NONLOCAL PROBLEMS WITH SINGULAR NONLINEARITY

ANNAMARIA CANINO, LUIGI MONTORO, BERARDINO SCIUNZI, AND MARCO SQUASSINA

ABSTRACT. We investigate existence and uniqueness of solutions for a class of nonlinear nonlocal
problems involving the fractional p-Laplacian operator and singular nonlinearities.
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1. INTRODUCTION

Let p € (1,00), s € (0,1) and v > 0. Let 2 € RY be a smooth bounded domain with N > sp. We
shall consider the following nonlocal quasilinear singular problem

(A u= @iy Q,

p uY

(1.1) u>0 in €,
u=0 in RV \ Q.

where (—A)7 is the fractional p-Laplacian operator, formally defined by

u(z) —u(y)|P~2 (u(z) —u
) =P ule) w8y, g

—AY u(x) ;=2 lim
(A ulr) =2 g RN\ B (z)

The aim of the paper is to prove the existence and the uniqueness of the solution to (1.1).

Let us first discuss the semilinear local case, s = 1, p = 2. In this setting the study of singular
elliptic equations goes back to the pioneering work [12]. Avoiding to disclose the discussion, we
only mention here the contributions in [3,7-9,17,19,21-23, 28], that settled up the issue in the
semi-linear local case. The reader could be interested in observing that, in this case, by a simple
change of variables it follows that the problem is also related to problems involving a first order

term of the type %. We refer the readers to [1,4, 18] for related results in this setting. To deal
with singular problems, we have to face the fact that solutions are not in general in classical Sobolev
spaces, because of the lack of regularity near the boundary. If already we consider the semi-linear
local case it has been shown in [23] that the solution cannot belong to H}(Q) if v > 3. Let us
now state our result. Note that, due to the lack of regularity of the solutions near the boundary,
the notion of solution has to be understood in the weak distributional meaning, for test functions

compactly supported in the domain. Furthermore, the nonlocal nature of the operator has to be
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taken into account. Having this remarks in mind, the basic definition of solution can be formulated
in the following:

Definition 1.1. A positive function u € W;>P(Q) N LP~1(Q) is a weak solution to problem (1.1) if

—1
“/+I;j 71}

umax{ c Wd@,p(Q)’ f(ﬂ?) c 1 (9)7

u?Y loc

and we have

am [ s u()P (u(a) — u(w)) (@) — o) o [ 1o

|z — y|N+sp

for every ¢ € C°(Q).
According to such definition we have:

Theorem 1.2 (Existence). Let 0 <y <1 and assume that
Np
N(p—1)+sp+~y(N —sp)’
Then (1.1) has a weak solution u € WP () with essinfx u > 0 for any compact K € .
If v > 1 and f € LY(Q), then (1.1) has a weak a solution u € W,oP(2) N LP~1(Q) such that
wOFTP=D/P c WEP(Q) and essinfgu > 0 for any compact K € Q.

FeL™Q), m:=

Actually the proof of Theorem 1.2 will be carried out considering first the simplest case 0 < v <1
(see Theorem 3.2) and then the case v > 1 (see Theorem 3.6). The proof relies on the well
established technique introduce in [3]. Actually, via Shauder fixed point theorem, we find a solution
to a regularized problem and then we perform a-priori uniform estimates to pass to the limit. Such
a procedure has been investigated in the nonlocal case for p = 2 in [2], where a slightly different
very weak notion of solution is considered that is allowed by the fact that the operator is linear
and admits a double integration by parts. Since this is not the case for p # 2, we need a different
approach which is rather technical and will be clear to the reader while reading the paper.

Let us now turn to the uniqueness of the solution. Since the way of understanding the boundary
condition is not unambiguous, we start with the following:

Definition 1.3. Let u be such that u = 0 in R \ Q. We say that u < 0 on 99 if, for every ¢ > 0,
it follows that

(u—e)t e W5P(Q).
We will say that « = 0 on 9 if u is non-negative and u < 0 on 0f2.

Adopting such definition, we will prove the following uniqueness result:

Theorem 1.4 (Uniqueness). Let v > 0 and let f € L'(Q2) be non-negative. Then, under zero
Dirichlet boundary conditions in the sense of Definition 1.3, the solution to (1.1) is unique.

It is worth emphasizing that the proof of Theorem 1.4 will follow via a more general comparison

principle.

Having in mind Theorem 1.2, one may say that u has zero Dirichlet boundary datum if

ytp—1

(1.3) uET Y e W),

Our result applies in this case too since we have the following

ytp—=1

Proposition 1.5. Let v > 0 and let u be non-negative with u™>U"» 1} ¢ Wyt (). Then u
fulfills zero Dirichlet boundary conditions in the sense of Definition 1.3.
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Proof. We only need to prove the result in the case v > 1. For € > 0 let us set
S. :=supp (u—¢e)" Q. = RN\ (85 x &%)
By Lemma 3.5 with ¢ = %ﬁ’_l, we have that

®)|" = & Hu(z) —u(y)P  inQ.,

since either u(x) > ¢ in Q. or u(y) > € in Q.. From this we easily infer that

/ |(U_E)+(x)—(u—€)+(y)|pdxdy</ Md;pdy
R2N ~Jo

+p—1 +p—1
‘u7 ’ (x) —uw

v — y|NFsp .|z —y N
ytp—1 ytp—1
S 61—'}// ‘U P (.T) _],l\’? P (y)|p dm dy,
R2N |z — y|NEsp
which concludes the proof. O

By Theorem 1.4, thanks to Proposition 1.5, we deduce in fact a more general uniqueness result:

Theorem 1.6 (Uniqueness). Let v > 0 and let f € LY(Q) be non-negative and let u,v be weak
solutions to (1.1). Assume that u and v have zero Dirichlet boundary datum either in the sense of
Definition 1.3. Then u = v.

