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1 Introduction

There are various definitions of variation of a function, and the related classes BV of functions of bounded
variation, that make sense in different contexts and are known to be equivalent in wide generality. In the
Euclidean framework, i.e., Rn endowed with the Euclidean metric and the Lebesgue measure, the variation of
f ∈ L1(Rn) can be defined as

|Df | (Rn) = sup
{∫

Rn
fdiv g dx : g ∈ C1

0 (Rn,Rn), ‖g‖L∞(Rn) ≤ 1
}
, (1)

and |Df |(Rn) < +∞ is equivalent to saying that f ∈ BV (Rn), i.e., the distributional gradient of f is a (Rn-
valued) finite Radon measure. This approach can be generalized to ambients where a measure and a coherent
differential structure, which allows to define a divergence operator, are defined. Alternatively, the variation of f
can be defined through a relaxation procedure,

|Df | (Rn) = inf
{

lim inf
k→∞

∫
Rn
|∇fk|dx : fk ∈ Lip(Rn), fk → f in L1(Rn)

}
, (2)

and the space BV can be defined, accordingly, as the finiteness domain of the relaxed functional in L1(Rn). To
generalize (2), no differential structure is needed, apart from Lipschitz functions and a suitable substitute of
the modulus of the gradient. Definitions (1) and (2) have been extended to several contexts, such as manifolds
and metric measure spaces (see e.g. [22], [2], [20]), and in particular Carnot-Carathéodory spaces and Carnot
groups, see [10], [6], [17]. However, we point out that the original definition of variation of a function, and in
particular of set of finite perimeter, has been given by E. De Giorgi in [13] by a regularization procedure based
on the heat kernel. He proved that

|Df |(Rn) = lim
t→0

∫
Rn
|∇Ttf |dx, (3)

(where ∇ denotes the gradient with respect to the space variables x ∈ Rn and Ttf(x) =
∫

Rn h(t, x− y)f(y)dy
is the heat semigroup given by the Gauss-Weierstrass kernel h) and that if the above quantity is finite then
f ∈ BV (Rn). Equality (3) has been recently proved for Riemannian manifolds M in [11], with the only restriction
that the Ricci curvature of M is bounded from below, thus generalizing the result in [23], where further bounds
on the geometry of M were assumed.
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In this paper the framework is that of Carnot groups, where it is known that formulae (1) and (2) (where of
course the intrinsic differential structure is used) give equivalent definitions of |Df |, see [17]; we show here that
(3) holds in a weaker sense, all the quantities involved being again the intrinsic ones. Namely, the two sides of
(3) are equivalent, although we don’t know whether they are equal (see Theorem 2.11 for the precise statement).

We think that it is interesting to comment on the proof of (3) in the various situations. Thinking of the
left hand side as defined by (1), the ≤ inequality follows easily by lower semicontinuity of the total variation
and the L1 convergence of Ttf to f , so that the more difficult part is the ≥ inequality. In Rn it follows from the
(trivial) commutation relation DiTtf = TtDif between the heat semigroup and the partial derivatives, whereas
in the Riemannian case, as treated in [11], it follows from the estimate ‖dTtf‖L1(M) ≤ eK

2t|df |(M), where d
denotes the exterior differential on M , which replaces the gradient in (3), and −K2 is a lower bound for the
Ricci curvature of M . In the subriemannian case we are dealing with, the Euclidean commutation does not hold,
and we are not able to prove that equality (3) still holds, but only that the semigroup approach identifies the
BV class. The proof relies on algebraic properties and Gaussian estimates on the heat kernel and its derivatives
which allow to estimate the commutator [D,Tt]. Still different arguments are used in the infinite dimensional
case of Wiener spaces.

Recently, inspired by [21], another connection between the heat semigroup and BV functions in Rn has
been pointed out in [24], where the following equality is proved:

|Df |(Rn) = lim
t→0

√
π

2
√
t

∫
Rn

∫
Rn
h(t, x− y)|f(x)− f(y)| dydx, (4)

which means that f ∈ BV (Rn) if and only if the right hand side is finite, and equality holds. Equality (4) is first
proved for characteristic functions and then extended to the general case using the coarea formula. The proof
for characteristic functions of sets of finite perimeter, in turn, is based on a blow-up argument on the points of
the reduced boundary and uses the rectifiability of the reduced boundary. In this paper we extend (4) to Carnot
groups (see Theorem 2.14) but, accordingly to the preceding comments, our proof depends upon the rectifiability
of the reduced boundary, which is presently known to be true only in groups of Step 2, see [18]. Therefore, our
proof would immediately generalize to more general groups, if the rectifiability of the reduced boundary were
proved. Notice also that in general the heat kernel doesn’t have the symmetries that the Gaussian kernel has,
such as rotation invariance. As a consequence, equation (4) assumes a different form in general Carnot groups of
step two (see (29) in Theorem 2.14 below); however, in the special but important case of groups of Heisenberg
type, (29) simplifies to a form very similar to (4) (see Remark 2.15).

We point out that in the Euclidean case both (3) and (4) hold not only in the whole of Rn, but also in a
localized form and with the heat semigroup replaced by the semigroup generated by a general uniformly elliptic
operator, under suitable boundary conditions, see [4]. Finally, let us mention that the short-time behavior of the
heat semigroup in Rn has been shown to be useful also to describe further geometric properties of boundaries,
see [3].
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2 Preliminaries and Main Results

We collect in the first two subsections the notions on Carnot groups and BV functions needed in the paper.
After that, we devote the last subsection to the statement of the main results and some comments.

2.1 Carnot groups and heat kernels

Basic definitions. Here we recall some basic known facts about Carnot groups, whose precise definition we
shall give after introducing some notation. We refer to [7, § 1.4] for the proofs and further details.

Let Rn be equipped with a Lie group structure by the composition law ◦ (which we call translation) such
that 0 is the identity and x−1 = −x (i.e., the group inverse is the Euclidean opposite); let Rn be also equipped
with a family {D (λ)}λ>0 of group automorphisms of (Rn, ◦) (called dilations) of the following form

D (λ) : (x1, . . . , xn ) 7→ (λω1x1, . . . , λ
ωnxn)
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where ω1 ≤ ω2 ≤ . . . ≤ ωn are positive integers, with ω1 = ω2 = . . . = ωq = 1, ωi > 1 for i > q for some q < n.
If Lx is the left translation operator acting on functions, (Lxf)(y) = f(x ◦ y), we say that a differential

operator P is left invariant if P (Lxf) = Lx(Pf) for every smooth function f . Also, we say that a differential
operator P is homogeneous of degree δ > 0 if

P (f(D(λ)))(x) = λδ (Pf)(D(λ)x)

for every test function f , λ > 0, x ∈ Rn, and a function f is homogeneous of degree δ ∈ R if

f (D(λ)x) = λδ f (x) for every λ > 0, x ∈ Rn.

