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Abstract. We present crystallization results for planar atomic interactions governed by two-

and three-body terms with the resulting periodicity being that of the square lattice. The
emergence of a (square) Wulff shape for ground states is established by showing the optimality

of ground-state configurations in terms of a discrete isoperimetric inequality. Furthermore,

an n3/4 law for the deviation from the asymptotic Wulff shape is established with an explicit
constant for the leading term.

1. Introduction

In this paper the fundamental crystallization problem of analytically explaining why particles
at low temperature arrange in periodic lattices is considered. We work in the classical framework
and refer to the two-dimensional problem in the square lattice. At low temperatures particle
interactions are expected to be essentially determined by particle positions. More precisely, if
every particle configuration is identified with the set of its particle positions x1, . . . , xn in R2,
the crystallization problem consists in verifying the periodicity of ground-state configurations of
a suitable energy E : R2n → R ∪ {+∞}. The energy E is given by the sum of a two-body and
a three-body interaction contribution, E2 and E3, respectively.

The literature on two-dimensional crystallization includes [2] as a first result for a two-body
sticky interaction energy, inducing triangular lattice periodicity. The result was then extended
in [5] to the case of short-ranged soft interactions. The first result accounting for long-range
interactions has been instead achieved in [7] where an E2 term of Lennard-Jones type has been
considered. Analogous results are established in [1] for the hexagonal lattice by adding a three-
body interaction term that favors triples of bonded particles forming bond angles 2π/3 and
4π/3. Furthermore, the emergence of a macroscopic Wulff shape for the triangular lattice with
short-ranged two-body interactions has been recently investigated in [8, 6].

In this paper we summarize the results contained in [3]. We consider a short-range E2 term
and a E3 term that favors bond angles of π/2, π, and 3π/2, with a resulting square ordering
(see detailed hypotheses on E in Section 2). Let β(n) := b2n − 2

√
n c where b·c is the right-

continuous integer-part bxc := max{z ∈ Z : z≤x}. Under the assumptions of Section 2 on the
interaction energy, we prove the following main crystallization result.

Theorem 1.1. Ground states of E are connected subsets of the unit square lattice and their
energy is −β(n).

As the energy E favors particle clustering and ‘boundary’ particles have in general less bonds,
ground states can be intuitively expected to have minimal ‘perimeter’, or maximal ‘area’. This
intuition is verified in Section 4 by introducing a suitable notion of perimeter and area of con-
figurations, and by showing that ground states are characterized as those configurations which
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realize equality in a discrete isoperimetric inequality (see Theorem 4.1). Furthermore, the exact
quantification of ground-state perimeter achieved in Theorem 4.1 allows us (still under the as-
sumptions of Section 2) to show the emergence of an asymptotic (square) Wulff shape for ground
states and to investigate the ground-state deviation from it. In the following, let us denote by
µ{y1,...,yn} the empirical measure 1

n

∑
i δyi/

√
n of the rescaled configuration {y1/

√
n, . . . , yn/

√
n}.

Theorem 1.2. Ground states approach the square of side b
√
nc as the particle number n grows.

More precisely, if {Cn} is a sequence of ground states and µ is the Lebesgue measure restricted
to the unit square [0, 1]2, then

{
µC′

n

}
weak∗-converge to µ where each C ′n is a suitable rotation

and translation of Cn. Furthermore, every ground state (up to a rotation and a translation)
differs from Sn := {(i, j) : i, j = 0, . . . , b

√
nc} by at most 3n3/4 + O(n1/2) particles.

We observe that Theorem 1.2 that is established in Section 4 provides an explicit constant
for the leading-order term n3/4 of the deviation of ground states from the Wulff shape (see also
[6]). Moreover, it easily follows from this result (see in particular (14)) that

‖µC′
n
− µSn‖ =

#(C ′n4Sn)

n
≤ 3n−1/4 + O(n−1/2)

where ‖·‖ stands for the total variation norm. We also have that ‖µC′
n
−µ‖F ≤ 3n−1/4+O(n−1/2)

where ‖ · ‖F denotes the flat norm. These results nicely reflect the inherent multiscale nature of
the crystallization phenomenon.

