Quantitative stability of the Brunn-Minkowski inequality for sets of equal volume

Alessio Figalli* and David Jerison ${ }^{\dagger}$

Abstract

We prove a quantitative stability result for the Brunn-Minkowski inequality on sets of equal volume: if $|A|=|B|>0$ and $|A+B|^{1 / n}=(2+\delta)|A|^{1 / n}$ for some small δ, then, up to a translation, both A and B are close (in terms of δ) to a convex set \mathcal{K}. Although this result was already proved in our previous paper [9] even for sets of different volume, we provide here a more elementary proof that we believe has its own interest. Also, in terms of the stability exponent, this result provides a stronger estimate than the result in [9].

1 Introduction

The Brunn-Minkowski inequality is a very classical and powerful inequality in convex geometry that has found important applications in analysis, statistics, and information theory. We refer the reader to [14] for an extended exposition on the Brunn-Minkowski inequality and its relation to several other famous inequalities; see also $[6,7]$.

To state the inequality, we first need some basic notation. Given two subset $A, B \subset \mathbb{R}^{n}$, and $c>0$, we define the set sum and scalar multiple by

$$
\begin{equation*}
A+B:=\{a+b: a \in A, b \in B\}, \quad c A:=\{c a: a \in A\} \tag{1.1}
\end{equation*}
$$

We shall use $|E|$ to denote the Lebesgue measure of a set E. (If E is not measurable, $|E|$ denotes the outer Lebesgue measure of E.) The Brunn-Minkowski inequality says that, given $A, B \subset \mathbb{R}^{n}$ measurable sets,

$$
\begin{equation*}
|A+B|^{1 / n} \geq|A|^{1 / n}+|B|^{1 / n} . \tag{1.2}
\end{equation*}
$$

In addition, if $|A|,|B|>0$, then equality holds if and only if there exist a convex set $\mathcal{K} \subset \mathbb{R}^{n}$, $\lambda_{A}, \lambda_{B}>0$, and $v_{A}, v_{B} \in \mathbb{R}^{n}$, such that

$$
A \subset \lambda_{A} \mathcal{K}+v_{A}, \quad B \subset \lambda_{B} \mathcal{K}+v_{B}, \quad\left|\left(\lambda_{A} \mathcal{K}+v_{A}\right) \backslash A\right|=\left|\left(\lambda_{B} \mathcal{K}+v_{B}\right) \backslash B\right|=0 .
$$

In other words, if equality holds in (1.2), then A and B are subsets of full measure in homothetic convex sets.

[^0]Because of the variety of applications of (1.2) as well as the fact the one can characterize the case of equality, a natural stability question that one would like to address is the following:

Let A, B be two sets for which equality in (1.2) almost holds. Is it true that, up to translations and dilations, A and B are close to the same convex set?

This question has a long history. First of all, when $n=1$ and $A=B$, inequality (1.2) reduces to $|A+A| \geq 2|A|$. If one approximates sets in \mathbb{R} with finite unions of intervals, then one can translate the problem to \mathbb{Z}, and in the discrete setting the question becomes a well studied problem in additive combinatorics. There are many results on this topic, usually called Freiman-type theorems. The precise statement in one dimension is the following.

Theorem 1.1. Let $A \subset \mathbb{R}$ be a measurable set, and denote by $\operatorname{co}(A)$ its convex hull. Then

$$
|A+A|-2|A| \geq \min \{|\operatorname{co}(A) \backslash A|,|A|\},
$$

or, equivalently, if $|A|>0$ then

$$
\delta(A) \geq \frac{1}{2} \min \left\{\frac{|\operatorname{co}(A) \backslash A|}{|A|}, 1\right\} .
$$

This theorem can be obtained as a corollary of a result of G. Freiman [12] about the structure of additive subsets of \mathbb{Z}. (See [13] or [17, Theorem 5.11] for a statement and a proof.) However, it turns out that to prove of Theorem 1.1 one only needs weaker results, and one can find an elementary self-contained proof of Theorem 1.1 in [8, Section 2].

In the case $n=1$ but $A \neq B$, the following sharp stability result holds again as a consequence of classical theorems in additive combinatorics (an elementary proof of this result can be given using Kemperman's theorem [3, 4]):

Theorem 1.2. Let $A, B \subset \mathbb{R}$ be measurable sets. If $|A+B|<|A|+|B|+\delta$ for some $\delta \leq$ $\min \{|A|,|B|\}$, then $|\operatorname{co}(A) \backslash A| \leq \delta$ and $|\operatorname{co}(B) \backslash B| \leq \delta$.

Concerning the higher dimensional case, in $[1,2] \mathrm{M}$. Christ proved a qualitative stability result for (1.2), giving a positive answer to the stability question raised above. However, his results do not provide any quantitative control.

On the quantitative side, V. I. Diskant [5] and H. Groemer [15] obtained some stability results for convex sets in terms of the Hausdorff distance. More recently, in [10, 11], the first author together with F. Maggi and A. Pratelli obtained a sharp stability result in terms of the L^{1} distance, still on convex sets. Since this last result will be used later in our proofs, we state it in detail. (Here and from now on, $E \Delta F$ denotes the symmetric difference between sets E and F, that is $E \Delta F=(E \backslash F) \cup(F \backslash E)$.)

Theorem 1.3. Let $A, B \subset \mathbb{R}^{n}$ be convex sets, and define

$$
\mathscr{A}(A, B):=\inf _{x_{0} \in \mathbb{R}^{n}}\left\{\frac{\left|A \Delta\left(x_{0}+\tau B\right)\right|}{|A|}: \tau=\left(\frac{|A|}{|B|}\right)^{1 / n}\right\}, \quad \sigma(A, B):=\max \left\{\frac{|A|}{|B|}, \frac{|B|}{|A|}\right\} .
$$

There exists a computable dimensional constant $C_{0}(n)$ such that

$$
|A+B|^{1 / n} \geq\left(|A|^{1 / n}+|B|^{1 / n}\right)\left\{1+\frac{\mathscr{A}(A, B)^{2}}{C_{0}(n) \sigma(A, B)^{1 / n}}\right\}
$$

More recently, in [8, Theorem 1.2 and Remark 3.2], the present authors proved a quantitative stability result when $A=B$: given a measurable set $A \subset \mathbb{R}^{n}$ with $|A|>0$, set

$$
\begin{equation*}
\delta(A):=\frac{\left|\frac{1}{2}(A+A)\right|}{|A|}-1=\frac{|A+A|}{|2 A|}-1 . \tag{1.3}
\end{equation*}
$$

Then, a power of $\delta(A)$ dominates the measure of the difference between A and its convex hull $\operatorname{co}(A)$.
Theorem 1.4. Let $A \subset \mathbb{R}^{n}$ be a measurable set of positive measure. There exist computable dimensional constants $\delta_{n}, c_{n}>0$ such that if $\delta(A) \leq \delta_{n}$, then

$$
\delta(A)^{\alpha_{n}} \geq c_{n} \frac{|\operatorname{co}(A) \backslash A|}{|A|}, \quad \alpha_{n}:=\frac{1}{8^{n-1} n![(n-1)!]^{2}}
$$

In addition, there exists a convex set $K \subset \mathbb{R}^{n}$ such that

$$
\delta(A)^{n \alpha_{n}} \geq c_{n} \frac{|K \Delta A|}{|A|} .
$$

After that, we investigated the general case $A \neq B$. Notice that, after a dilation, one can always assume $|A|=|B|=1$ while replacing the sum $A+B$ by a convex combination $S_{t}:=t A+(1-t) B$. It follows by (1.2) that $\left|S_{t}\right|=1+\delta$ for some $\delta \geq 0$. The main theorem in [9] is a quantitative version of Christ's result. Since the proof is by induction on the dimension, it is convenient to allow the measures of $|A|$ and $|B|$ not to be exactly equal, but just close in terms of δ. Here is the main result of that paper.

Theorem 1.5. Let $n \geq 2$, let $A, B \subset \mathbb{R}^{n}$ be measurable sets, and define $S_{t}:=t A+(1-t) B$ for some $t \in[\tau, 1-\tau], 0<\tau \leq 1 / 2$. There are computable dimensional constants N_{n} and computable functions $M_{n}(\tau), \varepsilon_{n}(\tau)>0$ such that if

$$
\begin{equation*}
||A|-1|+||B|-1|+\left|\left|S_{t}\right|-1\right| \leq \delta \tag{1.4}
\end{equation*}
$$

for some $\delta \leq e^{-M_{n}(\tau)}$, then there exists a convex set $\mathcal{K} \subset \mathbb{R}^{n}$ such that, up to a translation,

$$
A, B \subset \mathcal{K} \quad \text { and } \quad|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq \tau^{-N_{n}} \delta^{\varepsilon_{n}(\tau)}
$$

Explicitly, we may take

$$
M_{n}(\tau)=\frac{2^{3^{n+2}} n^{3^{n}}|\log \tau|^{3^{n}}}{\tau^{3^{n}}}, \quad \varepsilon_{n}(\tau)=\frac{\tau^{3^{n}}}{2^{3^{n+1}} n^{3^{n}}|\log \tau|^{3^{n}}} .
$$

In particular, the measure of the difference between the sets A and B and their convex hull is bounded by a power δ^{ϵ}, confirming a conjecture of Christ [1].

The result above provides a general quantitative stability for the Brunn-Minkowski inequality in arbitrary dimension. However the exponent degenerates very quickly as the dimension increases (much faster than in Theorem 1.4), and, in addition, the argument in [9] is very long and involved. The aim of this paper is to provide a shorter and more elementary proof when $|A|=|B|>0$, that we believe to be of independent interest.

After a dilation, one can assume with no loss of generality that $|A|=|B|=1$. In this case, it follows by (1.2) that $\left|\frac{1}{2}(A+B)\right|=1+\delta$ for some $\delta \geq 0$, and we want to show that a power of δ controls the closeness of A and B to the same convex set \mathcal{K}. Again, as in the previous theorem, it will be convenient to allow the measures of $|A|$ and $|B|$ not to be exactly equal, but just close in terms of δ.

