvature cannot stay bounded, by
Corollary 9.28.

t→ T

St ST

Figure 9.4: Homothetic collapse of a (symmetric) pentagonal region of St (five–ray star).

96



Determining what asymptotically happens in detail in the general case can be quite complicated be-
cause of the difficulty in classifying all the regular shrinkers with loops. Anyway, some special cases
with “few” triple junctions can be fully understood. We will show an example of this analysis in
Section 14, considering networks with at most two triple junctions. We underline that the interest in
these very special cases is because of the multiplicity–one conjecture holds for such networks (Corol-
lary 13.10).
However, even if we cannot describe all the possible shrinkers S∞−1/2 or S̃∞, arising respectively from
the parabolic or Huisken’s rescaling procedure at the singular time T < +∞, we can get enough in-
formation in order to restart the flow by means of Theorem 10.9 in the next section (actually by its
extension discussed in Remark 10.19). The point is to connect the information on the possible blow–up
limit networks S̃∞ to the existence and the structure of a network ST which is the limit of St, as t→ T .
We recall that assuming the multiplicity–one conjecture, by Lemma 9.8, there exist the limits xi =

limt→T O
i(t), for i ∈ {1, 2, . . . ,m} and correspond to the (finitely many) points in Ω where Θ̂(x0) > 1

and to the end–points of St such that the curve getting there collapses as t→ T .
We first discuss what happens around an end–point P r of the network St if xi = P r for some (possibly
more than one) i ∈ {1, 2, . . . ,m}. As before, we consider the network Hrt , obtained by the union of St
with its “reflection” with respect to the point P r (see the end of Section 7.2). If Ω is strictly convex, by
Proposition 7.13, every blow–up limit network H̃r∞, obtained rescaling around the end–point P r, must
be symmetric and contained in the union of two cones for the origin of R2. Then, by an argument similar
to the one in the proof of Lemma 7.11, either H̃r∞ is a tree, or it contains a loop around the origin, which
is clearly impossible by such property. Hence, we conclude that H̃r∞ is a tree and the same the blow–up
limit network S̃∞, which means that we are in the previous case, considered in Proposition 9.19, in
particular, the curvature is locally bounded.
Then, by Proposition 9.17, Theorem 9.26 and Remark 9.27, we have a complete description of the be-
havior of St locally around its end–point, as t→ T .

Theorem 9.32. If M1 holds and the open set Ω is strictly convex, then in a neighborhood of its fixed end–points
on ∂Ω, the evolving regular network St is a tree, for t close enough to T and its curvature is uniformly locally
bounded during the flow. Hence, around any end–point P r either the flow is smooth, or the curve of St getting to
P r collapses and the network St locally converges in C∞, as t→ T , to two concurring curves at such end–point
forming an angle of 120 degrees, as in the right side of Figure 9.1.

Remark 9.33. We remark that the hypothesis of strict convexity of Ω can actually be weakened by asking
that Ω is convex and that there do not exist three aligned end–points of the initial network S0 on ∂Ω.
We now deal with the situation of a point x0 = limt→T O

i(t), for some i ∈ {1, 2, . . . ,m}, with x0 ∈ Ω.
Assuming that around x0 ∈ Ω the network is not definitively a tree for t close enough to T (which
would imply that the curvature is locally bounded, by Proposition 9.19), there must be at least one
bounded region of St collapsing to x0 at the singular time. By the estimates in Section 7.2, then the area
A(t) of any such region must satisfy A(t) = C(T − t), for some constant C depending on the number
of its edges. Hence, all the rescaled networks S̃x0,t must contain the rescalings of such regions that will
have a respective constant area. These rescaled regions cannot “go all to infinity” and disappear in the
blow–up limit network S̃∞, along any converging sequence S̃x0,tj → S̃∞, otherwise Lemma 7.10 would
apply and we could repeat the argument of the proof of Proposition 9.19, concluding that the curvature
is uniformly bounded around x0.
We now suppose that the full rescaled family of networks S̃x0,t converges to S̃∞, for instance, if the
uniqueness of blow–up assumption U in Problem 7.25, that we recall here below for the reader’s conve-
nience, holds (see also Remark 7.26):

U: In Proposition 7.20, the full family of rescaled regular networks S̃x0,t converges in C1
loc to the limit

degenerate regular shrinker S̃∞, as t→ +∞.
Equivalently, the full family of parabolically rescaled curvature flows Sµt converges to the degen-
erate regular self–similarly shrinking flow S∞t , as µ→ +∞, in Proposition 7.17.

Then, we can separate S̃∞ in two parts:

• a compact subnetwork M̃∞ of S̃∞, given by the union of the cores and the bounded curves (which
are pieces of Abresch–Langer curves or straight segments passing by the origin of R2),
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• the union Ñ∞ = S̃∞ \ M̃∞ of the unbounded curves of S̃∞, which must be halflines “pointing”
towards the origin (but not necessarily containing it), by Remark 7.9.

S̃∞

M̃∞

O

Figure 9.5: The subnetwork M̃∞ (in gray) of a 4–symmetric regular shrinker S̃∞ (four–ray star).

Then, by rescaling–back (dynamically contracting) the flow S̃x0,t → S̃∞, by the uniqueness assumption,
the subnetwork Mt of St corresponding to the compact subnetwork of S̃x0,t converging to M̃∞, is con-
tained in the ballB

C
√

2(T−t)/2(x0) for every t ∈ [0, T ), for some constant C independent of t (dependent

on M̃∞). In particular, Mt completely collapses to the point x0, “disappearing” in the limit, as t→ T .
We want now to describe the local behavior of the rest Nt of the network St (corresponding to the union
of the curves of S̃x0,t neither collapsing, nor entirely going to infinity, converging to the halflines of S̃∞),
around the point x0, as t→ T .
Remark 9.34. Notice that, inspecting the proof of Proposition 9.11, it is easy to see that the uniqueness
assumption U holds at every point where the curvature is locally uniformly bounded. In particular, it
holds in general if the network is a tree, by Corollary 9.25.

Proposition 9.35. If M1 and the above uniqueness assumption U of the blow–up limit shrinker S̃∞ hold, then,
as t→ T , the family γit of curves of Nt converges in C1(U) and in C∞(U \ {x0}), where U is a neighborhood of
x0, as t→ T , to an embedded, possibly non–regular network ST , composed of C1 curves γiT concurring at x0.
The directions of the halflines of S̃∞ coincide with the inner unit tangent vectors of the limit curves γiT at x0,
hence, these latter are all distinct.
Moreover, the curvature of every curve γiT is of order o(1/r), as r → 0, where r is the distance from the multi–
point x0 ∈ ST .

Proof. Since rescaling the evolving networks St the inner unit tangent vectors at the end–points of the
curves in Nt do not change and Ñx0,t → Ñ∞, the inner unit tangent vectors of the set of curves γit
converge to the unit vectors generating the halflines of S̃∞. More precisely, if the sequence of rescalings
γ̃ix0,t of a curve γit ∈ Nt converges in C1

loc to a halfline Hi ⊆ Ñ∞, the inner unit tangent vectors at the
end–point of γit converge to the unit vector generating Hi, as t→ T .
As, by Lemma 9.8 and the collapse of the subnetwork Mt, there is a neighborhood U of x0, such that for
every ρ > 0 in U \ Bρ(x0), for t close enough to T there are no triple junctions, hence, by Lemma 7.24,
the networks St converge in C∞loc(U \{x0}) to a smooth network ST composed of smooth curves γiT with
an end–point at x0.
We notice that the smoothness of ST and of γiT holds in U \ {x0}, not in the whole U . We want to show
that these curves are actually C1 in U , that is, till the point x0 and that their curvature is of order o(1/r),
where r is the distance from x0.
We consider one of the curves of Nt (dropping the superscript by simplicity, from now on) γt, which
converges (possibly, after reparametrization), as t→ T , to a limit C0 curve γT and such convergence is
also in C∞loc(U \ {x0}).
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As the full rescaled sequence S̃t converges to the blow–up limit S̃∞, as t → +∞, also the full sequence
of parabolically rescaled flows Sµt converges in C1

loc for every t ∈ (−∞, 0), as µ→ +∞, to the limit self–
similarly shrinking flow S∞t =

√
−2t S̃∞ (see Remark 6.10). Then, the curves γµt , which are the parabolic

rescalings of the curves γt converge to the halfline H , as µ → +∞. We choose t0 < 0 and µ0 > 0 such
that the parabolic rescalings Mµ

t of the subnetwork Mt of St are contained in B1/2(0), for every µ > µ0

and t ∈ (t0, 0). Then, the rescaled curves γµt smoothly converge (by Lemma 7.24), as µ → +∞, to the
halfline H (which has zero curvature) in B4(0) \ B1(0), for every t ∈ [t0, 0). Moreover, repeating the
above argument, we have that, as t→ 0, the curves γµt locally smoothly converge in B4(0) \ {0} to some
limit curves γµ0 , smooth in B3(0) \ {0}, for every fixed µ > µ0.
We are now going to apply the following special case of the pseudolocality theorem for mean curvature
flow (see [58, Theorem 1.5]) and the subsequent remark.

Theorem 9.36. Let γt, for t ∈ [0, T ), be a smooth curvature flow of an embedded curve in R2 with bounded
length ratios by a constant D (see Definition 7.15) and let

Qr(x0, y0) = {(x, y) ∈ R2 | |x− x0| < r, |y − y0| < r} .

Then, for any ε > 0, there exists η ∈ (0, ε) and δ ∈ (0, 1), depending only on ε and D, such that if (x0, y0) ∈ γ0

and γ0 ∩Q1(x0, y0) can be written as the graph of a function u : (x0 − 1, x0 + 1)→ R with Lipschitz constant
less than η, then

γt ∩Qδ(x0, y0), for every t ∈ [0, δ2) ∩ [0, T ),

is a graph over (x0 − δ, x0 + δ) of a function with Lipschitz constant less than ε and “height” bounded by εδ.

Remark 9.37. Then, the local estimates of Ecker and Huisken [30] imply that, for every m > 0 there is a
constant σ = σ(δ, ε,m) > 0 and a constant η = η(δ, ε,m) > 0 such that if the curvature of γ0 ∩Qδ(x0, y0)
is bounded by σ, then the curvature of γt ∩Qδ/2(x0, y0) is bounded by m, for every t ∈ [0, η) ∩ [0, T ).

By a rotation, we can assume that H = {(x, 0) | x > a} and let H = {(x, 0) | x > 0}. Taken any ε > 0,
let η and δ be given by this theorem, we consider t1 ∈ (t0, 0) such that t1 + δ2/8 > 0, then if µ is large
enough, say larger than some µ1 > 0, the curve γµt1 in B3(0) \ B1(0) is a graph of a function u over the
interval [1, 3]× {0} ⊆ H (with a small “error” at the borders), with gradient smaller than η > 0. Hence,
its evolution in the smaller annulus B2+δ(0)\B2−δ(0) is still a graph over H of a function with gradient
smaller than ε, for every t ∈ [t1,min{t1 + δ2, 0}), hence for every t ∈ [t1, 0), by the assumption on t1.
Notice that, it follows that also γµ0 in B2+δ(0) \ B2−δ(0) is a graph of a function over H with gradient
smaller than ε, when µ > µ1.
Rescaling back, since the C1–norm is scaling invariant, we see that γt, for t ∈ [T + µ−2t1, T ], can be
written as a graph with C1–norm less than ε over x0 + H in B(2+δ)/µ(x0) \ B(2−δ)/µ(x0), for every
µ > µ1. Hence, this conclusion holds for every pair (γt, t) in⋃

µ>µ2

(
B(2+δ)/µ(x0) \B(2−δ)/µ(x0)

)
× [T + µ−2t1, T ] ⊆ R2 × [0, T ] ,

for every µ2 > µ1 and this union contains the set

A = B(2+δ)/µ2
(x0)× [T + µ−2

2 t1, T ] \
{

(x, t) ∈ R2 × [0, T ]
∣∣∣ |x− x0| 6

2− δ√
−2t1

√
2(T − t)

}
.

Choosing now µ2 > µ1 large enough, we know that there exists some t2 > t1 such that for every t > t2,
the rescaled curves γµ2

t can be written as graphs with C1–norm less than ε over H in the ball centered
at the origin with radius 2 2−δ√

−2t1
. That is, for t ∈ [T + µ−2

2 t2, T ], the curve γt can be written as a graph

with C1–norm less than ε over x0 + H in the ball of center x0 and radius 2 2−δ√
−2t1

√
2(T − t), hence, for

every (γt, t) in

B =
{

(x, t) ∈ R2 × [T + µ−2
2 t2, T )

∣∣∣ |x− x0| < 2
2− δ√
−2t1

√
2(T − t)

}
,

The union of the sets A and B clearly contains the set

B(2+δ)/µ2
(x0)× [T + µ−2

2 t2, T ] \ {(x0, T )
}
,
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hence, in other words, for every ε > 0 there exists a radius Rε > 0 and a time tε < T such that the
curve γt in the ball BRε(x0) can be written as a graph with C1–norm less than ε, for every t ∈ [tε, T ).
Moreover, this also holds for the limit curve γT on the union⋃

µ>µ2

(
B(2+δ)/µ(x0) \B(2−δ)/µ(x0)

)
= B(2+δ)/µ2

(x0) \ {x0} .

This fact, recalling that the inner unit tangent vector of the curve γt at its end–point (the one going to
x0) converges to the direction of H , as t→ T , clearly shows that, locally around x0, we can write γT as a
graph of a function over x0 +H whose C1–norm decays like o(1), as the distance from x0 goes to zero.
In particular, we conclude that all the curves γiT , hence the limit network ST , are of class C1 and that all
the sequences of curves γit converge in C1 to γiT (possibly after reparametrization in arclength).
Arguing similarly for the curvature by means of Remark 9.37, we have that the curvature of the curve
γµ0 in B2+δ/2(0) \B2−δ/2(0) is smaller than any m > 0, if we choose µ large enough, say µ > µ3 > µ2. It
follows, rescaling back, that

µ−2 sup
ST∩B(2+δ/2)/µ(x0)\B(2−δ/2)/µ(x0)

k2 < m ,

for every µ > µ3. This implies that the curvature of ST is of order o(1/r), as r → 0, where r is the
distance from the multi–point x0 ∈ ST .
Finally, ST cannot have two concurring curve at a multi–point with the same unit tangent, since this
would imply that the limit shrinker S̃∞ had halflines of multiplicity larger than one.

It follows by this proposition that the networks St converge in C1(U) to a degenerate regular network
ŜT having ST as non–collapsed part, with underlying graph homeomorphic to St and core given by the
collapsing subnetwork Mt.

Remark 9.38. Notice that the limit Gaussian density Θ̂(x0) = Θ̂(x0, T ) (see Definition 6.9) at x0 (and time
T ) of the flow St is the Gaussian density of the blow–up limit shrinker S̃∞ = S∞−1/2 and can be different
from the number of curves of ST concurring at x0, divided by two. This does not happen when the
network St is a tree in a neighborhood of x0, for t close enough to T and the singularity is given by
the collapsing of a single curve producing a 4–point with angles of 60/120 degrees between the four
concurring curves, as described in Proposition 9.11 (after applying Proposition 9.19), in such case the
blow–up limit shrinker is a standard cross and the limit Gaussian density Θ̂(x0, T ) is clearly equal to
two.
We actually expect that the curvature of the curves in Nt and of ST is bounded, not only of order o(1/r),
close to the non–regular multi–points.

Open Problem 9.39.

• The curvature of ST is bounded?

• The curvature of the subnetwork Nt is locally uniformly bounded around x0, as t→ T ?

We can finally describe the local behavior of the whole network St, as t → T , around a point x0 ∈ Ω
where St is not a tree for t close enough to T .

Theorem 9.40. Let xi = limt→T O
i(t) ∈ Ω, for i ∈ {1, 2, . . . ,m}, and let x0 one of such points such that

x0 ∈ Ω and the blow–up limit at x0, as t → T , is not a line, a standard triod or a standard cross. Then, under
the uniqueness assumption U and the multiplicity–one conjecture M1, there exists a C1, possibly non–regular
network ST in a neighborhood U of x0, which is smooth in U \ {x0} and whose curvature is of order o(1/r), as
r → 0, where r is the distance from x0, such that

Nt → ST in C1
loc(U) and St → ST in C∞loc(U \ {x0}) ,

where Nt is the subnetwork of the non–collapsing curves of St.
Moreover, at the multi–point x0 of ST any two concurring curves cannot have the same exterior unit tangent
vectors.
The network ST is the non–collapsed part of a C1 degenerate regular network ŜT in U with underlying graph
homeomorphic to St and core given by the collapsed subnetwork Mt, which is the C1–limit of St, as t→ T .
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Remark 9.41. It is easy to see that, thanks to the uniformly bounded length ratios of St, the one–
dimensional Hausdorff measures associated to St weakly–converge (as measures) to the one–dimensional
Hausdorff measure associated to ST (see Remark 7.5).

9.4 Continuing the flow

We summarize in the following two theorems the behavior of the evolving regular network at a sin-
gular time, worked out in the previous sections, assuming the multiplicity–one conjecture 9.1 and the
uniqueness assumption 7.25.

Theorem 9.42. If M1 is true and the uniqueness assumption U holds, then the (possibly simultaneous) singu-
larities, as t → T , of the curvature flow of a regular network St in a strictly convex, open subset Ω ⊆ R2 are
locally given by:

• the “isolated” collapse with bounded curvature of a “boundary curve” getting to a fixed end–point on ∂Ω
(regions cannot collapse to boundary point); indeed, around any end–point P r either the flow is smooth, or
the curve of St getting to P r collapses letting two concurring curves forming an angle of 120 degrees at
such end–point;

• the collapse with bounded curvature of an ”isolated” curve with the formation of a regular 4–point, locally
around a point x0 ∈ Ω;

• the collapse with unbounded curvature locally around a point x0 ∈ Ω of a group of bounded regions (each
one of them with less than six edges), producing a possibly non–regular multi–point.

If {y1, y2, . . . , yn, z1, z2, . . . , zm} are the points of Ω where such singularities occur (which are a subset of the
limits, as t → T , of the 3–points of St), where we denoted with yi the “cross” or “boundary” singularities and
with zj the other singularities, then there exists a possibly non–regular C1 limit network ST such that:

• the network St converges locally in C1 to ŜT in Ω, as t → T , where ŜT is a degenerate regular net-
work having ST as non–collapsed part, moreover, the network St converges locally smoothly to ST in
Ω \ {z1, z2, . . . , zm});

• the non–collapsing subnetwork Nt of St converges locally in C1 to ST in Ω, as t → T , moreover, the
convergence is locally smooth in Ω \ {z1, z2, . . . , zm});

• the network ST is smooth in Ω \ {z1, z2, . . . , zm});

• every two concurring curves at a multi–point of ST have distinct exterior unit tangent vectors;

• the curvature of ST is of order o(1/r), as r → 0, where r is the distance from the set of points {zi}.

The case of a tree is special (for instance, the uniqueness assumption U is not needed in this case).

Theorem 9.43. If M1 is true and the evolving regular network St is a tree (or no regions are collapsing, as
t → T ), then the curvature is uniformly bounded and the only possible singularities, as t → T , are given by the
collapses of “isolated” curves in Ω, producing a regular 4–point or the collapse of some “boundary curves” getting
to the fixed end–points of the network, letting two concurring curves forming at such end–point an angle of 120
degrees. The network St converges locally smoothly with uniformly bounded curvature to a degenerate regular
network ŜT in Ω, as t→ T , having a network ST as non–collapsed part, composed of smooth curves with distinct
exterior unit tangents at the multi–points. Such multi–points can be only regular 3–points and regular 4–points
in Ω and end–points on ∂Ω with two concurring curves forming an angle of 120 degrees between their exterior
unit tangents. Clearly. the non–collapsing subnetwork of St converges locally smoothly to ST , as t→ T .

The next step, after this description, is to understand how the flow can continue after a singular time.
There are clear situations where the flow simply ends, for instance if all the network collapses to a single
point, like a circle shrinks down to a point in the evolution of a closed embedded single curve, see for
instance the following example.
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O1

O2

O3

O4

O1 = O2 = O3 = O4

t→ T

St ST

Figure 9.6: A Mercedes–Benz shrinker (see the Appendix) collapsing to a single point.

In other situations how the flow should continue is easy to guess or define. For instance, the case when
a part of the network collapses forming a 2–point, that can be also seen simply as an interior corner
point of a single curve (see the following figure).

O2

γ2

γ1

γ3

O1

O1 = O2

γ3

t→ T

St ST

Figure 9.7: Collapse of both curves γ1, γ2 and the region they enclose to the point O1 = O2, leaving a
closed curve γ3, possibly with a corner at O1 = O2.

Here, we can restart the flow by means of the work of Angenent [6] where the evolution of curves with
corners is treated (see Remark 2.16). In general, one would need an analogue of the short–time existence
Theorem 5.8 for networks with 2–points or with curves with corners. This will be actually a particular
case of Theorem 10.9 in the next section (see the beginning of Section 10.4).
Instead, a situation that really needs a “decision” about whether and how the flow should continue
after the singularity is depicted in the following figures.

P r P r

t→ T

St ST

Figure 9.8: A limit network with two curves arriving at the same end–point on ∂Ω.
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P 1

γ1 γ2O1
P 1 = O1

γ2

t→ T

St ST

Figure 9.9: Collapse of the curve γ1 leaving a closed curve γ2 with an angle of 120 degrees at an end–
point.