The technique used in the proof of the uniqueness result goes back to [8] where the uniqueness of
the solution is implicitly proved in the case f =1, p =2 and s = 1. Such a technique was already
improved in [10] in the local semilinear case. In this setting it is worth mentioning the recent
result in [27] where singular problems with measure data are considered. The local quasilinear
case p # 2 was considered with a different technique in [11]. For the nonlocal case we mention a
related uniqueness result in [13], where the case f = 1 and p = 2 is considered among other problems.

We end the introduction pointing out a first simple consequence of the uniqueness result:

Theorem 1.7 (Symmetry). Let u be the solution to (1.1) under zero Dirichlet boundary condition.
Assume that the domain ) is symmetric with respect to some hyperplane

TV = {z-v=)\}, AeR, veS L

Then, if f is symmetric with respect to the hyperplane TY , then u is symmetric with respect to
the hyperplane Ty too. In particular, if Q is a ball or an annulus centered at the origin and f is
radially symmetric, then u is radially symmetric.

2. APPROXIMATIONS

We denote by B(zg) the N—dimensional open ball of radius r, centered at a point zg € RN,
The symbol || - || z»(q) stands for the standard norm for the LP(Q2) space. For a measurable function

u: RN 5 R, we let
([ le@=uwr, N
[U]DS,P(RN) = (/1%2]\] ‘:L’ — y‘N-i-SP dxdy

be its Gagliardo seminorm. We consider the space
WHP(RY) := {u € LP(RY) : [u] ps.gny < 00},
endowed with norm || - || o~y + [+ ] psp@ny). For Q C RY open and bounded, we consider

WyP(Q) == {ue W (RY) :u =0 ae. in RV \ Q},
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endowed with norm [ -] ps.pgxy. The imbedding Wg*() < L(Q) is continuous for 1 < r < p§ and
compact for 1 <r < p¥, where p} := Np/(N —sp) and N > sp (as we are assuming throughout
the paper). The space W;?(€) can be equivalently defined as the completion of C§°(€2) in the
norm [ -] ps.prny, provided 02 is smooth enough, see [16]. In this context by C5°(£2) we mean the
space

C(Q) :={f:RY - R : f e C®RY), support f is compact and support f C Q}.

We shall denote the localized Gagliardo seminorm by

u(z) — u(y)[” Vr
s, = ———="—dxd .
el " </Q><Q |z — y|NFsp B
Finally define the space

WeP(Q) := {u e LP(K) : [ulyspx) < oo}, forall K €Q.

loc

We first state a lemma dealing with the existence and uniqueness of solutions to (—A)u = f.

Lemma 2.1. Let f € L>®(Q) and f >0, f 0. Then the problem
(AP u=f 1inQ,

P
(2.1) u>0 in €,

u=0 in RV \ Q,
admits a unique solution u € W3 ().

Proof. To prove the existence of a solution to (2.1), we minimize the functional
1 |u(z) — uly)” / s
- M YT ey — dz, e WEP(Q),
g = [ O drdy~ [ eude. wewpt@
and then we look for a solution to (2.1) as a critical point of 7 (u). In fact, we have that

(i) J(u) is coercive, since by the Sobolev embedding it follows

1
1 |u(z) — u(y)[” / |u(z) — u(y)|” v
> = ———"dxdy — C o0 —————dxd
> [ DB dedy Ol ey ([ | e dady
(ii) J(u) is weakly lower semi-continuous in Wy (€2).

Then choosing a non-negative minimizing sequence {uy,}nen (and since f > 0 it is not restrictive
to assume that u,(x) > 0 a.e. in R, if not take {|u,(x)|}nen), the existence of a minimum of J
and thus of a non-negative solution u to (2.1), follows by a standard minimization procedure. That
u > 0 follows by the strong maximum principle stated in [5, Theorem A.1]. We show now that the
solution to problem (2.1) is unique. Let us suppose that uq,us € Wi*(Q) are weak solutions to
(2.1). Therefore, for all ¢ € W' (2) we have

/ ur () — ur (v) P72 (w1 (z) — ua(y)) ((x) — @(y)
R2N

|z — y[Ntep

/ [uz () — ua(y)P~2 (u2(z) — ua(y)) (p(x) - #(y)
R2N

|z — y|N+sp

) e dy = /Qf(x)sodfﬁ,

) dx dy = / f(x)pde.
Q
Subtracting the two equations yields

/ (lu1(@) = w (W) P~2 (ua(2) = wi(y)) = [ua(@) — ua(y)P~* (ua(2) — ua(y))) (w(z) = 2(y))
R2N

|z —y|NFsp -
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Inserting ¢(x) = w(z) := ui(z) — ua(z), using elementary inequalities (cf. [24, Section 10]), yields

/ (Jua (@) — w1 (y)| + [ua(x) — ua(y) )P Jw(@) — w(y)?
R2N

|z — y|N+sp

dedy <0, ifl<p<?2,

as well as

w(z) ~ w(y)P .
——————dzdy <0 fp>2.
Jon e et S0, it

In both cases the inequalities yield w(x) = C for all x € RY and some constant C' € R. Since
u; = 0 on ¢, we get w = 0 on °. Therefore C' = 0 and the assertion follows. O

Solutions of the problem (—A)Ju = f(x) enjoy the useful Li-estimate (cf. [26, Lemma 2.3]), that
we state in the following

Lemma 2.2 (Summability lemma). Let f € LI(Q2) for some 1 < q¢ < oo and assume that

u € WyP(Q) is a weak solution of the equation (—A)5u = f(x) in Q. Then

lull- < ClIFII Y,

where
N((p—1 N
(p )q7 1<q< N
. N — spq sp
' N
0, 7<QSOO7
sp

and C = C(N,Q,p,s,q) > 0.