Here is the main result of this paper:
Theorem 1.6. Let $A, B \subset \mathbb{R}^{n}$ be measurable sets, and define their semi-sum $S:=\frac{1}{2}(A+B)$. There exist computable dimensional constants $\delta_{n}, C_{n}>0$ such that if

$$
\begin{equation*}
||A|-1|+||B|-1|+||S|-1| \leq \delta \tag{1.5}
\end{equation*}
$$

for some $\delta \leq \delta_{n}$, then there exists a convex set $\mathcal{K} \subset \mathbb{R}^{n}$ such that, up to a translation,

$$
A, B \subset \mathcal{K} \quad \text { and } \quad|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq C_{n} \delta^{\beta_{n}}
$$

where

$$
\beta_{1}:=1, \quad \beta_{n}:=\frac{1}{2^{6 n-5} 3^{n-1} n!(n-1)!} \prod_{k=1}^{n} \alpha_{k}^{2} \quad \forall n \geq 2
$$

and α_{k} is given by Theorem 1.4. (Recall that $|S|$ is the outer measure of S if S is not measurable.)
The proof of this theorem is specific to the case $|A|$ near $|B|$. It uses a symmetrization and other techniques introduced by Christ [2, 3], Theorems 1.3 and 1.4, and two propositions of independent interest, Propositions 2.5 and 2.6 below. See Section 3 for further discussion of the strategy of the proof.

Acknowledgements: AF was partially supported by NSF Grant DMS-1262411 and NSF Grant DMS-1361122. DJ was partially supported by NSF Grant DMS-1069225 and DMS-1500771. This work started during AF's visit at MIT during the Fall 2012. AF wishes to thank the Mathematics Department at MIT for its warm hospitality.

2 Notation and preliminary results

Let \mathcal{H}^{k} denote the k-dimensional Hausdorff measure on \mathbb{R}^{n}. Denote by $x=(y, t) \in \mathbb{R}^{n-1} \times \mathbb{R}$ a point in \mathbb{R}^{n}, and let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ and $\bar{\pi}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote the canonical projections, i.e.,

$$
\pi(y, t):=y \quad \text { and } \quad \bar{\pi}(y, t):=t
$$

Given a compact set $E \subset \mathbb{R}^{n}, y \in \mathbb{R}^{n-1}$, and $\lambda>0$, we use the notation

$$
\begin{gather*}
E_{y}:=E \cap \pi^{-1}(y) \subset\{y\} \times \mathbb{R}, \quad E(t):=E \cap \bar{\pi}^{-1}(t) \subset \mathbb{R}^{n-1} \times\{t\}, \tag{2.1}\\
\mathcal{E}(\lambda):=\left\{y \in \mathbb{R}^{n-1}: \mathcal{H}^{1}\left(E_{y}\right)>\lambda\right\} . \tag{2.2}
\end{gather*}
$$

Following Christ [2], we consider two symmetrizations and combine them. For our purposes (see the proof of Proposition 2.5), it is convenient to use a definition of Schwarz symmetrization that is slightly different from the classical one. (In the usual definition of Schwarz symmetrization $E^{*}(t)=\emptyset$ whenever $\mathcal{H}^{d-1}(E(t))=0$.)
Definition 2.1. Let $E \subset \mathbb{R}^{n}$ be a compact set. We define the Schwarz symmetrization E^{*} of E as follows. For each $t \in \mathbb{R}$,

- If $\mathcal{H}^{d-1}(E(t))>0$, then $E^{*}(t)$ is the closed disk centered at $0 \in \mathbb{R}^{n-1}$ with the same measure.
- If $\mathcal{H}^{d-1}(E(t))=0$ but $E(t)$ is non-empty, then $E^{*}(t)=\{0\}$.
- If $E(t)$ is empty, then $E^{*}(t)$ is empty as well.

We define the Steiner symmetrization E^{\star} of E so that for each $y \in \mathbb{R}^{n-1}$, the set E_{y}^{\star} is empty if $\mathcal{H}^{1}\left(E_{y}\right)=0$; otherwise it is the closed interval of length $\mathcal{H}^{1}\left(E_{y}\right)$ centered at $0 \in \mathbb{R}$. Finally, we define $E^{\natural}:=\left(E^{\star}\right)^{*}$.

As for instance in [2, Section 2], both the Schwarz and the Steiner symmetrization preserve the measure of sets, and the \downarrow-symmetrization preserves the measure of the sets $\mathcal{E}(\lambda)$. The following statement collects all these results.

Lemma 2.2. Let $A, B \subset \mathbb{R}^{n}$ be compact sets. Then $|A|=\left|A^{*}\right|=\left|A^{\star}\right|=\left|A^{\natural}\right|$,

$$
\left|A^{*}+B^{*}\right| \leq|A+B|, \quad\left|A^{\star}+B^{\star}\right| \leq|A+B|, \quad\left|A^{\natural}+B^{\natural}\right| \leq|A+B|,
$$

and, for almost every $\lambda>0$,

$$
\left|A \backslash \pi^{-1}(\mathcal{A}(\lambda))\right|=\left|A^{\natural} \backslash \pi^{-1}\left(\mathcal{A}^{\natural}(\lambda)\right)\right| \quad \text { and } \quad \mathcal{H}^{n-1}(\mathcal{A}(\lambda))=\mathcal{H}^{n-1}\left(\mathcal{A}^{\natural}(\lambda)\right),
$$

where $\mathcal{A}(\lambda):=\left\{y \in \mathbb{R}^{n-1}: \mathcal{H}^{1}\left(A_{y}\right)>\lambda\right\}$ and $\mathcal{A}^{\natural}(\lambda):=\left\{y \in \mathbb{R}^{n-1}: \mathcal{H}^{1}\left(A_{y}^{\natural}\right)>\lambda\right\}$.
Another important fact is that a bound on the measure of $A+B$ in terms of the measures of A and B gives bounds relating the sizes of

$$
\sup _{y} \mathcal{H}^{1}\left(A_{y}\right), \quad \sup _{y} \mathcal{H}^{1}\left(B_{y}\right), \quad \mathcal{H}^{n-1}(\pi(A)), \quad \mathcal{H}^{n-1}(\pi(B)) .
$$

We refer to [9, Lemma 3.2] for a proof.
Lemma 2.3. Let $A, B \subset \mathbb{R}^{n}$ be compact sets such that $|A|,|B| \geq 1 / 2$ and $\left|\frac{1}{2}(A+B)\right| \leq 2$. There exists a dimensional constant $M>1$ such that

$$
\frac{\sup _{y} \mathcal{H}^{1}\left(A_{y}\right)}{\sup _{y} \mathcal{H}^{1}\left(B_{y}\right)} \in(1 / M, M), \quad \frac{\mathcal{H}^{n-1}(\pi(A))}{\mathcal{H}^{n-1}(\pi(B))} \in(1 / M, M)
$$

$$
\left(\sup _{y} \mathcal{H}^{1}\left(A_{y}\right)\right) \mathcal{H}^{n-1}(\pi(A)) \in(1 / M, M), \quad\left(\sup _{y} \mathcal{H}^{1}\left(B_{y}\right)\right) \mathcal{H}^{n-1}(\pi(B)) \in(1 / M, M) .
$$

Thus, up a measure preserving affine transformation of the form $(y, t) \mapsto\left(\tau y, \tau^{1-n} t\right)$ with $\tau>$ 0 , all the quantities $\sup _{y} \mathcal{H}^{1}\left(A_{y}\right), \sup _{y} \mathcal{H}^{1}\left(B_{y}\right), \mathcal{H}^{n-1}(\pi(A)), \mathcal{H}^{n-1}(\pi(B))$ are of order one. In particular,

$$
\begin{equation*}
\mathcal{H}^{n-1}(\pi(A))+\mathcal{H}^{n-1}(\pi(B))+\sup _{y} \mathcal{H}^{1}\left(A_{y}\right)+\sup _{y} \mathcal{H}^{1}\left(B_{y}\right) \leq M . \tag{2.3}
\end{equation*}
$$

In this case, we say that A and B are M-normalized.
The following result of Christ [1, Lemma 4.1] shows that $\sup _{t} \mathcal{H}^{n-1}(A(t))$ and $\sup _{t} \mathcal{H}^{n-1}(B(t))$ are close in terms of δ :

Lemma 2.4. Let $A, B \subset \mathbb{R}^{n}$ be compact sets, define $S:=\frac{1}{2}(A+B)$, and assume that (1.5) holds for some $\delta \leq 1 / 2$. Also, suppose that A and B are M-normalized as defined in Lemma 2.3. Then, there exists a dimensional constant $C>0$ such that

$$
\frac{\sup _{t} \mathcal{H}^{n-1}(A(t))}{\sup _{t} \mathcal{H}^{n-1}(B(t))} \in\left(1-C \delta^{1 / 2}, 1+C \delta^{1 / 2}\right)
$$

Two other key ingredients in our proof of Theorem 1.6 are the following propositions, whose proofs are postponed to Section 4:

Proposition 2.5. Let $A, B \subset \mathbb{R}^{n}$ be compact sets, define $S:=\frac{1}{2}(A+B)$, and assume that (1.5) holds for some $\delta \leq 1 / 2$. Also, suppose that we can find a convex set $K \subset \mathbb{R}^{n}$ such that

$$
|S \Delta K| \leq C \delta^{\alpha}
$$

for some $\alpha>0$, where $C>0$ is a dimensional constant. Then there exists a dimensional constant $C^{\prime}>0$ such that

$$
|\operatorname{co}(S) \backslash S| \leq C^{\prime} \delta^{\alpha / 2 n}
$$

Proposition 2.6. Let $A, B \subset \mathbb{R}^{n}$ be compact sets, define $S:=\frac{1}{2}(A+B)$, and assume that (1.5) holds for some $\delta \leq 1 / 2$. Also, suppose that

$$
\begin{equation*}
|\operatorname{co}(S) \backslash S| \leq C \delta^{\beta} \tag{2.4}
\end{equation*}
$$

for some $\beta>0$, where $C>0$ is a dimensional constant. Then, up to a translation,

$$
|A \Delta B| \leq C^{\prime} \delta^{\beta / 2}
$$

and there exists a convex set \mathcal{K} containing both A and B such that

$$
|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq C^{\prime} \delta^{\beta / 2 n}
$$

for some dimensional constant $C^{\prime}>0$.

