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Abstract. In the present paper we numerically investigate and vali-
date a variational smeared model for cohesive crack, recently proposed
and theoretically justified by Γ-convergence. To achieve this main goal,
we first analyze the response of a bar subjected to traction. Possible
solutions are discussed, reconstructing the classical cohesive fracture
energy and its related stress-crack opening law through a backtracking
procedure. Preliminary 2D investigations are also conducted by using a
regularized version of the adopted formulation. This permits to explore
the transition phase of the damage evolution and to determine the pe-
culiarities of the model, such as mesh-objectivity and Γ-convergence as
damage concentration is forced. Therefore, the numerical simulations
confirm the analytical results and put the basis for further engineering
applications and possible improvements of the model.
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1 Introduction

Cohesive models in Fracture Mechanics are based on the idea that fracture energy is
gradually released with the growth of the crack opening, reflecting the progressive weak-
ening of the bound between the lips [10]. In contrast, in Griffith’s brittle model the
fracture energy is instantaneously dissipated at crack initiation [35], the surface energy
is proportional to the crack area and there is no mechanical interaction between the
fracture lips.

In the last years fracture problems have been revisited taking advantage of tools and
techniques from the calculus of variations [16, 28, 24]. Although with some limits, a
consistent and rigorous treatment of the subject has been built, so that numerical sim-
ulation and implementation have required appropriate methods. A standard approach
consists in studying a regularized version of the fracture model.

Phase field models have recently found widespread popularity for simulating brittle
crack propagation in a smeared manner [15, 14, 39, 41, 26]. Some phenomena, which are
difficult to catch using discrete crack models, are easily captured by phase field models.
This is the case of crack nucleation, propagation, and bifurcation, whose identification
now requires no specific criterions.
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The analytical substrate is the Γ-convergence result by Ambrosio and Tortorelli [7],
which yields the convergence of global minima as concentration of damage is forced.
The original numerical approach [15] has been modified in order to avoid the problem of
material overlapping and to describe specific failure modes [8], [37],[30], such as in the
case of no-tension materials [31]. Extension to dynamics has been proposed in [17], [13].
Recently, the case of plastic material has been investigated in [32], [33]. After passing
an energy barrier for slip activation, elastic strain energy is locally converted into plastic
work on slip surfaces. Alternative formulations for elasto-plastic material based on the
classical decomposition of strain in elastic and plastic parts can be found in [1], [4].

The counterpart of [7] in the cohesive context is represented by the recent work
[20]. In the prior result [3], phase field type energies linear in the strain are used to
approximate cohesive fracture; while in [36, 22, 27] phase field models are shown to
converge to energies with a linear surface density. Finally in [23] cohesive fracture in
elasto-plastic materials is obtained as limit of gradient damage models coupled with
plasticity.

In the present paper we simulate cohesive crack initiation and propagation using
the regularized model introduced in [20]. The fracture process in stressed bodies is
reproduced through the minimization of a two-field elliptic functional, in which the first
field stands for the displacement within the solid, whereas the second one, here called
phase field or damage, represents the transition between sound and completely broken
material.

The model is numerically implemented using a standard finite-element discretization
and adopting an alternate minimization algorithm coupled with a backtracking technique
originally proposed in [14]. In such a way, we reconstruct the Barenblatt’s cohesive energy
and the stress-crack opening law in a 1D traction experiment. Particular attention is
paid to the transition phase, for which the analytical study provides only partial results.
It is interesting to notice that without a backtracking procedure the relevant curves get
close to those corresponding to the homogeneous solution at moderate opening.

Irreversibility is quite a controversial issue in the cohesive fracture context and its
discussion goes out of the aims of the present work. We refer to [16, 24] for a compre-
hensive analysis and a discussion of the relevant topics. Here we assume the standard
damage irreversibility on the smeared functionals by requiring the monotonicity of the
damage variable. It turns out that the stress-crack opening law is linear during unloading
and reloading up to the maximal opening, where we recover the standard Barenblatt’s
law.

We also consider an alternative version of the phase field models [20] which is prefer-
able from a computational point of view, and we compare its behavior with the original
one. This formulation turns out to be effective in 2D experiments, for which no theoret-
ical result is currently available.

The paper is structured as follows. In Section 2 we recall the phase field formulation
for cohesive crack of [20] and we compare it with the case of brittle fracture [7]. In
Section 3 we provide the details for the numerical treatment and the implementation.
A 1D traction experiment is deeply investigated in Subsection 4.1, with and without
the backtracking procedure. As the size of the damaged region shrinks, Γ-convergence is
numerically demonstrated for two versions of the formulation. Finally a 2D investigation
is conducted in Subsection 4.2. Finally, conclusions and perspectives are illustrated in
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Section 5.

2 Formulation in case of antiplane shear

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary representing the crack-free
reference configuration of an elastic body. We assume that, due to suitable external
forces and boundary conditions, the body developes a (d − 1)-dimensional crack and
undergoes a displacement u out from the crack. In the antiplane cohesive model, the
evolution of this process is described by an energy which is sum of a bulk term, the
energy of the crack-free part, and of a surface term, the energy spent to separate the
fracture lips. The former depends on the strain ∇u, the latter on the crack set Ju and
on the amplitude [u] through an appropriate density function g : R → [0,+∞].

The variational formulation of the model involves the space of special functions with
bounded variation SBV , whose properties can be found in [6]. The stationary cohesive
energy reads as ˆ

Ω

c

2
|∇u|2dx+

ˆ
Ju

g(|[u]|)dHd−1, (2.1)

where u ∈ SBV (Ω), g is nondecreasing, concave, g(0) = 0, g(s) → γ as s → +∞,
and the slope of g in 0 is σc ∈ (0,+∞), being σc the maximum stress. The model is
then completed by taking into account the action of external forces and the boundary
conditions.