We consider, for a given f € L'(Q), with f > 0 the truncation
fo(x) ;= min{ f(x),n}, x€Q.

Then, we consider the approximating problems

(Pn) Up > 0 in Q,

Up =0 in RV \ Q.
Proposition 2.3. For any n > 1 there exists a weak solution u, € W3 (2) N L>®(Q) to (Py).

Proof. Given n € N and a function v € LP(Q), in light of Lemma 2.1 there exists a unique solution
w € WP (Q) to the problem

(=AY w= S 1GNP Q,

P (ut+1/n)Y
(2.2) w >0 in Q,
w=0 in RV \ Q,

where ut := max{u, 0}. Therefore we may define the map LP(2) 2 u — w := S(u) € WyP(Q) C
LP(Q), where w is the unique solution to (2.2). Using w as test function in (2.2) we obtain

) 4 [ ol
= <nprtt
Jon T oy = [ Gy e < ol

and thus by, Sobolev imbedding, we have that

(2.3) (/Rzzv Jw(@) = wi)” dy> g < Cni,

|z — y|N+sp
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41
for some C' = C(p, s, N,Q) (independent of u), so that the ball of radius R := Cnvr1 in Wy (),
is invariant under the action of S. Now, in order to apply the Schauder’s fixed point theorem to S
and then to obtain a solution to (2.2), we have to prove the continuity and the compactness of S

as an operator from WP (Q) to W' ().
e (Continuity of S). Denoting wy, := S(ug) and w := S(u), then

klg{olo ||wy, — wHW(f’p(Q) =0, if k]i}r{.lo |lug — UHWOSJ’(Q) =0.

By the strong convergence of {uy }ren in WP (Q), up to a subsequence, we have uj, — u in LPs ()
and u; — u a.e. in Q as k — oco. Considering the corresponding sequence of solutions {wg }ken,
arguing as in the proof of Lemma 2.1, setting wy(x) := wg(x) — w(x) we obtain

(24) /R (i) )l + 'ﬁﬁfl ;ﬁ@)“mk(@ mk
fn() fn(x) .
§/9<(U?+1/n)”_ (U++1/n)7> (wp —w)dz, if1<p<2,
as well as
> [, Rk
</Q<(U1-:+1/n)7_(u++1/n)7) (wk—UJ)dx, if p>2.

Let us consider the right-hand side of (2.5). Using Holder and Sobolev inequalities we infer that

/Q <(U;jfi(f;n)“f B (u+f—7|l-(f;n)v> (wp — w) dzx

fa(z) fulz) @ Wy
: </ﬂ (uf +1/n) (¥ +1/n) d”“’) [xll oz (@

@)\ T
<c([ dz ) @yl

where (pf) = Np/(N(p — 1) + sp) and C = C(p, s, N) is a positive constant. From (2.5) we get

(uf +1/n)7  (ut +1/n)7

(2.6) lwi — wllyyzr )

<0 ( [ ()
Q

(%) <p—1)1»<p;f>’
d if p > 2.
(uf +1/n)  (ut +1/n) v Pz

Observing that
(ui +1/n)Y  (ut+1/n)7

by the dominated convergence theorem and by the fact that ug(z) — u(x) a.e., from (2.6) we
conclude that

y+1

— )

(2.7)

Jm Jwk = wliwgeg) =0,

showing, in the case p > 2, that the operator S is continuous from W () to W* (). From (2.4),
a similar argument, shows the continuity of S from W;™*(Q) to WP (Q2) for 1 < p < 2.
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o (Compactness of S). Let {uy}tren C W3P(2) a bounded sequence. Denoting wy, := S(uy), we
show that, up to a subsequence and for some w € WS P(Q), it holds

Jm flwg = wllwerq) = 0.

Let {uytren C W3P(Q) with [ugllwe» @y < C for all k > 1. Then, up to a subsequence, we have

up, — u in WiP(Q), as well as up, — u in L"(Q2), for 1 < r < p%. In view of (2.3), we have
1S (uk) llwew @) < € for some constant C' independent of &, and therefore

S(uk) = w, in W5P(Q), S(ug) = w, in L"(Q), for 1 <r < pi,
for some w € Wi(2). Then for all o € W3 (2)

— p—2 — _
oy [ 1) ) —n0) () =) gy [ D)
R2N |z —y[NFep o (uy +1/n)7
We show now that, letting & to infinity, (2.8) converges to
(@) —w(y)P~? (w(z) —w(y)) (p(z) — (y)) / fn(2)

2. drdy= | ——————— pdxz.
e[ [z —yrer YT o w1y 7
By the dominated convergence theorem, it is readily seen that

1 —— pdr= | ———————— pd

el Q(u;+1/n)7<p v Q(U++1/”)'y@ !
Furthermore, since the sequence

_ p—2 — ’
{ wi(z) = w2 (i) = wely) } is bounded in Z¥ (R°V),
|z —y| ¥ keN
and by the pointwise convergence of wy(z) to w(x)
() = ) on(e) ~ wn(p) | Jwla) ~wl)l = o) —w) g
[z —yl ¥ [z —y| ¥

it follows by standard results that, up to a subsequence,

(@) = wi(w) P (wi(@) —wn(y) | [wl@) - w2 (W) - w(y)
w—yl w—yl

weakly in LP (R?V).

