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Abstract

This is an expository paper on the theory of gradient flows, and in particular of those PDEs which
can be interpreted as gradient flows for the Wasserstein metric on the space of probability measures
(a distance induced by optimal transport). The starting point is the Euclidean theory, and then its
generalization to metric spaces, according to the work of Ambrosio, Gigli and Savaré. Then comes
an independent exposition of the Wasserstein theory, with a short introduction to the optimal transport
tools that are needed and to the notion of geodesic convexity, followed by a precise desciption of the
Jordan-Kinderleher-Otto scheme and a ketch of proof to obtain its convergence in the easiest cases.
A discussion of which equations are gradient flows PDEs and of numerical methods based on these
ideas is also provided. The paper ends with a new, theoretical, development, due to Ambrosio, Gigli,
Savaré, Kuwada and Ohta: the study of the heat flow in metric measure spaces.
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filippo.santambrogio@math.u-psud.fr, http://www.math.u-psud.fr/∼santambr

1



4 Gradient flows in the Wasserstein space 19
4.1 Preliminaries on Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 The Wasserstein distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Minimizing movement schemes in the Wasserstein space and evolution PDEs . . . . . . 29
4.4 How to prove convergence of the JKO scheme . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Geodesic convexity inW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Other gradient-flow PDEs and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Numerical methods from the JKO scheme . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 The heat flow in metric measure spaces 52
5.1 Dirichlet and Cheeger energies in metric measure spaces . . . . . . . . . . . . . . . . . 53
5.2 A well-posed gradient flow for the entropy . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Gradient flows comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 56

1 Introduction

Gradient flows, or steepest descent curves, are a very classical topic in evolution equations: take a
functional F defined on a vector space X, and, instead of looking at points x minizing F (which is related
to the statical equation ∇F(x) = 0), we look, given an initial point x0, for a curve starting at x0 and trying
to minimize F as fast as possible (in this case, we will solve equations of the form x′(t) = −∇F(x(t))).
As we speak of gradients (which are element of X, and not of X′ as the differential of F should be), it
is natural to impose that X is an Hilbert space (so as to identify it with its dual and produce a gradient
vector). In the finite-dimensional case, the above equation is very easy to deal with, but also the infinite-
dimensional case is not so exotic. Indeed, just think at the evolution equation ∂tu = ∆u, which is the
evolution variant of the statical Laplace equation −∆u = 0. In this way, the Heat equation is the gradient
flow, in the L2 Hilbert space, of the Dirichlet energy F(u) = 1

2

∫
|∇u|2, of which −∆u is the gradient in

the appropriate sense (more generally, one could consider equations of the form ∂tu = δF/δu, where this
notation stands for the first variation of F).

But this is somehow classical. . . The renovated interest for the notion of gradient flow arrived be-
tween the end of the 20th century and the beginning of the 21st, with the work of Jordan, Kinderleherer
and Otto ([53]) and then of Otto [77], who saw a gradient flow structure in some equations of the form
∂t% − ∇ · (%v) = 0, where the vector field v is given by v = ∇[δF/δ%]. This requires to use the space of
probabilities % on a given domain, and to endow it with a non-linear metric structure, derived from the
theory of optimal transport. This theory, initiated by Monge in the 18th century ([76]), then developed
by Kantorovich in the ’40s ([54]), is now well-established (many texts present it, such as [89, 90, 83])
and is intimately connected with PDEs of the form of the continuity equation ∂t% − ∇ · (%v) = 0.

The turning point for the theory of gradient flows and for the interest that researchers in PDEs de-
veloped for it was for sure the publication of [3]. This celebrated book established a whole theory on
the notion of gradient flow in metric spaces, which requires careful definitions because in the equation
x′(t) = −∇F(x(t)), neither the term x′ nor ∇F make any sense in this framework. For existence and -
mainly - uniqueness results, the notion of geodesic convexity (convexity of a functional F defined on a
metric space X, when restricted to the geodesic curves of X) plays an important role. Then the theory is
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particularized in the second half of [3] to the case of the metric space of probability measures endowed
with the so-called Wasserstein distance coming from optimal transport, whose differential structure is
widely studied in the book. In this framework, the geodesic convexity results that McCann obtained in
[71] are crucial to make a bridge from the general to the particular theory.

It is interesting to observe that, finally, the heat equation turns out to be a gradient flow in two different
senses: it is the gradient flow of the Dirichlet energy in the L2 space, but also of the entropy

∫
% log(%)

in the Wasserstein space. Both frameworks can be adapted from the particular case of probabilities on
a domain Ω ⊂ Rd to the more general case of metric measure spaces, and the question whether the two
flows coincide, or under which assumptions they do, is natural. It has been recently studied by Ambrosio,
Gigli, Savaré and new collaborators (Kuwada and Ohta) in a series of papers ([47, 49, 6]), and has been
the starting point of recent researches on the differential structure of metric measure spaces.

The present survey, which is an extended, updated, and English version of a Bourbaki seminar given
by the author in 2013 ([82]; the reader will also remark that most of the extensions are essentially taken
from [83]), aims at giving an overview of the whole theory. In particular, among the goals, there is at
the same time to introduce the tools for studying metric gradient flows, but also to see how to deal with
Wasserstein gradient flows without such a theory. This could be of interest for applied mathematicians,
who could be more involved in the specific PDEs that have this gradient flow form, without a desire
for full generality; for the same audience, a section has been added about numerical methods inspired
from the so-called JKO (Jordan-Kinderleherer-Otto) scheme, and one on a list of equations which fall
into these framework. De facto, more than half of the survey is devoted to the theory in the Wasserstein
spaces.

The paper is organized as follows: after this introduction, Section 2 exposes the theory in the Eu-
clidean case, and presents which are the good definitions which can be translated into a metric setting;
Section 3 is devoted to the general metric setting, as in the first half of [3], and is quite expository (only
the key ingredients to obtain the proofs are sketched); Section 4 is the longest one and develops the
Wasserstein setting: after an introduction to optimal transport and to the Wasserstein distances, there
in an informal presentation of the equations that can be obtained as gradient flows, a presentation of
the different tools to prove convergence of the discrete scheme (called JKO scheme) to a solution of
the corresponding equation, a discussion of the functionals which have geodesic convexity properties,
a short discussion about other equations and functionals which fit the framework and possible variants,
and finally a short section about numerics. Last but not least, Section 5 gives a very short presentation
of the fascinating topic of heat flows in arbitraty metric measure spaces, with reference to the interesting
implications that this has in the differential structure of these spaces.

This survey is meant to be suitable for readers with different backgrounds and interests. In particular,
the reader who is mainly interested in gradient flows in the Wasserstein space and in PDE applications
can decide to skip sections 3, part of 4.5 and 5, which deal on the contrary with key objects for the - very
lively at the moment - subject of analysis on metric measure spaces.

This is an expository paper where, of course, no new result is presented. Moreover, the presentation
is inspired from different sources (several articles and books by the author, in particular [83], even if
sections 3 and 5 are not detailed there, but also [82, 81]); yet, some topics are presented under a different
point of view, and/or for the first time. In particular, the reader will find new presentation ingredients in
some parts of sections 2.1 (some classical observations on gradient flows in Rn, which are presented via a
JKO-compatible approach, yet not usually detailed in optimal-transport-oriented texts), 4.5 (the explicit
role of geodesic convexity for uniqueness results), and 4.7 (the discussion about numerical methods).
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2 From Euclidean to Metric

2.1 Gradient flows in the Euclidean space

Before dealing with gradient flows in general metric spaces, the best way to clarify the situation is to
start from the easiest case, i.e. what happens in the Euclidean space Rn. Most of what we will say stays
true in an arbitrary Hilbert space, but we will stick to the finite-dimensional case for simplicity.

Here, given a function F : Rn → R, smooth enough, and a point x0 ∈ R
n, a gradient flow is just

defined as a curve x(t), with starting point at t = 0 given by x0, which moves by choosing at each instant
of time the direction which makes the function F decrease as much as possible. More precisely, we
consider the solution of the Cauchy Problemx′(t) = −∇F(x(t)) for t > 0,

x(0) = x0.
(2.1)

This is a standard Cauchy problem which has a unique solution if ∇F is Lipschitz continuous, i.e. if
F ∈ C1,1. We will see that existence and uniqueness can also hold without this strong assumption, thanks
to the variational structure of the equation.

A first interesting property is the following, concerning uniqueness and estimates. We will present
it in the case where F is convex, which means that it could be non-differentiable, but we can replace
the gradient with the subdifferential. More precisely, we can consider instead of (2.1), the following
differential inclusion: we look for an absolutely continuous curve x : [0,T ]→ Rn such thatx′(t) ∈ −∂F(x(t)) for a.e. t > 0,

x(0) = x0,
(2.2)

where ∂F(x) = {p ∈ Rn : F(y) ≥ F(x) + p · (y − x) for all y ∈ Rn}. We refer to [79] for all the
definitions and notions from convex analysis that could be needed in the following, and we recall that, if
F is differentiable at x, we have ∂F(x) = {∇F(x)} and that F is differentiable at x if and only if ∂F is a
singleton. Also note that ∂F(x) is always a convex set, and is not empty whenever F is real-valued (or x
is in the interior of {x : F(x) < +∞}), and we denote by ∂◦F(x) its element of minimal norm.

Proposition 2.1. Suppose that F is convex and let x1 and x2 be two solutions of (2.2). Then t 7→
|x1(t)− x2(t)| is non-increasing. In particular this gives uniqueness of the solution of the Cauchy problem.

Proof. Let us consider g(t) = 1
2 |x1(t) − x2(t)|2 and differentiate it. We have

g′(t) = (x1(t) − x2(t)) · (x′1(t) − x′2(t)).

Here we use a basic property of gradient of convex functions, i.e. that for every x1, x2, p1, p2 with
pi ∈ ∂F(xi), we have

(x1 − x2) · (p1 − p2) ≥ 0.

From these considerations, we obtain g′(t) ≤ 0 and g(t) ≤ g(0). This gives the first part of the claim.
Then, if we take two different solutions of the same Cauchy problem, we have x1(0) = x2(0), and

this implies x1(t) = x2(t) for any t > 0. �
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We can also stuy the case where F is semi-convex. We recall that F semi-convex means that it is
λ-convex for some λ ∈ R i.e. x 7→ F(x) − λ

2 |x|
2 is convex. For λ > 0 this is stronger than convexity,

and for λ < 0 it is weaker. Roughly speaking, λ-convexity corresponds to D2F ≥ λI. The reason of
the interest towards semi-convex functions lies in the fact that on the one hand, as the reader will see
throughout the exposition, the general theory of gradient flows applies very well to this class of functions
and that, on the other hand, they are general enough to cover many interesting cases. In particular, on a
bounded set, all smooth (C2 is enough) functions are λ-convex for a suitable λ < 0.

For λ-convex functions, we can define their subdifferential as follows

∂F(x) =

{
p ∈ Rn : F(y) ≥ F(x) + p · (y − x) +

λ

2
|y − x|2 for all y ∈ Rn

}
.

This definition is consistent with the above one whenever λ ≥ 0 (and guarantees ∂F(x) , ∅ for λ < 0).
Also, one can check that, setting F̃(x) = F(x) − λ

2 |x|
2, this definition coincides with {p ∈ Rn : p − λx ∈

∂F̃(x)}. Again, we define ∂◦F the element of minimal norm of ∂F.

Remark 2.1. From the same proof of Proposition 2.1, one can also deduce uniqueness and stability
estimates in the case where F is λ-convex. Indeed, in this case we obtain |x1(t)−x2(t)| ≤ |x1(0)−x2(0)|e−λt,

which also proves, if λ > 0, exponential convergence to the unique minimizer of F. The key point is that,
if F is λ-convex it is easy to prove that x1, x2, p1, p2 with pi ∈ ∂F(xi) provides

(x1 − x2) · (p1 − p2) ≥ λ|x1 − x2|
2.

This implies g′(t) ≤ −2λg(t) and allows to conclude, by Gronwall’s lemma, g(t) ≤ g(0)e−2λt. For the
exponential convergence, if λ > 0 then F is coercive and admits a minimizer, which is unique by strict
convexity. Let us call it x̄. Take a solution x(t) and compare it to the constant curve x̄, which is a solution
since 0 ∈ ∂F(x̄). Then we get |x1(t) − x̄| ≤ e−λt|x1(0) − x̄|.

Another well-known fact about the λ-convex case is the fact that the differential inclusion x′(t) ∈
−∂F(x(t)) actually becomes, a.e., an equality: x′(t) = −∂◦F(t). More precisely, we have the following.

Proposition 2.2. Suppose that F is λ-convex and let x be a solutions of (2.2). Then, for all the times
t0 such that both t 7→ x(t) and t 7→ F(x(t)) are differentiable at t = t0, the subdifferential ∂F(x(t0)) is
contained in a hyperplane orthogonal to x′(t0). In particular, we have x′(t) = −∂◦F(x(t)) for a.e. t.

Proof. Let t0 be as in the statement, and p ∈ ∂F(x(t0)). From the definition of subdifferential, for every t
we have

F(x(t)) ≥ F(x(t0)) + p · (x(t) − x(t0)) +
λ

2
|x(t) − x(t0)|2,

but this inequality becomes an equality for t = t0. Hence, the quantity

F(x(t)) − F(x(t0)) − p · (x(t) − x(t0)) −
λ

2
|x(t) − x(t0)|2

is minimal for t = t0 and, differentiating in t (which is possible by assumption), we get

d
dt

F(x(t))|t=t0 = p · x′(t0).
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Since this is true for every p ∈ ∂F(x(t0)), this shows that ∂F(x(t0)) is contained in a hyperplane of the
form {p : p · x′(t0) = const}.

Whenever x′(t0) belongs to ∂F(x(t0)) (which is true for a.e. t0), this shows that x′(t0) is the orthog-
onal projection of 0 onto ∂F(x(t0)) and onto the hyperplane which contains it, and hence its element of
minimal norm. This provides x′(t0) = −∂◦F(x(t0)) for a.e. t0, as the differentiability of x and of F ◦ x are
also true a.e., since x is supposed to be absolutely continuous and F is locally Lipschitz. �

Another interesting feature of those particular Cauchy problems which are gradient flows is their
discretization in time. Actually, one can fix a small time step parameter τ > 0 and look for a sequence of
points (xτk)k defined through the iterated scheme, called Minimizing Movement Scheme (see [35, 1]),

xτk+1 ∈ argminx F(x) +
|x − xτk |

2

2τ
. (2.3)

We can forget now the convexity assumption on F, which are not necessary for this part of the analysis.
Indeed, very mild assumptions on F (l.s.c. and some lower bounds, for instance F(x) ≥ C1 −C2|x|2) are
sufficient to guarantee that these problems admit a solution for small τ. The case where F is λ-convex is
covered by these assumptions, and also provides uniqueness of the minimizers. This is evident if λ > 0
since we have strict convexity for every τ, and if λ is negative the sum will be strictly convex for small τ.

We can interpret this sequence of points as the values of the curve x(t) at times t = 0, τ, 2τ, . . . , kτ, . . . .
It happens that the optimality conditions of the recursive minimization exactly give a connection between
these minimization problems and the equation, since we have

xτk+1 ∈ argmin F(x) +
|x − xτk |

2

2τ
⇒ ∇F(xτk+1) +

xτk+1 − xτk
τ

= 0,

i.e.
xτk+1 − xτk

τ
= −∇F(xτk+1).

This expression is exactly the discrete-time implicit Euler scheme for x′ = −∇F(x)! (note that in the
convex non-smooth case this becomes

xτk+1−xτk
τ ∈ −∂F(xτk+1)).

We recall that, given an ODE x′(t) = v(x(t)) (that we take autonomous for simplicity), with given
initial datum x(0) = x0, Euler schemes are time-discretizations where derivatives are replaced by finite
differences. We fix a time step τ > 0 and define a sequence xτk. The explicit scheme is given by

xτk+1 = xτk + τv(xτk), xτ0 = x0,

while the implicit scheme is given by

xτk+1 = xτk + τv(xτk+1), xτ0 = x0.

This means that xτk+1 is selected as a solution of an equation involving xτk, instead of being explicitly
computable from xτk. The explicit scheme is obviously easier to implement, but enjoys less stability and
qualitative properties than the implicit one. Suppose for instance v = −∇F: then the quantity F(x(t))
decreases in t in the continuous solution, which is also the case for the implicit scheme, but not for the
explicit one (which represents the iteration of the gradient method for the minimization of F). Note that
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the same can be done for evolution PDEs, and that solving the Heat equation ∂t% = ∆%t by an explicit
scheme is very dangerous: at every step, %τk+1 would have two degrees of regularity less than %τk, since it
would be obtained through %τk+1 = %τk − τ∆%

τ
k.

It is possible to prove that, for τ→ 0, the sequence we found, suitably interpolated, converges to the
solution of Problem (2.2). We give here below the details of this argument, as it will be the basis of the
argument that we will use in Section 4.

First, we define two different interpolations of the points xτk. Let us define two curves xτ, x̃τ : [0,T ]→
Rn as follows: first we define

vτk+1 :=
xτk+1 − xτk

τ
,

then we set
xτ(t) = xτk+1 x̃τ(t) = xτk + (t − kτ)vτk+1 for t ∈]kτ, (k + 1)τ].

Also set
vτ(t) = vτk+1 for t ∈]kτ, (k + 1)τ].

It is easy to see that x̃τ is a continuous curve, piecewise affine (hence absolutely continuous), satisfying
(x̃τ)′ = vτ. On the contrary, xτ is not continuous, but satisfies by construction vτ(t) ∈ −∂F(xτ(t)).

The iterated minimization scheme defining xτk+1 provides the estimate

F(xτk+1) +
|xτk+1 − xτk |

2

2τ
≤ F(xτk), (2.4)

obtained comparing the optimal point xτk+1 to the previous one. If F(x0) < +∞ and inf F > −∞, summing
over k we get ∑̀

k=0

|xτk+1 − xτk |
2

2τ
≤

(
F(xτ0) − F(xτ`+1)

)
≤ C. (2.5)

This is valid for every `, and we can arrive up to ` = bT/τc. Now, note that

|xτk+1 − xτk |
2

2τ
= τ

(
|xτk+1 − xτk |

2τ

)2

= τ|vτk |
2 =

∫ (k+1)τ

kτ
|(x̃τ)′(t)|2dt.

This means that we have ∫ T

0

1
2
|(x̃τ)′(t)|2dt ≤ C (2.6)

and hence x̃τ is bounded in H1 and vτ in L2. The injection H1 ⊂ C0,1/2 provides an equicontinuity bound
on x̃τ of the form

|x̃τ(t) − x̃τ(s)| ≤ C|t − s|1/2. (2.7)

This also implies
|x̃τ(t) − xτ(t)| ≤ Cτ1/2, (2.8)

since xτ(t) = x̃τ(s) for a certain s = kτwith |s−t| ≤ τ. Finally, we have proven the necessary compactness
to obtain the following:
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Proposition 2.3. Let x̃τ, xτ and vτ be constructed as above using the minimizing movement scheme.
Suppose F(x0) < +∞ and inf F > −∞. Then, up to a subsequence τ j → 0 (still denoted by τ), both x̃τ

and xτ converge uniformly to a same curve x ∈ H1, and vτ weakly converges in L2 to a vector function
v, such that x′ = v and

1. if F is λ-convex, we have v(t) ∈ −∂F(x(t)) for a.e. t, i.e. x is a solution of (2.2);

2. if F is C1, we have v(t) = −∇F(x(t)) for all t, i.e. x is a solution of (2.1).