One can decide that the flow stops at t = T or that the curves become extremal curves of a new network
that must have, for every t > T , a fixed end in the end–point P r (this would require some analogs of the
short–time existence Theorem 5.8 for this class of non–regular networks, which are actually possible to
be worked out). Anyway, the subsequent analysis becomes more troublesome because of such concur-
rency at the same end–point, indeed, it should be allowed that, at some time t > T , a new curve and a
new 3–point possibly “emerges” from such end–point (it would be needed a “boundary” extension of
Theorem 10.9 in the next section).
Another situation that also needs a decision, which in this case is easier, is described in the following
figures.

O1 O2

γ1

γ2

γ3

O2
O1

γ2
γ1

t→ T

St ST

Figure 9.10: Collapse of the curves γ3 and the region enclosed to the point O3 leaving a curve γ2 with a
1–point as an end–point.

P 1

γ1

γ2O1
P 1

γ1

O1

t→ T

St ST

Figure 9.11: Collapse of the curves γ2 and the region enclosed to the point O1 leaving a curve γ1 with a
1–point as an end–point.

If the limit network ST contains a curve (or curves) which ends in a 1–point, it is actually natural to
impose that such curve vanishes for every future time, so considering only the evolution of the network
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of the rest of the network ST according to the above discussion (cutting away such a curve will produce
a 2–point or the empty set, in the figures above, for instance).

Theorem 10.9 in the next section will give a way to restart the flow in the “nice” singularity situation
described in Theorem 9.43, when the curvature remains bounded and a single curve collapses to an
interior point of Ω forming a non–regular network with a regular 4–point..

t→ T

St ST

O1 = O2

O1

O2
γ

Figure 9.12: A limit “nice” collapse of a single curve γ producing a non–regular network ST .

Finally if we are in the situation of a non–regular limit network ST described by Theorem 9.42, after the
collapse of a region of St, as t → T (see for instance the following figures), in order to restart the flow
one will need either an extension of Theorem 10.9 (mentioned in Remark 10.19) or an improvement of
Proposition 9.35 (the curvature of the non–degenerate limit curves is bounded).

t→ T

St ST

t→ T

St ST

Figure 9.13: Less “nice” examples of collapse and convergence to non–regular networks.

We conclude this section by discussing the (conjectural) “generic” situation of singularity formation, in
the sense that it should happen for a dense set of initial networks.
By numerical evidence (computing the lowest relevant eigenvalue of the Jacobi–field operator of the
candidates – Dominic Descombes and Tom Ilmanen, personal communication) the dynamically stable shrinkers
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(meaning that “perturbing” the flow, the blow–up limit network remains the same) should be only the
line, the unit circle, the standard triod, the standard cross, the Brakke spoon, the lens and the “three–ray
star” (see the figure below).

O

Figure 9.14: A “three–ray star” regular shrinker.

Conjecture 9.44. The “generic” singularities of the curvature flow of a network are (locally) asymptot-
ically described by one of the above shrinkers.

We remark that if rescaling around a singular point x0 we get one of the listed above shrinkers, the limit
network ST is locally quite “nice”. If the shrinker is a line or a standard triod, there is no singularity. If
it is a circle, it means that the flow ends at the singularity. If it is a Brakke spoon, locally the flow pro-
duces a curve with an end–point in Ω (see Figures 9.10 and 9.11), which we can reasonably “assume” it
disappears at subsequent times and we have to deal with an empty network or with a curve containing
an angle (as in Figure 9.7) that has a “natural” unique evolution, immediately smooth. In the case of
a standard cross, we can deal with the “new” 4–point by means of Theorem 10.9. If we get a lens, ST
will be (locally) given by two C1 curves (smooth outside x0) concurring at the singular point without
forming an angle (even if their curvature could be unbounded, getting to x0, if Problem 9.39 has a neg-
ative answer). Finally, if the shrinker is a three–ray star, the limit network ST is locally a triod at x0 with
angles of 120 degrees, by Proposition 9.35 (also, in this case, the curvature could be unbounded getting
close to x0). Notice that in these last two cases, even if apparently “nice”, we have to use Theorem 10.9
(and possibly its extension mentioned in Remark 10.19) in order to restart the flow, since the curves are
not necessarily C2 up to x0.
However, we remark that in all these cases (and in particular in the most “delicate” ones: cross, lens
and three–ray star, when we need to apply Theorem 10.9, or its extension mentioned in Remark 10.19)
the associated limit network ST (if not empty and “cutting” away a curve if it ends in a 1–point in Ω)
has either a regular 4–point (with angles of 120/60 degrees) or a regular 3–point, or a 2–point with no
angle. In particular, the cone generated by inner unit tangent vectors of the concurring curves at such
point form, respectively, is either a standard cross, a regular triod, or a line. Since, as we will see in the
next section, the curvature flow produced by Theorem 10.9 is associated with a regular self–similarly
expanding network (see Definition 10.1) originating from such cone, which in these special cases it is
unique (see the end of Section 10.1 and Problems 10.31, 10.32, 10.33), it is natural to expect that also the
flow produced by such theorem is unique, which would give a unique “canonical” way to continue the
flow in the (conjectural) generic situation.

10 Short time existence III – Non–regular networks

In this section we consider the problem of defining and finding a curvature flow (as smooth as possible)
starting from an initial possibly non–regular network, that is, having multiple points of order greater
than three or triple junctions where the 120 degrees condition is not satisfied. As we have seen in the
previous sections, this is naturally related to the “restarting” of the flow after a singularity. To deal with
such problem, we clearly need a definition of solution slightly different from Definitions 2.11 and 2.12
in a positive time interval [0, T ), asking anyway that Definition 2.7 still holds for every positive time.
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We are going to present two short–time existence results for general networks, the first by T. Ilmanen,
A. Neves and the last author in [58], Theorem 10.9, the second by J. Lira, M. Mazzeo, M. Saez and the
third author in [70], Theorem 10.26. Both theorems are based on the existence and the properties of the
self–similarly expanding networks and provide a “nice” motion by curvature if the initial datum belongs
to the class of non–regular networks with bounded curvature, such that at every multiple point the
exterior unit tangent vectors are mutually distinct. Notice that the second assumption is not restrictive
for the “restarting” problem, taking into account the conclusions of Theorems 9.42 and 9.43.

10.1 Self–similarly expanding networks

Definition 10.1. A regular C2 open network E is called a regular expander if at every point x ∈ E there
holds

k = x⊥ . (10.1)

This relation is called the expanders equation.

The name comes from the fact that if E is a regular expander, then Et =
√

2tE describes a self–similarly
expanding curvature flow of regular networks in (0,+∞), with E = E1/2. Viceversa, if Et is a self–
similarly expanding curvature flow of regular networks in the time interval (0,+∞), then E1/2 is a
regular expander, that is, E1/2 satisfies equation (10.1).

O O
O

Figure 10.1: Examples of tree–like regular expanders with 3, 4, 5 asymptotic halflines (in gray).

By studying the ODE satisfied along each curve, one can easily show that an expander cannot be com-
pact, all its curves are smooth and each noncompact curve must be asymptotic to a halfline. Moreover,
it is trivial that the family of the asymptotic halflines of the open networks of a self–similarly expanding
curvature flow Et is the same for all t ∈ (0,+∞) and, by a direct maximum principle argument, one can
prove exponential decay of the functions representing the network as graphs on such halflines, outside
a large ball.

Lemma 10.2. Let P be a finite union of distinct halflines meeting at the origin and E a regular expander, such
that each noncompact curve of E is asymptotic in Hausdorff distance to one of the halflines of P . Then, there
exists an r0 > 0 large enough such that each noncompact curve σ of E corresponds to a connected component of
E \Br0(0) and can be parametrized as

σ(`) = `eiω + u(`)ei(ω+π/2) for ` > r0.

where
{
`eiω | ` > 0

}
is a halfline of P and lim`→+∞ u(`) = 0. Moreover, the decay of u is given by

|u(`)| 6 C0e
−`2/2, |u′(`)| 6 C1`

−1e−`
2/2, |u′′(`)| 6 C2e

−`2/2

and
|u′′′(`)| 6 C3`e

−`2/2, |u′′′′(`)| 6 C4`
2e−`

2/2,

where each constant Ci depends only on r0, u(r0) and u′(r0).
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Then, it is easy to see that for every smooth self–similarly expanding curvature flow Et, letting P be the
network given by the finite union of the distinct (common) asymptotic halflines of Et, meeting at the
origin, we have Et → P , as t→ 0, in C∞loc(R2 \ {0}). We say that P is the generator of the flow Et or that
Et is a (possibly not unique) curvature flow of P in the time interval [0,+∞).
Conversely, if we consider a network P given by a finite number of distinct halflines meeting at the
origin and we assume that we have a smooth curvature flow St for t ∈ (0, T ), such that St → P in
C∞loc(R2 \ {0}), as t→ 0, then the parabolically rescaled flows

Sµt = µSµ−2t

also satisfy Sµt → P , as t→ 0, for any µ > 0, since P is invariant under rescalings. Thus, supposing that
the flow St is unique in some “appropriate class” with initial condition P , we obtain that T = +∞ and
St = Sµt , for any µ, t > 0. This is like to say that St =

√
2tS1/2, that is, St is a self–similarly expanding

curvature flow of regular networks, for t ∈ (0,+∞) and P is its generator. As we said, the family of
distinct (common) asymptotic halflines of all St coincides with the family of halflines of P .

Remark 10.3. Notice that the generator of a self–similarly expanding curvature flow of networks is
uniquely defined, while, for a network P composed of a finite number of halflines for the origin, there
could be several self–similarly expanding curvature flows of regular networks having P as a generator,
as in the following figure.

O
O

Figure 10.2: An example of two different tree–like regular expanders (not in the same “topological class”
– see below) with the same asymptotic halflines (in gray).

Given P =
⋃n
j=1 Pj , where Pj are halflines from the origin, in [97] it was shown that for n = 3 there

exists a unique tree–like, regular expander E asymptotic to P (if P is a standard triod such an expander
E is P itself), in the case n > 3 the existence of such tree–like, connected, regular expanders was shown
by Mazzeo–Saez [83]. This result is based on the following simple lemma.

Lemma 10.4. A regular expander is a critical point of the length functional with respect to the negatively curved
metric

g = e|x|
2(
dx2

1 + dx2
2

)
.

Proof. See [83, Proposition 2.3] or [58, Lemma 4.1].

To be precise, such a network is a stable critical point of the length functional in (R2, g) (where, as usual,
it suffices to look at the length of the networks in any large ball BR(0)).
The geodesic arcs and rays for the metric g are qualitatively similar to the geodesics in the hyperbolic
space, as one can expect, since the curvature of g is everywhere negative. For instance, if Pi and P ′i are
any two halflines emanating from the origin, then there is a unique complete geodesic for the metric g
which is asymptotic to these halflines along its two ends. A way to see this is to consider the “geodesic
compactification” of (R2, g) as a closed ball B. A limiting direction (i.e., the asymptotic limit of any
halfline Pi) then corresponds to a point qi ∈ ∂B. Thus, any P =

⋃n
j=1 Pj is uniquely determined by the

choice of n distinct points q1, . . . , qn ∈ ∂B.
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We remind the reader that, given a collection of points q1, . . . , qn a solution of the so called Steiner
problem in (R2, g) is a connected set that contains the points q1, . . . , qn and minimize the length functional
(with respect to the metric g). One can prove that for any collection of points q1, . . . , qn there exists a
solution to the Steiner problem and it is a “geodesic” and regular network. In particular, a minimizer
of the Steiner problem is an expander.
This observation leads to the following result of Mazzeo–Saez [83, Main Theorem].

Proposition 10.5. Let P =
⋃n
j=1 Pj be a set of halflines from the origin in R2 and q1, . . . , qn the corresponding

points (listed in cyclic order) on ∂B, as above. Then, the set of expanding self–similar solutions of the network flow
with initial datum P is in one–to–one correspondence with the set of (possibly disconnected) regular networks on
B with end–points {q1, . . . , qn}, whose arcs are geodesics for the metric g.
Moreover, for each choice of P =

⋃n
j=1 Pj there exists at least one self–similar expanding solution whose non–

compact branches are asymptotic to the halflines Pj .

Another key fact is that two regular expanders with the same “topological structure” and which are
asymptotic to the same family of halflines, have to be identical.

Definition 10.6. We say that two regular expanders E0 and E1 are asymptotic one to each other if their
ends are asymptotic to the same halflines.
We say that two regular expanders E0 and E1 are in the same topological class, if there is a smooth family
of maps

Fθ : E0 → R2, 0 6 θ 6 1

such that F0 is the identity, F1(E0) = E1, the distance between any two triple junctions of Fθ(E0) is
uniformly bounded below and

lim
r0→+∞

sup
{
|∂Fθ(x)/∂θ|

∣∣ x ∈ E0 \Br0(0)
}

= 0, for every 0 6 θ 6 1.

Notice that two regular expanders in the same topological class are asymptotic to each other.

Theorem 10.7. If E0 and E1 are two regular expanders in the same topological class, then they coincide.

Proof. We work in the negatively curved metric in the plane

g = e|x|
2

(dx2
1 + dx2

2) ,

such that each curve of a regular expander is a geodesic in this metric.
Let {x0

i } and {x1
i } denote the triple junctions (a finite set) of E0 and E1, respectively. As the networks

are in the same topological class, we can rearrange the elements of {x0
i } so that each x0

i is connected
to x1

i by the existing deformation Fθ of E0 into E1. Denote by xξi , for ξ ∈ [0, 1], the unique geodesic
connecting these points.
For each ξ, we consider the network Eξ such that if x0

i is connected to x0
k by a geodesic, then xξi is

connected to xξk through a geodesic as well. To handle the noncompact curves we proceed as follows.
Let Pj denote a common asymptotic halfline to E0 and E1, which means that there are geodesics ψ0 ⊆
E0, ψ1 ⊆ E1 asymptotic to Pj at infinity and starting at some points x0

i and x1
i respectively. Define then,

for every ξ ∈ (0, 1), the curve ψξ ⊆ Eξ to be the unique geodesic starting at xξi and asymptotic to Pj .
This gives a deformation of the curve ψ0 to ψ1.
Hence, we have constructed a smooth family of networks with only triple junctions Eξ, for ξ ∈ [0, 1],
“connecting” E0 and E1 and such that:

1. The triple junctions {xξi } of Eξ connect the triple junctions of E0 to the ones of E1 and, for each
index i fixed, the path xξi , with ξ ∈ [0, 1], is a geodesic with respect to the metric g.

2. Each curve of Eξ is a geodesic of (R2, g).

3. There is r0 > 0 large enough so that Eξ \ Br0(0) has n connected components, each asymptotic
to a halfline Pj , for j = 1, 2, . . . , n. We can find angles ωj such that each end of Eξ becomes
parametrized as

Eξ(`) = `eiωj + uj,ξ(`)e
i(ωj+π/2) for ` > r0.

This follows from Lemma 10.2.
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4. The vector field along Eξ,

Xξ(`) =
∂

∂ξ
Eξ(`)

is continuous, smooth when restricted to each curve and

|Xξ(`)| = O(e−`
2/2), |∇Xξ(`)| = O(`−1e−`

2/2),

uniformly in ξ ∈ [0, 1], where the gradient is computed along Eξ with respect to the metric g.
Moreover,

αj,ξ(`) =
∂uj,ξ(`)

∂ξ

satisfies
|αj,ξ(`)| = O(e−`

2/2) |α′j,ξ(`)| = O(`−1e−`
2/2).

It is enough to provide justification for the second set of estimates. For ease of notation we omit
the indices j and ξ on αj,ξ and uj,ξ. By linearizing the equation for an expanding graph, see [97,
equation (2.3)], we have

α′′ = (1 + [u′]2)(α− `α′) + 2u′α′(u− `u′).

We can assume without loss of generality that α(r0) > 0. Moreover, it follows from our construc-
tion that

lim
`→+∞

|α(`)|+ |α′(`)| = 0.

A simple application of the maximum principle shows that α can not have a negative local mini-
mum or a positive local maximum. Hence, α > 0 and α′ 6 0. We can assume that u′ 6 0 (see the
proof of Lemma 10.2). The function β = α− `α′ thus satisfies

β′ = −`(1 + [u′]2)β − 2`u′α′ 6 −xβ

and integration of this inequality gives the conclusion.

Denote by L the length functional with respect to the metric g and consider the family of functions

Wr(ξ) = L(Eξ ∩B2r0(0)) +

n∑
j=1

∫ r

2r0

e[`2+u2
j,ξ(`)]/2

√
1 + [u′j,ξ(`)]

2 d`− n
∫ r

2r0

e`
2/2 d` .

The decays given in Lemma 10.2 imply the existence of a constant C such that for every r 6 r

‖Wr −Wr‖C3 6 Ce−r , (10.2)

so, when r → +∞, the sequence of functions Wr : [0, 1] → R converges uniformly in C2 to a function
W : [0, 1]→ R. Furthermore, if ξ = 0 or ξ = 1, we have, combining Lemma 10.2 with point 4 above, that

lim
r→+∞

dWr(ξ)

dξ
= 0 ,

thus, W has a critical point when ξ = 0 or ξ = 1.
A standard computation shows that on each compact curve of Eξ, we have (after reparametrization
proportional to arclength)

d2

dξ2

∫ b

a

√
g(E′ξ,E′ξ) dl =

∫ b

a

|E′ξ|−1
(
|(∇E′ξXξ)

⊥|2 − Riem(Xξ,E′ξ,E′ξ, Xξ)
)
dl + |E′ξ|−1g(∇XξXξ,E′ξ)

∣∣∣b
a

=

∫ b

a

|E′ξ|−1
(
|(∇E′ξXξ)

⊥|2 − Riem(Xξ,E′ξ,E′ξ, Xξ)
)
dl ,
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where E′ξ = dEξ/dl, we used property 1 above and all the geometric quantities are computed with
respect to the metric g (Riem is the Riemann tensor of (R2, g)). Combining this identity with property 4,
we have

d2Wr(ξ)

dξ2
=

∫
Eξ∩Br(0)

|E′ξ|−2
(
|(∇E′ξXξ)

⊥|2 − Riem(Xξ,E′ξ,E′ξ, Xξ)
)
dl +O(e−r) .

As (R2, g) is negatively curved, more precisely, its Gaussian curvature is equal to −e−|x|2 , the integrals
above are bounded independently of r > 2r0. Therefore, by means of estimate (10.2), we obtain

d2W (ξ)

dξ2
=

∫
Eξ
|E′ξ|−2

(
|(∇E′ξXξ)

⊥|2 − Riem(Xξ,E′ξ,E′ξ, Xξ)
)
dl > 0 ,

where the last inequality comes form the fact that (R2, g) is negatively curved. It follows that W :
[0, 1] → R is a convex function with two critical points at ξ = 0 and ξ = 1, hence, it is identically
constant. The last formula above then implies that the vector fieldXξ must be a constant multiple of E′ξ,
hence, it must vanish at all triple junctions. The fact that Xξ is continuous implies that Xξ is identically
zero and this proves that all the networks Eξ coincide, for ξ ∈ [0, 1], in particular E0 = E1, which is the
desired result.

Corollary 10.8. If P =
⋃4
j=1 Pj is a standard cross, then there exists a unique, connected, tree–like, regular

expander asymptotic to P .

Proof. In this case, it is easy to see that there are only two possible topological classes of connected regu-
lar expanders asymptotic to P (analogous to the two situations depicted in Figure 10.2), but since every
unbounded curve cannot change its convexity (as for the shrinkers, by analyzing the expanders equa-
tion (10.1)), if two such curves are contained in the angle of 120 degrees of the standard cross, when they
concur at a 3–point they must form an angle larger than 120 degrees, which is a contradiction, hence
such topological class is forbidden.
Thus, only one topological class is allowed and it contains only one regular expander (with two sym-
metry axes), by Theorem 10.7.

We recall that the same conclusion of this corollary also holds when P is composed of three halflines
from the origin.

10.2 A short–time existence theorem for non–regular networks

The first result we present ([58, Theorem 1.1]) requires the notion of convergence in the sense of varifolds
and can be stated as follows.

Theorem 10.9. Let S0 be a possibly non–regular, embedded, C1 network with bounded curvature, which is C2

away from its multi–points and such that the exterior unit tangent vectors of the concurring curves at every
multi–point are mutually distinct. Then, there exist T > 0 and a smooth curvature flow of connected regular
networks St, locally tree–like, for t ∈ (0, T ), such that St for t ∈ [0, T ) is a regular Brakke flow. Moreover, away
from the multi–points of S0 the convergence of St to S0, as t→ 0, is in C2

loc (or as smooth as S0).
Furthermore, there exists a constant C > 0 such that supSt |k| 6 C/

√
t and the length of the shortest curve of St

is bounded from below by C
√
t.