Then, since

% € Lp(RQN)7
[z =yl 7
we conclude that the Lh.s. of (2.8) converges to the L.h.s. of (2.9). Whence, (2.9) holds, that
is, in particular, w = S(u). Arguing as for (2.4) and (2.5) setting wy(x) = S(ux) and wg(x) :=
wi(z) —w(z), we infer that

[ )~ + ole) — e onte) = IE o,
R2N

|z — y[N+sp
< g — wll 2o ( /Q

1
v

fn(2) fu() ’ dx> ’ , ifl<p<2,

(uf +1/n)7  (ut +1/n)7
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as well as

|y, () — Wy (y) [P
dxd
/]R2N @ —y|Vrer Y

' i
SHUfk—UJHLp(Q) /Q dx , ifp>2,

where p' = p/(p — 1). Using (2.7), the last two equations imply that

kETOO 15 (ur) = S(w)llwgr () = 0,

(uéIr +1/n)y  (ut+1/n)7

that is the compactness of S from Wy () to WiP(Q). Schauder’s fixed point theorem provides
that existence of u, € W(Q) such that u, = S(uy), that is a weak solution to

(=A)yup = 4(%&%’31)7 in Q,
(2.10) Up, > 0 in ©,
Uy = 0 in RN\ Q.
Since the r.h.s. of (2.10) belongs to L>°(Q2), by virtue of Lemma 2.2 we have u,, € L*(£). O

Lemma 2.4 (Monotonicity). The sequence {up}nen found in the previous lemma satisfies
Un () < upy1(x), for a.e. x €€,

and
up(xz) >0 >0, forae xewe,

for some positive constant o = o(w).

Proof. We have, for any n € N, that for all ¢ € W;"?(Q)
/ [un () = un(9) [P~ (un() — un(y)) (p(z) = () dy = / fn(@)
R2N Q (

|z — y[Ntsp Un + 1/n)7

pdx

as well as for all p € WJP(Q)
|t +1(2) — U1 (PP~ (unr1(2) — uns1(y)) (p(2) — o(y)) _ foi1(2)
[ = gV o7 iy = | G T

By taking ¢ = w = (up — up41)" € W5P(Q) as test function in the formula above and subtracting
the second from the first, concerning the r.h.s. (and recalling that f,, < f,41 a.e.) we get

fn(2) fn1(z)

s o) g o )
(tnt1 +1/(n+1))7 = (un + 1/n)7

< /anJrl(un - Un+1)+ (Un T 1/”)7(Un+1 T 1/(n T 1))7 dz < 0.

Then, if I,(s) := |s|[P~2s, we conclude that

/ (Zp(un(2) = un(y)) = Ip(uns1(@) = uns1(y)) (wlz) —wly)) _
R2N

|z —y|NFsp -

pdx.

(2.11)

Now, arguing exactly as in the proof of [25, Lemma 9], we get

(Ip(un(@) = un(y)) = Ip(uns1(2) = uns1(y))) (wlz) —w(y)) 2 0, for ae. (z,y) € R*,

with the strict inequality, unless it holds

(2.12) (n (@) = 1 (2))" = (un(y) = tsa(@)F,  for ae. (z,y) € B2V,
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On the other hand, by (2.11), we have
(Ip(n(2) = un(9)) — (1 (2) — wni1 (1)) (w(z) — w(y) =0, for ae. (z,y) € RV,
Therefore, (2.12) holds true, namely
(un(z) — Uns1(z))T =C, for ae. xRV,

for some constant C. Since u, = u,11 = 0 on RV \ Q it follows that C' = 0, which implies in turn
that u,(x) < upt1(z), for a.e. € Q. This concludes the proof of the first assertion. Concerning
the second assertion, we observe that we know that u; € L*°(2), yielding

s _ f (.fL') [e'e]
(A ur = m € L>(Q).

Then, by [20, Theorem 1.1] we deduce that u; € C%%(Q) for some « € (0,1). In particular by the
strong maximum principle,

ui(x) >0 >0, forae z€wCC

and 0 = o(w). The second assertion then follows by monotonicity. O

3. EXISTENCE OF SOLUTIONS

To prove the existence of a solution to (1.1) we use the sequence of solutions {uy,}nen of
problem (P,,) (see Proposition 2.3) and then, using some a-priori estimates, we pass to the limit.

3.1. Existence in the case 0 < v < 1. First of all, we prove the following

Lemma 3.1. Let {u, fnen C WP (Q)NL>®(Q) be the sequence of solution to problem (P,,) provided
by Proposition 2.3. Assume that

Np

(3.1) O<ysl  f20, Jel™), mi= g N =)

Then {up}nen is bounded in WP (€2).

Proof. In the case 0 < v < 1, taking u,, as test function in (P,), as f, < f we get

|un(x) — un(y)|p fn(m) 1-
(3.2) /RQN dxdyg/ﬂ( dx < /an(x) u,” ' dx

|z — y|N+ps Up + 1/n)7 Un

1
< 1 fllemey ( [ dm) |

where m’ = m/(m — 1). Since (1 —v)m’ = p¥, by the Sobolev embedding, we obtain
1

s

m! _ P m!
(l—y)m/ d < / |Un(flf) un(y)| d d P
()™ <o, Mt oen)”™

for some constant C' = C(p, s, N) > 0. Finally, since p*/(pm’) < 1, from (3.2) we get

sup HuTLHW('JS’p(Q) < C(f7p7 S,7, N)
neN

If instead v = 1, then arguing as for (3.2), we get
_ P
/ [un (@) = un(y)| dxdy < M Up dr < / f(x)dx,
reN |z — y[NPs Q Un +1/n Q

which yields again the desired boundedness. O
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Theorem 3.2 (Existence, 0 < v < 1). Assume that (3.1) holds. Then problem (1.1) admits a
weak solution u € WP ().

