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Abstract. In this paper, we prove that every equivalence class in the quotient group
of integral 1-currents modulo p in Euclidean space contains an integral current, with
quantitative estimates on its mass and the mass of its boundary. Moreover, we show that
the validity of this statement for m-dimensional integral currents modulo p implies that
the family of (m− 1)-dimensional flat chains of the form pT , with T a flat chain, is closed
with respect to the flat norm. In particular, we deduce that such closedness property holds
for 0-dimensional flat chains, and, using a proposition from The structure of minimizing
hypersurfaces mod 4 by Brian White, also for flat chains of codimension 1.
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1. Introduction

The theory of integral currents was born in the 1960’s after the work of Federer and
Fleming [8] out of the desire to solve Plateau’s problem. Integral currents were thus
introduced to provide a mathematical framework where the existence of orientable surfaces
minimizing the volume among those spanning a given contour could be rigorously proved
by direct methods in any dimension and codimension.

In order to deal with non-orientable surfaces, Ziemer [16] introduced the notion of integral
currents modulo 2. Further generalizations, such as integral currents modulo p and flat
chains modulo p, were considered in order to treat a wider class of surfaces which can be
realized, for instance, as soap films. An interesting property of such surfaces is that they
can develop singularities in low codimension, unlike the classical solutions to Plateau’s
problem (see, for instance, [10] and [14]).

Moreover, integral currents, flat chains and their generalizations have proved to be flexible
enough to describe and tackle similar problems in more abstract settings (see, in particular,
[15], [4], [6] and [2]).

Despite the substantial interest in the subject, the very structure of flat chains and
integral currents modulo p is yet to be completely understood. The initial idea is to define
flat chains modulo p by identifying currents which differ by pT , where T is a “classical” flat
chain. This definition, however, has one major drawback: the closedness of the classes with
respect to the flat norm is a-priori not guaranteed. Hence, it is more convenient to define
the classes of flat chains modulo p as the flat closure of the equivalence classes mentioned
above. The equivalence of the two definitions is still an open problem.
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A second issue regards the structure of integral currents modulo p. They are defined as
flat chains modulo p with finite p-mass and finite p-mass of the boundary. It is not known
whether each equivalence class contains at least one classical integral current.

In this work, we specifically address these two problems. In Section 2 we recall the basic
terminology and the main results about classical flat chains and integral currents. Flat
chains and integral currents modulo p are introduced in Section 3, where we also formulate
two questions related to the two above problems and collect some partial answers from the
literature. Finally, in Section 4 we throw light on the connection between the two questions,
and we provide a positive answer to the second one in the case of 1-dimensional currents.
Moreover, we give an example illustrating how it is possible to produce situations in which
the answer to the second question is negative in higher dimension.

Acknowledgements. The authors would like to thank Camillo De Lellis for having posed
the problem and for helpful discussions. A. M. and S. S. are supported by the ERC-grant
“Regularity of area-minimizing currents” (306247).

2. Classical results on flat chains

In what follows we recall the basic terminology related to the theory of currents. We
refer the reader to the introductory presentation given in [11] or to the standard textbooks
[12], [9] for further details. The most complete reference remains the treatise [7].

2.1. Currents. An m-dimensional current T in Rn (m ≤ n) is a continuous linear func-
tional on the space Dm(Rn) of smooth compactly supported differential m-forms in Rn,
endowed with a locally convex topology built in analogy with the topology on C∞c (Rn) with
respect to which distributions are dual.

The boundary of T is the (m− 1)-dimensional current ∂T defined by
〈∂T, ω〉 := 〈T, dω〉

for any smooth compactly supported (m− 1)-form ω. The mass of T , denoted by M(T ), is
the (possibly infinite) supremum of 〈T, ω〉 over all forms ω with |ω| ≤ 1 everywhere.

The support of a current T , denoted spt(T ), is the intersection of all closed sets C in Rn

such that 〈T, ω〉 = 0 whenever ω ≡ 0 on C.

2.2. Rectifiable currents. A subset E ⊂ Rn is said to be m-rectifiable if Hm(E) <∞ and
E can be covered, except for an Hm-null subset, by countably many m-dimensional surfaces
of class C1. If E is m-rectifiable, then a suitable notion of m-dimensional approximate
tangent space to E can be defined for Hm-a.e. x ∈ E. Such a tangent space will be
denoted Tan(E, x) and it coincides with the classical tangent space if E is a (piece of a) C1

m-surface.
Let E be an m-rectifiable set in Rn. An orientation of E is an m-vectorfield τ on Rn

such that τ(x) is a simple m-vector with |τ(x)| = 1 which spans Tan(E, x) at Hm-a.e. point
x. A multiplicity on E is an integer-valued function θ such that∫

E
|θ| dHm <∞.
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For every choice of a triple (E, τ, θ) as above, we denote by T = JE, τ, θK the m-
dimensional current whose action on a form ω is given by

〈T, ω〉 :=
∫
E
〈ω(x), τ(x)〉θ(x) dHm(x).

Currents of this type are called integer rectifiable m-currents. The set of integer rectifiable
m-currents in Rn with support in a compact K ⊂ Rn will be denoted Rm,K(Rn). The
symbol Rm(Rn) will denote the union of Rm,K(Rn) corresponding to all compact subsets
K ⊂ Rn. If T = JE, τ, θK ∈ Rm(Rn), we denote by ‖T‖ the measure given by

‖T‖(A) :=
∫
A∩E
|θ| dHm for every A ⊂ Rn Borel.

One can check that M(T ) = ‖T‖(Rn) and thus, in particular, integer rectifiable currents
have finite mass.

With the symbol Im,K(Rn) we denote the set of integral m-currents supported in K,
that is currents in Rm,K(Rn) with integer rectifiable boundary. The meaning of the symbol
Im(Rn) is understood. We recall the following fundamental

Theorem 2.1 (Boundary Rectifiability, cf. [7, Theorem 4.2.16]).
Im,K(Rn) = {T ∈ Rm,K(Rn) : M(∂T ) <∞}. (2.1)

2.3. Flat chains. The set of (integral) flat m-chains in Rn with support in a compact
K ⊂ Rn is denoted by Fm,K(Rn) and defined by

Fm,K(Rn) := {T = R + ∂S : R ∈ Rm,K(Rn), S ∈ Rm+1,K(Rn)}. (2.2)
We also define the set Fm(Rn) as the union of the sets Fm,K(Rn) corresponding to all
compact subsets K ⊂ Rn.