2. Notation and Assumptions on the Interaction Energy

We denote a configuration of n particles by Cn := {x1, · · · , xn} ∈ R2n, the distance between
two of its particles, xi and xj , by `ij , and the counterclockwise-oriented angle between the two
segments xi − xj and xk − xj by θijk. The energy of a configuration Cn is defined by

E(Cn) := E2(Cn) + E3(Cn) =
1

2

∑
i 6=j

v2(`ij) +
1

2

∑
(i,j,k)∈A

v3(θijk) (1)

where the functions v2 : [0,∞) → [−1,∞] and v3 : [0, 2π] → [0,∞) are the two-body and
the three-body interaction potentials. We choose a strongly-repulsive, short-ranged two-body
potential satisfying the following assumptions

v2(`) = +∞ if ` < 1, v2(`) = −1 if ` = 1, v2(`) = v(`) if 1 < ` < `∗, v2(`) = 0 if ` ≥ `∗,
(2)

where v is any function taking values in (−1, 0) and `∗ ∈ (1,
√

2) is given. On the other hand,
let σ ∈ (0, π/8) and define

I1 :=
[π

2
− σ, π

2
+ σ

]
, I2 := [π − σ, π + σ] , I3 :=

[
3π

2
− σ, 3π

2
+ σ

]
, I := I1∪I2∪I3. (3)

Let θmin := 2 arcsin(1/(2
√

2)) ≈ 0.23π. The three-body potential v3 vanishes only at π/2, π, and
3π/2, it is symmetric with respect to π, convex in I1, and satisfies the following non-degeneracy
and symmetry conditions:

v3(θ) > 8 if θ ∈ (θmin, 2π/5], v3(θ) > 4 if θ /∈ I, v3(θ) = v3(θ + π/2) = v3(θ + π) if θ ∈ I1,

(4a)

and v′3,−

(π
2

)
:= lim

t↗0

1

t
v3(t+π/2) < − 2

π
. (4b)
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We say that two particles xi and xj are bonded or that there is an (active) bond between xi
and xj , if 1 ≤ `ij < `∗, in this case v2(`ij) is negative. The set A in (1) is defined as the set of all
triples (i, j, k) for which the angle θijk separates two active bonds. The angle θijk is said to be
a (active) bond angle if (i, j, k) ∈ A. We observe that the hard-interaction assumption v2 = ∞
on [0, 1) can be relaxed by asking v2 to be very large in a right neighborhood of 0 (see [1, 3, 4]).
The bond graph of a configuration Cn is the graph consisting of all its vertices and active bonds.
We note that the simple cycles of a bond graph are polygons, and that, since v2(`) vanishes for

` ≥
√

2, every bond graph is a planar graph. Moreover, from (2) it follows that the minimal
angle between two active bonds is θmin for all finite-energy configurations.

We say that aconfiguration is square if it is a (rotated and translated) subset of the square
lattice Z2 (notice that the energy is invariant under rotations and translations). Furthermore,
a configuration is connected if every particle is connected to every other by a simple path in
the bond graph, and it is regular if every particle in it has at most four bonds, every bond
angle is in I, and every simple cycle of its bond graph has at least four edges. Straightforward
comparison arguments (competitors being constructed by simply moving a single particle) show
that grounds states are regular, and that E(Cn) ≥ −b(Cn) (with equality corresponding to
square configurations Cn) where b(Cn) denotes the number of bonds in the bond graph of Cn.

