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Abstract

We study chirality transitions in frustrated ferromagnetic spin chains, in view of
a possible connection with the theory of Liquid Crystals. A variational approach to
the study of these systems has been recently proposed by Cicalese and Solombrino,
focusing close to the helimagnet/ferromagnet transition point corresponding to the
critical value of the frustration parameter α = 4. We reformulate this problem for
any α ≥ 0 in the framework of surface energies in nonconvex discrete systems with
nearest neighbours ferromagnetic and next-to-nearest neighbours antiferromagnetic
interactions and we link it to the gradient theory of phase transitions, by showing a
uniform equivalence by Γ-convergence on [0, 4] with Modica-Mortola type function-
als.
Keywords: Γ-convergence, Equivalence, Frustrated lattice systems, Chirality tran-
sitions, Modica-Mortola

1 Introduction

The phenomenon of frustration arises from the competition between different inter-
actions, in a continuous or discrete physical system, that favor incompatible ground
states. It occurs, for instance, in the liquid-crystalline phases of chiral molecules: a chi-
ral molecule cannot be superimposed on its mirror image through any proper rotation or
translation. The main effect of chirality is that chiral molecules do not align themselves
parallel to their neghbors but tend to form a characteristic angle with them (see, e.g.,
[1, 15, 13]).
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Edge-sharing chains of cuprates, instead, provide an example of frustrated lattice
systems, where the frustration results from the competition between ferromagnetic (F)
nearest-neighbour (NN) and antiferromagnetic (AF) next-nearest-neighbour (NNN) in-
teractions (see, e.g., [12]).

In this paper we study the asymptotic properties of a one-dimensional frustrated
spin system at zero temperature via Γ-convergence (see [3] and [11]), focusing also on
the variational equivalence with problems in gradient theory of phase transitions (see,
e.g., [3, 2] for a simple introduction to the topic). Our contribution has been inspired by
the recent results about the variational discrete-to-continuum analysis of such systems
provided by Cicalese and Solombrino [10] in the vicinity of the so called “helimag-
net/ferromagnet transition point”, exhibiting at a suitable scale different scenarios not
detected by a first-order Γ-limit. Indeed, the Γ-convergence approach provides a rigor-
ous way of deriving a continuum limit for discrete systems as the number of interacting
particles is increasing. However, the Γ-limit does not always capture the main features
of the discrete model and in some cases more refined approximations are needed (see,
e.g., [5, 10, 18, 4]). This motivated the derivation of the uniformly Γ-equivalent theories,
introduced by Braides and Truskinovsky [8] for a wide class of discrete systems and
developed, e.g., in the framework of fracture mechanics, by Scardia, Schlömerkemper
and Zanini [17] for one-dimensional chains of atoms with Lennard-Jones interactions
between nearest-neighbours. Our paper can also be seen as a first step in the analysis of
chirality transitions in more complicated physical systems like as chiral liquid crystals. A
discrete-to-continuum analysis via Γ-convergence of some problems in liquid crystals has
been recently treated, e.g., by Braides, Cicalese and Solombrino [6], but this promising
research field is still largely unexplored.

We consider the so-called F-AF spin chain model, where the state of the system is
described by an S1-valued spin variable u = (ui) parameterized over the points of the
set 1

nZ ∩ [0, 1], n ∈ N. The energy of a given state of the system is

Eαn (u) = −α
n−1∑
i=0

(ui, ui+1) +
n−1∑
i=0

(ui, ui+2)− nmα, (1.1)

with periodic boundary conditions (u0, u1) = (un, un+1), where α ≥ 0 is the frustration
parameter, (·, ·) denotes the scalar product between vectors in R2and mα are constants
depending on α (see (2.5) for the precise definition).

The first term of the energy (1.1) is ferromagnetic and favors the alignment of NN
spins, while the second, being antiferromagnetic, frustrates it as it favors antipodal NNN
spins. Consequently, the frustration of the system depends on the parameter α. In order
to characterize the ground states of this system and their dependence on the value of α,
we first associate to each pair of nearest neighbours ui, ui+1 the corresponding oriented
central angle θi ∈ [−π, π). Then, by the periodicity assumption, we may reread the
energies in terms of this scalar variable as

Eαn (θ) = −α
2

n−1∑
i=0

(
cos θi + cos θi+1

)
+

n−1∑
i=0

cos(θi + θi+1)− nmα, (1.2)
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and follow the approach by Braides and Cicalese [5] for lattice systems of the form (1.2).
Indeed, by “minimizing out” for each fixed i the nearest neighbours interactions, we are
led to the definition of the effective potential Wα (equation (2.9)) such that

Eαn (θ) ≥
n−1∑
i=0

Wα(θi), (1.3)

where Wα is convex with minimum at θ = θα = 0 if α ≥ 4, while it is a double-well
potential with wells at θ = ±θα if 0 ≤ α ≤ 4 (see Fig. 2). Since the inequality in (1.3)
is strict if θi 6= θi+1 or θi 6= ±θα, we deduce that if α ≥ 4 the nearest neighbours prefer
to stay aligned (ferromagnetic order); if 0 ≤ α ≤ 4, instead, the minimal configurations
of Eαn are θi = θi+1 ∈ {±θα}; that is, the angle between pairs of nearest neighbours
ui, ui+1 and ui+1, ui+2 is constant and depending on the particular value of α (heli-
magnetic order). The two possible choices for θα (a degeneracy known in literature as
chirality symmetry) correspond to either clockwise or counterclockwise spin rotations,
or, equivalently, to a positive or a negative chirality (see Fig. 1).

Figure 1: A schematic representation of the ground states of the spin system for 0 ≤ α < 4 for
clockwise (on the left) and counterclockwise (on the right) chirality (picture taken from [13]).

The asymptotic behaviour of energies Eαn as n → ∞ and for fixed α (Theorem 3.5)
reflects such different regimes for the ground states. If α ≥ 4 the limit is trivially finite
(and equal to zero) only on the constant function θ ≡ 0, while if 0 ≤ α < 4 it is finite
on functions with bounded variation taking only the two values {±θα} and it counts the
number of chirality transitions. More precisely,

Γ- lim
n→+∞

Eαn (θ) = Cα#(S(θ)),

where S(θ) is the jump set of function θ and Cα = C(α) is the cost of each chirality
transition. The value Cα (see Section 3.1) represents the energy of an interface which is
obtained by means of a ‘discrete optimal-profile problem’ connecting the two constant
(minimal) states ±θα. It is continuous as a function of α on the interval [0, 4) (as shown
by Proposition 3.3) and can be defined to be equal to 0 for α ≥ 4. Moreover, Cα → 0 as
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α→ 4 and (compare with [14] and Remark 4.3)

Cα ∼
√

2

3
(4− α)3/2, as α→ 4−. (1.4)

In a recent paper [10], Cicalese and Solombrino investigated the asymptotic behaviour of
this system close to the ferromagnet/helimagnet transition point; that is, they found the
correct scaling (heuristically suggested by (1.4)) to detect the symmetry breaking and
to compute the asymptotic behaviour of the scaled energy describing this phenomenon
as α is close to 4. They let the parameter α depend on n and be close to 4 from below;
i.e., they rewrite energies (1.2) in terms of 4− αn, with 4− αn → 0 as n→∞.