Proof. Thanks to the estimates (2.6) and (2.7) and the fact that the initial point x̃τ(0) is fixed, we can
apply Ascoli-Arzelà’s theorem to x̃τ and get a uniformly converging subsequence. The estimate (2.8)
implies that, on the same subsequence, xτ also converges uniformly to the same limit, that we will call
x = [0,T ]→ Rn. Then, vτ = (x̃τ)′ and (2.6) allow to guarantee, up to an extra subsequence extraction, the
weak convergence vτ ⇀ v in L2. The condition x′ = v is automatical as a consequence of distributional
convergence.

To prove 1), we will fix a point y ∈ Rn and write

F(y) ≥ F(xτ(t)) + vτ(t) · (y − xτ(t)) +
λ

2
|y − xτ(t)|2.

We then multiply by a positive measurable function a : [0,T ]→ R+ and integrate:∫ T

0
a(t)

(
F(y) − F(xτ(t)) − vτ(t) · (y − xτ(t)) −

λ

2
|y − xτ(t)|2

)
dt ≥ 0.

We can pass to the limit as τ → 0, using the uniform (hence L2 strong) convergence xτ → x and the
weak convergence vτ ⇀ v. In terms of F, we just need its lower semi-continuity. This provides∫ T

0
a(t)

(
F(y) − F(x(t)) − v(t) · (y − x(t)) −

λ

2
|y − x(t)|2

)
dt ≥ 0.

From the arbitrariness of a, the inequality

F(y) ≥ F(x(t)) + v(t) · (y − x(t)) +
λ

2
|y − x(t)|2

is true for a.e. t (for fixed y). Using y in a dense countable set in the interior of {F < +∞} (where F is
continuous), we get v(t) ∈ ∂F(x(t)).

To prove 2), the situation is easier. Indeed we have

−∇F(xτ(t)) = vτ(t) = (x̃τ)′(t).

The first term in the equality uniformly converges, as a function of t, (since ∇F is continuous and xτ lives
in a compact set) to −∇F(x), the second weakly converges to v and the third to x′. This proves the claim,
and the equality is now true for every t as the function t 7→ −∇F(x(t)) is uniformly continuous. �

In the above result, we only proved convergence of the curves xτ to the limit curve x, solution of
x′ = −∇F(x) (or −x′ ∈ ∂F(x)), but we gave no quantitative order of convergence, and we will not study
such an issue in the rest of the survey neither. On the contrary, the book [3] which will be the basis for
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the metric case, also provides explicit estimates; these estimates are usually of order τ. An interesting
observation, in the Euclidean case, is that if the sequence xτk is defined by

xτk+1 ∈ argminx 2F
( x + xτk

2

)
+
|x − xτk |

2

2τ
,

then we have
xτk+1 − xτk

τ
= −∇F

( x + xτk
2

)
,

and the convergence is of order τ2. This has been used in the Wasserstein case1 (see Section 4 and in
particular Section 4.7) in [60].

2.2 An introduction to the metric setting

The iterated minimization scheme that we introduced above has another interesting feature: it even
suggests how to define solutions for functions F which are only l.s.c., with no gradient at all!

Even more, a huge advantage of this discretized formulation is also that it can easily be adapted to
metric spaces. Actually, if one has a metric space (X, d) and a l.s.c. function F : X → R ∪ {+∞} (under
suitable compactness assumptions to guarantee existence of the minimum), one can define

xτk+1 ∈ argminx F(x) +
d(x, xτk)2

2τ
(2.9)

and study the limit as τ→ 0. Then, we use the piecewise constant interpolation

xτ(t) := xτk for every t ∈](k − 1)τ, kτ] (2.10)

and study the limit of xτ as τ→ 0.
De Giorgi, in [35], defined what he called Generalized Minimizing Movements2:

Definition 2.1. A curve x : [0,T ] → X is called Generalized Minimizing Movements (GMM) if there
exists a sequence of time steps τ j → 0 such that the sequence of curves xτ j defined in (2.10) using the
iterated solutions of (2.9) uniformly converges to x in [0,T ].

The compactness results in the space of curves guaranteeing the existence of GMM are also a conse-
quence of an Hölder estimate that we already saw in the Euclidean case. Yet, in the general case, some
arrangements are needed, as we cannot use the piecewise affine interpolation. We will see later that, in
case the segments may be replaced by geodesics, a similar estimate can be obtained. Yet, we can also
obtain a Hölder-like estimate from the piecewise constant interpolation.

We start from

F(xτk+1) +
d(xτk+1, x

τ
k)2

2τ
≤ F(xτk), (2.11)

1The attentive reader can observe that, setting y := (x + xτk)/2, this minimization problem becomes miny 2F(y) + 2|y− xτk |
2/τ.

Yet, when acting on a metric space, or simply on a manifold or a bounded domain, there is an extra constraint on y: the point
y must be the middle point of a geodesic between xτk and a point x (on a sphere, for instance, this means that if xτk is the North
Pole, then y must lie in the northern emisphere).

2We prefer not to make any distinction here between Generalized Minimizing Movements and Minimizing Movements.
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and
l∑

k=0

d(xτk+1, x
τ
k)2 ≤ 2τ

(
F(xτ0) − F(xτl+1)

)
≤ Cτ.

The Cauchy-Schwartz inequality gives, for t < s, t ∈ [kτ, (k + 1)τ[ and s ∈ [lτ, (l + 1)τ[ (hence |l − k| ≤
|t−s|
τ + 1),

d(xτ(t), xτ(s)) ≤
l∑

k=0

d(xτk+1, x
τ
k) ≤

 l∑
k=0

d(xτk+1, x
τ
k)2


1/2(
|t − s|
τ

+1
)1/2
≤ C

(
|t − s|1/2+

√
τ
)
.

This provides a Hölder bound on the curves xτ (with a negligible error of order
√
τ which disappears at

the limit τ→ 0), and allows to extract a converging subsequence.
Anyway, if we add some structure to the metric space (X, d), a more similar analysis to the Euclidean

case can be performed. This is what happens when we suppose that (X, d) is a geodesic space. This
requires a short discussion about curves and geodesics in metric spaces.

Curves and geodesics in metric spaces. We recall that a curve ω is a continuous function defined
on a interval, say [0, 1], and valued in a metric space (X, d). As it is a map between metric spaces, it is
meaningful to say whether it is Lipschitz or not, but its speed ω′(t) has no meaning, unless X is a vector
space. Surprisingly, it is possible to give a meaning to the modulus of the velocity, |ω′|(t).

Definition 2.2. If ω : [0, 1] → X is a curve valued in the metric space (X, d) we define the metric
derivative of ω at time t, denoted by |ω′|(t) through

|ω′|(t) := lim
h→0

d(ω(t + h), ω(t))
|h|

,

provided this limit exists.

In the spirit of Rademacher Theorem, it is possible to prove (see [9]) that, if ω : [0, 1] → X is
Lipschitz continuous, then the metric derivative |ω′|(t) exists for a.e. t. Moreover we have, for t0 < t1,

d(ω(t0), ω(t1)) ≤
∫ t1

t0
|ω′|(s) ds.

The same is also true for more general curves, not only Lipschitz continuous.

Definition 2.3. A curve ω : [0, 1] → X is said to be absolutely continuous whenever there exists g ∈
L1([0, 1]) such that d(ω(t0), ω(t1)) ≤

∫ t1
t0

g(s) ds for every t0 < t1. The set of absolutely continuous curves
defined on [0, 1] and valued in X is denoted by AC(X).

It is well-known that every absolutely continuous curve can be reparametrized in time (through a
monotone-increasing reparametrization) and become Lipschitz continuous. The existence of the metric
derivative for a.e. t is also true for ω ∈ AC(X), via this reparametrization.

Given a continuous curve, we can also define its length, and the notion of geodesic curves.

Definition 2.4. For a curve ω : [0, 1]→ X, let us define

Length(ω) := sup

n−1∑
k=0

d(ω(tk), ω(tk+1)) : n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

 .
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It is easy to see that all curves ω ∈ AC(X) satisfy Length(ω) ≤
∫ 1

0 g(t)dt < +∞. Also, we can prove
that, for any curve ω ∈ AC(X), we have

Length(ω) =

∫ 1

0
|ω′|(t)dt.

We collect now some more definitions.

Definition 2.5. A curve ω : [0, 1] → X is said to be a geodesic between x0 and x1 ∈ X if ω(0) = x0,
ω(1) = x1 and Length(ω) = min{Length(ω̃) : ω̃(0) = x0, ω̃(1) = x1}.

A space (X, d) is said to be a length space if for every x and y we have

d(x, y) = inf{Length(ω) : ω ∈ AC(X), ω(0) = x, ω(1) = y}.

A space (X, d) is said to be a geodesic space if for every x and y we have

d(x, y) = min{Length(ω) : ω ∈ AC(X), ω(0) = x, ω(1) = y},

i.e. if it is a length space and there exist geodesics between arbitrary points.

In a length space, a curve ω : [t0, t1] → X is said to be a constant-speed geodesic between ω(0) and
ω(1) ∈ X if it satisfies

d(ω(t), ω(s)) =
|t − s|
t1 − t0

d(ω(t0), ω(t1)) for all t, s ∈ [t0, t1].

It is easy to check that a curve with this property is automatically a geodesic, and that the following three
facts are equivalent (for arbitrary p > 1)

1. ω is a constant-speed geodesic defined on [t0, t1] and joining x0 and x1,

2. ω ∈ AC(X) and |ω′|(t) =
d(ω(t0),ω(t1))

t1−t0
a.e.,

3. ω solves min
{∫ t1

t0
|ω′|(t)pdt : ω(t0) = x0, ω(t1) = x1

}
.

We can now come back to the interpolation of the points obtained through the Minimizing Movement
scheme (2.9) and note that, if (X, d) is a geodesic space, then the piecewise affine interpolation that we
used in the Euclidean space may be helpfully replaced via a piecewise geodesic interpolation. This
means defining a curve xτ : [0,T ] → X such that xτ(kτ) = xτk and such that xτ restricted to any interval
[kτ, (k+1)τ] is a constant-speed geodesic with speed equal to d(xτk, x

τ
k+1)/τ. Then, the same computations

as in the Euclidean case allow to prove an H1 bound on the curves xτ (i.e. an L2 bound on the metric
derivatives |(xτ)′|) and prove equicontinuity.

The next question is how to characterize the limit curve obtained when τ→ 0, and in particular how
to express the fact that it is a gradient flow of the function F. Of course, one cannot try to prove the
equality x′ = −∇F(x), just because neither the left-hand side nor the right-hand side have a meaning in a
metric space!

If the space X, the distance d, and the functional F are explicitly known, in some cases it is possible
to pass to the limit the optimality conditions of each optimization problem in the discretized scheme, and
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characterize the limit curves (or the limit curve) x(t). It will be possible to do so in the framework of
probability measures, as it will be discussed in Section 4, but not in general. Indeed, without a little bit of
(differential) structure on the space X, it is essentially impossible to do so. Hence, if we want to develop
a general theory for gradient flows in metric spaces, finer tools are needed. In particular, we need to
characterize the solutions of x′ = −∇F(x) (or x′ ∈ −∂F(x)) by only using metric quantities (in particular,
avoiding derivatives, gradients, and more generally vectors). The book by Ambrosio-Gigli-Savaré [3],
and in particular its first part (the second being devoted to the space of probability measures) exactly
aims at doing so.

Hence, what we do here is to present alternative characterizations of gradient flows in the smooth
Euclidean case, which can be used as a definition of gradient flow in the metric case, since all the
quantities which are involved have their metric counterpart.

The first observation is the following: thanks to the Young inequality, for every curve we have

F(x(s)) − F(x(t)) =

∫ t

s
−∇F(x(r)) · x′(r) dr ≤

∫ t

s

(
1
2
|x′(r)|2 +

1
2
|∇F(x(r))|2

)
dr.

Here, this inequality is an equality if and only if x′(r) = −∇F(x(r)) for a.e. r. Hence, the condition,
called EDE (Energy Dissipation Equality)

F(x(s)) − F(x(t)) =

∫ t

s

(
1
2
|x′(r)|2 +

1
2
|∇F(x(r))|2

)
dr, for all s < t

(or even the simple inequality F(x(s)) − F(x(t)) ≥
∫ t

s

(
1
2 |x
′(r)|2 + 1

2 |∇F(x(r))|2
)

dr) is equivalent to x′ =

−∇F(x) a.e., and could be taken as a definition of gradient flow.
In the general theory of Gradient Flows ([3]) in metric spaces, another characterization, different

from the EDE, is proposed in order to cope with uniqueness and stability results. It is based on the
following observation: if F : Rd → R is convex, then the inequality

F(y) ≥ F(x) + p · (y − x) for all y ∈ Rd

characterizes (by definition) the vectors p ∈ ∂F(x) and, if F ∈ C1, it is only satisfied for p = ∇F(x).
Analogously, if F is λ-convex, the inequality that characterizes the gradient is

F(y) ≥ F(x) +
λ

2
|x − y|2 + p · (y − x) for all y ∈ Rd.

We can pick a curve x(t) and a point y and compute

d
dt

1
2
|x(t) − y|2 = (y − x(t)) · (−x′(t)).

Consequently, imposing

d
dt

1
2
|x(t) − y|2 ≤ F(y) − F(x(t)) −

λ

2
|x(t) − y|2,

for all y, will be equivalent to −x′(t) ∈ −∂F(x(t)). This will provide a second characterization (called
EVI, Evolution Variational Inequality) of gradient flows in a metric environment. Indeed, all the terms
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appearing in the above inequality have a metric counterpart (only squared distances and derivatives w.r.t.
time appear). Even if we often forget the dependance on λ, it should be noted that the condition EVI
should actually be written as EVIλ, since it involves a parameter λ, which is a priori arbitrary. Actually, λ-
convexity of F is not necessary to define the EVIλ property, but it will be necessary in order to guarantee
the existence of curves which satisfy such a condition. The notion of λ-convexity will hence be crucial
also in metric spaces, where it will be rather “λ-geodesic-convexity”.

The role of the EVI condition in the uniqueness and stability of gradient flows is quite easy to guess.
Take two curves, that we call x(t) and y(s), and compute

d
dt

1
2

d(x(t), y(s))2 ≤ F(y(s)) − F(x(t)) −
λ

2
d(x(t), y(s))2, (2.12)

d
ds

1
2

d(x(t), y(s))2 ≤ F(x(t)) − F(y(s)) −
λ

2
d(x(t), y(s))2. (2.13)

If one wants to estimate E(t) = 1
2 d(x(t), y(t))2, summing up the two above inequalities, after a chain-rule

argument for the composition of the function of two variables (t, s) 7→ 1
2 d(x(t), y(s))2 and of the curve

t 7→ (t, t), gives
d
dt

E(t) ≤ −2λE(t).

By Gronwall Lemma, this provides uniqueness (when x(0) = y(0)) and stability.

3 The general theory in metric spaces

3.1 Preliminaries

In order to sketch the general theory in metric spaces, first we need to give (or recall) general definitions
for the three main objects that we need in the EDE and EVI properties, characterizing gradient flows: the
notion of speed of a curve, that of slope of a function (somehow the modulus of its gradient) and that of
(geodesic) convexity.

Metric derivative. We already introduced in the previous section the notion of metric derivative:
given a curve x : [0,T ] → X valued in a metric space, we can define, instead of the velocity x′(t) as a
vector (i.e, with its direction, as we would do in a vector space), the speed (i.e. the modulus, or norm, of
x′(t)) as follows:

|x′|(t) := lim
h→0

d(x(t), x(t + h))
|h|

,

provided the limit exists.This is the notion of speed that we will use in metric spaces.
Slope and modulus of the gradient. Many definitions of the modulus of the gradient of a function

F defined over a metric space are possible. First, we call upper gradient every function g : X → R such
that, for every Lipschitz curve x, we have

|F(x(0)) − F(x(1))| ≤
∫ 1

0
g(x(t))|x′|(t)dt.

If F is Lipschitz continuous, a possible choice is the local Lipschitz constant

|∇F|(x) := lim sup
y→x

|F(x) − F(y)|
d(x, y)

; (3.1)
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another is the descending slope (we will often say just slope), which is a notion more adapted to the
minimization of a function than to its maximization, and hence reasonable for lower semi-continuous
functions:

|∇−F|(x) := lim sup
y→x

[F(x) − F(y)]+

d(x, y)

(note that the slope vanishes at every local minimum point). In general, it is not true that the slope is an
upper gradient, but we will give conditions to guarantee that it is. Later on (Section 5) we will see how
to define a Sobolev space H1 on a (measure) metric space, by using suitable relaxations of the modulus
of the gradient of F.

Geodesic convexity. The third notion to be dealt with is that of convexity. This can only be done in
a geodesic metric space. On such a space, we can say that a function is geodesically convex whenever
it is convex along geodesics. More precisely, we require that for every pair (x(0), x(1)) there exists3 a
geodesic x with constant speed connecting these two points and such that

F(x(t)) ≤ (1 − t)F(x(0)) + tF(x(1)).

We can also define λ-convex functions as those which satisfy a modified version of the above inequality:

F(x(t)) ≤ (1 − t)F(x(0)) + tF(x(1)) − λ
t(1 − t)

2
d2(x(0), x(1)). (3.2)

3.2 Existence of a gradient flow

Once fixed these basic ingredients, we can now move on to the notion of gradient flow. A starting
approach is, again, the sequential minimization along a discrete scheme, for a fixed time step τ > 0,
and then pass to the limit. First, we would like to see in which framework this procedure is well-posed.
Let us suppose that the space X and the function F are such that every sub-level set {F ≤ c} is compact
in X, either for the topology induced by the distance d, or for a weaker topology, such that d is lower
semi-continuous w.r.t. it; F is required to be l.s.c. in the same topology. This is the minimal framework
to guarantee existence of the minimizers at each step, and to get estimates as in (2.11) providing the
existence of a limit curve. It is by the way a quite general situation, as we can see in the case where X is
a reflexive Banach space and the distance d is the one induced by the norm: in this case there is no need
to restrict to the (very severe) assumption that F is strongly l.s.c., but the weak topology allows to deal
with a much wider situation.

We can easily understand that, even if the estimate (2.11) is enough to provide compactness, and thus
the existence of a GMM, it will never be enough to characterize the limit curve (indeed, it is satisfied by
any discrete evolution where xτk+1 gives a better value than xτk, without any need for optimality). Hence,
we will never obtain either of the two formulations - EDE or EVI - of metric gradient flows.

In order to improve the result, we should exploit how much xτk+1 is better than xτk. An idea due to
De Giorgi allows to obtain the desired result, via a “variational interpolation” between the points xτk and

3Warning: this definition is not equivalent to true convexity along the geodesic, since we only compare intermediate instants
t to 0 and 1, and not to other interemediate instants; however, in case of uniqueness of goedesics, or if we required the same
condition to be true for all geodesics, then we would recover the same condition. Also, let us note that we will only need the
existence of geodesics connecting pairs of points where F < +∞.
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xτk+1. In order to do so, once we fix xτk, for every θ ∈]0, 1], we consider the problem

min
x

F(x) +
d2(x, xτk)

2θτ

and call x(θ) any minimizer for this problem, and ϕ(θ) the minimal value. It’s clear that, for θ → 0+,
we have x(θ) → xτk and ϕ(θ) → F(xτk), and that, for θ = 1, we get back to the original problem with
minimizer xτk+1. Moreover, the function ϕ is non-increasing and hence a.e. differentiable (actually, we
can even prove that it is locally semiconcave). Its derivative ϕ′(θ) is given by the derivative of the

function θ 7→ F(x) +
d2(x,xτk)

2θτ , computed at the optimal point x = x(θ) (the existence of ϕ′(θ) implies that
this derivative is the same at every minimal point x(θ)). Hence we have

ϕ′(θ) = −
d2(x(θ), xτk)

2θ2τ
,

which means, by the way, that d(x(θ), xτk)2 does not depend on the minimizer x(θ) for all θ such that ϕ′(θ)
exists. Moreover, the optimality condition for the minimization problem with θ > 0 easily show that

|∇−F|(x(θ)) ≤
d(x(θ), xτk)

θτ
.