3 Proof of Theorem 1.6

As explained in [8], by inner approximation ${ }^{1}$ it suffices to prove the result when A, B are compact sets. Hence, let A and B be compact, define $S:=\frac{1}{2}(A+B)$, and assume that (1.5) holds. We want to prove that there exists a convex set \mathcal{K} such that, up to a translation,

$$
A, B \subset \mathcal{K}, \quad|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq C_{n} \delta^{\beta_{n}} .
$$

Moreover, since the statement and the conclusions are invariant under measure preserving affine transformations, by Lemma 2.3 we can assume that A and B are M-normalized (see (2.3)).

Ultimately, we wish to show that, up to translation, each of A, B, and S is of nearly full measure in the same convex set. The strategy of the proof is to show first that S is close to a convex set, and then apply Propositions 2.5 and 2.6. To obtain the closeness of S to a convex set, we would like prove that $\left|\frac{1}{2}(S+S)\right|$ is close to $|S|$ and then apply Theorem 1.4. It is simpler, however, to construct a subset $\bar{S} \subset S$ such that $|S \backslash \bar{S}|$ is small and $\left|\frac{1}{2}(\bar{S}+\bar{S})\right|$ is close to $|\bar{S}|$.

To carry out our argument, one important ingredient will be to use the inductive hypothesis on the level sets $\mathcal{A}(\lambda)$ and $\mathcal{B}(\lambda)$ defined in (2.2). However, two difficulties arise here: first of all, to apply the inductive hypothesis, we need to know that $\mathcal{H}^{n-1}(\mathcal{A}(\lambda))$ and $\mathcal{H}^{n-1}(\mathcal{B}(\lambda))$ are close. In addition, the Brunn-Minkowski inequality does not have a natural proof by induction unless the measures of all the level sets $\mathcal{H}^{n-1}(\mathcal{A}(\lambda))$ and $\mathcal{H}^{n-1}(\mathcal{B}(\lambda))$ are the nearly same. (See (3.11) below.) Hence, it is important for us to have a preliminary quantitative estimate on the difference between $\mathcal{H}^{n-1}(\mathcal{A}(\lambda))$ and $\mathcal{H}^{n-1}(\mathcal{B}(\lambda))$ for most $\lambda>0$. For this we follow an approach used first in [2] and readapted in [9], in which we begin by showing our theorem in the special case of symmetrized sets $A=A^{\natural}$ and $B=B^{\natural}$ (recall Definition 2.1). Thanks to Lemma 2.2, this will give us the desired closeness between $\mathcal{H}^{n-1}(\mathcal{A}(\lambda))$ and $\mathcal{H}^{n-1}(\mathcal{B}(\lambda))$ for most $\lambda>0$, which allows us to apply the strategy described above and prove the theorem in the general case.

Throughout the proof, C will denote a generic constant depending only on the dimension, which may change from line to line.
3.1 The case $A=A^{\natural}$ and $B=B^{\natural}$

Let $A, B \subset \mathbb{R}^{n}$ be compact sets satisfying $A=A^{\natural}, B=B^{\natural}$. Since

$$
\pi(A(t)) \subset \pi(A(0))=\pi(A) \quad \text { and } \quad \pi(B(t)) \subset \pi(B(0))=\pi(B) \quad \text { are disks centered at the origin }
$$

applying Lemma 2.4 we deduce that

$$
\begin{equation*}
\mathcal{H}^{n-1}(\pi(A) \Delta \pi(B)) \leq C \delta^{1 / 2} \tag{3.1}
\end{equation*}
$$

Hence, if we define

$$
\bar{S}:=\bigcup_{y \in \pi(A) \cap \pi(B)} \frac{A_{y}+B_{y}}{2},
$$

[^1]then $\bar{S}_{y} \subset S_{y}$ for all $y \in \mathbb{R}^{n-1}$. In addition, using (1.5), (2.3), and (3.1), we have
\[

$$
\begin{aligned}
1+\delta & \geq|S|=\int_{\mathbb{R}^{n-1}} \mathcal{H}^{1}\left(S_{y}\right) d y \geq \int_{\pi(A) \cap \pi(B)} \mathcal{H}^{1}\left(S_{y}\right) d y \geq \int_{\pi(A) \cap \pi(B)} \mathcal{H}^{1}\left(\bar{S}_{y}\right) d y \\
& =|\bar{S}| \geq \frac{1}{2} \int_{\pi(A) \cap \pi(B)} \mathcal{H}^{1}\left(A_{y}\right) d y+\frac{1}{2} \int_{\pi(A) \cap \pi(B)} \mathcal{H}^{1}\left(B_{y}\right) d y \\
& \geq \frac{|A|+|B|}{2}-M \mathcal{H}^{n-1}(\pi(A) \Delta \pi(B)) \geq 1-C \delta^{1 / 2},
\end{aligned}
$$
\]

which implies (since $\bar{S} \subset S$)

$$
\begin{equation*}
|S \backslash \bar{S}| \leq C \delta^{1 / 2} . \tag{3.2}
\end{equation*}
$$

Furthermore, since each section S_{y} is an interval centered at $0 \in \mathbb{R}$, for all $y^{\prime}, y^{\prime \prime} \in \pi(A) \cap \pi(B)$ such that $\frac{y^{\prime}+y^{\prime \prime}}{2}=y$,

$$
\bar{S}_{y^{\prime}}+\bar{S}_{y^{\prime \prime}}=\frac{A_{y^{\prime}}+B_{y^{\prime}}}{2}+\frac{A_{y^{\prime \prime}}+B_{y^{\prime \prime}}}{2}=\frac{A_{y^{\prime}}+B_{y^{\prime \prime}}}{2}+\frac{A_{y^{\prime \prime}}+B_{y^{\prime}}}{2} \subset S_{y}+S_{y}=2 S_{y}
$$

which gives

$$
\begin{equation*}
\frac{\bar{S}+\bar{S}}{2} \subset S \tag{3.3}
\end{equation*}
$$

Recalling (1.3), by (3.2) and (3.3) we obtain that $\delta(\bar{S}) \leq C \delta^{1 / 2}$. Hence, we can apply Theorem 1.4 to \bar{S} to find a convex set \bar{K} such that

$$
|\bar{S} \Delta \bar{K}| \leq C \delta^{n \alpha_{n} / 2}
$$

Hence, by (3.3),

$$
|S \Delta \bar{K}| \leq C \delta^{n \alpha_{n} / 2}
$$

and using Propositions 2.5 and 2.6 we deduce that, up to a translation, there exists a convex set K such that $A \cup B \subset K$ and

$$
\begin{equation*}
|A \Delta B| \leq C \delta^{\alpha_{n} / 8}, \quad|K \backslash A|+|K \backslash B| \leq C \delta^{\alpha_{n} / 8 n} \tag{3.4}
\end{equation*}
$$

Notice that, because $A=A^{\natural}$ and $B=B^{\natural}$, it is easy to check that the above properties still hold with K^{\natural} in place of K. Hence, in this case, without loss of generality one can assume that $K=K^{\natural}$.

3.2 The general case

Since, by Theorem 1.2, the result is true when $n=1$, we may assume that we already proved Theorem 1.6 through $n-1$, and we want to show its validity for n.

Step 1: There exist a dimensional constant $\zeta>0$ and $\bar{\lambda} \sim \delta^{\zeta}$ such that we can apply the inductive hypothesis to $\mathcal{A}(\bar{\lambda})$ and $\mathcal{B}(\bar{\lambda})$.

Let A^{\natural} and B^{\natural} be as in Definition 2.1 and denote

$$
\begin{equation*}
\bar{\alpha}:=\frac{\alpha_{n}}{8} . \tag{3.5}
\end{equation*}
$$

Thanks to Lemma 2.2, A^{\natural} and B^{\natural} still satisfy (1.5), so we can apply the result proved in Section 3.1 above to get (see (3.4))

$$
\begin{equation*}
\int_{\mathbb{R}^{n-1}}\left|\mathcal{H}^{1}\left(A_{y}^{\natural}\right)-\mathcal{H}^{1}\left(B_{y}^{\natural}\right)\right| d y \leq \int_{\mathbb{R}^{n-1}}\left|\mathcal{H}^{1}\left(A_{y}^{\natural} \Delta B_{y}^{\natural}\right)\right| d y=\left|A^{\natural} \Delta B^{\natural}\right| \leq C \delta^{\bar{\alpha}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
K \supset A^{\natural} \cup B^{\natural}, \quad\left|K \backslash A^{\natural}\right|+\left|K \backslash B^{\natural}\right| \leq C \delta^{\bar{\alpha} / n} \tag{3.7}
\end{equation*}
$$

for some convex set $K=K^{\natural}$.
In addition, because A and B are M-normalized (see (2.3)), so are A^{\natural} and B^{\natural}, and by (3.7) we deduce that there exists a dimensional constant $R_{n}>0$ such that

$$
\begin{equation*}
K \subset B_{R_{n}} . \tag{3.8}
\end{equation*}
$$

Also, by (3.6) and Chebyshev's inequality we obtain that, except for a set of measure $\leq C \delta^{\bar{\alpha} / 2}$,

$$
\left|\mathcal{H}^{1}\left(A_{y}^{\natural}\right)-\mathcal{H}^{1}\left(B_{y}^{\natural}\right)\right| \leq \delta^{\bar{\alpha} / 2} .
$$

Thus, recalling Lemma 2.2, for almost every $\lambda>0$

$$
\mathcal{H}^{n-1}(\mathcal{A}(\lambda))=\mathcal{H}^{n-1}\left(\mathcal{A}^{\natural}(\lambda)\right) \leq \mathcal{H}^{n-1}\left(\mathcal{B}^{\natural}\left(\lambda-\delta^{\bar{\alpha} / 2}\right)\right)+C \delta^{\bar{\alpha} / 2}=\mathcal{H}^{n-1}\left(\mathcal{B}\left(\lambda-\delta^{\bar{\alpha} / 2}\right)\right)+C \delta^{\bar{\alpha} / 2}
$$