We state their result in a slight different form, useful for the sequel. More precisely,
we prove in Theorem 4.2 that an analogous result can be obtained if we choose as order
parameter the “flat” angular variable

v =
θ

θα
,

which is equivalent to the variable considered in [10] in the regime of small angles. We
compute the Γ-limit F 0 as n→∞, α = αn → 4 with respect to the strong L1-topology
of the scaled energies

Fαnn (v) :=
Eαnn (v)

µαn
=

8Eαnn (v)√
2(4− αn)3/2

, (1.5)

and show that, within this scaling, several regimes are possible depending on the value

l := lim
n

√
2

4n(4− αn)1/2
.

Namely, if l = 0 then F 0(v) = 8
3#(S(v)), v ∈ BV (I, {±1}), if l = +∞ then F 0 is finite

(and equal to zero) only on constant functions, while in the intermediate case l ∈ (0,+∞)
we get

F 0(v) =
1

l

∫
I

(
v2(t)− 1

)2
dt+ l

∫
I
(v̇(t))2 dt, v ∈W 1,2

|per|(I),

where I = (0, 1), BV (I, {±1}) is the space of functions of bounded variation defined on
I and taking the values {±1}, and W 1,2

|per|(I) = {v ∈W 1,2(I) : |v(0)| = |v(1)|}.
Motivated by the particular form of this result and in the spirit of Braides and

Truskinovsky[8], with Theorem 5.6 we find a variational link between such energies
(seen as a ‘parametrized’ family of functionals) and the gradient theory of phase tran-
sitions, in the framework of the equivalence by Γ-convergence. Roughly speaking, two
families of functionals are equivalent by Γ-convergence if they have the same Γ-limit
(see Definition 5.1 and the subsequent ones for the rigorous definitions useful in this
framework). More precisely, we show the uniform equivalence by Γ-convergence on [0, 4]
of the energies Fαn (v) defined in (1.5) with the “Modica-Mortola type” functionals given
by

Gαn(v) =
1

µα

[
λn,α

∫
I

(
v2 − 1

)2
dt+

M2
α

λn,α

∫
I
(v̇)2 dt

]
, v ∈W 1,2

|per|(I),
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where λn,α = 2nθ4
α and Mα = 3Cα/8.

The value α0 = 4 is a singular point, since the Γ-limit of Gαn will depend on choice
of the particular sequence αn → α−0 = 4−. Each α0 ∈ [0, 4), instead, is a regular point ;
i.e., it is not singular. As a consequence of Theorem 5.6, we deduce (see Corollary 5.7)
the uniform equivalence of the energies Eαn (θ) for α ∈ [0, 4) with the family

Hα
n (θ) =

λn,α
θ4
α

∫
I

(
θ2(t)− θ2

α

)2
dt+

M2
α

λn,αθ2
α

∫
I
(θ̇(t))2 dt, θ ∈W 1,2

|per|(I),

whose potentials Wα(θ) := (θ2 − θ2
α)2 have the wells located at the minimal angles

θ = ±θα.
As a final remark, we would like to observe that our result can be useful also to

analyze more general problems of interest for the applied community. For instance, a
natural extension would be the case of S2-valued spins, that has been recently inves-
tigated by Cicalese, Ruf and Solombrino [9] in the vicinity of the transition point. In
that paper, the authors modify the energies penalizing the distance of the S2 field from a
finite number of copies of S1 and prove the emergence of non-trivial chirality transitions.
However, even in the case of values in S1, the Villain Helical XY -model studied there
could be attacked with our approach, at least in the regime of “strong” ferromagnetic
interaction considered therein by the authors.

2 Setting of the problem

Preliminarily, we fix some notation that will be used throughout. We denote by I = (0, 1)
and by λn = 1

n , n ∈ N a positive parameter. Given x ∈ R, we denote by bxc the integer
part of x. The symbol S1 stands for the standard unit sphere of R2. Given a vector
v ∈ R2 with components v1 and v2 with respect to the canonical basis of R2, we will
use the notation v = (v1|v2). Given two vectors v, w ∈ R2 we will denote by (v, w)
their scalar product. Here and in the following, Un(I) will be the space of the functions
w : λnZ ∩ [0, 1] → S1, Θn(I) the space of the functions ϕ : λnZ ∩ [0, 1] → [−π

2 ,
π
2 ] and

we use the notation wi = w(iλn), ϕi = ϕ(iλn); Ūn(I) will denote the subspace of those
w ∈ Un(I) satisfying the following periodic boundary condition

(w1, w0) = (wn+1, wn). (2.1)

Analogously, Θ̄n(I) will denote the subspace of those ϕ ∈ Θn(I) such that ϕ0 = ϕn.
We will identify each lattice function w ∈ Ūn(I) with its piecewise-constant interpo-

lation belonging to the class

Cn(I) = {w : R→ S1 : w(t) = w(λni) if t ∈ (i, i+ 1)λn, i ∈ {0, 1, . . . , n− 1}},

while the symbol Dn(I) will denote the analogous space for functions ϕ ∈ Θ̄n(I).
Given a pair of vectors v = (v1|v2), w = (w1|w2) ∈ S1, we define the function

χ[v, w] : S1 × S1 → {±1} as

χ[v, w] = sign(v1w2 − v2w1), (2.2)
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with the convention that sign(0) = −1, and the corresponding oriented central angle
θ ∈ [−π, π) by

θ = χ[v, w] arccos((v, w)). (2.3)

The positivity of the determinant in (2.2) represents the counterclockwise ordering of
the vectors v and w.

2.1 The model energies Eα
n

We consider the energy of a given state u of the F-AF spin chain model, defined as

Eαn (u) = Pαn (u)− nmα = −α
n−1∑
i=0

(ui, ui+1) +

n−1∑
i=0

(ui, ui+2)− nmα, (2.4)

where u ∈ Cn(I), α ≥ 0 and (see [10, Proposition 3.2])

mα =
1

n
min

u∈L∞(I,S1)
Pαn (u) =

{
−
(
α2

8 + 1
)

if α ∈ [0, 4],

−α+ 1 if α ∈ [4,+∞).
(2.5)

First we note that, thanks to the periodicity assumption (2.1), we can write the
energies (2.4) equivalently in the form

Eαn (u) = −α
2

n−1∑
i=0

[
(ui, ui+1) + (ui+1, ui+2)

]
+
n−1∑
i=0

(ui, ui+2)− nmα. (2.6)

Now we associate to each pair of neighbouring spins ui, ui+1 the corresponding oriented
central angle θi defined as in (2.3), and taking θi as (scalar) order parameter, the energies
(2.6) can be rewritten as

Eαn (θ) = −α
2

n−1∑
i=0

(
cos θi + cos θi+1

)
+
n−1∑
i=0

cos(θi + θi+1)− nmα, (2.7)

where θ ∈ Dn(I).