Moreover, a connected configuration with n ≥ 4 particles is said to be closed if it has no
acyclic bonds, i.e., every bond is an edge of a simple cycle. Given a closed configuration Cn,
we identify its boundary polygon consisting of (at least four) vertices and containing all the
other particles in its interior region, and we denote it by B(Cn). In addition, let d(Cn) be
the number of boundary particles, i.e. the particles of the boundary polygon, and Cbulk

n be
the bulk configuration consisting of the remaining n − d(Cn) interior vertices. The bulk energy
of Cn is then defined by Ebulk(Cn) := E(Cbulk

n ) and the boundary energy by Ebnd(Cn) :=
E(Cn) − Ebulk(Cn) = E(Cn) − E(Cbulk

n ). The set of all bonds and the set of all bond angles
which are deactivated in Cn by removing boundary particles are denoted, respectively, by Γ(Cn)
and by Θ(Cn). Since v2 ≥ −1, we obtain that the elementary inequality

Ebnd(Cn) ≥ −#Γ(Cn) +
∑

θi∈Θ(Cn)

v3(θi), (5)

which reduces to Ebnd(Cn) = −#Γ(Cn) in case of a square configuration Cn.

3. The Square Crystallization Result

In this section we establish Theorem 1.1. We begin by constructing a ground-state candidate
with n ∈ N particles that we denote by Dn. If n = m2 for some m ∈ N, we let Dn be the m×m
square in Z2, while if n = m2 + k for some 1 ≤ k < 2m + 1, we obtain Dn by progressively
adding the k particles to Dm2 at specific sites of Z2. In fact, we add the first particle right above
the upper left corner of the m×m square, and then, if necessary, we clockwisely add particles
in such a way that each new particle is bonded to the previouse one and, whenever possible,
to the original m ×m square. Notice that b(Dn) may be computed by recursion: b(D1) = 0,
b(Dn+1) − b(Dn) = 1 if n = m2 or n = m2 + m for some m ∈ N, or b(Dn+1) − b(Dn) = 2
otherwise. It is not difficult to show that β(n) := b2n − 2

√
nc solves the recursion (see [3,

Proposition 4.1]), so that indeed E(Dn) = −β(n).

We now observe that #Γ(Cn) can be estimated in terms of d(Cn) for a regular and closed
configuration Cn. Let us denote by ϕi, for i = 1, · · · , εd, the internal angles of B(Cn) that are
in I1, by ψi, i = 1, · · · , ηd, the ones in I2 and by ξi, i = 1, · · · , νd, the ones in I3. Here, ε, η, and
ν are the ratios of the internal angles of B(Cn) that belong to I1, I2, and I3 respectively. Since
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σ < π/8 in (3), given a boundary vertex x and the corresponding internal angle θ of B(Cn), we
infer that if θ is in I1, then x needs to be two-bonded, because otherwise there would be a bond
angle at x smaller than 5π/16 and so not in I. By a similar argument, if θ ∈ I2, then x is at
most three-bonded, and if θ is in I3, then x has at most four bonds. It follows that

#Γ(Cn) ≤ (1 + η + 2ν) d(Cn) = (ε+ 2η + 3ν) d(Cn). (6)

Proof of Theorem 1.1. Step 1 (boundary energy estimate). We here establish that Ebnd(Cn) ≥
−2d(Cn) + 4 holds for a regular and closed configuration Cn, and that the inequality is strict
in case of a nonsquare configuration Cn with a square Cbulk

n . For simplicity we often omit the
dependence on Cn in the formulas.

Since the sum of the internal angles of a polygon with d sides is π(d − 2), we first observe
that

εdϕ+ ηdψ+ νdξ = π(d− 2), where ϕ :=
1

εd

εd∑
i=1

ϕi, ψ :=
1

ηd

ηd∑
i=1

ψi, ξ :=
1

νd

νd∑
i=1

ξi. (7)

By (4a) and the convexity of v3 in I1 we have v3(ψi) ≥ 2v3(ψi/2) for i = 1, · · · , ηd and v3(ξi) ≥
3v3(ξi/3) for i = 1, · · · , νd. Still the convexity of v3 in I, together with (5), (14) and (7), entails