Since, by (2.3),

$$
\int_{0}^{M}\left(\mathcal{H}^{n-1}(\mathcal{B}(\lambda))-\mathcal{H}^{n-1}\left(\mathcal{B}\left(\lambda+\delta^{\bar{\alpha} / 2}\right)\right)\right) d \lambda=\int_{0}^{\delta^{\bar{\alpha} / 2}} \mathcal{H}^{n-1}(\mathcal{B}(\lambda)) d \lambda \leq M \delta^{\bar{\alpha} / 2}
$$

by Chebyshev's inequality we deduce that

$$
\mathcal{H}^{n-1}(\mathcal{A}(\lambda)) \leq \mathcal{H}^{n-1}(\mathcal{B}(\lambda))+C \delta^{\bar{\alpha} / 4}
$$

for all λ outside a set of measure $\leq C \delta^{\bar{\alpha} / 4}$. Exchanging the roles of A and B we obtain that there exists a set $F \subset[0, M]$ such that

$$
\begin{equation*}
\mathcal{H}^{1}(F) \leq C \delta^{\bar{\alpha} / 4}, \quad\left|\mathcal{H}^{n-1}(\mathcal{A}(\lambda))-\mathcal{H}^{n-1}(\mathcal{B}(\lambda))\right| \leq C \delta^{\bar{\alpha} / 4} \quad \forall \lambda \in[0, \infty] \backslash F . \tag{3.9}
\end{equation*}
$$

Using the elementary inequality

$$
\left(\frac{a+b}{2}\right)^{n-1} \geq \frac{a^{n-1}+b^{n-1}}{2}-C|a-b|^{2} \quad \forall 0 \leq a, b \leq M
$$

and replacing a and b with $a^{1 /(n-1)}$ and $b^{1 /(n-1)}$, respectively, we get

$$
\begin{equation*}
\left(\frac{a^{1 /(n-1)}+b^{1 /(n-1)}}{2}\right)^{n-1} \geq \frac{a+b}{2}-C|a-b|^{2 /(n-1)} \quad \forall 0 \leq a, b \leq M \tag{3.10}
\end{equation*}
$$

(notice that $\left|a^{1 /(n-1)}-b^{1 /(n-1)}\right| \leq|a-b|^{1 /(n-1)}$). Finally, it is easy to check that

$$
\frac{\mathcal{A}(\lambda)+\mathcal{B}(\lambda)}{2} \subset \mathcal{S}(\lambda) \quad \forall \lambda>0
$$

Hence, by the Brunn-Minkowski inequality (1.2) applied to $\mathcal{A}(\lambda)$ and $\mathcal{B}(\lambda)$, using (1.5), (2.3), (3.10), and (3.9), we get

$$
\begin{align*}
1+\delta \geq|S|= & \int_{0}^{M} \mathcal{H}^{n-1}(\mathcal{S}(\lambda)) d \lambda \\
\geq & \frac{1}{2^{n-1}} \int_{0}^{M}\left(\mathcal{H}^{n-1}(\mathcal{A}(\lambda))^{1 /(n-1)}+\mathcal{H}^{n-1}(\mathcal{B}(\lambda))^{1 /(n-1)}\right)^{n-1} d \lambda \\
\geq & \frac{1}{2} \int_{0}^{M}\left(\mathcal{H}^{n-1}(\mathcal{A}(\lambda))+\mathcal{H}^{n-1}(\mathcal{B}(\lambda))\right) d \lambda \tag{3.11}\\
& \quad-C \int_{0}^{M}\left|\mathcal{H}^{n-1}(\mathcal{A}(\lambda))-\mathcal{H}^{n-1}(\mathcal{B}(\lambda))\right|^{2 /(n-1)} d \lambda \\
= & \frac{|A|+|B|}{2}-C \delta^{\bar{\alpha} /[2(n-1)]} \\
\geq & 1-C \delta^{\bar{\alpha} /[2(n-1)] .}
\end{align*}
$$

We also observe that, since $K=K^{\natural}$, by Lemma 2.2, (3.8), and [2, Lemma 4.3], for almost every $\lambda>0$ we have

$$
\begin{align*}
\left|A \backslash \pi^{-1}(\mathcal{A}(\lambda))\right| & =\left|A^{\natural} \backslash \pi^{-1}\left(\mathcal{A}^{\natural}(\lambda)\right)\right| \\
& \leq\left|K \backslash \pi^{-1}(\mathcal{K}(\lambda))\right|+M \mathcal{H}^{n-1}\left(\mathcal{A}^{\natural}(\lambda) \Delta \mathcal{K}(\lambda)\right) \tag{3.12}\\
& \leq C \lambda^{2}+M \mathcal{H}^{n-1}\left(\mathcal{A}^{\natural}(\lambda) \Delta \mathcal{K}(\lambda)\right),
\end{align*}
$$

and analogously for B. Also, by (3.7),

$$
\begin{equation*}
\int_{0}^{M}\left(\mathcal{H}^{n-1}\left(\mathcal{A}^{\natural}(\lambda) \Delta \mathcal{K}(\lambda)\right)+\mathcal{H}^{n-1}\left(\mathcal{B}^{\natural}(\lambda) \Delta \mathcal{K}(\lambda)\right)\right) d \lambda \leq\left|K \backslash A^{\natural}\right|+\left|K \backslash B^{\natural}\right| \leq C \delta^{\bar{\alpha} / n} \tag{3.13}
\end{equation*}
$$

Define

$$
\begin{equation*}
\eta:=\min \left\{\frac{\bar{\alpha}}{2(n-1)}, \frac{\bar{\alpha}}{4}\right\}, \tag{3.14}
\end{equation*}
$$

and note that $\eta \leq \bar{\alpha} / n$. Let $\zeta \in(0, \eta)$ to be fixed later. Then by (3.9), (3.11), (3.12), (3.13), and by Chebyshev's inequality, we can find a level

$$
\begin{equation*}
\bar{\lambda} \in\left[10 \delta^{\zeta}, 20 \delta^{\zeta}\right] \tag{3.15}
\end{equation*}
$$

such that

$$
\begin{gather*}
\left|\mathcal{H}^{n-1}(\mathcal{A}(\bar{\lambda}))-\mathcal{H}^{n-1}(\mathcal{B}(\bar{\lambda}))\right| \leq C \delta^{\eta} \tag{3.16}\\
2^{n-1} \mathcal{H}^{n-1}(\mathcal{S}(\bar{\lambda})) \leq\left(\mathcal{H}^{n-1}(\mathcal{A}(\bar{\lambda}))^{1 /(n-1)}+\mathcal{H}^{n-1}(\mathcal{B}(\bar{\lambda}))^{1 /(n-1)}\right)^{n-1}+C \delta^{\eta-\zeta}, \tag{3.17}\\
\left|A \backslash \pi^{-1}(\mathcal{A}(\bar{\lambda}))\right|+\left|B \backslash \pi^{-1}(\mathcal{B}(\bar{\lambda}))\right| \leq C\left(\delta^{2 \zeta}+\delta^{\eta-\zeta}\right), \tag{3.18}
\end{gather*}
$$

In addition, from the properties $\mathcal{H}^{n-1}(\mathcal{A}(\lambda)) \leq M$ for any $\lambda>0($ see $(2.3)), \int_{0}^{M} \mathcal{H}^{n-1}(\mathcal{A}(\lambda)) d \lambda=$ $|A| \geq 1-\delta$, and $s \mapsto \mathcal{H}^{n-1}(\mathcal{A}(\lambda))$ is a decreasing function, we deduce that

$$
\frac{1}{2 M} \leq \mathcal{H}^{n-1}(\mathcal{A}(\lambda)) \leq \begin{array}{r}
M \\
10
\end{array} \quad \forall \lambda \in\left(0,(2 M)^{-1}\right)
$$

The same holds for B and S, hence

$$
\mathcal{H}^{n-1}(\mathcal{S}(\bar{\lambda})), \mathcal{H}^{n-1}(\mathcal{A}(\bar{\lambda})), \mathcal{H}^{n-1}(\mathcal{B}(\bar{\lambda})) \in\left[(2 M)^{-1}, M\right]
$$

provided δ is small enough. Set $\rho:=1 / \mathcal{H}^{n-1}(\mathcal{A}(\bar{\lambda}))^{1 /(n-1)} \in\left[1 / M^{1 /(n-1)},(2 M)^{1 /(n-1)}\right]$, and define

$$
A^{\prime}:=\rho \mathcal{A}(\bar{\lambda}), \quad B^{\prime}:=\rho \mathcal{B}(\bar{\lambda}), \quad S^{\prime}:=\rho \mathcal{S}(\bar{\lambda}) .
$$

By (3.17) and (3.16) we get

$$
\mathcal{H}^{n-1}\left(A^{\prime}\right)=1, \quad\left|\mathcal{H}^{n-1}\left(B^{\prime}\right)-1\right| \leq C \delta^{\eta}, \quad \mathcal{H}^{n-1}\left(S^{\prime}\right) \leq 1+C \delta^{\eta-\zeta} .
$$

while, by (1.2),

$$
\mathcal{H}^{n-1}\left(S^{\prime}\right)^{1 /(n-1)} \geq \frac{\mathcal{H}^{n-1}\left(A^{\prime}\right)^{1 /(n-1)}+\mathcal{H}^{n-1}\left(B^{\prime}\right)^{1 /(n-1)}}{2} \geq 1-C \delta^{\eta},
$$

therefore

$$
\left|\mathcal{H}^{n-1}\left(A^{\prime}\right)-1\right|+\left|\mathcal{H}^{n-1}\left(B^{\prime}\right)-1\right|+\left|\mathcal{H}^{n-1}\left(S^{\prime}\right)-1\right| \leq C \delta^{\eta-\zeta} .
$$

Thus, by the inductive hypothesis of Theorem 1.6, up to a translation there exists a $(n-1)$ dimensional convex set Ω^{\prime} such that

$$
\Omega^{\prime} \supset A^{\prime} \cup B^{\prime}, \quad \mathcal{H}^{n-1}\left(\Omega^{\prime} \backslash A^{\prime}\right)+\mathcal{H}^{n-1}\left(\Omega^{\prime} \backslash B^{\prime}\right) \leq C \delta^{(\eta-\zeta) \beta_{n-1}}
$$

and defining $\Omega:=\Omega^{\prime} / \rho$ we obtain (recall that $1 / \rho \leq M^{1 /(n-1)}$)

$$
\begin{equation*}
\Omega \supset \mathcal{A}(\bar{\lambda}) \cup \mathcal{B}(\bar{\lambda}), \quad \mathcal{H}^{n-1}(\Omega \backslash \mathcal{A}(\bar{\lambda}))+\mathcal{H}^{n-1}(\Omega \backslash \mathcal{B}(\bar{\lambda})) \leq C \delta^{(\eta-\zeta) \beta_{n-1}} . \tag{3.19}
\end{equation*}
$$