Now, for i = 1, 2, ..., q, let

Xi =
n∑
j=1

qji (x) ∂xj (5)

be the unique left invariant vector field (with respect to ◦) which agrees with ∂xi at the origin, and assume
that the Lie algebra generated by X1, X2, ..., Xq coincides with the Lie algebra of G. Then we say that
G = (Rn, ◦, {D(λ)}λ>0) is a (homogeneous) Carnot group or a homogeneous stratified group.

More explicitly, setting V1 = span{X1, X2, ..., Xq}, Vi+1 = [V1, Vi] (the space generated by the commutators
[X,Y ], with X ∈ V1, Y ∈ Vi), there is k ∈ N such that Rn = V1 ⊕ · · · ⊕ Vk, with Vk 6= {0} and Vi = {0} for i > k.
The integer k is called the step of G. Since V1 at 0 can be identified with Rq, by the left invariance of the vector
fields Xi we can identify V1 with Rq for every x ∈ Rn. Note that all vector fields in Vj are j-homogeneous and
call

Q =
k∑
j=1

jdimVj =
n∑
j=1

ωj

the homogeneous dimension of G. The operator

L =
q∑
j=1

X2
j

is called sublaplacian; it is left invariant, homogeneous of degree two and, by Hörmander’s Theorem, hypoelliptic.
Structure of left- and right-invariant vector fields. It is sometimes useful to consider also the right-

invariant vector fields XR
j (j = 1, . . . , n), which agree with ∂xj (and therefore with Xj) at 0; also these XR

i are
homogeneous of degree one for i ≤ q. (For the following properties of invariant vector fields see [27, pp.606-621]
or [8]). As to the structure of the left (or right) invariant vector fields, it can be proved that the systems {Xi}
and

{
XR
i

}
have the following “triangular form” with respect to Cartesian derivatives:

Xi = ∂xi +
n∑

k=i+1

qki (x) ∂xk (6)

XR
i = ∂xi +

n∑
k=i+1

qki (x) ∂xk (7)

where qki , q
k
i are polynomials, homogeneous of degree ωk − ωi (the ωi’s are the dilation exponents). When the

triangular form of the Xi’s is not important, we will keep writing (5), more compactly.
The identities (6)-(7) imply that any Cartesian derivative ∂xk can be written as a linear combination of the

Xi’s (and, analogously, of the XR
j ’s). In particular, any homogeneous differential operator can be rewritten as

a linear combination of left invariant (or, similarly, right invariant) homogeneous vector fields, with polynomial
coefficients. The above structure of the Xi’s also implies that the L2 transpose X∗i of Xi is just −Xi (as in a
standard integration by parts). From the above equations we also find that

Xi =
n∑
k=i

cki (x)XR
k

where cki (x) are polynomials, homogeneous of degree ωk − ωi. In particular, since ωk − ωi < ωk, cki (x) does not
depend on xh for h ≥ k and therefore commutes with XR

k , that is

Xif =
n∑
k=i

XR
k

(
cki (x) f

)
(i = 1, . . . , n)
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for every test function f . The above identity can be sharpened as follows; taking its value at the origin we get:

∂xi =
q∑
k=i

cki ∂xk

since for k > q the cki (x) are homogeneous polynomials of positive degree, and therefore vanish at the origin.
Hence cki = δik for i, k = 1, 2, ..., q, that is:

Xif = XR
i f +

n∑
k=q+1

XR
k

(
cki (x) f

)
for i = 1, . . . , q. (8)

Moreover, the operators XR
k , with k > q, can be expressed in terms of the XR

1 , . . . , X
R
q , i.e., for every

k = q + 1, . . . , n there are constants ϑki1i2...iωk such that

XR
k =

∑
1≤ij≤q

ϑki1i2...iωk
XR
i1X

R
i2 ...X

R
iωk
. (9)

Convolutions. The convolution of two functions in G is defined as

(f ∗ g)(x) =
∫

Rn
f(x ◦ y−1) g(y) dy =

∫
Rn

g(y−1 ◦ x) f(y) dy,

for every couple of functions for which the above integrals make sense. From this definition we see that if P is
any left invariant differential operator, then

P (f ∗ g) = f ∗ Pg

(provided the integrals converge). Note that, if G is not abelian, we cannot write f ∗ Pg = Pf ∗ g. Instead, if X
and XR are, respectively, a left invariant and right invariant vector field which agree at the origin, the following
hold (see [27], p.607)

(Xf) ∗ g = f ∗
(
XRg

)
; XR (f ∗ g) =

(
XRf

)
∗ g.

Explicitly this means ∫
Rn

XRg(y−1 ◦ x) f(y) dy =
∫

Rn
g(y−1 ◦ x)Xf(y) dy (10)

for any f, g for which the above integrals make sense.
Heat kernels. If G = (Rn, ◦, D(λ)) is a Carnot group, we can naturally define its parabolic version setting,

in Rn+1:
(t, u) ◦P (s, v) = (t+ s, u ◦ v) ; DP (λ) (t, u) =

(
λ2t,D (λ)u

)
.

If we define the parabolic homogeneous group GP =
(
Rn+1, ◦P , DP (λ)

)
, its homogeneous dimension is Q+ 2.

Let us now consider the heat operator in GP ,

H = ∂t −
q∑
j=1

X2
j = ∂t − L

which is translation invariant, homogeneous of degree 2 and hypoelliptic. By a general result due to Folland,
see [16], H possesses a homogeneous fundamental solution h (t, x) , usually called the heat kernel on G. The
next theorem collects several well-known important facts about h, which are useful in the sequel; the statements
(i)-(v) below can be found in [16, Section 1G], while the estimates (11)-(12) are contained in [28, Section IV.4].

Theorem 2.1. There exists a function h(t, x) defined in Rn+1 with the following properties:

(i) h ∈ C∞
(
Rn+1 \ {0}

)
;

(ii) h
(
λ2t,D (λ)x

)
= λ−Qh (t, x) for any t > 0, x ∈ Rn, λ > 0;

(iii) h (t, x) = 0 for any t < 0, x ∈ Rn;

(iv)
∫

Rn
h (t, x) dx = 1 for any t > 0;

(v) h
(
t, x−1

)
= h (t, x) for any t > 0, x ∈ Rn.
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Setting ht(x) = h(t, x), let us introduce the heat semigroup, defined as follows for any f ∈ L1 (Rn):

Wtf(x) =
∫

Rn
h
(
t, y−1 ◦ x

)
f(y)dy = (f ∗ ht)(x).

Then, for any f ∈ L1 (Rn) and t > 0, we have Wtf ∈ C∞ (Rn) and the function u (t, x) = Wtf(x) solves the
equation Hu = 0 in (0,∞)× Rn. Moreover,

u (t, x)→ f (x) strongly in L1(Rn) as t→ 0.