The direct method of the calculus of variations, used to guarantee the existence of
global minimizers for the functional under consideration, requires lower semicontinuity
and coercivity properties in the ambient space. Regrettably, the energy (2.1) is not lower
semicontinuous nor coercive in SBV . In order to overcome this difficulty we replace SBV
with the space of generalized functions with bounded variation GBV (see [6]) and apply
the direct method to the relaxed functional

F(u) :=

ˆ
Ω
ψ(|∇u|)dx+

ˆ
Ju

g(|[u]|)dHd−1 + σc |Dcu|(Ω), (2.2)

where ∇u, Ju, and [u] are still well-defined though in a generalized sense, Dcu is the
Cantor derivative of u, and ψ(s) := cs2/2 for s ≤ (γ/(2c))1/2, ψ(s) := σcs−γ/4 otherwise.
The last term in (2.2) can be interpreted as a micro-crack energy with zero bulk and
surface energies, see [16].

This approach is supported by the fact that in general a functional and its relaxation
share the same infimum. In particular in 1D and under suitable hypotheses on ψ, g,
boundary conditions, and forces, a global minimizer u of (2.2) belongs to SBV and
|∇u| ≤ (γ/(2c))1/2, so that ψ(|∇u|) = |∇u|2 (see [18]).

Next we present the variational approximation of (2.2) proposed in [20, Theorem
3.1]. We introduce an auxiliary field v, representative of the damage state within the
material. It takes value 1 where the material is sound and value 0 where the material is
fully disaggregated. For definition and properties of Γ-convergence we refer to [21].

Given two infinitesimal sequences 0 < ηδ << δ and c, γ ∈ (0,+∞), we consider the
functionals Fδ defined by

Fδ(u, v) :=

ˆ
Ω

(
c

2
(ηδ + f2δ (v))|∇u|2 + γ

(
(1− v)2

4δ
+ δ|∇v|2

))
dx (2.3)
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for (u, v) ∈ H1(Ω)×H1(Ω) and 0 ≤ v ≤ 1 a.e., and by +∞ otherwise in L1(Ω)×L1(Ω),
where

fδ(z) := min{1, δ1/2 z

1− z
} , fδ(1) := 1. (2.4)

By [20, Theorem 3.1] as δ → 0 the functionals Fδ Γ-converge in L1(Ω)×L1(Ω) to the
functional F (u, v) := F(u) defined in (2.2), if u ∈ GBV (Ω) and v = 1 a.e., F (u, v) :=
+∞ elsewhere. The surface density g can be determined by the following one-dimensional
minimum problem

g(s) := inf
(α,β)

ˆ 1

0

√
cγ

2
β2|α′|2 + γ2(1− β2)|β′|2 dr, (2.5)

where α, β ∈ H1
(
(0, 1)

)
satisfy 0 ≤ β ≤ 1, α(0) = 0, α(1) = s, β(0) = β(1) = 1. In

particular g is nondecreasing, subadditive, g(0) = 0, the slope of g in 0 is σc := (cγ/2)1/2,
and the asymptotic limit as s→ +∞ is γ (see [20, Proposition 4.1]).

Roughly speaking, in 1D when |[u]| is small the damage variable v is close to 1 in
a δ-neighborhood of the fracture point, and ∇v gives a negligible contribution to the
fracture energy. Therefore fδ(v) ∼ δ1/2v/(1− v), the first two terms in (2.2) balance out
and

g(|[u]|) ∼
√
cγ

2
fδ(v)(1− v)

|[u]|
δ

∼ σc|[u]|.

When |[u]| >> 0, v is forced to pass from 1 to 0 in a δ-neighborhood of the fracture
point, and the contribution of the first term in (2.2) becomes negligible. Therefore the
last two terms in (2.2) balance out and

g(|[u]|) ∼ γ,

recovering the Ambrosio–Tortorelli regime [7], see (2.7) below. For intermediate values
of |[u]| all terms in (2.2) give a non-negligible contribution. The relation between the
value |[u]| and an optimal profile v is more delicate and requires further investigation.

We remark that actually more general fδ can be considered. As an example one
can replace z/(1 − z) in (2.4) by any φ ∈ C0([0, 1), [0,+∞)) nondecreasing, such that
φ−1(0) = {0} and φ(z)(1−z) → 1 as z → 1. In this case in (2.5) one obtains φ2(β)(1−β)2
in place of β2.

Another possible generalization is to smoothen the truncation in (2.4), this will be
preferable in 2D numerical experiments (see Subsection 4.2). Indeed, let us define f̂δ ∈
C1([0, 1]) linearly near z = 1:

f̂δ(z) :=


δ1/2

z

1− z
if z ≤ zδ :=

1− δ1/2

1 + δ1/2
,

aδ(z − zδ) + bδ otherwise in [0, 1],

(2.6)

with

aδ :=
(1 + δ1/2)2

4δ1/2
, bδ :=

1− δ1/2

2
.

In Fig. 1a the functions fδ(z) and f̂δ(z) are plotted for two values of δ. It clearly
emerges that the difference between the two functions vanishes as δ → 0. One can check
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that the functionals F̂δ, defined as in (2.3) with fδ replaced by f̂δ, Γ-converge to F , with
g given exactly by (2.5) (see [20, Remark 3.2]).