2.2 Ground states of Eα
n

In this section, we focus on the ground states of the energies Eαn . We will show the
emergence of chiral ground states for α ∈ [0, 4] by means of a double-minimization
technique introduced by Braides and Cicalese in [5] for lattice systems of the form (2.7).
Following their approach, for each i = 0, 1, . . . , n−1 we fix the next-to-nearest neighbour
interactions θi + θi+1 = 2θ and solve the minimum problem

min
θi∈[−π,π)

{
−α

2

[
cos θi + cos(2θ − θi)

]
+ cos 2θ −mα

}
. (2.8)
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By a direct computation, we find that the unique minimizers in (2.8) for α 6= 0 are
θi = θi+1 = θ if θ ∈ (−π/2, π/2), and θi = θi+1 = θ − π if |θ| ∈ (π/2, π), while for α = 0
we have θi = θi+1 = ±π/2. The following picture shows that, up to a reparametrization,
θ and θ − π actually represent the same minimizer.

(a) The angle between NN is θ
(b) The angle between NN is

θ − π

Without loosing generality we will assume up to the end that θi = θi+1 = θ ∈ J ,
J := [−π/2, π/2] and correspondingly we define the effective potential as

Wα(θ) = cos 2θ − α cos θ −mα. (2.9)

The potential Wα is thus obtained by integrating out the effect of nearest-neighbour
interactions optimizing over atomic-scale oscillations, and its properties strongly depend
on the value α. Indeed, if 0 ≤ α < 4 then Wα is a “double-well” potential, while if α ≥ 4
the potential is convex (see Fig. 2). Moreover,

arg minWα(θ) =

{
{±θα} := {± arccos(α4 )}, if α ∈ [0, 4],

{0}, if α ∈ [4,+∞),
(2.10)

We note that by the definition of Wα and (2.8) we get

Eαn (θ) ≥
n−1∑
i=0

Wα(θi), (2.11)

the inequality being strict if θi 6= θi+1 or θi 6= ±θα. In particular, Eαn (θ) ≥ 0.
Thus, the minimization procedure leading to the definition of Wα (and then to in-

equality (2.11)) allows us to deduce some information about the ground states of the
energies Eαn from the properties of this potential. More precisely, if α ≤ 4 the minimal
configurations of Eαn are θi = θi+1 ∈ {±θα}; that is, the angle between pairs of nearest
neighbours ui, ui+1 and ui+1, ui+2 is constant and depending on the particular value of
α. If α ≥ 4, instead, the nearest neighbours prefer to stay aligned (−θα = +θα = 0).

Let be θ ∈ Dn(I). We may regard the energies Eαn as defined on a subset of L∞(I, J)
and consider their extension on L∞(I, J). With a slight abuse of notation, we set
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Figure 2: The potential Wα for 0 ≤ α < 4 (on the left) and for α ≥ 4 (on the right).

Eαn : L∞(I, J)→ [0,+∞] as

Eαn (θ) =

−
α

2

n−1∑
i=0

(cos θi + cos θi+1) +
n−1∑
i=0

cos(θi + θi+1)− nmα, if θ ∈ Dn(I),

+∞, otherwise.

(2.12)

3 Limit behaviour of Eα
n with fixed α

Our first result is the explicit computation of the Γ-limit, as n→∞, of the energies Eαn
with fixed α ∈ [0,+∞). As we will show with Theorem 3.5, the asymptotic behaviour of
the energies Eαn reflects the different regimes for the ground states outlined in Section 2.2.
Indeed, the limit is non-trivial only in the helimagnetic regime (0 ≤ α < 4), representing
the energy the system spends on the scale 1 for a finite number of chirality transitions
from −θα to θα.

3.1 Crease transition energies

The cost Cα of each chirality transition can be characterized as the energy of an interface
which is obtained by means of a ‘discrete optimal-profile problem’ connecting the two
constant (minimal) states ±θα.

Let α ∈ [0, 4). According to [5, Section 2.2], we define the crease transition energy
between −θα and θα as

Cα := C(−θα, θα)

= inf
N∈N

min
{ +∞∑
i=−∞

[
cos(θi + θi+1)− α

2
(cos θi + cos θi+1)−mα

]
:

θ : Z→ [−π/2, π/2], θi = sign(i)θα, if |i| ≥ N
}
.

(3.1)

We note that the infinite sums in (3.1) are well defined, since they involve only non
negative terms and, actually, for fixed N they are finite sums, since the summands are
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0 for i ≥ N and i ≤ −N − 1. Moreover, it follows by the definition a useful symmetry
property of the crease energy; that is,

C(−θα, θα) = C(θα,−θα). (3.2)

Now we prove that the optimal test function in (3.1) is constantly equal to ±θα
only for N → +∞, thus relaxing the boundary condition as a condition at infinity in
the definition of Cα. We notice that an analogous property of crease energies has been
showed by Braides and Solci in [7] for a one-dimensional system of Lennard-Jones nearest
and next-to-nearest neighbour interactions.

Proposition 3.1. The infimum in (3.1) is obtained for N →∞; that is,

Cα = inf
{ +∞∑
i=−∞

[
cos(θi + θi+1)− α

2
(cos θi + cos θi+1)−mα

]
:

θ : Z→ [−π/2, π/2], lim
i→±∞

sign(i)θi = θα

}
.

(3.3)

Moreover, Cα > 0.

Proof. Let θi be a test function for the problem (3.3) and denote by C̃α the infimum in
(3.3). With fixed η > 0, let Nη be such that |θi − sign(i)θα| < η for |i| ≥ Nη, and define

θiη =

{
θi, if |i| ≤ Nη

sign(i)θα, if |i| > Nη.

We then have

+∞∑
i=−∞

[
−α

2
(cos θiη + cos θi+1

η ) + cos(θiη + θi+1
η )−mα

]

=

Nη∑
i=−Nη−1

[
−α

2
(cos θiη + cos θi+1

η ) + cos(θiη + θi+1
η )−mα

]

=

Nη−1∑
i=−Nη

[
−α

2
(cos θi + cos θi+1) + cos(θi + θi+1)−mα

]
− α

2
(cos θNη + cos θα) + cos(θNη + θα)−mα

− α

2
(cos θα + cos θ−Nη) + cos(θ−Nη − θα)−mα

≤
+∞∑
i=−∞

[
−α

2
(cos θi + cos θi+1) + cos(θi + θi+1)−mα

]
+ 2ω(η)

where

ω(η) := max
{
−α

2
(cos θ + cos θα) + cos(θ + θα)−mα : |θ − θα| ≤ η

}
(3.4)
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is infinitesimal as η → 0. This shows that the value Cα defined in (3.1) is less or equal
than C̃α. Then we are done, the converse inequality being trivial since any test function
for problem (3.1) is a test function for problem (3.3). The estimate Cα > 0 easily follows
from (2.11) and the fact that ±θα are the unique minimizers of Wα.