Finally, for every nonnegative integers j, k, for every x ∈ Rn, t > 0, the following Gaussian bounds hold:

c−1t−Q/2e−|x|
2/c−1t ≤ h(t, x) ≤ ct−Q/2e−|x|

2/ct (11)∣∣Xi1 · · ·Xij (∂t)
k h (t, x)

∣∣ ≤ c(j, k)t−(Q+j+2k)/2e−|x|
2/ct (12)

for i1, i2, ..., ij ∈ {1, 2, ..., q} . Here c ≥ 1 is a constant only depending on G, while c(j, k) depends on G, j, k.

Remark 2.2. The Gaussian estimates in this context usually involve the so-called homogeneous norm and
are more precise than those we use here, that are stated in terms of the Euclidean norm. We have stated the
Gaussian bounds in the present form because we don’t need the estimates in their full strength and (11), (12)
follow immediately from the usual estimates In this way we avoid the introduction of the homogeneous norm,
which we don’t need.

The bound on the derivatives Xi1 · · ·Xij∂
k
t h (t, x) still holds, in the same form, if the vector fields

Xi1 , · · · , Xij are replaced with any family of j vector fields, homogeneous of degree one; for instance, we will
apply this bound to derivatives with respect to the right invariant vector fields XR

i . Moreover, a homogeneity
argument shows that if a (x) is a homogeneous function of degree j′, then∣∣Xi1 ...Xij∂

k
t [a (x)h (t, x)]

∣∣ ≤ c (j, k, a) t−(Q+j−j′+2k)/2e−|x|
2/ct.

2.2 BV functions

Let us define the Sobolev spaces W 1,p(G), 1 ≤ p <∞, and the space BV (G) of functions of bounded variation
in G and list their main properties. We remark that the definition of BV (G) goes back to [10] and refer to [1]
and to [18] for more information on the Euclidean and the subriemannian case, respectively. We start from the
Sobolev case.

Definition 2.3. For 1 ≤ p <∞, we say that f ∈ Lp(Rn) belongs to the Sobolev space W 1,p(G) if there are
f1, . . . , fq ∈ Lp(Rn) such that∫

Rn
f(x)Xig(x)dx = −

∫
Rn
g(x)fi(x)dx, i = 1, . . . , q,

for all g ∈ C1
0 (Rn). In this case, we denote fi as Xif and set

∇Xf = (X1f,X2f, ...,Xqf) .

We also let

‖∇Xf‖L1(Rn) =
∫

Rn
|∇Xf | dx =

∫
Rn

√∑q

i=1
|Xif |2dx.

We now consider functions of bounded variation.

Definition 2.4. For f ∈ L1(Rn) we say that f ∈ BV (G) if there are finite Radon measures µi such that∫
Rn
f(x)Xig(x)dx = −

∫
Rn
g(x)dµi, i = 1, . . . , q,
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for all g ∈ C1
0 (Rn). In this case, we denote µi by Xif and notice that the total variation of the Rq-valued measure

DGf = (X1f, . . . ,Xqf) is given by

|DGf | (Rn) = sup
{∫

Rn
f(x)divGg(x)dx : g ∈ C1

0 (Rn,Rq) , ‖g‖∞ ≤ 1
}

(13)

where

divGg(x) =
q∑
i=1

Xigi(x), if g(x) = (g1(x), . . . , gq(x))

and ‖g‖∞ = supx∈Rn |g(x)|.

With the same proof contained e.g. in [1, Prop. 3.6], it is possible to show that if f belongs to BV (G) then its
total variation |DGf | is a finite positive Radon measure and there is a |DGf |-measurable function σf : Rn → Rq
such that |σf (x)| = 1 for |DGf |-a.e. x ∈ Rn and∫

Rn
f(x)divGg(x)dx =

∫
Rn
〈g, σf 〉d|DGf | (14)

for all g ∈ C1
0 (G,Rq) where, here and in the following, we denote by 〈·, ·〉 the usual inner product in Rq.

We denote by DGf the vector measure −σf |DGf |, so that Xif is the measure (−σf )i|DGf | and the following
integration by parts holds true ∫

Rn
f(x)Xig(x)dx = −

∫
Rn
g (x) d (Xif) (x) (15)

for all g ∈ C1
0 (G). Note also that

|Xif | (Rn) ≤ |DGf | (Rn) . (16)

To visualize the above definitions we note that, whenever f is a smooth function, by the Euclidean divergence
theorem we have:

σf = − ∇Xf
|∇Xf |

; d |DGf | (x) = |∇Xf (x)| dx;

(whenever |∇Xf | 6= 0) and
d (Xif) (x) = Xif (x) dx

It is clear that W 1,1(G) functions are BV (G) functions whose measure gradient is absolutely continuous with
respect to Lebesgue measure. Moreover, since it is the supremum of L1-continuous functionals, the total variation
is L1(Rn) lower semicontinuous (see [18, Theorem 2.17]), i.e., fk → f in L1(Rn) implies that

|DGf |(Rn) ≤ lim inf
k→∞

|DGfk|(Rn). (17)

Namely: ∫
Rn
fk(x)divGg(x)dx ≤ |DGfk|(Rn), ∀g ∈ C∞0 (Rn,Rq) , ‖g‖∞ ≤ 1.

Passing to the liminf as k →∞ we get∫
Rn
f(x)divGg(x)dx ≤ lim inf

k→∞
|DGfk|(Rn)

and taking the supremum over all possible g’s we get (17).

Definition 2.5 (Sets of finite G-perimeter). If χE is the characteristic function of a measurable set E ⊂ Rn and
|DGχE | is finite, we say that E is a set of finite G-perimeter and we write PG(E) instead of |DGχE |, PG(E,F )
instead of |DGχE |(F ) for F Borel. Also, we call (generalized inward) G-normal the q-vector

νE (x) = −σχE (x) .



BV functions and heat semigroup on Carnot groups 7

Recall that |νE (x)| = 1 for PG(E)-a.e. x ∈ Rn. In this case (14) takes the form∫
E

divGg(x)dx = −
∫

Rn
〈g, νE〉dPG(E). (18)

Moreover, notice that if E has finite perimeter, then by the isoperimetric inequality in Carnot groups, see e.g.
[10, Theorem 1.18 and Remark 1.19], either E or its complement Ec has finite measure.

Remark 2.6. To help the reader to visualize the above definitions, let us specialize them to the case of a bounded
smooth domain E, see [18, Prop. 2..22]. Let nE be the Euclidean unit inner normal at ∂E, and consider the
q-vector v whose i-th component is defined by

vi =
n∑
j=1

qji (x) (nE)j (x)

(where the qji are the coefficients of the vector fields Xi, defined in (5)). Then∫
E

divGg(x)dx = −
∫
∂E

〈g, v〉dHn−1 (x)

from which we read that in this case

νE =
v

|v|
, dPG(E) = |v| d

(
Hn−1 ∂E

)
(x) (19)

at least at those points of the boundary where v 6= 0 (noncharacteristic points). Here Hn−1 is the Euclidean
(n− 1)-dimensional Hausdorff measure and denotes the restriction of the measure.