Proof. By virtue of Lemma 3.1, the sequence of solutions {uy }nen C WP (Q) N L>®(Q) of prob-
lem (P,,) provided by Proposition 2.3 is bounded in Wy (€2). Then, up to a subsequence, we have
up = win WgP(Q), u, — win L™(Q) for 1 < r < p% and u,, — u a.e. in Q and, furthermore, by
Lemma 2.4, we have

for all K € Q there exists og > 0 such that u(z) > oxg >0, for a.e. z € K.
We have
— p—2 _ _
R2N

— - d
@ — y[NFoP o (un + 1/n)7 ¥4

for all p € C2°(Q). Since the sequence

{ (@) = ()72 () = (1)) } is bounded in L7 (R?Y),
neN

N+sp

[z —y| ¥
and by the point-wise convergence of u, to u

[n (@) = un ()P~ (n(2) —un(y)) |, |u(z) = u(y)P~* (u(x) - u(y))

. 2N
Nisp Niep a.e. in R*",
lz —y| ¥ lz—y| ¥

it follows by standard results that
wi(2) — wp ()P~ (wi(@) —wi(y)) | [w(z) —wy)P~? (w(z) —w(y))

N+sp N+sp

[z —y| ¥ |z =yl
Then, since for ¢ € C2°(Q2) we have

weakly in LP (R*V).

(,D(IL‘) — Qp(y) c LP(R2N),

N+Sp
|z -yl

we conclude that

lim

[un (z) = un(Y)[P~2 (un (@) — un(y)) (p(z) — p(y)) dx dy =

n—+0o JpanN ‘$ _ y]NJFSP
lu(z) — u(y)[P~* (u(z) — u(y)) (e(z) — py))
/Rw |z —y|N+sp e dy,

for all ¢ € C2°(Q2). Concerning the right-hand side of formula (3.3), recalling Lemma 2.4, for any
p € C() with supp(p) = K, there exists ox > 0 independent of n such that

fn (37) ¥ vy 1
—_— L ().
o | < Tk @@ € 19)
By the dominated convergence theorem we conclude that

i [ B, [ 1
im

n—00 (un + 1/TL

Finally, passing to the limit in (3.3), we conclude that

[ o) = o)) ) o) = o0 g, [ S2)
R2N Q ’

|z — y|N+sp

u”

for all ¢ € C2°(Q2), namely u is a solution to (1.1). O
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3.2. Existence in the case v > 1. First, we recall the following result from [6, Lemma 3.3].
Proposition 3.3. Let F € LY(Q) with ¢ > N/(sp) and let u € W3 (2) N L>°(Q) be such that
/ [u(z) — u()[P~? (u(@) — u(y)) (p(z) - #(y))

R2N

|z — y|[NHep

dxdy = /Q Fydz,

for all o € WP(Q). Then, for every convex C1 function ® : R — R, we have

/ @ (u)(z) — () (y)["~? (2(u)(z) — 2(u)(y)) (p(z) — ¢ (y))
R2N

|z — y|Ntsp

dody < [ FI@ @] @ (w)pds,
Q

for every non-negative function p € Wy (Q).
Lemma 3.4. Let {uy}nen C W3P(2) N L®(2) be the sequence of solution to (Py,) provided by
Proposition 2.3. Let v > 1 and f € L'(Q). Then {u,(frp_l)/p}neN is bounded in W' ().

Proof. We can apply Proposition 3.3 to each u,, > 0 by choosing

F(z) := _fal@) L®(Q),  ®(s):=s0PNP 5>,
(un +1/n)7
by noticing that ® is C' and convex on R¥ since v > 1. Then

/ [D(un) () = (un) ()"~ (D(un) () = D(un)(y)) (P(z) = ¢()) dy
R2N

|z — y|N+sp

fn(x) / P—25/
S/QW|(I)(U”)| 2 (up)p da,

for every n and all non-negative function ¢ € W3 (Q). By choosing ¢ := ®(u,,) as test function
(which belongs to Wi* (), since ® is Lipschitz on bounded intervals), we infer

@ (un)(x) = (un)(y)[” / fn(x) : 1
3.4 dxdy < ———t | D () [P D (uy,) d.
gy [ O ey < [ B0 ) 0 dr
Note that

|’ (u,)|P @ (uy) < Cul,  for any n € N and some C' = C(v,p) > 0.
In turn,
| @ at e < © [ 1l < c [ (s,

Q (un + 1/”)’y Q Q

since f, < f. From inequality (3.4) it follows that {®(uy,)}nen is bounded in Wi (Q). O

Lemma 3.5. Let ¢ > 1 and € > 0. In the plane R? with the notation p = (x,vy), let us set
ST i={zx>e}n{y >0} SY ={y>e}n{z>0}.

Then, we have that

(3.5) |29 — y?| > e Ha — y| in STUSY.

Proof. With no loss of generality, we may assume that = > y. Let us first note that
9 —y? =g\ (z —y), for some A € (y,x) .

Whence (3.5) holds true, since ¢ > 1, if (z,y) € S* NS¢, namely if y > ¢ in the case that we are
considering. Then, let us deal with the case 0 <y < ¢ < z. Since t +— t9 is (strictly) convex for

q > 1, then we have
29—yl gl
Yy i I‘q_l > 8q—l .
T—y x

Y



12 A. CANINO, L. MONTORO, B. SCIUNZI, AND M. SQUASSINA
Thus, inequality (3.5) is proved. O

Next we turn to the existence result for v > 1.