This can be seen if we consider the minimization of an arbitrary function x 7→ F(x) + cd2(x, x̄), for fixed
c > 0 and x̄, and we consider a competitor y. If x is optimal we have F(y) + cd2(y, x̄) ≥ F(x) + cd2(x, x̄),
which implies

F(x)−F(y) ≤ c
(
d2(y, x̄) − d2(x, x̄)

)
= c (d(y, x̄) + d(x, x̄)) (d(y, x̄) − d(x, x̄)) ≤ c (d(y, x̄) + d(x, x̄)) d(y, x).

We divide by d(y, x), take the positive part and then the lim sup as y→ x, and we get |∇−F|(x) ≤ 2cd(x, x̄).
We now come back to the function ϕ and use

ϕ(0) − ϕ(1) ≥ −
∫ 1

0
ϕ′(θ) dθ

(the inequality is due to the possible singular part of the derivative for monotone functions; actually, we
can prove that it is an equality by using the local semiconcave behavior, but this is not needed in the
following), together with the inequality

−ϕ′(θ) =
d(x(θ), xτk)2

2θ2τ
≥
τ

2
|∇−F(x(θ))|2

that we just proved. Hence, we get an improved version of (2.11):

F(xτk+1) +
d(xτk+1, x

τ
k)2

2τ
≤ F(xτk) −

τ

2

∫ 1

0
|∇−F(x(θ))|2dθ.

If we sum up for k = 0, 1, 2, . . . and then take the limit τ → 0, we can prove, for every GMM x, the
inequality

F(x(t)) +
1
2

∫ t

0
|x′|(r)2dr +

1
2

∫ t

0
|∇−F(x(r))|2dr ≤ F(x(0)), (3.3)
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under some suitable assumptions that we must select. In particular, we need lower-semicontinuity of F
in order to handle the term F(xτk+1) (which will become F(x(t)) at the limit), but we also need lower-
semicontinuity of the slope |∇−F| in order to handle the corresponding term.

This inequality does not exactly correspond to EDE: on the one hand we have an inequality, and
on the other we just compare instants t and 0 instead of t and s. If we want equality for every pair
(t, s), we need to require the slope to be an upper gradient. Indeed, in this case, we have the inequality
F(x(0)) − F(x(t)) ≤

∫ t
0 |∇

−F(x(r))||x′|(r)dr and, starting from the usual inequalities, we find that (3.3) is
actually an equality. This allows to subtract the equalities for s and t, and get, for s < t:

F(x(t)) +
1
2

∫ t

s
|x′|(r)2dr +

1
2

∫ t

s
|∇−F(x(r))|2dr = F(x(s)).

Magically, it happens that the assumption that F is λ-geodesically convex simplifies everything.
Indeed, we have two good points: the slope is automatically l.s.c., and it is automatically an upper
gradient. These results are proven in [3, 2]. We just give here the main idea to prove both. This idea
is based on a pointwise representation of the slope as a sup instead of a lim sup: if F is λ-geodesically
convex, then we have

|∇−F|(x) = sup
y,x

[
F(x) − F(y)

d(x, y)
+
λ

2
d(x, y)

]
+

. (3.4)

In order to check this, we just need to add a term λ
2 d(x, y) inside the positive part of the definition of

|∇−F|(x), which does not affect the limit as y → x and shows that |∇−F|(x) is smaller than this sup.
The opposite inequality is proven by fixing a point y, connecting it to x through a geodesic x(t), and
computing the limit along this curve.

This representation as a sup allows to prove semicontinuity of the slope 4. It is also possible (see [2],
for instance) to prove that the slope is an upper gradient.

Let us insist anyway on the fact that the λ-convexity assumption is not natural nor crucial to prove the
existence of a gradient flow. On the one hand, functions smooth enough could satisfy the assumptions
on the semi-continuity of F and of |∇−F| and the fact that |∇−F| is an upper gradient independently of
convexity; on the other hand the discrete scheme already provides a method, well-posed under much
weaker assumptions, to find a limit curve. If the space and the functional allow for it (as it will be the
case in the next section), we can hope to characterize this limit curve as the solution of an equation (it
will be a PDE in Section 4), without passing through the general theory and the EDE condition.

3.3 Uniqueness and contractivity

On the contrary, if we think at the uniqueness proof that we gave in the Euclidean case, it seems that
some sort of convexity should be the good assumption in order to prove uniqueness. Here we will only
give the main lines of the uniqueness theory in the metric framework: the key point is to use the EVI
condition instead of the EDE.

The situation concerning these two different notions of gradient flows (EVI and EDE) in abstract
metric spaces has been clarified by Savaré (in an unpublished note, but the proof can also be found in
[2]), who showed that

4Warning: we get here semi-continuity w.r.t. the topology induced by the distance d, which only allows to handle the case
where the set {F ≤ c} are d-compacts.
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• All curves which are gradient flows in the EVI sense also satisfy the EDE condition.

• The EDE condition is not in general enough to guarantee uniqueness of the gradient flow. A simple
example: take X = R2 with the `∞ distance

d((x1, x2), (y1, y2)) = |x1 − y1| ∨ |x2 − y2|,

and take F(x1, x2) = x1; we can check that any curve (x1(t), x2(t)) with x′1(t) = −1 and |x′2(t)| ≤ 1
satisfies EDE.

• On the other hand, existence of a gradient flow in the EDE sense is quite easy to get, and provable
under very mild assumption, as we sketched in Section 3.2.

• The EVI condition is in general too strong in order to get existence (in the example above of the
`∞ norm, no EVI gradient flow would exist), but always guarantees uniqueness and stability (w.r.t.
initial data).

Also, the existence of EVI gradient flows is itself very restricting on the function F: indeed, it is
proven in [34] that, if F is such that from every starting point x0 there exists an EVIλ gradient flow, then
F is necessarily λ-geodesically-convex.

We provide here an idea of the proof of the contractivity (and hence of the uniqueness) of the EVI
gradient flows.

Proposition 3.1. If two curves x, y : [0,T ]→ X satisfy the EVI condition, then we have

d
dt

d(x(t), y(t))2 ≤ −2λd(x(t), y(t))2

and d(x(t), y(t)) ≤ e−λtd(x(0), y(0)).

The second part of the statement is an easy consequence of the first one, by Gronwall Lemma. The
first is (formally) obtained by differentiating t 7→ d(x(t), y(t0))2 at t = t0, then s 7→ d(x(t0), y(s))2 at
s = t0.The EVI condition allows to write

d
dt

d(x(t), y(t0))2
|t=t0 ≤ −λd(x(t0), y(t0))2 + 2F(y(t0)) − 2F(x(t0))

d
ds

d(x(t0), y(s))2
|s=t0 ≤ −λd(x(t0), y(t0))2 + 2F(x(t0)) − 2F(y(t0))

and hence, summing up, and playing with the chain rule for derivatives, we get

d
dt

d(x(t), y(t))2 ≤ −2λd(x(t), y(t))2.

If we want a satisfying theory for gradient flows which includes uniqueness, we just need to prove the
existence of curves which satisfy the EVI condition, accepting that this will probably require additional
assumptions. This can still be done via the discrete scheme, adding a compatibility hypothesis between
the function F and the distance d, a condition which involves some sort of convexity. We do not enter the
details of the proof, for which we refer to [3], where the convergence to an EVI gradient flow is proven,
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with explicit error estimates. These a priori estimates allow to prove that we have a Cauchy sequence,
and then allow to get rid of the compactness part of the proof (by the way, we could even avoid using
compactness so as to prove existence of a minimizer at every time step, using almost-minimizers and the
in the Ekeland’s variational principle [38]). Here, we will just present this extra convexity assumption,
needed for the existence of EVI gradient flows developed in [3].

This assumption, that we will call C2G2 (Compatible Convexity along Generalized Geodesics) is the
following: suppose that, for every pair (x0, x1) and every y ∈ X, there is a curve x(t) connecting x(0) = x0
to x(1) = x1, such that

F(x(t)) ≤ (1 − t)F(x0) + tF(x1) − λ
t(1 − t)

2
d2(x0, x1),

d2(x(t), y) ≤ (1 − t)d2(x0, y) + td2(x1, y) − t(1 − t)d2(x0, x1).

In other words, we require λ-convexity of the function F, but also the 2-convexity of the function x 7→
d2(x, y), along a same curve which is not necessarily the geodesic. This second condition is automatically
satisfied, by using the geodesic itself, in the Euclidean space (and in every Hilbert space), since the
function x 7→ |x − y|2 is quadratic, and its Hessian matrix is 2I at every point. We can also see that it is
satisfied in a normed space if and only if the norm is induced by a scalar product. It has been recently
pointed out by Gigli that the sharp condition on the space X in order to guarantee existence of EVI
gradient flows is that X should be infinitesimally Hilbertian (this will be made precise in Section 5).

Here, we just observe that C2G2 implies (λ + 1
τ )-convexity, along those curves, sometimes called

generalized geodesics (consider that these curves also depend on a third point, sort of a base point,
typically different from the two points that should be connected), of the functional that we minimize at
each time step in the minimizing movement scheme. This provides uniqueness of the minimizer as soon
as τ is small enough, and allows to perform the desired estimates.

Also, the choice of this C2G2 condition, which is a technical condition whose role is only to prove the
existence of an EVI gradient flow, has been done in view of the applications to the case of the Wasserstein
spaces, that wil be the object of the next section. Indeed, in these spaces the squared distance is not in
general 2-convex along geodesics, but we can find some adapted curves on which it is 2-convex, and
many functionals F stay convex on these curves.

We finish this section by mentioning a recent extension to some non-λ-convex functionals. The
starting point is the fact that the very use of Gronwall’s lemma to prove uniqueness can be modified
by allowing for a weaker condition. Indeed, it is well-known that, whenever a function ω satisfies an
Osgood condition

∫ 1
0

1
ω(s) ds = +∞, then E′ ≤ ω(E) together with E(0) = 0 implies E(t) = 0 for t > 0.

This suggests that one could define a variant of the EVI definition for functions which are not λ−convex,
but almost, and this is the theory developed in [33]. Such a paper studies the case where F satisfies some
sort of ω-convexity for a “modulus of convexity” ω. More precisely, this means

F(xt) ≤ (1 − t)F(0) + tF(x1) −
|λ|

2

[
(1 − t)ω(t2d(x0, x1)2) + tω((1 − t)2d(x0, x1)2)

]
,

on generalized geodesics xt (note that in the case ω(s) = s we come back to (3.2)). The function ω is
required to satisfy an Osgood condition (and some other technical conditions). Then, the EVI condition
is replaced by

d
dt

1
2

d(x(t), y)2 ≤ F(y) − F(x(t)) +
|λ|

2
ω(d(x(t), y)2),
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and this allows to produce a theory with existence and uniqueness results (via a variant of Proposition
3.1). In the Wasserstein spaces (see next section), a typical case of functionals which can fit this theory
are functionals involving singular interaction kernels (or solutions to elliptic PDEs, as in the Keller-Segel
case) under L∞ constraints on the density (using the fact that the gradient ∇u of the solution of −∆u = %

is not Lipschitz when % ∈ L∞, but is at least log-lipschitz).

4 Gradient flows in the Wasserstein space

One of the most exciting applications (and maybe the only one5, in what concerns applied mathematics)
of the theory of gradient flows in metric spaces is for sure that of evolution PDEs in the space of measures.
This topic is inspired from the work by Jordan, Kinderlehrer and Otto ([53]), who had the intuition that
the Heat and the Fokker-Planck equations have a common variational structure in terms of a particular
distance on the probability measures, the so-called Wasserstein distance. Yet, the theory has only become
formal and general with the work by Ambrosio, Gigli and Savaré (which does not mean that proofs in
[53] were not rigorous, but the intutition on the general structure still needed to be better understood).

The main idea is to endow the space P(Ω) of probability measures on a domain Ω ⊂ Rd with a
distance, and then deal with gradient flows of suitable functionals on such a metric space. Such a distance
arises from optimal transport theory. More details about optimal transport can be found in the books by
C. Villani ([89, 90]) and in the book on gradient flows by Ambrosio, Gigli and Savaré [3]6; a recent book
by the author of this survey is also available [83].

4.1 Preliminaries on Optimal Transport

The motivation for the whole subject is the following problem proposed by Monge in 1781 ([76]): given
two densities of mass f , g ≥ 0 on Rd, with

∫
f =

∫
g = 1, find a map T : Rd → Rd pushing the first one

onto the other, i.e. such that∫
A

g(x)dx =

∫
T−1(A)

f (y)dy for any Borel subset A ⊂ Rd (4.1)

and minimizing the quantity ∫
Rd
|T (x) − x| f (x) dx

among all the maps satisfying this condition. This means that we have a collection of particles, distributed
with density f on Rd, that have to be moved, so that they arrange according to a new distribution,
whose density is prescribed and is g. The movement has to be chosen so as to minimize the average
displacement. The map T describes the movement, and T (x) represents the destination of the particle
originally located at x. The constraint on T precisely accounts for the fact that we need to reconstruct
the density g. In the sequel, we will always define, similarly to (4.1), the image measure of a measure µ

5This is for sure exaggerated, as we could think for instance at the theory of geometrical evolutions of shapes and sets, even
if it seems that this metric approach has not yet been generalized in this framework.

6Lighter versions exist, such as [8], or the recent User’s Guide to Optimal Transport ([2]), which is a good reference for
many topics in this survey, as it deals for one half with optimal transport (even if the title suggests that this is the only topic
of the guide), then for one sixth with the general theory of gradient flows (as in our Section 3), and finally for one third with
metric spaces with curvature bounds (that we will briefly sketch in Section 5).
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on X (measures will indeed replace the densities f and g in the most general formulation of the problem)
through a measurable map T : X → Y: it is the measure denoted by T#µ on Y and characterized by

(T#µ)(A) = µ(T−1(A)) for every measurable set A,

or
∫

Y
φ d (T#µ) =

∫
X
φ ◦ T dµ for every measurable function φ.

The problem of Monge has stayed with no solution (does a minimizer exist? how to characterize it?. . . )
till the progress made in the 1940s with the work by Kantorovich ([54]). In the Kantorovich’s framework,
the problem has been widely generalized, with very general cost functions c(x, y) instead of the Euclidean
distance |x − y| and more general measures and spaces.

Let us start from the general picture. Consider a metric space X, that we suppose compact for
simplicity7 and a cost function c : X × X → [0,+∞]. For simplicity of the exposition, we will suppose
that c is continuous and symmetric: c(x, y) = c(y, x) (in particular, the target and source space will be the
same space X).

The formulation proposed by Kantorovich of the problem raised by Monge is the following: given
two probability measures µ, ν ∈ P(X), consider the problem

(KP) min
{∫

X×X
c dγ : γ ∈ Π(µ, ν)

}
, (4.2)

where Π(µ, ν) is the set of the so-called transport plans, i.e.

Π(µ, ν) = {γ ∈ P(X × X) : (π0)#γ = µ, (π1)#γ = ν, }

where π0 and π1 are the two projections of X × X onto its factors. These probability measures over
X × X are an alternative way to describe the displacement of the particles of µ: instead of saying, for
each x, which is the destination T (x) of the particle originally located at x, we say for each pair (x, y)
how many particles go from x to y. It is clear that this description allows for more general movements,
since from a single point x particles can a priori move to different destinations y. If multiple destinations
really occur, then this movement cannot be described through a map T . It can be easily checked that
if (id,T )#µ belongs to Π(µ, ν) then T pushes µ onto ν (i.e. T#µ = ν) and the functional takes the form∫

c(x,T (x))dµ(x), thus generalizing Monge’s problem.
The minimizers for this problem are called optimal transport plans between µ and ν. Should γ be of

the form (id,T )#µ for a measurable map T : X → X (i.e. when no splitting of the mass occurs), the map
T would be called optimal transport map from µ to ν.

This generalized problem by Kantorovich is much easier to handle than the original one proposed
by Monge: for instance in the Monge case we would need existence of at least a map T satisfying the
constraints. This is not verified when µ = δ0, if ν is not a single Dirac mass. On the contrary, there always
exists at least a transport plan in Π(µ, ν) (for instance we always have µ ⊗ ν ∈ Π(µ, ν)). Moreover, one
can state that (KP) is the relaxation of the original problem by Monge: if one considers the problem in
the same setting, where the competitors are transport plans, but sets the functional at +∞ on all the plans
that are not of the form (id,T )#µ, then one has a functional on Π(µ, ν) whose relaxation (in the sense of

7Most of the results that we present stay true without this assumptions, anyway, and we refer in particular to [3] or [89] for
details, since a large part of the analysis of [83] is performed under this simplfying assumption.
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the largest lower-semicontinuous functional smaller than the given one) is the functional in (KP) (see for
instance Section 1.5 in [83]).

Anyway, it is important to note that an easy use of the Direct Method of Calculus of Variations
(i.e. taking a minimizing sequence, saying that it is compact in some topology - here it is the weak
convergence of probability measures - finding a limit, and proving semicontinuity, or continuity, of the
functional we minimize, so that the limit is a minimizer) proves that a minimum does exist. As a con-
sequence, if one is interested in the problem of Monge, the question may become“does this minimizer
come from a transport map T?” (note, on the contrary, that directly attacking by compactness and semi-
continuity Monge’s formulation is out of reach, because of the non-linearity of the constraint T#µ = ν,
which is not closed under weak convergence).

Since the problem (KP) is a linear optimization under linear constraints, an important tool will be
duality theory, which is typically used for convex problems. We will find a dual problem (DP) for (KP)
and exploit the relations between dual and primal.

The first thing we will do is finding a formal dual problem, by means of an inf-sup exchange.
First express the constraint γ ∈ Π(µ, ν) in the following way : notice that, if γ is a non-negative

measure on X × X, then we have

sup
φ, ψ

∫
φ dµ +

∫
ψ dν −

∫
(φ(x) + ψ(y)) dγ =

0 if γ ∈ Π(µ, ν)
+∞ otherwise

.

Hence, one can remove the constraints on γ by adding the previous sup, since if they are satisfied
nothing has been added and if they are not one gets +∞ and this will be avoided by the minimization.
We may look at the problem we get and interchange the inf in γ and the sup in φ, ψ:

min
γ≥0

∫
c dγ + sup

φ,ψ

(∫
φ dµ +

∫
ψ dν −

∫
(φ(x) + ψ(y)) dγ

)
becomes

sup
φ,ψ

∫
φ dµ +

∫
ψ dν + inf

γ≥0

∫
(c(x, y) − (φ(x) + ψ(y))) dγ.

Obviously it is not always possible to exchange inf and sup, and the main tools to do this come from
convex analysis. We refer to [83], Section 1.6.3 for a simple proof of this fact, or to [89], where the proof
is based on Flenchel-Rockafellar duality (see, for instance, [40]). Anyway, we insist that in this case it is
true that inf sup = sup inf.

Afterwards, one can re-write the inf in γ as a constraint on φ and ψ, since one has

inf
γ≥0

∫
(c(x, y) − (φ(x) + ψ(y))) dγ =

0 if φ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × X
−∞ otherwise

.