Identity (10) can be extended to the case g ∈ C1 (G), f ∈ BV (G) as follows:∫
Rn

XR
i g(y−1 ◦ x) f(y) dy =

∫
Rn

g(y−1 ◦ x) d (Xif) (y) (20)

where the last integral is made with respect to the measure defined by Xif . To see this, it is enough to take a
sequence fk ∈W 1,1(G) such that fk → f in L1(Rn) and Xifk is weakly∗ convergent to Xif (the existence of
such a sequence is proved in [17]), so that

lim
k→∞

∫
Rn

XR
i g(y−1 ◦ x) fk(y) dy = lim

k→∞

∫
Rn

g(y−1 ◦ x)Xifk(y) dy

=
∫

Rn
g(y−1 ◦ x) d (Xif) (y).

Let us come to some finer properties of BV functions that we need only in the proof of Theorem 2.14. We refer
to [17, Theorem 2.3.5] for a proof of the following statement.

Proposition 2.7 (Coarea formula). If f ∈ BV (G) then for a.e. τ ∈ R the set Eτ = {x ∈ Rn : f(x) > τ} has
finite G-perimeter and

|DGf | (Rn) =
∫ +∞

−∞
|DGχEτ |(Rn)dτ. (21)

Conversely, if f ∈ L1(Rn) and
∫ +∞
−∞ |DGχEτ |(Rn)dτ < +∞ then f ∈ BV (G) and equality (21) holds. Moreover,

if g : Rn → R is a Borel function, then∫
Rn
g(x)d |DGf | (x) =

∫ +∞

−∞

∫
Rn
g(x)d|DGχEτ |(x)dτ. (22)

Next we have to introduce the reduced boundary. This definition relies on a particular notion of balls in
G. We will denote by B∞(x, r) the d∞-balls of center x and radius r, where d∞ (x, y) = d∞

(
0, y−1 ◦ x

)
and

d∞ (0, x) is the homogeneous norm in G which is considered in [18, Theorem 5.1]. We do not recall its explicit
analytical definition since we will never need it. The distance d∞ can be used to define the spherical Hausdorff
measures Sk∞ through the usual Carathéodory construction, see e.g. [15, Section 2.10.2].
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Definition 2.8. Let E ⊂ Rn be measurable with finite G-perimeter. We say that x ∈ ∂∗GE (reduced boundary
of E) if the following conditions hold:

(i) PG (E,B∞(x, r)) > 0 for all r > 0;
(ii) the following limit exists

lim
r→0

DGχE(B∞(x, r))
|DGχE |(B∞(x, r))

and equals νE(x).
(iii) the equality |νE(x)| = 1 holds.

In order to state the next result, let us introduce some notation. For E ⊂ Rn, x0 ∈ Rn, r > 0 we consider
the translated and dilated set Er,x0 defined as

Er,x0 = {x ∈ Rn : x0 ◦D(r)x ∈ E} = D(r−1)(x−1
0 ◦ E).

For any vector ν ∈ Rq we define the sets

S+
G (ν) = {x ∈ Rn : 〈πx, ν〉 ≥ 0} , TG(ν) = {x ∈ Rn : 〈πx, ν〉 = 0}

where π : Rn → Rq is the projection which reads the first q components. Hence the set TG(ν) is an Euclidean
((n− 1)-dimensional) “vertical plane” in Rn; it is also a subgroup of G, since on the first q components the Lie
group operation is just the Euclidean sum.

We are now in a position to state the following result (see [18, Theorem 3.1]).

Theorem 2.9 (Blow-up on the reduced boundary). Let G be of Step 2. If E ⊂ Rn is a set of finite G-perimeter
and x0 ∈ ∂∗GE then

lim
r→0

χEr,x0 = χS+
G (νE(x0))

in L1
loc(Rn). (23)

(Note that νE(x0) is pointwise well defined for x0 ∈ ∂∗GE, by point (ii) in Definition 2.8). Moreover, PG (E)-a.e.
x ∈ Rn belongs to ∂∗GE.

The last statement in the above theorem allows us to rewrite formula (18) as an integral on the reduced
boundary with respect to the Q− 1 spherical Hausdorff measure as follows:∫

E

divGg(x)dx = −θ∞
∫
∂∗GE

〈g, νE〉dSQ−1
∞ , (24)

(here θ∞ is a constant depending on G, see [18, Theorem 3.10]), which looks much closer to the classical
divergence theorem. Moreover, the following analogue of (19) holds:

PG(E, ·) = θ∞SQ−1
∞ (∂∗GE) . (25)

In order to apply the L1
loc convergence of (23) we will need also the following

Remark 2.10. If E, {Ek}∞k=1 ⊂ Rn are measurable, χEk → χE in L1
loc(Rn) and f ∈ L1 (Rn) ∩ L∞ (Rn), then

fχEk → fχE in L1(Rn). In fact, given ε > 0, there is a compact set K such that∫
Rn\K

|f |dx < ε,

whence ∫
Rn
|(χEk − χE) f | dx ≤ ε+ ‖f‖∞

∫
K

|χEk − χE | dx

and the last integral tends to 0 as k →∞.
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2.3 Main results

We state here the main results of this paper, namely Theorems 2.11 and 2.14.

Theorem 2.11. Let f ∈ L1 (Rn). The quantity

lim sup
t→0

‖∇XWtf‖L1(Rn)

is finite if and only if f ∈ BV (G). In this case the following holds:

|DGf | (Rn) ≤ lim inf
t→0

‖∇XWtf‖L1(Rn) ≤ lim sup
t→0

‖∇XWtf‖L1(Rn)

≤(1 + c) |DGf | (Rn) ,

where c ≥ 0 is a constant depending only on G.

Theorem 2.11 shows that even in Carnot groups Definition 2.4 is equivalent to the analogue of De Giorgi’s
original definition (3) given in the Euclidean case, even though we don’t know if the limit exists. Section 3 is
devoted to the proof of Theorem 2.11.

The next result requires the additional hypothesis that G is a Carnot group of Step 2. As we explain in
Section 4, the reason is that our proof uses the rectifiability of the reduced boundary of a set of finite perimeter
in G, which is known only in the Step 2 case, see [18]. Our argument works whenever the rectifiability theorem
is true, and then would extend immediately to all cases where the rectifiability result were extended.

We start by defining the function

φG(ν) =
∫
TG(ν)

h(1, x)dx, (26)

for vectors ν ∈ Rq. Here the integral is taken over TG(ν), which is a hyperplane in Rn; to simplify notation, we
keep denoting by dx the (n− 1)-dimensional Lebegue measure over TG(ν).