For any T ∈ Fm,K(Rn), we define the flat norm
FK(T ) := inf{M(R) + M(S) : R ∈ Rm,K(Rn), S ∈ Rm+1,K(Rn) and T = R+ ∂S}. (2.3)

It turns out that FK induces a complete metric dFK
on Fm,K(Rn) setting

dFK
(T1, T2) := FK(T1 − T2).

Moreover, the mass M is lower semi-continuous with respect to the convergence in Fm,K(Rn)
induced by dFK

.
For every K, the class Im,K(Rn) is dense in Rm,K(Rn) in mass, and consequently

Im,K(Rn) is dense in Fm,K(Rn) in flat norm. In fact, the same result holds more in general
whenever the ambient space is a closed convex subset E of a Banach space, if working with
the general theory of currents in metric spaces introduced by Ambrosio and Kirchheim
in [4] (cf [3, Proposition 14.7]). In particular, given T ∈ Fm,K(Rn) there exist sequences
{Tj} ⊂ Im,K(Rn), {Rj} ⊂ Rm,K(Rn), {Sj} ⊂ Rm+1,K(Rn) such that

T = Tj +Rj + ∂Sj

and
M(Rj) + M(Sj)→ 0.
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If T has finite mass, then the ∂Sj’s have finite mass too, and thus Sj ∈ Im+1,K(Rn).
Therefore, the currents Tj + ∂Sj ∈ Rm,K(Rn) approximate T in mass, and this suffices to
conclude that T ∈ Rm,K(Rn) (cf. [12, Lemma 27.5]). We have shown the following result:

Theorem 2.2 (Rectifiability of flat chains with finite mass, cf. [7, Theorem 4.2.16]).
Rm,K(Rn) = {T ∈ Fm,K(Rn) : M(T ) <∞}. (2.4)

We finally recall the following remarkable

Theorem 2.3 (Compactness Theorem, cf. [7, Theorem 4.2.17]). Let K ⊂ Rn be a compact
set and {Tj}∞j=1 ⊂ Im,K(Rn) a sequence of integral currents such that

sup
j≥1
{M(Tj) + M(∂Tj)} <∞. (2.5)

Then, there exist T ∈ Im,K(Rn) and a subsequence {Tj`} such that
lim
`→∞

FK(T − Tj`) = 0. (2.6)

2.4. Polyhedral chains. Given an m-dimensional simplex σ in Rn with constant unit
orientation τ , we denote by JσK the rectifiable current Jσ, τ, 1K. Finite linear combinations
of (the currents associated with) oriented m-simplexes with integer coefficients are called
(integral) polyhedral m-chains. The set of polyhedral m-chains in Rn will be denoted
Pm(Rn). The main motivation for introducing polyhedral chains is the following theorem.

Theorem 2.4 (Polyhedral approximation, cf. [7, Corollary 4.2.21]). If T ∈ Im(Rn), ε > 0,
K ⊂ Rn is a compact set such that spt(T ) ⊂ intK, then there exists P ∈ Pm(Rn), with
spt(P ) ⊂ K, such that

FK(T − P ) < ε, M(P ) ≤M(T ) + ε, M(∂P ) ≤M(∂T ) + ε. (2.7)

3. Flat chains modulo p

In this section, we recall the definitions of the sets of currents with coefficients in Zp, and
collect some of the most relevant open questions regarding their structure.

3.1. Definitions and basic properties. Let p be a positive integer. For any T ∈ Fm,K(Rn),
we define

Fp
K(T ) := inf{M(R) + M(S) : R ∈ Rm,K(Rn), S ∈ Rm+1,K(Rn) s.t.

T = R + ∂S + pQ for some Q ∈ Fm,K(Rn)}. (3.1)

Observe that, since Im,K(Rn) is flat-dense in Fm,K(Rn), the infimum is unchanged if
we let Q run in Im,K(Rn). Also notice that the inequality Fp

K(T ) ≤ FK(T ) holds for any
T ∈ Fm,K(Rn).

Now, we introduce the equivalence relation mod(p) in Fm,K(Rn): given T, T̃ ∈ Fm,K(Rn),
we say that T = T̃ mod(p) in Fm,K(Rn) if and only if Fp

K(T − T̃ ) = 0. The corresponding
quotient group will be denoted F p

m,K(Rn). As in the classical case, Fp
K induces a distance

dFp
K
which makes F p

m,K(Rn) a complete metric space.
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It is evident that if T − T̃ = pQ for some Q ∈ Fm,K(Rn), then T = T̃ mod(p) in
Fm,K(Rn), but the converse implication is not known (see Question 3.5 below).

We say that two flat m-chains T, T̃ ∈ Fm(Rn) are equivalent mod(p) in Fm(Rn), and we
write T = T̃ mod(p) in Fm(Rn) if there exists a compact K ⊂ Rn such that Fp

K(T − T̃ ) = 0.
The elements of the corresponding quotient group F p

m(Rn) are called flat m-chains modulo
p and they will be denoted by [T ].

Remark 3.1. (i) Note that if T ∈ Fm(Rn) and spt(T ) ⊂ K, then it is false in general
that T ∈ Fm,K(Rn). The simplest counterexample being the 0-dimensional current
obtained as the boundary of (the rectifiable 1-current associated to) a countable
union of disjoint intervals Si contained in [0, 1] and clustering only at the origin, when
K = {0}∪⋃i ∂Si. Nevertheless, it is a consequence of the polyhedral approximation
theorem 2.4 that if spt(T ) ⊂ intK, then indeed T ∈ Fm,K(Rn) (see also [7, Theorem
4.2.22]).