Theorem 3.6 (Existence for v > 1). Let f >0, f € LY(Q) and v > 1. Then problem (1.1) admits
a weak a solution u € WP () with uOFP=1/P € WP(Q).

Proof. In light of Lemma 3.4, the sequence {u, },en of solution to (P,) of Proposition 2.3 satisfies

3.6 (y+p—1)/p <0
(36) neh [u” }ws’pa&w) -

Since {up }nen is increasing it admits pointwise limit u as n — oo. In particular, by Fatou’s lemma

(3.7) [u(vﬂkl)/p] < liminf {u(%ﬁ?*l)/p] <C.

Wsp@®RN) T n n Wsp(RN)
Then uO*+P=1/P ¢ W3P(Q) and therefore u € LP(Q) since v > 1. Notice also that, by virtue of
Lemma 2.4, for all K € 2 there exists ox > 0 such that u(z) > ox > 0 for a.e. x € K. Therefore,
in light of Lemma 3.5, we have

ytp—1 ytp—1
@) —u()l” _ e P (@) —u P (y)P N
WSUK lz — y[N+op ; r,ye K, KeR".

This yields
u e Wi2().
We have, for any n € N

(3.8) /RQN [n () = un(9) [P~ (un (@) — un(y)) (p(z) = ¢(W)) dy — / ()

|z — y[NFsp

—————d

o (un + 1/n) 700

for all ¢ € C(€2). In order to pass to the limit in (3.8), we observe the following. By the
elementary inequality (see e.g. [14,15]) [|£[P72¢ — [€/|P=2¢'| < C(|€] + |€)P72|€ — €| for £,&' € R
with [£] 4 [&'| > 0, we get

[ i) b ) o) ) = ) g,

3.9
(3) R2N |z —y|NFep

/ [u(@) — u@)I"? (u(z) — u(y)) (p(x) = o) ay
R2N

|z — y[NFsp

(lun(x) = un(@)| + |u(z) — uly) )P *|dn(z) — @n(y)llo(z) — ¢(y)|
< /RQN o — [V dx dy,

where @, (x) := up(x) — u(x). Let us fix £ > 0.
We claim that there exist a compact K C R?N such that

Up () —u u(x) —u P=2|g,(z) — T) —
o [ (o) ()] ) — W) 5) 9= 0 g, <

for all n € N. Let us set

)

| ™

S, 1= supp g Q, = RQN\ (S; X Sé) .
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By triangular and Hélder inequalities we get

(3.11)
(lun (@) — un ()] + [u(@) — u(y))P~2|tn(x) — dn(y)|lo(x) — oY)l
oo T
_ ([un() = un(y)] + |u(@) — u(@))P (@) = eW)]
a /Qw\K |z — y|Ntsp o dy
(lun(z) — un(y)] + [u(z) — u(y))? 5 |o(z) — o(y)I” g
: (/g%,\,c |z — y|NFsp " dy) </Q¢\/c o gV dy)

p—1

_ (1 (@) = u ()] + @) —u))? , " le@) = ol .\’
B </Qv’\’C |z —y| N+ ! dy) </R2N\IC |z — y|Ntsp I dy) .

By Lemma 2.4, there exists os, > 0 independent of n such that u(z) > os, for a.e. © € S,.
Moreover, by using Lemma 3.5 with ¢ = (y +p — 1)/p, we have

(lun(z) = un(y)| + [ulz) — u(y)))’

|z — y|[Ntep
[un (@) — un ()P + u(x) — uly)?
12 <
(312)  <CW) il L
ytp—1 ytp—1 yt+p—1 yt+p—1
— n P — Un P P4 p — p p
< C(p)oé(p’}"u (‘T}) U (y)’ |u (JJ) u (y)’ a.e. (w,y) c QLP'

|z — y|Ntsp ’

Then from (3.11) and (3.12) we infer that

(11 (@) — )] + () — ) )P (x) — (0 lx) ~ ()
/RQN\/C |z — y|[Ntep drdy
-t wp ) (lo@) —el? , )’
<ol [, ey </wa oy dy)

-1
ytp—1 y+p—1 ==

W (@) — o () ? (lol) = o)) . \?
+C</R2N |z — y|NFop dwdy) </R?N\/€ | — y|Nep d$dy>

1
lp(z) — )P :

< L S A
‘C</vac -y W)

with C' = C(p,7,0s,) and where we used (3.6) and (3.7). Then, since ¢ € C2°(£2), there exists
K = K(e) such that (3.10) holds, proving the claim.

On the other hand, consider now an arbitrary measurable subset F C K. Arguing as in (3.11)
and (3.12), we reach the inequality

/ (lun(x) — un ()] + |u(@) — u(y) )P ?|in(@) — @ @)lle(z) — (y)]
E

|z — y|N+sp

1
lp(x) — o(y)P »
< WA FAIJL
N C( g |lz—y[Ntsp drdy)

dx dy
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that is

JRECEMETEE w2 (@) = i Wlle@) =2 o
E

N
|z —y[NFep
uniformly on n, if the Lebesgue measure of F goes to zero. Moreover

(lun (@) — un ()] + [u(@) — () )P~2|tn () — i (y)|lo(x) — p(y)]

. 2N
\ac—y]N“‘sf” — 0 a.e.in R*".