In the next sections we validate the analytical results of [20] by using either fδ or
f̂δ. Numerical implementations involving fδ require some tricks to compensate for the
lack of differentiability and to permit fracture initiation. Nevertheless, they give slightly
more precise results in 1D with respect to those relying on f̂δ. In 2D we adopt f̂δ in
place of fδ since it is computationally less expensive, see Section 4.2.

Ambrosio–Tortorelli’s formulation. We conclude this section recalling the Γ-
convergence result obtained by Ambrosio and Tortorelli in [7] for brittle fracture. In
this case the approximating energies are functionals Gδ defined as in (2.3), with fδ(v)
replaced by v. They prove in [7] that Gδ Γ-converges to the Griffith energy G

G(u, v) :=
c

2

ˆ
Ω
|∇u|2dx+ γHd−1(Ju)

if u ∈ GSBV (Ω) and v = 1 a.e., G(u, v) := +∞ elsewhere in L1(Ω)×L1(Ω).
Fixed δ small, it can be seen that the damage vδ obtained minimizing Gδ under

suitable boundary conditions has the following profile

vδ (x) ∼ 1− e−
|x−x0|

2δ , (2.7)

for x close to some point x0, and vδ ∼ 1 otherwise.
The quasi-static version of the Ambrosio–Tortorelli result has been proposed by Gi-

acomini in [34]. Regrettably, no evolutionary result is currently available in the cohesive
context, not even in the antiplane case.
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Figure 1: (a) Plot of fδ(z) (continuous line) and f̂δ(z) (dashed line) for δ = 0.01, 0.001;
(b) plot of the maximum stress as a function of δ.

2.1 Damage homogeneous solutions in 1D

In a simple 1D example we compare the behavior of spatially homogeneous solutions of
the phase field problem in the cohesive case (2.4) and in the brittle case.

Fr_Iu_3.tex 5 [July 15, 2016]



Let us consider a strained bar of unitary length, fixed at x = 0, undergoing the dis-
placement u(1) = u at the end x = 1, and homogeneous Neumann boundary conditions
v′(0) = v′(1) = 0 for the damage field. For simplicity we introduce ζ(z) which stands
for z2/(1 − z)2 (cohesive regime, neglecting the truncation in (2.4)) or z2 (Ambrosio–
Tortorelli brittle regime). Denoting the strain and stress within the bar respectively by
ε := u′ and σ := ζ(v)ε, we impose the following set of equations for the general coupled
phase field problem

σ′ = 0, (2.8)

c

2
ζ ′(v)ε2 − γ

1− v

2δ
− 2γδv′′ = 0.

The former represents the balance equation, the latter is the evolution equation for v in
the quasi-static case (v̇ = 0).

Let us consider a spatially homogeneous solution v(x) ≡ vhom to the equations. It
follows that the strain must be constant ε(x) ≡ ε0 = u. One can check that both in the
cohesive regime ζ(z) = z2/(1− z)2 and in the brittle regime ζ(z) = z2, to each given ε0
corresponds a unique solution vhom, and vhom ↘ 0 as soon as ε0 ↗ +∞. In particular, in
the brittle regime the unstrained bar (ε0 = 0) is the only configuration in which vhom = 1,
so that the elastic domain is trivial. Instead, in the cohesive regime we compute the
actual amount of damage through the truncation f2δ (vhom) = min{1, δv2hom/(1−vhom)2},
therefore we find a linear stress-displacement relation for ε0 small.
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Figure 2: Homogenous solution: global response of a bar in terms of stress-displacement
for different values of the parameter δ obtained adopting γ = 1 and c = 100. (a) Cohesive
case; (b) brittle case.

The numerical study of (2.8) is presented in Fig. 2. Since the bar is originally un-
damaged, the solution of the evolution problem (2.8) is characterized by an elastic phase
and a damaging phase. The stress as a function of the applied displacement is drawn
in Fig. 2a for three values of the parameter δ. The elastic regime is guaranteed up to
a critical value of the strain, corresponding to the maximum admissible stress. In this
phase the truncation in (2.4) is active and a linear stress-strain relation σ = c ε0 holds.
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When the strain exceeds the critical value, the damaging process affects the response
and a softening branch appears. Such branch asymptotically approaches the horizontal
line σ = σc as δ → 0. We also note that the stress peak converges to the value σc when
δ → 0, as shown in Fig. 1b.

In the brittle case the unique homogeneous solution to (2.8) can be explicitly com-
puted. The response, drawn in Fig. 2b for different values of the parameter δ, does
not present an elastic phase for any prescribed displacement different from zero. The
bar undergoes a stress-hardening phase up to the stress peak, that in this case is given
by 9/16

√
cγ/(6δ). Subsequently, the bar is in stress-softening regime up to complete

rupture. In particular the stress peak goes to infinity as δ → 0.
Finally, we recall that the stress does not concentrate in the 1D case. As a conse-

quence, in the Griffith regime both the maximum stress and the critical strain become
infinite as δ → 0; this is in accordance with the theoretical fact that it is not possible to
initiate a fracture without a preexisting flaw. In the cohesive regime the stress peak is al-
ways bounded, but an infinite strain is needed to create a complete fracture (equivalently
to the case of infinitely cohesive jumps, see [16]). In both cases, brittle and cohesive, an
infinite energy is necessary to create a fracture within the solid. We conclude that the
homogeneous solutions cannot be global minima of the corresponding functionals.