The function φG is continuous and, using the Gaussian bounds (11), there are constants c1, c2, depending
on the group, such that

0 < c1 ≤ φG(ν) ≤ c2. (27)

Remark 2.12 (Rotation invariance of heat kernels). Notice that if the heat kernel is invariant under horizontal
rotations (that is, under Euclidean rotations in the space Rq of the first variables x1, x2, ..., xq of Rn), then φG
is actually a constant (that is, independent of ν). This happens for instance in all groups of Heisenberg type
(briefly called H-type groups), in view of the known formula assigning the heat kernel in that context (for a
discussion of H-type groups, see for instance [7, Chap. 18]; for the computation of the heat kernel in this context,
see [26]). By the way, we point out that in the Heisenberg groups with more than one vertical direction the
heat kernel is invariant for horizontal rotations, but the sublaplacian is not. This can be seen through a direct
computation based on (3.14) in [7]. On the other hand, from the general formula assigning the heat kernel in
Carnot groups of step two, proved by [12] (see also [5]), one can expect the existence of groups of step two (more
general than H-type groups) where the heat kernel is not invariant under horizontal rotations and the function
φG is not constant.

Let us first state our next result in the case of perimeters.

Theorem 2.13. Let G be of Step 2. If E ⊂ Rn is a set of finite G-perimeter, the following equality holds

lim
t→0

1
2θ∞
√
t

∫
Ec
WtχE(x)dx =

∫
∂∗GE

φG(νE)dSQ−1
∞ . (28)

Conversely, if either E or Ec has finite measure and

lim inf
t→0

1√
t

∫
Ec
WtχE(x) dx < +∞,

then E has finite perimeter, and (28) holds.

For general BV functions, we have the following.
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Theorem 2.14. Let G be of Step 2. Then, if f ∈ BV (G) the following equality holds:∫
Rn
φG(σf )d |DGf | = lim

t→0

1
4
√
t

∫
Rn×Rn

|f(x)− f(y)|h(t, y−1 ◦ x)dxdy, (29)

where σf is defined in (14). Conversely, if f ∈ L1(Rn) and the liminf of the quantity on the right hand side is
finite, then f ∈ BV (G) and (29) holds.

Remark 2.15. Note that, in view of (25), (27) and Remark 2.12, the right-hand side of (28) is always equivalent
to, and in groups of Heisenberg-type is a multiple of, PG (E); the left-hand side of (29) is always equivalent to,
and in groups of Heisenberg-type is a multiple of, |DGf | (Rn).

The proofs of the above results will be given in Section 4.

3 Proof of Theorem 2.11

In this section we give the proof of Theorem 2.11; first of all, we notice that Wtf → f in L1 as t→ 0; moreover
Wtf ∈ C∞ (Rn), hence

|DGWtf |(Rn) =
∫

Rn
|∇XWtf(x)|dx.

Therefore by the lower semicontinuity of the variation, that is (17), the inequality

|DGf |(Rn) ≤ lim inf
t→0

∫
Rn
|∇XWtf(x)|dx (30)

holds, and then it remains to prove only the upper bound. We also notice that inequality (30) implies that if
f ∈ L1(Rn) is such that the right hand side of (30) is finite, then f ∈ BV (G). So, Theorem 2.11 will follow if
we prove that

lim sup
t→0

∫
Rn
|∇XWtf(x)|dx ≤ (1 + c) |DGf |(Rn) (31)

for all f ∈ BV (G).
We start with the following result, which will be useful in the proof of Theorem 2.11. It is a consequence of

the algebraic properties of G and the Gaussian estimates on the heat kernel h (see Section 2.1).

Lemma 3.1. For i, j ∈ {1, . . . , q}, let Gij be the kernel defined by the identity:

n∑
k=q+1

XR
k (cki (·)h(t, ·))(z) =

q∑
j=1

XR
j

n∑
k=q+1

∑
1≤il≤q

ϑkji2...iωk
XR
i2 ...X

R
iωk

(
cki (·)h (t, ·)

)
(z)

=
q∑
j=1

XR
j G

i
j(t, z), (32)

where the functions cki and the constants ϑki1i2...iωk are those introduced in (8) and (9), respectively. They have
the following properties:

(i) Gij
(
λ2t,D (λ) z

)
= λ−QGij (t, z) for any λ > 0, t > 0, z ∈ Rn;

(ii) there is a positive constant c, independent of t, such that∫
Rn

∣∣Gij (t, z)
∣∣ dz ≤ c;

(iii)
∫

Rn
Gij (t, z) dz = 0 for any t > 0;

(iv) for every ε > 0, t0 > 0 there exists R > 0 such that∫
Rn\BR

|Gij(t, z)|dz < ε for any 0 < t ≤ t0.
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Proof . (i) holds because cki (·) is homogeneous of degree ωk − ωi = ωk − 1 (for i = 1, 2, ..., q), h(t, ·) is
homogeneous of degree −Q, and XR

i2
...XR

iωk
is a homogeneous differential operator of degree ωk − 1. For the

same reason, the Gaussian estimates on h also imply, by Remark 2.2,

|Gij(t, z)| =
∣∣∣XR

i2 . . . X
R
iωk

(
cki (·)h (t, ·)

)
(z)
∣∣∣ ≤ ct−Q/2e−|z|

2/ct (33)

To prove (ii), with the change of variables z = D
(√
t
)
w and using (i) and (33), we compute:∫

Rn

∣∣Gij (t, z)
∣∣ dz =

∫
Rn

∣∣∣Gij (t,D (√t)w)∣∣∣ tQ/2dw
=
∫

Rn

∣∣Gij (1, w)
∣∣ dw ≤ ∫

Rn
ce−|w|

2/cdw (34)

which is a finite constant. (iii) holds because Gij is, by definition, a linear combination of derivatives of the kind

XR
i2

[
XR
i3 ...X

R
iωk

(
cki (·)h (t, ·)

)]
= XR

i2H (t, ·) ,

we know that
(
XR
i

)T = −XR
i (where ()T denotes transposition) and therefore we may deduce that∫

Rn X
R
i f (x) dx = 0 for any f for which this integral makes sense. To prove (iv), it suffices to modify the

computation (34) as follows: ∫
Rn\BR

∣∣Gij (t, z)
∣∣ dz ≤ ∫

|w|>R/
√
t

ce−|w|
2/cdw < ε

for R large enough and t ≤ t0.

The following result contains the main estimate on the commutator between the derivative Xi and the heat
semigroup Xi (Wtf)−Wt (Xif).