(ii) One would expect that the following property holds. If T = T̃ mod(p) in Fm(Rn),
then T = T̃ mod(p) in Fm,K(Rn), whenever K is a compact set which contains
spt(T ) and spt(T̃ ), and T, T̃ ∈ Fm,K(Rn). Nevertheless, the validity of this property
does not appear to be obvious for a general compact set K. On the other hand, if K
is also convex, the validity of the property is immediate. Indeed, let K ′ be a compact
set such that T − T̃ = Rj + ∂Sj + pQj with Rj ∈ Rm,K′(Rn), Sj ∈ Rm+1,K′(Rn),
Qj ∈ Fm,K′(Rn) and M(Rj) + M(Sj) ≤ 1

j
. Then, denoting by π the (1-Lipschitz)

closest-point projection on K, and by π] the push-forward operator through π (see
[7, Section 4.1.14]), we have that

T − T̃ = π]T − π]T̃ = π]Rj + ∂π]Sj + pπ]Qj,

where π]Rj ∈ Rm,K(Rn), π]Sj ∈ Rm+1,K(Rn) and π]Qj ∈ Fm,K(Rn). Moreover
M(π]Rj) + M(π]Sj) ≤M(Rj) + M(Sj), hence T = T̃ mod(p) in Fm,K(Rn).

(iii) Observe that, using the same argument as in (ii), we are able to conclude that if
T ∈ Fm(Rn) and spt(T ) ⊂ K then T ∈ Fm,K(Rn) when K is convex (or, more in
general, whenever there exists a Lipschitz projection onto K).

3.2. Boundary, mass and support modulo p. It is immediate to see that if T = T̃ mod(p)
in Fm(Rn) (resp. in Fm,K(Rn)), then also ∂T = ∂T̃ mod(p) in Fm−1(Rn) (resp. in
Fm−1,K(Rn)), and therefore a boundary operator ∂ can be defined also in the quotient
groups F p

m(Rn) (resp. in F p
m,K(Rn)) in such a way that

∂ [T ] = [∂T ] for every T ∈ Fm(Rn). (3.2)

For T ∈ Fm(Rn), we also define its mass modulo p, or simply p-mass Mp(T ), as the least
t ∈ R ∪ {+∞} such that for every ε > 0 there exists a compact K ⊂ Rn and a rectifiable
current R ∈ Rm,K(Rn) satisfting

Fp
K(T −R) < ε and M(R) ≤ t+ ε. (3.3)
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One has that Mp(T1 + T2) ≤Mp(T1) + Mp(T2) and Mp(T ) = Mp(T̃ ) if T = T̃ mod(p)
in Fm(Rn). This allows to regard Mp as a functional on the quotient group F p

m(Rn). Such
functional is lower semi-continuous with respect to the Fp

K-convergence for every K.
Finally, we denote by sptp([T ]) the support modulo p of [T ] ∈ F p

m(Rn), given by

sptp([T ]) :=
⋂
{spt(T̃ ) : T̃ ∈ Fm(Rn), T̃ = T mod(p) in Fm(Rn)}. (3.4)

3.3. Rectifiable and integral currents modulo p. We define now the group Rp
m(Rn)

of the integer rectifiable currents modulo p by setting
Rp
m,K(Rn) := {[T ] ∈ F p

m,K(Rn) : T ∈ Rm,K(Rn)}. (3.5)
As usual, Rp

m(Rn) is the union over K compact of Rp
m,K(Rn). Clearly, not all the ele-

ments in a class [T ] ∈ Rp
m,K(Rn) are classical rectifiable currents, but whenever we write

[T ] ∈ Rp
m,K(Rn) we will always implicitly intend that T is a rectifiable representative of its

class.

A current R = JE, τ, θK ∈ Rm,K(Rn) is called representative modulo p if and only if

‖R‖(A) ≤ p

2H
m(E ∩ A) for every Borel set A ⊂ Rn.

Evidently, this condition is equivalent to ask that

|θ(x)| ≤ p

2 for ‖R‖-a.e. x.

Since obviously for any integer z there exists a (unique) integer −p
2 < z̃ ≤ p

2 with
z ≡ z̃ (mod p), then for any T ∈ Rm,K(Rn) there exists an integer rectifiable current
R ∈ Rm,K(Rn) such that R = T mod(p) in Fm,K(Rn) and R is representative modulo p.
We immediately conclude that any T ∈ Rm,K(Rn) can be written as

T = R + pQ, (3.6)
where R,Q ∈ Rm,K(Rn) and R is representative modulo p. It is proved in [7, 4.2.26, p.
430] that

Mp(T ) = M(R), sptp([T ]) = spt(R), (3.7)
if R is representative modulo p of the current T .

A modulo p version of Theorem 2.2 is contained in [7, (4.2.16)ν , p. 431]:

Theorem 3.2 (Rectifiability of flat chains modulo p).
Rp
m,K(Rn) = {[T ] ∈ F p

m,K(Rn) : Mp([T ]) <∞}. (3.8)

Hence, if [T ] ∈ F p
m,K(Rn) has finite Mp mass, then there exists R ∈ Rm,K(Rn) such that

R = T mod(p) in Fm,K(Rn), M(R) = Mp([T ]), and spt(R) = sptp([T ]).

Next, we define the group I p
m(Rn) of the integral currents modulo p as the union of the

groups
I p
m,K(Rn) := {[T ] ∈ Rp

m,K(Rn) : ∂ [T ] ∈ Rp
m−1,K(Rn)}.
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The conclusions about integer rectifiable currents modulo p deriving from the above
discussion allow us to say that if [T ] ∈ I p

m,K(Rn) then Mp([T ]) <∞, Mp(∂ [T ]) <∞ and
that there are currents R ∈ Rm,K(Rn) and S ∈ Rm−1,K(Rn) such that R = T mod(p) in
Fm,K(Rn) and S = ∂T mod(p) in Fm−1,K(Rn). In particular, R and S may be chosen to
be representative modulo p, so that M(R) = Mp(T ) and M(S) = Mp(∂T ). It is not known
whether it is possible to choose I ∈ Im,K(Rn) such that T = I mod(p) in Fm,K(Rn) (see
Question 3.7 below).

A modulo p version of the Boundary Rectifiability Theorem can be straightforwardly
deduced from Theorem 3.2, as we have:

Theorem 3.3 (Boundary Rectifiability modulo p, cf. [7, (4.2.16)ν ]).

I p
m,K(Rn) = {[T ] ∈ Rp

m,K(Rn) : Mp(∂ [T ]) <∞}. (3.9)

We conclude with the following modulo p version of the Polyhedral approximation
Theorem 2.4, which can be deduced from [7, (4.2.20)ν ]. Since the statement does not appear
in [7], for the reader’s convenience we include here the proof.