2.2 Irreversibility

While in the Griffith’s approach the concept of fracture point is rather simple, in the
Barenblatt’s model it has to be specified. Indeed, there is a particular state during the
softening phase, here called pre-fracture according to [25], in which failure is initiated,
strain starts to localize and non-null bridging forces can be transmitted across the lips
of the crack. At this point the physical continuity of the material is still guaranteed and
it will be lost only at total fracture, when the solid is no more able to transmit bridging
forces. Only at this stage a fracture point in the sense of Griffith is created, material
rupture is irreversible, and the dissipation is complete. In all subsequent deformation
processes the cohesive energy remains constant and the cohesive force is zero.

Working with the smeared functionals in the brittle context three different choices
are commonly adopted to impose irreversibility. A threshold for the variable v is intro-
duced in order to define the completely fractured zones [14]. Once this threshold has
been overcome, irreversibility is enforced and the phase field parameter is set v = 0.
Such condition, numerically convenient with respect to the damage monotonicity v̇ ≤ 0
of [34], is reasonable in this context in view of the definition of Griffith fracture point.
Alternatively, the maximum value of the driven force in the damage evolution equa-
tion is considered [5]. This allows to obtain damage monotonicity from thermodynamic
considerations.

Differently, in the cohesive zone model the transient phase of stress transmission
plays a crucial role, so that memory of the partial crack must be kept before coalescence
occurs. Thus, the monotonicity of v seems to be the proper irreversibility condition
capable of taking into account the degradation of the process zone. In Subsection 4.1 we
show which irreversibility condition is consequently inherited by the sharp 1D model.
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3 Numerical details

3.1 Extended formulation

The definition in (2.3) can be extended to the case of vector-valued displacement as in
[27]. Given (u, v) ∈ H1(Ω,Rd)×H1(Ω), 0 ≤ v ≤ 1 a.e., we set with abuse of notation

Fδ(u, v) :=
1

2

ˆ

Ω

(ηδ + f2δ (v))C [∇su] · ∇su dx+
γ

2

ˆ

Ω

(
(1− v)2

4δ
+ δ|∇v|2

)
dx , (3.1)

where ηδ << δ, C : Sym → Sym is the elastic tensor of the sound material, ∇su is the
symmetric part of the gradient ∇u, and fδ is defined in (2.4). In this case the Cauchy
stress T reads as

T = (ηδ + f2δ (v))C [∇su] .

As in Section 2, we define F̂δ replacing fδ by f̂δ. Notice that, neglecting ηδ, one recovers
the stress of a sound elastic material when fδ(v) = 1. One expects that regions where
fδ(v) is small tend to concentrate in bands of thickness of order δ, where strain localizes
(|∇su| becomes very large).

Regrettably, no rigorous Γ-convergence result is currently available in this general
case. The reason is essentially technical, related to the lack of appropriate lower semi-
continuity and relaxation results in the limit functional space (G)BD(Ω) of functions
with bounded deformation [42]. As a consequence, even proposing a candidate limit
model is not trivial. Anyway, one expects that the limit bulk density will be again lin-
ear at infinity, and that the surface density will depend on the opening [u] and on the
normal νu to the jump set through some periodic cell formula. Moreover all terms of the
functional (3.1) will contribute to the crack energy, differently from the brittle context
in which essentially the last two terms play a role. Numerical experiments involving
functionals (3.1) will be presented in Subsection 4.2.

In what follows we refer to the first term of (2.3) and of (3.1) as bulk (or elastic)
contribution and to the last two terms as surface (or fracture) contribution.

3.2 Numerical treatment

Our numerical approximation is based on a discretization in both space and time. The
minimization problem for Fδ is numerically solved using an incremental procedure. Let
the non-dimensional loading (and time-like) parameter t be increased from 0 to the final
value T with n finite increments of amplitude t0 = T/n. Accordingly, ut and vt represent
the displacement and the damage field evaluated at time t respectively.

The numerical treatment of the functional Fδ is not a trivial task and some of the
difficulties are analogous to those encountered in the case of brittle fracture. The main
obstacles are listed below.

� The functional is non-convex, so that classical algorithms guaranteeing convergence
to global minimizers fail. Moreover, appropriate methods available in literature in
general only ensure convergence to stationary points. In order to overcome these
difficulties we adopt an alternate minimization algorithm with backtracking, details
are given below.
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� The functional, due to truncation in (2.4), is not Gateaux differentiable and not
convex with respect to the phase field variable v. It also presents null driving force
when the truncation is active. These issues involve major disadvantages, concerning
the minimization in v and the trigger of the damage mechanism. Such problems
can be overcome by neglecting the truncation when minimizing with respect to v.
In such a way differentiability and convexity are recovered and rupture process can
initiate. The drawback is no guarantee that the alternate minimization procedure
constructs at each time step a sequence with decreasing total energy. Alternatively,
the linearized function (2.6) can be adopted without any restriction.

� According to [16], the discretization error has to be carefully taken into account for
a proper analysis of the results. An accurate estimation of the discretized surface
energies requires the element size h to be much smaller than the regularization
parameter δ. The discretization error numerically found in the case of brittle
fracture [16] is confirmed in the present formulation. For linear finite elements
discretization the fracture energy is overestimated by a factor that depends on the
size h of the discrete element and on the parameter δ

γ → γ

(
1 +

h

4δ

)
. (3.2)

This overestimation is taken into account in the numerical simulation presented in
Section 4.

� The evolution is numerically evaluated at discrete steps. In view of this, we prevent
material self-healing by adopting the irreversibility condition

vt (x) ≤ vt−1 (x) , ∀x ∈ Ω .