Ebnd ≥ −εd− 2ηd− 3νd+

εd∑
i=1

v3(ϕi) + 2

ηd∑
i=1

v3

(
ψi
2

)
+ 3

νd∑
i=1

v3

(
ξi
3

)
≥ −δd+ δdv3(α(δ)),

(8)

where δ := ε+ 2η+ 3ν and α(δ) := π(d− 2)/(δd). By looking at (8), we immediately have that
Ebnd(Cn) ≥ −2d(Cn) + 4 if δ ≤ δ∗ := 2 − 4/d, otherwise, the same follows from the crucial
hypothesis (4b) since (4b) implies

v3(α(δ)) ≥ v3

(π
2

)
+ v′3,−

(π
2

)(
α(δ)−π

2

)
> − 2

π

(
α(δ)−π

2

)
=
δd− 2d+ 4

δd
. (9)

We now verify that if a bond in Γ has not length 1 or a bond angle of Θ is not in {π/2, π, 3π/2},
then Ebnd > −2d+4. Notice that (8) has to hold with equality in order to have Ebnd = −2d+4.
However, recalling (5), (8) is strict if the length of a bond in Γ is not 1 or if an angle in Θ which
is adjacent to an interior vertex differs from π/2, π, or 3π/2. Otherwise, equality in (8) implies
that

∑
θi∈Θ v3(θi) = δdv3(α(δ)), but this relation, taking the strict inequality in (9) into account,

readily entails δ = δ∗, thus α(δ) = π/2, and this shows that all the other angles of Θ are in
{π/2, π, 3π/2} as well.

Step 2 (induction on bond graph layers). In this step we follow the classical induction argu-
ment introduced by Radin in [5] that has been recently revisited in [3, 4]. We refer the reader to
[3, 4] for more details. We begin by observing that the statement of the Theorem is trivial for
n ≤ 4, and we then proceed by induction. We prove that if the assertion holds for a ground state
Cm with m < n, then it holds also for Cn. By contradiction we suppose that Cn is not square
and we observe that a contradiction may be easily reached for a configuration Cn that it is not
closed by considering subconfigurations and by using elementary properties of the function β(n)
(see [3]). Instead, for a closed configuration Cn that is not square, we argue as follows. Either
Cbulk
n is not square itself and hence, by induction we have that Ebulk > −β(n− d), or Cbulk

n is
square and so from Step 1 it follows that Ebnd > −2d + 4. Therefore, by Step 1, in both cases
we obtain that

E = Ebulk + Ebnd > −b2(n−d)− 2
√
n−d c − 2d+ 4 . (10)
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Finally, by combining (10) with the Euler formula for planar graphs we have that E > −β(n)
holds (see [3]), and this contradicts the fact that Cn is a ground state. �

4. Isoperimetric Inequality and Convergence to the Wulff Shape

Let us define the area A and the perimeter P of a regular configuration Cn by A(Cn) :=
L2(F (Cn)) and P (Cn) := H1(∂F (Cn)) + 2H1(G(Cn)), respectively, where F (Cn) ⊂ R2 is the
closure of the union of the regions enclosed by the simple cycles of Cn that consists of only
4 bonds, G(Cn) ⊂ R2 is the union of all bonds which are not included in F (Cn), and H1

denotes the one-dimensional Hausdorff measure. For square configurations, we easily see that
E(Cn) = −2A(Cn)− 1

2P (Cn).

We characterize ground states as solutions of a discrete isoperimetric problem. In the follow-
ing, dxe :=min{z ∈ Z : x≤z}.

Theorem 4.1. Every connected square configuration Cn with n > 1 satisfies√
A(Cn) ≤ knP (Cn) where kn :=

√
n− d2

√
n−1e

2d2
√
n−1e − 2

. (11)

Moreover, ground states correspond to those configurations for which (11) holds with the equality,
and, equivalently, to those configurations that attain the maximum area, i.e. n−d2

√
n−1e, and

the minimum perimeter, i.e. 2d2
√
n− 1e − 2.