Vitali’s Theorem now implies that, given € > 0, there exists n > 0 such that, if n > n, it follows

(Jun (@) = un(y)] + |w(@) = u(@))P—2[an(@) — Gn(y)lle@) — o)l €
/;c | —y|Nor =y

(3.13)

From (3.9), using (3.10) and (3.13), we are able to pass to the limit in the left-hand side of (P,),
that is

[ (@) — un (1) P2 (un(2) — un (1)) (2 () — 0()) dy =

ngr-&r-loo R2N |z — y’N"rSp
lu(z) — u(y)[P~* (u(z) — u(y)) (p(z) — ey))
/]R?N |z — y|Ntsp oy

for all ¢ € C2°(12). Finally, arguing for the right-hand side as in the proof of Theorem 3.2, we pass
to the limit in (3.3), concluding that

/ [u(@) — u()l"? (u(z) — uly)) (p(2) — o) ay :/ @) g
R2N o u’ ’

|z — y[Ntep u

for all ¢ € C2°(Q2), namely u is a solution to (1.1). O
Remark 3.7. In the previous results, if furthermore

f € LYo (@),
then (1.2) is satisfied for all ¢ € WP(Q2) such that supp(p) € €.

Remark 3.8. With reference to the proof of Theorem 3.6, we observe that

L’ +p—1
the sequence {uy, }nen is bounded in Wy Q).

In fact, since (y+p — 1)/p > 1, by the Hélderianity of the map ¢ — t?/ (2= we get

lun(2) = un(y) P [l PPy — TP
|x_y|N+5p - |x_y|N+5p

, x,yeRN.

sp
Therefore, the weak solution u of Theorem 3.6 also belongs to u € Wy~

v+p—1

().
4. PROOF OF THE UNIQUENESS RESULTS

Let us start defining the real valued function gi by

min{s~7, k} if s >0,
4]. =
(4.1) 91(5) {k I

Then we consider the real valued function ®; defined to be the primitive of gi that is equal to zero
for s = 1. Let us consequently consider the functional Ji, : Wi*(Q) — [—o0, +0oc] defined by

1 xT) — p s,p
Telp) = p/RQNdedy—/RN F@)Or(@)de o e WSP(Q),
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Let us now recall that, given z € W2 (Q)NLP~1(2) with z > 0, we say that z is a weak supersolution
(subsolution) to (1.1), if

/ 2(z) = 2(y)|P 72 (2(2) = 2(y)) (p(x) — ¢(y)) dedy > M pdx Vo e CX(Q), >0
REN ‘.’L‘ _ y‘N—i-sp (g) Q 27 c 5 ~ U.

For a fixed supersolution v, we consider w defined as the minimum of Ji on the convex set
K:={peW?(Q): 0<p<wvae inQ}.

By direct computation, we deduce that

[ 1) = P ) — ) (01) ) — 0) = )
(4.2) R2N ‘x - y‘N+5p

> [ @B for v € w+ (W@ NLF@) and 050 <o,

where by L2°(€Q) we denote the space of L>-functions, with compact support in Q. With such
notation, we have the following

Lemma 4.1. For all ¢y € C°(Q) with ¥ > 0 we have

(@) —wE)P~? (w(@) —w(y)) W) — YY) /
(4.3) /RQN PR =T dx dy > /Q f(z)®)(w)dx.
Proof. Let us consider a real valued function g € C°(R) with 0 < g(t) < 1, g(t) =1 for t € [-1,1]
and g(t) = 0 for ¢t € (—oo, —2]U[2, 00). Then, for any non-negative ¢ € CSO(Q) we set o = g(¥) @

h
and ¢p ¢ = min{w + tep,, v} with o > 1 and ¢ > 0. We have that ¢p,; € w + (WP () N L (2))
and 0 < ¢p; < v, so that, by (4.2), we deduce that

/ w(z) = wy)P~2 (w(z) = wy)) (pni(r) = w(z) = (ene(y) = w(y)))
R2N

|z — y|N+sp

dx dy

> [ @@ w)(en: — w)de
Q
By standard manipulations, by the inequality (see e.g. [14,15])
(4.4) (EP~2e — €PN (€ =€) = C(Ig| + |€)P2le = €',
for ¢,&" € R with || + |¢'| > 0, and by (4.2), we deduce that
i e ()= 04 ) = o )= )~ o) = w0
R2N

|z — y|N+sp

dx dy

< /RQN | oni(2) = @ni (V)P (ns(x) — ‘ihi(g‘)z)vifgt(x) —w(@) — (ene(y) —w®) dy
B / [w(z) — w(y)P~* (w@) — w(y)) (pni(z) —wl@) = (Prily) —w))) dy

R2N |z — y|Nt+sp
< /RQN loni(z) — oni(y )|p_2 (ont(z) — |§h_t(;/‘)127ifzt($) —w(z) — (¢nt(y) —w(y))) dx dy

/f )@} (w) (pnt — w)
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We rewrite this as

I - /Q F(2) (@ (pn ) — @ (w))(phs — w) da

/ [Pnt(@) = Pt (Pni(@) = ont(¥)) (Pni(@) — w(@) = (pnely) —w(y)) d
R2N |z — y|Ntsp

<

- / F(@) - B (one)(@ns — w)
Q

(4.5)

— [, Swydsdy— [ $@) Bilona)ons —w - ton)

R2N 0

n t/Rw lon,e(x) — on(y) P2 (’S;hi(;?ﬁNlih,t(y)) (en(x) — on(y)) dz dy

- t/Q F (@)@ (@n.t)en
where, if I,(t) := [t|[P~2t, we have set

_ p(oni(x) = oni(y)) (oni(x) — wlz) —ton(r) — (pni(y) — wly) — ton(y)))
G(z,y) : P .