Remark 3.2. In the ferromagnetic regime α ≥ 4, we may define Cα = 0 consistently
with (3.1), where now mα = −α+ 1. Indeed, being θα = −θα = 0, we can choose θ ≡ 0
as a test function in (3.1) thus obtaining the estimate Cα ≤ 0.

It will be useful in the sequel the following continuity property of Cα with respect to
the frustration parameter α.

Proposition 3.3 (Continuity). The crease energy Cα defined as before is continuous
in [0, 4); i.e., for any ᾱ ∈ [0, 4) and any sequence αj such that 0 ≤ αj < 4, αj → ᾱ it
results Cαj → Cᾱ.

Proof. Let us fix η > 0 and let α, α′ ∈ [0, 4) be such that if |α−α′| < δ(η) for a suitable
δ(η) > 0, then |θα − θα′ | < η/2.
From the definition of Cα′ as in (3.3), there exists a function θ : Z → [−π/2, π/2] such

that
∑
i∈Z
E i,α′(θ) < Cα′ + η, where we have set

E i,α′(θ) := −α
′

2

(
cos θi + cos θi+1

)
+ cos(θi + θi+1) +

(α′)2

8
+ 1,

and lim
i→±∞

sign(i)θi = θα′ . This means that there exist two indices h1(η), h2(η) ∈ N such

that |θi − θα′ | < η/2 for every i > h2(η) and |θi − (−θα′)| < η/2 for every i < −h1(η).
Setting h̄ = h̄(η) := max{h1, h2} and Kh̄ := {i ∈ Z : |i| ≤ h̄}, we observe that for

every i 6∈ Kh̄ it also holds that |sign(i)θi − θα| < η.
Now we modify θ in order to obtain a test function for the problem defining Cα by

setting

θ̃i =

{
θi, if i ∈ Kh̄

sign(i)θα, otherwise.
(3.5)

We then have

Cα ≤
∑
i∈Z
E i,α(θ̃) =

∑
|i|<h̄

E i,α(θ) + E−h̄,α(θ̃) + E h̄,α(θ̃)

≤
∑
i∈Z
E i,α′(θ) + 2|α− α′|#Kh̄ +

[
E−h̄,α(θ̃)− E−h̄,α′(θ)

]
+
[
E h̄,α(θ̃)− E h̄,α′(θ)

]
,

(3.6)

where in the second inequality we used the estimate∑
|i|<h̄

∣∣∣E i,α(θ)− E i,α′(θ)
∣∣∣ ≤ 2|α− α′|#Kh̄.
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Each of the last two terms in (3.6) can be estimated in the same way, so we make an
explicit computation only for the latter. We have

∣∣∣E h̄,α(θ̃)− E h̄,α′(θ)
∣∣∣ ≤ ∣∣∣(cos(θh̄ + θα)− cos(θh̄ + θh̄+1)

∣∣∣+

∣∣∣∣α2 − (α′)2

8

∣∣∣∣+∣∣∣∣α2 (cos θh̄ + cos θα)− α′

2
(cos θh̄ + cos θh̄+1)

∣∣∣∣ ≤ η + 2|α− α′|.

Collecting all the previous estimates and inserting them into (3.6) we obtain

Cα ≤ Cα′ + η + 2|α− α′|#Kh̄ + η + 2|α− α′|
≤ Cα′ + 2η + 2|α− α′|(1 + #Kh̄).

Choosing now γ ≥ 4η and α and α′ such that

|α− α′| ≤ min

{
δ(η),

γ

4(1 + #Kh̄)

}
=: σ(γ, η),

we finally obtain Cα ≤ Cα′ + γ.
If we change the role of α and α′, we get an analogous estimate for Cα′ . Hence, we

conclude that for every γ ≥ 4η, there exists σ(γ, η) > 0 such that if |α − α′| < σ(γ, η)
then |Cα − Cα′ | ≤ γ. Since the choice of η was arbitrary, the assertion immediately
follows.

3.2 Compactness and Γ-convergence results

The following compactness result states that sequences θn with equibounded energy Eαn
converge to a limit function θ which has a finite number of jumps and takes the values
{±θα} almost everywhere if 0 ≤ α < 4, while if α ≥ 4 the limit function is identically 0.

Proposition 3.4 (Compactness). Let Eαn : L∞(I, J) → [0,+∞] be the energies de-
fined by (2.12). If {θn} is a sequence of functions such that

sup
n
Eαn (θn) < +∞, (3.7)

then we have two cases:
(i) if 0 ≤ α < 4 there exists a set S ⊂ (0, 1) with #S < +∞ such that, up to subsequences,
θn converges to θ in L1

loc((0, 1)\S), where θ is a piecewise constant function and θ(0+) =
θ(1+). Moreover, θ(t) ∈ {±θα} for a.e. t ∈ (0, 1) and S(θ) ⊆ S;
(ii) if α ≥ 4 then the limit function θ is identically 0.

Proof. (i) We first note that −α cos θ ≥ |pαθ| −α− 1 for θ ∈ [−π/2, π/2] and a constant
pα depending on α, so that

C > Cλn ≥ λnEαn (θn) ≥|pα|
n−1∑
i=0

λn|θin| − (α+ 1)nλn + λn − nλn +
α2

8
+ 1

≥|pα|
n−1∑
i=0

λn|θin| − α− 1,
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from which we deduce that ∫ 1

0
|θn(t)| dt < +∞. (3.8)

From the equiboundedness assumption (3.7) there exists a constant C > 0 such that

sup
n

n−1∑
i=0

E in(θn) ≤ C < +∞, (3.9)

where we have set

E in(θn) = cos(θin + θi+1
n )− α

2
(cos θin + cos θi+1

n )−mα. (3.10)

Now, if for every fixed η > 0 we define

In(η) := {i ∈ {0, 1, . . . , n− 1} : E in(θn) > η},

then (3.9) implies the existence of a uniform constant C(η) such that

sup
n

#In(η) ≤ C(η) < +∞. (3.11)

Let i ∈ {0, 1, . . . , n− 1} be such that i 6∈ In(η); that is,

E in(θn) = cos(θin + θi+1
n )− α

2
(cos θin + cos θi+1

n )−mα ≤ η.

Let σ = σ(η) > 0 be defined such that if

0 ≤ cos(θ1 + θ2)− α

2
(cos θ1 + cos θ2)−mα ≤ η, θ1 + θ2 = 2θ, θ ∈ {±θα},

then
|θ1 − θ|+ |θ2 − θ| ≤ σ(η).

As a consequence, if i 6∈ In(η) we deduce the existence of θ ∈ {±θα} such that

|θin − θ| ≤ σ and |θi+1
n − θ| ≤ σ.