Step 2: We apply Theorem 1.2 to the sets A_{y} and B_{y} for most $y \in \mathcal{A}(\bar{\lambda}) \cap \mathcal{B}(\bar{\lambda})$.
Define $\mathcal{C}:=\mathcal{A}(\bar{\lambda}) \cap \mathcal{B}(\bar{\lambda}) \subset \mathcal{S}(\bar{\lambda})$. By (3.18), (3.19), and (2.3), we have

$$
\begin{align*}
&\left|A \backslash \pi^{-1}(\mathcal{C})\right|+\left|B \backslash \pi^{-1}(\mathcal{C})\right| \leq \mid A \backslash \\
& \pi^{-1}(\mathcal{A}(\bar{\lambda}))\left|+\left|B \backslash \pi^{-1}(\mathcal{B}(\bar{\lambda}))\right|\right. \tag{3.20}\\
& \leq C\left(\delta^{2 \zeta}+\delta^{\eta(\bar{\lambda})) \backslash(\mathcal{B}(\bar{\lambda}))} \mathcal{H}^{\eta-\zeta}\left(A_{y}\right) d y+\int_{(\mathcal{B}(\bar{\lambda})) \backslash(\mathcal{A}(\bar{\lambda}))} \mathcal{H}^{1}\left(B_{y}\right) d y\right. \\
& \leq C\left(\mathcal{H}^{n-1}(\Omega \backslash \mathcal{A}(\bar{\lambda}))+\mathcal{H}^{n-1}(\Omega \backslash \mathcal{B}(\bar{\lambda}))\right) \\
&\left.\delta^{\eta-\zeta}+\delta^{(\eta-\zeta) \beta_{n-1}}\right) \leq C \delta^{2 \zeta}
\end{align*}
$$

provided we choose

$$
\begin{equation*}
\zeta:=\frac{\eta \beta_{n-1}}{3} \tag{3.21}
\end{equation*}
$$

(recall that $\beta_{n-1} \leq 1$). Hence, by (1.5) and (3.20),

$$
\begin{aligned}
\int_{\mathcal{C}} \mathcal{H}^{1}\left(S_{y} \backslash \frac{A_{y}+B_{y}}{2}\right) d y & \leq \int_{\mathcal{C}}\left[\mathcal{H}^{1}\left(S_{y}\right)-\frac{1}{2}\left(\mathcal{H}^{1}\left(A_{y}\right)+\mathcal{H}^{1}\left(B_{y}\right)\right)\right] d y \\
& =\left|S \cap \pi^{-1}(\mathcal{C})\right|-\frac{\left|A \cap \pi^{-1}(\mathcal{C})\right|+\left|B \cap \pi^{-1}(\mathcal{C})\right|}{2} \\
& \leq|S|-\frac{|A|+|B|}{2}+\frac{\left|A \backslash \pi^{-1}(\mathcal{C})\right|+\left|B \backslash \pi^{-1}(\mathcal{C})\right|}{2} \\
& \leq C \delta^{2 \zeta} .
\end{aligned}
$$

Write \mathcal{C} as $\mathcal{C}_{1} \cup \mathcal{C}_{2}$, where

$$
\mathcal{C}_{1}:=\left\{y \in \mathcal{C}: 2 \mathcal{H}^{1}\left(S_{y}\right)-\mathcal{H}^{1}\left(A_{y}\right)-\mathcal{H}^{1}\left(B_{y}\right) \leq \delta^{\zeta} / 2\right\}, \quad \mathcal{C}_{2}:=\mathcal{C} \backslash \mathcal{C}_{1} .
$$

By Chebyshev's inequality and (3.22),

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\mathcal{C}_{2}\right) \leq C \delta^{\zeta} \tag{3.23}
\end{equation*}
$$

while, recalling (3.15),

$$
\min \left\{\mathcal{H}^{1}\left(A_{y}\right), \mathcal{H}^{1}\left(B_{y}\right)\right\} \geq \bar{\lambda} \geq 10 \delta^{\zeta}>\delta^{\zeta} / 2 \quad \forall y \in \mathcal{C}_{1} .
$$

Hence, by Theorem 1.2 applied to $A_{y}, B_{y} \subset \mathbb{R}$ for $y \in \mathcal{C}_{1}$, we deduce that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\operatorname{co}\left(A_{y}\right) \backslash A_{y}\right)+\mathcal{H}^{1}\left(\operatorname{co}\left(B_{y}\right) \backslash B_{y}\right) \leq \delta^{\zeta} . \tag{3.24}
\end{equation*}
$$

Let $\hat{\mathcal{C}}_{1} \subset \mathcal{C}_{1}$ denote the set of $y \in \mathcal{C}_{1}$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(S_{y} \backslash \frac{A_{y}+B_{y}}{2}\right) \leq \delta^{\zeta}, \tag{3.25}
\end{equation*}
$$

and notice that, by (3.22) and Chebyshev's inequality, $\mathcal{H}^{n-1}\left(\mathcal{C}_{1} \backslash \hat{\mathcal{C}}_{1}\right) \leq C \delta^{\zeta}$. Then choose a compact set $\mathcal{C}_{1}^{\prime} \subset \hat{\mathcal{C}}_{1}$ such that $\mathcal{H}^{n-1}\left(\hat{\mathcal{C}}_{1} \backslash \mathcal{C}_{1}^{\prime}\right) \leq \delta^{\zeta}$ to obtain

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\mathcal{C}_{1} \backslash \mathcal{C}_{1}^{\prime}\right) \leq C \delta^{\zeta} . \tag{3.26}
\end{equation*}
$$

Step 3: We find $\bar{S} \subset S$ so that $|S \backslash \bar{S}|$ and $\delta(\bar{S})$ are small.
Define the compact set

$$
\bar{S}:=\bigcup_{y \in \mathcal{C}_{1}^{\prime}} \frac{A_{y}+B_{y}}{2} \subset \mathbb{R}^{n} .
$$

Observe, thanks to (3.20), (3.23), (3.26), (2.3), and (1.5),

$$
\begin{aligned}
2|\bar{S}| & \geq \int_{\mathcal{C}_{1}^{\prime}} \mathcal{H}^{1}\left(A_{y}\right) d y+\int_{\mathcal{C}_{1}^{\prime}} \mathcal{H}^{1}\left(B_{y}\right) d y \\
& \geq|A|+|B|-\left|A \backslash \pi^{-1}(\mathcal{C})\right|-\left|B \backslash \pi^{-1}(\mathcal{C})\right|-M \mathcal{H}^{n-1}\left(\mathcal{C} \backslash \mathcal{C}_{1}^{\prime}\right) \\
& \geq 2|S|-C \delta^{\zeta} .
\end{aligned}
$$

So, since $\bar{S} \subset S$,

$$
\begin{equation*}
|S \Delta \bar{S}| \leq C \delta^{\zeta} \tag{3.27}
\end{equation*}
$$

Now, we want to estimate the measure of $\frac{1}{2}(\bar{S}+\bar{S})$. First of all, since

$$
\begin{equation*}
S_{y}=\bigcup_{2 y=y^{\prime}+y^{\prime \prime}} \frac{A_{y^{\prime}}+B_{y^{\prime \prime}}}{2} \tag{3.28}
\end{equation*}
$$

by (3.25) we get

$$
\begin{equation*}
\mathcal{H}^{1}\left(\left(\bigcup_{2 y=y^{\prime}+y^{\prime \prime}} \frac{A_{y^{\prime}}+B_{y^{\prime \prime}}}{2}\right) \backslash \frac{A_{y}+B_{y}}{2}\right) \leq \delta^{\zeta} \quad \forall y \in \mathcal{C}_{1}^{\prime} . \tag{3.29}
\end{equation*}
$$

Also, if we define the characteristic functions

$$
\chi_{y}^{A}(\lambda):=\left\{\begin{array}{ll}
1 & \text { if }(y, \lambda) \in A_{y} \\
0 & \text { otherwise },
\end{array} \quad \chi_{y}^{A, *}(\lambda):= \begin{cases}1 & \text { if }(y, \lambda) \in \operatorname{co}\left(A_{y}\right) \\
0 & \text { otherwise },\end{cases}\right.
$$

and analogously for B_{y}, by (3.24) we have the following estimate on their convolutions:

$$
\begin{align*}
\left\|\chi_{y^{\prime}}^{A, *} * \chi_{y^{\prime \prime}}^{B, *}-\chi_{y^{\prime}}^{A} * \chi_{y^{\prime \prime}}^{B}\right\|_{L^{\infty}(\mathbb{R})} & \leq\left\|\chi_{y^{\prime \prime}}^{B, *}-\chi_{y^{\prime \prime}}^{B}\right\|_{L^{1}(\mathbb{R})}+\left\|\chi_{y^{\prime}}^{A, *}-\chi_{y^{\prime}}^{A}\right\|_{L^{1}(\mathbb{R})} \\
& =\mathcal{H}^{1}\left(\operatorname{co}\left(B_{y^{\prime \prime}}\right) \backslash B_{y^{\prime \prime}}\right)+\mathcal{H}^{1}\left(\operatorname{co}\left(A_{y^{\prime}}\right) \backslash A_{y^{\prime}}\right) \tag{3.30}\\
& \leq \delta^{\zeta}<3 \delta^{\zeta} \quad \forall y^{\prime}, y^{\prime \prime} \in \mathcal{C}_{1}^{\prime} .
\end{align*}
$$

Recalling that $\bar{\pi}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the orthogonal projection onto the last component (that is, $\bar{\pi}(y, t)=t$), denote by $[a, b]$ the interval $\bar{\pi}\left(\operatorname{co}\left(A_{y^{\prime}}\right)+\operatorname{co}\left(B_{y^{\prime \prime}}\right)\right)$, and notice that, since by construction

$$
\min \left\{\mathcal{H}^{1}\left(A_{y}\right), \mathcal{H}^{1}\left(B_{y}\right)\right\} \geq \bar{\lambda} \geq 10 \delta^{\zeta} \quad \forall y \in \mathcal{C}_{1}^{\prime}
$$