Remark 10.10. To be more precise, we define the sets Gt as

Gt = {(x, τ(x, t)) | x ∈ St} ∪ {(x,−τ(x, t)) | x ∈ St} ⊆ R2 × S1 ,

for every t ∈ [0, T ), where τ(x, t) is the unit tangent vector at x ∈ St. The convergence of St → S0 in the
previous theorem is in the sense of varifolds, that is, as t→ 0, the Hausdorff measuresH1 Gt converge
toH1 G0, as measures on R2 × S1 (see [99] for the general definition). It is easy to see that this implies
thatH1 St → H1 S0, as t→ 0, as measures on R2, hence there is no instantaneous loss of mass of the
network at the starting time.
Around a non–regular multi–point the C1–convergence is not possible: for every t > 0, the networks
St are regular, so they satisfy the 120 degrees condition and that would pass to the limit. Varifold–
convergence is anyway a sort of “weak” C1–convergence, slightly stronger than simply asking that
H1 St → H1 S0, as t→ 0.
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We aim to present now an outline of the proof of Theorem 10.9 which depends crucially on an ex-
pander monotonicity formula implying that self–similarly expanding flows are “dynamically stable”.
The monotone integral quantity we will consider has been applied previously by A. Neves in the setting
of Lagrangian mean curvature flow [84–86]. Other main ingredients are the local regularity Theorem 8.3
and the pseudolocality Theorem 9.36 (see [58, Theorem 1.5]). We underline that for curves moving in
the plane, this latter can be replaced by S. Angenent’s intersection counting theorem, see [8, Proposi-
tion 1.2], [7, Section 2] and [5] for the proof.
By the assumptions at any multi–point of an initial network S0, the cone generated (at such point) by
the interior unit normal vectors of the concurring curves consist of a finite number of distinct halflines.
The natural evolution of such a cone is a self–similarly expanding curvature flow, due to the scaling
invariance of this particular initial network. The strategy is then as follows: we “glue in”, around
each possibly non–regular multi–point of the initial network S0, a (piece of a) smooth, self–similarly
expanding, tree–like, connected regular network at the scale

√
ξ (in a ball of radius proportional to

√
ξ),

corresponding to the cone generated by the interior unit tangent vectors of the concurring curves of
S0 at the multi–point, to obtain an approximating C2 regular network Sξ0 (satisfying the compatibility
conditions of every order, see Definition 3.27). The curvature of Sξ0 is thus of order 1/

√
ξ and the shortest

curve has length proportional to
√
ξ. Then, the standard short–time existence result yields a smooth

curvature flow Sξt up to a positive time Tξ.
To prove that these approximating flows exist for a time T > 0, independent of ξ, we make use of
the expander monotonicity formula to show that the flows Sξt stay close to the corresponding self–
similarly expanding flows, in an integral sense, around each multi–point. This gives that the curvature
is bounded by C/

√
t up to a fixed time T > 0, together with a lower bound on the length of the shortest

curve. Thus, we can pass to the limit, as ξ → 0, to obtain the desired curvature flow.

Remark 10.11. The Brakke flow provided by the above theorem is not necessarily with equality (see
Definition 6.1). Indeed, assume for instance that S0 is a standard cross (see Figure 7.5) and ϕ a test
function such that 0 6 ϕ 6 1, ϕ = 1 on B1(0) and ϕ = 0 outside of B2(0). Let St =

√
2tS0 be the

regular expander “exiting” from S0 (which is the curvature flow given by Theorem 10.9). Suppose
by contradiction that St is a regular Brakke flow with equality. Since S0 has no curvature, by using
equation (6.2) we have

d

dt

∫
St
ϕds

∣∣∣
t=0

= −
∫
S0
ϕk2 ds+

∫
S0
〈∇ϕ | k〉 ds = 0 .

Anyway, by the mean value theorem for any t > 0 there holds∫
St ϕds−

∫
S0 ϕds

t
= −

∫
Sθ
ϕk2 ds+

∫
Sθ
〈∇ϕ, k〉 ds ,

for some 0 < θ < t. By the self–similarity property of St =
√

2tS0, it is then easy to see that the first
term on the right-hand side of this formula goes to −∞ and the second one stays bounded, hence,

d

dt

∫
St
ϕds

∣∣∣
t=0

= lim sup
t→0

∫
St ϕds−

∫
S0 ϕds

t
= −∞ ,

which is a contradiction.

Remark 10.12. In writing this paper, we got informed that the hypothesis on the non–coincidence of two
(but no more than two) exterior unit tangent vectors can actually be removed (Tom Ilmanen, personal
communication).

Remark 10.13. The a priori choice of gluing in only connected regular self–similarly expanding networks,
hence obtaining a connected network flows, has a physical meaning: it ensures that initially separated
regions remain separated during the flow while using only tree–like self–similarly expanding networks
excludes the formation of new bounded regions.
Indeed, from a 7–point one could try (this is only conjectural, the line of Theorem 10.9 does not work in
this case) to get a flow with a new heptagonal region, by gluing in a symmetric self–similarly expanding
network with a heptagonal region, following the construction of Theorem 10.9 described above.

111



Anyway, it can be seen that all the connected, regular self–similarly expanding networks containing a
bounded region must have at least seven unbounded halflines. This because, by means of the same
arguments of Section 7.2 (Remark 7.14), every bounded region of a regular self–similarly expanding
network is bounded by at least seven curves. This clearly implies that from a multi–point of order
less than six, the flow produced by Theorem 10.9 is always locally tree–like, even if the line of proof
(and at the moment it is not) could be adapted to “glue in” any self–similarly expanding network (that
is, possibly also a non tree–like one, in general). It is then a natural question if a multi–point with
more than five (or possibly more than six) concurring curve can appear in the limit network ST , as
t → T , described in Theorem 9.42 of the previous section. This is related to finding a regular (possibly
degenerate) shrinker with more than five (or maybe six) unbounded halflines.

Open Problem 10.14. Do there exist (possibly degenerate) regular shrinkers with more that five (or six)
unbounded halflines?

10.3 The expander monotonicity formula

Let St be a curvature flow of tree–like regular networks. The tangent vector of St makes with the x–axis
an angle θt which, away from the triple junctions, is a well defined function up to a multiple of π, since
we do not care about orientation. Because at the triple junctions, the angle jumps by 2π/3, there is a
well defined function θt which is continuous on St and coincides with θt up to a multiple of π/3. We
identify the plane R2 with C, thus

k = Jτ ∂sθt = ν ∂sθt ,

where J is the complex structure.
Let L = xdy − ydx be the Liouville form on R2. Since we assumed that St has no loops, we can find a
function βt, unique up to a time–dependent constant, such that

dβt = L |St .

We can modify the time–dependent constant so that the following evolution equations hold, see [58,
Lemma 3.1].

Lemma 10.15. The following evolution equations hold away from the triple junctions:

dθt
dt

= ∂2
sθt + ∂sθt 〈τ |X〉 ,

dβt
dt

= ∂2
sβt + ∂sβt 〈τ |X〉 − 2θt ,

where X = k + λτ is the velocity of the evolution.

Notice that this implies that the function αt = βt + 2tθt satisfies the evolution equation

dαt
dt

= ∂2
sαt + ∂sαt 〈τ |X〉 .

Furthermore, Jτ ∂sαt = ν ∂sαt = −x⊥ + 2tk, which exactly vanishes on a self–similarly expanding
network. With a computation similar to the one leading to Huisken’s monotonicity formula (6.4), we
arrive at the following result, see [58, Lemma 3.2].

Lemma 10.16 (Expander monotonicity formula). The following identity holds

d

dt

∫
St
α2
t ρx0,t0(x, t) ds = −

∫
St

2
∣∣x⊥ − 2tk

∣∣2ρx0,t0(x, t) ds−
∫
St
α2
t

∣∣∣∣ k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0(x, t) ds ,

for some constant C.

In the later applications, the evolving networks will be only locally tree–like, that is, only locally without
loops. In order to apply the above monotonicity formula, it will need to be localized. We assume that
St ∩ B4(x0) does not contain any closed loop for all 0 6 t < T . We define βt locally on St ∩ B4(x0) and
we let ϕ : R2 → R be a smooth cut–off function such that ϕ = 1 on B2(x0), ϕ = 0 on R2 \ B3(x0) and
0 6 ϕ 6 1. Then, we have the following localized version of Lemma 10.16, see [58, Lemma 3.3].
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Lemma 10.17 (Localized expander monotonicity formula). The following estimate holds,

d

dt

∫
St
ϕα2

t ρx0,t0(x, t) ds 6 −
∫
St
ϕ |x⊥ − 2tk|2ρx0,t0(x, t) ds+ C

∫
St∩(B3(x0)\B2(x0))

α2
t ρx0,t0(x, t) ds .

10.4 Outline of the proof of Theorem 10.9

Now let S0 be a non–regular initial network with bounded curvature. For simplicity, let us assume that
S has only one non–regular multi–point at the origin.
If the multi–point consists of only two curves meeting at an angle different from π (remember that a
zero angle is not allowed), then, by the work of Angenent [6–8], there exists a curvature flow starting at
S0, satisfying the statement of Theorem 10.9: actually the angle is immediately smoothed and the two
curves become a single smooth one.
So we can assume that at the origin at least three curves meet and let τj , for j = 1, 2, . . . , n, be the
exterior unit tangent vectors. We denote with

Pj =
{
−`τj | ` > 0

}
the corresponding halflines and P =

⋃n
j=1 Pj . Since S0 has bounded curvature, we can assume, by

scaling S0 if necessary, that S0 ∩B5(0) consists of n curves σj corresponding to the tangents τj and if ωj
is the angle that Pj makes with the x–axis, there is a function uj such that σj can be parametrized (with
a small error at the boundary of the ball B5(0)) as

σj =
{
`eiωj + uj(`)e

i(ωj+π/2) | 0 6 ` 6 5
}
.

Notice that the assumption that S0 has bounded curvature implies

|uj(`)| 6 C`2 and |u′j(`)| 6 C` ,

for some constant C.
As already mentioned, in [97] it was shown that for n = 3 there exists a unique tree–like regular ex-
pander E asymptotic to P =

⋃n
j=1 Pj . In the case n > 3, the existence of tree–like, connected, regular

expanders was shown by Mazzeo–Saez [83].
We remind that, thanks to Lemma 10.2, there exists r0 > 0 such that outside the ball Br0(0) the n
noncompact curves γj of the regular expander E can be parametrized as

γj =
{
`eiωj + vj(`)e

i(ωj+π/2) | ` > r0

}
,

where the functions vj have the following decay:

|vj(`)| 6 C0 e
−`2/2 , |v′j(`)| 6 C1`

−1 e−`
2/2 , |v′′j (`)| 6 C2 e

−`2/2 .

Consider now the rescaled expander Eξ =
√

2ξ E, call σj,ξ be the curve of Eξ asymptotic to Pj , for every
j = 1, 2, . . . , n, then

σj,ξ =
{
`eiωj + vj,ξ(`)e

i(ωj+π/2) | ` > r0

√
2ξ
}
,

and we have the estimates

|vj,ξ(`)| 6 C
√

2ξ e−`
2/4ξ , |v′j,ξ(`)| 6 C`−1

√
2ξ e−`

2/4ξ , |v′′j,ξ(`)| 6 C e−`
2/4ξ/

√
2ξ .

In particular, choosing ξ small enough, we have r0

√
2ξ < 4 and this holds in the annulus A(r0

√
2ξ, 4) =

B4(0) \Br0√2ξ(0).
We now aim to construct the network Sξ0 by gluing Eξ =

√
2ξ E into S0 (more precisely Eξ ∩ Br0√2ξ(0),

for ξ small enough). We define the network Sξ0 that coincides with Eξ in Br0
√

2ξ(0) and with S0 outside
B4(0), while in the “gluing” annulusA(r0

√
2ξ, 4), in a way we “interpolate” between the two networks.

Precisely, letting ϕ : R+ → [0, 1] be a cut–off function such that ϕ = 1 on (0, 1] and ϕ = 0 on [2,+∞), we
define Sξ0 in A(r0

√
2ξ, 4) via the graph function uj,ξ as follows, for ` ∈ [r0

√
2ξ, 4),

uj,ξ(`) = ϕ(ξ−1/4`)vj,ξ(`) +
(
1− ϕ(ξ−1/4`)

)
uj(`) .
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That is,
Sξ0 ∩A(r0

√
2ξ, 4) =

{
`eiωj + uj,ξ(`)e

i(ωj+π/2) | r0

√
2ξ 6 ` 6 4

}
(with a small error at the borders of the annulus A(r0

√
2ξ, 4)).

By construction, every network Sξ0 has the same regularity of S0, it is regular and satisfies all the com-
patibility conditions of every order (see Definition 3.27), it is locally a tree and it can be checked easily
that it satisfies the following properties, for every ξ smaller than some ξ0 > 0:

P1. There is a constant D1, independent of ξ, such that

H1(Sξ0 ∩Br(x)) 6 D1r ,

for all x ∈ R2 and r > 0.

P2. There is a constant D2 independent of ξ, such that for every x ∈ Sξ0,∣∣θξ0(x)
∣∣+
∣∣βξ0(x)

∣∣ 6 D2(|x|2 + 1) ,

where θξ0 and βξ0 are the “angle function” and a primitive for the Liouville form of the network Sξ0,
as defined in Section 10.3.

P3. The curvature of Sξ0 is bounded by C/
√
ξ and Sξ0 → S0 in C1

loc(R2 \ {0}), as ξ → 0.

P4. The connected components of P ∩ A(r0

√
2ξ, 4) are in one–to–one correspondence with the con-

nected components of Sξ0 ∩A(r0

√
2ξ, 4) and there is a constant D3, independent of ξ, such that the

functions uj,ξ satisfy

|uj,ξ(`)|+ `|u′j,ξ(`)|+ `2|u′′j,ξ(`)| 6 D3

(
`2 +

√
2ξ e−`

2/4ξ
)
,

for every ` ∈ [r0

√
2ξ, 4].

P5. The sequence of rescaled networks S̃ξ0 = Sξ0/
√

2ξ converges in C1,α
loc (Br0(0)) to E, for α ∈ (0, 1), as

ξ → 0.
Without loss of generality we can also assume that locally

lim
ξ→0

(θ̃ξ0 + β̃ξ0) = 0 ,

where θ̃ξ0 and β̃ξ0 are relative to S̃ξ0.

Let Sξt , for t ∈ [0, Tξ), be a maximal smooth curvature flow starting at the initial network Sξ0 and let

Θξ
x0,t0(t) =

∫
Sξt
ρx0,t0(·, t) ds

be the Gaussian density function with respect to the flow Sξt .
We fix ε0 > 0 such that 3/2 + ε0 < ΘS1 . The main estimate, which will imply short–time existence, is
given by the following proposition.

Proposition 10.18. There are constants ξ1, δ1 and η1 depending on D1, D2, D3, E, r0 and ε0, such that if

t 6 δ1, r
2 6 η2

1t, and ξ 6 ξ1 ,

then,
Θξ
x,t+r2(t) 6 3/2 + ε0 ,

for every x ∈ B1(0).

We will sketch the proof after showing how this implies Theorem 10.9.
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Proof of Theorem 10.9. Considering the smooth curvature flows Sξt in the time interval [0, Tξ), for some
Tξ > 0, discussed above, we now aim to show that there exists T > 0 such that Tξ > T , for all ξ ∈ (0, ξ1)
and that there are interior estimates on the curvature and all its higher derivatives for all positive times,
independent of ξ ∈ (0, ξ1).
By [58, Theorem 1.5], there exists ε > 0 such that if Sξ0 can be written with respect to suitably chosen
coordinate system as a graph with a small gradient in a ball BR(x), then Sξt remains a graph in this
coordinate system in BεR(x) with small gradient, for t ∈ [0, εR2]. Combining this fact with the in-
terior estimates of Ecker–Huisken in [30] for the curvature and its higher derivatives, we can choose
a parametrization of the evolving network and a smooth family of points P

ξ

j ∈ Sξt in the annulus
B1/2(0) \B1/3(0) along each curve corresponding to Pj , for j = 1, . . . , n, such that

∂lsλ(P
ξ

j , t) = 0 and
∣∣∂lsk(P

ξ

j , t)
∣∣ 6 Cl ,

for all l > 0 with constants Cl independent of ξ for 0 6 t < min{Tξ, δ}, where δ > 0 does not depend on
ξ. Then, Corollary 4.12 gives estimates on the curvature and its derivatives, independent of ξ and t, on
Sξt \B1/2(0), for t ∈ (0,min{Tξ, δ}) (possibly taking a smaller δ > 0).
To get the desired estimates on Sξt ∩ B1/2(0) we now apply Proposition 10.18 and Theorem 8.3. Let
ξ1, δ1, η1 be given by Proposition 10.18. If we choose 0 < t0 < min{Tξ, δ1, δ, 1/2} and x0 ∈ B1/2(0),
Proposition 10.18 implies that if ξ < ξ1, we have

Θξ
x,t+r2(t) 6 3/2 + ε0 ,

for all x ∈ B1(0), t ∈ (0, t0) and r2 6 η2
1t. In particular, we see that if t ∈ (t0/2, t0), choosing r2 6 η21t0

2(1+η21)

and setting t = t− r2, we have t < t0 6 δ1 and r2 6 η2
1t. Hence, the above estimate holds and it can be

equivalently written as
Θξ

x,t
(t− r2) 6 3/2 + ε0 ,

for such pairs (t, r). Letting ρ =
√
t0/2 (notice that Bρ(x0) ⊆ B1(0)), such estimate holds for all (x, t) ∈

Bρ(x0) × (t0 − ρ2, t0) and r 6 η21√
1+η1

ρ. Hence, by Theorem 8.3 with σ = 1/2, there exists a constant C,
depending only on ε0 and η1 (by property P1 above, the length ratios are uniformly bounded) such that∣∣kξ(x, t)∣∣ 6 C/

√
t0 ,

for every t ∈ (t0/8, t0) and x ∈ Sξ
t
∩B√

t0/8
(0). Sending t→ t0, we get∣∣kξ(x0, t0)

∣∣ 6 C/
√
t0 .

Hence, by the arbitrariness of x0, this estimates holds for all x0 ∈ Sξt0 ∩ B1/2(0) and t0 small enough,
together with the corresponding estimates on all higher derivatives. Moreover, by the second point of
Remark 8.4, there is a constant C1 > 0, depending only on ε0 and η1, such that the length of the shortest
curve of Sξt0 is bounded from below by C1

√
t0. By the arbitrariness of the choice, these estimates hold

for every t0 > 0 small enough.
Together with the estimates on Sξt \ B1/2(0) for every t ∈ (0,min{Tξ, δ}), this implies that Tξ > T , for
some T > 0, for every ξ 6 ξ1. By the estimates on the curvature, which are independent of ξ, we can
then take a subsequential limit of the flows Sξt on [0, T ), as ξ → 0, to obtain a smooth limit curvature
flow St in a positive time interval, starting from the non–regular network S0.
Notice that, by [58, Theorem 1.5] and the interior estimates of Ecker–Huisken, away from any multi–
point, the flow St attains the initial network S0 in C2 (or in the class of regularity of S0, if it is better than
C2 away from the multi–point).
Furthermore, by the above estimate on the curvature and Theorem 8.3, we have∣∣k(x, t)

∣∣ 6 C/
√
t ,

for every x ∈ St. The estimate on the length of the shortest curve passes to the limit as well.
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Remark 10.19. The conclusions of Theorem 10.9 also hold if the initial network S0 is a C1 non–regular
network, smooth away from the multi–points where the exterior unit tangent vectors of the concurring
curves are mutually distinct and the curvature is of order o(1/r), where r is the distance from the set
of the multi–points of S0. The modifications in the proof are not completely trivial, the details of such
result will appear elsewhere.

We will now give a sketch of the proof of Proposition 10.18. Since the estimates are rather technical we
only outline it and refer the interested reader to [58]. However we want to underline the main three
steps of the proof.

Step 1. Estimates far from the origin and for a short time.
The following estimates are a direct consequence of Huisken’s monotonicity formula (6.4): the first
one says that the flow is well controlled at a point x away from the origin up to a time proportional
to |x|2. This follows by observing that in the annulus A(K0

√
2ξ, 1), where K0 is sufficiently large, the

initial network Sξ0 is close to the collection of halflines P for all 0 < ξ 6 ξ1. Even more, for 1 > |x| >
K0

√
2(ξ + t) we see that in B

(K0/2)
√

2(ξ+t)
(x) the initial network is C1–close to a unit density line. By

the monotonicity formula, this gives a control up to time t.
The second one shows that if we “glue in” the regular expander at scale ξ, then we get control in t up
to a time proportional to ξ. This estimate follows from observing that scaling the initial network Sξ0 by
1/
√

2ξ, each point on the network is uniformly C1–close, in a ball of fixed size, either to a unit density
line or to a standard triod. The estimate then follows from the monotonicity formula.
For details of the proof see [58, Lemma 5.2].

Lemma 10.20.

• (Far from origin estimate) There are δ1,K0 > 0 such that if r2 6 t 6 δ1, then

Θξ
x,t+r2(t) 6 3/2 + ε0 ,

for every x with 1 > |x| > K0

√
2(ξ + t).

• (Short time estimate) There are ξ1, q1 > 0 such that if ξ 6 ξ1, r
2, t 6 q1ξ, then

Θξ
x,t+r2(t) 6 3/2 + ε0 ,

for every x ∈ B1(0).

It is convenient to introduce a rescaling of the flow which makes the expander “stationary”. We set (see
property P5 above)

S̃ξt =
Sξt√

2(ξ + t)
,

and let
Θ̃ξ
x0,t0(t) =

∫
S̃ξt
ρx0,t0(·, t) ds .

Notice that
Θξ
x0,t+r2

(t) = Θ̃ξ
x0√

2(ξ+t)
, t+ r2

2(ξ+t)

(t) . (10.3)

Remark 10.21.

1. It follows from the second estimate in Lemma 10.20 that we need only to prove Proposition 10.18
when t > q1ξ.

2. By formula (10.3) and the previous point, it suffices to find ξ1, δ1 and η1 such that for every ξ 6
ξ1, q1ξ 6 t 6 δ1, r

2 6 η2
1 and y with |y| 6 1/

√
2(ξ + t), we have

Θ̃ξ
y,t+r2(t) 6 3/2 + ε0 .