The numerical scheme is based upon an alternate minimization algorithm which,
in short, consists in solving a series of minimization sub-problems on u at fixed v and
viceversa on v at fixed u up to convergence. The procedure is detailed in Algorithm 1.
In particular, the energy functional is quadratic in u and the elastic sub-problem reduces
to the solution of a linear system of equations. The only inconvenience is due to the
strongly spatially varying stiffness parameter which leads to linear algebra difficulties in
computing the system solution.

The minimization on v at fixed u is reduced to solve a nonlinear unconstrained
problem and to project a posteriori the solution on the set of admissible space to enforce
the irreversibility condition. Alternatively, the irreversibility condition has been applied
with an augmented Lagrangian approach following the numerical strategy illustrated in
[43] without noticeable difference.

Since alternate minimization relies only on stationarity conditions for u and v, it
cannot be guaranteed to converge to a global minimum of (2.3). The aim of the back-
tracking algorithm, proposed and discussed in depth in [14] in the brittle framework, is
to derive a further necessary condition for optimality and an algorithmic way to check
it. Although there is no proof that the back-tracking algorithm converges to a global
minimum, at each time step it forces to compare, and possibly redefine, the evolution
given by the alternate minimization with those obtained in the previous times.

Fr_Iu_3.tex 9 [July 15, 2016]



Algorithm 1 Alternate minimization

1: procedure Stationary point of (3.1)
2: Given the state at the previous loading steps (ui−1, vi−1)
3: Set initial guess (u0, v0)=(ui−1, vi−1)
4: while not converged do
5: Find uk

6: Find vk

7: end
8: Set (ui, vi)=(uk, vk)

Consider a monotonically increasing loading u0t and two loading steps tl and tj such
that tl ≤ tj . If the pair (uj , vj) is admissible for (3.1) at time t = tj , then (tl/tjuj , vj) is
admissible at time t = tl. Therefore, if (ul, vl) is a global minimizer at time t = tl then
Fδ(ul, vl) ≤ Fδ(tl/tjuj , vj) and for any 0 ≤ j ≤ N we have

Fδ(ul, vl) ≤
t2l
t2j
F b
δ (uj , vj) + F s

δ (vj) , ∀ 0 ≤ l ≤ j , (3.3)

where F b
δ and F s

δ denote respectively the bulk and the surface contribution in (3.1).
In Algorithm 2, condition (3.3) is checked against all previously computed time steps

upon convergence of the alternating minimization algorithm. If a violation is detected,
the time evolution backtracks to the relevant step keeping the current configuration as
initial guess. A refined version of the algorithm has been recently proposed in [38].

Algorithm 2 Alternate minimization with backtracking

1: procedure Stationary point of (3.1) under energetic constraint
2: Given the state at the previous loading steps (ui−1, vi−1)
3: Set initial guess (u0, v0)=(ui−1, vi−1)
4: while not converged do
5: Find uk

6: Find vk

7: for j=1 to i-1 do
8: if energetic condition (3.3) is not satisfied then
9: v0 = vj

10: i = j
11: return to 5
12: end
13: Set (ui, vi)=(uk, vk)
14: Compute energy contributions in (3.3)

As in [14] and [30], the iteration loop is required to stop when the change in norm of
the damage field descends a certain tolerance.

The parameter ηδ in (3.1) has been introduced in [7] to theoretically ensure the
existence of a global minimizer for the smeared energy. It is often kept in numerical
simulations to prevent numerical instability, though it is not strictly necessary (see for
example [12]). Accordingly, in all calculations presented in this paper ηδ = 0 is assumed.
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The minimization problem has been numerically solved using a finite element method,
implemented in a specifically conceived program based upon the Open Source package
deal.II [9].

4 Numerical Examples

The scope of this section is to illustrate the response of the models (2.3) and (3.1) during a
quasi-static evolution through representative examples. Firstly, a basic one-dimensional
bar in traction is investigated. Subsequently, fracture propagation in a bi-dimensional
notched specimen is simulated. Reference is made to Sections 2 and 3.1 for the notation
used here.

4.1 1d case

In the following, we describe the evolutionary solution to the traction problem for a
one-dimensional homogeneous bar.

Let Ω := [0, L], so that ∂Ω = {0, L}. We follow the evolution in the time interval
[0, T ] = [0, 1], assuming that the left extremity at x = 0 is clamped, while a displacement
u = u0 t is imposed at x = L. Here u0 is a reference length and t ∈ [0, 1] is a non-
dimensional loading parameter. Moreover, condition v = 1 is assigned at x ∈ {0, L}
instead of adopting an enlarged logical domain. This condition is imposed to recover
a correct value for the surface energy. Indeed, it forbids the development of fractures
exactly at the boundary, although they are free to appear at a small distance. This fact
may well interpret the confining effects offered in a real experimental set-up by glued
supports.

The adopted material parameters are c1 =100 MPa for the Young’s modulus, c2 =1
Nmm−1 for the fracture toughness, L = 1 mm for the length of the bar and the parameter
δ = 0.01 mm. The time interval is divided into 1000 equally spaced time steps while
u0 = 1 mm. The domain is uniformly discretized into mono-dimensional linear finite
elements such that δ/h = 5. This permits to have the same discretization error due to
(3.2) for all simulations. Finally, if not explicitly declared, all the following simulations
are performed adopting the backtracking algorithm described above.

Fig. 3a shows the stress-displacement curve obtained from FEM calculation. We
observe two main phases of the cohesive fracture formation. Up to the displacement uc,
corresponding to the stress peak, we have a non-fractured state with a nearly uniform
degradation along the bar. A damaged (pre-fractured) state characterizes the bar when
u > uc up to complete decohesion, in which strain and damage clearly localize in a portion
of the bar. In this phase cohesive forces appear and vanish as the deformation increases.
The unloading-reloading path is also outlined; it follows a linear path. Complete fracture
in the sense of Griffith’s model can be achieved as u→ ∞.