Hence, up to a finite number of indices i, both θin and its nearest neighbour θi+1
n are

close to the same minimal angle ±θα. Namely, there exists a finite number of indices
0 = i0 < i1 < · · · < iNn = n−1 such that for all k = 1, 2, . . . , Nn we can find θk,n ∈ {±θα}
satisfying for all i ∈ {ik−1 +1, ik−1 +2, . . . , ik−1} the aforementioned closeness property

|θin − θk,n| ≤ σ and |θi+1
n − θk,n| ≤ σ. (3.12)

Now, let {ijr}, r = 1, . . . ,Mn be the maximal subset of 0 = i0 < i1 < · · · < iNn = n− 1
defined by the requirement that if θjr,n = ±θα then θjr+1,n = ∓θα; this means that

{ij1 , . . . , ijMn} ⊆ In(η). Hence, there exists C(η) > 0 such that
∑n−1

i=0 E in(θn) ≥ C(η)Mn

and then Eαn (θn) ≥ C(η)Mn, so that from (3.7) Mn are equibounded. Thus, up to
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further subsequences, we can assume that Mn = M and that for every r = 1, . . . ,M ,
tnijr = λnijr → tr for some tr ∈ [0, 1] and θjr,n = θr. Set S = {t1, . . . tM} and, for

fixed δ > 0, Sδ =
⋃
r(tr − δ, tr + δ). Then, by identifying θn with its piecewise constant

interpolation, from (3.12) and for n large enough we get

sup
t∈(0,1)\Sδ

|θn(t)− θr| ≤ σ.

The previous estimates, together with (3.8) ensure that {θn} is an equicontinuous and
equibounded sequence in (0, 1)\Sδ. Thus, thanks to the arbitrariness of δ, up to pass-
ing to a further subsequence (not relabelled), θn converges in L∞loc((0, 1)\S) (and in
L1
loc((0, 1)\S)) to a function θ such that θ(t) ∈ {±θα} for a.e. t ∈ (0, 1). Moreover,

S(θ) ⊆ S. Finally, by the periodicity assumption (2.1), we have θ0
n = θnn from which

passing to the limit as n→∞ we conclude that θ(0+) = θ(1+).
(ii) The proof of (ii) requires minor changes in the argument above, so we will omit
it.

Now we can state and prove the Γ-convergence result.

Theorem 3.5. (i) Let α ∈ [0, 4). Then Eαn Γ-converges with respect to the L1
loc-topology

to

Eα(θ) =


Cα#(S(θ) ∩ [0, 1)), if θ ∈ PCloc(R), θ ∈ {±θα}

θ is 1-periodic

+∞, otherwise

(3.13)

on L1
loc(R), where Cα = C(−θα, θα) is given by (3.1) and PCloc(R) denotes the space of

locally piecewise constant functions on R.
(ii) Let α ∈ [4,+∞). Then Eαn Γ-converges with respect to the L1

loc-topology to

Eα(θ) =

{
0, if θ = 0

+∞, otherwise
(3.14)

on L1
loc(R).

Proof. (i) Liminf inequality. We may assume, without loss of generality, that θ is left-
continuous at each jump. Let θn → θ in L1(0, 1) be such that Eαn (θn) < +∞. Then, from
Proposition 3.4 there exist N ∈ N, θ̄1, . . . , θ̄N ∈ {±θα} and 0 = s0 < s1 < · · · < sN = 1,
{sj} = {tk} (the set of indices may be different if sk = sk+1 for some k) such that

θnjk → θ̄j , on the interval (sj−1, sj), j ∈ {1, . . . , N}. (3.15)

For l ∈ {0, 1, . . . , N}, let {kln}n be a sequence of indices such that k0
n = 0,

lim
n
λnk

l
n = sl,

and let {hln}n be another sequence of indices such that h0
n = 0,

lim
n
λnh

l
n =

sl + sl−1

2
.

13



To get the Γ-liminf inequality, we rewrite the energy as follows:

Eαn (θn) =
N−1∑
j=1

Eαn (θn, h
j
n, h

j+1
n ) + rn, (3.16)

where we have set

Eαn (θn, h
j
n, h

j+1
n ) =

hj+1
n −1∑
i=hjn

[
cos(θin + θi+1

n )− α

2
(cos θin + cos θi+1

n )−mα

]
,

mα = −α2

8 − 1 and

rn =

h1n−1∑
i=0

E in(θn) +

n−1∑
i=hNn +1

E in(θn),

with rn > 0 and E in(θn) as in (3.10). Defining for j ∈ {1, 2, . . . , N − 1}

θ̃in =


θ̄j , if i ≤ hjn − kjn − 1,

θi+k
j
n

n , if hjn − kjn ≤ i ≤ hj+1
n − kjn − 1,

θ̄j+1, if i ≥ hj+1
n − kjn,

(3.17)

we have that θ̃in is a test function for the minimum problem defining C(θ(sj−), θ(sj+))
as in (3.1), where θ(sj−) = θ̄j and θ(sj+) = θ̄j+1.

For n large enough and any σ > 0, we then find that each summand in (3.16) can be
estimated from below as

Eαn (θn, k
j
n, k

j+1
n ) =

kjn∑
i=hjn

E in(θn) +

hj+1
n −1∑
i=kjn

E in(θn)

=

0∑
l=hjn−kjn

E l+k
j
n

n (θn) +

hj+1
n −kjn−1∑
l=1

E l+k
j
n

n (θn)

=

hj+1
n −kjn−1∑
l=hjn−kjn

E ln(θ̃n)

=
∑
l∈Z
E ln(θ̃n)−

∑
l≤hjn−kjn−1

E ln(θ̃n)−
∑

l≥hj+1
n −kjn

E ln(θ̃n)

=
∑
l∈Z
E ln(θ̃n)− Eh

j
n−kjn−2

n (θ̃n)

≥
∑
i∈Z

[
cos(θ̃in + θ̃i+1

n )− α

2
(cos θ̃in + cos θ̃i+1

n )−mα

]
− ω(σ)

≥ C(θ̄j , θ̄j+1)− ω(σ),

(3.18)
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where ω : [0,+∞)→ [0,+∞) is a suitable continuous function, ω(0) = 0. Finally, since
for every j ∈ {1, . . . , N − 1} it holds C(θ̄j , θ̄j+1) = Cα by (3.2), combining (3.18) with
(3.16) and passing to the liminf as n→ +∞ we get the liminf inequality

lim inf
n→∞

Eαn (θn) ≥ lim inf
n→∞

[
(N − 1)Cα − (N − 1)ω(σ)

]
= Cα#(S(θ) ∩ [0, 1)),

(3.19)

where the latter equality follows by the arbitrariness of σ.
Limsup inequality. Let θ be such that Eα(θ) < +∞. Then there exist M ∈ N,
θ̄1, . . . , θ̄M ∈ {±θα} and 0 = t0 < t1 < · · · < tM = 1 such that #S(θ) = M − 1 and

θ(t) = θ̄j , t ∈ (tj−1, tj), j ∈ {1, 2, . . . ,M}. (3.20)

Fixed η > 0, from the definition of C(θ(tj−), θ(tj+)) for j ∈ {1, 2, . . . ,M − 1} we can
find functions ψj,j+1 : Z→ [−π/2, π/2], such that

ψij,j+1 =

{
θ̄j for i ≤ −Nj ,

θ̄j+1 for i ≥ Nj ,
(3.21)

and ∑
i∈Z

[
cos(ψij,j+1 + ψi+1

j,j+1)− α

2
(cosψij,j+1 + cosψi+1

j,j+1)−mα

]
≤ C(θ(tj−), θ(tj+)) + η = Cα + η,

(3.22)

where the latter equality follows again by (3.2). Note that in (3.21) we may assume
N = Nj independent of j, up to choose N = max

1≤j≤M−1
{Nj}.