Theorem 3.4 (Polyhedral approximation modulo p). If [T ] ∈ I p
m(Rn), ε > 0, K ⊂ Rn is

a compact set such that sptp([T ]) ⊂ intK, then there exists P ∈Pm(Rn), with spt(P ) ⊂ K,
such that

Fp
K(T − P ) < ε, Mp(P ) ≤Mp(T ) + ε, Mp(∂P ) ≤Mp(∂T ) + ε. (3.10)

Proof. Let T ∈ Rm(Rn) be a (rectifiable) representative modulo p of [T ]. In particular, by
formula (3.7), T satisfies spt(T ) = sptp([T ]) ⊂ intK and M(T ) = Mp(T ). Fix ε > 0, and
let 0 < δ ≤ ε be such that {x ∈ Rn : dist(x, spt(T )) < δ} ⊂ K. By [7, Theorem (4.2.20)ν ],
there exist P ∈Pm(Rn) with spt(P ) ⊂ K and a diffeomorphism f ∈ C1(Rn,Rn) such that:

(i) Mp(P − f]T ) + Mp(∂P − f]∂T ) ≤ δ;
(ii) Lip(f) ≤ 1 + δ, and Lip(f−1) ≤ 1 + δ;

(iii) |f(x)− x| ≤ δ for x ∈ Rn, and f(x) = x if dist(x, spt(T )) ≥ δ.
From (i) it readily follows that

Mp(P ) ≤ δ + Mp(f]T ) ≤ δ + (1 + δ)mMp(T ), (3.11)

and analogously

Mp(∂P ) ≤ δ + Mp(f]∂T ) ≤ δ + (1 + δ)m−1Mp(∂T ). (3.12)

In order to prove the estimate on the Fp
K distance, let h be the affine homotopy from the

identity map to f , i.e. h(t, x) := (1− t)x+ tf(x), and observe that the homotopy formula
(see [7, Section 4.1.9]) yields

P − T = P − f]T + ∂ (h](J(0, 1)K× T )) + h](J(0, 1)K× ∂T ). (3.13)

Now, since Mp(∂T ) <∞, there exists a rectifiable current Z ∈ Rm−1,K(Rn) such that

Fp
K(∂T − Z) ≤ δ and M(Z) ≤Mp(∂T ) + δ. (3.14)
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In particular, this implies the existence of R ∈ Rm−1,K(Rn), S ∈ Rm,K(Rn) and Q ∈
Im−1,K(Rn) with M(R) + M(S) ≤ 2δ such that ∂T −Z = R+ ∂S + pQ. If combined with
(3.13), this gives

P−T = P−f]T +∂h](J(0, 1)K×T )+h](J(0, 1)K×Z)+h](J(0, 1)K×(R+∂S+pQ)). (3.15)

Since, again by the homotopy formula,

h](J(0, 1)K× ∂S) = f]S − S − ∂h](J(0, 1)K× S),

we can finally re-write equation (3.15) as follows:

P − T =P − f]T
+ h](J(0, 1)K× (Z +R)) + f]S − S
+ ∂h](J(0, 1)K× (T − S))
+ ph](J(0, 1)K×Q).

(3.16)

Therefore, we can finally estimate

Fp
K(P − T ) ≤Fp

K(P − f]T )
+ M(h](J(0, 1)K× (Z +R))) + M(f]S) + M(S)
+ M(h](J(0, 1)K× (T − S)))
≤3δ + 2δ(1 + δ)m + δ(2 + δ)(Mp(T ) + Mp(∂T ) + 3δ),

(3.17)

where we have used [12, Formula (26.23)] to estimate the first and last addenda in the
second line.

The conclusion, formula (3.10), clearly follows from (3.11), (3.12) and (3.17) for a suitable
choice of δ = δ(ε,m,Mp(T ),Mp(∂T )). �

3.4. Questions on the structure of flat chains and integral currents modulo p.
As already anticipated, two very natural questions arise about the structure of flat chains
and integral currents modulo p (see [7, 4.2.26]).

We fix a compact subset K ⊂ Rn.

Question 3.5. Given T, T̃ ∈ Fm,K(Rn), is it true that T = T̃ mod(p) in Fm,K(Rn) if and
only if T − T̃ = pQ for some Q ∈ Fm,K(Rn)? In other words, using the density of Im,K(Rn)
in Fm,K(Rn), the problem is to prove or disprove the following statement. Given three
sequences {Rj} ⊂ Rm,K(Rn), {Sj} ⊂ Rm+1,K(Rn), {Qj} ⊂ Im,K(Rn) such that

T − T̃ = Rj + ∂Sj + pQj ∀j, (3.18)

and
lim
j→∞

(M(Rj) + M(Sj)) = 0, (3.19)

then T − T̃ = pQ for some Q ∈ Fm,K(Rn).
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Remark 3.6. As we shall soon see, the answer to the above question is affirmative if the
class Fm,K(Rn) is replaced by the class Rm,K(Rn): in other words, given integer rectifiable
currents T, T̃ one has that T = T̃ mod(p) in Fm,K(Rn) if and only if T − T̃ = pQ for some
Q ∈ Rm,K(Rn). As a corollary, Question 3.5 admits affirmative answer for m = n, since
Fn,K(Rn) = Rn,K(Rn). For 0 ≤ m ≤ n− 1, the question is widely open.

Question 3.7. Given [T ] ∈ I p
m,K(Rn), does there exist an integral current I ∈ Im,K(Rn)

such that I = T mod(p) in Fm,K(Rn)? In other words: is it true that
I p
m,K(Rn) = {[T ] : T ∈ Im,K(Rn)}?

Remark 3.8. The answer is trivial for m = 0, since integral and integer rectifiable 0-
dimensional currents are the same class. In [7, 4.2.26, p. 426], Federer does not really
present this issue as a “question”, but he rather claims that the answer is negative, in
general dimension and codimension. Nevertheless, the counterexample he suggests (an
infinite sum of disjoint RP2 in R6 with the property that the sum of the areas is finite but
the sum of the lengths of the bounding projective lines is infinite) is not fully satisfactory
(cf. [1, Problem 3.3]). Indeed, it allows one to negatively answer the question only for very
special choices of the set K (in particular, the question remains open when K is a convex
set).