We also investigate the energetic evolution in Fig. 3b, where the total energy, as well
as its bulk and surface contributions (in a Griffith sense), are plotted as functions of
the displacement. Note that in the displacement interval [0, uc] the evolution follows the
elastic deformation: the bulk contribution moves from a convex to a concave behavior.
Moreover, note that the truncation in (2.4) allows to obtain a bulk contribution which is
quadratic near the origin. The total energy together with the surface contribution grow
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Figure 3: Bar in traction: (a) Stress as a function of the imposed displacement; (b) total
energy as a function of the displacement: bulk contribution and surface contribution.

asymptotically up to the value γ, while the bulk counterpart vanishes. Even, the total
energy moves from convex to concave evolution at u = uc.
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Figure 4: Bar in traction: (a) distribution of the displacement along the bar for different
values of the imposed displacement; (b) profile of v for completely damaged bar (u = 0.8
mm) and comparison with optimal profile of (2.7).

The two phases previously described are very clear in Fig. 4a where the displacement
u(x) is plotted along the bar for different values of the imposed displacement. Up to uc
the bar undergoes linear elastic deformations. At this stage the elastic deformation is no
more energetically convenient. Then, the pre-fracture phase starts in the central portion
of the bar, in which a crack is opened, and a non-null bridging force is transmitted across
the damaged region. As the imposed displacement increases, the deformation strongly
localizes in this damaged zone thus exhibiting high displacement gradient.
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The physical continuity of the bar is supposed to be lost only at total fracture,
when the jump amplitude reaches the critical value and the bridging force drops to zero.
When this occurs a fracture point in the sense of Griffith is created. For the value of the
applied displacement u = 0.8 mm, representative of almost fractured phase, the profile
of v along the bar is plotted in Fig. 4b. In the middle of the bar x ≈ 0.5 mm the phase
field parameter v reaches the value ∼= 5.e− 3.

The profile of v obtained from the numerical solution is in a very good agreement
with the optimal profile of (2.7), added in Fig. 4b. In this sense the phase field approach
accurately approximates the sharp formulation.
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Figure 5: Bar in traction: (a) graph of the cohesive energy density g([u]); (b) graph of
the bridging force g′([u]).

Finally, the cohesive energy density g([u]) is evaluated by numerical manipulation
of the solution at points x = 0.5 ± 0.03 mm. The two points are just around the zone
where high displacement gradient concentrates and the deformation recovers linear dis-
tribution. Firstly, the bridging force g′([u]) transmitted across the crack of amplitude
[u] is obtained by the discrete solution, and then g([u]) is calculated by numerical inte-
gration of g′([u]). Accordingly with the cohesive fracture theory, g([u]) is a monotonic
non-decreasing function of the jump amplitude such that

γ = lim
[u]→∞

g ([u]) .

Except for the initial linear portion which is due to the truncation (see (2.4)), g′([u])
turns out to be continuous and decreasing, and it is a convex function of [u]; in such
a case the energy is said sub-quadratic [25]. The initial ascending branch of g′([u]) is
commonly adopted in sharp cohesive models for interface problems [2], [29].

Now, a Γ-convergence study with respect to the parameter δ is carried out for this
one-dimensional structure. In particular, in Fig. 6a the stress-displacement curves ob-
tained with δ ranging from 0.1 to 0.0001 mm are represented. In order to keep the
convergence analysis consistent, a fixed ratio h/δ is adopted thus to have the same the-
oretical overestimation of the surface contribution (3.2) for each simulation. The initial
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Figure 6: Bar in traction: Γ-convergence results for different values of the parameter δ.
(a) Stress as a function of the imposed displacement; (b) total energy as a function of
the displacement.

purely linear elastic branch, which is due to the truncation in (2.4), results δ indepen-
dent. The stress peak, as previously outlined in Fig. 1b, increases as δ decreases up to an
asymptotic value. The softening branches, except for the initial part in the case δ = 0.1,
present nearly coincident paths.

The total energy evolutions are drawn in Fig. 6b. The cases δ = 0.01, 0.001, 0.0001
mm present perfect agreement. Differently, the case δ = 0.1 mm highlights an energetic
level higher than the other simulations in the initial part of the evolution. This is due
to the fact that the length of the bar L is too short for such δ, so that the diffusion
of damage affects the entire bar. The present numerical results indicate that, when the
internal length scale δ → 0, the smeared energies corresponding to the phase field models
converge towards the sharp cohesive fracture energy. The differences between the three
curves cannot be graphically appreciated.

Let us replace now the function (2.4) by the regularized expression (2.6). The same
Γ-convergence analysis is conducted neglecting the case δ = 0.1 mm, too large for the
adopted bar length. The initial response is no more linearly elastic as clearly illustrated
by Fig. 7a, where the stress as a function of the imposed displacement is plotted for
different values of δ. In fact, no elastic threshold is present in such a formulation.

The stress peak converges to the limit value σc as δ decreases. After the peak,
a small drop in the equilibrium path occurs vanishing as δ → 0. Such drop is due
to the backtracking algorithm, which within a single time step goes back to recover a
reduced value of v. Afterwards, the softening branches are equivalent to those obtained
by adopting the original expression (2.4).