We define a recovery sequence θ̃n by means of a translation argument involving
functions ψj,j+1, j ∈ {1, . . . ,M−1}, that will allow us to estimate the energy contribution
from above with (3.22) in a suitable neighbourhood of each jump point tj . Namely, for

every j, we set θ̃in = ψ
i−btjnc
j,j+1 if i ∈ {btjnc −N, . . . , btjnc+N}, while if i ∈ {btjnc +

N, . . . , btj+1nc − N}, we define θ̃in to be constantly equal to θ̄j+1, according to (3.21).
This definition can be summarized as follows:

θ̃in =


θ̄1 if 0 ≤ i ≤ bt1nc −N
ψ
i−btjnc
j,j+1 if btjnc −N ≤ i ≤ btjnc+N,

θ̄j+1 if btjnc+N ≤ i ≤ btj+1nc −N, j ∈ {1, . . . ,M − 1}
θ̄M if n−N ≤ i ≤ n− 1.

(3.23)

We note that the corresponding θ̃n ∈ Dn(I) satisfy θ̃n → θ in L∞ and (here we use the
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simplified notation for the energies as in (3.10))

Eαn (θ̃n) =
n−1∑
i=0

E in(θ̃n) =

bt1nc−N−1∑
i=0

E in(θ̃n) +
M−1∑
j=1

btjnc+N−1∑
i=btjnc−N

E in(θ̃n)


+
M−1∑
j=1

btj+1nc−N−1∑
i=btjnc+N

E in(θ̃n)

+
n−1∑

i=n−N
E in(θ̃n)

=
M−1∑
j=1

btjnc+N−1∑
i=btjnc−N

E in(ψ
i−btjnc
j,j+1 )

 =
M−1∑
j=1

∑
i∈Z
E in(ψij,j+1)

≤ (M − 1)(Cα + η),

whence, by the arbitrariness of η, we deduce that

lim sup
n→+∞

Eαn (θ̃n) ≤ (M − 1)(Cα + η) = Cα#(S(θ) ∩ [0, 1)). (3.24)

Thus, (3.24) shows that the lower bound (3.19) is sharp, and this concludes the proof of
(i).
(ii) In this case the proof is immediate. Indeed, for any θn → 0, from Eαn (θn) ≥ 0 we
have in particular that

lim inf
n→+∞

Eαn (θn) ≥ 0.

As a recovery sequence, we can choose θn ≡ 0, for which we obtain lim
n→+∞

Eαn (θn) = 0.

4 Limit behaviour near the transition point α = 4

The description of the limit as n → +∞ of the energies Eαn with fixed α, carried out
in the previous section, has a gap for α = 4. Indeed, the crease energy Cα jumps from
a strictly positive value (corresponding to 0 ≤ α < 4) to 0 (when α ≥ 4). Note also
that the explicit value of Cα defined implicitly by (3.1) is not known in literature. This
suggests to focus near the transition point α = 4, let the parameter α depend on n and
be close to 4 from below; that is, replace α by 4− αn, αn → 4−.

Such analysis is the main content of a recent paper by Cicalese and Solombrino [10],
where they find suitable scaling and order parameter to compute the energy the system
spends in a transition between two states with different chirality when α ' 4. Moreover,
they show the dependence of the limit on the particular sequence αn → 4− and the
existence of different regimes. Our aim is to show that their result can be retrieved also
correspondingly to a different choice of the order parameter in the energies. First of all,
we write the energies (2.12) in terms of 4− α as

Eαn (θ) = [4− (4− α)]

n−1∑
i=0

(1− cos θi)−
n−1∑
i=0

[1− cos(θi + θi+1)] + n
(4− α)2

8
, (4.1)
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and when necessary, we may think also the quantities Wα, Cα, etc. to be functions of
4− α. Note that if we choose as a test function in (3.1) θi,α = sign(i) arccos(α/4) then
we obtain a first rough estimate

0 < Cα ≤ (4− α)− (4− α)2

8
,

showing in particular that Cα → 0 as α→ 4−.
The following proposition (compare with [10, Proposition 4.3]) characterizes the an-

gles between neighbours for an equibounded (in energy) sequence of spins as the frus-
tration parameter approaches the critical value from below.

Proposition 4.1. If {θn} is a sequence such that

sup
n
Eαnn (θn) ≤ C(4− αn)3/2, (4.2)

then θin → 0 as αn → 4− uniformly with respect to i ∈ {0, 1, . . . , n− 1}.

Proof. The claim follows immediately from the estimate

0 ≤ 2
(

cos θin −
αn
4

)2
≤

n−1∑
i=0

Wαn(θin) ≤ Eαnn (θn) ≤ C(4− αn)3/2 (4.3)

valid for all i ∈ {0, 1, . . . , n− 1}.

We introduce a new order parameter

vin =
θin
θαn

(4.4)

and reformulate the Γ-convergence result by Cicalese and Solombrino ([10, Theorem 4.2])
in terms of this new variable. However, it is worth noting that the “flat” angular pa-
rameter vin is equivalent with their variable zin in the regime of “small angles”, i.e., as
αn → 4−, θin → 0, since in this case

θαn = arccos

(
1− (4− αn)

4

)
'
√

4− αn√
2

and

zin =
2
√

2√
4− αn

sin

(
θin
2

)
'
√

2θin√
4− αn

.

The change of variables (4.4) associates to any given θn ∈ Dn(I) a piecewise-constant
function vn ∈ D̃n(I) where

D̃n(I) :=
{
v : [0, 1)→ R : v(t) = vin if t ∈ λn(i+ [0, 1)), i ∈ {0, 1, . . . , n− 1}

}
,
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with vn as in (4.4). With a slight abuse of notation, we regard Eαnn as a functional
defined on v ∈ L1(I,R) by

Eαnn (v) =

{
Eαnn (θ), if v ∈ D̃n(I)

+∞, otherwise,
(4.5)

and correspondingly we define the scaled energies

Fαnn (v) :=
8Eαnn (v)√

2(4− αn)3/2
. (4.6)

Theorem 4.2 (Cicalese and Solombrino [10]). Let Fαnn : L1(I,R) → [0,+∞] be
the functional in (4.6). Assume that there exists l := limn

√
2λn/4(4 − αn)1/2. Then

F 0(v) := Γ- lim
n
Fαnn (v) with respect to the L1(I) convergence is given by:

(i) if l = 0,

F 0(v) :=

{
8
3#(S(v)) if v ∈ BV (I, {±1}),
+∞ otherwise.