3.5. Some partial answers from the literature. An immediate consequence of (3.7) is
the following: if T, T̃ ∈ Rm,K(Rn) are such that T = T̃ mod(p) in Fm,K(Rn), then evidently
Mp(T − T̃ ) = Mp(0) = 0, and hence the representative modulo p of T − T̃ is R = 0 because
of (3.7). Therefore, equation (3.6) yields T − T̃ = pQ for some integer rectifiable current
Q ∈ Rm,K(Rn). In conclusion, we have the following

Proposition 3.9. The answer to Question 3.5 is affirmative in the class of integer rectifiable
currents. Therefore:

Rm,K(Rn) ∩ {T ∈ Fm,K(Rn) : T = 0 mod(p) in Fm,K(Rn)} = {pR : R ∈ Rm,K(Rn)}.
(3.20)

In particular, the following corollary holds true:

Corollary 3.10. Let T, T̃ ∈ Rm(Rn). Then, T = T̃ mod(p) in Fm(Rn) if and only if
T = T̃ mod(p) in Fm,K(Rn) for every K compact with spt(T ) ∪ spt(T̃ ) ⊂ K.

Proof. The “if” implication is trivial. For the converse, assume T = T̃ mod(p) in Fm(Rn)
and fix any compact set K such that spt(T ) ∪ spt(T̃ ) ⊂ K. By definition, there exists a
compact set K ′ such that Fp

K′(T − T̃ ) = 0, which, by the above proposition, implies
T − T̃ = pQ

for some Q ∈ Rm,K′(Rn). Note that since T − T̃ is supported in K, so is Q, and thus
FK(T − T̃ ) = 0, i.e. T = T̃ mod(p) in Fm,K(Rn). �

From now on, by virtue of the previous corollary, for rectifiable currents T and T̃ in
Fm(Rn) which are equivalent modulo p we will just write T = T̃ mod(p) without specifying
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in which class the equivalence relation is meant.

In codimension 0, B. White [13] gave an affirmative answer to Question 3.7.

Theorem 3.11 (cf. [13, Proposition 2.3]). Let T ∈ Rn,K(Rn). Then, [T ] ∈ I p
n,K(Rn) if

and only if the select representative modulo p of T is an integral current.

The select representative modulo p of a rectifiable current T = JE, τ, θK is the unique
T ′ = JE, τ, θ′K representative modulo p of T with multiplicity θ′ ∈

(
−p

2 ,
p
2

]
.

White’s proof relies on the following:

Proposition 3.12. If T ∈ Rn,K(Rn) is a select representative modulo p, then

M(∂T ) ≤ (p− 1)Mp(∂T ). (3.21)

We sketch the proof of Theorem 3.11, having shown Proposition 3.12. Take [T ] ∈
I p
n,K(Rn), and let T ′ be the unique select representative modulo p of T . A priori, T ′ is just

an integer rectifiable current. On the other hand, since [T ] is integral, Mp(∂T ) is finite by
(3.8). Then Proposition 3.12 implies that M(∂T ′) is finite. Hence, T ′ is integral because of
(2.1).

Unfortunately, in order to carry on the argument that White uses to prove Proposition
3.12, the codimension 0 assumption is indispensable. The idea is the following. Firstly,
Theorem 3.4 allows one to reduce the problem to the case of polyhedral chains. Now,
for any given polyhedral chain T which is a select representative modulo p one writes
T = JRn, en, θK, where en is the constant standard orientation of Rn and θ is a summable,
piecewise constant, integer-valued function with values in

(
−p

2 ,
p
2

]
. Then, White makes the

following key observation: since the codimension is 0, if Z is a polyhedron in ∂T then for
Hn−1-a.e. x ∈ Z the multiplicity at x is the difference of the values that the function θ
takes on the two sides of Z (with the correct sign), whose absolute value is in fact bounded
by p− 1 (because T is a select representative modulo p).

In the next section, we will show that the validity of a statement like the one in Proposition
3.12 is in fact the key not only for giving an affirmative answer to Question 3.7, but also for
positively answering Question 3.5. Furthermore, we will answer Question 3.7 in dimension
m = 1.

4. Main results

In this section, we will further analyze Questions 3.5 and 3.7. First, we point out that
the two questions are, in fact, connected.

4.1. Connection between Questions 3.5 and 3.7. For everyK ⊂ Rn compact, consider
the following family of statements Sm, for m = 1, . . . , n.
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Statement Sm. There exists a constant C = C(m,n, p,K) with the following property.
For any [S] ∈ Rp

m,K(Rn) there exists a current S̃ ∈ Rm,K(Rn) with S̃ = Smod(p) and such
that

M(∂S̃) ≤ CMp(∂S).

Using Theorem 3.4, it is easy to see that the validity of Statement Sm follows from the
validity of a slightly stronger property for polyhedral chains, which, on the other hand,
might be easier to check.

Statement Pm. There exists a constant C = C(m,n, p) independent of K with the following
property. For any P ∈ Pm(Rn) with spt(P ) ⊂ K, there exists a current P̃ ∈ Pm(Rn),
with P̃ = P mod(p) and spt(P̃ ) ⊂ K such that

M(∂P̃ ) ≤ CMp(∂P ); M(P̃ ) ≤ CMp(P ).

Proposition 4.1. The validity of Statement Pm implies that of Statement Sm.

Proof. Let [S] ∈ Rp
m,K(Rn). We can assume that Mp([∂S]) is finite, otherwise the conclusion

of Statement Sm is trivial. By Theorem 3.4, for every j = 1, 2, . . . there exists Pj ∈Pm(Rn)
such that, denoting

Kj :=
{
x ∈ Rn : dist(x,K) ≤ 1

j

}
,

one has spt(Pj) ⊂ Kj and

Fp
Kj

(S − Pj) <
1
j
, Mp(Pj) ≤Mp(S) + 1

j
, Mp(∂Pj) ≤Mp(∂S) + 1

j
. (4.1)

Now, by Statement Pm there exist a constant C (which does not depend on j) and a
sequence {P̃j} of polyhedral chains with P̃j = Pj mod(p) and spt(P̃j) ⊂ Kj such that

M(∂P̃j) ≤ CMp(∂Pj); M(P̃j) ≤ CMp(Pj).
Combining this with (4.1), we get

sup
j≥1
{M(P̃j) + M(∂P̃j)} ≤ C(Mp(S) + Mp(∂S) + 2) <∞.