Proposition 3.2. For any f ∈ BV (G) and i ∈ {1, 2, . . . , q}, t > 0, there exists an L1 function µit on Rn such
that

Xi (Wtf) (x) = Wt (Xif) (x) + µit(x),

where Wt (Xif) is the function defined by

Wt (Xif) (x) :=
∫

Rn
h(t, y−1 ◦ x)dXif(y).

Moreover, for any t > 0,
‖µit‖L1(Rn) ≤ cq|DGf |(Rn), (35)

where c is the constant in Lemma 3.1, (ii).

Proof . Let f ∈ BV (G) and fix i ∈ {1, 2, ..., q}. By (8) and (20) we have

XiWtf (x) =
∫

Rn
Xih

(
t, y−1 ◦ x

)
f (y) dy (36)

=
∫

Rn
XR
i h
(
t, y−1 ◦ x

)
f (y) dy +

∫
Rn

n∑
k=q+1

XR
k

(
cki (·)h (t, ·)

) (
y−1 ◦ x

)
f (y) dy

=
∫

Rn
XR
i h
(
t, y−1 ◦ x

)
f (y) dy

+
∫

Rn

n∑
k=q+1

∑
1≤ij≤q

ϑki1i2...iωk
XR
i1X

R
i2 ...X

R
iωk

(
cki (·)h (t, ·)

) (
y−1 ◦ x

)
f (y) dy

=
∫

Rn
h
(
t, y−1 ◦ x

)
d (Xif) (y)

+
n∑

k=q+1

∑
1≤ij≤q

ϑki1i2...iωk

∫
Rn
XR
i2 ...X

R
iωk

(
cki (·)h (t, ·)

) (
y−1 ◦ x

)
d (Xi1f) (y)

=Wt (Xif) (x) +
q∑
j=1

∫
Rn
Gij
(
t, y−1 ◦ x

)
d (Xjf) (y) ,
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where the kernels Gij are defined in Lemma 3.1. Set

µit (x) =
q∑
j=1

∫
Rn
Gij
(
t, y−1 ◦ x

)
d (Xjf) (y), (37)

then by Lemma 3.1 and (16) we have

∥∥µit∥∥L1(Rn)
≤ c

q∑
j=1

∫
Rn
|d (Xjf)| (y) ≤ cq |DGf | (Rn)

that is (35). By (36) and (37), we can write:

Xi (Wtf) (x) = Wt (Xif) (x) + µit(x). (38)

Proof of Theorem 2.11. Let us conclude with the proof of (31). By Proposition 3.2 we have (with the supremum
taken, accordingly to Definition 2.4, on all the functions g ∈ C1

0 (Rn,Rq) such that ‖g‖∞ ≤ 1):∫
Rn
|∇XWtf(x)|dx = sup

g

{∫
Rn

q∑
i=1

gi(x)Xi(Wtf)(x)dx

}

= sup
g

{∫
Rn

q∑
i=1

gi (x)
(∫

Rn
h(t, y−1 ◦ x)dXif(y)

)
dx+

∫
Rn

q∑
i=1

gi(x)µit(x)dx

}

since h(t, z−1) = h(t, z)

= sup
g

{
q∑
i=1

∫
Rn

(∫
Rn
h(t, x−1 ◦ y)gi (x) dx

)
dXif(y) +

∫
Rn

q∑
i=1

gi(x)µit(x)dx

}

= sup
g

{
q∑
i=1

∫
Rn
Wtgi(y)dXif(y) +

∫
Rn

q∑
i=1

gi(x)µit(x)dx

}

= sup
g

{
−

q∑
i=1

∫
Rn
Xi(Wtgi)(y)f(y)dy +

∫
Rn

q∑
i=1

gi(x)µit(x)dx

}

where in the last identity we have used (15). We now exploit the fact that the supremum on all compactly
supported functions g in the above expression can be replaced by the supremum on functions φ rapidly decreasing
at infinity (as Wtg is, by the Gaussian estimates) verifying the constraint ‖φ‖∞ ≤ 1; therefore the last expression
is, by (35)

≤ |DGf |+
q∑
i=1

‖µit‖L1(Rn) ≤ (1 + cq2) |DGf | (Rn).

We have therefore proved that for any t > 0,∫
Rn
|∇XWtf(x)|dx ≤ (1 + cq2) |DGf | (Rn).

Passing to the limsup as t→ 0 we are done.

4 Proof of Theorem 2.14

Theorem 2.14, thanks to coarea formula, follows from Theorem 2.13, so we first prove the latter.
As a preliminary result, we present a characterization of BV (G) functions analogous to that in [9,

Proposition 2.3].

Lemma 4.1. If f ∈ L1(Rn), z ∈ Rn and

lim inf
t→0

1
t

∫
Rn
|f(x ◦D(t)z)− f(x)|dx <∞, (39)

then the distributional derivative of f along Z =
∑q
j=1 zjXj is a finite measure.
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Proof . The proof is essentially the same contained in [9], but we repeat it for the reader’s convenience. We
start by recalling the following identity (see [7, p. 17]): if we take φ ∈ C1

c (Rn) and Z is any vector field which
at the origin equals z, then

Zφ (x) =
d

dt
[φ (x ◦ tz)]/t=0 .

Let us apply this identity to the vector field Z =
∑q
i=1 ziXi which at the origin takes the value

z∗ = (z1, z2, ..., zq, 0, 0, ..., 0) .

For any z ∈ Rn,
d

dt
[φ (x ◦D(t)z)]/t=0 =

d

dt
[φ (x ◦ tz∗)]/t=0

hence
d

dt
[φ (x ◦D(t)z)]/t=0 =

q∑
i=1

zi (Xiφ) (x) .

Since ∣∣∣∣∫
Rn
f(x)

φ(x ◦D(t)z−1)− φ(x)
t

dx

∣∣∣∣ =
∣∣∣∣∫

Rn

f(x ◦D(t)z)− f(x)
t

φ(x)dx
∣∣∣∣

≤ ‖φ‖∞
1
|t|

∫
Rn
|f(x ◦D(t)z)− f(x)|dx,

from (39) we deduce that the functional

Tfφ := lim
t→0

∫
Rn
f(x)

φ(x ◦D(t)z−1)− φ(x)
t

dx = −
∫

Rn
f(x)Zφ(x)dx

is well defined and satisfies the condition |Tfφ| ≤ C‖φ‖∞. Then, there exists a measure µZ such that

Tfφ =
∫

Rn
φ(x)dµZ(x), ∀φ ∈ C1

c (Rn).

By the density of C1
c (Rn) in Cc(Rn), we get the conclusion.

Proof of Theorem 2.13. Let us introduce the functions

g(t) =
∫
Ec
WtχE(x)dx

F (t) = g
(
t2
)

=
∫
Ec
Wt2χE(x)dx.

The statement we want to prove is:

lim
t→0

g (t)√
t

= 2θ∞
∫
∂∗GE

φG(νE)dSQ−1
∞ .