This leads to the following dual optimization problem: given the two probabilities µ and ν and the
cost function c : X × X → [0,+∞] we consider the problem

(DP) max
{∫

X
φ dµ +

∫
X
ψ dν : φ, ψ ∈ C(X), φ(x)+ψ(y) ≤ c(x, y) for all (x, y) ∈ X × X

}
. (4.3)
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This problem does not admit a straightforward existence result, since the class of admissible func-
tions lacks compactness. Yet, we can better understand this problem and find existence once we have
introduced the notion of c−transform (a kind of generalization of the well-known Legendre transform).

Definition 4.1. Given a function χ : X → R we define its c−transform (or c−conjugate function) by

χc(y) = inf
x∈X

c(x, y) − χ(x).

Moreover, we say that a function ψ is c−concave if there exists χ such that ψ = χc and we denote by
Ψc(X) the set of c−concave functions.

It is quite easy to realize that, given a pair (φ, ψ) in the maximization problem (DP), one can al-
ways replace it with (φ, φc), and then with (φcc, φc), and the constraints are preserved and the integrals
increased. Actually one could go on but it is possible to prove that φccc = φc for any function φ. This is
the same as saying that ψcc = ψ for any c−concave function ψ, and this perfectly recalls what happens
for the Legendre transform of convex funtions (which corresponds to the particular case c(x, y) = −x · y).

A consequence of these considerations is the following well-known result:

Proposition 4.1. We have

min (KP) = max
φ∈Ψc(X)

∫
X
φ dµ +

∫
X
φc dν, (4.4)

where the max on the right hand side is realized. In particular the minimum value of (KP) is a convex
function of (µ, ν), as it is a supremum of linear functionals.

Definition 4.2. The functions φ realizing the maximum in (4.4) are called Kantorovich potentials for the
transport from µ to ν (and will be often denoted by the symbol ϕ instead of φ).

Notice that any c−concave function shares the same modulus of continuity of the cost c. Hence, if c
is uniformly continuous (which is always the case whenever c is continuous and X is compact), one can
get a uniform modulus of continuity for the functions in Ψc(X). This is the reason why one can prove
existence for (DP) (which is the same of the right hand side problem in Proposition 4.1), by applying
Ascoli-Arzelà’s Theorem.

We look at two interesting cases. When c(x, y) is equal to the distance d(x, y) on the metric space X,
then we can easily see that

φ ∈ Ψc(X)⇐⇒ φ is a 1-Lipschitz function (4.5)

and
φ ∈ Ψc(X)⇒ φc = −φ. (4.6)

Another interesting case is the case where X = Ω ⊂ Rd and c(x, y) = 1
2 |x − y|2. In this case we have

φ ∈ Ψc(X) =⇒ x 7→
x2

2
− φ(x) is a convex function.

Moreover, if X = Rd this is an equivalence.
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A consequence of (4.5) and (4.6) is that, in the case where c = d, Formula 4.4 may be re-written as

min (KP) = max (DP) = max
φ∈Lip1

∫
X
φ d(µ − ν). (4.7)

We now concentrate on the quadratic case when X is a domain Ω ⊂ Rd, and look at the existence of
optimal transport maps T . From now on, we will use the word domain to denote the closure of a bounded
and connected open set.

The main tool is the duality result. If we have equality between the minimum of (KP) and the
maximum of (DP) and both extremal values are realized, one can consider an optimal transport plan γ
and a Kantorovich potential ϕ and write

ϕ(x) + ϕc(y) ≤ c(x, y) on X × X and ϕ(x) + ϕc(y) = c(x, y) on sptγ.

The equality on sptγ is a consequence of the inequality which is valid everywhere and of∫
c dγ =

∫
ϕ dµ +

∫
ϕc dν =

∫
(ϕ(x) + ϕc(y)) dγ,

which implies equality γ−a.e. These functions being continuous, the equality passes to the support of
the measure. Once we have that, let us fix a point (x0, y0) ∈ sptγ. One may deduce from the previous
computations that

x 7→ ϕ(x) −
1
2
|x − y0|

2 is maximal at x = x0

and, if ϕ is differentiable at x0, one gets ∇ϕ(x0) = x0 − y0, i.e. y0 = x0 − ∇ϕ(x0). This shows that only
one unique point y0 can be such that (x0, y0) ∈ sptγ, which means that γ is concentrated on a graph.
The map T providing this graph is of the form x 7→ x − ∇ϕ(x) = ∇u(x) (where u(x) := x2

2 − ϕ(x) is
a convex function). This shows the following well-known theorem, due to Brenier ([19, 20], see also
[46, 44, 45, 70]). Note that this also gives uniqueness of the optimal transport plan and of the gradient of
the Kantorovich potential. The only technical point to let this strategy work is the µ-a.e. differentiability
of the potential ϕ. Since ϕ has the same regularity of a convex function, and convex function are locally
Lipschitz, it is differentiable Lebesgue-a.e., which allows to prove the following:

Theorem 4.2. Given µ and ν probability measures on a domain Ω ⊂ Rd there exists an optimal transport
plan γ for the quadratic cost 1

2 |x − y|2. It is unique and of the form (id,T )#µ, provided µ is absolutely
continuous. Moreover there exists also at least a Kantorovich potential ϕ, and the gradient∇ϕ is uniquely
determined µ−a.e. (in particular ϕ is unique up to additive constants if the density of µ is positive a.e.
on Ω). The optimal transport map T and the potential ϕ are linked by T (x) = x − ∇ϕ(x). Moreover, the
optimal map T is equal a.e. to the gradient of a convex function u, given by u(x) := x2

2 − ϕ(x).

Actually, the existence of an optimal transport map is true under weaker assumptions: we can replace
the condition of being absolutely continuous with the condition “µ(A) = 0 for any A ⊂ Rd such that
Hd−1(A) < +∞” or with any condition which ensures that the non-differentiability set of ϕ is negligible
(and convex function are more regular than locally Lipschitz functions).

In Theorem 4.2 only the part concerning the optimal map T is not symmetric in µ and ν: hence the
uniqueness of the Kantorovich potential is true even if it ν (and not µ) has positive density a.e. (since one
can retrieve ϕ from ϕc and viceversa).
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We stress that Theorem 4.2 admits a converse implication and that any gradient of a convex function
is indeed optimal between µ and its image measure. Moreover, Theorem 4.2 can be translated in very
easy terms in the one-dimensional case d = 1: given a non-atomic measure µ and another measure ν,
both in P(R), there exists a unique monotone increasing transport map T such that T#µ = ν, and it is
optimal for the quadratic cost.

Finally, the same kind of arguments could be adapted to prove existence and uniqueness of an optimal
map for other costs, in particular to costs of the form c(x, y) = h(x − y) for a stricty convex function
h : Rd → R, which includes all the costs of the form c(x, y) = |x− y|p with p > 1. In the one-dimensional
case it even happens that the same monotone increasing map is optimal for every p ≥ 1 (and it is the
unique optimal map for p > 1)!

4.2 The Wasserstein distances

Starting from the values of the problem (KP) in (4.2) we can define a set of distances over P(X).
We mainly consider costs of the form c(x, y) = |x − y|p in X = Ω ⊂ Rd, but the analysis can be

adapted to a power of the distance in a more general metric space X. The exponent p will always be
taken in [1,+∞[ (we will not discuss the case p = ∞) in order to take advantage of the properties of the
Lp norms. When Ω is unbounded we need to restrict our analysis to the following set of probabilities

Pp(Ω) :=
{
µ ∈ P(Ω) :

∫
Ω

|x|p dµ(x) < +∞

}
.

In a metric space, we fix an arbitrary point x0 ∈ X, and set

Pp(X) :=
{
µ ∈ P(X) :

∫
X

d(x, x0)p dµ(x) < +∞

}
(the finiteness of this integral does not depend on the choice of x0).

The distances that we want to consider are defined in the following way: for any p ∈ [1,+∞[ set

Wp(µ, ν) =
(

min (KP) with c(x, y) = |x − y|p
)1/p.

The quantities that we obtain in this way are called Wasserstein distances8. They are very important
in many fields of applications and they seem a natural way to describe distances between equal amounts
of mass distributed on a same space.

It is interesting to compare these distances to Lp distances between densities (a comparison which
is meaningful when we consider absolutely continous measures on Rd, for instance). A first observation
is the very different behavior of these two classes of distances. We could say that, if Lp distances can
be considered “vertical”, Wasserstein distances are instead “horizontal”. This consideration is very in-
formal, but is quite natural if one associates with every absolutely continuous measure the graph of its
density. To compute || f − g||Lp we need to look, for every point x, at the distance between f (x) and g(x),
which corresponds to a vertical displacement between the two graphs, and then integrate this quantity.

8They are named after L. Vaserstein (whose name is sometimes spelled Wasserstein), but this choice is highly debated, in
particular in Russia, as the role he played in these distances is very marginal. However, this is now the standard name used
in Western countries, probably due to the terminology used in [53, 77], even if other names have been suggested, such as
Monge-Kantorovich distances, Kantorovich-Rubinstein. . . and we will stick to this terminology.
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Figure 1: “Vertical” vs “horizontal” distances (in the particular case where g = fh).

On the contrary, to compute Wp( f , g) we need to consider the distance between a point x and a point T (x)
(i.e. an horizontal displacement on the graph) and then to integrate this, for a particular pairing between
x and T (x) which makes a coupling between f and g.

A first example where we can see the very different behavior of these two ways of computing dis-
tances is the following: take two densities f and g supported on [0, 1], and define gh as gh(x) = g(x − h).
As soon as |h| > 1, the Lp distance between f and gh equals (|| f ||pLp + ||g||pLp)1/p, and does not depend on
the “spatial” information consisting in |h|. On the contrary, the Wp distance between f and gh is of the
order of |h| (for h→ ∞) and depends much more on the displacement than on the shapes of f and g.

We now analyze some properties of these distances. Most proofs can be found in [83], chapter 5, or
in [89] or [3].

First we underline that, as a consequence of Hölder (or Jensen) inequalities, the Wasserstein distances
are always ordered, i.e. Wp1 ≤ Wp2 if p1 ≤ p2. Reversed inequalities are possible only if Ω is bounded,
and in this case we have, if set D = diam(Ω), for p1 ≤ p2,

Wp1 ≤ Wp2 ≤ D1−p1/p2W p1/p2
p1 .

This automatically guarantees that, if the quantities Wp are distances, then they induce the same
topology, at least when Ω is bounded. But first we should check that they are distances. . .

Proposition 4.3. The quantity Wp defined above is a distance over Pp(Ω).

Proof. First, let us note that Wp ≥ 0. Then, we also remark that Wp(µ, ν) = 0 implies that there exists
γ ∈ Π(µ, ν) such that

∫
|x − y|p dγ = 0. Such a γ ∈ Π(µ, ν) is concentrated on {x = y}. This implies µ = ν

since, for any test function φ, we have∫
φ dµ =

∫
φ(x) dγ =

∫
φ(y) dγ =

∫
φ dν.

We need now to prove the triangle inequality. We only give a proof in the case p > 1, with absolutely
continuous measures.

Take three measures µ, % and ν, and suppose that µ and % are absolutely continuous. Let T be the
optimal transport from µ to % and S the optimal one from % to ν. Then S ◦ T is an admissible transport
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from µ to ν, since (S ◦ T )#µ = S #(T#µ) = S #% = ν. We have

Wp(µ, ν) ≤
(∫
|S (T (x)) − x|p dµ(x)

) 1
p

= ||S ◦ T − id||Lp(µ)

≤ ||S ◦ T − T ||Lp(µ) + ||T − id||Lp(µ).

Moreover,

||S ◦ T − T ||Lp(µ) =

(∫
|S (T (x)) − T (x)|p dµ(x)

) 1
p

=

(∫
|S (y) − y|pd%(y)

) 1
p

and this last quantity equals Wp(%, ν). Moreover, ||T − id||Lp(µ) = Wp(µ, %), whence

Wp(µ, ν) ≤ Wp(µ, %) + Wp(%, ν).

This gives the proof when µ, % � Ld and p > 1. For the general case, an approximation is needed (but
other arguments can also apply, see, for instance, [83], Section 5.1). �

We now give, without proofs, two results on the topology induced by Wp on a general metric space X.

Theorem 4.4. If X is compact, for any p ≥ 1 the function Wp is a distance overP(X) and the convergence
with respect to this distance is equivalent to the weak convergence of probability measures.

To prove that the convergence according to Wp is equivalent to weak convergence one first establish
this result for p = 1, through the use of the duality formula in the form (4.7). Then it is possible to use
the inequalities between the distances Wp (see above) to extend the result to a general p.

The case of a noncompact space X is a little more difficult. As we said, the distance is only defined
on a subset of the whole space of probability measures, to avoid infinite values. Set, for a fixed reference
point x0 which can be chosen to be 0 in the Euclidean space,

mp(µ) :=
∫

X
d(x, x0)pdµ(x).

In this case, the distance Wp is only defined on Pp(X) :=
{
µ ∈ P(X) : mp(µ) < +∞

}
. We have

Theorem 4.5. For any p ≥ 1 the function Wp is a distance over Pp(X) and, given a measure µ and a
sequence (µn)n inWp(X), the following are equivalent:

• µn → µ according to Wp;

• µn ⇀ µ and mp(µn)→ mp(µ);

•
∫

X φ dµn →
∫

X φ dµ for any φ ∈ C0(X) whose growth is at most of order p (i.e. there exist constants
A and B depending on φ such that |φ(x)| ≤ A + Bd(x, x0)p for any x).

After this short introduction to the metric spaceWp := (Pp(X),Wp) and its topology, we will focus
on the Euclidean case, i.e. where the metric space X is a domain Ω ⊂ Rd, and study the curves valued in
Wp(Ω) in connections with PDEs.
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The main point is to identify the absolutely continuous curves in the spaceWp(Ω) with solutions of
the continuity equation ∂tµt + ∇ · (vtµt) = 0 with Lp vector fields vt. Moreover, we want to connect the
Lp norm of vt with the metric derivative |µ′|(t).

We recall that standard considerations from fluid mechanics tell us that the continuity equation above
may be interpreted as the equation ruling the evolution of the density µt of a family of particles initially
distributed according to µ0 and each of which follows the flowy′x(t) = vt(yx(t))

yx(0) = x.

The main theorem in this setting (originally proven in [3]) relates absolutely continuous curves in Wp

with solutions of the continuity equation:

Theorem 4.6. Let (µt)t∈[0,1] be an absolutely continuous curve inWp(Ω) (for p > 1 and Ω ⊂ Rd an open
domain). Then for a.e. t ∈ [0, 1] there exists a vector field vt ∈ Lp(µt;Rd) such that

• the continuity equation ∂tµt + ∇ · (vtµt) = 0 is satisfied in the sense of distributions,

• for a.e. t we have ||vt||Lp(µt) ≤ |µ
′|(t) (where |µ′|(t) denotes the metric derivative at time t of the

curve t 7→ µt, w.r.t. the distance Wp);

Conversely, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t we have a vector field
vt ∈ Lp(µt;Rd) with

∫ 1
0 ||vt||Lp(µt) dt < +∞ solving ∂tµt +∇ · (vtµt) = 0, then (µt)t is absolutely continuous

inWp(Ω) and for a.e. t we have |µ′|(t) ≤ ||vt||Lp(µt).

Note that, as a consequence of the second part of the statement, the vector field vt introduced in the
first part must a posteriori satisfy ||vt||Lp(µt) = |µ′|(t).

We will not give the proof of this theorem, which is quite involved. The main reference is [3] (but
the reader can also find alternative proofs in Chapter 5 of [83], in the case where Ω is compact). Yet,
if the reader wants an idea of the reason for this theorem to be true, it is possible to start from the
case of two time steps: there are two measures µt and µt+h and there are several ways for moving the
particles so as to reconstruct the latter from the former. It is exactly as when we look for a transport.
One of these transports is optimal in the sense that it minimizes

∫
|T (x) − x|pdµt(x) and the value of this

integral equals W p
p (µt, µt+h). If we call vt(x) the “discrete velocity of the particle located at x at time t,

i.e. vt(x) = (T (x) − x)/h, one has ||vt||Lp(µt) = 1
h Wp(µt, µt+h). We can easily guess that, at least formally,

the result of the previous theorem can be obtained as a limit as h→ 0.
Once we know about curves in their generality, it is interesting to think about geodesics. The follow-

ing result is a characterization of geodesics in Wp(Ω) when Ω is a convex domain in Rd. This procedure
is also known as McCann’s displacement interpolation.

Theorem 4.7. If Ω ⊂ Rd is convex, then all the spacesWp(Ω) are length spaces and if µ and ν belong to
Wp(Ω), and γ is an optimal transport plan from µ to ν for the cost cp(x, y) = |x − y|p, then the curve

µγ(t) = (πt)#γ

where πt : Ω × Ω → Ω is given by πt(x, y) = (1 − t)x + ty, is a constant-speed geodesic from µ to ν. In
the case p > 1 all the constant-speed geodesics are of this form, and, if µ is absolutely continuous, then
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there is only one geodesic and it has the form

µt = [Tt]#µ, where Tt := (1 − t)id + tT

where T is the optimal transport map from µ to ν. In this case, the velocity field vt of the geodesic µt is
given by vt = (T − id) ◦ (Tt)−1. In particular, for t = 0 we have v0 = −∇ϕ and for t = 1 we have v1 = ∇ψ,
where ϕ is the Kantorovich potential in the transport from µ to ν and ψ = ϕc.

The above theorem may be adapted to the case where the Euclidean domain Ω is replaced by a Rie-
mannian manifold, and in this case the map Tt must be defined by using geodesics instead of segments:
the point Tt(x) will be the value at time t of a constant-speed geodesic, parametrized on the interval [0, 1],
connecting x to T (x). For the theory of optimal transport on manifolds, we refer to [72].

Using the characterization of constant-speed geodesics as minimizers of a strictly convex kinetic
energy, we can also infer the following interesting information.

• Looking for an optimal transport for the cost c(x, y) = |x−y|p is equivalent to looking for constant-
speed geodesic inWp because from optimal plans we can reconstruct geodesics and from geodesics
(via their velocity field) it is possible to reconstruct the optimal transport;

• constant-speed geodesics may be found by minimizing
∫ 1

0 |µ
′|(t)pdt ;

• in the case of the Wasserstein spaces, we have |µ′|(t)p =
∫
Ω
|vt|

p dµt, where v is a velocity field
solving the continuity equation together with µ (this field is not unique, but the metric derivative
|µ′|(t) equals the minimal value of the Lp norm of all possible fields).

As a consequence of these last considerations, for p > 1, solving the kinetic energy minimization
problem

min
{∫ 1

0

∫
Ω

|vt|
pd%t dt : ∂t%t + ∇ · (vt%t) = 0, %0 = µ, %1 = ν

}
(4.8)

selects constant-speed geodesics connecting µ to ν, and hence allows to find the optimal transport be-
tween these two measures. This is what is usually called Benamou-Brenier formula ([11]).

On the other hand, this minimization problem in the variables (%t, vt) has non-linear constraints (due
to the product vt%t) and the functional is non-convex (since (t, x) 7→ t|x|p is not convex). Yet, it is possible
to transform it into a convex problem. For this, it is sufficient to switch variables, from (%t, vt) into (%t, Et)
where Et = vt%t, thus obtaining the following minimization problem

min


∫ 1

0

∫
Ω

|Et|
p

%
p−1
t

dxdt : ∂t%t + ∇ · Et = 0, %0 = µ, %1 = ν

 . (4.9)

We need to use the properties of the function fp : R × Rd → R ∪ {+∞}, defined through

fp(t, x) := sup
(a,b)∈Kq

(at + b · x) =


1
p
|x|p

tp−1 if t > 0,

0 if t = 0, x = 0
+∞ if t = 0, x , 0, or t < 0,
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where Kq := {(a, b) ∈ R × Rd : a + 1
q |b|

q ≤ 0} and q = p/(p − 1) is the conjugate exponent of p. In
particular, fp is convex, which makes the above minimization problem convex, and also allows to write
what we formally wrote as

∫ 1
0

∫
Ω

|Et |
p

%
p−1
t

dxdt (an expression which implicitly assumes %t, Et � L
d) into the

form

Bp(%, E) := sup
{∫

a d% +

∫
b · dE : (a, b) ∈ C(Ω × [0, 1]; Kq)

}
.