Then, by the Compactness Theorem 2.3 there exist S̃ ∈ Im,K1(Rn) and a subsequence
{P̃jh} such that

lim
h→∞

FK1(S̃ − P̃jh) = 0. (4.2)
Moreover by the lower semi-continuity of the mass, it holds

M(∂S̃) ≤ CMp(∂S); M(S̃) ≤ CMp(S)
and we claim that spt(S̃) ⊂ K. Indeed, take x ∈ Rn \K. We will prove that there exists
a closed set C such that x 6∈ C and 〈S̃, ω〉 = 0 whenever ω ≡ 0 on C, which implies that
x 6∈ spt(S̃). Fix ` such that x 6∈ Kj` and let C := Kj` . Let ω be an m-form with ω ≡ 0 on
C. Since for every h ≥ ` it holds spt(P̃jh) ⊂ C, we have

〈P̃jh , ω〉 = 0, for every h ≥ `. (4.3)
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On the other hand, by (4.2), for every ε > 0 there exists h ≥ ` such that we can write
S̃− P̃jh = R+∂Q for some R ∈ Rm,K1(Rn) and Q ∈ Rm+1,K1(Rn) with M(R) + M(Q) ≤ ε.
Hence it holds
〈S̃ − P̃jh , ω〉 = 〈R,ω〉+ 〈∂Q, ω〉 ≤M(R)‖ω‖∞ + M(Q)‖dω‖∞ ≤ ε(‖ω‖∞ + ‖dω‖∞).

Hence by (4.3) 〈S̃, ω〉 = 0, which completes the proof of the claim.

Finally, we show that S̃ = Smod(p). To this aim, for every h = 1, 2, . . ., we compute
Fp
K1(S̃ − S) ≤ Fp

K1(S̃ − P̃jh) + Fp
K1(P̃jh − S) ≤ FK1(S̃ − P̃jh) + Fp

Kjh
(P̃jh − S),

which by (4.1) and (4.2) tends to 0 when h tends to ∞. �

Remark 4.2. It follows from the above proof that if the Statement Pm holds true then
the Statement Sm holds true with the same constant C. In particular, the constant would
not depend on the compact set K.

Clearly, if the Statement Sm is true then every m-dimensional integral current modulo p
in K has an integral representative in K, and thus the answer to Question 3.7 is affirmative
in dimension m. The next theorem shows that, in fact, the validity of Sm has important
consequences on Question 3.5 as well.
Theorem 4.3. If Sm holds true, then Question 3.5 has affirmative answer in Fm−1,K(Rn).
Proof. It is sufficient to prove that if T ∈ Fm−1,K(Rn) is a flat (m− 1)-chain such that T =
0 mod(p) in Fm−1,K(Rn), then T = pQ for someQ ∈ Fm−1,K(Rn). Let {Rj} ⊂ Rm−1,K(Rn),
{Sj} ⊂ Rm,K(Rn) and {Qj} ⊂ Im−1,K(Rn) be such that

T = Rj + ∂Sj + pQj ∀j (4.4)
and

lim
j→∞

(M(Rj) + M(Sj)) = 0. (4.5)

Conditions (4.4) and (4.5) are equivalent to say that the currents pQj converge to T in flat
norm FK . We want to conclude from this that T = pQ for some Q ∈ Fm−1,K(Rn). In other
words, we are looking for a result of closedness of the currents of the form pQ with respect
to flat convergence. Now, observe the following. For every j, the current Rj is rectifiable.
Therefore, we can write

Rj = R̃j + pVj, (4.6)
with Vj ∈ Rm−1,K(Rn) and R̃j representative modulo p. In particular, this implies that

M(R̃j) = Mp(Rj) ≤M(Rj)→ 0. (4.7)
Also the currents Sj are rectifiable, and of dimension m. Since Sm holds true, for every j
we can let S̃j be the representative of [Sj] given in there, so that

Sj = S̃j + pZj (4.8)
with S̃j, Zj ∈ Rm,K(Rn), and

M(∂S̃j) ≤ C(m,n, p,K)Mp(∂Sj). (4.9)
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Now, since Mp(T − pQj) = Mp(T ) = 0 for every j and Mp(Rj)→ 0, we deduce from (4.4)
that also Mp(∂Sj)→ 0, and therefore also M(∂S̃j)→ 0.

Thus, the above argument produces the following: modulo replacing Qj ∈ Im−1,K(Rn)
with Q̃j := Qj + Vj + ∂Zj ∈ Fm−1,K(Rn), we can replace (4.4) with

T = R̃j + ∂S̃j + pQ̃j ∀j, (4.10)
and (4.5) with the stronger

lim
j→∞

(
M(R̃j) + M(∂S̃j)

)
= 0, (4.11)

that is the currents pQ̃j are now approximating T in mass.
The problem, now, reduces to proving that the subset of flat chains in Fm−1,K(Rn) of the

form pQ is closed with respect to convergence in mass: this question, though, is evidently
much easier than the previous one, and it turns out to always have affirmative answer.
Indeed, let {Qj}∞j=1 ⊂ Fm−1,K(Rn) be a sequence of flat chains such that M(T − pQj)→ 0.
In particular, this would imply that the sequence {pQj} is a Cauchy sequence in mass.
Therefore, the sequence {Qj} is also a Cauchy sequence in mass, and in fact also in the flat
norm FK , since FK(T ) ≤M(T ) for any T ∈ Fm−1,K(Rn).1 So, by completeness there is
Q ∈ Fm−1,K(Rn) such that FK(Q−Qj)→ 0. This also implies FK(pQ− pQj)→ 0, since
FK(nT ) ≤ nFK(T ) in general. So, pQ is a flat limit of the sequence pQj . By uniqueness of
the limit, one therefore has to conclude T = pQ. �

Corollary 4.4. The answer to Question 3.5 is positive for m = n− 1.

Proof. It immediately follows from Theorem 4.3, since Sn is Proposition 3.12. �

4.2. Answer to Question 3.7 in dimension m = 1.

Theorem 4.5. The answer to Question 3.7 is positive for m = 1.

In the proof, we will use the following elementary fact.