116



3. We set η2
1 = q1/(2(q1 + 1)). The second estimate in Lemma 10.20 implies that for ξ 6 ξ1, t 6 q1ξ

and r2 6 η2
1 we have

Θ̃ξ
y,t+r2(t) 6 3/2 + ε0 ,

for every |y| 6 1/
√

2(ξ + t).
The first estimate in Lemma 10.20 implies that for r2 6 η2

1 , ξ 6 ξ1 and q1ξ 6 t 6 δ1,

Θ̃ξ
y,t+r2(t) 6 3/2 + ε0 ,

for every y with K0 6 |y| 6 1/
√

2(ξ + t).

Step 2. Controlling the asymptotic behavior of S̃ξt .
By some rather delicate estimates, but which only use the asymptotics P4 and again the monotonicity
formula, one can show that the following holds (see Lemma [58, Lemma 5.4]). It is important here that
r1 does not depend on ν.

Lemma 10.22 (Proximity to P ). There are constantsC1 and r1 such that, for every ν > 0, we can find ξ2, δ2 > 0
such that the following holds. If ξ 6 ξ2, t 6 δ2 and r 6 2, then

dist(y, P ) 6 ν + C1e
−|y|2/C1 if y ∈ S̃ξt ∩A

(
r1, (ξ + t)−1/8

)
,

and
Θ̃ξ
y,t+r2(t) 6 1 + ε0/2 + ν if y ∈ A

(
r1, (ξ + t)−1/8

)
,

where A
(
r1, (ξ + t)−1/8

)
is the annulus B(ξ+t)−1/8(0) \Br1(0).

The next step is to combine these estimates with the uniqueness of the regular expander in its topo-
logical class, given by Theorem 10.7 and a compactness argument (see [58, Corollary 4.6]) to show the
following:

Lemma 10.23. Let C1 and r1 be the constants given by Lemma 10.22 and let E be a regular expander. Set
r2 = max{r0, r1, 1}, R =

√
1 + 2q1K0 + r2. Then there exist R1 > R, %, ν > 0 such that if S is a regular

network with controlled length ratios such that:

1.
∫
S∩BR1

(0)
|k − x⊥|2 ds 6 %,

2. S and E are in the same topological class (see Definition 10.6),

then S must be ε–close in C1,α(BR1
(0)) to E, for a fixed α ∈ (0, 1/2) and a suitably small ε > 0, depending on

E.

Notice that ε has to be chosen sufficiently small, so that the monotonicity formula guarantees a control
of the Gaussian densities for a network C1,α–close to E.

Step 3. Application of the expander monotonicity formula.

The next lemma is essential to prove Proposition 10.18. Its content is that the proximity of S̃ξt to the
self–similarly expanding curvature flow generated by E can be controlled in an integral sense. This is
the only point where the expander monotonicity formula is used.
We notice that by property P5 above, we have that S̃ξ0 =

√
2ξ Sξ0 → E in C1,α

loc (Br0(0)), as ξ → 0 and
recall that the rescaled quantity

α̃ξt = β̃ξt + θ̃ξt ,

of the expander monotonicity formula, converges locally to zero along this limit. Localizing the ex-
pander monotonicity formula (Lemma 10.16), choosing (x0, t0) appropriately and estimating carefully,
one arrives at the following (see [58, Lemma 5.6]). Choose a > 1 such (1 + 2q1)/a > 1 and set q = q1/a.

Lemma 10.24. There are constants δ0 and ξ0 such that for every ξ 6 ξ0 and T0 ∈ [qξ, δ0], we have

1

(a− 1)T0

∫ aT0

T0

∫
S̃ξt∩BR1

(0)

|k − x⊥|2 ds dt 6 % .
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Take δ0, ξ0 for which this lemma holds, consider also δ1, ξ1 for which Lemma 10.20 holds and ξ2 = ξ2(ν),
δ2 = δ2(ν) given by Lemma 10.22. Set ξ3 = min{ξ0, ξ1, ξ2}, δ3 = min{δ0, δ1, δ2} and then, decrease ξ3
and δ3, if necessary, so that (ξ3 + δ3)−1/8 > 2R1, q1ξ3 6 δ3.
Having all the constants properly defined, we can now finish the proof. Set

T1 = sup
{
T̃ | Θ̃ξ

x,t+r2(t) 6 3/2 + ε0 for all x ∈ BK0
(0), r2 6 η2

1 , t 6 T̃
}
.

It suffices to show that T1 > δ3, for every ξ 6 ξ3. The first point of Remark 10.21 implies that T1 > q1ξ.
Suppose that T1 < δ3 and set T2 = T1/a. Lemma 10.24 implies the existence of t1 ∈ [T2, T1] such that∫

S̃ξt1∩BR1
(0)

|k − x⊥|2 ds 6 % .

One can now check that all the conditions for the previous step are met with S being S̃ξt1 . Therefore, we
obtain that S̃ξt1 is ε–close in C1,α(BR1

(0)) to E. Denote by Ŝξl , for l > 0, the curvature flow with initial
condition S̃ξt1 . A simple computation shows that

Ŝξl =
√

1 + 2l S̃ξt1+lµ2 ,

where µ2 = 2(ξ + t1). Since S̃ξt1 is ε–close in C1,α(BR1(0)) to E, we again use the monotonicity formula
to conclude that for every l 6 q1, we have

Θ̃ξ
x,t1+lµ2+r2(t1 + lµ2) = Θ̂ξ

x
√

1+2l , l+r2(1+2l)
(l) 6 3/2 + ε0 ,

provided √
1 + 2l |x| 6 R1 − 1 and (1 + 2l)r2 6 q1 .

Hence, for all t1 6 t 6 t1(1 + 2q1), there holds

Θ̃ξ
x,t+r2(t) 6 3/2 + ε0 ,

for every x in BK0
(0) and r2 6 η2

1 , which implies that T1 > t1(1 + 2q1). This is a contradiction because

t1(1 + 2q1) > T2(1 + 2q1) = T1(1 + 2q1)/a > T0 .

This concludes the proof of Proposition 10.18.

Remark 10.25.

• Combining Theorem 10.9 and Theorem 5.8 (or Theorem 3.33, if S0 is geometrically smooth) we
have a curvature flow (in the sense of Brakke) smooth for every positive time for every initial C2

network S0 (satisfying the hypothesis that at every multi–point the exterior unit tangent vectors
of the concurring curves are mutually distinct – see anyway Remark 10.12).

• Notice that in the above proof, we do not perform the “gluing in” construction at the regular 3–
points of the initial network. Hence, since the approximating flows are obtained from Theorem 5.8
(or Theorem 3.33 if S0 is smooth), the convergence of St to S0, as t → 0, locally around a regular
3–point of S0 is the one given by such theorems.
Clearly, one could apply the “gluing in” procedure also at the regular 3–points (in such case the
regular expander E to be “glued in” is simply a standard triod). Then, a natural question is if the
convergence of St → S0 locally around such regular 3–point is at least C1 or better (depending on
the regularity of S0 and the level of compatibility conditions it satisfies) and what is the relation
between this curvature flow and the one instead obtained by Theorem 5.8.

• In the special situation when we want to use Theorem 10.9 to “restart” a limit non–regular net-
work ST , after a singularity at time T (if possible), far from its multi–points O1, O2, . . . , Om such
network is smooth, hence, St → ST in C∞loc

(
R2 \ {O1, O2, . . . , Om}

)
, as t→ T .
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10.5 Another approach to short–time existence of the flow for non–regular net-
works

One may wonder if it is possible to define the motion by curvature of a non–regular initial network
without introducing the notions of varifolds and of Brakke flow. The answer is actually positive, as it
was shown in [70, Theorem 1.1].

Theorem 10.26. Let S0 be an initial network where all curves are of class C2. Then, there exists a time T > 0
and an evolving family of regular networks St for t ∈ (0, T ), such that St → S0, as t→ 0, in a certain “strong”
sense.
Moreover, the set of the possible flows is classified by the collection of all (appropriate) self–similarly expanding
networks coming out from each junction.

Remark 10.27. The convergence toward the initial datum as t → 0, which we are going to describe
in detail below, in particular, implies that the set St converges to S0 in Hausdorff distance or that the
collection of maps (γ1

t , . . . , γ
N
t ) composing the networks St converges uniformly to the family of maps

(γ1
0 , . . . , γ

N
0 ) that describes S0 (we underline that some of the γi0 could be constant maps).

The method used to prove the previous result relies on a central tool in geometric microlocal analysis:
the blow–up of the domain and range spaces. One interprets the “non–regular” junctions as “singu-
larities of the space” and “desingularise” them by blowing–up the domain [0, 1] of each curve and the
ambient R2. We are going to try to describe the ideas and give an outline of the proof, addressing the
interested reader to the original paper [70] for the full detail.

For simplicity, we consider the special case of an initial network S0 = (γ1
0 , . . . , γ

4
0) composed by only

four curves, each one given by a smooth map [0, 1] → R2, meeting at a non–regular junction γ1
0(0) =

γ2
0(0) = γ3

0(0) = γ4
0(0). The eventual solution will be an evolving network with five curves.

We first define the blow–up of the domain. We may regard the entire network as a collection of mappings
from a disjoint union of regions in the (x, t) plane. For any j = 1, . . . , 4, let Qj = {(x, t) ∈ R2 | 0 6
t, 0 6 x 6 1} be the domain parametrizing the evolution of the initial curve γj0 . We introduce parabolic
polar coordinates defined near (0, 0) as

ρ =
√
t+ x2 > 0, ω = arcsin(t/ρ2) = arccos(x/ρ) ∈ [0, π/2],

hence,
(t, x) = (ρ cosω, ρ2 sinω).

We define
Qjh = [Qj , (0, 0); dt] ⊆ R× R+

as the set obtained by replacing the corner point (0, 0) with the corresponding “faces” {ρ = 0, 0 6 ω 6
π/2}. These are called the front faces of Qjh and are denoted with Ff . Each Qjh has then as a boundary: a
front face Ff , two side faces Lf , Rf and the bottom face Bf (see the following figure).

(0, 0) (0, 1)
x

tt

Bf

Ff

RfLf

Figure 10.3: The spaces Qj and Qjh.

The front face Ff is given by ρ = 0 in local parabolic polar coordinates; the left and right faces are the
vertical sides “above” the corresponding front face where ω = π/2 and the bottom face is the initial face
t = 0, at ω = 0.
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The solution γj(t, x) will be defined on Qjh rather than Qj . It has initial condition γj0(x) on Bf and
satisfies the “matching” (Herring) conditions along the left and right faces. Its behavior on the front
face is the key issue to address.
The evolving network St will also include a new curve γ5 which is defined on the set P 5 = {(t, x) ∈
R2 | 0 6 t, 0 6 x 6

√
t}. The fact that this region shrinks to a point at t = 0 corresponds to the fact that

indeed the curve γ5(t, ·) disappears, as t→ 0.
We also blow–up the region P 5 parabolically at (0, 0), obtaining

P 5
h = [P 5, (0, 0); dt].

In parabolic polar coordinates defined exactly as above, this space has coordinates (ρ, ω), with ρ > 0
and 0 6 ω 6 arcsin(1/2) = π/6.
We then define

Qh =

4⊔
j=1

Qjh, Q =

4⊔
j=1

Qj .

The space Qh
⊔
P 5
h is the “desingularized domain” of the evolving network St.

Similarly, we now consider the blow–up of the range. The dilation properties of the self–similar expanding
networks suggest that the homogeneity in the range should also be emphasized. In other words, we
have to introduce the change of variable z ∈ R2 to w = z/

√
2t in the range. We formalize this as follows.

We define Z = R+
t × R2

z and we consider the space Zh = [Z, (0, O); dt] obtained from Z by taking the
parabolic blow–up of Z at the junction O at t = 0. This parabolic blow–up is defined exactly as before,
by replacing each (0, O) with the inward–pointing spherical parabolic normal bundle. As above, this
becomes more tangible in locally defined parabolic polar coordinates. Suppose that O = (0, 0) and
define

R =
√
t+ |z|2, Θ = (t/R2, z/R) = (Θ0,Θ

′),

then Zh has a front face Ff = {R = 0} and a bottom face Bf = {Θ0 = 0}. There is a codimension-two
corner where these two faces intersect.

x1

x2

t

x1

x2

t

Figure 10.4: From Z = R+
t × R2

z to Zh

Now we regard each γj as a map into R+×R2 via (t, x) 7→ (t, γj(t, x)). We “lift” this map by blowing–up
both the domain and the range. In other words, each “lift” should be regarded as a map

γj(t, x) : Qjh −→ Zh.

We then want to write the equation satisfied by the “lifted” map. In the computations it is usually sim-
pler to work in coordinate systems different than the parabolic polar coordinates above, in particular,
we introduce two sets of projective coordinates near the front face at (0, 0). We define τ =

√
2t and

s = x/
√

2t. Then, (τ, s) is a nondegenerate coordinate system on Qjh near Ff away from Bf , moreover,
we may also use these coordinates in P 5

h near its front face where ρ = 0. Notice that in each Qjh, we
have s ∈ [0,+∞), while in P 5

h , 0 6 s 6 1. The variable τ is a defining function for the front face in each
of these cases, in the sense that it vanishes exactly on Ff and is “comparable” with ρ on any compact set
in Qjh which does not intersect Rf and on the entirety of P 5

h . The variable s is a defining function for Lf
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or Rf and identifies the interior of Ff with R+.
The (τ, s) coordinates are not valid near the bottom face where t = 0 and in particular, near the inter-
section of Ff and Bf . Near this corner we introduce an alternate set of projective coordinates y = x and
T = t/x2. These are singular along the positive t–axis; the variable y is now the defining function for Ff
and T is the defining function for Bf .
There are useful projective coordinates for Zh too, namely

τ =
√

2t, w = z/
√

2t,

thus, τ = 0 is a defining function for Ff , while w is a projectively natural linear coordinate for Ff . These
coordinates are valid away from Bf . Thus (t, γj(t, x)) “lifts” to (τ2/2, τqηj(τ, s)).
We now consider the evolution equation in terms of these blow–ups: we “lift” the maps γj to maps
between Qjh and Zh by simply writing

∂tγ =
∂2
xγ

|∂xγ|2
, (10.4)

using the coordinate systems (τ, s) on Qjh and (τ, w) on Zh.
We set γj = τηj , which corresponds to the introduction of the projective coordinate on Zh and, for
simplicity, we drop the superscript j for the time being. As we noticed earlier, if γ is an arc in an
expanding soliton, then η depends only on s.
Since ∂t = τ−2(τ∂τ − s∂s) and ∂x = τ−1∂s, equation (10.4) becomes

1

τ2
(τ∂τ − s∂s)(τη) =

τ−2∂2
s (τη)

|τ−1∂s(τη)|2
,

or finally,

(τ∂τ + 1− s∂s)η =
∂2
sη

|∂sη|2
.

In particular, if γ is an expander, so η = η(s), this yields the dimensionally reduced expander equation

∂2
sη

|∂sη|2
+ (s∂s − 1)η = 0.

Clearly, the equations are complemented with suitable boundary conditions which are naturally speci-
fied along all of the side faces.
Finally, it is not immediate how to specify an “initial” condition along any of the front faces. To deter-
mine this, we remark that we expect the “lifted” map ηj(τ, s) to be bounded as τ → 0, hence, we assume
that ηj is actually smooth up to the front face. This means that it has a boundary value ηj0(s). Noticing
that τ∂τηj |τ=0 = 0, we deduce that

∂2
sη0

|∂sη0|2
+ (s∂s − 1)η0 = 0,

which is precisely the expander equation. In other words, expander arise naturally as the initial condi-
tions for the flow along the front faces.
Remark 10.28. We can now specify in which sense St → S0 in Theorem 10.26. In the blown–up spaces,
the number of curves of the initial datum and of the evolving network St for t > 0, coincides. Hence,
we can consider a suitable convergence of the maps γit to the initial ones γi0, for each i, for instance, we
can require that the convergence is in C2, or even smooth, as t→ 0.
Our last step is then solving the “lifted” PDE’s system. A rather delicate part of the proof is the con-
struction of approximate solutions, i.e., a family of networks Ŝt which converges to the initial datum
S0 and which satisfies the flow equations up to an error that vanishes for all orders at t = 0. To do
so, we proceed at follow: by blowing–up the non–regular junctions we can determine the entire Taylor
series of the solution whose first term satisfies the expanders equation. We are then able to prove that,
once the first term of the series is determined, all the other term (up to an error) can be obtained with
a recursion argument. Thus, to determine the entire series one choose a specific expander at the non–
regular junction which actually captures the geometry of the evolving network, in particular how the
non–regular junction breaks apart. Then, we still need to get rid of the rapidly vanishing error term to
get an exact solution. This is accomplished by an existence proof using a priori estimates.
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Remark 10.29. It is clear from the strategy of the proof, that with this alternative approach (and this
quite strong definition of solutions) we have as many different flows as choices, for every non–regular
junction of the initial network, of a self–similar expanders compatible with the junction. In particular,
when at every junction there exists a unique expander coming out from the cone P generated by the
inner unit tangent vectors of the concurring curves, the produced solution is unique. As a remarkable
example, there is a unique tree–like, connected, regular expander, asymptotic to a standard cross, see
Corollary 10.8 (composed of four halflines from the origin with opposite directions pairs and forming
angles of 120/60 degrees between them), generated by the exterior unit tangents of the four concurring
curves at the 4–point which arises as the collapse with bounded curvature of a curve in the “interior”
of St, as t → T , described in Proposition 9.11. The same conclusion holds also when P is composed of
three halflines from the origin [97].
Hence, if all the junctions of the network are of these types, by means of this theorem, the flow can be
started (or restarted, for instance in the situation of the collapse of single isolated curves with bounded
curvature, as we said above) in a unique way.

Remark 10.30.

• One could apply the procedure of Theorem 10.26 also at any regular 3–point and in such case
the associated regular expander is simply a standard triod, hence the resulting flow is unique,
moreover, it must coincide with the one obtained by means of Theorem 5.8, as it can be shown
that it is among the flows of the class N defined in such theorem.

• When we use Theorems 10.9 or 10.26 to “restart” a limit non–regular network ST after a singularity
at time T (if possible), if such network is smooth far from its multi–points O1, O2, . . . , Om, there
holds St → ST in C∞loc

(
R2 \ {O1, O2, . . . , Om}

)
, as t → T , by the local estimates for the motion by

curvature (see [30]).

Differently from Theorem 10.26, it is not clear if Theorem 10.9 produces a unique solution when the
expander associated to every junction is unique. This is related to the use of the varifold convergence
to the initial network in place of a stronger one.

Open Problem 10.31. If there is a unique regular expander asymptotic to the family of halflines gen-
erated by the inner unit tangent vectors of the concurring curves to a multi–point of S0, then does
Theorem 10.9 produce a unique curvature flow?

We can also state the open problem in the specific case of a triod and of a standard cross.

Open Problem 10.32. In the case of a single triple junction (possibly non regular), Theorem 10.9 pro-
duces a unique curvature flow?

Open Problem 10.33. If the inner unit tangent vectors of the concurring curves to a 4–point of S0 gen-
erate a standard cross, Theorem 10.9 produces a unique curvature flow?

We underline here that whatever procedure one decides to apply to have a curvature flow of a general
network such that the networks of the flow are regular for every (small) positive time, uniqueness can
be impossible, as is shown in the following figure:
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P 1 P 2

O1

O2

Figure 10.5: An example of non–uniqueness of the flow.

indeed, by the symmetry of the initial network with respect to rotations of 90 degrees, the rotation of
any admissible evolution must still be a solution.

Remark 10.34.

• In general, given the set P composed of a finite union of n halflines for the origin, with n > 3,
there are many regular expander asymptotic to P , even restricting ourselves to the class of the
tree–like ones (see Figure 10.2, for instance). One would like to have, at least for the “generic”
family of halflines P , a sort of “selection principle” to choose the “best” regular expander E at a
multi–point with more than 3 concurring curves, in both procedures.

• A simple uniqueness statement (which can hold, by what we said, only for a “generic” initial
network) for the curvature flow obtained by Theorem 10.9 or by Theorem 10.26 is missing at the
moment.

Open Problem 10.35. For a “generic” family of networks P given by n halflines for the origin, does
there exist a “selection principle” to choose the “best” regular expander E asymptotic to P , to use in
performing the procedure of Theorem 10.9 or Theorem 10.26?

Open Problem 10.36. In what class of curvature flows, for a “generic” initial non–regular network S0,
is the flow given by Theorem 10.9 or Theorem 10.26 unique?

11 Restarting the flow after a singular time

By means of the analysis of Section 9.4 and the description of the limit network ST at a singular time
in Theorems 9.42 and 9.43, we can continue the flow by applying the “restarting” Theorem 10.9 (or
possibly its extension, see Remark 10.19). We then have an “extended” curvature flow for some positive
time T ′ > T (if we are not in some of the situations, discussed in Section 9.4, when the flow “naturally
ends” – for instance, if the whole network collapses and vanishes, as t → T ) which is a Brakke flow
(possibly without equality, see Remark 10.11) in the time interval (0, T ′) and a smooth curvature flow
in (0, T ) ∪ (T, T ′).
The passage through a singularity when (locally) a single curve vanishes and two triple junctions
collapse forming a regular 4–point in Ω is particularly interesting, as this type of singularities with
bounded curvature, that we called of Type–0 (see Remark 9.18), is the only possible one for the motion
of a tree–like network, assuming that M1 holds. We call this change in the structure of the network a
“standard transition” (see Figures 11.1, 11.2).
We recall that while the curvature stays uniformly bounded for t 6 T , it is of order 1/

√
T − t as t > T

(and the “new” curve has length of order
√
T − t).
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t→ T t > T

St StST

Figure 11.1: The local description of a “standard” transition.

t→ T t > T

St StST

Figure 11.2: A “standard” transition for a Θ–shaped network (double cell).