Both the convexity and this last expression will be useful for numerical methods (as it was first done in
[11]).

4.3 Minimizing movement schemes in the Wasserstein space and evolution PDEs

Thanks to all the theory which has been described so far, it is natural to study gradient flows in the space
W2(Ω) (the reason for choosing the exponent p = 2 will be clear in a while) and to connect them to
PDEs of the form of a continuity equation. The most convenient way to study this is to start from the
time-discretized problem, i.e. to consider a sequence of iterated minimization problems:

%τk+1 ∈ argmin% F(%) +
W2

2 (%, %τk)

2τ
. (4.10)

This iterated minimization scheme is called JKO scheme (after Jordan, Kinderleher and Otto, [53]).
Note that we denote now the measures on Ω by the letter % instead of µ or ν because we expect them

to be absolutely continuous measures with nice (smooth) densities, and we want to study the PDE they
solve. The reason to focus on the case p = 2 can also be easily understood. Indeed, from the very
beginning, i.e. from Section 2, we saw that the equation x′ = −∇F(x) corresponds to a sequence of
minimization problems involving the squared9 distance |x − xτk |

2, and in the Wasserstein space Wp the
distance is defined as the power 1/p of a transport cost; only in the case p = 2 the exponent goes away
and we are lead to a minimization problem involving F(%) and a transport cost of the form

Tc(%, ν) := min
{∫

c(x, y) dγ : γ ∈ Π(%, ν)
}
,

for ν = %τk.
In the particular case of the space W2(Ω), which has some additional structure, if compared to ar-

bitrary metric spaces, we would like to give a PDE description of the curves that we obtain as gradient
flows, and this will pass through the optimality conditions of the minimization problem (4.10). In order
to study these optimality conditions, we introduce the notion of first variation of a functional. This will
be done in a very sketchy and formal way (we refer to Chapter 7 in [83] for more details).

Given a functional G : P(Ω) → R we call δG
δ% (%), if it exists, the unique (up to additive constants)

function such that d
dεG(%+ εχ)|ε=0 =

∫
δG
δ% (%)dχ for every perturbation χ such that, at least for ε ∈ [0, ε0],

9If we change the exponent we could consider

min
x

F(x) +
1
p
·
|x − xτk |

p

τp−1 ,

but this gives raise to the equation x′ = −|∇F(x)|q−2∇F(x), where q = p/(p − 1) is the conjugate exponent of p.
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the measure % + εχ belongs to P(Ω). The function δG
δ% (%) is called first variation of the functional G at %.

In order to understand this notion, the easiest possibility is to analyze some examples.
The three main classes of examples are the following functionals10

F (%) =

∫
f (%(x))dx, V(%) =

∫
V(x)d%, W(%) =

1
2

∫ ∫
W(x − y)d%(x)d%(y),

where f : R→ R is a convex superlinear function (and the functional F is set to +∞ if % is not absolutely
continuous w.r.t. the Lebesgue measure) and V : Ω → R and W : Rd → R are regular enough (and W is
taken symmetric, i.e. W(z) = W(−z), for simplicity). In this case it is quite easy to realize that we have

δF

δ%
(%) = f ′(%),

δV

δ%
(%) = V,

δW

δ%
(%) = W∗%.

It is clear that the first variation of a functional is a crucial tool to write optimality conditions for
variational problems involving such a functional. In order to study the problem (4.10), we need to
complete the picture by undestanding the first variation of functionals of the form % 7→ Tc(%, ν). The
result is the following:

Proposition 4.8. Let c : Ω × Ω → R be a continuous cost function. Then the functional % 7→ Tc(%, ν)
is convex, and its subdifferential at %0 coincides with the set of Kantorovich potentials {ϕ ∈ C0(Ω) :∫
ϕ d%0 +

∫
ϕc dν = Tc(%, ν)}. Moreover, if there is a unique c-concave Kantorovich potential ϕ from %0

to ν up to additive constants, then we also have δTc(·,ν)
δ% (%0) = ϕ.

Even if a complete proof of the above proposition is not totally trivial (and Chapter 7 in [83] only
provides it in the case where Ω is compact), one can guess why this is true from the following consider-
ations. Start from Propositon 4.1, which provides

Tc(%, ν) = max
φ∈Ψc(X)

∫
Ω

φ d% +

∫
Ω

φc dν.

This expresses Tc as a supremum of linear functionals in % and shows convexity. Standard considerations
from convex analysis allow to identify the subdifferential as the set of functions ϕ attaining the maximum.
An alternative point of view is to consider the functional % 7→

∫
φ d%+

∫
φc dν for fixed φ, in which case

the first variation is of course φ; then it is easy to see that the first variation of the supremum may be
obtained (in case of uniqueness) just by selecting the optimal φ.

Once we know how to compute first variations, we come back to the optimality conditions for the
minimization problem (4.10). Which are these optimality conditions? roughly speaking, we should have

δF
δ%

(%τk+1) +
ϕ

τ
= const

(where the reasons for having a constant instead of 0 is the fact that, in the space of probability measures,
only zero-mean densities are considered as admissible perturbations, and the first variations are always
defined up to additive constants). Note that here ϕ is the Kantorovich potential associated with the
transport from %τk+1 to %τk (and not viceversa).

10Note that in some cases the functionals that we use are actually valued in R ∪ {+∞}, and we restrict to a suitable class of
perturbations χ which make the corresponding functional finite.
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Let us look at the consequences we can get from this optimality condition. Actually, if we combine
the fact that the above sum is constant, and that we have T (x) = x − ∇ϕ(x) for the optimal T , we get

− v(x) :=
T (x) − x

τ
= −
∇ϕ(x)
τ

= ∇
(δF
δ%

(%)
)
(x). (4.11)

We denoted by −v the ratio T (x)−x
τ . Why? because, as a ratio between a displacement and a time step, it

has the meaning of a velocity, but since it is the displacement associated to the transport from %τk+1 to %τk,
it is better to view it rather as a backward velocity (which justifies the minus sign).

Since here we have v = −∇
( δF
δ% (%)), this suggests that at the limit τ→ 0 we will find a solution of

∂t% − ∇ ·

(
%∇

(
δF
δ%

(%)
))

= 0. (4.12)

This is a PDE where the velocity field in the continuity equation depends on the density % itself.
We can see many interesting examples.
First, suppose F(%) =

∫
f (%(x))dx, with f (t) = t log t. In such a case we have f ′(t) = log t + 1 and

∇( f ′(%)) =
∇%
% : this means that the gradient flow equation associated to the functional F would be the

Heat Equation
∂t% − ∆% = 0.

Using F(%) =
∫

f (%(x)) dx +
∫

V(x) d%(x), we would have the Fokker-Planck Equation

∂t% − ∆% − ∇ · (%∇V) = 0.

Changing the function f we can obtain other forms of diffusion. For instance, if one uses

F(%) =
1

m − 1

∫
%m(x) dx +

∫
V(x)%(x) dx,

the equation we obtain is
∂t% − ∆(%m) − ∇ · (%∇V) = 0.

When m > 1 this equation is called Porous Media Equation (see [88] for a complete monography)
and models the diffusion of a fluid into a material whose porosity slows down the diffusion. Among the
properties of this equation there is a finite-speed propagation effect, different from linear diffusion (if %0
is compactly supported the same stays true for %t, t > 0, while this is not the case for the heat equation).
Note that linear diffustion can be obtained as a limit m → 1 in the following way: in the functional F,
we can replace the term 1

m−1

∫
%m(x) dx with 1

m−1

∫
(%m(x) − %(x)) dx, since they only differ by a constant

term (the total mass of % is fixed). Then, we just observe that we have

lim
m→1

%m − %

m − 1
= % log %,

which provides the entropy in the limit.
It is also interesting to consider the case m < 1: the function %m − % is concave, but the negative

coefficient 1/(m − 1) finally gives a convex function (which is, unfortunately, not superlinear at infinity,
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hece more difficult to handle). The PDE that we get as a gradient flow is called Fast diffusion equation,
and has opposite properties in terms of diffusion rate than the porous medium one.

In the above equations, it is also possible to get rid of the diffusion part and just study the advection
equation

∂t% − ∇ · (%∇V) = 0,

where V is a given potential. This equation is the gradient flow of

F(%) =

∫
V d%.

It is not difficult to see that the solution of this equation, where particles do not interact with each
other, are obtained in the following way: for every initial point x solve the Euclidean gradient flow
y′x(t) = −∇V(yx(t)) with yx(0) = x, and call Yt the map which associates with every initial point x the
point yx(t). Then we have %t = (Yt)#%0.

A more interesting case can be observed when the particles are advected by a potential determined
by the superposition of many potentials, each created by one particle. For instance, given a function
W : Rd → R, the particle located at x produces a potential W(· − x) and, globally, the potential is given
by V(y) =

∫
W(y − x) d%(x), i.e. V = W ∗ %. The equation, if every particle follows −∇V is

∂t% − ∇ · (% ((∇W) ∗ %)) = 0,

where we used ∇(W ∗ %) = (∇W) ∗ %. If W is even (i.e. the interaction between x and y is the same as
between y and x), then this is the gradient flow of the functional

F(%) =
1
2

∫ ∫
W(x − y) d%(x)d%(y).

When W(z) is an increasing function of |z|, for instance in the quadratic case which gives F(%) =∫∫
|x − y|2d%(x)d%(y), the equation gives rise to a general aggregation behavior of the particles. When

t → ∞ one expects %t ⇀ δx0 (the point x0 depending on the initial datum %0: in the quadratic example
above it is the barycenter of %0). If W is not smooth enough, the aggregation into a unique point can even
occur in finite time, see [25].

Most often, the above aggregation energy is studied together with an internal energy and a confining
potential energy, using the functional

F(%) =

∫
f (%(x)) dx +

∫
V(x) d%(x) +

1
2

∫ ∫
W(x − y) d%(x)d%(y). (4.13)

This gives the following diffusion-advection-interaction equation

∂t% − ∇ ·
(
%
[
∇( f ′(%)) + ∇V + (∇W) ∗ %

])
= 0

(see in particular [26, 27] for physical modelling and convergence results).
We will see in Section 4.6 some other variants of these equations. The reader can also look at Section

8.4.2 in [83]. For the moment, we just wanted to show how the iterated variational scheme called JKO
is related to the different PDEs. In the next section we will some tools to prove the convergence of this
scheme (without full details).
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4.4 How to prove convergence of the JKO scheme

Many possible proofs can be built for the convergence of the JKO scheme. In particular, one could follow
the general theory developed in [3], i.e. checking all the assumptions to prove existence and uniqueness
of an EVI gradient flow for the functional F in the spaceW2(Ω), and then characterizing the velocity field
that Theorem 4.6 associated with the curve obtained as a gradient flow. In [3], it is proven, under suitable
conditions, that such a vector field vt must belong to what is defined as the Wasserstein sub-differential
of the functional F, provided in particular that F is λ-convex. Then, the Wasserstein sub-differential is
proven to be of the desired form (i.e. composed only of the gradient of the first variation of F, when F
admits a first variation).

This approach has the advantage to use a general theory and to adapt it to the scopes of this particular
setting. On the other hand, some considerations seem necessary:

• the important point when studying these PDEs is that the curves (%t)t obtained as a limit are true
weak solutions of the continuity equations; from this point of view, the notions of EDE and EVI
solutions and the formalism developed in the first part of the book [3] (devoted to the general
metric case) are not necessary; if the second part of [3] is exactly concerned with Wasserstein
spaces and with the caracterization of the limit as τ→ 0 as the solution of a PDE, we can say that
the whole formalism is sometimes too heavy.

• after using optimal transport thery to select a suitable distance in the discrete scheme above and a
suitable interpolation, the passage to the limit can be done by classical compactness techniques in
the space of measures and in functional analysis; on the other hand, there are often some difficulties
in handling some non-linear terms, which are not always seen when using the theory of [3] (which
is an advantage of this general theory).

• the λ-convexity assumption is in general not crucial in what concerns existence (but the general
theory in [3] has been built under this assumption, as we saw in Section 3).

• as far as uniqueness of the solution is concerned, the natural point of view in the applications
would be to prove uniqueness of the weak solution of the equation (or, possibly, to define a more
restrictive notion of solution of the PDE for which one can prove uniqueness), and this is a priori
very different from the EDE or EVI notions. To this aim, the use of the Wasserstein distance can
be very useful, as one can often prove uniqueness by differentiating in time the distance between
two solutions, and maybe apply a Gronwall lemma (and this can be done independently of the
EVI notion; see for instance the end of section 4.5). On the other hand, uniqueness results are
almost never possible without some kind of λ-convexity (or weaker versions of it, as in [33]) of
the functional.

Yet, we prefer here to present the ideas to build a more concrete proof, following for instance what
is done in Chapter 8 of [83]. For simplicity, we will describe the construction in the model case where F
is given by (4.13).

As we said, the final goal is to produce a curve (%t)t which is a solution (in the distributional sense
on Rd, which is the same as on Ω, with suitable no-flux boundary conditions on ∂Ω) of the PDE

∂t%t + ∇ · (%tvt) = 0, where we require vt = −∇

(
δF
δ%

(%t)
)
.
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We will set E = %v (the variable E is called momentum, in physics) and require at least that E is a
finite vector measure over Ω × [0,T ], acting on test functions φ via 〈E, φ〉 :=

∫
dt

∫
φ(t, x) · vt d%t. This

condition is equivalent to
∫ T

0 ||vt||L1(%t)dt < +∞.
We start from the discrete scheme (4.10), which defines a sequence (%τk)k. We also define a sequence

of velocities vτk = (id − T)/τ, taking as T the optimal transport from %τk to %τk−1. The considerations in the
previous sections guarantee that we have

vτk = −∇

(
δF
δ%

(%τk)
)
.

This is proven thanks to the optimality conditions in (4.10) and the only delicate point is to guarantee
the uniqueness of the Kantorovich potential in the transport from %τk to %τk−1. In some cases it is possible
to prove a priori that the minimizers of F(%) + W2

2 (%, ν) have strictly positive density a.e. whatever is ν
(this is typically true when f ′(0) = −∞, as it is the case for the entropy functional, and more generally in
case of linear or fast diffusion), which provides uniqueness up to additive constants of the potential. In
Section 8.3 of [83] full details are provided for the Fokker-Planck case, and it is indeed proved that the
minimizers of the JKO scheme are strictly positive a.e., in this case. When positivity of the minimizer is
not available, then one can obtain the same optimality conditions by first approximating ν with strictly
positive densities, and then passing to the limit11.

Then, we build at least two interesting curves in the space of measures:

• first we can define some piecewise constant curves, i.e. %τt := %τk+1 for t ∈]kτ, (k + 1)τ]; associated
with this curve we also define the velocities vτt = vτk+1 for t ∈]kτ, (k + 1)τ] and the momentum
variable E

τ
= %τvτ;

• then, we can also consider the densities %̂τt that interpolate the discrete values (%τk)k along geodesics:

%̂τt =
(
id − (kτ − t)vτk

)
]%
τ
k, for t ∈](k − 1)τ, kτ[; (4.14)

the velocities v̂τt are defined so that (̂%τ, v̂τ) satisfy the continuity equation, taking

v̂τt = vτt ◦
(
id − (kτ − t)vτk

)−1;

moreover, as before, we define: Êτ = %̂τ̂vτ.

After these definitions we look for a priori bounds on the curves and the velocities that we defined.
We already know that we have ∑

k

τ

(W2(%τk, %
τ
k−1)

τ

)2

≤ C, (4.15)

which is the discrete version of an H1 estimate in time. As for %̂τt , it is an absolutely continuous curve in
the Wasserstein space and its velocity on the time interval [(k−1)τ, kτ] is given by the ratio W2(%τk−1, %

τ
k)/τ.

Hence, the L2 norm of its velocity on [0,T ] is given by∫ T

0
|(̂%τ)′|2(t)dt =

∑
k

W2
2 (%τk, %

τ
k−1)

τ
, (4.16)

11Note that, for fixed τ > 0, the minimizers usually satisfy strong regularity estimates, and the convergence of the minimizers
is strong enough to pass the optimality condition to the limit, obtaining “there exists a Kantorovich potential ϕ such that
δF/δ% + ϕ/τ is constant”.
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and, thanks to (4.15), it admits a uniform bound independent of τ. In our case, thanks to results on the
continuity equation and the Wasserstein metric, this metric derivative is also equal to ||̂vτt ||L2 (̂%τt ). This gives
compactness of the curves %̂τ, as well as Hölder estimates (since H1 ⊂ C0,1/2). The characterization of the
velocities vτ and v̂τ allows to deduce bounds on these vector fields from the bounds on W2(%τk−1, %

τ
k)/τ.

Considering all these facts, one obtains the following situation (see also [81, 36]):

• The norm
∫
||vτt ||2L2(%τt )dt is τ-uniformly bounded. This quantity is equal to B2(%τ, E

τ
).

• In particular, the bound is valid in L1 as well, which implies that E
τ

is bounded in the space of
measures over [0,T ] ×Ω.

• The very same estimates are true for v̂τ and Êτ.

• The curves %̂τ are bounded in H1([0,T ],W2(Ω)) and hence compact in C0([0,T ],W2(Ω)).

• Up to a subsequence, one has %̂τ → %, as τ→ 0, uniformly according to the W2 distance.

• From the estimate W2(%τt , %̂
τ
t ) ≤ Cτ1/2 one gets that %τ converges to the same limit % in the same

sense.

• If we denote by E a weak limit of Êτ, since (̂%τ, Êτ) solves the continuity equation, by linearity,
passing to the weak limit, also (%, E) solves the same equation.

• It is possible to prove (see Section 8.3 in [83]) that the weak limits of Êτ and E
τ

are the same.

• From the semicontinuity of B2 and the bound B2(%τ, E
τ
) ≤ C, one gets B2(%, E) < +∞, which

means that E is absolutely continuous w.r.t. % and has an L2 density, so that we have for a.e. time
t a measure Et of the form %tvt.

• It is only left to prove that one has vt = −∇
(
δF
δ% (%t)

)
%t-a.e. and for a.e. t. This means proving

E
τ

= −%τ∇

(
δF
δ%

(%τ)
)
⇒ E = −%∇

(
δF
δ%

(%)
)

as a limit as τ→ 0. It is crucial in this step to consider the limit of (%τ, E
τ
) instead of (̂%τ, Êτ).

This last step is the most critical one in many cases. It requires passing to the limit (in the sense
of distributions) the terms involving δF

δ% on a sequence % j ⇀ % (we don’t care here where this sequence
comes from). We can see what happens with the main class of functionals that we introduced so far.

The easiest case is that of the functionalV: we have

%∇

(
δV

δ%
(%)

)
= %∇V.

This term is linear in % and % j ⇀ % obviously implies % j∇V ⇀ %∇V as soon as V ∈ C1 (so that ∇V is
a continuous function, which is exactly the functional space whose dual is the space of measures). In
case ∇V < C0 it is possible to handle this term as soon as suitable bounds on % j provide a better weak
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convergence (for instance, if the functional F is composed of V plus other terms which impose bounds
on the Lp norm of %, then it is enough to suppose ∇V ∈ Lp′).