Lemma 4.6. Let P ∈ P1(Rn) have positive multiplicities. Let z be a point in spt(∂P ).
Then one can select a finite sequence of oriented segments S1, . . . , SN supported in the
support of P such that:

(1) the orientation of each segment Si coincides with the orientation of P on Si;
(2) the second extreme of Si coincides with the first extreme of Si+1, for i = 1, . . . , N−1;
(3) If the multiplicity of ∂P at z is negative, then the first extreme of S1 is z and the

second extreme of SN is a point x of the support of ∂P with positive multiplicity.
Vice versa, if the multiplicity of ∂P at z is positive, then the first extreme of S1 is a
point x of the support of ∂P with negative multiplicity and the second extreme of
SN is z;

(4) Si 6= Sj for i 6= j.
1If M(T ) =∞ there is of course nothing to prove. On the other hand, if M(T ) <∞ then T is integer

rectifiable, and hence it is a competitor for the decomposition in the definition of the flat norm.
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Proof. Assume without loss of generality that the multiplicity of ∂P at z is negative. Since
the multiplicities on P are all positive, then among the (finitely many) segments defining
the support of P there is at least a segment S1 whose first extreme is z such that

M(P ) = M(P − JS1K) + M(JS1K), (4.12)

If the second extreme y of S1 is not a point with positive multiplicity of ∂P , it is a point of
negative multiplicity of ∂(P − JS1K), hence the procedure can be repeated with P − JS1K in
place of P and y in place of z. The procedure has to terminate in a finite number of steps,
because of (4.12) and the fact that the mass of each JSiK is bounded from below. When the
procedure ends, one can easily see that the ordered sequence of segments collected satisfies
properties (1) − (3). Property (4) is not necessarily satisfied. If a certain segment S ′ is
repeated in the procedure, it is sufficient to eliminate from the sequence one copy of S ′
and all the segments appearing between two repetitions of S ′. After this elimination, the
sequence satisfies also property (4). �

Proof of Theorem 4.5. By Proposition 4.1 it is sufficient to prove Statement P1. Consider
P ∈ P1(Rn). Firstly we choose a representative Q ∈ P1(Rn) modulo p of P with mul-
tiplicities in {1, . . . , p− 1}. Clearly we have M(Q) ≤ (p− 1)Mp(P ), but at the moment
we have no control on M(∂Q). Hence, we want to replace Q with another representative
P̃ ∈P1(Rn) of P , for which we can control both the mass and the mass of the boundary.
More precisely, we want to find a representative P̃ with multiplicities in {1, . . . , p− 1} and
with the multiplicities of ∂P̃ in {−(p− 1), . . . , p− 1}.

Consider a point z ∈ spt(∂Q) with multiplicity θz such that |θz| ≥ p. Without loss of
generality, we can assume θz < 0. Given that the multiplicities on Q are all positive, we
can use Lemma 4.6 to select a finite sequence of oriented segments S1, . . . , SN supported in
the support of Q, satisfying properties (1)− (4) (with Q in place of P ).

Once we have found such a sequence of segments, denote by Q1 the polyhedral current
obtained from Q by changing on every segment Si both the orientation and the multiplicity
from θi to θ1

i := (p− θi). Clearly Q1 has still multiplicities in {1, . . . , p− 1}. Moreover, if
θ1
z denotes the multiplicity of ∂Q1 at z then one has |θ1

z | = |θz| − p. On the other hand,
if x denotes the other endpoint of the chain of segments as in (3) of Lemma 4.6 and θx,
θ1
x are the multiplicities of ∂Q and ∂Q1 at x respectively, then it holds θ1

x = θx − p. Now,
since by Lemma 4.6(3) it holds θx ≥ 1, it follows that θ1

x = (θx − p) ∈ [1− p, θx]. Hence,
|θ1
x| ≤ |θx|+ p− 2.
Therefore, one has

M(∂Q1) ≤M(∂Q)− 2. (4.13)
If possible, we repeat the procedure above with Q1 in place of Q, producing a new polyhedral
current Q2. By formula (4.13), the procedure can be iterated only a finite number M
of times. The corresponding P̃ := QM has the required property, because any point
z ∈ spt(∂QM) has multiplicity |θz| ≤ p− 1. Obviously we have

M(P̃ ) ≤ (p− 1)Mp(P ) and M(∂P̃ ) ≤ (p− 1)Mp(∂P ),
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and the proof is complete. �

Since we have actually proved the Statement P1, it follows from Proposition 4.1 that the
Statement S1 holds true. By virtue of Theorem 4.3, we can therefore deduce the following

Corollary 4.7. The answer to Question 3.5 is positive for m = 0.

4.3. Negative answer to Question 3.7 in general dimension. It is evident that the
choice of the compact set K could be crucial for establishing an answer to Question 3.7. In
the spirit of the counterexample suggested by Federer in [7][4.2.26, p. 426] (see Remark 3.6
above), we provide a negative answer to the question, proving the existence of a compact
subset K ⊂ R5 and a current [T ] ∈ I 2

2,K(R5) with ∂T = 0 mod(2) such that there exists no
I ∈ I2,K(R5) with I = T mod(2). Nevertheless, for a different choice of a compact K ′ ⊃ K
we can exhibit an integral current I ′ ∈ I2,K′(R5) with ∂I ′ = 0 and I ′ = T mod(2).

In what follows, we will let K be the embedded Klein bottle in R4 (in particular, K
is a non-orientable compact two dimensional surface without boundary in R4). There
exist a closed curve γ and an integral current S := JK, τ, 1K ∈ I2,K(R4) such that the
set of discontinuity points of τ coincides with γ. In particular, ∂S is the integral current
Jγ, τγ, 2K, τγ being the orientation of γ naturally induced by τ . We let [S] ∈ I 2

2,K(R4) be
the associated current mod(2). In particular, ∂ [S] = 0 and M2([S]) = H2(K). We have
the following, elementary

Lemma 4.8. There exists a constant c = c(K) with the following property. If R ∈ I2,K(R4)
is such that R ∈ [S], one has

M(∂R) ≥ c.

Proof. By contradiction, let {αj}∞j=1 be a sequence of positive numbers with αj ↘ 0, and
{Rj}∞j=1 ⊂ I2,K(R4) be such that

Rj ∈ [S] ∀j,

and
M(∂Rj) ≤ αj.