(see (3.15)), this interval has length greater than $20 \delta^{\zeta}$. Also, it is easy to check that the function $\chi_{y^{\prime}}^{A, *} * \chi_{y^{\prime \prime}}^{B, *}$ is supported on $[a, b]$, has slope equal to 1 (resp. -1) in $\left[a, a+3 \delta^{\zeta}\right]$ (resp. $\left[b-3 \delta^{\zeta}, b\right]$), and it is greater than $3 \delta^{\zeta}$ in $\left[a+3 \delta^{\zeta}, b-3 \delta^{\zeta}\right]$. Hence, since $\bar{\pi}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right)$ contains the set $\left\{\chi_{y^{\prime}}^{A} * \chi_{y^{\prime \prime}}^{B}>0\right\}$, by (3.30) we deduce that

$$
\begin{equation*}
\bar{\pi}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right) \supset\left[a+3 \delta^{\zeta}, b-3 \delta^{\zeta}\right], \tag{3.31}
\end{equation*}
$$

which implies in particular that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\operatorname{co}\left(A_{y^{\prime}}\right)+\operatorname{co}\left(B_{y^{\prime \prime}}\right)\right) \leq \mathcal{H}^{1}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right)+6 \delta^{\zeta} \quad \forall y^{\prime}, y^{\prime \prime} \in \mathcal{C}_{1}^{\prime} . \tag{3.32}
\end{equation*}
$$

Also, by the same argument as in [8, Step 2-a], if we denote by

$$
\left[\alpha_{y}, \beta_{y}\right]:=\bar{\pi}\left(\operatorname{co}\left(A_{y}\right)+\operatorname{co}\left(B_{y}\right)\right),
$$

using (3.25) and (3.31) we have

$$
\begin{equation*}
\bar{\pi}\left(\operatorname{co}\left(A_{y^{\prime}}\right)+\operatorname{co}\left(B_{y^{\prime \prime}}\right)\right) \subset\left[\alpha_{y}-16 \delta^{\zeta}, \beta_{y}+16 \delta^{\zeta}\right] \quad \forall y^{\prime}, y^{\prime \prime}, y=\frac{y^{\prime}+y^{\prime \prime}}{2} \in C_{1}^{\prime} \tag{3.33}
\end{equation*}
$$

(Compare with [8, Equation (3.25)].)
We now estimate the size of $\left[\frac{1}{2}(\bar{S}+\bar{S})\right]_{y}$. Observe that, for all $y \in C_{1}^{\prime}$,

$$
\begin{aligned}
{\left[\frac{1}{2}(\bar{S}+\bar{S})\right]_{y} } & =\bigcup_{2 y=y^{\prime}+y^{\prime \prime}, y^{\prime}, y^{\prime \prime} \in C_{1}^{\prime}}\left(\frac{\frac{1}{2}\left(A_{y^{\prime}}+B_{y^{\prime}}\right)+\frac{1}{2}\left(A_{y^{\prime \prime}}+B_{y^{\prime \prime}}\right)}{2}\right) \\
& =\bigcup_{2 y=y^{\prime}+y^{\prime \prime}, y^{\prime}, y^{\prime \prime} \in C_{1}^{\prime}}\left(\frac{\frac{1}{2}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right)+\frac{1}{2}\left(A_{y^{\prime \prime}}+B_{y^{\prime}}\right)}{2}\right) \\
& \subset \frac{1}{2}\left(\bigcup_{2 y=y^{\prime}+y^{\prime \prime}, y^{\prime}, y^{\prime \prime} \in C_{1}^{\prime}} \frac{1}{2}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right)+\bigcup_{2 y=y^{\prime}+y^{\prime \prime}, y^{\prime}, y^{\prime \prime} \in C_{1}^{\prime}} \frac{1}{2}\left(A_{y^{\prime}}+B_{y^{\prime \prime}}\right)\right) .
\end{aligned}
$$

Hence, by (3.33) we deduce that each of the latter sets is contained inside the convex set $\{y\} \times$ [$\alpha_{y}-16 \delta^{\zeta}, \beta_{y}+16 \delta^{\zeta}$], so also their semi-sum is contained in the same set, and using (3.32) with $y^{\prime}=y^{\prime \prime}=y$ we get

$$
\begin{align*}
\mathcal{H}^{1}\left([(\bar{S}+\bar{S}) / 2]_{y}\right) & \leq \mathcal{H}^{1}\left(\frac{\operatorname{co}\left(A_{y}\right)+\operatorname{co}\left(B_{y}\right)}{2}\right)+16 \delta^{\zeta} \\
& \leq \mathcal{H}^{1}\left(\frac{A_{y}+B_{y}}{2}\right)+22 \delta^{\zeta} \tag{3.34}\\
& =\mathcal{H}^{1}\left(\bar{S}_{y}\right)+22 \delta^{\zeta} \quad \forall y \in C_{1}^{\prime} .
\end{align*}
$$

In order to estimate $\left[\frac{1}{2}(\bar{S}+\bar{S})\right]_{y}$ when $y \in \frac{C_{1}^{\prime}+C_{1}^{\prime}}{2} \backslash C_{1}^{\prime}$ we argue as follows: by (3.33) and the fact that $\mathcal{H}^{1}\left(\operatorname{co}\left(A_{y}\right)\right)$ and $\mathcal{H}^{1}\left(\operatorname{co}\left(B_{y}\right)\right)$ are universally bounded (see (2.3) and (3.24)), the following holds: if we denote by $c^{A}(y)$ the barycenter of $\operatorname{co}\left(A_{y}\right)$ (and analogously for B and \bar{S}), we have

$$
\left|c^{A}\left(y^{\prime}\right)+c^{B}\left(y^{\prime \prime}\right)-2 c^{\bar{S}}(y)\right| \leq C \quad \forall y, y^{\prime}, y^{\prime \prime} \in \mathcal{C}_{1}^{\prime}, y=\frac{y^{\prime}+y^{\prime \prime}}{2}
$$

(notice that $\left.\operatorname{co}\left(\bar{S}_{y}\right)=\operatorname{co}\left(A_{y}\right)+\operatorname{co}\left(B_{y}\right)\right)$. Exchanging the role of A and B and adding up the two inequalities, we deduce that

$$
\left|c^{\bar{S}}\left(y^{\prime}\right)+c^{\bar{S}}\left(y^{\prime \prime}\right)-2 c^{\bar{S}}(y)\right| \leq C \quad \forall y, y^{\prime}, y^{\prime \prime} \in \mathcal{C}_{1}^{\prime}, y=\frac{y^{\prime}+y^{\prime \prime}}{2} .
$$

As shown in [8, Step 3], this estimate combined with the fact that \mathcal{C}_{1}^{\prime} is almost of full measure inside the convex set Ω (see (3.19), (3.23), and (3.26)) proves that, up to an affine transformation of the form

$$
\begin{equation*}
\mathbb{R}^{n-1} \times \mathbb{R} \ni(y, t) \mapsto(T y, t-L y)+\left(y_{0}, t_{0}\right) \tag{3.35}
\end{equation*}
$$

with $T: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}, L: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$, $\operatorname{det}(T)=1$, and $\left(y_{0}, t_{0}\right) \in \mathbb{R}^{n}$, the set \bar{S} is universally bounded, say $\bar{S} \subset B_{R}$ for some dimensional constant R. This implies that $\left[\frac{1}{2}(\bar{S}+\bar{S})\right]_{y} \subset[-R, R]$, so $\mathcal{H}^{1}\left(\left[\frac{1}{2}(\bar{S}+\bar{S})\right]_{y}\right) \leq 2 R$.

Hence, since $\frac{1}{2}\left(\mathcal{C}_{1}^{\prime}+\mathcal{C}_{1}^{\prime}\right) \subset \Omega$, by (3.34), (3.19), and (3.21),

$$
\begin{aligned}
\left|\frac{\bar{S}+\bar{S}}{2} \backslash \bar{S}\right|= & \int_{\left[\frac{1}{2}\left(\mathcal{C}_{1}^{\prime}+\mathcal{C}_{1}^{\prime}\right)\right] n \mathcal{C}_{1}^{\prime}} \mathcal{H}^{1}\left([(\bar{S}+\bar{S}) / 2]_{y}\right)-\mathcal{H}^{1}\left(\bar{S}_{y}\right) d y \\
& +\int_{\left[\frac{1}{2}\left(\mathcal{C}_{1}^{\prime}+\mathcal{C}_{1}^{\prime}\right)\right) \backslash \mathcal{C}_{1}^{\prime}} \mathcal{H}^{1}\left([(\bar{S}+\bar{S}) / 2]_{y}\right) d y \\
\leq & 22 \delta^{\zeta} \mathcal{H}^{n-1}(\Omega)+2 R \mathcal{H}^{n-1}\left(\Omega \backslash \mathcal{C}_{1}^{\prime}\right) \leq C \delta^{\zeta},
\end{aligned}
$$

that is,

$$
\delta(\bar{S}) \leq C \delta^{\zeta}
$$

Step 4: Conclusion.

By the previous step we have that $\delta(\bar{S}) \leq C \delta^{\zeta}$. Hence, applying Theorem 1.4 to \bar{S} we find a convex set $\overline{\mathcal{K}}$ such that

$$
|\bar{S} \Delta \overline{\mathcal{K}}| \leq C \delta^{n \alpha_{n} \zeta}
$$

so, by (3.27),

$$
|S \Delta \overline{\mathcal{K}}| \leq C \delta^{n \alpha_{n} \zeta} .
$$

Using this estimate together with Propositions 2.5 and 2.6 we deduce that, up to a translation, there exists a convex set \mathcal{K} convex such that $A \cup B \subset \mathcal{K}$ and

$$
|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq C \delta^{\alpha_{n} \zeta / 4 n} .
$$

Recalling the definition of ζ (see (3.5), (3.14), (3.21)), we see that

$$
\beta_{n}:=\frac{\alpha_{n} \zeta}{4 n}=\min \left\{\frac{1}{n-1}, \frac{1}{2}\right\} \frac{\alpha_{n}^{2}}{3 \cdot 2^{6} n} \beta_{n-1} .
$$

Since $\beta_{1}=1$ (by Theorem 1.2), it is easy to check that

$$
\beta_{n}=\frac{1}{2^{6 n-5} 3^{n-1} n!(n-1)!} \prod_{k=1}^{n} \alpha_{k}^{2} \quad \forall n \geq 2
$$

concluding the proof.

4 Technical results

As in the previous section, we use C to denote a generic constant depending only on the dimension, which may change from line to line.

4.1 Proof of Proposition 2.5

Assume that

$$
|S \Delta K| \leq C \delta^{\alpha}
$$

for some $\alpha \in(0,1]$. By John's Lemma [16], after a volume preserving affine transformation, we can assume that $B_{r_{n}} \subset K \subset B_{n r_{n}}$, with $r_{n}=r_{n}(K)>0$ bounded above and below by positive dimensional constants. Note, however, that with this normalization, we will not be able to assume that A and B are M-normalized, since we have already chosen a different affine normalization.