Proof. Step 1. We begin by establishing that (11) holds for a particular class of configurations
called quasirectangles and denoted by Rr,c,en where the triplet (r, c, e) is assumed to be in Tn :=
{(r, c, e) ∈ N3 | r ≤ c, 1 ≤ e ≤ c, rc+ e = n}. A quasirectangle Rr,c,en is a square configuration
obtained by adding a connected line of e extra particles to the (r× c)-rectangle (consisting of r
aligned rows each with c particles) in such a way that each extra particle is bonded to one and
only one particle of the rectangle. Let us define kn by

kn := max
(r,c,e)∈Tn

√
A (Rr,c,en )

P (Rr,c,en )
= max

{√
n− (r+c)

2(r+c)− 2

∣∣∣∣∣ r, c ∈ N and n−max{r, c} ≤ rc < n

}
(12)

where the second equality follows from the fact that A(Rr,c,en ) = (r−1)(c−1)+e−1 = n−(r+c)
and P (Rr,c,en ) = 2(r+ c)− 2. Thus, kn is realized at the minimum admissible value of r+ c that
can be analytically computed to be equal to `n := d2

√
n − 1e. Observe that the configuration

Dn introduced in Section 3 is a quasirectangle that realized the maximum in (12) since the sum

of its rows and columns is exactly `n. Therefore, we have that
√
A(Dn) = knP (Dn), and from

the same reasoning it follows also that the maximum area and the minimum perimeter among
quasirectangles are realized by A(Dn) = n − `n and P (Dn) = 2`n − 2, respectively. Inequality
(11) is now a direct consequence of the fact that we can always rearrange the particles of a
connected square configuration Cn in a quasirectangle without increasing its perimeter and
decreasing its area, see [3, Lemma 7.3]. Therefore, it follows also that A(Dn) maximizes the
area and P (Dn) minimizes the perimeter among all connected square configurations.

Step 2. We now prove the second statement. Every connected square configuration Cn
that satisfies

√
A(Cn) = knP (Cn) is a ground state since by the elementary relation E(Cn) =

−2A(Cn)− 1
2P (Cn) we have that

E(Dn) ≤ E(Cn) = −2A(Cn)− P (Cn)

2
= −2k2

nP
2(Cn)− P (Cn)

2
≤ −2k2

nP
2(Dn)− P (Dn)

2
= E(Dn),
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where we used the fact that Dn is a ground state that minimizes the perimeter as established
in Step 1.

Moreover, from an analogous argument it follows that P (Gn) = P (Dn) and that A(Gn) =

A(Dn) for every ground state Gn. Since we have seen in Step 1 that
√
A(Dn) = knP (Dn), the

proof is concluded. �

Proof of Theorem 1.2. Let Cn be a ground state and R(Cn) be the minimal (`1 − 1)× (`2 − 1)-
rectangle (with `1 ≥ `2 and sides parallel to the two directions of its unit square lattice of
reference, say L) that contains Cn. Since every ground state Cn is connected in the directions of
the square lattice, by Theorem 4.1 we obtain that `1 +`2 = 1

2P (Cn)+2 = 2d
√
n−1e+1 = `n+1.

By solving the maximum problem `1 − `2 := max{a− b : a, b ∈ N, ab ≥ n, a+ b = `n + 1} we
observe that

`1 − `2 = 2

⌊
d2
√
ne+

√
(d2
√
ne)2−4n

2

⌋
− d2
√
n−1e − 1 ≤ 2

⌊√
(d2
√
ne)2−4n

2

⌋
≤ 2n1/4 + 1.

(13)
and hence, we have

√
n ≤ `1 ≤

√
n + n1/4 + 1 and

√
n − n1/4 − 1 ≤ `2 ≤

√
n. Therefore, we

obtain that d(R′n, Sn) ≤ n1/4 + 2 where d denotes the Hausdorff distance and R′n is a suitable

rotation and translation of Rn := R(Cn) ∩ L. Let us now define C ′n as the analogous rotation
and translation of Cn. Since we have that

#(C ′n4Sn) ≤ #(R′n \ Sn) + #(Sn \R′n) + #((R′n ∩ Sn) \ C ′n)

≤ 2#(R′n \ Sn) + #(Sn \R′n) ≤ (2`2 + b
√
nc+ 1)d(R′n, Sn) ≤ (3

√
n+ 1)(n1/4 + 2),

(14)

the assertion follows. �
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