We write Rj = JK, τ, θjK, and we observe that, since Rj = Smod(2), from (3.20) and from
the definition of S it follows that

θj(x) ≡ 1 (mod 2) for H2-a.e.x ∈ K. (4.14)

We replace every Rj with the integral current R̃j = JK, τ, θ̃jK, where θ̃j := sign(θj).
Clearly, by (4.14) and the definition of θ̃j, R̃j = Rj mod(2), and thus R̃j ∈ [S] for every j.
Notice, furthermore, that M(R̃j) = H2(K) for every j, and that

M(∂R̃j) ≤M(∂Rj) ≤ αj. (4.15)

In order to show (4.15), let U be any open set in K homeomorphic to a two-dimensional
disc. Let also σ be a fixed continuous orientation on U . We have that Rj U = JU, σ,ΘjK,
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where Θj is the function defined by

Θj(x) :=

θj(x) if τ(x) = σ(x)
−θj(x) if τ(x) = −σ(x).

As a consequence of [12, Remark 27.7], it holds
M((∂Rj) U) = |DΘj|(U),

where |DΘj| is the variation of the BV function Θj. Analogously, R̃j U = JU, σ, Θ̃jK,
where Θ̃j is the function defined by

Θ̃j(x) :=

θ̃j(x) if τ(x) = σ(x)
−θ̃j(x) if τ(x) = −σ(x).

Observe that Θ̃j ≡ sign(Θj), and hence
M((∂R̃j) U) = |DΘ̃j|(U) ≤ |DΘj|(U) = M((∂Rj) U),

which completes the proof of (4.15).
Now, by the Compactness Theorem 2.3 there exists a current R̃ ∈ I2,K(R4) and a

subsequence (not relabeled) such that
lim
j→∞

FK(R̃− R̃j) = 0.

Moreover, by the lower semi-continuity of the mass one has ∂R̃ = 0. Since the equivalence
classes mod(2) are closed with respect to the flat convergence, R̃ ∈ [S], which contradicts
the fact that K is not orientable. �

Remark 4.9. Observe that if Kλ is a homothetic copy of K with homothety ratio λ, then
c(Kλ) = λc(K).

We finally define the compact set K ⊂ R5 and the current [T ] ∈ I 2
2,K(R5) as follows.

For every i = 1, 2, . . . , we let Λi be the homothety on R4 defined by Λi(x) := x

i
, and

πi : R4 → R5 be the isometry πi(x) :=
(1
i
, x
)
. We set

K := {0} ∪
∞⋃
i=1

πi ◦ Λi(K),

which is evidently compact, and

T :=
∞∑
i=1

(πi ◦ Λi)]S.

We let [T ] denote the equivalence class of T modulo 2. Since M2((πi ◦Λi)]S) = 1
i2
H2(K),

then [T ] is well defined, and in particular ∂ [T ] = 0. In the following proposition, we show
that the choice of K and [T ] provides a negative answer to Question 3.7.
Proposition 4.10. In general, the answer to Question 3.7 is negative.
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Proof. Let K and [T ] be as above, and assume by contradiction that there exists I ∈
I2,K(R5) with I ∈ [T ]. Then, the restriction of I to each plane x1 = 1

i
belongs to the class

[(πi ◦ Λi)]S], and thus by Lemma 4.8 and Remark 4.9 one has

M(∂I) = c(K)
∞∑
i=1

1
i

=∞,

which gives the desired contradiction. �

Remark 4.11. Observe that if we replace K with K′ := K ∪ D, where D is a suitable
two-dimensional disc, then Lemma 4.8 fails, as there exists R ∈ I2,K′(R4) such that R ∈ [S]
and ∂R = 0. Hence, it is possible to construct an integral representative of [T ] with support
in

K ′ := {0} ∪
∞⋃
i=1

πi ◦ Λi(K′).

4.4. Concluding remarks. Ambrosio and Wenger proved in [5, Theorem 4.1] a statement
similar to our Theorem 4.5, under the hypothesis that ∂ [T ] = 0. They were motivated by
the will to prove the analogue of Theorem 3.2 above when the ambient space is a compact
convex subset of a Banach space with mild additional assumptions. Even though our
theorem covers also the case with boundary, our proof is considerably simpler than theirs,
essentially because we can rely on the polyhedral approximation theorem, which is not
available in their context. Actually, our result would follow directly from theirs if one could
independently guarantee the validity of the following proposition. However, we were not
able to devise a proof independent of Theorem 4.5.

Proposition 4.12. Let [T ] ∈ I p
1,K(Rn). Then, for any R = ∑q

i=1 θiδxi
∈ R0,K(Rn) such

that R = ∂T mod(p) one has:
q∑
i=1

θi ≡ 0 (mod p). (4.16)

Assume the validity of the Proposition. An alternative proof of our Theorem 4.5 can be
obtained as follows. Let [T ] ∈ I p

1,K(Rm) and let R = ∑q
i=1 θiδxi

∈ R0,K(Rn) be such that
R = ∂T mod(p). Fix x0 /∈ {x1, . . . , xq} and consider the cone C with vertex x0 over R, i.e.
the integral 1-current

C :=
q∑
i=1

JSi, τi, θiK, (4.17)

where Si is the segment joining xi to x0 and τi := x0 − xi
|x0 − xi|

. By (4.16), the multiplicity of

∂C at x0 is an integer multiple of p, and thus via a simple computation ∂(T+C) = 0 mod(p).
Applying the result of Ambrosio and Wenger, we finally obtain that there exists an integral
current J ∈ I1,K(Rn) such that J = T + C mod(p). Hence, I := J − C is an integral
current with I = T mod(p).
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Although the analogue of Proposition 4.12 for classical currents is a well known fact (i.e.
the sum of the multiplicities in the boundary of an integral 1-current is zero), the validity
of Proposition 4.12 does not follow trivially. Nevertheless, it can in fact be deduced as a
consequence of our Corollary 4.7.

Proof of Proposition 4.12. Let T and R be as in the statement. Then, since Fp
K(∂T−R) = 0,

Corollary 4.7 implies the existence of currents Q ∈ R0,K(Rn) and S ∈ R1,K(Rn) such that
∂T −R = p(Q+ ∂S),

that is
∂(T − pS) = R + pQ.

In particular, T − pS is a classical integral current, and thus the sum of the multiplicities
in R must equal that of −pQ, which concludes the proof. �
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