We want to prove that

$$
\begin{equation*}
S \subset\left(1+C \delta^{\alpha / 2 n}\right) K \tag{4.1}
\end{equation*}
$$

Let $\bar{x}_{0} \in S \backslash K$, and set $\rho:=\operatorname{dist}\left(\bar{x}_{0}, K\right)=\left|\bar{x}_{0}-\bar{x}_{1}\right|$ with $\bar{x}_{1} \in K$. With no loss of generality we can assume that $\bar{x}_{1}=\tau e_{n}$, for some $\tau>0, \bar{x}_{0}=(\tau+\rho) e_{n}$, and $K \subset\left\{x_{n} \leq \tau\right\}$. We need to prove that $\rho \leq C \delta^{\alpha / 2 n}$.

Let us consider the sets $A^{*}, B^{*}, S^{*}, K^{*}$ obtained from A, B, S, K performing a Schwarz symmetrization around the e_{n}-axis (see Definition 2.1). Set $S^{\prime}:=\frac{1}{2}\left(A^{*}+B^{*}\right)$. Since

$$
\left|S^{*} \Delta K^{*}\right| \leq|S \Delta K| \leq C \delta^{\alpha},
$$

and, by (1.5) (notice that $S^{\prime} \subset S^{*}$ and that $\left|S^{\prime}\right| \geq 1-C \delta$ by (1.2)),

$$
\left|S^{*} \backslash S^{\prime}\right|=\left|S^{*}\right|-\left|S^{\prime}\right|=|S|-\left|S^{\prime}\right| \leq C \delta,
$$

we get that $\left|S^{\prime} \Delta K^{*}\right| \leq C \delta^{\alpha}$. In addition, $K^{*} \subset\left\{x_{n} \leq \tau\right\}, \bar{x}_{1} \in K^{*}$, and $\bar{x}_{0} \in S^{*}$. Hence, without loss of generality we can assume from the beginning that $A=A^{*}, B=B^{*}, S=\frac{1}{2}\left(A^{*}+B^{*}\right)$, and $K=K^{*}$.

For a compact set $E \subset \mathbb{R}^{n}$, recall the notation $E(t) \subset \mathbb{R}^{n-1} \times\{t\}$ in (2.1), and define $E[s] \subset \mathbb{R}$ by

$$
\begin{equation*}
E[s]:=\left\{t: \mathcal{H}^{n-1}(E(t)) \geq s\right\} \tag{4.2}
\end{equation*}
$$

Since $S=\frac{1}{2}(A+B)$ we have

$$
\frac{A(t)+B(t)}{2} \subset S(t) \quad \forall t \in \mathbb{R},
$$

so, by (1.2) we deduce that

$$
S[s] \supset \frac{A[s]+B[s]}{2} \quad \forall s>0 .
$$

Hence

$$
\begin{equation*}
\mathcal{H}^{1}(A[s])+\mathcal{H}^{1}(B[s]) \leq 2 \mathcal{H}^{1}(S[s]) \quad \forall s>0, \tag{4.3}
\end{equation*}
$$

and integrating with respect to s, by (1.5) we get

$$
\begin{equation*}
4 \delta \geq 2|S|-|A|-|B|=\int_{0}^{\infty}\left(2 \mathcal{H}^{1}(S[s])-\mathcal{H}^{1}(A[s])-\mathcal{H}^{1}(B[s])\right) d s \tag{4.4}
\end{equation*}
$$

Recall that $K=K^{*}$, so that the canonical projection $\pi(K)$ onto \mathbb{R}^{n-1} is a ball. We denote it $B_{R}:=\pi(K)$, and note that $R \leq n r_{n}$, with $r_{n}=r_{n}(K)$ given by John's lemma at the beginning of this proof. Then, since $|S \Delta K| \leq C \delta^{\alpha}$ we have

$$
C \delta^{\alpha} \geq\left|S \backslash \pi^{-1}\left(B_{R}\right)\right|=\int_{\mathcal{H}^{n-1}\left(B_{R}\right)}^{\infty} \mathcal{H}^{1}(S[s]) d s
$$

so, by (4.3),

$$
\begin{equation*}
\left|A \backslash \pi^{-1}\left(B_{R}\right)\right|+\left|B \backslash \pi^{-1}\left(B_{R}\right)\right|=\int_{\mathcal{H}^{n-1}\left(B_{R}\right)}^{\infty}\left(\mathcal{H}^{1}(A[s])+\mathcal{H}^{1}(B[s])\right) d s \leq C \delta^{\alpha} . \tag{4.5}
\end{equation*}
$$

Hence, recalling that $|A|$ and $|B|$ are $\geq 1-\delta$, we deduce that

$$
\int_{0}^{\mathcal{H}^{n-1}\left(B_{R}\right)} \mathcal{H}^{1}(A[s]) d s \geq 1 / 2, \quad \int_{0}^{\mathcal{H}^{n-1}\left(B_{R}\right)} \mathcal{H}^{1}(B[s]) d s \geq 1 / 2
$$

and since R is universally bounded (being less than $n r_{n}$) and both functions

$$
s \mapsto \mathcal{H}^{1}(A[s]), \quad s \mapsto \mathcal{H}^{1}(B[s])
$$

are decreasing, there exists a small dimensional constant $c^{\prime}>0$ such that

$$
\begin{equation*}
\min \left\{\mathcal{H}^{1}(A[s]), \mathcal{H}^{1}(B[s])\right\} \geq c^{\prime} \quad \forall s \in\left(0, c^{\prime}\right) . \tag{4.6}
\end{equation*}
$$

Also, by (4.4),

$$
\begin{equation*}
\int_{0}^{c^{\prime}}\left(2 \mathcal{H}^{1}(S[s])-\mathcal{H}^{1}(A[s])-\mathcal{H}^{1}(B[s])\right) d s \leq 4 \delta \tag{4.7}
\end{equation*}
$$

and since $|S \Delta K| \leq C \delta^{\alpha}$ and $K \subset\left\{x_{n} \leq \tau\right\}$

$$
\begin{equation*}
\int_{0}^{c^{\prime}} \mathcal{H}^{1}(S[s] \backslash(-\infty, \tau]) d s \leq\left|S \backslash\left\{x_{n} \leq \tau\right\}\right| \leq C \delta^{\alpha} . \tag{4.8}
\end{equation*}
$$

Hence, thanks to (4.6), (4.7), (4.8), we use Theorem 1.2 and Chebishev's inequality to find a value

$$
\begin{equation*}
\bar{s} \in\left[\delta^{\alpha / 2}, 2 \delta^{\alpha / 2}\right] \tag{4.9}
\end{equation*}
$$

such that

$$
\mathcal{H}^{1}(\operatorname{co}(A[\bar{s}]) \backslash A[\bar{s}])+\mathcal{H}^{1}(\operatorname{co}(B[\bar{s}]) \backslash B[\bar{s}]) \leq C \delta^{1-\alpha / 2} \leq C \delta^{\alpha / 2}
$$

(notice that $\alpha \leq 1$) and

$$
\mathcal{H}^{1}(S[\bar{s}] \backslash(-\infty, \tau]) \leq C \delta^{\alpha / 2}
$$

Since $\frac{1}{2}(A[\bar{s}]+B[\bar{s}]) \subset S[\bar{s}]$, this implies

$$
\frac{\operatorname{co}(A[\bar{s}])+\operatorname{co}(B[\bar{s}])}{2} \subset\left(-\infty, \tau+C \delta^{\alpha / 2}\right] .
$$

Hence, after applying opposite translations along the e_{n}-axis to A and B, i.e.,

$$
A \mapsto A+\ell e_{n}, \quad B \mapsto B-\ell e_{n},
$$

for some $\ell \in \mathbb{R}$, we can assume that

$$
\operatorname{co}(A[\bar{s}]) \subset\left(-\infty, \tau+C \delta^{\alpha / 2}\right], \quad \operatorname{co}(B[\bar{s}]) \subset\left(-\infty, \tau+C \delta^{\alpha / 2}\right] .
$$

Since the sets $s \mapsto A[s], B[s]$ are decreasing, we deduce that

$$
\begin{equation*}
\operatorname{co}(A[s]), \operatorname{co}(B[s]) \subset\left(-\infty, \tau+C \delta^{\alpha / 2}\right], \quad \forall s \geq \bar{s} \tag{4.10}
\end{equation*}
$$

We now want to bound $\sup _{s>0} \mathcal{H}^{1}(A[s])$. (Recall that we cannot assume that A and B are M-normalized, since we already made an affine transformation to ensure that $B_{r_{n}} \subset K \subset B_{n r_{n}}$.) Since $A=A^{*}$, we have $\sup _{s>0} \mathcal{H}^{1}(A[s])=\sup _{y \in \mathbb{R}^{n-1}} \mathcal{H}^{1}\left(A_{y}\right)$, so, by Lemma 2.3,

$$
\begin{equation*}
\sup _{s>0} \mathcal{H}^{1}(A[s]) \leq \frac{M}{\mathcal{H}^{n-1}(\pi(B))}, \quad \frac{\mathcal{H}^{n-1}(\pi(A))}{\mathcal{H}^{n-1}(\pi(B))} \in\left(M^{-1}, M\right) . \tag{4.11}
\end{equation*}
$$

In addition, since $\pi(A)$ and $\pi(B)$ are $(n-1)$-dimensional disks centered on the e_{n}-axis, $|S \Delta K| \leq$ $C \delta^{\alpha}$, and $B_{r_{n}} \subset K \subset B_{n r_{n}}$, we easily deduce that

$$
\begin{equation*}
\frac{\pi(A)+\pi(B)}{2}=\pi(S) \supset B_{r_{n} / 2} \tag{4.12}
\end{equation*}
$$

provided δ is small enough. Hence, combining (4.11) and (4.12) we deduce that $\mathcal{H}^{n-1}(\pi(B))$ is bounded from away from zero by a dimensional constant, thus

$$
\begin{equation*}
\sup _{s>0} \mathcal{H}^{1}(A[s]) \leq C . \tag{4.13}
\end{equation*}
$$