In Fig. 7b the total energy evolutions for the case at hand are depicted. The behavior
is similar to that observed in Fig. 6b. The difference between the curves as δ varies is
so limited that cannot be graphically appreciated. We conclude that even in this case
numerical simulations confirm the Γ-convergence of the smeared functionals F̂δ to the
sharp energy (2.2).
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Figure 7: Bar in traction: Γ-convergence results for different values of δ obtained adopt-
ing f̂δ. (a) Stress as a function of the imposed displacement; (b) total energy as a
function of the displacement.

4.1.1 Global minima vs stationary points

The Γ-convergence simulations illustrated in Fig. 6 are repeated without adopting the
backtracking algorithm. In Fig. 8 the stress and the energy are plotted as functions of the
imposed displacement. For δ = 0.1, 0.01 mm no difference can be appreciated between
the results of Fig. 6 and 8. Whereas, the evolution of the system changes after the peak for
δ = 0.001, 0.0001 mm. This phenomenon is rather clear in the stress-displacement graphs
of Fig. 8a. Once that the linear elastic phase is exhausted, an almost horizontal plateau is
followed for a certain amount of displacements; this is evident for δ = 0.0001 mm and just
outlined for δ = 0.001 mm. This portion of solution is exactly the homogenous solution
that is described in 2.1 and is slightly reprised in Fig. 8a. After that, due to bifurcation
of the numerical solution induced by numerical instability, a sudden partial failure occurs
without a bridging phase. Finally, the equilibrium path merges in a softening branch.

It is important to underline that in these two cases δ = 0.001, 0.0001 mm we actually
observe an evolution along critical points that certainly are not global minimizers: the
homogeneous solution is not energetically favourable. The algorithm chooses the crit-
ical point which is the closest to the initial configuration, even if other options, more
convenient from an energetic point of view, are available. This equilibrium path is par-
ticularly sustained by the physical idea of laziness of a body: it does not completely
upset its configuration passing through energetic barriers, if a stable configuration can
be obtained with less energetic expense. This condition is exacerbated in the 1D case,
that cannot account for stress concentration. A similar behavior can be found in brittle
fracture, where the solution deviates from the homogeneous deformation at an energetic
level that strongly overestimates the stress peak [16].

From the energetic viewpoint, when the elastic deformation ceases to be a critical
point the domain exhibits diffuse damage and the total energy continues to grow linearly
up to the brittle jump. After that, the energy asymptotically converges to γ, see Fig. 8b.
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Figure 8: Bar in traction: Γ-convergence for different values of δ obtained without
backtracking algorithm. (a) Stress as a function of the imposed displacement; (b) total
energy as a function of the displacement.

4.2 2d example

We now challenge the formulation in a simulation of a two-dimensional cohesive fracture
evolution. The simulations are performed only for a qualitative purpose since, as we
have already mentioned, theoretical results are currently not available.

Let us consider the square plate of side b represented in Fig. 9, with a V-notch of
length a along the left vertical side. The element is analyzed in plane strain condition and
is loaded by applying opposite vertical displacements on the bases according to Fig. 9,
while the vertical borders and the notch are unconstrained and stress-free. The horizontal
bases are left free to expand. This setup may be representative of a tensile strain-driven
test with lubricated loading platens. The material is assumed to be homogeneous and
isotropic, so that C = 2µI+ λI⊗ I, where µ and λ are the Lame’s elastic constants.

b

b
a

u

u

Figure 9: V-notched specimen subject to traction: setup and boundary conditions.
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The geometrical and material parameters used in the numerical simulation are: b = 1
mm, a = 0.1 mm λ = 121153 MPa, µ = 80769 MPa, γ = 0.1 Nmm−1, δ = 0.01 mm.
The computation is performed in a monotonic displacement-driven context with con-
stant displacement increments △u=0.00001 mm, being u the vertical component of the
imposed displacement. In the numerical discretization, we adopt a non-structured, an-
tisymmetric, and inhomogeneous finite element mesh composed of 14048 quadrilaterals.
Bilinear interpolations are used for the displacement and the damage field. In view of the
horizontal symmetry, smaller finite elements are distributed close to the candidate crack
path, in the center of the domain. In this portion the size of the element is h ≈ 0.4δ.

The simulation is performed adopting the linearized function (2.6), already tested in
the 1D case and computationally less expensive than (2.4). Indeed, due to the high vari-
ation of the function v2/(1−v)2 when v ≈ 1, a very fine mesh is mandatory in the whole
domain at the beginning of the damaging process, thus increasing the computational
expense. The irreversibility condition for v is taken into account.
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Figure 10: V-notched specimen: (a) Load (per unit width) as a function of the vertical
displacement u; (b) total energy as a function of the displacement: bulk contribution
and surface contribution.

The load P calculated at upper basis is plotted in Fig. 10a as a function of the applied
displacement u. The numerical solution clearly indicates a smooth transition from the
almost linear elastic state of the ascending path to the softening regime of the descending
branch once that the peak has been passed.

The total energy is drawn in Fig. 10b as a function of the applied displacement u.
Such energy is composed of two contributions, here called bulk and surface as specified
in Subsection 3.1, that are plotted in the same figure. It is again clear that the damaging
process is characterized by an energy transfer from the bulk contribution to the surface
counterpart. When the displacement is sufficiently large, the surface contribution of
the energy grows asymptotically to the measure of the fractured part of the body (up
to the factor γ). In this case the value of the energy is slightly overestimated for two
main reasons: the discretization error (3.2) and the lack of elastic threshold. The latter,
coupled with the irreversibility condition, leads the term (1− v)2 in F̂δ (see Subsection
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3.1) to give non-negligible energetic contributions also on the non-fractured areas, being
v < 1 everywhere within the domain.