(4.7)

(ii) if l ∈ (0,+∞),

F 0(v) :=


1

l

∫
I

(
v2(t)− 1

)2
dt+ l

∫
I
(v̇(t))2 dt if v ∈W 1,2

|per|(I),

+∞ otherwise.
(4.8)

where we have set W 1,2
|per|(I) := {v ∈W 1,2(I) : |v(0)| = |v(1)|}.

(iii) if l = +∞,

F 0(v) :=

{
0 if v = const.,

+∞ otherwise.
(4.9)

Proof. In order to simplify the notation, we put εn := 4 − αn → 0 as n → ∞. Let

{vn} be a sequence in D̃n(I) such that sup
n

Eεnn (vn)

ε
3/2
n

≤ C < ∞. As remarked before,

correspondingly, there exists a sequence {θn} in Dn(I) such that sup
n

Eεnn (θn)

ε
3/2
n

≤ C <∞,

satisfying θin → 0 uniformly with respect to i by Proposition 4.1.
From the estimates contained in the proof of [10, Theorem 4.2] we get

Eεnn (θn) ≥ 8
n−1∑
i=0

[
sin2

(θin
2

)
− εn

8

]2
+ 2(1− γn)

n−1∑
i=0

[
sin
(θi+1

n

2

)
− sin

(θin
2

)]2
,
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for some γn → 0. Since sin θ ' θ as θ → 0, we may improve the estimate obtaining

Eεnn (θn) ≥ 8(1− γ′n)
n−1∑
i=0

[(θin
2

)2
− εn

8

]2
+

(1− γ′′n)

2

n−1∑
i=0

[(θi+1
n

2

)
−
(θin

2

)]2
,

for suitable γ′n, γ
′′
n → 0. In terms of the new order parameter vin defined by (4.4) the

previous inequality now reads

Eεnn (θn) ≥
2θ4
εn

λn
(1− γ′n)

n−1∑
i=0

λn

[
(vin)2 − εn

2θ2
εn

]2

+
θ2
εnλn

8
(1− γ′′n)

n−1∑
i=0

λn

(vi+1
n − vin
λn

)2
,

where λn = 1
n . If we multiply both the sides by 8/

√
2ε

3/2
n , since

εn
2θ2
εn

→ 1 we get

8Eεnn (θn)
√

2ε
3/2
n

≥
8
√

2θ4
εn

λnε
3/2
n

(1− γ′n)
n−1∑
i=0

λn

[
(vin)2 − 1

]2

+

√
2θ2
εnλn

2ε
3/2
n

(1− γ′′n)
n−1∑
i=0

λn

(vi+1
n − vin
λn

)2
.

Since θεn = arccos(1− εn
4 ) and θεn '

√
εn√
2

as εn → 0, we note that
8
√

2θ4
εn

λnε
3/2
n

'
4
√
εn√

2λn
and

√
2θ2
εnλn

2ε
3/2
n

'
√

2λn
4
√
εn

as n→∞. Thus, we finally get

8Eεnn (θn)
√

2ε
3/2
n

≥
4
√
εn√

2λn
(1− γ̃′n)

n−1∑
i=0

λn

[
(vin)2 − 1

]2

+

√
2λn

4
√
εn

(1− γ̃′′n)
n−1∑
i=0

λn

(vi+1
n − vin
λn

)2
,

(4.10)

for suitable γ̃′n, γ̃
′′
n → 0. The estimate (4.10) implies the liminf inequality both in case

(i) and (ii) as remarked in [10], and the limsup inequality can be obtained in both cases
by the constructive argument contained therein, so we will omit the proof.

Remark 4.3. (asymptotic behaviour of Cα). As remarked before, Cα → 0 as α → 4−.
However, we may use Theorem 4.2(i) to refine this estimate and determine the right
order of Cαn with respect to 4− αn as αn → 4.

In the regime λn << (4 − αn)1/2 we can compute the limit of energies Fαnn (v) first
as n→∞ while keeping αn ≡ α0 6= 4 fixed, and then the limit as α0 → 4−. Thanks to
Theorem 3.5 and the continuity result ensured by Proposition 3.3, we obtain

Fα0(v) := Γ- lim
n→+∞

8Eαnn (v)√
2(4− αn)3/2

=
8Cα0√

2(4− α0)3/2
#(S(v)), (4.11)

19



whence, by means of Theorem 4.2(i), we get

F 0(v) := Γ- lim
α0→4

Fα0(v) =
8

3
#(S(v)). (4.12)

The convergence of minimum problems as α→ 4− finally gives

lim
α→4−

3Cα√
2(4− α)3/2

= 1. (4.13)

Thus, near the ferromagnet-helimagnet transition point, the energy Cα coincides with
the energy Edw ∝ (4 − α)3/2 for the excitation of a chiral domain wall separating two
domains of opposite chirality, which is a well-known universal low-temperature property
of frustrated classical spin chains (see, e.g., Dmitriev and Krivnov [14]).

5 A link with the gradient theory of phase transitions

In this section we show that the variational asymptotic behaviour of the energies Fαn
for any α ∈ [0, 4], both in the case of fixed α (Theorem 3.5) and in the case α ' 4
(Theorem 4.2), is the same as that of a parametrized family of Modica-Mortola type
functionals, thus providing an interesting connection between frustrated lattice spin
systems and the gradient theory of phase transitions (see also [5, Section 6]).

In order to do that in the framework of the equivalence by Γ-convergence, we recall
some definitions about Γ-equivalence for families of parametrized functionals, uniform
equivalence, regular and singular points, as introduced by Braides and Truskinovsky [8].

Definition 5.1 (Γ-equivalence). Let A be a set of parameters. Two families of
parametrized functionals Fαn and Gαn are equivalent at scale 1 at α0 ∈ A if Fα0

n and
Gα0
n are equivalent at scale 1, i.e.,

Γ- lim
n→+∞

Fα0
n = Γ- lim

n→+∞
Gα0
n (5.1)

and these Γ-limits are non-trivial.

Definition 5.2 (uniform Γ-equivalence). Let A be a set of parameters. Two families
of parametrized functionals Fαn and Gαn are uniformly equivalent at scale 1 at α0 ∈ A if
for all αn → α0 we have, up to subsequences,

Γ- lim
n→+∞

Fαnn = Γ- lim
n→+∞

Gαnn (5.2)

and these Γ-limits are non-trivial. They are uniformly equivalent on A if they are
uniformly equivalent at all α0 ∈ A.

Definition 5.3 (regular point). α0 ∈ A is a regular point if for all αn → α0 we have,
up to a subsequence,

Γ- lim
n→+∞

Fαnn = Γ- lim
n→+∞

Fα0
n . (5.3)
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Definition 5.4 (singular point). α0 ∈ A is a singular point if it is not regular; that
is, if there exist α′n → α0, α′′n → α0 such that (up to subsequences)

Γ- lim
n→+∞

Fα
′
n

n 6= Γ- lim
n→+∞

Fα
′′
n

n . (5.4)

According to the previous definitions, each 0 ≤ α0 < 4 is a regular point for Fαn ,
since, as already observed in Remark 4.3, for any sequence αn → α0, we have

Fα0(v) := Γ- lim
n→+∞

Fαnn (v) =
8Cα0√

2(4− α0)3/2
#(S(v)).