First, notice that g(t)→
∫
Ec
χE(x)dx = 0 as t ↓ 0. Indeed,

WtχE − χE = − (WtχEc − χEc) , (40)

since
χE + χEc = 1 = Wt1 = WtχE +WtχEc

and, since by the finiteness of the perimeter of E either E or Ec has finite measure, ‖WtχE − χE‖L1(Rn) → 0
as t ↓ 0. By De L’Hospital rule we can evaluate limt→0 g (t) /

√
t as

lim
t→0

2
√
tg′ (t) = lim

t→0
2tg′

(
t2
)

= lim
t→0

F ′ (t) .
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Computing the derivative of F using the divergence theorem (24) and the properties of h(t, ·), we get:

F ′(t) = 2t
∫
Ec
LWt2χEdx = 2t

∫
Ec

divG∇XWt2χEdx

= 2θ∞t
∫
∂∗GE

〈∇XWt2χE , νE〉dSQ−1
∞

= 2θ∞t
∫
∂∗GE

〈∇X
(∫

E

h(t2, y−1 ◦ x)dy
)
, νE(x)〉dSQ−1

∞ (x).

Now, taking into account the fact that h
(
t, z−1

)
= h (t, z), we have∫

E

h(t2, y−1 ◦ x)dy =
∫
E

h(t2, x−1 ◦ y)dy =
∫
E

t−Qh

(
1, D

(
1
t

)(
x−1 ◦ y

))
dy

=
∫
E

t−Qh

(
1, D

(
1
t

)(
x−1

)
◦D

(
1
t

)
(y)
)
dy

=
∫
D( 1

t )E
h

(
1, D

(
1
t

)(
x−1

)
◦ z
)
dz

=
∫
D( 1

t )E
h

(
1, z−1 ◦D

(
1
t

)
(x)
)
dz

hence

F ′(t) = 2θ∞t
∫
∂∗GE

〈
1
t

∫
D( 1

t )E
∇Xh

(
1, z−1 ◦D

(
1
t

)
(x)
)
dz, νE(x)

〉
dSQ−1
∞ (x)

= 2θ∞
∫
∂∗GE

〈∫
D( 1

t )E
∇Xh(1, z−1 ◦D

(
1
t

)
(x) dz, νE(x)

〉
dSQ−1
∞ (x)

= 2θ∞
∫
∂∗GE

〈∫
D(1/t)(x−1E)

∇Xh(1, z−1)dz, νE(x)

〉
dSQ−1
∞ (x)

= 2θ∞
q∑
i=1

∫
∂∗GE

νE(x)i

(∫
D(1/t)(x−1E)

Xih(1, z−1)dz

)
dSQ−1
∞ (x).

By Theorem 2.9 (blow-up of the reduced boundary), we have the L1
loc convergence

E1/t,x−1 = D(1/t)(x−1E)→ S+
G (νE(x)). (41)

Since by the Gaussian estimates Xih(1, z−1) ∈ L1 ∩ C∞(Rn), the integral on E1/t,x−1 converges to the integral
on S+

G (νE(x)) (see Remark 2.10), is a continuous function of x and we can apply the dominated convergence
theorem, getting

lim
t→0

F ′ (t) = 2θ∞
∫
∂∗GE

q∑
i=1

νE(x)i

(∫
S+

G (νE(x))

Xih(1, z−1)dz

)
dSQ−1
∞ (x)

= 2θ∞
∫
∂∗GE

q∑
i=1

νE(x)i

(∫
S−G (νE(x))

Xih(1, z)dz

)
dSQ−1
∞ (x)

with the obvious meaning of the symbol S−G (νE(x)). Next, we perform a standard integration by parts in the
inner integral, exploiting the fact that the (Euclidean) outer normal to the halfspace S−G (νE(x)) is

nE(x) = (νE(x)1, ..., νE(x)q, 0, ..., 0)

while

Xih(1, z) = ∂zih (1, z) +
n∑

j=q+1

∂zj
(
qij (z)h (1, z)

)
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hence
q∑
i=1

νE(x)i

(∫
S−G (νE(x))

Xih(1, z)dz

)
=

q∑
i=1

(νE(x)i)
2
∫
TG(νE(x))

h(1, z)dz = φG(νE)

for any x ∈ ∂∗GE, and we conclude that

lim
t→0

1
2θ∞
√
t

∫
Ec
WtχE(x)dx =

∫
∂∗GE

φG(νE)dSQ−1
∞ . (42)

In order to prove the converse, assume that E has finite measure and notice that for any z∫
Rn
χE(x ◦D(

√
t)z)(1− χE(x))dx =

1
2

∫
Rn

∣∣∣χE(x ◦D(
√
t)z)− χE(x)

∣∣∣ dx,
and that the Lebesgue measure is right invariant as well. Therefore∫

Ec
WtχE(x) dx = t−Q/2

∫
Rn

∫
E

h
(

1, D(1/
√
t)(y−1 ◦ x)

)
(1− χE(x)) dydx

=
∫

Rn

∫
Rn
h(1, z)χE(x ◦D(

√
t)z−1) (1− χE(x)) dzdx

=
1
2

∫
Rn
h(1, w−1)

∫
Rn
|χE(x ◦D(

√
t)w)− χE(x)| dxdw

=
1
2

∫
Rn
h(1, w)

∫
Rn
|χE(x ◦D(

√
t)w)− χE(x)| dxdw.

Then, the finiteness of the liminf of the integral in the left hand side of (42) implies that there is a sequence
tk ↓ 0 such that

1
2

∫
Rn
h(1, w)

∫
Rn
|χE(x ◦D(

√
tk)w)− χE(x)| dxdw ≤ C

√
tk

for all k. On the other hand, by the lower Gaussian estimates on h (1, w) we can also write

1
2

∫
Rn
h(1, w)

∫
Rn
|χE(x ◦D(

√
tk)w)− χE(x)| dxdw

≥ 1
2

∫
|w|≤2

h(1, w)
∫

Rn
|χE(x ◦D(

√
tk)w)− χE(x)| dxdw

≥ c
∫
|w|≤2

∫
Rn
|χE(x ◦D(

√
tk)w)− χE(x)| dxdw

hence ∫
|w|≤2

∫
Rn
|χE(x ◦D(

√
tk)w)− χE(x)| dxdw ≤ C

√
tk.

So, if we define the function

Φtk(w) =
∫

Rn

|χE(x ◦D(
√
tk)w)− χE(x)|√
tk

dx,

by Fatou’s Lemma we deduce that
Φ0(w) = lim inf

k→∞
Φtk(w)

is integrable on B = {|w| ≤ 2}. So, for any ε > 0, there are a set Bε of measure less than ε and a constant Cε > 0
such that for every w ∈ B \Bε, Φ0(w) ≤ Cε. In particular, we may choose n linearly independent directions
w1, . . . , wn with Φ0(wi) ≤ Cε, and there is k0 ∈ N such that∫

Rn
|χE(x ◦D(

√
tk)wi)− χE(x)| dx ≤ (Cε + 1)

√
tk, ∀ i = 1, . . . , n, k > k0.