Another easy case is that of the functionalW: we have

%∇

(
δW

δ%
(%)

)
= % (∇W) ∗ %.

If we take a sequence % j ⇀ % and a vector test function ξ ∈ C∞c , then we have∫
ξ · (∇W) ∗ % j d% j →

∫
ξ · (∇W) ∗ % d%

as soon as W ∈ C1, because ξ is fixed and (∇W) ∗ % j uniformly converges to (∇W) ∗ % (this is a typical
regularization effect of the convolution). As before, if W is less regular, it is possible to compensate this
with stronger bounds on % j.

The most difficult case is that of the functional F . In the case of the entropy F (%) =
∫

f (%) with
f (t) = t log t then everything works fine because, again, the corresponding term is linear:

%∇

(
δF

δ%
(%)

)
= %
∇%

%
= ∇%.

Then, the convergence of this term in the sense of distributions is straightforward when % j → %. By
the way, the entropy term F is also enough to obtain suitable bounds to handle V or W which are only
Lipschitz, as in this case we need to turn the weak convergence % j ⇀ % from the sense of measures to
the L1 sense, which is exactly possible because the superlinear bound

∫
% j log(% j) ≤ C provides equi-

integrability for % j.
Yet, for other functions f , there is no more linearity, and we need stronger bounds. For instance, for

f (t) = tm/(m − 1), we have

%∇

(
δF

δ%
(%)

)
= %

m
m − 1

∇(%m−1) = ∇(%m).

This means that weak convergence of % j is no more enough, but one also needs weak convergence of %m
j .

This could be possible to obtain if one had strong convergence, i.e. stronger bounds (if possible, Sobolev
bounds on % j).

The main ingredient is indeed an H1 bound in space, which comes from the fact that we have∫ T

0

∫
Ω

|∇(%m−1/2)| dxdt ≈
∫ T

0

∫
Ω

|∇(%m−1)|2 d%tdt ≈
∫ T

0

∫
Ω

|∇ϕ|2

τ2 d%tdt =

∫ T

0
|%′|(t)2dt ≤ C. (4.17)

Two delicate points arise: first, this is not a full H1 bound, in the sense that it is only concerned with space
derivatives, and not with time derivatives and, second, we presented here an estimate on ||%m−1/2||H1 , but
this could not be enough to prove strong convergence for ρm. The first point may be handled via some
variants of the and the so-called Aubin-Lions lemma (see [10]), which interpolates between compactness
in space and in time (roughly speaking: in our situation we have an L2 bound in time with values in a
strong space norm, H1, but also a stronger bound in time, H1, valued in the W2 distance, which is weaker
as it metrizes weak convergence; this information together can provide strong compactness). For the
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second point, finer tools on the JKO scheme, toghether with stronger assumptions on the initial data, can
be used. For instance, it is possible to prove L∞ bounds on ρ if ρ0 ∈ L∞ and V ∈ C2 (see Section 7.4.1 in
[83]), which is enough to transform the H1 estimates on %m−1/2 into estimates on %m. Another possibility
is the use of estimates obtained via a technique called flow interchange (where the optimality of a density
% in the JKO scheme is tested against its evolution via the gradient flow of another functional, see [65]),
which allows to modify the exponent of % in (4.17).

4.5 Geodesic convexity inW2

Even if we insisted on the fact that the most natural approach to gradient flows inW2 relies on the notion
of weak solutions to some PDEs and not on the EDE/EVI formulations, for sure it could be interesting to
check whether the general theory of Section 3 could be applied to some model functionals on the space
of probabilities, such as F , V or W. This requires to discuss their λ-convexity, which is also useful
because it can provide uniqueness results. As we now know the geodesics in the Wasserstein space, the
question of which functionals are geodesically convex is easy to tackle. The notion of geodesic convexity
in theW2 space, aslo called displacement convexity, has first been introduced by McCann in [71].

Displacement convexity of F ,V andW. It is not difficult to check that the convexity of V is enough
to guarantee geodesic convexity ofV, since

V(µt) =

∫
V d

(
(1 − t)id + tT

)
#µ =

∫
V
(
(1 − t)x + tT (x)

)
dµ,

as well as the convexity of W guarantees that ofW:

W(µt) =

∫
W(x − y) d

((
(1 − t)id + tT

)
#µ

)
⊗

((
(1 − t)id + tT

)
#µ

)
(x, y)

=

∫
W

(
(1 − t)x + tT (x), (1 − t)y + tT (y)

)
d(µ ⊗ µ).

Similarly, if V or W are λ-convex we get λ-geodesical convexity. Note that in the case ofV it is easy to
see that the λ-convexity of V is also necessary for the λ-geodesical convexity ofV, while the same is not
true for W andW.

The most interesting displacement convexity result is the one for functionals depending on the den-
sity. To consider these functionals, we need some technical facts.

The starting point is the computation of the density of an image measure, via standard change-of-
variable techniques: if T : Ω → Ω is a map smooth enough12 and injective, and det(DT (x)) , 0 for a.e.
x ∈ Ω, if we set %T := T#%, then %T is absolutely continuous with density given by

%T =
%

det(DT )
◦ T−1.

Then, we underline an interesting computation, which can be proven as an exercice.

12We need at least T to be countably Lipschitz, i.e. Ω may be written as a countable union of measurable sets (Ωi)i≥0 with
Ω0 negligible and T Ωi Lipschitz continuous for every i ≥ 1.
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Lemma 4.9. Let A, B be two d × d symmetric and positive-definite matrices. Then [0, 1] 3 t 7→ g(t) :=
det((1 − t)A + tB)1/d is a concave function

We can now state the main theorem.

Theorem 4.10. Suppose that f (0) = 0 and that s 7→ sd f (s−d) is convex and decreasing. Suppose that Ω

is convex and take 1 < p < ∞. Then F is geodesically convex inW2.

Proof. Let us consider two measures µ0, µ1 with F (µ0),F (µ1) < +∞. They are absolutely continuous
and hence there is a unique constant-speed geodesic µt between them, which has the form µt = (Tt)#µ0,
where Tt = id + t(T − id). Note that we have Tt(x) = x − t∇ϕ(x), where ϕ is such that x2

2 − ϕ is
convex. This implies that D2ϕ ≤ I and Tt is, for t < 1, the gradient of a strictly convex function, hence
it is injective. Moreover ∇ϕ is countably Lipschitz, and so is Tt. From the formula for the density
of the image measure, we know that µt is absolutely continuous and we can write its density %t as
%t(y) = %(T−1

t (y))/ det(I + tM(T−1
t (y))), where M = −D2ϕ and % is the density of µ, and hence

F (µt) =

∫
f
(

%(T−1
t (y)))

det(I + tM(T−1
t (y)))

)
dy =

∫
f
(

%(x)
det(I + tM(x)

)
det(I + tA(x)) dx,

where we used the change of variables y = Tt(x) and dy = det DTt(x) dx = det(I + tM(x)) dx.
From Lemma 4.9 applied to A = I and B = I+ M we know that det(I+ tM(x)) = g(t, x)d for a function

g : [0, 1] × Ω which is concave in t. It is a general fact that the composition of a convex and decreasing
function with a concave one gives a convex function. This implies that

t 7→ f
(
%(x)

g(t, x)d

)
g(t, x)d

is convex (if %(x) , 0 this uses the assumption on f and the fact that t 7→ g(t, x)/%(x)
1
d is concave; if

%(x) = 0 then this function is simply zero). Finally, we proved convexity of t 7→ F (µt). �

Remark 4.1. Note that the assumption that s 7→ sd f (s−d) is convex and decreasing implies that f itself is
convex (the reader can check it as an exercise), a property which can be useful to establish, for instance,
lower semicontinuity of F .

Here are some examples of convex functions satisfying the assumptions of Theorem 4.10:

• all the power functions f (t) = tq for q > 1 satisfy these assumptions, since sd f (s−d) = s−d(q−1) is
convex and decreasing;

• the entropy function f (t) = t log t also satisfies it: sd f (s−d) = −d log s is convex and decreasing;

• the function f (t) = −tm is convex for m < 1, and if we compute sd f (s−d) = −tm(1−d) we get
a convex and decreasing function as soon as 1 − 1

d ≤ m < 1. Note that in this case f is not
superlinear, which requires some attention for the semicontinuity of F .

Finally, it is interesting to observe that the geodesic convexity of higher-order functionals such as
% 7→

∫
|∇%|p generally fails, or is a very delicate matter, while these functionals are among the most

standard examples of convex functionals in the usual sense. See [28] for some examples of first-order
geodesically convex functionals (in dimension one).

38



Convexity on generalized geodesics. It is quite disappointing to note that the functional µ 7→ W2
2 (µ, ν)

is not, in general, displacement convex. This seems contrary to the intuition because usually squared
distances are nice convex functions13. However, we can see that this fails from the following easy
example. Choose a, b, c ∈ R2 to be the vertices of an equilateral triangle: a = (0, 0), b = (1, 0) and
c = (1/2,

√
3/2). Set ν = 1

2δa + 1
2δb and µ0 = 1

2δa + 1
2δc and µ0 = 1

2δb + 1
2δc. It is not difficult to see that

the geodesic between µ0 and µ1 is given by µt = 1
2δ(t,0) + 1

2δc and that

W2
2 (µt, ν) =

1
2

+
1
2

min
{
(1 − t)2, t2}

(this is computed by observing that in the transport between µt and ν we can send the atom at (t, 0) to the
closest atom of ν and the atom at c to the other one, and that we cannot do better, see Figure 2). But this
function is not convex!

•b•a

•
c

•
(t, 0) ν

µ0 µ1µt

Figure 2: An example where t 7→ W2
2 (µt, ν) is not convex.

The lack of geodesic convexity of this easy functional14 is a problem for many issues, and in partic-
ular for the C2G2 condition, and an alternate notion has been proposed, namely that of convexity along
generalized geodesics.

Definition 4.3. If we fix an absolutely continuous probability % ∈ P(Ω), for every pair µ0, µ1 ∈ P(Ω) we
call generalized geodesic in W2(Ω) between µ0 and µ1 with base % the curve µt = ((1 − t)T0 + tT1)#%,
where T0 is the optimal transport map (for the cost |x − y|2) from % to µ0, and T1 from % to µ1.

It is clear that t 7→ W2
2 (µt, %) satisfies

W2
2 (µt, %) ≤

∫
|((1 − t)T0(x) + tT1(x)) − x|2d%(x)

≤ (1 − t)
∫
|T0(x) − x|2d%(x) + t

∫
|T1(x) − x|2d%(x) = (1 − t)W2

2 (µ0, %) + tW2
2 (µ1, %)

and hence we have the desired convexity along this curve. Moreover, similar considerations to those we
developed in this section show that all the functionals that we proved to be geodesically convex are also

13Actually, this is true in normed spaces, but not even true in Riemannian manifolds, as it depends on curvature properties.
14By the way, this functional can even be proven to be somehow geodetically concave, as it is shown in [3], Theorem 7.3.2.
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convex along generalized geodesics. For the case of functionalsV andW this is easy, while for the case
of the functional F we use again Lemma 4.9 (without restricting to the case A = I). We do not develop
these proofs here, and we refer to [3] or Chapter 7 in [83] for more details.

Of course, we could wonder whether the assumption C2G2 is satisfied in the Wasserstein space
W2(Ω) for these functionals F ,V andW: actually, if one looks closer at this questions, it is possible to
guess that the very definition of C2G2 has been given on purpose in order to face the case of Wasserstein
spaces. Indeed, if we fix ν ∈ P(Ω) and take µ0, µ1 two other probabilities, with T0,T1 the optimal
transports from ν to µ0 and µ1, respectively, then the curve

µt := ((1 − t)T0 + tT1)#ν (4.18)

connects µ0 to µ1 and can be used in C2G2.

Displacement convexity and curvature conditions. In the proof of the geodesic convexity of the
functional F we strongly used the Euclidean structure of the geodesics in the Wasserstein space. The
key point was form of the intermediate map Tt: a linear interpolation between the identity map id and
the optimal map T , together with the convexity properties of t 7→ det(I + tA)1/d. On a Riemannian
manifold, this would completely change as the geodesic curves between x and T (x), which are no more
segments, could concentrate more or less than what happens in the Euclidean case, depending on the
curvature of the manifold (think at the geodesics on a sphere connecting points close to the North Pole
to points close to the South Pole: they are much farther from each other at their middle points than at
their endpoints). It has been found (see [78]) that the condition of λ-geodesic convexity of the Entropy
functional % 7→

∫
% log(%)dVol (where % is absolutely continuous w.r.t. the volume meaure Vol and

densities are computed accordingly) on a manifold characterizes a lower bound on its Ricci curvature:

Proposition 4.11. Let M be a compact manifold of dimension d and Vol its volume measure. Let E be
the entropy functional defined via E(%) =

∫
% log % dVol for all measures % � Vol (set to +∞ on non-

absolutely continuous measures). Then E is λ-geodesically convex in the Wasserstein space W2(M) if
and only if the Ricci curvature RicM satisfies RicM ≥ λ. In the case λ = 0, the same equivalence is true
if one replaces the entropy function f (t) = t log t with the function fN(t) = −t1−1/N with N ≥ d.

This fact will be the basis (we will see it in Section 5) of a definition based on optimal transport of
the notion of Ricci curvature bounds in more abstract spaces, a definition independently proposed in two
celebrated papers by Sturm, [86] and Lott and Villani, [64].

Remark 4.2. The reader who followed the first proofs of this section has for sure observed that it is easy,
in the space W2(Ω), to produce λ-geodesically convex functionals which are not geodesically convex
(with λ < 0, of course), of the form V (just take a λ-convex function V which is not convex), but
that Theorem 4.10 only provides geodesic convexity (never provides λ-convexity without convexity) for
functionals of the form F : this is indeed specific to the Euclidean case, where the optimal transport
has the form T (x) = x − ∇ϕ(x); in Riemannian manifolds or other metric measure spaces, this can be
different!

Geodesic convexity and uniqueness of gradient flows. The fact that λ-convexity is a crucial tool to
establish uniqueness and stability results in gradient flows is not only true in the abstract theory of Section
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3, where we saw that the EVI condition (intimately linked to λ-convexity) provides stability. Indeed, it
can also be observed in the concrete case of gradient flows in W2(Ω), which take the form of the PDE
(4.12). We will see this fact via some formal considerations, starting from an interesting lemma:

Lemma 4.12. Suppose that F : W2(Ω) → R ∪ {+∞} is λ-geodesically convex. Then, for every %0, %1 ∈

P(Ω) for which the integrals below are well-defined, we have∫
∇ϕ · ∇

(
δF
δ%

(%0)
)

d%0 +

∫
∇ψ · ∇

(
δF
δ%

(%1)
)

d%1 ≥ λW2
2 (%0, %1),

where ϕ is the Kantorovich potential in the transport from %0 to %1 and ψ = ϕc is the Kantorovich
potential from %1 to %0.

Proof. Let %t be the the geodesic curve inW2(Ω) connecting %0 to %1 and g(t) := F(%t). The assumption
of λ-convexity means (see the definition in (3.2))

g(t) ≤ (1 − t)g(0) + tg(1) −
λ

2
t(1 − t)W2

2 (%0, %1).

Since the above inequality is an equality for t = 0, 1, we can differentiate it at these two points thus
obtaining

g′(0) ≤ g(1) − g(0) −
λ

2
W2

2 (%0, %1), g′(1) ≥ g(1) − g(0) +
λ

2
W2

2 (%0, %1),

which implies
g′(0) − g′(1) ≤ −λW2

2 (%0, %1).

Then, we compute the derivative of g, formally obtaining

g′(t) =

∫
δF
δ%

(%t)∂t%t = −

∫
δF
δ%

(%t)∇ · (vt%t) =

∫
∇

(
δF
δ%

(%t)
)
· vt d%t,

and, using v0 = −∇ϕ and v1 = ∇ψ, we obtain the claim. �

With the above lemma in mind, we consider two curves %0
t and %1

t , with

∂t%
i
t + ∇ · (%i

tv
i
t) = 0 for i = 0, 1,

where the vector fields vi
t are their respective velocty fields provided by Theorem 4.6. Setting d(t) :=

1
2 W2

2 (%0
t , %

1
t ), it is natural to guess that we have

d′(t) =

∫
∇ϕ · v0

t d%0
t +

∫
∇ψ · v1

t d%1
t ,

where ϕ is the Kantorovich potential in the transport from %0
t to %1

t and ψ = ϕc. Indeed, a rigorous proof
is provided in [3] or in Section 5.3.5 of [83], but one can guess it from the duality formula

d(t) = max
{∫

φ d%0
t +

∫
ψ d%1

t : φ(x)+ψ(y) ≤
1
2
|x − y|2)

}
.

As usual, differentiating an expression written as a max involves the optimal functions φ, ψ in such a
max, and the terms ∂t%

i
t have been replaced by −∇ · (%i

tvi
t) as in the proof Lemma 4.12.

When the two curves %0
t and %1

t are solutions of (4.12) we have vi
t = −∇

(
δF
δ% (%i

t)
)
, and Lemma 4.12

allows to obtain the following:
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Proposition 4.13. Suppose that F :W2(Ω)→ R∪{+∞} is λ-geodesically convex and that the two curves
%0

t and %1
t are solutions of (4.12). Then, setting d(t) := 1

2 W2
2 (%0

t , %
1
t ), we have

d′(t) ≤ −λd(t).

This implies uniqueness of the solution of (4.12) for fixed initial datum, stability, and exponential con-
vergence as t → +∞ if λ > 0.

4.6 Other gradient-flow PDEs and variants

In section 4.3 we saw some examples of evolution PDEs that can be obtained as gradient flows for
suitable functionals F in the Wasserstein space of probability measures on a domain Ω, endowed with
the distance W2. Here we would like to give some more examples and present some variants (the reader
can also look at Section 8.4.2 in [83]).

Keller-Segel A model in mathematical biology, first introduced in [55, 56] has received much attention
due to its interesting mathematical properties: consider a population % of bacteria, which move advected
by a potential and subject to diffusion. The potential is given by the concentration u of a nutrient,
produced by the bacteria themselves, which attracts them by a chemical signal (this is why it is called
chemo-attractant, and this kind of phenomenon is also known under the name of chemotaxis). More
precisely, the drift is given by the gradient ∇u, but the distribution of u depends on their density %. The
easiest model has linear diffusion and supposes that u is related to % by the condition −∆u = %, with
Dirichlet boundary conditions u = 0 on ∂Ω. This gives the system

∂t% + α∇ · (%∇u) − ∆% = 0,
−∆u = %,

u = 0 on ∂Ω, %(0, ·) = %0, ∂n% − %∂nu = 0 on ∂Ω.

(4.19)

The parameter α tunes the attraction intensity of bacteria towards the chemo-attractant.
This system is also studied in the whole space, where (to impose suitable decay at infinity), the

function u is defined through the explicit formula

u(x) = −
1

2π

∫
R2

log(|x − y|)%(y) dy. (4.20)

One can see that System (4.19) is the gradient flow of the functional

F(%) =

∫
Ω

% log % −
1
2

∫
Ω

|∇u%|2, where u% ∈ H1
0(Ω) solves − ∆u% = %.