We remark that such transition, passing by ST , is not symmetric: when St → ST , as t→ T−, the exterior
unit tangent vectors, hence the four angles between the curves, are continuous, while when St → ST ,
as t → T+, there is a “jump” in such angles, precisely there is an instantaneous “switch” between the
angles of 60 degrees and the angles of 120 degrees at time T .
Remark 11.1. Since there is a single expander “coming out” from the cone of the inner unit tangent
vectors generated by the four concurring curves, we expect that by restarting the flow by means of
Theorem 10.9, we get a unique evolution (see Problem 10.33).
Coming back to the general situation, we list a series of facts when passing through a singularity.

• The total length of the evolving network St is non increasing and continuous for every t ∈ (0, T ′).
Hence as a Brakke flow in the time interval [0, T ′) it does not suffer from the phenomenon of
“sudden mass loss” (see [16] and the recent work [61]).

• For every x0 ∈ R2 and t0 ∈ (0,+∞), the Gaussian density function Θx0,t0(t) : [0,min{t0, T ′})→ R
is still non-increasing. The same for the entropy of St, see formula (7.7).

• The uniform bound on length ratios survives the “restarting” procedure with the same constant.

These points follow easily by the (weak) continuity of the Hausdorff measuresH1 St, see Remarks 9.41
and 10.10 (it is clear in the case of a standard transition).

• By the construction in the “restarting” Theorem 10.9, no new regions are created passing a sin-
gularity, their total number is non-increasing. In particular, a tree remains a tree after restarting
(even if its “structure” changes).

• The number of curves of the network is not increasing. To be more precise, if at least a region
vanishes the total number of curves decreases by at least three. In a standard transition, it remains
the same.

• The number of triple junctions of the network is non-increasing. To be more precise, if at least
a region vanishes the total number of triple junctions decreases by at least two. In a standard
transition, it remains the same.

124



The fact that no new regions arise follows by the fact that we “desingularise” a multi–point, in The-
orem 10.9, by gluing in a tree–like, connected, regular expander (which is an a priori choice, see Re-
mark 10.13). In doing that, by means of Euler’s formula for trees, we can see that if the multi–point has
order n, being the number of the regions equal to n, the number of triple junctions we will have in the
restarted network in place of the single multiple junction is equal to n− 2 and the number of curves is
2n− 3.
It is then easy to check the above statements if only one bounded region is collapsing since it must be
bounded by n curves. If instead, a group of regions is collapsing, we can get the conclusion by apply-
ing the same argument to the bounded “macro–region” that we obtain considering their union, which
will be bounded by a piecewise smooth loop (in a way, we are “forgetting” the interior curves to such
“macro–region” which will anyway be “lost” in the collapse).
Clearly, all these facts say that, in a sense, the “topological complexity” of the network is “non-increasing”
passing through a singular time.
We finally mention here that also the bound on the “embeddedness measure” E(t), which we will
introduce in Section 13, survives the “restarting” procedure.

12 Long time behavior

Since we can repeat the restarting procedure at every singular time, either the flow naturally ends
at some time T̂ (for instance, if the whole network collapses and vanishes, as t → T̂ ) or we found
ourselves in some of the situations described in Section 9.4 where we have to decide how to continue
the flow (related to the behavior at the boundary of Ω), or we have an increasing sequence of singular–
restarting times Ti for the evolution of the network St. In this latter case it follows by the “topological”
conclusions in the previous section that among these times Ti, the number of the ones such that we
have a non–standard transition is actually finite and depends only on S0 (indeed, if a transition is non–
standard, then at least one region vanishes during the transition and S0 can have only a finite number
of regions). Instead, we cannot conclude the same for the number of standard transitions that a priori
could be infinite. Even worse, notice that Theorem 10.9 does not give any estimate on the (short) time of
existence of the restarted flow, which means that we are not able to say in general if and when another
singularity could appear after the restarting time. In particular, we are also not able to exclude that the
singular times (associated to standard transitions) “accumulate”, not even for a tree–like network when
all the possible singularities are standard transitions.
The following figures show some examples of these (maybe) possible situations.

Figure 12.1: A tree–like network with four fixed end–points switching between its two possible topo-
logical classes.

Figure 12.2: Standard transitions switching a lens–shaped network to an “island–shaped” (with a
bridge) one and viceversa.
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Figure 12.3: Switching by standard transitions of a Θ–shaped network to an “eyeglasses–shaped” one
and viceversa.

In all these examples (where there is a sort of “duality” between the two involved networks: lens–
island, theta–eyeglasses and between the only two possible trees connecting four points) we do not
know if this kind of “oscillatory phenomenon” can happen infinitely many times.

Open Problem 12.1. Let us assume that the “boundary” curves do not collapse during the flow.

• The set of singular times is finite?

• The set of singular times is discrete (i.e. it has no accumulation points)?

• Can the flow be defined for every positive time?

Remark 12.2. The last question concerns the possibility that the other two have a negative answer. In
such case, we could still hope to be able to find a “well–behaved” limit network ST̂ , as t→ T̂ , even when
the singular times Ti accumulate at T̂ , to possibly restart again the flow with Theorem 10.9 or some
extension. Indeed, by restarting the flow at every singularity we can define an extended curvature flow
of networks on some maximal time interval [0, T̂ ). Then, either the whole network vanishes or there is
an accumulation of singular times at T̂ , if it is finite. This extended curvature flow is a Brakke flow, by
Theorem 10.9 and actually, it is easy to see that only singular times when a standard transition happens
can accumulate at T̂ (the number of regions is non increasing, hence the number of singular times when
at least one of them collapses is finite). We also mention that it would be quite interesting to compare
this extended curvature flow with the globally defined one introduced by L. Kim and Y. Tonegawa
in [61] .

Remark 12.3. In the recent paper [88], it is shown that the previous questions have positive answers
in the special case of axially symmetric networks with only two triple junctions. More precisely, it is
proved that the number of singular times is necessarily finite. We point out that, under these conditions,
there are only four possible topological types of networks: the tree, the lens, the theta and the eyeglasses
(of “type A”) shapes, as in the following figure (see the discussion at the beginning of Section 14.2).
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Figure 12.4: The four possible types of axially symmetric networks with two triple junctions: the tree,
the lens, the theta and the eyeglasses.

We now discuss the long–time behavior of the curvature flow of a regular network, assuming that
there is no accumulation of the singular times or, even better, that the flow definitely does not have
singularities after some time. We see in the following proposition that this latter case can only happen
for networks without regions with less than six edges.

Proposition 12.4. Let [0, T ) be the maximal time interval of existence of a smooth curvature flow St of a network
that has at least one loop ` of length L(t), enclosing a region of area A(t) composed of m curves with m < 6.
Then, T 6 3A(0)

(6−m)π and the equality holds if and only if limt→T A(t) = 0. Moreover, if limt→T L(t) = 0, then
limt→T

∫
St k

2 ds = +∞.

Proof. Integrating in time the equation (7.4), we have

A(t)−A(0) =
(
−2π +m

(π
3

))
t .

Therefore, T 6 3A(0)
(6−m)π , with equality if and only if limt→T A(t) = 0.

Suppose now that limt→T L(t) = 0. Then we necessarily have limt→T A(t) = 0, hence T =
3A(0)

(6−m)π
.

Combining equation (7.4) and Hölder inequality, we get

∣∣∣− 2π +m
(π

3

) ∣∣∣ =
∣∣∣dA(t)

dt

∣∣∣ =
∣∣∣ ∫
`t

k ds
∣∣∣ 6 (L(t))

1
2

(∫
`t

k2 ds

) 1
2

,

which gives ∫
St
k2 ds >

∫
`t

k2 ds >
(6−m)

2
π2

9L(t)
.

Since limt→T L(t) = 0, it follows that limt→T
∫
St k

2 ds = +∞.

Remark 12.5.

1. If a loop is composed of six or more curves, then by equation (7.4), either the enclosed area remains
constant or increases during the evolution.

2. The previous proposition does not exclude the possibility that a singularity appears at a time
T < 3A(0)

(6−m)π .
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3. We expect that, if T = 3A(0)
(6−m)π , then the region is collapsing, hence, by Corollary 9.28 the curvature

cannot be bounded and we expect that limt→T L(t) = 0 and limt→T
∫
St k

2 ds = +∞.

For a general network, even assuming that there is no accumulation of the singular times, if the bound-
ary curves do not collapse, we cannot anyway exclude that there could be an infinite sequence of stan-
dard transitions with some loops present and regions (with more that five edges) never collapsing. We
now deal with tree–like networks that after some time have no more singularities.

Proposition 12.6. Suppose that St is a smooth curvature flow in [0,+∞) of a tree–like network. Then for every
sequence of times ti →∞, there exists a (non relabeled) subsequence such that the evolving networks Sti converge
in C1,α ∩W 2,2, for every α ∈ (0, 1/2), to a possibly degenerate (and non–embedded) regular network with zero
curvature, that is, “stationary” for the length functional, as i→∞.

Proof. From equation (4.2) we have the estimate∫ +∞

0

∫
St
k2 ds dt 6 L(0) < +∞ . (12.1)

Suppose by contradiction that for a sequence of times tj ↗ +∞ we have
∫
Stj

k2 ds > δ for some δ > 0.

By the following estimate, which is inequality (9.4) in Lemma 9.23,

d

dt

∫
St
k2 ds 6 C

(
1 +

(∫
St
k2
))3

,

holding (in the case of fixed end–points) with a uniform constant C independent of time, we would
have

∫
St̃
k2 ds > δ/2, for every t̃ in a uniform neighborhood of every tj . This is clearly in contradiction

with the estimate (12.1). Hence, limt→+∞
∫
St k

2 ds = 0 and, consequently, for every sequence of times
ti → +∞, there exists a subsequence (not relabeled) such that the evolving networks Sti converge in
C1,α ∩W 2,2, for every α ∈ (0, 1/2), to a possibly degenerate regular network with zero curvature, as
i→∞.

Remark 12.7. The previous proposition shows that, up to subsequences, the sequence of evolving net-
works Sti converge, as ti → +∞, to a “stationary” network for the length functional (which is not
necessarily a global minimum). We do not know if such a stationary network can be non–embedded,
that is, some segments have multiplicity greater than one and we underline that actually it can be de-
generate, that is, taking the limit of Sti when ti → +∞, one or more curves collapse, as shown in the
following example. Suppose that S0 is the regular network in Figure 12.5. It is a smooth regular net-
work composed of five curves, symmetric with respect to the horizontal and vertical axes, the middle
curve γ0 is a vertical segment and the remaining four curves are convex, i.e., their oriented curvature
has a sign. The network has four end–points located at the vertices of a rectangle of sides of length 2
and 2

√
3.

√
3

1
γ1

γ0

Figure 12.5: The initial network S0.

Thanks to the symmetries, we can reduce to study the flow of S0 to the evolution of a single curve,
for instance, γ1. The flow St starting from S0 exists for every time with no singularities, the length of
each curve γi is strictly positive for any time, the curvature of each curve γi is uniformly bounded and
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as t → +∞, the flow smoothly converges to the degenerate network composed of the two segments
joining the opposite pairs of end–points and a core at the origin, given by the collapse of the vertical
curve γ0, whose length goes to zero, as t→ +∞ (see [91]).

Open Problem 12.8.

• Can the tree–like hypothesis be removed in Proposition 12.6?

• Is the limit network embedded?

• What are the possible degeneracies of the limit network? We conjecture that it belongs to the
class of networks described in Proposition 9.11, in particular, it is embedded and it can only have
as degeneracies some regular 4–points, hence each one with a core given by a single isolated
collapsed curve (as in the previous example).

Remark 12.9. If we do not assume that the number of singularities is finite and/or that the network
becomes a tree, but only that the flow exists for every t ∈ [0,+∞), being globally a Brakke flow (see the
previous section), inequality (12.1) still holds (by the defining formula (6.1)) and we can always find a
sequence of networks Sti converging in C1,α ∩W 2,2, for every α ∈ (0, 1/2), to a possibly degenerate
regular network with zero curvature, as i → ∞. As said before, such limit network could be non–
embedded.
It is natural to ask ourselves if actually, the full flow of networks St converges to a limit network, as
t → +∞ (moreover, as we said, we expect that such a limit network is embedded and that the tree–
like hypothesis in Proposition 12.6 is actually superfluous). We are able to show the full convergence
assuming that the limit network is not degenerate. A key result to get such convergence is the following
Łojasiewicz–Simon inequality for regular networks, proved in [91].

Theorem 12.10. Let S∗ = (γ1
∗ , . . . , γ

n
∗ ) be a regular network composed of straight segments. Then, there exist

CLS , ε > 0 and θ ∈ (0, 1/2] such that if S = (γ1, . . . , γn) is a regular network of class W 2,2 with the same
topological structure, the same end–points of S∗ and such that

n∑
i=1

‖γi − γi∗‖W 2,2 6 ε ,

then,

|L(S)− L(S∗)|1−θ 6 CLS

(∫
S
k2 ds

)1/2

. (12.2)

We state now the convergence result.

Theorem 12.11 (Theorem 5.3 in [91]). Suppose that St is a smooth curvature flow in [0,+∞) and let S∞ be
a regular (non–degenerate) network with zero curvature, composed of straight segments such that Stn → S∞ in
W 2,2, for some sequence tn ↗ +∞, as n→∞. Then, up to reparametrization, St → S∞ smoothly, as t→ +∞.

We refer the reader to the original paper [91] for the proofs of these two results. We just give here
an idea of the application of the Łojasiewicz–Simon inequality in order to get the full convergence of
the sequence of networks. Let St = (γ1

t , . . . , γ
n
t ) be a smooth network flow defined on [0,+∞) and let

S∞ = (γ1
∞, . . . , γ

n
∞) be the regular C1,α∩W 2,2–limit network along a sequence of times tn → +∞, given

by Proposition 12.6, which we assume to be non–degenerate. Then, by the evolution equation of the
length, we have

d

dt

(
L(St)− L(S∞)

)
= −

∫
St
k2 ds

and for all times for which
∑n
i=1 ‖γit − γi∞‖W 2,2 6 ε, we get

− d

dt

(
L(St)− L(S∞)

)θ
= θ
(
L(St)− L(S∞)

)θ−1
∫
St
k2 ds

>
θ

CLS

(∫
St
k2 ds

)−1/2 ∫
St
k2 ds

=
θ

CLS

(∫
St
k2 ds

)1/2

,
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where we used the Łojasiewicz–Simon inequality (12.2). Then, we can take t̃ ∈ [0,+∞) and t2 > t1 > t̃

such that for every t ∈ [t̃, t2], there holds
∑n
i=1 ‖γit − γi∞‖W 2,2 6 ε/4 and |L(St)− L(S∞)|θ 6 ε/4. We

get (∫ 1

0

(
γi(x, t2)− γi(x, t1)

)2

dx

)1/2

=

(∫ 1

0

(∫ t2

t1

γit(x, t) dt

)2

dx

)1/2

6
∫ t2

t1

(∫ 1

0

(γit(x, t))
2 dx

)1/2

dt

=

∫ t2

t1

(∫
γit

k2 ds

)1/2

dt

6
∫ t2

t1

(∫
St
k2 ds

)1/2

dt

6
CLS

θ
|L(St)− L(S∞)|θ < εCLS

4θ
.

This implies that γi(·, t) : [0, 1] → R2 is a Cauchy sequence and from it we can deduce the desired
convergence.

After all this discussion, the following questions are rather natural.

Open Problem 12.12.

• In the hypotheses of Theorem 12.11, does the whole sequence of networks St converge in C1,α ∩
W 2,2, for every α ∈ (0, 1/2), also if the limit network is a degenerate (embedded) regular network
with zero curvature, as t→ +∞?

• The conclusions can be extended to the general situation described in Remark 12.9? For instance,
if the flow of networks has an infinite sequence of singular times going to +∞?

12.1 Stability

Exploiting the Łojasiewicz–Simon inequality (12.2), it is also possible to prove a stability result: if a flow
starts sufficiently close to a regular network with zero curvature composed of straight segments, then
it exists for every time and smoothly converges to a (possibly different) network with zero curvature.

Theorem 12.13 (Theorem 5.3 in [91]). Let S∗ = (γ1
∗ , . . . , γ

n
∗ ) be a regular network with zero curvature,

composed of straight segments. Then, there exists δ > 0 such that if S0 = (γ1
0 , . . . , γ

n
0 ) is a smooth regular

network with the same topological structure and the same end–points of S∗ such that

n∑
i=1

‖γi0 − γi∗‖W 2,2 6 δ ,

the flow by curvature of the network S0 exists smooth for all times and smoothly converges, as t → +∞, to a
regular network S∞ = (γ1

∞, . . . , γ
n
∞) with zero curvature (that is, composed of straight segments) satisfying

L(S∞) = L(S∗).

Remark 12.14. The special case in which S∗ is a triod was first considered in [63] and one can actually
adapt such proof to the case in which S∗ is an isolated critical point of the length functional.

Remark 12.15. It is not necessarily true that S∗ = S∞, but there are some cases in which we are able to
determine S∞:

• If the network S∗ is an isolated critical point of the length functional, then S∞ must coincide with
S∗ and this is always the case if S∗ is a tree.
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• Suppose that S∗ is a network composed of a regular hexagon H with area A∗ and six straight
segments connecting the vertices of a bigger regular hexagon. Then, S∗ is not an isolated critical
point of the length functional, indeed, all the networks composed of concentric hexagons and
straight segments connecting the end–points give a one–parameter family of critical points with
the same length, see Figure 12.6. We underline that there are no other critical points of the length
functional with this topology and with the same end–points.

Figure 12.6: Three different networks with zero curvature with the same end–points and topology. They
all have the same length.

Suppose now that S0 is regular network with the same end–points and the same topology of
S∗, sufficiently close to S∗ and such that the area enclosed by the loop is equal to A0. Then, S∞
coincides with S∗ if and only ifA0 = A∗, as the area enclosed by any loop of six curves is preserved
during the evolution and S∗ is the unique network with zero curvature and area A∗ among the
possible limit critical networks. We remark that if A0 6= A∗, we then have an example where the
limit network S∞ is different by S∗, indeed S∞ must be the unique network of such family with a
central regular hexagon of area A0.

We conclude this section with a couple of open problems.

Open Problem 12.16. Is it possible to replace the W 2,2–closedness condition in the stability Theo-
rem 12.13 with some “small distance” condition between the networks that allows also topological
changes, for instance, the Hausdorff distance?

Open Problem 12.17. It is possible to “identify” the limit network S∞ in the stability Theorem 12.13,
in general? This question is relevant in the non–trivial case when S∗ belongs to a continuous family of
critical points for the length functional.

13 An isoperimetric estimate

Given the smooth flow St = F (S, t), we take two points p = F (x, t) and q = F (y, t) belonging to St. A
couple (p, q) is “admissible” if the segment joining p and q does not intersect the network St in other
points. We call A the class of the admissible couple. Given an admissible pair (p, q) we consider the set
of the embedded curves Γp,q contained in St connecting p and q, forming with the segment pq a Jordan
curve. Thus, it is well defined the area of the open regionAp,q enclosed by any Jordan curve constructed
in this way and, for any pair (p, q), we call Ap,q the smallest area of all such possible regions Ap,q . If p
and q are both points of a set of curves forming a loop, we define ψ(Ap,q) as

ψ(Ap,q) =
A

π
sin
( π
A
Ap,q

)
,

where A = A(t) is the area of the connected component of Ω \ St which contains the open segment
joining p and q.
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We consider the function Φt : S× S→ R ∪ {+∞} as

Φt(x, y) =


|p−q|2
ψ(Ap,q)

if x 6= y and x, y are points of a loop;
|p−q|2
Ap,q

if x 6= y and x, y are not both points of a loop;

4
√

3 if x and y coincide with one of the 3–points Oi of S;
+∞ if x = y 6= Oi;

where p = F (x, t) and q = F (y, t).

Remark 13.1. Following the argument of Huisken in [54], in the definition of the function Φt we in-
troduce the function ψ(Ap,q), when the two points belong to a loop because we want to maintain the
function smooth also when Ap,q is equal to A/2.

In the following, with a little abuse of notation, we consider the function Φt defined on St × St and we
speak of admissible pair for the couples of points (p, q) ∈ St × St instead of (x, y) ∈ S× S.
We defineE(t) as the infimum of Φt between all admissible couple of points p = F (x, t) and q = F (y, t):

E(t) = inf
(p,q)∈A

Φt

for every t ∈ [0, T ).
We call E(t) “embeddedness measure”. We underline that similar geometric quantities have already
been applied to analogous problems in [23, 50, 54].
The following lemma holds, for its proof in the case of a compact network see [23, Theorem 2.1].

Lemma 13.2. The infimum of the function Φt between all admissible couples (p, q) is actually a minimum.
Moreover, assuming that 0 < E(t) < 4

√
3, for any minimizing pair (p, q) we have p 6= q and neither p nor q

coincides with one of the 3–points Oi(t) of St.

Remark 13.3. In the case of an open network without end–points, since the network is asymptotically
C1–close to a family of halflines (and during its curvature motion such halflines are fixed), there holds
that if the infimum of Φt is less than a “structural” constant depending only on such halflines, then it is
a minimum. By means of such modification to this lemma, all the rest of the analysis of this chapter also
holds for the evolution of open networks, we let the details and the easy modifications of the arguments
to the reader.