The resulting crack patterns at different stages of the deformation are illustrated
in Fig. 11. The damaging process begins at the notch, where stress concentration oc-
curs, and propagates horizontally up to affect the entire width of the specimen. As the
displacement increases damage becomes more and more evident.

�

a)   b)  

c)   d)� �� �

�

�

Figure 11: Map of the field v for different values of the imposed displacement: (a)
u = 0.0005, (b) u = 0.001, (c) u = 0.0015, (d) u = 0.002.

Localisation of deformations and mesh dependence of damage models have been
studied extensively [11], [19]. In static problems the local equilibrium equations lose
ellipticity near the onset of softening. Therefore deformation and damage grow, then
localise in a line or, in finite element analyses, in the narrowest band that can be captured
by the spatial discretization. Upon refinement of the discretization the predicted fracture
energy tends to zero. In order to check mesh objectivity, simulations above are repeated
with two globally refined meshes obtained by splitting into four element each cell. This
procedure is applied twice so that three meshes are considered: mesh 1 (14048 elements),
mesh 2 (56192 elements) and mesh 3 (224768 elements). For comparison purposes,
the load-displacement responses for all cases are compiled in a single graph 12a. The
dissipated energy is defined as the area underneath the force-displacement curves.

As evidenced in Fig. 12a the dissipated energy in the crack formation is clearly mesh
insensitive. The structural responses are almost identical, ensuring the control of the
energy dissipation regardless of the mesh refinement. Minor differences in the last portion
of the softening branch can be attributed to the energetic error due to (3.2). Accordingly,
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the bigger is the element size the higher is the error estimation of the fracture energy.
The comparison of structural responses in Fig. 12a leads to the conclusion that results
are mesh-independent.
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Figure 12: V-notched specimen: (a) Load (per unit width) vs. vertical displacement u
for different meshes, (b) Load (per unit width) vs. vertical displacement u for different
values of the parameter δ.

Finally, the influence of parameter δ on the solution has been investigated. The load
is plotted in Fig. 12b as a function of the vertical displacement for different values of δ.
The global response, as for the 1D example, is not affected by the value of the parameter
δ. As might be expected, for a fixed mesh as in the case of our simulation, the error due
to (3.2) leads to an energy overestimation which increases accordingly to a decrement of
δ.

5 Conclusion and perspectives

A recent variational formulation for cohesive crack [20] has been numerically assessed
through representative examples.

Despite its simplicity, the one-dimensional setting has allowed us to give a quanti-
tative description of the material behavior both from the constitutive and energetically
point of view. In the one-dimensional example of Subsection 4.1 three states (in a
smeared sense) can be identified: non-fractured, pre-fractured, and fractured. An elastic
threshold is indirectly introduced by the truncation in (2.4), so that a non-null activation
energy has to be exceeded to pass from the non-fractured to the pre-fractured state. This
prevents to have a pre-fracture point with zero jump amplitude which is energetically
equivalent to a non-fracture point [25]. In the pre-fractured phase the material exhibits
softening, deformation localizes in a narrow region representative of the crack. Then,
the fractured state is asymptotically achieved as the damage variable v → 0.

From the energetic point of view it is observed, in agreement with theory, the tran-
sition from a convex to a concave evolution once that the elastic phase is completed.
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Finally, simulations obtained with a decreasing value of the parameter δ confirm the
theoretical Γ-convergence result of [20].

Analogous results hold for the C1 function (2.6), proposed as a regularization of
(2.4). We remark that the lack of elastic threshold in this case could be recovered by
simply changing the second term of (3.1), according to [40].

The absence of mathematical results in more than one dimension and of a specific
formulation does not allow today to investigate with consistency complex problems.
However, the first attempts proposed in this paper are very promising. Indeed, the
model and the dissipated energy have shown to be mesh independent. Moreover, the
Γ-convergence result demonstrated for scalar displacements seems working even in some
special 2D vector-valued cases. We have chosen an example that in a certain sense shares
some peculiarities with the 1D case. The main advantage of the 2D simulation is the
presence of a stress concentrator that deviates the solution from the homogeneous one.

In conclusion we underline that numerical simulations have not only confirmed the
analytic results of [20], but have also permitted to study the transition phase of damage
evolution and to investigate the peculiarities of the formulation. This puts the basis for
further engineering applications.

For what the formulation is concerned, two are the main aspects that must be care-
fully investigated: unilateral condition and irreversibility. In order to take into account
non-interpenetration after fracture closure, a kinematical unilateral constraint should be
introduced. As for irreversibility, one aims to analytically identify a memory variable
which describes the evolution history in the sharp model, once that damage monotonicity
is assumed in the smeared model.

In a forthcoming work the choice of different elastic energy expressions will be inves-
tigated in case of looseness and damage of the material micro-structure. The idea follows
the lines of [30], where a generic theory of failure is proposed. Simply varying the form of
the class for admissible structured deformations, one aims to capture different responses,
possibly incorporating the idea of cleavage, deviatoric, combined cleavage-deviatoric, and
masonry-like fractures. This latter formulation rigorously avoids material overlapping in
the cracked zones and seems to be the best candidate to impose unilateral conditions in
a smeared approach.

In the brittle fracture approach the parent parameter δ assumes a twofold meaning:
purely mathematical for Γ-convergence purpose and physical associated to the intrinsic
length scale of the material, thus defining the diffusion zone for damaging process. The
first significance is guaranteed by mathematical proofs and numerical validations. The
second aspect requires further investigations.
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