As a consequence of Theorem 4.2, instead, α0 = 4 is a singular point for Fαn .

Helimagnetic

Ferromagnetic

α

1
n

Figure 3: The 1
n − α space. In blue the failure curve 1

n = (4− α)1/2.

The behaviour of the system close to the transition point α = 4 can be pictured in the
1
n–α plane (see Fig. 3), where the crossover line 1

n = (4 − α)1/2 separates a zone where

there is helimagnetic order ( 1
n << (4 − α)1/2) from one where we have ferromagnetic

order ( 1
n >>(4− α)1/2).

For our purposes, it is useful to recall the well known Γ-convergence result in gradient
theory of phase transitions due to Modica and Mortola [16]. Let Ω ⊂ R be an open set,
u : Ω → R and W = W (u) a non-convex energy such that W ≥ 0, W (u) ≥ c(u2 − 1)
and W = 0 if and only if u = a, b. W is called a double-well potential. Let C > 0 and
consider the energies

Fn(u) = n

∫
Ω
W (u) dx+

C2

n

∫
Ω

(u̇)2 dx, u ∈W 1,2(Ω). (5.5)

Theorem 5.5 (Modica-Mortola’s theorem). The functionals Fn above Γ-
converge as n→∞ and with respect to the L1(Ω) convergence to the functional

F∞(u) =

{
C · cW#(S(u) ∩ Ω), if u ∈ {a, b} a.e.

+∞, otherwise,
(5.6)
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where cW := 2
∫ b
a

√
W (s) ds.

The following theorem states the announced uniform equivalence by Γ-convergence
of energies Fαn with parametrized Modica-Mortola type functionals.

Theorem 5.6. Setting λn,α := 2nθ4
α, Mα := 3Cα/8, µα :=

√
2(4−α)3/2

8 , the energies

Gαn(v) =


1

µα

[
λn,α

∫
I

(
v2 − 1

)2
dt+

M2
α

λn,α

∫
I
(v̇)2 dt

]
, if v ∈W 1,2

|per|(I),

+∞, otherwise in L1
loc(R),

and Fαn (v) := 1
µα
Eαn (v) are uniformly equivalent by Γ-convergence on [0, 4]. Moreover,

(i) each α0 ∈ [0, 4) is a regular point;

(ii) α0 = 4 is a singular point.

Proof. As before, we put εn := 4− αn, so that εn ≥ 0.
(i) Let εn → ε0 6= 0 and {vn} be a sequence with equibounded energy. Correspondingly,
by (4.4) we may find a sequence {θn} such that vn = θn/θεn . The continuity of the
energies Gεn with respect to the parameter ε = εn, ensured also by Proposition 3.3,
allows us to consider, without loss of generality, the energies

Gε0n (v) =
8

√
2ε

3/2
0

[
2nθ4

ε0

∫
I

(
v2 − 1

)2
dt+

1

2nθ4
ε0

(3Cε0
8

)2
∫
I
(v̇)2 dt

]
,

where v = θ/θε0 . After simplifying the constants, we may rewrite the energies in terms
of θ as

Gε0n (θ) =
8

√
2ε

3/2
0

[
2n

∫
I

(
θ2 − θ2

ε0

)2
dt+

1

2n

(3Cε0
8θ3
ε0

)2
∫
I
(θ̇)2 dt

]
.

In order to compute the Γ-limit as n → ∞ of the energies Gε0n , we may apply the
Γ-convergence result by Modica and Mortola (Theorem 5.5), thus obtaining

Gε0(θ) := Γ- lim
n→+∞

Gε0n (θ) =
8Cε0√
2ε

3/2
0

#(S(θ)),

since

cW = 2

∫ θε0

−θε0
|θ2 − θ2

ε0 | dθ =
8

3
θ3
ε0 .

This result coincides with (4.11), once we remark that #(S(v)) = #(S(θ)).
(ii) Let εn → 0 and v ∈ W 1,2

loc (R). The estimates contained in the proof of Theorem 4.2
and equation (4.13) allow us to rewrite the functional Gεnn as

Gεnn (v) =
4n
√
εn√

2
(1 + ηn)

∫
I

(
v2 − 1

)2
dt+

√
2

4n
√
εn

(1 + η′n)

∫
I
(v̇)2 dt,
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for suitable sequences ηn, η
′
n → 0. In order to simplify the notation, we put

Kn :=

√
2

4n
√
εn
,

and we write

Gεnn (v) =
1

Kn
(1 + ηn)

∫
I

(
v2 − 1

)2
dt+Kn(1 + η′n)

∫
I
(v̇)2 dt.

We distinguish between three cases:
(a) Kn → 0. In this case, we apply again Theorem 5.5 (with C = 1), thus obtaining

G0(v) := Γ- lim
n→+∞

Gεnn (v) =
8

3
#(S(v)), (5.7)

since cW = 2
∫ 1
−1 |v

2 − 1| dv = 8
3 .

(b) Kn → l ∈ (0,+∞). A sequence vn with equibounded energy is weakly compact in
W 1,2
|per|(I), then by lower semicontinuity in W 1,2

|per|(I) we get

lim inf
n

Gεnn (vn) ≥ 1

l

∫
I

(
v2 − 1

)2
dt+ l

∫
I
(v̇)2 dt.

In order to obtain the limsup inequality, we can argue by density considering vn ∈
W 1,2
|per|(I) ∩ C∞(I), vn → v such that

lim
n
Gεnn (vn) =

1

l

∫
I

(
v2 − 1

)2
dt+ l

∫
I
(v̇)2 dt.

(c) Kn → +∞. Let v be a constant function, and consider the constant sequence vn ≡ v.
Trivially,

lim inf
n

Gεnn (vn) = lim inf
n

( 1

Kn
(1 + ηn)

∫
I

(
v2
n − 1

)2
dt
)
≥ 0,

and
lim
n
Gεnn (vn) = 0.

The proof of point (i) of Theorem 5.6 permits us to deduce an equivalence result also
for the energies Eαn (θ) defined in (2.12) with Modica Mortola type functionals whose
potentials Wα(θ) := (θ2− θ2

α)2 have the wells located at the minimal angles θ = ±θα. It
can be stated as follows.

Corollary 5.7. Let α be a positive number, α ∈ [0, 4). The energies Eαn (θ) and the
family of functionals Hα

n (θ) defined on L1
loc(R) as

Hα
n (θ) =


λn,α
θ4
α

∫
I

(
θ2(t)− θ2

α

)2
dt+

M2
α

λn,αθ2
α

∫
I
(θ̇(t))2 dt, if θ ∈W 1,2

|per|(I),

+∞, otherwise,

are uniformly equivalent by Γ-convergence on [0, 4).
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