Notice that it follows that the network St is embedded if and only if E(t) > 0. Moreover, E(t) 6 4
√

3
always holds, thus when E(t) > 0 the two points (p, q) of a minimizing pair can coincide if and only if
p = q = Oi(t).
Finally, since the evolution is smooth, it is easy to see that the functionE : [0, T )→ R is locally Lipschitz,
in particular, dE(t)

dt > 0 exists for almost every time t ∈ [0, t).
If the curvature flow St has fixed end–points {P 1, P 2, . . . , P l} on the boundary of a strictly convex set
Ω, we consider the flows Hit each obtained as the union of St with its reflection SRit with respect to the
end–point P i, as we described at the end of Section 7.2.
We underline that this is still a smooth curvature flow (as the compatibility conditions of every order in
Definition 3.27 are satisfied by St at its end–points) without self–intersections, where P i is no more an
end–point and the number of triple junctions of Hit is exactly twice the number of the ones of St.
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t

H2
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H3
t

H4
t

P 1

P 2

P 3

P 4

O1

O2

Figure 13.1: A tree–like network St with the associated networks Hit.

We define for the networks Hit the functions Ei : [0, T )→ R, analogous to the function E : [0, T )→ R of
St and, for every t ∈ [0, T ), we call Π(t) the minimum of the values Ei(t). The function Π : [0, T ) → R
is still a locally Lipschitz function (hence, differentiable for almost every time), clearly satisfying Π(t) 6
Ei(t) 6 E(t) for all t ∈ [0, T ). Moreover, as there are no self–intersections, by construction, we have
Π(0) > 0. If we prove that Π(t) > C > 0 for all t ∈ [0, T ), form some constant C ∈ R, then, we can
conclude that also E(t) > C > 0, for all t ∈ [0, T ).

Theorem 13.4. Let Ω be an open, bounded, strictly convex subset of R2. Let S0 be an initial regular network
with at most two triple junctions and let the St be a smooth evolution by curvature of S0, defined in a maximal
time interval [0, T ).
Then, there exists a constant C > 0 depending only on S0 such that E(t) > C > 0, for every t ∈ [0, T ). In
particular, the networks St remain (uniformly, in a sense) embedded during the flow.

To prove this theorem we first show the next proposition and lemma.

Proposition 13.5. Let t ∈ [0, T ) such that

• 0 < E(t) < 1/4,

• for at least one minimizing pair (p, q) of Φt, the curve Γp,q contains at most two triple junctions with
neither p nor q coinciding with one of the end–points P i.

Then, if the derivative dE(t)
dt exists, it is positive.

Proof. By simplicity, we consider in detail only the case shown in Figure 13.2. The computations in the
other situations are analogous.
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P 1
O1

P 2

Ap,q

Ω

A

O2

p

q

Figure 13.2: The situation considered in the computations of Proposition 13.5.

Let 0 < E(t) < 1/4 and let (p, q) a minimizing pair for Φt such that the two points are both distinct from
the end–points P i. We choose a value ε > 0 smaller than the “geodesic” distances of p and q from the
3–points of St and between them.
Possibly taking a smaller ε > 0, we fix an arclength coordinate s ∈ (−ε, ε) and a local parametrization
p(s) of the curve containing p such that p(0) = p, with the same orientation as the original one. Let
η(s) = |p(s)− q|, since

E(t) = min
s∈(−ε,ε)

η2(s)

ψ(Ap(s),q)
=

η2(0)

ψ(Ap,q)
,

if we differentiate in s we obtain

dη2(0)

ds
ψ(Ap(0),q) =

dψ(Ap(0),q)

ds
η2(0) . (13.1)

We underline that we are considering the function ψ because we are doing all the computation for the
case shown in Figure 13.2, where there is a loop. For a network without loops the computations are
simpler: instead of formula (13.1), one has

dη2(0)

ds
Ap(0),q =

dAp(0),q

ds
η2(0) ,

see [82, Page 281], for instance.
As the intersection of the segment pq with the network is transversal, we have an angle α(p) ∈ (0, π)
determined by the unit tangent τ(p) and the vector q − p.
We compute

dη2(s)

ds

∣∣∣∣
s=0

= −2〈τ(p) | q − p〉 = −2|p− q| cosα(p)

dA(s)

ds

∣∣∣∣
s=0

= 0

dAp(s),q

ds

∣∣∣∣
s=0

=
1

2
|τ(p) ∧ (q − p)| = 1

2
〈ν(p) | q − p〉 =

1

2
|p− q| sinα(p)

dψ(Ap(s),q)

ds

∣∣∣∣
s=0

=
dAp,q
ds

cos
( π
A
Ap,q

)
=

1

2
|p− q| sinα(p) cos

( π
A
Ap,q

)
.

Putting these derivatives in equation (13.1) and recalling that η2(0)/ψ(Ap,q) = E(t), we get

cotα(p) = − |p− q|
2

4ψ(Ap,q)
cos
( π
A
Ap,q

)
= −E(t)

4
cos
( π
A
Ap,q

)
. (13.2)
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Since 0 < E(t) < 1
4 < 4(2−

√
3), we have

√
3− 2 < cotα(p) < 0, which implies

π

2
< α(p) <

7π

12
. (13.3)

The same argument clearly holds for the point q, hence defining α(q) ∈ (0, π) to be the angle determined
by the unit tangent τ(q) and the vector p−q, by equation (13.2) it follows that α(p) = α(q) and we simply
write α for both.
We consider now a different variation, moving at the same time the points p and q, in such a way that
dp(s)
ds = τ(p(s)) and dq(s)

ds = τ(q(s)).
As above, letting η(s) = |p(s)− q(s)|, by minimality we have

dη2(0)

ds
ψ(Ap(s),q(s))

∣∣
s=0

=

(
dψ(Ap(s),q(s))

ds

∣∣∣∣
s=0

)
η2(0) and

d2η2(0)

ds2
ψ(Ap(s),q(s))

∣∣
s=0

>

(
d2ψ(Ap(s),q(s))

ds2

∣∣∣∣
s=0

)
η2(0) . (13.4)

Computing as before,

dη2(s)

ds

∣∣∣∣
s=0

= 2〈p− q | τ(p)− τ(q)〉 = −4|p− q| cosα

dAp(s),q(s)

ds

∣∣∣∣
s=0

= − 1

2
〈p− q | ν(p) + ν(q)〉 = +|p− q| sinα

d2η2(s)

ds2

∣∣∣∣
s=0

= 2〈τ(p)− τ(q) | τ(p)− τ(q)〉+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉

= 2|τ(p)− τ(q)|2 + 2〈p− q | k(p)ν(p)− k(q)ν(q)〉
= 8 cos2 α+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉

d2Ap(s),q(s)

ds2

∣∣∣∣
s=0

= − 1

2
〈τ(p)− τ(q) | ν(p) + ν(q)〉+

1

2
〈p− q | k(p)τ(p) + k(q)τ(q)〉

= − 1

2
〈τ(p) | ν(q)〉+

1

2
〈τ(q) | ν(p)〉+

1

2
〈p− q | k(p)τ(p) + k(q)τ(q)〉

= − 2 sinα cosα− 1/2|p− q|(k(p)− k(q)) cosα

d2ψ(Ap(s),q(s))

ds2

∣∣∣∣
s=0

=
d

ds

{
dAp(s),q(s)

ds
cos
( π
A
Ap(s),q(s)

)}∣∣∣∣
s=0

= (−2 sinα cosα− 1

2
|p− q|(k(p)− k(q)) cosα) cos

( π
A
Ap,q

)
− π

A
|p− q|2 sin2 α sin

( π
A
Ap,q

)
.

Substituting the last two relations in inequality (13.4), we get

(8 cos2 α+ 2〈p− q | k(p)ν(p)− k(q)ν(q)〉)ψ(Ap,q)

> |p− q|2
{

(−2 sinα cosα− 1

2
|p− q|(k(p)− k(q)) cosα) cos

( π
A
Ap,q

)
− π
A
|p− q|2 sin2 α sin

( π
A
Ap,q

)}
,
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hence, keeping in mind that tanα = −4

E(t) cos( πAAp(s),q(s))
, we obtain

2ψ(Ap,q)〈p− q | k(p)ν(p)− k(q)ν(q)〉+ 1/2|p− q|3(k(p)− k(q)) cosα cos
( π
A
Ap,q

)
> − 2 sinα cosα|p− q|2 cos

( π
A
Ap,q

)
− 8ψ(Ap,q) cos2 α+ |p− q|4 sin2 α

[
− π
A

sin
( π
A
Ap,q

)]
= − 2ψ(Ap,q) cos2 α

(
tanα

|p− q|2

ψ(Ap,q)
cos
( π
A
Ap,q

)
+ 4

)
+ |p− q|4 sin2 α

[
− π
A

sin
( π
A
Ap,q

)]
= |p− q|4 sin2 α

[
− π
A

sin
( π
A
Ap,q

)]
. (13.5)

We now compute the derivative dE(t)
dt by means of the Hamilton’s trick (see [48] or [78, Lemma 2.1.3]),

that is,
dE(t)

dt
=
∂

∂t
Φt(p, q) ,

for any minimizing pair (p, q) for Φt. In particular, dE(t)
dt = ∂

∂tΦt(p, q) and, we recall, |p−q|
2

ψ(Ap,q)
= E(t).

Notice that by minimality of the pair (p, q), we are free to choose the “motion” of the points p(s), q(s)
“inside” the networks Γs in computing such partial derivative, that is,

dE(t)

dt
=
∂

∂t
Φt(p, q) =

d

ds
Φt(p(s), q(s))

∣∣∣∣
s=t

.

Since locally the networks are moving by curvature and we know that neither p nor q coincides with
the 3–point, we can find ε > 0 and two smooth curves p(s), q(s) ∈ Γs for every s ∈ (t − ε, t + ε) such
that

p(t) = p and
dp(s)

ds
= k(p(s), s) ν(p(s), s) ,

q(t) = q and
dq(s)

ds
= k(q(s), s) ν(q(s), s) .

Then,

dE(t)

dt
=
∂

∂t
Φt(p, q) =

1

[ψ(Ap,q)]2

(
ψ(Ap,q)

d|p(s)− q(s)|2

ds
− |p− q|2

dψ(Ap(s),q(s))

ds

)∣∣∣∣
s=t

. (13.6)

With a straightforward computation, we get the following equalities,

d|p(s)− q(s)|2

ds

∣∣∣∣
s=t

= 2〈p− q | k(p)ν(p)− k(q)ν(q)〉

dA(s)

ds

∣∣∣∣
s=t

= − 4π

3

dAp(s),q(s)

ds

∣∣∣∣
s=t

=

∫
Γp,q

〈k(s) |νξp,q 〉 ds+
1

2
|p− q|〈ν[p,q] | k(p)ν(p) + k(q)ν(q)〉

= 2α− 4π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

dψ(Ap(s),q(s))

ds

∣∣∣∣
s=t

= − 4π

3

[
1

π
sin
( π
A
Ap,q

)
− Ap,q

A
cos
( π
A
Ap,q

)]
+

(
2α− 4π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

)
cos
( π
A
Ap,q

)
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where we wrote νξp,q and ν[p,q] for the exterior unit normal vectors to the region Ap,q , respectively at the
points of the geodesic ξp,q and of the segment pq.
We remind that in general dA(t)

dt = −(2 −m/3)π where m is the number of triple junctions of the loop
(see formula (7.4)), hence, we have dA(t)

dt = − 4π
3 , since we are referring to the situation in Figure 13.2,

where there is a loop with exactly two triple junctions.
Substituting these derivatives in equation (13.6) we get

dE(t)

dt
=

2〈p− q | k(p)ν(p)− k(q)ν(q)〉
ψ(Ap,q)

− |p− q|2

[ψ(Ap,q)]2

{
−4π

3

[
1

π
sin
( π
A
Ap,q

)
− Ap,q

A
cos
( π
A
Ap,q

)]
+

(
2α− 4π

3
− 1

2
|p− q|(k(p)− k(q)) cosα

)
cos
( π
A
Ap,q

)}

and, by equation (13.5),

dE(t)

dt
> − |p− q|2

[ψ(Ap,q)]2

{
−4

3
sin
( π
A
Ap,q

)
+

4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
2α− 4π

3

)
cos
( π
A
Ap,q

)
+
π

A
|p− q|2 sin2(α) sin

( π
A
Ap,q

)}
.

It remains to prove that the quantity

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− π

A
|p− q|2 sin2(α) sin

( π
A
Ap,q

)

is positive.
As E(t) = |p−q|2

ψ(Ap,q)
= |p−q|2

A
π sin( πAAp,q)

, we can write

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− π

A
|p− q|2 sin2(α) sin

( π
A
Ap,q

)
=

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− E(t) sin2(α) sin2

( π
A
Ap,q

)
.

Notice that using inequality (13.3), we can evaluate 4π
3 − 2α ∈ (π/6, π/3), in particular, it is positive.

We finally conclude the estimate of dE(t)
dt and the proof of this proposition by separating the analysis

into two cases, depending on the value of Ap,qA .
If 0 6 Ap,q

A 6 1
3 , we have

dE(t)

dt
>

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− E(t) sin2(α) sin2

( π
A
Ap,q

)
>

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− E(t) sin2(α) sin2

( π
A
Ap,q

)
>
(π

6

)
cos
(π

3

)
− E(t) sin2

(π
3

)
> 0 .
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If 1
3 6 Ap,q

A 6 1
2 , we get

dE(t)

dt
>

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
+

(
4π

3
− 2α

)
cos
( π
A
Ap,q

)
− E(t) sin2(α) sin2

( π
A
Ap,q

)
>

4

3
sin
( π
A
Ap,q

)
− 4π

3

Ap,q
A

cos
( π
A
Ap,q

)
− E(t) sin2(α) sin2

( π
A
Ap,q

)
>

4

3

(
sin
(π

3

)
− π

3
cos
(π

3

))
− E(t) > 0 .

Remark 13.6. We want to stress here the reason why we are able to prove Proposition 13.5 only when Γp,q
contains at most two triple junctions and so Theorem 13.4 only for networks with at most two 3–points.
If we try to repeat the computations of the final part of this proof considering a situation such that Γp,q
contains more than two triple junctions, as the value of dA(t)

dt changes according to dA(t)
dt = −(2−m/3)π,

when m > 3, we only have dA(t)
dt > −π (instead of being equal to −4π/3), which is not sufficient to get

to the inequality dE(t)
dt > 0.

Lemma 13.7. Let Ω be an open, bounded, strictly convex subset of R2. Let S0 be an initial regular network
with two triple junctions and let the St be the evolution by curvature of S0 defined in a maximal time interval
[0, T ). Then, there cannot be a sequence of times tj → T such that, along such sequence, the two triple junctions
converge to the same end–point of the network.

Proof. Let O1(t) and O2(t) be the two triple junctions of St and P i the end–points on ∂Ω. Suppose, by
contradiction, that limi→∞Oj(ti) = P 1, for j ∈ {1, 2}. Notice that if St is not a tree, then it has the
structure either of a “lens/fish–shaped” network (see Figure 7.3) or of an “island–shaped” network.

O1 O2

γ1

γ2

γ3

γ4

P 2

P 1

Figure 13.3: An island–shaped network.

If we consider the sequence of rescaled networks H̃1
P 1,tj

obtained via Huisken’s dynamical procedure

applied to H1
t , as in Proposition 7.20, centered in P 1, it converges in C1,α

loc ∩W
2,2
loc , for any α ∈ (0, 1/2)

to a (not empty) limit degenerate regular shrinker H̃∞. We analyze the possible H̃∞ without using the
multiplicity–one conjecture M1, to avoid a “circular argument”. Moreover, we consider among all the
possible blow–up limits H̃∞, one with the maximum number of 3–points (which can only be 0, 2 or 4).
We first consider the case when H̃∞ (hence, also the underlying graph) is a tree, then it is a symmetric
family of halflines from the origin, by Lemma 7.10.
If H̃∞ has no 3–points, then it is a line through the origin, which means that in the rescaling procedure
all the 3–points go to infinity, hence it must be that the curves γi of St not going to infinity, in the
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sequence of rescalings, satisfy

lim
j→∞

Li(tj)√
T − tj

= +∞ ,

then, repeating the argument of Proposition 7.30 (leading to Proposition 7.32), such a line must have
multiplicity one, being composed of the “reflection” of two halflines with unit multiplicity.
If H̃∞ contains only two 3–points (hidden in its core at the origin), recalling the argument in the proof
of Lemma 7.10, it is given by four halflines forming angles of 120/60 degrees.
In both these two cases the curvature of the non–rescaled networks Ht (hence, of St) is locally uniformly
bounded around P 1 (by White’s regularity theorem in [111] and Proposition 9.21, which are both inde-
pendent of M1), then (in the second case, by arguing as in Lemma 7.24) the presence of another 3–point
of St in a space–time neighborhood of (P 1, T ) is “forbidden”, clearly contradicting the hypotheses.
The remaining case of four 3–points in H̃∞, is when the (symmetric) core of H̃∞ is given by three degen-
erate curves (and four 3–points) at the origin. In this case it is straightforward to see that S̃∞ contains
a straight line through the origin, which is not possible since S̃∞ must be contained in an angle with
opening less than π, by the strict convexity of Ω, as it is shown in Proposition 7.13.
If instead H̃∞ contains a loop (actually, two symmetric ones coming from a collapsing loop in St, as
t → T and its “reflection”), pushing a little the analysis in Section 7.1 (see also the Appendix), it could
only have the structure of a Brakke spoon (see Figure 7.2) or of a shrinking lens/fish (see Figure 7.4).
Then, it would contains the origin of R2 in its inside, which is clearly not possible in our situation of
blow–up around an end–point of the network St.

Remark 13.8. As before, we remark that the strictly convexity hypothesis on Ω can actually be weakened
by asking that Ω is convex and that there does not exist three aligned end–points of the initial network
S0 on ∂Ω.

Proof of Theorem 13.4. If St is the evolution of a network with only one triple junction, any of the evolving
networks Hit has exactly two 3–points. Let t ∈ [0, T ) a time such that 0 < Π(t) < 1/4 and Π and all
embeddedness measures Ei, associated to the networks Hit, are differentiable at t (this clearly holds for
almost every time).
Let Ei(t) = Π(t) < 1/4 and Ei(t) is realized by a pair of points p and q in Hit, we separate the analysis
in the following cases:

• If the points p and q of the minimizing pair are both end–points of Hit, by construction |p−q| > ε >
0. Moreover, the area enclosed in the Jordan curve formed by the segment pq and by the geodesic
curve Γp,q can be uniformly bounded by above by a constant C > 0, for instance, the area of a ball
containing all the networks Hit. Since ε > 0 and C depend only on Ω and on the structure of the
initial network S0 (more precisely on the position of the end–points on the boundary of Ω, that
stay fixed during the evolution and that do not coincide), the ratio |p−q|2

ψ(Ap,q)
(or |p−q|

2

Ap,q
, if p, q do not

belong to a loop) is greater or equal than some constant Cε = ε2

C
> 0 uniformly, hence the same

holds for Π(t).

• If one point is internal and the other is an end–point of Hit, we consider the following two situa-
tions. If one of the two point p and q is in St ⊆ Hit and the other is in the reflected network SRit ,
then, we obtain, by construction, a uniform bound from below on Π(t) as in the case in which p
and q are both boundary points of Hit.
Otherwise, if p and q are both in St and one of them coincides with P j with j 6= i, either the other
point coincides with P i and we have again a uniform bound from below on Π(t), as before, or both
p and q are points of Hjt both not coinciding with its end–points and Ej(t) = Ei(t) = Π(t) < 1/4,
so we can apply the argument at the next point.

• If p and q are both “inside” Hit, by Hamilton’s trick (see [48] or [78, Lemma 2.1.3]), we have dΠ(t)
dt =

dEi(t)
dt and, by Proposition 13.5, dE

i(t)
dt > 0, hence dΠ(t)

dt > 0.

All this discussion implies that at almost every point t ∈ [0, T ) such that Π(t) is smaller than some
uniform constant depending only on Ω and on the structure of the initial network S0, then dΠ(t)

dt >
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0, which clearly proves the theorem in the case a network with a single triple junction (see also [82,
Section 4]).
Let now St be a flow of regular networks with two triple junctions. If there are no end–points, the
conclusion follows immediately from Proposition 13.5. Hence, we assume that St has two or four end–
points (in the first case there is a loop, and in the second St is a tree), which are the only possibilities.
The analysis is the same as above, with only a delicate point to be addressed, that is, in the last case,
when the two points p and q of the minimizing pair are “inside” Hit and we apply Proposition 13.5.
Indeed, since Hit has four 3–points it can happen that the geodesic curve Γp,q contains more than two
3–points, hence this case requires special treatment. Notice that if the points p and q are both “inside”
St ⊆ Hit, then Proposition 13.5 applies and we are done. We then assume that p ∈ St, q ∈ SRit , and Γp,q
contains more than two triple junctions.
We want to show that there exists a uniform positive constant ε such that |p− q| > ε > 0, which implies
a uniform positive estimate from below on Ei(t), as above. This will conclude the proof.
Assume by contradiction that such a bound is not possible, then, for a sequence of times tj → T , the
Euclidean distance between the two points pj and qj of the associated minimizing pair of Φtj goes to
zero, as j → ∞ and this can happen only if pi, qi → P i. It follows, by the maximum principle that the
two 3–pointsO1(t) andO2(t) converge to P i on some sequence of times tk → T (possibly different from
tj), which is forbidden by Lemma 13.7 and we are done.