Hence, by (4.5), (4.10), (4.13), and (4.9),

$$
\begin{align*}
\left|A \backslash\left\{x_{n} \leq \tau\right\}\right| & \leq\left|A \backslash \pi^{-1}\left(B_{R}\right)\right|+\left|\pi^{-1}\left(B_{R}\right) \cap\left\{\tau \leq x_{n} \leq \tau+C \delta^{\alpha / 2}\right\}\right|+\int_{0}^{\bar{s}} \mathcal{H}^{1}(A[s]) d s \tag{4.14}\\
& \leq C \delta^{\alpha}+C \delta^{\alpha / 2}+C \bar{s} \leq C \delta^{\alpha / 2},
\end{align*}
$$

and, analogously,

$$
\begin{equation*}
\left|B \backslash\left\{x_{n} \leq \tau\right\}\right| \leq C \delta^{\alpha / 2} \tag{4.15}
\end{equation*}
$$

Now, given $r \geq 0$, let us define the sets

$$
A_{r}^{\prime}:=A \cap\left\{x_{n} \leq \tau-r\right\}, \quad B_{r}^{\prime}:=B \cap\left\{x_{n} \leq \tau-r\right\}, \quad S_{r}^{\prime}:=S \cap\left\{x_{n} \leq \tau-r\right\} .
$$

By (4.14) and (4.15) we know that

$$
\left|A_{0}^{\prime}\right|,\left|B_{0}^{\prime}\right| \geq 1-C \delta^{\alpha / 2}
$$

and it is immediate to check that

$$
\frac{A_{0}^{\prime}+B_{r}^{\prime}}{2} \subset S_{r / 2}^{\prime}, \quad \frac{A_{r}^{\prime}+B_{0}^{\prime}}{2} \subset S_{r / 2}^{\prime}
$$

Also, since K is a convex set satisfying $B_{r_{n}} \subset K \subset B_{n r_{n}}$, there exists a dimensional constant $c_{n}>0$ such that

$$
\left|K \cap\left\{\tau-r / 2 \leq x_{n} \leq \tau\right\}\right| \geq c_{n} \min \left\{r^{n}, 1\right\} .
$$

Hence

$$
\begin{aligned}
\left|S_{r / 2}^{\prime}\right| & \leq|S|-\left|S \cap\left\{\tau-r / 2 \leq x_{n} \leq \tau\right\}\right| \\
& \leq|S|+|S \Delta K|-\left|K \cap\left\{\tau-r / 2 \leq x_{n} \leq \tau\right\}\right| \\
& \leq 1+C \delta^{\alpha}-c_{n} \min \left\{r^{n}, 1\right\},
\end{aligned}
$$

and by (1.2) applied to A_{r}^{\prime} and B_{0}^{\prime} we get

$$
\begin{aligned}
1-C \delta^{\alpha / 2}-C\left|A \cap\left\{\tau-r \leq x_{n} \leq \tau\right\}\right| & \leq \frac{\left|A_{r}^{\prime}\right|^{1 / n}+\left|B_{0}^{\prime}\right|^{1 / n}}{2} \leq\left|S_{r / 2}^{\prime}\right|^{1 / n} \\
& \leq 1+C \delta^{\alpha}-c_{n} \min \left\{r^{n}, 1\right\}
\end{aligned}
$$

which gives

$$
\begin{equation*}
C\left|A \cap\left\{\tau-r \leq x_{n} \leq \tau\right\}\right| \geq c_{n} \min \left\{r^{n}, 1\right\}-C \delta^{\alpha / 2} \tag{4.16}
\end{equation*}
$$

(and analogously for B)
Since the point $\bar{x}_{0}=(\tau+\rho) e_{n}$ belongs to $S=(A+B) / 2$, there as to be a point $\bar{x} \in A \cup B$ such that $\bar{x} \cdot e_{n} \geq(\tau+\rho)$. With no loss of generality, assume that $\bar{x} \in B$. Then, by (4.16) applied with $r=\rho$ we get

$$
S \cap\left\{x_{n} \geq \tau\right\} \supset \frac{\bar{x}+\left(A \cap\left\{\tau-\rho \leq x_{n} \leq \tau\right\}\right)}{2},
$$

so

$$
C \delta^{\alpha} \geq\left|S \cap\left\{x_{n} \geq \tau\right\}\right| \geq \frac{\left|A \cap\left\{\tau-\rho \leq x_{n} \leq \tau\right\}\right|}{2^{n}} \geq \frac{c_{n}}{C} \min \left\{\rho^{n}, 1\right\}-C \delta^{\alpha / 2}
$$

which implies $\rho \leq C \delta^{\alpha / 2 n}$, proving (4.1).
Hence $\operatorname{co}(S) \subset\left(1+C \delta^{\alpha / 2 n}\right) K$, from which the result follows immediately.

4.2 Proof of Proposition 2.6

Since

$$
\frac{\operatorname{co}(A)+\operatorname{co}(B)}{2}=\operatorname{co}(S),
$$

by (1.2), (2.4), and (1.5) we have

$$
\begin{aligned}
|\operatorname{co}(A)|^{1 / n}+|\operatorname{co}(B)|^{1 / n} & \leq|\operatorname{co}(A)+\operatorname{co}(B)|^{1 / n} \\
& =2|\operatorname{co}(S)|^{1 / n} \leq 2|S|^{1 / n}+C \delta^{\beta} \\
& \leq|A|^{1 / n}+|B|^{1 / n}+C \delta^{\beta} \\
& \leq|\operatorname{co}(A)|^{1 / n}+|\operatorname{co}(B)|^{1 / n}+C \delta^{\beta},
\end{aligned}
$$

from which we deduce that

$$
\begin{equation*}
|\operatorname{co}(A) \backslash A|+|\operatorname{co}(B) \backslash B| \leq C \delta^{\beta} . \tag{4.17}
\end{equation*}
$$

Also, by Theorem 1.3 and the fact that $||\operatorname{co}(A)|-|\operatorname{co}(B)|| \leq C \delta^{\beta \alpha_{n}}$ (see (4.17)) we obtain that, up to a translation,

$$
\begin{equation*}
|\operatorname{co}(A) \Delta \operatorname{co}(B)| \leq C\left(\delta^{\beta / 2}+\delta^{\beta}\right) \leq C \delta^{\beta / 2} . \tag{4.18}
\end{equation*}
$$

This estimate combined with (4.17) implies that

$$
|A \Delta B| \leq C \delta^{\beta / 2}
$$

In addition, if we define $\mathcal{K}:=\operatorname{co}(A \cup B)$, then we will conclude our argument by showing that

$$
\begin{equation*}
|\mathcal{K} \backslash A|+|\mathcal{K} \backslash B| \leq C \delta^{\beta / 2 n} . \tag{4.19}
\end{equation*}
$$

Indeed, by John's Lemma [16], after a volume preserving affine transformation we can assume that $B_{r} \subset \operatorname{co}(A) \subset B_{n r}$ for some radius r bounded above and below by positive dimensional constants. By (4.18) and a simple geometric argument we easily deduce that

$$
\operatorname{co}(B) \subset\left(1+C \delta^{\beta / 2 n}\right) \operatorname{co}(A)
$$

Thus

$$
\operatorname{co}(A) \cup \operatorname{co}(B) \subset \mathcal{K} \subset\left(1+C \delta^{\beta / 2 n}\right) \operatorname{co}(A)
$$

and (4.19) follows by (4.17) and (4.18).

References

[1] Christ M. Near equality in the two-dimensional Brunn-Minkowski inequality. Preprint, 2012. Available at http://arxiv.org/abs/1206.1965
[2] Christ M. Near equality in the Brunn-Minkowski inequality. Preprint, 2012. Available at http://arxiv.org/abs/1207.5062
[3] Christ M. An approximate inverse Riesz-Sobolev inequality. Preprint, 2011. Available at http://arxiv.org/abs/1112.3715
[4] Christ M. Personal communication.
[5] Diskant, V. I. Stability of the solution of a Minkowski equation. (Russian) Sibirsk. Mat. Ž. 14 (1973), 669-673, 696.
[6] Figalli A. Stability results for the Brunn-Minkowski inequality. Colloquium De Giorgi 20132014, to appear.
[7] Figalli A. Quantitative stability results for the Brunn-Minkowski inequality. Proceedings of the ICM 2014, to appear.
[8] Figalli A.; Jerison D. Quantitative stability for sumsets in \mathbb{R}^{n}. J. Eur. Math. Soc. (JEMS), 17 (2015), no. 5, 1079-1106.
[9] Figalli A.; Jerison D. Quantitative stability for the Brunn-Minkowski inequality. Preprint, 2014.
[10] Figalli, A.; Maggi, F.; Pratelli, A. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010), no. 1, 167-211.
[11] Figalli, A.; Maggi, F.; Pratelli, A. A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2511-2519.
[12] Freiman, G. A. The addition of finite sets. I. (Russian) Izv. Vyss. Ucebn. Zaved. Matematika, 1959, no. 6 (13), 202-213.
[13] Freiman, G. A. Foundations of a structural theory of set addition. Translated from the Russian. Translations of Mathematical Monographs, Vol 37. American Mathematical Society, Providence, R. I., 1973.
[14] Gardner, R. J., The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355-405.
[15] Groemer, H. On the Brunn-Minkowski theorem. Geom. Dedicata 27 (1988), no. 3, 357-371.
[16] John F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187-204. Interscience, New York, 1948.
[17] Tao, T.; Vu, V. Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006.

[^0]: *The University of Texas at Austin, Mathematics Dept. RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712-1202 USA. E-mail address: figalli@math.utexas.edu
 ${ }^{\dagger}$ Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139-4307 USA. E-mail address: jerison@math.mit.edu

[^1]: ${ }^{1}$ The approximation of A (and analogously for B) is by a sequence of compact sets $A_{k} \subset A$ such that $\left|A_{k}\right| \rightarrow|A|$ and $\left|\operatorname{co}\left(A_{k}\right)\right| \rightarrow|\operatorname{co}(A)|$. One way to construct such sets is to define $A_{k}:=A_{k}^{\prime} \cup V_{k}$, where $A_{k}^{\prime} \subset A$ are compact sets satisfying $\left|A_{k}^{\prime}\right| \rightarrow|A|$, and $V_{k} \subset V_{k+1} \subset A$ are finite sets satisfying $\left|\operatorname{co}\left(V_{k}\right)\right| \rightarrow|\operatorname{co}(A)|$.