To check this fact, we only need to compute the first variation of the Dirichlet term − 1
2

∫
|∇u%|2. Suppose

%ε = % + εχ and set u%+εχ = u% + εuχ. Then

d
dε

(
−

1
2

∫
|∇u%+εχ|2

)
|ε=0

= −

∫
∇u% · ∇uχ =

∫
u%∆uχ = −

∫
u%χ.
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Note that, due to the wrong sign in the Dirichlet term, the variational problem min F(%) +
W2

2 (%,%0)
2τ

requires some assumptions when proving the existence of minimizers. In particular, it would be possible
that the infimum is −∞, or that the energy is not l.s.c. because of the negative sign. In the case of
dimension 2, sophisticated functional inequalities allow to handle the case α ≤ 8π. We refer to [15] and
to the references therein for details on the analysis of this equation.

We also remark that the above model, coupling a parabolic equation on % and an elliptic equation
on u, implicitly assumes that the configuration of the chemo-attractant instantaneously follows that of %.
More sophisticated models can be expressed in terms of the so-called parabolic-parabolic Keller-Segel
equation, in the form 

∂t% + α∇ · (%∇u) − ∆% = 0,
∂tu − ∆u = %,

u = 0 on ∂Ω, %(0, ·) = %0, ∂n% − %∂nu = 0 on ∂Ω.

(4.21)

or other variants with different boundary conditions. Equation (4.21) can also be studied as a gradient
flow in two variables, using the distance W2 on % and an L2 distance on u; see [16]. In this case, we use

F(%, u) :=
∫

%(x) log(%(x))dx − α
∫

u(x)%(x)dx +
α

2

∫
|∇u|2dx.

The JKO schemes becomes

(%τk+1, u
τ
k+1) ∈ argmin(%,u) F(%, u) +

W2
2 (%, %τk)

2τ
+ α
||u − uτk ||

2
L2

2τ

(note that we mutliplied the L2 part of the distance times a coefficient α in order to adjust the coefficients
in the parabolic equation on u). At a very formal level, the reader can see that this implies

log(%) − αu +
ϕ

τ
= const, (from the optimality of %),

which gives the first equation in (4.21), and

−% − ∆u +
u − uτk
τ

= 0, (from the optimality of u),

which gives the second equation in (4.21).

Crowd motion The theory of Wasserstein gradient flows has interestingly been applied to the study of
a continuous model of crowd movement under density constraints.

This theory has first been introduced in a microscopic setting (each individual in the crowd being
a rigid sphere), but we will not develop this aspect here (the interested reader can refer to the papers
by Maury and Venel, [68, 69]). We are now interested in the simplest continuous counterpart of this
microscopic model. In this case the particles population will be described by a probability density % ∈
P(Ω), and we are given a so-called “spontaneous” velocity field u representing the velocity each particle
would follow if the other particles were not present. Yet, the crowd is supposed to be incompressible in
the sense that it is subject to a maximal density constraint % ≤ 1. Then u must be adapted so that it belongs
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to a suitable set of admissible velocities, those which preserve this constraint (which depends on the sign
of the divergence of v on the saturated region {% = 1}): adm(%) =

{
v : Ω→ Rd : ∇ · v ≥ 0 on {% = 1}

}
.

The main axiom of the model (presented, for instance, in [66]) is that the density % will be advected by a
vector field vt which is not u but its projection, at each time t, on adm(%t). Hence, we look for solutions
of the equation

∂t%t + ∇ ·
(
%t

(
Padm(%t)ut

))
= 0. (4.22)

The main difficulty is the fact that the vector field v = Padm(%t)ut is not smooth (since it is only
expected to be L2), and it has a non-smooth dependance on % (since passing from a density 1 to a density
1 − ε completely modifies the saturated zone, v is very sensitive to small changes in %).

In [66] these difficulties have been overpassed in the case u = −∇V (where V : Ω → R is a given
Lipschitz function) and the existence of a solution (with numerical simulations) is proven via a gradient
flow method. Indeed, (4.22) turns out to be the gradient flow inW2 of the energy

F(%) =


∫

V d% if % ∈ K;
+∞ if % < K,

where we define the set K = {% ∈ P(Ω) : % ≤ 1}. The case u = −∇V is already quite satisfying for
applications, since a typical case is obtained when V(x) = dist(x,Γ) and Γ ⊂ ∂Ω is a part of the boundary
playing the role of an exit.

We do not enter into the details of the study of this equation, but we just make a little bit more precise
the definitions above. Actually, it is more convenient to give a better description of adm(%) by duality:

adm(%) =

{
v ∈ L2(%) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0, p(1 − %) = 0

}
.

In this way we characterize v = Padm(%)(u) through

u = v + ∇p, v ∈ adm(%),
∫

v · ∇p = 0,

p ∈ press(%) := {p ∈ H1(Ω), p ≥ 0, p(1 − %) = 0},

where press(%) is the space of “pressure” functions p (used as test functions in the dual definition of
adm(%)). The two cones ∇press(%) and adm(%) are in duality (i.e. one is defined as the set of vectors with
negative scalar product with the elements of the other) for the L2 scalar product. This provides a unique
orthogonal decomposition ut = vt + ∇pt, and allows to re-write Equation (4.22) as∂t%t + ∇ ·

(
%t(ut − ∇pt)

)
= 0,

0 ≤ % ≤ 1, p ≥ 0, p(1 − %) = 0.
(4.23)

More details can be found in [66, 80, 67]. Variants where the motion of the crowd also undergoes
diffusion are also studied, as in [75] and [37] and, in particular, the latter provides interesting uniqueness
results, as well as variants with several species (see [24]).
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Dirichlet boundary conditions So far, all the equations that we dealt with were always accompanied
by Neumann-type boundary conditions: they are based on the continuity equation, which represents the
conservation of mass, and we are describing the motion of a population % of particles forced to stay
inside a given domain Ω. These boundary conditions exactly impose the fact that particles do not exit
the domain. Note that this does not mean that particles on the boundary should stay on the boundary
forever (this is what formally happens under the condition v · n = 0); the boundary condition here is
rather %v ·n = 0: if at a given istant of time the particles enter from ∂Ω into the interior, then immediately
after there will be (locally) no mass on the boundary, and the condition is not violated, hence. On the
contrary, should some mass go from the interior to outside Ω, then there we would be indeed a violation,
since there would be some mass % > 0 on the boundary with velocity directed outwards.

Anyway, we see that Dirichlet conditions do not find their translation into W2 gradient flows! To
cope with Dirichlet boundary conditions, Figalli and Gigli defined in [41] a sort of modified Wasserstein
distance, with a special role played by the boundary ∂Ω, in order to study the Heat equation ∂t% = ∆%

with Dirichlet b.c. % = 1 on ∂Ω.

Given two finite positive measures µ, ν ∈ M+(
◦

Ω) (not necessarily with the same mass), set

Πb(µ, ν) = {γ ∈ M+(Ω ×Ω) : (πx)#γ
◦

Ω = µ, (πy)#γ
◦

Ω = ν}.

Then, define

Wb2(µ, ν) :=

√
inf

{∫
Ω×Ω

|x − y|2 dγ, γ ∈ Πb(µ, ν)
}
.

The index b reminds the special role of the boundary. Informally, this means that the transport from µ to
ν may be done either usually, or by moving some mass to/from ∂Ω, the transport being free on ∂Ω.

In [41] the authors prove that Wb2 is a distance, that the spaceM+(
◦

Ω) is a geodesic space (even if Ω is
not convex) and they study the gradient flow, for this distance, of the functional F(%) =

∫
(% log % − %) dx

(note that here the term −
∫
% is important, because the total mass is not fixed), which corresponds to

the Heat equation with the particular boundary condition % = 1 on ∂Ω (the value 1 is the value which
minimizes t 7→ f (t) = t log t − t).

We observe that this kind of distances with free transport on the boundary were already present in
[18, 17], but for the Wasserstein distance W1, and with no applications to gradient flows.

Reaction-diffusion equations A class of equaitons which are widely studied in applied mathematics
and in particular mathematical biology are PDEs including both a divergence term and a source term,
which injects or removes some mass into the system, thus getting an equation of the form

∂t%t + ∇ · (%tvt) = ft,

where vt and ft could depend on %t. When the divergence term is of the form ∆(g(%t)), then we face a
diffusion behavior, while the source term f , usually depending on %, stands for internal reactions which
provide growth or reproduction of the particle population %. This is why these equations are usually
called reaction-diffusion equations. Yet, it is clear that they cannot be dealt with with the theory of
Wasserstein gradient flows, because of the reaction term, which is not in conservative form (and, by the
way, the mass could not be preserved in time).
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To consider equations of this form, a new distance has been recently introduced. This very interesting
distance has been independently introduced by three different groups around the year 2015, and we refer
to [59, 30, 31, 62, 63] for the different presentations and the different considerations which have been in-
vestigated so far. We give here only a very short description of this distance; the names chosen for it were
of course different according to the different groups, and we decided to stick to the terminology chosen
in [43] where it is called Kantorovich-Fisher-Rao distance to take into account all the contributions.

The starting point is the definition of W2
2 via (4.8) (in the case p = 2), which can be modified as

follows

KFR2(µ, ν) = min
{∫ 1

0

∫
Ω

|vt|
2d%t dt +

∫ 1

0

∫
Ω

|ut|
2d%t dt : ∂t%t + ∇ · (%tvt) = %tut, %0 = µ, %1 = ν

}
.

This means that one can transform µ into ν either by displacing some masses, with velocity v, and paying
for the L2 norm of v, or by adding/removing some masses, using a scalar field u, and paying as well its L2

norm. We do not enter into details of the minimization problem defining KFR, which could also be turned
into a convex one by using the variables (%, %v, %u), and of its equivalent formulations. We only note that
the optimal v and the optimal u are linked by v = ∇u. Using this fact, one can guess and then prove
that the limit as τ → 0 of the curves obtained by interpolating the solutions of the iterated minimization
problems

%k+1 ∈ argmin% F(%) +
KFR2(%, %k)

2τ
will provide a solution of the PDE

∂t%t − ∇ ·

(
%t∇

(
δF
δ%

(%t)
))

= −%t
δF
δ%

(%t).

Even if the introduction of the distance KFR has the advantage to allow for reaction terms in the PDE, it
is clear that the rigidity which connects the reaction and the diffusion terms is a serious draw-back which
prevents to consider a wide class of equations. To cope with this, and consider equations of the form

∂t%t − ∇ ·

(
%t∇

(
δF
δ%

(%t)
))

= −%t
δG
δ%

(%t),

in [43] a splitting scheme is proposed. More precisely, one can define the following iterative algorithm:

%k+1/2 ∈ argmin% F(%) +
W2

2 (%, %k)
2τ

,

%k+1 ∈ argmin% G(%) +
FR2(%, %k+1/2)

2τ
,

where the distance FR is defined only using the reaction part:

FR2(µ, ν) = min
{∫ 1

0

∫
Ω

|ut|
2d%t dt : ∂t%t = %tut, %0 = µ, %1 = ν

}
.
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For this last distance15, which is indeed known as Fisher-Rao, or Hellinger, distance, there is an explicit
formula:

FR2(µ, ν) = 4
∫ ∣∣∣∣∣∣∣

√
dµ
dλ
−

√
dν
dλ

∣∣∣∣∣∣∣
2

dλ,

where λ is any reference positive measure such that µ, ν � λ (for instance λ = µ + ν; anyway, the
functional being one-homogeneous, the result does not depend on the reference measure).

4.7 Numerical methods from the JKO scheme

We present in this section two different numerical methods which have been recently proposed to tackle
evolution PDEs which have the form of a gradient flow inW2(Ω) via their variational JKO scheme (the
reader can consult [57] for an early treatment of these equations via the JKO scheme). We will only be
concerned with discretization methods allowing the numerical treatment of one step of the JKO scheme,
i.e. solving problems of the form

min
{

F(%) +
1
2

W2
2 (%, ν) : % ∈ P(Ω)

}
,

for suitable ν (to be taken equal to %τk) and suitable F (including the τ factor). We will not consider the
convergence as τ→ 0 of the iterations to solutions of the evolution equation.

We will present two methods. One, essentially taken from [13], is based on the Benamou-Brenier
formula first introduced in [11] as a numerical tool for optimal transport (also see [12]). This method is
well-suited for the case where the energy F(%) used in the gradient flow is a convex function of %. For
instance, it works for functionals of the form F(%) =

∫
f (%(x))dx +

∫
Vd% and can be used for Fokker-

Planck and porous medium equations. The second method is based on methods from semi-discrete
optimal transport, essentially developed by Q. Mérigot using computational geometry (see [73, 58] and
[61] for 3D implementation) and translates the problem into an optimization problem in the class of
convex functions; it is well suited for the case where F is geodesically convex, which means that the
term

∫
f (%(x)) dx is ony admissible if f satisfies McCann’s condition, the term

∫
Vd% needs V to be

convex, but interaction terms such as
∫ ∫

W(x − y) d%(x) d%(y) are also allowed, if W is convex.

Augmented Lagrangian methods Let us recall the basis of the Benamou-Brenier method. This
amounts to solve the variational problem (4.9) which reads, in the quadratic case, as

min sup
(a,b)∈K2

∫ ∫
ad% +

∫ ∫
b · dE : ∂t%t + ∇ · Et = 0, %0 = µ, %1 = ν

where K2 = {(a, b) ∈ R×Rd : a+ 1
2 |b|

2 ≤ 0}. We then use the fact that the continuity equation constraint
can also be written as a sup penalization, by adding to the functional

sup
φ∈C1([0,1]×Ω)

−

∫ ∫
∂tφd% −

∫ ∫
∇φ · dE +

∫
φ1dν −

∫
φ0dµ,

15Note that this second distance does not require the same mass for µ and ν, while the Wasserstein distance in the other min-
imization problem requires mass equality, but has to be extended to measures with equal mass, but not necessarily probability
measures.

47



which is 0 in case the constraint is satisfied, and +∞ if not.
It is more convenient to express everything in the space-time formalism, i.e. by writing ∇t,xφ for

(∂tφ,∇φ) and using the variable m for (%, E) and A for (a, b). We also set G(φ) :=
∫
φ1dν−

∫
φ0dµ. Then

the problem becomes
min
m

sup
A,φ

m · (A − ∇t,xφ) − IK2(A) + G(φ),

where the scalar product is here an L2 scalar product, but becomes a standard Euclidean scalar product
as soon as one discretizes (in time-space). The function IK2 denotes the indicator function in the sense of
convex analysis, i.e. +∞ if the condition A ∈ K2 is not satisfied, and 0 otherwise.

The problem can now be seen as the search for a saddle-point of the Lagrangian

L(m, (A, φ)) := m · (A − ∇t,xφ) − IK2(A) + G(φ),

which means that we look for a pair (m, (A, φ)) (actually, a triple, but A and φ play together the role
of the second variable) where m minimizes for fixed (A, φ) and (A, φ) maximizes for fixed m. This fits
the following framework, where the variables are X and Y and the Lagrangian has the form L(X,Y) :=
X ·ΛY −H(Y). In this case one can use a very smart trick, based on the fact that the saddle points of this
Lagrangan are the same of the augmented Lagrangian L̃ defined as L̃(X,Y) := X · ΛY − H(Y) − r

2 |ΛY |2,
whatever the value of the parameter r > 0 is. Indeed, the saddle-point of L are characterized by (we
assume all the functions we minimize are convex and all the functions we maximize are concave)ΛY = 0 (optimality of X),

ΛtX − ∇H(Y) = 0 (optimality of Y),

while those of L̃ are characterized byΛY = 0 (optimality of X),
ΛtX − ∇H(Y) − rΛtΛY = 0 (optimality of Y),

which is the same since the first equation implies that the extra term in the second vanishes.
In this case, we obtain a saddle point problem of the form

min
m

max
A,φ

m · (A − ∇t,xφ) − IK2(A) + G(φ) −
r
2
||A − ∇t,xφ||

2

(where the squared norm in the last term is an L2 norm in time and space), which is then solved by
iteratively repeating three steps: for fixed A and m, finding the optimal φ (which amounts to minimizing
a quadratic functional in calculus of variations, i.e. solving a Poisson equation in the space-time [0, 1]×Ω,
with Neumann boundary conditions, homogeneous on ∂Ω and non-homogeneous on t = 0 and t = 1, due
to the term G); then for fixed φ and m find the optimal A (which amounts to a pointwise minimization
problem, in this case a projection on the convex set K2); finally update m by going in the direction of the
gradient descent, i.e. replacing m with m − r(A − ∇t,xφ) (it is convenient to choose the parameter of the
gradient descent to be equal to that the Augmented Lagrangian).

This is what is done in the case where the initial and final measures are fixed. At every JKO step,
one is fixed (say, µ), but the other is not, and a penalization on the final %1 is added, of the form τF(%1).
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Inspired from the considerations above, the saddle point below allows to treat the problem

min
%1

1
2

W2
2 (%1, µ) +

∫
f (%1(x))dx +

∫
Vd%1

by formulating it as

min
m,%1

max
A,φ,λ

∫ ∫
m · (A − ∇t,xφ) +

∫
%1 · (φ1 + λ + V) −

∫ ∫
IK2(A) −

∫
φ0dµ −

∫
f ∗(λ(x))dx

−
r
2

∫ ∫
|A − ∇t,xφ|

2 −
r
2

∫
|φ1 + λ + V |2,

where we re-inserted the integration signs to underline the difference between integrals in space-time
(with m, A and φ) and in space only (with φ0, φ1, %1,V and λ). The role of the variable λ is to be dual to
%1, which allows to express f (%1) as supλ %1λ − f ∗(λ).

To find a solution to this saddle-point problem, an iterative procedure is also used, as above. The last
two steps are the update via a gradient descent of m and %1, and do not require further explications. The
first three steps consist in the optimization of φ (which requires the solution of a Poisson problem) and in
two pointwise minimization problems in order to find A (which requires a projection on K2) and λ (the
minimization of f ∗(λ) + r

2 |φ1(x) + λ + V(x)|2 − %1(x)λ, for fixed x).
For the applications to gradient flows, a small time-step τ > 0 has to be fixed, and this scheme has

to be done for each k, using µ = %τk and setting %τk+1 equal to the optimizer %1 and the functions f and V
must include the scale factor τ. The time-space [0, 1] × Ω has to be discretized but the evolution in time
is infinitesimal (due to the small time scale τ), which allows to choose a very rough time discretization.
In practice, the interval [0, 1] is only discretized using less than 10 time steps for each k. . .

The interested reader can consult [13] for more details, examples and simulations.

Optimization among convex functions It is clear that the optimization problem

min
%

1
2

W2
2 (%, µ) + F(%)

can be formulated in terms of transport maps as

min
T :Ω→Ω

1
2

∫
Ω

|T (x) − x|2dµ(x) + F(T#µ).

Also, it is possible to take advantage of Brenier’s theorem which characterizes optimal transport maps as
gradient of convex functions, and recast it as

min
u convex : ∇u∈Ω

1
2

∫
Ω

|∇u(x) − x|2dµ(x) + F((∇u)#µ).

It is useful to note that in the last formulation the convexity of u is not necessary to be imposed, as
it would anyway come up as an optimality condition. On the other hand, very often the functional F
involves explicity the density of the image measure (∇u)#µ (as it is the case for the typical example F ),
and in this case convexity of u helps in computing this image measure. Indeed, whenever u is convex we
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can say that the density of % := (∇u)#µ (if µ itself is absolutely continuous, with a density that we will
denote by %0) is given by16

% =
%0

det(D2u)
◦ (∇u)−1.