Remark 13.9. Notice, by inspecting the previous proof, that in the case that St has a single 3–point, the
strict convexity of Ω is not necessary, convexity is sufficient.

13.1 Consequences for the multiplicity–one conjecture

The quantity E(t) considered in the previous section is clearly, by definition, dilation and translation
invariant, moreover it is continuous under C1

loc–convergence of networks. Hence, if E(t) > C > 0 for
every t ∈ [0, T ), the same holds for every C1

loc–limit of rescalings of networks of the flow St. This clearly
implies the strong multiplicity–one conjecture SM1.

Corollary 13.10. If Ω is strictly convex and the initial network S0 has at most two triple junctions, then the
strong multiplicity–one conjecture SM1 is true for the flow St.

A by–product of the proofs of Proposition 13.5 and Theorem 13.4 is actually that also the function Π(t)
is positively uniformly bounded from below during the flow.

Corollary 13.11. If Ω is strictly convex and the initial network S0 has at most two triple junctions, then the
strong multiplicity–one conjecture SM1 is true for all the “symmetrized” flows Hit.

Remark 13.12. Actually, in general, if we are able to show the (strong) multiplicity–one conjecture for
a curvature flow St in a strictly convex open set Ω, then, by construction and Proposition 7.13, it also
holds for all the “symmetrized” flows Hit. This remark is in order since in the analysis of the flow St
in the previous sections, we used the “reflection” argument at the end–points of the network St, then
we argued applying M1 to the resulting networks Hit (to be precise, in Section 9.1 and in the proofs of
Proposition 9.11 and of Proposition 9.19).

Another situation that can be analyzed by means of the ideas of this section is the following.

Proposition 13.13. If during the curvature flow of a network St the triple junctions stay uniformly far from each
other and from the end–points, then SM1 is true for the flows St and all Hit. As a consequence, the evolution of
St does not develop singularities.

Proof. We divide all the pairs of curves of the evolving network St in two families, depending on the
curve of a pair have a common 3–point or not. In the second case, by means of maximum principle and
the assumption on the 3–points, there is a uniform constant C > 0 such that any couple of points, one
on each curve of such pair, have distance bounded below by C. Then, if the pair of points of St realizing
the quantity E(t) stay on such curves it follows E(t) > C ′ > 0 for some uniform constant C ′. In case
E(t) < C ′, it follows that such a pair of points either stay on the same curve or on two curves with a
common 3–point. Hence, the “geodesic” curve Γp,q contains at most one 3–point, since otherwise the
distance between p and q would be at least C, contradicting the fact that E(t) < C ′. This implies that
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dE(t)
dt > 0 by Proposition 13.2. Then, the strong multiplicity–one conjecture follows for St and all the

“symmetrized” flows Hit, by the same argument in the proof of Theorem 13.4, taking into account the
hypothesis that the triple junctions stay uniformly far also from the end–points.
It follows that the only possible singularities of the flow are given by the collapse of a curve of the
network, but this is excluded by the assumption.

14 The flow of networks with at most two triple junctions

In what follows we present, up to the best of our knowledge, the description of the evolution of the
networks with at most two triple junctions. For simplicity, we let them evolve in a strictly convex, open
and smooth subset Ω ⊆ R2. These are not only simple examples of a complete analysis of the flow, but
they are interesting since most of the relevant phenomena of the motion by curvature of networks are
already present.
All the results are based on the content of the previous sections. We underline that in the current
situations the strong multiplicity–one conjecture SM1 holds (see Section 13.1), hence it is not necessary
to assume it. We require instead the uniqueness of blow–up assumption U, stated in Problem 7.25, to hold,
which is still conjectural, even if some positive partial results were recently obtained in [91].
We recall that if the maximal time of smooth existence is finite, either a curve is vanishing with bounded
curvature, or there exists at least a point x0 ∈ Ω where the curvature is not bounded, that is, at least a
region of the network collapses at such point and we have there a blow–up limit network which cannot
have zero curvature.
Since the multiplicity–one conjecture holds for these networks, when a region collapses, also the loop
that encloses the region must collapse, with its length going to zero.

14.1 Networks with only one triple junction

If we consider the possible (topological) structures of regular networks with only one triple junction,
we see that there are only two cases: the triod and the spoon–shaped network. The motion of a triod
can be regarded as the simplest example of the evolution by curvature of a tree–like configuration of an
“essentially” singular one–dimensional set, the motion of a spoon is the simplest one with a loop.

Ω

P 1

γ1
γ3

γ2

O

P 3

P 2
Ω

AP
γ2

γ1

O

Figure 14.1: Networks with only one triple junction: triod and spoon network.

In what follows we present a complete description of the evolution of networks with these two shapes
(from [76, 82, 89]). We will see that in the case of the triod, we can exclude the presence of singularities
till the lengths of the three curves stay positively bounded from below, while in the case of the spoon
instead, a singularity develops.
As defined in Section 3, fixed a smooth, open, strictly convex set Ω ⊆ R2, a triod is a network (a tree)
T composed only of three regular, embedded C1 curves γi : [0, 1] → Ω. These curves intersects each
other only at a single 3–point O, that is, γ1(0) = γ1(0) = γ1(0) = O and have the other three end–points
P 1, P 2, P 3 on the boundary of Ω with γi(1) = P i, for i ∈ {1, 2, 3}. The triod is regular if the three
concurring curves form angles of 120 degrees.
A spoon Γ = γ1([0, 1]) ∪ γ2([0, 1]) is the union of two regular, embedded C1 curves γ1, γ2 : [0, 1] → Ω
which intersect each other only at a triple junctionO, with angles of 120 degrees, that is, γ1(0) = γ1(1) =
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γ2(0) = O ∈ Ω and γ2(1) = P ∈ ∂Ω. We call γ1 the “closed” curve and γ2 the “open” curve of
the spoon and we denote with A the area of the region enclosed by the loop. A spoon is regular if
τ1(0) + τ2(0)− τ1(1) = 0, which means that the three angles at O are of 120 degrees.
For simplicity, we will assume in the following that all the initial networks are smooth, hence Theo-
rem 3.30 applies and gives a smooth curvature flow in a maximal time interval [0, T ). As we discussed
in the previous sections, to start the flow if the curves of the initial network are only C2 but the Herring
condition is still satisfied, we need Theorem 5.8. If the initial network is not regular, we need to apply
Theorem 10.9 to have a curvature flow. Anyway, in all these cases, the flow is smooth for every positive
time. If the network is regular, thanks to Theorem 5.8, we have uniqueness (geometric uniqueness to be
more precise, see Definition 3.1). If these networks with only triple junctions are not regular but their
curves are smooth, we still get geometric uniqueness (see Remark 10.29).
Collecting and specializing the results for a smooth initial network to the cases of a triod or of a spoon
(Theorem 3.30), we have the following proposition.

Proposition 14.1. Let Ω ⊆ R2 be a smooth, open, strictly convex set, then, for any smooth regular initial triod
T0 or any smooth regular initial spoon Γ0 in Ω, there exists a geometrically unique smooth (and special) curvature
flow in a maximal time interval [0, T ).

Before proceeding, we also recall that during the flow the evolving networks stay embedded and inter-
sect the boundary of Ω only at the fixed end–points (transversally), see Section 7.2.

14.1.1 The triod

Suppose that T < +∞, then, by Proposition 9.9, the lengths of the three curves cannot be uniformly
positively bounded from below. Hence, as Ω is strictly convex, Corollary 9.25 and Theorem 9.32 imply
that the curvature of Tt is uniformly bounded and there must be a collapse of a curve to a fixed end–
point on ∂Ω, when t→ T , as depicted in the right side of Figure 9.1 or Figure 9.8.
Suppose instead that T = +∞. Then, by Proposition 12.6, for every sequence of times ti → +∞,
there exists a (not relabeled) subsequence such that the evolving triod Tti converge in C1 to a possibly
degenerate regular triod, embedded (by Theorem 13.4) and with zero curvature, as i → ∞, that is, a
Steiner configuration connecting the three fixed points P i on ∂Ω (which possibly have a zero–length
degenerate curve, for instance if the three end–points are the vertices of a triangle with an angle of 120
degrees). Moreover, as the Steiner configuration (which is length minimizing) connecting three points
is unique (if it exists), for every subsequence of times, we have the same limit triod, hence, the full
sequence of triods Tt converge to such limit, as t→ +∞.
We notice that there is an obvious example where the length of one curve goes to zero in finite time: the
case of an initial triod T0 with the boundary points P i on ∂Ω such that one angle of the triangle with
vertices P 1, P 2, P 3 is greater than 120 degrees. In this case the Steiner triod does not exist, hence the
maximal time of a smooth evolution must be finite.
Instead, if the angles of the triangle with vertices P 1, P 2, P 3 are all smaller than 120 degrees and the
initial triod T0 is contained in the convex envelope of P 1, P 2, P 3, then no length can go to zero during
the evolution, by Remark 9.15, the maximal time of existence is +∞ and the triods Tt tend, as t→ +∞,
to the unique Steiner triod.
When the maximal time T is finite and a curve collapses to an end–point (see Figures 9.1, 9.8 and the
above discussion), it is not clear how to continue/restart the flow. Indeed, although the curvature is
bounded, Theorem 10.9 does not apply and we need some “boundary” extension (see the discussion in
Section 9.4, after Figure 9.8).

14.1.2 The spoon

In Section 7.2 we discussed the behavior of the area A of a bounded region enclosed by a loop of an
evolving regular network. In the case of the spoon, the loop is composed of one curve and there is only
one triple junction. Then, equation (7.4) gives A′(t) = −5π/3, which implies that the maximal time T of
existence of a smooth flow of a spoon is finite and T 6 3A(0)

5π , where A(0) is the initial area enclosed in
the loop (see Proposition 12.4).
As t→ T , the only possible limit regular shrinkers Γ̃∞ arising from Huisken’s rescaling procedure at a
reachable point x0 ∈ Ω are given by
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• a halfline from the origin,

• a straight line through the origin,

• a standard triod,

• a Brakke spoon (see Figure 7.2).

This follows by the simple topological structure of Γt and the uniqueness (up to rotation) of the Brakke
spoon among the shrinkers in its topological class (see Section 7.6). We remind that all the possible
blow–up limits are non–degenerate networks with multiplicity one, thanks to Corollary 13.10.
We first notice that, if the curve γ1 collapses, then the curvature clearly cannot be bounded. Moreover,
by Proposition 9.32, it is not possible that both lengths of γ1 and γ2 go to zero, as t→ T .
Suppose that the length of the “open” curve γ2 is uniformly positively bounded from below for all
t ∈ [0, T ], then the curve γ1 must collapse and the maximum of the curvature goes to +∞ as t → T
(indeed, limt→T

∫
St k

2 ds = +∞, by Proposition 12.4). Then, if x0 = limt→T O(t), taking a blow–up limit
Γ̃∞ at x0 ∈ Ω, we can only get a Brakke spoon, since in the other cases (a halfline is obviously excluded)
the curvature would be locally bounded and the flow regular. Hence, as t→ T , the length of the closed
curve γ1 goes to zero and the area A(t) enclosed in the loop goes to zero since (as U holds) we have
a limit network ΓT , as t → T , composed only by a C1 curve γ2

T connecting P with x0 (and curvature
going as o(1/dx0)), as in Figure 9.11. Moreover, from the evolution law A(t) = A(0)− 5πt/3, we obtain
that T = 3A(0)

5π .
If instead the length of the curve γ2 is not positively bounded from below then, as t → T , by Proposi-
tion 9.32 such curve collapses to the end–point P , the curvature stays bounded and the network Γt is
locally a tree around every point, uniformly in t ∈ [0, T ). Hence, the region enclosed by the curve γ1

does not vanishes and the triple junction O has collapsed onto the boundary point P , maintaining the
120 degrees condition and with bounded curvature (see Proposition 9.21). The networks Γt converge in
C1, as t→ T , to a limit network ΓT , as in Figure 9.9.
We actually do not have a natural way to restart the flow in the first situation. In the second one, a
natural “choice” is to assume that the flow ends and the whole network vanishes for t > T .
We conclude this example with a couple of open questions.

Open Problem 14.2 (Special case of Problem 7.25). Is the limit Brakke spoon obtained in the previous
theorem (in the second situation) independent of the chosen sequence of times tk → +∞? That is, is the
direction of its unbounded halfline unique?

Open Problem 14.3. Having in mind the “convexification” result for simple closed curves by Grayson [46]
(see Remark 2.16), a natural question is: if we consider an initial spoon moving by curvature with the
length of the non–closed curve uniformly positively bounded below during the evolution, does the
closed curve become eventually convex and then remain convex?

These two open problems are related: the uniqueness of the blow–up limit (which is a Brakke spoon,
hence with a convex region) would imply that the region at some time becomes convex and then re-
mains so, by the smooth convergence of the rescaled networks to the Brakke spoon (this follows from
the argument of Lemma 8.6 in [58], see the discussion just after the proof of Lemma 7.24).

14.2 Networks with two triple junctions

We consider now regular networks with exactly two triple junctions and we focus on their topological
classification. We parametrize the curves composing the network by γi : [0, 1] → R2. At each 3–point
either three different not closed curves concur (for instance O1 = γ1(0) = γ2(0) = γ3(0)) or two curves,
one of which closed (that is O1 = γ1(0) = γ1(1) = γ2(0)). As we do not consider here open networks
(with branches that go to infinity asymptotic to halflines, see Definition 2.4), if a curve is not closed
(hence γ1(0) 6= γ1(1)), there are only two possibilities for its end–point not concurring in O1: either it is
an end–point on the boundary of Ω, or it belongs to the other triple junction O2. If we repeat the above
reasoning for every end–point, we obtain all the cases shown in Figure 14.2.
When we say that a network has a loop `, we mean that there is a Jordan curve in S that encloses an
area A. For networks with two triple junctions, there are two cases (see Figure 14.2):
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• the loop ` is composed of a single curve γ : [0, 1] → R2, γ(0) = γ(1) forming an angle of 120
degrees. The length L of ` coincides with the length of γ.

• the loop ` is composed of two curves γ1, γ2 : [0, 1]→ R2, that meet each other at their end–points
and at both junctions there is an angle of 120 degrees. The length L of ` is the sum of the lengths
of the two curves.
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Figure 14.2: Networks with two triple junctions.

Proposition 14.4. Let Ω ⊆ R2 be a smooth, open, strictly convex set, then, for any smooth regular initial network
in the above family, there exists a geometrically unique smooth (and special) curvature flow in a maximal time
interval [0, T ). During the flow, the evolving networks stay embedded and intersect the boundary of Ω only at the
fixed end–points (transversally).

We first analyze the possible blow–up limits at a singular time of the evolution of networks with two
triple junctions of general topological type, then we discuss in detail all the possible topologies, case by
case.
It is crucial that all the possible blow–up limits S̃∞, arising from Huisken’s rescaling procedure, are
embedded networks with multiplicity–one, by Corollary 13.10 in Section 13.

Proposition 14.5. If the rescaling point x0 belongs to Ω, then the blow–up limit network S̃∞ (if not empty) is
one of the following (see Section 7.1):

• a straight line through the origin;

• a standard triod centered at the origin;

• a standard cross;
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• a Brakke spoon;

• a shrinking lens;

• a shrinking fish.

If the rescaling point x0 is a fixed end–point of the evolving network (on the boundary of Ω), then the blow–up
limit network S̃∞ (if not empty) is one of the following:

• a halfline from the origin;

• two halflines from the origin forming an angle of 120 degrees (“half” of a standard cross).

Proof. The limit (possibly degenerate) network S̃∞ has to satisfy the shrinkers equation k∞ + x⊥ = 0

for all x ∈ S̃∞ (see the proof of Proposition 7.20).
If we assume that S̃∞ is a degenerate regular shrinkers, it must be a standard cross, if x0 ∈ Ω, or two
halflines from the origin forming an angle of 120 degrees, when x0 ∈ ∂Ω (“half” of a standard cross).
Then, its core is composed of a single curve (connecting the two triple junctions or a triple junction with
an end–point, by Lemma 13.7) “collapsed” in the limit.
If S̃∞ is not degenerate and the curvature k̃∞ is constantly zero, the network is composed only of
halflines or straight lines. Then, the possible regular shrinkers are either a straight line through the
origin or a standard triod, if x0 ∈ Ω, or a halfline, if x0 ∈ ∂Ω.
If instead the curvature is not constantly zero and the network S̃∞ is not degenerate, by the classification
of regular shrinkers with two triple junctions, we can only have either the Brakke spoon, the shrinking
lens, or the shrinking fish. In all these three cases, the center of the homothety is inside the enclosed
region, hence x0 cannot be an end–point on the boundary of Ω.

Proposition 14.6. Let S0 be a network with two triple junctions and with a loop ` of length L, enclosing a region
of areaA and let St be a smooth evolution by curvature of such network in the maximal time interval [0, T ). Then,
T is finite and if limt→T L(t) = 0, there holds limt→T

∫
St k

2 ds = +∞.

Proof. If a loop is present, by the above classification of the possible topological structures of the net-
works with two triple junctions, it must be composed of m curves, with m < 6, hence, Proposition 12.4
applies.

Theorem 14.7. Let Ω ⊆ R2 be a smooth, strictly convex, open set. Let S0 be a compact initial network with two
triple junctions and with possibly fixed end–points on ∂Ω and let St be the smooth evolution by curvature of S0

in a maximal time interval [0, T ).
If the network S0 has at least one loop, then the maximal time of existence T is finite and one of the following
situations occurs:

1. the limit of the length of a curve that connects the two 3–points goes to zero, as t → T , and the curvature
remains bounded;

2. the limit of the length of a curve that connects the 3–point with an end–point goes to zero, as t → T and
the curvature remains bounded;

3. a region enclosed by a loop collapses with the length of the loop going to zero (since SM1 holds), as t → T

and lim
t→T

∫
St
k2 ds = +∞.

If the network is a tree and T is finite, the curvature is uniformly bounded and only one of the first two situations
listed above can happen. If instead T = +∞, for every sequence of times ti → +∞, there exists a subsequence
(not relabeled) such that the evolving networks Sti converge in C1,α ∩W 2,2, for every α ∈ (0, 1/2), to a possibly
degenerate, regular network with zero curvature (hence, “stationary” for the length functional), as i→∞.

Proof. If a loop is present, by Proposition 12.4, the maximal time of smooth existence T > 0 is finite.
If such time is smaller than the “natural” time at which the loop shrinks (depending on the number of
curves composing the loop, as in Proposition 12.4), the network is locally a tree, uniformly for t ∈ [0, T ).
Hence, every blow–up limit at any point x0 ∈ Ω cannot contain loops, then Proposition 14.5 shows that
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it must have zero curvature, thus, by Proposition 9.19 the curvature of St is uniformly bounded along
the flow and converges, as t → T , to a degenerate regular network ST with vertices that are either a
regular triple junction, an end–point, or

• a 4–point where the four concurring curves have opposite unit tangents in pairs and form angles
of 120/60 degrees between them (collapse of the curve joining the two triple junctions of St);

• a 2–point at an end–point of the network St where the two concurring curves form an angle of 120
degrees among them (collapse of the curve joining a triple junction to such end–point of St).

The same conclusion clearly holds if S0 is a tree and T is finite.
If instead the time T coincides with the vanishing time of a loop of the network, by Proposition 12.4,
the curvature is unbounded and there must exist a reachable point for the flow x0 ∈ Ω and a sequence
of times tj → T such that, the associate sequence of rescaled networks S̃x0,tj , as in Proposition 7.20,
converges in C1,α

loc ∩W
2,2
loc , for any α ∈ (0, 1/2), to a limit degenerate regular shrinker S̃∞ that is either a

Brakke spoon, a shrinking lens, or a shrinking fish.
If T = +∞, hence S0 must be a tree, then St converges, as t → +∞, to a (possibly degenerate) regular
network with zero curvature (a stationary point for the length functional), thanks to Proposition 12.6

To now proceed with a more detailed analysis of the behavior of the flow of these networks, we consider
each topological type separately.

14.2.1 The theta

We call A1 the area enclosed by the curves γ1 and γ2 and A2 the area enclosed by γ2 and γ3, as in the
following figure.

Ω O2

γ2

A1

A2

γ1

γ3

O1

Figure 14.3: Theta.

Let x0 ∈ Ω be a reachable point of the flow, from Proposition 7.20, we know that the sequence of
rescaled networks S̃x0,tj converges in C1,α

loc ∩W
2,2
loc , for any α ∈ (0, 1/2), to a blow–up limit shrinker S̃∞.

By Proposition 14.5, the possible S̃∞ are:

• a straight line through the origin;

• a standard triod;

• a standard cross;

• a shrinking lens;

• a shrinking fish,
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where we excluded the Brakke spoon for topological reasons.
We know from Proposition 12.4 that the maximal time T of existence of a smooth flow is finite and
bounded by 3

4π min{A1(0), A2(0)}. Indeed, from equation (7.4), we know that the areas enclosed in the
two loops are linearly decreasing in time, precisely, A′1(t) = A′1(t) = −4π/3.

If T < 3
4π min{A1(0), A2(0)}, then the evolving network is locally a tree for all times, hence the analysis

of Sections 9.2 and 9.3 (in particular, Theorem 9.26) applies and the curvature stays bounded while the
length of only one curve is going to zero, as t → T , forming a regular 4–point, where the two triple
junctions converge.