Then by Lemma 4.1 we can conclude that E has finite perimeter.

We note that the above proof of Theorem 2.13 simplifies that of the analogous result in the Euclidean
setting given in [24].

With an argument similar to that used in the proof of Proposition 8 in [25], it is also possible to prove the
following
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Proposition 4.2. If E has finite perimeter, then

1
4
√
t

∫
Rn
|WtχE − χE | dx ≤ cGPG (E) , t > 0 (43)

with
cG =

∫
Rn
|∇Xh (1, z)| dz.

Proof . First of all we note that ∫
Rn

(WtχE (x)− χE (x)) dx = 0.

This follows by (iv) in Theorem 1 if E has finite measure; otherwise Ec must have finite measure, and the same
identity holds in view of (40). Recalling that 0 ≤WtχE(x) ≤ 1, we deduce that∫

Ec
WtχE (x) dx =

∫
Ec

(WtχE (x)− χE (x)) dx =
∫

Rn
(WtχE (x)− χE (x))+ dx (44)

=
∫

Rn
(WtχE (x)− χE (x))− dx =

1
2

∫
Rn
|WtχE (x)− χE (x)| dx

(notice that the above equality holds under the hypothesis that either E or Ec has finite measure). We can also
write ∫

Ec
WtχE (x) dx =

∫
Ec

(WtχE (x)− χE (x)) dx =
∫ t

0

ds

∫
Ec
LWtχE (x) dx.

But then by the divergence theorem∫
Ec
LWtχE (x) dx =

∫
∂∗GE

dPG (E) (x)
∫

Rn
〈∇Xh(s, y−1 ◦ x), νE(x)〉χE (y) dy

≤
∫
∂∗GE

dPG (E) (x)
∫

Rn

∣∣∇Xh(s, y−1 ◦ x)
∣∣ dy (45)

By (44) and (45) the conclusion then follows since

1
4
√
t

∫
Rn
|WtχE − χE |dx =

1
2
√
t

∫
Ec
WtχE(x)dx =

1
2
√
t

∫ t

0

ds

∫
Ec
LWsχE(x)dx

≤ 1
2
√
t

∫ t

0

(∫
∂∗GE

dPG (E) (x)
∫

Rn
|∇Xh(s, y−1 ◦ x)|dy

)
ds

=
1

2
√
t

∫ t

0

(∫
∂∗GE

dPG (E) (x)
1√
s

∫
Rn
|∇Xh(1, z)|dz

)
ds

≤ cGPG(E).

Proof of Theorem 2.14. The derivation of Theorem 2.14 from Theorem 2.13 is based on the coarea formula, and
is similar to that of Theorem 4.1 of [24]. Assume f ∈ BV (G) and set Eτ = {f > τ}. By Proposition 2.7, for a.e.
τ ∈ R the set Eτ has finite perimeter, hence by Theorem 2.13 we can write

lim
t→0

1
2θ∞
√
t

∫
Ecτ

WtχEτ (x)dx =
∫
∂∗GEτ

φG(νEτ (x))dSQ−1
∞ (x)

for a.e. τ .
Moreover, using the same arguments as [1, Proposition 3.69] and the continuity of φG it is easily checked that

the function φG(σf (x)) is (obviously bounded and) Borel. Comparing f with f ∨ τχEτ and using [1, Proposition
3.73] we see that for a.e. τ ∈ R the equality σf (x) = νEτ (x) holds for SQ−1

∞ -a.e. x ∈ ∂∗GEτ , whence

φG(σf (x)) = φG(νEτ (x)) for a.e.τ ∈ R, SQ−1
∞ -a.e.x ∈ ∂∗GEτ .
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We point out that if x belongs to the boundary of two different level sets Eτ , Eσ (which happens whenever f has
a jump at x), then the above equality holds for both the levels because νEτ (x) = νEσ (x) for σ, τ ∈ [f−(x), f+(x)].
We also notice that, for almost every x, y ∈ Rn,∫

R
|χEτ (x)− χEτ (y)|dτ = |f(x)− f(y)|. (46)

With the aid of coarea formula (22) with g(x) = φG(σf (x)), by (44), (46) and using the dominated convergence
theorem, we obtain that∫

Rn
φG(σf (x))d |DGf | = θ∞

∫
R

∫
∂∗GEτ

φG(νEτ (x))dSQ−1
∞ (x)dτ

=
∫

R
lim
t→0

1
2
√
t

∫
Ecτ

WtχEτ (x)dxdτ

= lim
t→0

∫
R

1
4
√
t

∫
Rn
|WtχEτ − χEτ |dxdτ

= lim
t→0

1
4
√
t

∫
R

∫
Rn×Rn

|χEτ (y)− χEτ (x)|h(t, y−1 ◦ x)dxdydτ

= lim
t→0

1
4
√
t

∫
Rn×Rn

|f(x)− f(y)|h(t, y−1 ◦ x)dxdy. (47)

Conversely, assume that f ∈ L1(Rn) and that

lim inf
t→0

1√
t

∫
Rn×Rn

|f(x)− f(y)|h(t, y−1 ◦ x)dxdy

is finite. Then,∫
Rn×Rn

|f(x)− f(y)|h(t, y−1 ◦ x)dxdy =
∫

R

∫
Rn×Rn

|χEτ (x)− χEτ (y)|h(t, y−1 ◦ x)dxdydτ .

Since
∫
Ec
WtχE ≥ 0, by the above equality and (44), which we are allowed to exploit because for f ∈ L1(Rn)

either Eτ or its complement has finite measure, we get

0 ≤
∫

R

(
lim inf
t→0

1√
t

∫
Ecτ

WtχEτ dx

)
dτ ≤ lim inf

t→0

∫
R

1√
t

∫
Ecτ

WtχEτ dx dτ

≤ lim inf
t→0

1
2
√
t

∫
Rn×Rn

∫
R
|χEτ (x)− χEτ (y)|h(t, y−1 ◦ x)dx dy dτ < +∞ .

In particular, by Theorem 2.13, for a.e. τ ∈ R the set Eτ has finite perimeter and the limit lim
t→0

1√
t

∫
Ecτ
WtχEτ dx

exists. As a consequence, f ∈ BVloc(G) and we may use the above identity (47) to get

|DGf |(Rn) ≤ 1
minφG

∫
Rn
φG(σf )d |DGf |

≤ 1
minφG

lim inf
t→0

1
4
√
t

∫
Rn×Rn

|f(x)− f(y)|h(t, y−1 ◦ x)dx dy < +∞

that is, f ∈ BV (G).
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