Hence, we are facing a calculus of variations problem in the class of convex functions. A great
difficulty to attack this class of problems is how to discretize the space of convex functions. The first
natural approach would be to approximate them by piecewise linear functions over a fixed mesh. In this
case, imposing convexity becomes a local feature, and the number of linear constraints for convexity is
proportional to the size of the mesh. Yet, Choné and Le Meur showed in [32] that we cannot approximate
in this way all convex functions, but only those satisfying some extra constraints on their Hessian (for
instance, those which also have a positive mixed second derivative ∂2u/∂xi∂x j). Because of this difficulty,
a different approach is needed. For instance, Ekeland and Moreno- Bromberg used the representation of
a convex function as a maximum of affine functions [39], but this needed many more linear constraints;
Oudet and Mérigot [74] decided to test convexity on a grid different (and less refined) than that where
the functions are defined. . . These methods give somehow satisfactory answers for functionals involving
u and ∇u, but are not able to handle terms involving the Monge-Ampère operator det(D2u).

The method proposed in [14], that we will roughly present here, does not really use a prescribed
mesh. The idea is the following: suppose that µ is a discrete measure of atomic type, i.e. of the form∑

j a jδx j . A convex defined on its support S := {x j} j will be a function u : S → R such that at each point
x ∈ S the subdifferential

∂u(x) := {p ∈ Rd : u(x) + p · (y − x) ≤ u(y) for all y ∈ S }

is non-empty. Also, the Monge-Ampère operator will be defined by using the sub-differential, and more
precisely the equality ∫

B
det(D2u(x))dx = |∂u(B)|

which is valid for smooth convex functions u and arbitrary open sets B. An important point is the fact that
whenever f is superlinear, functionals of the form

∫
f (%(x))dx impose, for their finiteness, the positiviy

of det(D2u), which will in turn impose that the sub-differential has positive volume, i.e. it is non-empty,
and hence convexity. . .

More precisely, we will minimize over the set of pairs (u, P) : S → R × Rd where P(x) ∈ ∂u(x) for
every x ∈ S . For every such pair (u, P) we weed to define G(u, P) which is meant to be (∇u)#µ, and
define F(G(u, P)) whenever F has the form F = F +V +W. We will simply define

V(G(u, P)) :=
∑

j

a jV(P(x j)) andW(G(u, P)) :=
∑
j, j′

a ja j′W(P(x j) − P(x j′)),

which means that we just use P#µ instead of (∇u)#µ. Unfortunately, this choice is not adapted for the
functional F , which requires absolutely continuous measures, and P#µ is atomic. In this case, instead
of concentrating all the mass a j contained in the point x j ∈ S on the unique point P(x j), we need to
spread it, and we will spread it uniformly on the whole subdifferential ∂u(x j). This means that we also

16This same formula takes into account the possibility that ∇u could be non-injective, i.e. u non-strictly convex, in which
case the value of the density could be +∞ due to the determinant at the denominator which would vanish.
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define a new surrogate of the image measure (∇u)#µ, called Gac(u, P) (where the superscript ac stands
for absolutely continuous), given by

Gac(u, P) :=
∑

j

a j

|A j|
Ld A j,

where A j := ∂u(x j) ∩ Ω (the intersection with Ω is done in order to take care of the constraint ∇u ∈ Ω).
Computing F (Gac(u, P)) gives hence

F (Gac(u, P)) =
∑

j

|A j| f
(

a j

|A j|

)
.

It is clear that the discretization ofV andW in terms of G(u, P) are convex functions of (u, P) (actually,
of P, and the constraint relating P and u is convex) whenever V and W are convex; concerning F , it is
possible to prove, thanks to the concavity properties of the determinant or, equivalently, to the Brunn-
Minkowski inequality (see for instance [85]) that F (Gac(u, P)) is convex in u as soon as f satisfies
McCann’s condition. Globally, it is not surprising to see that we face a convex variational problem
in terms of u (or of ∇u) as soon as F is displacement convex in % (actually, convexity on generalized
geodesics based at µ should be the correct notion).

Then we are lead to study the variational problem

min
u,P

1
2

∑
j

a j|P(x j) − x j|
2 +V(G(u, P)) +W(G(u, P)) + F (Gac(u, P)) (4.24)

under the constraints P(x j) ∈ A j := ∂u(x j) ∩ Ω. Note that we should incorporate the scale factor τ in
the functional F which means that, for practical purposes, convexity in P is guaranteed as soon as V
and W have second derivatives which are bounded from below (they are semi-convex) and τ is small
(the quadratic term coming from W2

2 will always overwhelm possible concavity of the other terms). The
delicate point is how to compute the subdifferentials ∂u(x j), and optimize them (i.e. compute derivatives
of the relevant quantity w.r.t. u).

This is now possible, and in a very efficient way, thanks to tools from computational geometry.
Indeed, in this context, subdifferentials are exactly a particular case of what are called Laguerre cells,
which in turn are very similar to Voronoi cells. We remind that, given some points (x j) j, their Voronoi
cells V j are defined by

V j :=
{

x ∈ Ω :
1
2
|x − x j|

2 ≤
1
2
|x − x j′ |

2 for all j′
}

(of course the squares of the distances could be replaced by the distances themselves, but in this way
it is evident that the cells V j are given by a finite number of linear inequalities, and are thus convex
polyhedra; the factors 1

2 are also present only for cosmetic reasons). Hence, Voronoi cells are the cells
of points which are closer to one given point x j ∈ S than to the others.

In optimal transport a variant of these cells is more useful: given a set of values ψ j, we look for the
cells (called Laguerre cells)

W j :=
{

x ∈ Ω :
1
2
|x − x j|

2 + ψ j ≤
1
2
|x − x j′ |

2 + ψ j′ for all j′
}
.
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This means that we look at points which are closer to x j than to the other points x j′ , up to a correction17

given by the values ψ j. It is not difficult to see that also in this case cells are convex polyhedra. And
it is also easy to see that, if % is an absolutely continuous measure on Ω and µ =

∑
j a jδx j , then finding

an optimal transport map from % to µ is equivalent to finding values ψ j such that %(W j) = a j for every
j (indeed, in this case, the map sending every point of W j to x j is optimal, and −ψ j is the value of the
corresponding Kantorovich potential at the point x j). Finally, it can be easily seen that the Laguerre cells
corresponding to ψ j := u(x j) − 1

2 |x j|
2 are nothing but the subdifferentials of u (possibly intersected with

Ω).
Handling Laguerre cells from the computer point of view has for long been difficult, but it is now

state-of-the-art in computational geometry, and it is possible to compute very easily their volumes (in-
cidentally, also find some points P belonging to them, which is useful so as to satisfy the constraints
of Problem (4.24)), as well as the derivatives of their volumes (which depend on the measures of each
faces) w.r.t. the values ψ j. For the applications to semi-discrete18 optimal transport problems, the results
are now very fast (with discretizations with up to 106 points in some minutes, in 3D; the reader can
have a look at [73, 58, 61] but also to Section 6.4.2 in [83]), and the same tools have been used for the
applications to the JKO scheme that we just described.

In order to perform an iterated minimization, it is enough to discretize %0 with a finite number of Dirac
masses located at points x j, to fix τ > 0 small, then to solve (4.24) with µ = %τk and set %τk+1 := G(u, P)
for the optimal (u, P). Results, proofs of convergence and simulations are in [14].

5 The heat flow in metric measure spaces

In this last section we will give a very sketchy overview of an interesting research topic developed by
Ambrosio, Gigli, Savaré and their collaborators, which is in some sense a bridge between

• the theory of gradient flows inW2, seen from an abstract metric space point of view (which is not
the point of view that we underlined the most in the previous section),

• and the current research topic of analysis and differential calculus in metric measure spaces.

This part of their work is very ambitious, and really aims at studying analytical and geometrical properties
of metric measure spaces; what we will see here is only a starting point.

The topic that we will briefly develop here is concerned with the heat flow, and the main observation
is the following: in the Euclidean space Rd (or in a domain Ω ⊂ Rd), the heat flow ∂t% = ∆% may be seen
as a gradient flow in two different ways:

• first, it is the gradient flow in the Hilbert space L2(Ω), endowed with the standard L2 norm, of
the functional consisting in the Dirichlet energy D(%) =

∫
|∇%|2dx (a functional which is set to

+∞ if % < H1(Ω)); in this setting, the initial datum %0 could be any function in L2(Ω), but well-
known properties of the heat equation guarantee %0 ≥ 0 ⇒ %t ≥ 0 and, if Ω is the whole space, or
boundary conditions are Neumann, then

∫
%0dx = 1⇒

∫
%tdx = 1; it is thus possible to restrict to

probability densities (i.e. positive densities with mass one);
17If the points x j are the locations of some ice-cream sellers, we can think that ψ j is the price of an ice-cream at x j, and the

cells W j will represent the regions where customers will decide to go to the seller j, keeping into account both the price and the
distance.

18One measure being absolutely continuous, the other atomic.
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• then, if we use the functional E of the previous section (the entropy defined with f (t) = t log t), the
heat flow is also a gradient flow in the spaceW2(Ω).

A natural question arises: is the fact that these two flows coincide a general fact? How to analyze
this question in a general metric space? In the Euclidean space this is easy: we just write the PDEs
corresponding to each of these flows and, as they are the same PDE, for which we know uniqueness
results, then the two flows are the same.

First, we realize that the question is not well-posed if the only structure that we consider on the
underlining space is that of a metric space. Indeed, we also need a reference measure (a role played by
the Lebesgue measure in the Euclidean space). Such a measure is needed in order to define the integral∫
|∇%|2dx, and also the entropy

∫
% log % dx. Roughly speaking, we need to define “dx”.

Hence, we need to consider metric measure spaces, (X, d,m), where m ≥ 0 is a reference measure
(usually finite) on the Borel tribe of X. The unexperienced reader should not be surprised: metric measure
spaces are currently the new frontier of some branches of geometric analysis, as a natural generalization
of Riemannian manifolds. In order not to overburden the reference list, we just refer to the following
papers, already present in the bibliography of this survey for other reasons: [2, 6, 7, 4, 29, 47, 49, 50, 51,
52, 64, 84, 86].

5.1 Dirichlet and Cheeger energies in metric measure spaces

In order to attack our question about the comparison of the two flows, we first need to define and study
the flow of the Dirichlet energy, and in particular to give a suitable definition of such an energy. This
more or less means defining the space H1(X) whenever X is a metric measure space (MMS). This is not
new, and many authors studied it: we cite in particular [50, 51, 29, 84]). Moreover, the recent works by
Ambrosio, Gigli and Savaré ([6, 4]) presented some results in this direction, useful for the analysis of
the most general case (consider that most of the previous results require a doubling assumption and the
existence of a Poincaré inequality, see also[52], and this assumption on (X, d,m) is not required in their
papers). One of the first definition of Sobolev spaces on a MMS had been given by Haiłasz, who used
the following definition

f ∈ H1(X, d,m) if there is g ∈ L2(X,m) such that | f (x) − f (y)| ≤ d(x, y)(g(x) + g(y)).

This property characterizes Sobolev spaces in Rd by choosing

g = const · M
[
|∇ f |

]
,

where M[u] denotes the maximal function of u: M[u](x) := supr>0

>
B(x,r) u (the important point here is

the classical result in harmonic analysis guaranteeing ||M[u]||L2 ≤ C(d)||u||L2) and c is a suitable constant
only depending on the dimension d. As this definition is not local, amost all the recent investigations
on these topics are rather based on some other ideas, due to Cheeger ([29]), using the relaxation starting
from Lipschitz functions, or to Shanmuganlingam ([84]), based on the inequality

| f (x(0)) − f (x(1))| ≤
∫ 1

0
|∇ f (x(t)||x′(t)| dt

required to hold on almost all curves, in a suitable sense. The recent paper [4] resents a classification
of the various weak notions of modulus of the gradient in a MMS and analyzes their equivalence. On
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the contrary, here we will only choose one unique definition for
∫
|∇ f |2dm, the one which seems the

simplest.
For every Lipschitz function f on X, let us take its local Lipschitz constant |∇ f |, defined in (3.1), and

setD( f ) :=
∫
|∇ f |2(x)dm. Then, by relaxation, we define the Cheeger Energy19 C( f ):

C( f ) := inf
{
lim inf

n
D( fn) : fn → f in L2(X,m), fn ∈ Lip(X)

}
.

We then define the Sobolev space H1(X, d,m) as the space of functions such that C( f ) < +∞. This
space will be a Banach space, endowed with the norm f 7→

√
C( f ) and the function f 7→ C( f ) will

be convex. We can also define −∆ f as the element of minimal norm of the subdifferential ∂C( f ) (an
element belonging to the dual of H1(X, d,m)). Beware that, in general, the map f 7→ −∆ f will not be
linear (which corresponds to the fact that the norm

√
C( f ) is in general not Hilbertian, i.e. it does not

come from a scalar product).
Definining the flow of C in the Hilbert space L2(X,m) is now easy, and fits well the classical case

of convex functionals on Hilbert spaces or, more generally, of monotone maximal operators (see [21]).
This brings very general existence and uniqueness results.

5.2 A well-posed gradient flow for the entropy

A second step (first developed in [47] and then generalized in [6]) consists in providing existence and
uniqueness conditions for the gradient flow of the entropy, w.r.t. the Wasserstein distance W2. To do so,
we consider the funcitonal E, defined on the set of densities f such that % := f ·m is a probability measure
via E( f ) :=

∫
f log f dm and we look at its gradient flow inW2 in the EDE sense. In order to apply the

general theory of Section 3, as we cannot use the notion of weak solutions of the continuity equation, it
will be natural to suppose that this functional E is λ-geodesically convex for some λ ∈ R. This means, in
the sense of Sturm and Lott-Villani, that the space (X, d,m) is a MMS with Ricci curvature bounded from
below. We recall here the corresponding definition, based on the characteristic property already evoked
in the Section 4.5, which was indeed a theorem (Proposition 4.11) in the smooth case.

Definition 5.1. A metric measure space (X, d,m) is said to have a Ricci curvature bounded from below
by a constant K ∈ R in the sense of Sturm and Lott-Villani if the entropy functional E : P(X)→ R∪{+∞}
defined through

E(%) =


∫

f log f dm if % = f · m
+∞ if % is not absolutely continuous w.r.t. m

is K-geodesically convex in the spaceW2(X). In this case we say that (X, d,m) satisfies the condition20

CD(K,∞).

Note that the EVI formulation is not available in this case, as we do not have the geodesic convexity
of the squared Wasserstein. Moreover, on a general metric space, the use of generalized geodesics is not

19The name has been chosen because Cheeger also gave a definition by relaxation; moreover, the authors did not wish to call
it Dirichlet energy, as generally this name is used fro quadratic forms.

20The general notation CD(K,N) is used to say that a space has curvature bounded from below by K and dimension bounded
from above by N (CD stands for “curvature-dimension”).
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always possible. This is the reason why we will define the gradient flow of E by the EDE condition and
not the EVI, but this requires to prove via other methods the uniqueness of such a gradient flow. To do
so, Gigli introduced in [47] an interesting strategy to prove uniqueness for EDE flows, which is based on
the following proposition.

Proposition 5.1. If F : P(X)→ R∪{+∞} is a strictly convex functional (w.r.t. usual convex combinations
µs := (1− s)µ0 + sµ1, which is meaningful in the set of probability measures), such that |∇−F| is an upper
gradient for F and such that |∇−F|2 is convex, then for every initial measure µ̄ there exists at most one
gradient flow µ(t) in the EDE sense for the functional F satisfying µ(0) = µ̄.

In particular, this applies to the functional E: the strict convexity is straightforward, and the squared
slope can be proven to be convex with the help of the formula (3.4) (it is interesting to observe that, in
the Euclidean case, an explicit formula for the slope is known:

|∇−E|2(%) =

∫
|∇ f |2

f
dx, (5.1)

whenever % = f · Ld).

5.3 Gradient flows comparison

The last point to study (and it is not trivial at all) is the fact that every gradient flow of C (w.r.t. the L2

distance) is also an EDE gradient flow of E for the W2 distance. This one (i.e. (C, L2) ⇒ (E,W2)) is
the simplest direction to consider in this framework, as computations are easier. This is a consequence
of the fact that the structure of gradient flows of convex functionals in Hilbert spaces is much more well
understood. In order to do so, it is useful to compute and estimates

d
dt
E( ft), where ft is a gradient flow of C in L2(X,m).

This computation is based on a strategy essentially developed in [49] and on a lemma by Kuwada. The
initial proof, contained in [49], is valid for Alexandroff spaces21. The generalization of the same result
to arbitrary MMS satisfying CD(K,∞) is done in [6].

Proposition 5.2. If ft is a gradient flow of C in L2(X,Hd), then we have the following equality with the
Fisher information:

−
d
dt
E( ft) = C(2

√
ft).

Moreover, for every % = f · Hd ∈ P(X) we have

C(2
√

f ) ≥ |∇−E|2(%)

21These spaces, see [22], are metric spaces where triangles are at least as fat as the triangles of a model comparison manifold
with constant curvature equal to K, the comparison being done in terms of the distances from a vertex of a triangle to the points
of a geodesic connecting the two other vertices. These spaces can be proven to have always an integer dimension d ∈ N ∪ {∞},
and can be consideres as MMS whenever d < ∞, by endowing them with their Hausdorff measure Hd. Note anyway that the
comparison manifold with constant curvature can be, anyway, taken of dimension 2, as only triangles appear in the definition.
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(where the slope of E is computed for the W2 distance22). Also, if we consider the curve %t = ft · Hd, it
happens that %t in an AC curve in the spaceW2(X) and

|%′|(t)2 ≤ C(2
√

ft).

these three estimates imply that %t is a gradient flow of E w.r.t. W2.

Once this equivalence is established, we can wonder about the properties of this gradient flow. The
L2 distance being Hilbertian, it is easy to see that the C2G2 property is satisfied, and hence this flow also
satisfies EVI. On the contrary, it is not evident that the same is true when we consider the same flow as
the gradient flow of E for the distance W2. Indeed, we can check that the following three conditions are
equivalent (all true or false depending on the space (X, d,m), which is supposed to satisfy CD(K,∞); see
[7] for the proofs):

• the unique EDE gradient flow of E for W2 also satisfies EVI;

• the heat flow (which is at the same time the gradient flow of E for W2 and of C for L2) depends
linearly on the initial datum;

• (if we suppose that (X, d,m) is a Finsler manifold endowed with its natural distance and its volume
measure), X is a Riemannian manifold.

As a consequence, Ambrosio, Gigli and Savaré proposed in [7] a definition of MMS having a Rie-
manniann ricci curvature bounded from below by requiring both to satisfy the CD(K,∞) condition, and
the linearity of the heat flow (this double condition is usually written RCD(K,∞)). This is the notion of
infinitesimally Hilbertian space that we mentioned at the end of Section 3.

It is important to observe (but we will not develop this here) that these notions of Ricci bounds (either
Riemannian or not) are stable via measured Gromov-Hausdorff convergence (a notion of convergence
similar to the Gromov-Hausdorff convergence of metric spaces, but considering the minimal Wasserstein
distance between the images of two spaces via isometric embeddings into a same space). This can be
surprising at a first sight (curvature bounds are second-order objects, and we are claiming that they are
stable via a convergence which essentially sounds like a uniform convergence of the spaces, with a weak
convergence of the measures), but not after a simple observation: also the class of convex, or λ-convex,
functions is stable under uniform (or even weak) convergence! but, of course, proving this stability is not
a trivial fact.
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[6] L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and appli-
cations to spaces with Ricci bounds from below, Inv. Math. 195 (2), 289–391, 2014.
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measure solutions and finite-time aggregation for nonlocal interaction equations Duke Math. J.
156 (2), 229–271, 2011.

[26] J.-A. Carrillo, R.J. McCann and C. Villani, Kinetic equilibration rates for granular media and
related equations: entropy dissipation and mass transportation estimates, Revista Matemática
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