Suppose that T = 3
4π min{A1(0), A2(0)}. Suppose by contradiction that A1(0) = A2(0). Clearly the two

regions should collapse both at T . Taking a blow–up limit S̃∞ at a hypothetical vanishing point x0 ∈ Ω,
such limit must contain two contiguous regions with a common edge and with equal finite area. Indeed,
every rescaled network of the sequence S̃x0,t contain two contiguous regions and the two loops cannot
vanish in the limit (neither collapsing to a core because of the enclosed constant area), since at least one
is present in the possible blow–up limit shrinker. Then, since there are no possible limit shrinkers with
two bounded regions, by Proposition 14.5, this situation is not possible.
So, in the case T = 3

4π min{A1(0), A2(0)}, the two areas A1(0) and A2(0) must be different. The curva-
ture cannot stay bounded, hence there must exist a singular point x0 ∈ Ω where S̃∞ is a non–straight
shrinker, thus, a shrinking lens or a shrinking fish. The resulting possible limit network ST , as t → T ,
will then be given by a C1 curve, “closing” at x0, possibly forming an angle. As we supposed that the
uniqueness of blow–up assumption U in Problem 7.25 holds, such angle is either the one between the two
“halfilnes” of the shrinking fish, if this is the blow–up limit shrinker, or the curve is C1 (no angle), if the
blow–up limit shrinker is a shrinking lens (see Figure 9.7).

In the first case, we “pass through” the (topological) Type-0 singularity by a standard transition, as
described in Section 11 (see Figure 11.1) and we actually conjecture that this can be done in a unique
way, see Remark 11.1. After the transition, the network becomes eyeglasses–shaped (of “type A” or
of “type B”, depending on whether the collapsed curve was the central one, or one of the other two,
respectively), as in Figure 11.2 or in the left side of Figure 12.3.
In the case ST is aC1 closed curve with possibly an angle, by the results of Angenent in [6] (see also [30]),
we can (uniquely) restart the evolution by means of the “classical” curve shortening flow, obtaining an
evolving closed embedded curve, which becomes immediately smooth. After some time it becomes
convex and then shrinks in finite time to a “round” point of Ω, by the well–known works of Gage,
Grayson and Hamilton [39–41, 46]

14.2.2 The eyeglasses

We analyze the two different “types” of these networks, as in the following Figure 14.4.
From equation (7.4) we know that the area enclosed by any loop is linearly decreasing in time. Hence,
being present some regions, by Proposition 12.4 it follows that the maximal time T > 0 of existence
of a smooth flow is finite and bounded by 3

5π min{A1(0), A2(0)}, where A1 and A2 are the areas of the
regions respectively enclosed by the curves γ1 and γ2, in the “type A” case, by 3A1(0)

5π , where A1 is the
area enclosed by the “internal” loop, in the “type B” case (in the case of collapse of a region also its
boundary loop must vanish, hence the “internal” region is forced to collapse).
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Figure 14.4: Eyeglasses – “type A” and “type B”.

Considering a reachable point for the flow x0 ∈ Ω, the possible blow–up limit shrinkers S̃∞, as t → T ,
by Proposition 14.5 are:

• a straight line through the origin;

• a standard triod;

• a standard cross;

• a Brakke spoon,

where we excluded the shrinking lens and fish, since are not topological compatible with the possible
limits of eyeglasses–shaped network (limit regions cannot “increase” the number of edges).
We first analyze the behavior of a “type A” eyeglasses–shaped network.
If T < 3

5π min{A1(0), A2(0)}, no region has collapsed, then the evolving network is locally a tree for
all times, hence (as in the analogous case for a Θ–shaped network), the curvature stays bounded while
only the length of the single “open” curve is going to zero, as t → T , forming a regular 4–point, where
the two triple junctions converge.

If T = 3
5π min{A1(0), A2(0)}, then at last one of the two region collapses (with unbounded curvature)

at some point x0 ∈ Ω and the blow–up limit shrinker S̃∞ must be a Brakke spoon. We underline that,
differently from the case of the Θ–shaped network, if A1(0) = A2(0), we do not have an argument to
exclude that both regions collapse to a single common point, as t→ T (even if it seems quite implausi-
ble).
Hence, we have the following possibilities, in the case of a collapse of a region, as t→ T :

• if A1(0) 6= A2(0), then the limit network ST is a spoon with an “open” C1 curve ending at the
collapse point, see Figure 9.10;

• if A1(0) = A2(0) and the two regions collapse at two different points of Ω, the limit network ST is
a C1 curve connecting such two points;

• if A1(0) = A2(0) and the two regions collapse at a common point of Ω, then the limit network
ST is a closed C1 curve, starting and ending at the collapse point and there possibly forming an
angle, if the length of the “open” curve does not go to zero, otherwise, all the network collapses
at such point, if also the length of the “open” curve goes to zero.

Anyway, we conjecture that this last situation and in particular, a complete “vanishing” of the network,
as t→ T , is not possible.

We now deal with a “type B” eyeglasses–shaped network.
From what we said above, if T < 3A1(0)

5π , no region has collapsed, then the evolving network is locally
a tree for all times, hence (as above), the curvature stays bounded while only the length of the single
“open” curve is going to zero, as t → T , forming a regular 4–point, where the two triple junctions
converge.
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If T = 3A1(0)
5π , then the “internal” region collapses (with unbounded curvature) at some point x0 ∈ Ω

and the blow–up limit shrinker S̃∞ must be a Brakke spoon. Since, arguing as in Proposition 12.4, we
have that the area A2 of the region between the inner and the outer closed curve of the network satisfies
A′2 = −2π/3, while A′1 = −5π/3, if A1(0)/A2(0) > 5/2, we have a contradiction since A2 would go
to zero before A1 and this cannot happen (it would contradict what we said at the beginning of this
section). Hence, in this case, the initial areas must satisfy A1(0)/A2(0) 6 5/2.
If we have the equality A1(0)/A2(0) = 5/2, at time T , both regions are collapsing, as t → T and they
cannot “disappear” in the blow–up limit shrinker S̃∞, since in the rescaled sequence they have constant
area and, being one contained in the other, no one of them can “go to infinity”. Hence, the blow–up limit
shrinker would have two regions, which is impossible, as it must a Brakke spoon, by Proposition 14.5.
Thus, it must be A1(0)/A2(0) < 5/2 and the network cannot completely “vanish” at a single point of
Ω. We have instead that only the “interior” region collapses at a point and the limit network ST is a
closed C1 curve, starting and ending at the collapse point and there forming an angle of 120 degrees, if
the length of the “open” curve goes to zero, otherwise, there is also a C1 curve connecting the collapse
point with the angle of the limit of the curve γ2 (see Figure 14.4), if the length of the “open” curve does
not go to zero.

In case of collapse of the “open” curve, for both types, we “pass through” the singularity as before, with
a standard transition, getting a Θ–shaped network after the time T (see the right side of Figure 12.3).
In the other cases, imposing that after the time T , all the “open” curves with a “free” end–point vanish
in the subsequent evolution, we have only to deal with the remaining part of the network (if present)
and we can restart the flow with the same arguments discussed above for the limits at a singular time
of a Θ–shaped network.

14.2.3 The lens

The main difference between this case (and also the next ones) with the theta and the eyeglasses cases,
is that boundary points are present.
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Figure 14.5: Lens.

This increases the list of the possible blow–up limit networks S̃∞. Indeed, by Proposition 14.5, if the
blow–up point x0 ∈ Ω, they can be:

• a straight line through the origin;

• a standard triod;

• a standard cross;

• a shrinking lens;

• a shrinking fish,

where we excluded the Brakke spoon for topological reasons and, if x0 ∈ ∂Ω,
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• a halfline from the origin;

• two halflines from the origin that form an angle of 120 degrees.

As we have a region with two edges in this network, the maximal time of existence T is finite and
bounded by 3A(0)

4π , by Proposition 12.4.

If T < 3A(0)
4π , no region collapses, the evolving network is locally a tree for all times and the curvature

stays bounded. Then, we can have two cases: either the length of one of the two “central” curves goes to
zero, or this happens for one or both the “boundary” curves. In the first case, the limit network ST has a
regular 4–point connected with the two end–points and with a closed C1 curve, starting and ending at
such point, forming an angle of 60 degrees. In the second case, ST can have either two curves between
the two end–points bounding a region, or a curve from an end–point with a triple junction at its other
end, which is connected with the other end–point by two curves bounding a region. At the end points,
the curves form an angle of 120 degrees.

If T = 3A(0)
4π the central region is collapsing (with unbounded curvature) and the sequence S̃x0,tj con-

verges to a shrinking lens or to a shrinking fish, hence giving as a limit network ST , either a C1 curve
connecting the two end–points (if the blow–up limit shrinker is a shrinking lens), or two curves from
the two end–points to the collapse point in Ω, where they form and angle like the one between the two
“halfilnes” of the shrinking fish (if this is the blow–up limit shrinker). We remind that the collapse at
the same time of both triple junctions (and the central region) to an end–point on ∂Ω is excluded by
Lemma 13.7.

In the first case, we “pass through” the singularity as before, with a standard transition, getting an
island–shaped network, after the time T (see the left side of Figure 12.2).
If one or both the boundary curves collapses to an end–point, we actually do not have a natural way to
restart the flow (as in the case of the spoon, when the “open” curve collapses).
If the central region collapses, hence ST is a piecewise C1 curve with possibly a single angle and (fixed)
end–points on ∂Ω, by the results in [30] and [6], we can (uniquely) restart the evolution by means of the
curve shortening flow with fixed end–points, obtaining an evolving embedded curve, which becomes
immediately smooth and converges as t→ +∞, to the segment connecting such end–points.

14.2.4 The island

As for the previous networks with a closed curve, for an island–shaped network, the maximal time of
existence T of a smooth flow in bounded by 3A(0)

5π .

O1 O2

γ1
γ2

γ3

γ4

P 2

P 1

Figure 14.6: Island.

By Theorem 5.7, if the blow–up point x0 ∈ Ω, the blow–up limit networks S̃∞ can be:

• a straight line through the origin;
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• a standard triod;

• a standard cross;

• a Brakke spoon,

where we excluded the standard lens and fish (as the limit cannot have a region with more than one
edge) and, if x0 ∈ ∂Ω,

• a halfline from the origin;

• two halflines from the origin that form an angle of 120 degrees.

If T < 3A(0)
4π , no region collapses, the evolving network is locally a tree for all times and the curvature

stays bounded. Then, we can have two cases: either the curve γ2 in the figure collapses with O1 and O2

forming a 4–point, or the length of one of the two “boundary” curves goes to zero. In the first case, the
limit network ST has a regular 4–point connected with the two end–points and with a closed C1 curve,
starting and ending at such point, forming an angle of 120 degrees. In the second case, ST is formed
by the union of a spoon and a C1 curve connecting the two end–point. The “open” curve of the spoon
form an angle of 120 degrees with such connecting curve at the end–point where they concur.

If T = 3A(0)
4π , the region is collapsing (with unbounded curvature) and the sequence S̃x0,tj converges

to a Brakke spoon. Hence, since the collapse at the same time of both triple junctions (and the central
region) to an end–point on ∂Ω is excluded by Lemma 13.7, the limit network ST must be either a triod
composed by two curves connecting the two end–points to the triple junctions and an “open” curve,
or (if the curve γ2 also collapses – see Figure 14.6) two curves from the two end–points to the collapse
point in Ω. In both cases the two “boundary” curves form an angle of 120 degrees.

In the first case, no region collapses, we “pass through” the singularity with a standard transition,
getting an lens–shaped network, after the time T (see the right side of Figure 12.2), if the “open” curve
collapses in Ω. If instead, it is a “boundary” curve which collapses, we do not have a natural way to
continue the flow.
In the second case, as before, we “forget” the possibly present “open” curve, imposing that after the
time T it vanish and we can (uniquely) restart the evolution of the piecewise C1 curve with a single
angle by means of the curve shortening flow with fixed end–points (as in the case of a lens–shaped
network when the central region collapses), obtaining an evolving embedded curve, which becomes
immediately smooth and converges, as t→ +∞, to the segment connecting such end–points.

14.2.5 The tree

This is the only network with two triple junctions which does not present loops. Consequently, it is the
only case where we could have the global existence of the flow.
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P 2

P 3

P 4

γ1

γ4

γ2
γ3

γ5

O1

O2

Figure 14.7: Tree.

Being a tree, by the analysis of Sections 9.2 and 9.3 the curvature stays bounded till a possible singular
time and we can only have a formation of a 4–point or one or two non–concurrent “boundary” curve
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collapse to their respective end–point, forming an angle of 120 degrees. In this latter case, as we said,
we do not have a natural way to continue the flow, while in the first case, we have a standard transition,
getting another tree, with the only other possible structure with the same end–points (see Figure 12.1).
If T = +∞ or the number of standard transition during the “extended” flow is finite, St tends, as t→∞,
to the Steiner configuration of minimal length, connecting the four fixed end–points.

14.2.6 The symmetric tree

Following [88,91], if we add a symmetry assumption, we get a complete description of the evolution of
a tree with two triple junctions. Suppose S0 is the smooth regular network in Figure 14.8. The network
has four end–points located at the vertices of a rectangle, it is composed of five curves, symmetric with
respect to the horizontal and vertical axes, the middle curve γ0 is a segment.

γ1

γ0

Figure 14.8: A symmetric tree network.

Thanks to the symmetries, we can reduce to study the evolution of a single curve, for instance, γ1. In
this case one can prove (see [88]) that the network flow encounters only a finite number of standard
transitions, so that it is eventually regular and globally defined. The limit, as t → +∞, is therefore a
Steiner tree or a standard cross (only when the ratio between the longer and shorter side of the rectangle
is equal to

√
3). In the latter case, the length of γ0 goes to zero and the curvature of the network remains

bounded.
Remark 14.8. Taking into account the discussion at the beginning of Section 12, one should actually
consider the flow of theta–eyeglasses and lens–island coupled, as a standard transition “switches” the
shape/topology of two networks from one to the other (like for the only two possible trees connecting
four points, as we said above), as in the Figures 12.1, 12.2 and 12.3).
Let us assume that

i) singular times are finite;

ii) there is no collapse of “boundary” curves;

iii) any “open” curve generated by a singularity, immediately disappears when we restart the flow;

then, at some time at least one region must collapse and

• in the case theta–eyeglasses, either we get a closed curve with possibly an angle that evolves
smoothly by curve shortening flow and shrinks in finite time to a “round” point of Ω, or the
network completely vanishes (we actually think this last scenario is not possible),

• in the case lens–island, we get a piecewise C1 curve with possibly a single angle connecting the
two end–points, which then evolves smoothly by curve shortening flow with fixed end–points
and converges, as t→ +∞, to the segment connecting such end–points.

We observe that in both cases, these are the last singular times of the flows (before the “vanishing” in
the first case).

15 Open problems

In this section we recall some problems that we find the most important among the several open ques-
tions scattered in the text.
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1. Definition of the flow.
Our “parametric” approach gives a good definition for the curvature flow of a network, compared
with the existing notions of generalized evolutions for singular objects, more general but allow-
ing weaker conclusions. The only unsatisfactory point is that we impose the presence of only triple
junctions and the 120 degrees angle condition. Thanks to them, we have the well–posedness of
the system of PDE’s (2.5), hence the short–time existence Theorems 3.6 and 3.25, in Sobolev and
Hölder spaces, respectively.
Nevertheless, one may wonder if these two conditions are automatically satisfied instantaneously,
for every positive time, by choosing a different suitable definition of the curvature flow of a net-
work.

2. Multiplicity–one conjecture.
Maybe the main open problem in the subject is the multiplicity–one conjecture, that is, whether
every blow–up limit shrinker is an embedded network with multiplicity one (see Problem 9.1).
Several of the arguments and results in this work depend on such conjecture, we mention its fun-
damental role in the description of the limit network at a singular time and, consequently, in the
possibility to implement the restarting procedure in order to continue the evolution, moreover, it
is also a key ingredient in showing that the curvature of a tree–like network is uniformly bounded
during the flow for all times and that one has only to deal with “standard transitions” at the sin-
gular times (see Section 9).
At the moment, we are able to prove the (strong) multiplicity–one conjecture only for networks
with at most two triple junctions (see Section 13).

3. Uniqueness of blow–up limits.
According to Proposition 7.20, the sequence of rescaled networks S̃x0,tj associated to a sequence
of rescaled times tj → +∞, converges to a degenerate regular shrinker S̃∞, only up to a subse-
quence. Analogously, in Proposition 7.17, the sequence of rescaled curvature flows Sµit converges
to a degenerate regular self–similarly shrinking flow S∞t , up to a subsequence.
One would like to prove that the limit degenerate regular shrinker S̃∞ (and/or the degenerate
regular self–similarly shrinking flow S∞t ) is actually independent of the chosen converging sub-
sequences, that is, the full family S̃x0,t C

1
loc–converges to S̃∞, as t → +∞. This is what we called

uniqueness assumption in Problem 7.25 and it is fundamental for the conclusions of Proposition 9.35
and Theorem 9.42, necessary to restart the flow when a region collapses at a singular time.
Some positive partial results were recently obtained in [90], in particular, uniqueness holds if the
blow–up limit shrinker is compact (some examples are given in the Appendix).

4. Behavior when a region collapses.
The singularities when a whole region collapses and then vanishes are the most difficult to deal
with, in particular because the curvature is unbounded. We are not able, at the moment, to give
a complete picture of the behavior of the evolving network, getting close to the singular time. A
couple of conjectures are stated in Problems 7.28 and 7.29, in particular, we expect that the non–
collapsing curves “exiting” from the collapsing regions (and converging to the concurring curves
at the new multi–point of the limit network) have locally uniformly bounded curvature during
the flow and that, anyway, such singularities are actually all Type I singularities, see Remark 7.21
(in other words, the curvature flow of embedded networks does not develop Type II singulari-
ties).
Anyway, hypothetically admitting the possibility of Type II singularities, one is led to consider
and try to analyze/classify also Type II blow–up limits (see [82, Section 7]), which are actually
“eternal” curvature flows of regular networks (for instance, the “translating” ones, see [82, Sec-
tion 5.2], that possibly coincide with them).

5. Classification of shrinkers.
Several questions (also of independent interest) arise in trying to classify the (embedded) regular
shrinkers. Such a classification is complete for shrinkers with at most two triple junctions [9–11],
or for the shrinkers with a single bounded region [11, 20, 21, 96], see the following figure.
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Figure 15.1: The regular shrinkers with a single bounded region.

A lot of numerical computations, partial results and conjectures can be found in [51]. We mention
the very natural question whether there exist regular shrinkers with more than five halflines.
Moreover, interesting stability/instability results were recently obtained in [19].

6. The set of singular times.
An important point to be understood, in order to define a curvature flow in a maximal time inter-
val, passing through singular times by means of the restarting procedure described in Section 11,
is whether the set of singular times is discrete or even finite (as it happens for symmetric net-
works with two triple junctions, see [88]), or if they can accumulate in some particular situation
(see Problem 12.1). In this latter case, at the moment we actually do not know how to continue
the flow.

7. Asymptotic convergence.
In the case of global existence in time of an “extended” curvature flow (see Section 12), we would
like to show the convergence of the evolving network, as t→ +∞, to a stationary network for the
length functional (Problem 12.12). At the moment, we are able to face this problem only under the
assumption that the structure of the network stops changing after some time, that is, there are no
singularities of the flow for large times, see [91].

154



Appendix – A regular shrinkers gallery (courtesy of Tom Ilmanen)

The following figures of regular shrinkers with their Gaussian density are based on numerical compu-
tations due to J. Hättenschweiler (see [51] where one can also find other positive and negative examples
and several conjectures) and T. Ilmanen. We remark that this is not an exhaustive list, only the shrinkers
with at most one bounded region are completely classified, by the work of Chen and Guo [21] (and ac-
tually they are the only ones in this gallery whose existence is rigorously proved). Moreover, all the
shrinkers shown below have at least one symmetry axis, we do not know of examples without any
symmetries at all.

No regions:

Line
Θ = 1

Triod
Θ = 1.5

1 region:

Circle
Θ =

√
2π/e ≈ 1.520

Spoon
Θ ≈ 1.699

Lens
Θ ≈ 1.789

Fish
Θ ≈ 2.026

3–ray star
Θ ≈ 2.031

Rocket
Θ = ?

4–ray star
Θ ≈ 2.295

5–ray star
Θ ≈ 2.606

2 regions:

Cisgeminate eye
Θ = ?

Cisgeminate 4–ray star
Θ = ?
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3 regions:

Mercedes–Benz
Θ ≈ 2.532

1–ray Mercedes–Benz
Θ ≈ 2.598

3–ray Mercedes–Benz
Θ ≈ 2.762

Cisgeminate 3–ray star
Θ = ?

4 regions:

3–leaf clover
Θ ≈ 3.064

2–ray 2–floc
Θ ≈ 3.249

5 regions:

4–leaf clover
Θ ≈ 3.234

2–ray 4–leaf clover
Θ ≈ 3.365

4–petal flower
Θ ≈ 3.474

6 regions:

5–leaf clover
Θ ≈ 3.455

3–floc
Θ ≈ 3.477

3–ray three–floc
Θ ≈ 3.517

5–petal flower
Θ ≈ 3.907
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9 regions:

9–floc
Θ ≈ 4.194

3–ray 9–floc
Θ ≈ 4.321

Non–embedded regular shrinkers:

Antispoon
Θ ≈ 2.365

Bowtie
Θ ≈ 2.503

Impossible regular shrinkers:

Conjecturally, by numerical evidence in [51], there are no regular shrinkers with these topological
shapes. The only one whose non–existence is rigorously proved is the first one, the Θ–shaped (dou-
ble cell) shrinker, in [11].
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