For future use, let us also set

Golry) = Ip(v(z) —v(y)) (ni(x) — w(iz :;ﬁﬁﬁl — (pns(y) —w(y) — ton(y))) |

Now we set .S, := {¢p+ = v} and note that, actually, S, = {v < w+ty,}. We use the decomposition
R?N = (S, U S°) x (S, USE).
Taking into account that
G(-,-)=01in Sy x S5,

we deduce that

G(x,y) dx dy

R2N

— [ [ swwdrdys [ [ G@wdsdy+ [ [ gg)drdy
v J Sy € J Sy v JS§

S/ Go(z,y) d:vdy+/ Guo(z,y) dfcdy+/ Go(z,y) dxdy
s, se Js,

v J S

= gv (:L‘, y) dl: dy7

R2N

where the inequality follows since G < G,. In particular, to see this, write down explicitly the
expression of G and exploit the monotonicity of the real valued function |t — to|P~2(t — t) together
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with the definition of ¢p, ;. Thence we go back to (4.5) and get that

I - / F(2) - (D (one) — D)) (pns — w) do
<[ Gule.y)dudy / F(@) - ®(ona) (s — w — ton)
R2N Q
t\T) — ©Oht p=2 t(T) — Oht ) — )
+t/RQN [oni(r) — oni(y)] (ih_(y’)N+ih () (en(x) — on(y d dy

— t/ﬂ f(x) - @ (@ne)en

By the definition of @y, it follows that v is a supersolution to the equation (—A)sz = ®}(2) too.
Therefore, recalling that ¢y, ; —w — tpy < 0, we deduce that

I — / f(z (I)k Wht) q’%(w))(ﬂﬂh,t —w)dx

_ : p—2 (z) — ; ) — /
St/ﬂw |on.1 () = eni(y)l (“ih,(y‘)NJrih, (%) (pn(x) = en(y)) da:dy—t/Q £(2) - B (on0)en -

Exploiting the fact I; > 0 and again that ¢p,; —w < tgy,, we deduce that

) — . p—2 +(z) — ony x) — /
/RQN lon,t(x) — ont(y)] (F;h—(yﬁN+ih (v)) (en(z) — ony)) dwdy—/Q f(x) - @) (o) en

/f @ (ong) — P (w)|on

Recalling the defintion of ¢ and that w € WiP(Q), we can now pass to the limit for ¢ — 0
exploiting the Lebesgue Theorem obtaining

/ w(z) — w(y)P~* (w(z) — w(y)) (en(@) = en(y) , dy — / f(@) - @ (w)ipp > 0
R2N ¢ k o

|z — y[Ntep

The claim, namely the proof of (4.3), follows letting h — oo. O
Now we are in position to prove our weak comparison principle, namely we have the following:

Theorem 4.2. Let v > 0 and let f € LY(Q) be non-negative. Let u be a subsolution to (1.1) such
that u < 0 on 9Q and let v be a supersolution to (1.1). Then, u < wv a.e. in .

Proof. For ¢ > 0 and w as in Lemma 4.1, it follows that
(u—w—e)t e WyP(Q).

This can be easily deduced by the fact that w € W3 (Q2) and w > 0 a.e. in §, so that the support
of (u—w — €)™ is contained in the support of (u—¢e)*. Therefore, by (4.3) and by standard density
arguments, it follows

/ ) — w()l ()~ w) (T (@ v =) @) =T (w-w - @)

|z —y|Nep

/f B ()T, ((u—w - 2)F)

for T (s) := min{s, 7} for s > 0 and T>(—s) := —T-(s) for s < 0. Let now ¢, € C>°(2) such that
on — (u—w—¢e)" in WHP(Q) and set

Grm = Tr(min{(u—w—¢e)*, 0 }).
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It follows that ¢-,, € WP (2) N LX(N) so that, by a density argument

/ |u(z) —u(y) P2 (w(@) — u(y)) (Prnlz) — Prn(y)) dz dy < / @ Grn da
R2N - Q uwY o ’

|z — y|N+sp

Passing to the limit as n tends to infinity, it is easy to deduce that

/ () — u(y) P~ (u(x) — u(w) (T (0w = 2)* @) = T (0w =2 @) o
R2N

|z —y|NFep
/f (u—w—2e)") dz.

It is convenient now to set
g(t) == Tr((t — &)") = min{r, max{t — e, 0}}.
With such a notation we have
[u(z) — u(y)P~? (ule) — u(y) (Tr (v —w - )" (2)) = Tr ((u —w - ) (y)) =
= |u(z) — u(y) P~ (u(z) — u(y))(ulz) - w(l‘) — (u(y) —w(y)) H(z,y)

with
_ 9u(z) —w(x)) — g(uly) — w(y))
HE = )~ w(@) — (uly) — ()
where (u(z) — w(x) — (u(y) — w(y)) # 0. In the same way we deduce that
w(z) — w(y) P~ (w(z) —wy)) (Tr (u —w—e)*(2)) = Tr (u—w—)"(y))) =
= |w(z) — w(y)P~* (w(z) — w(y))(ulz) - wlz) - (u(y) —w(y) H(z,y).
Then, we subtract (4.6) to (4.7) using (4.4) and the fact that H(z,y) is non-negative by the

definition of g (see (4.1)) that is nondecreasing. Therefore, choosing € > 0 such that e < k, we
deduce that

C/ ([u(z) = u() + |w(z) = wy) )P~ (u() — w(z) - (uly) —w)* ,
R2N

|z — y|Ntsp

(z,y) dx dy

<[ f<x>'<u17¢>k( )T (0= - 2)*) o
= [ #6@)- (@40) = @) T, ((w = w =) do < 0.

where the equality in the last line follows using the definition (4.1) and the fact that we are working
in a region where 7;(-) # 0. Thus

— — p—2 —w—ea)t _ oy — )t 2

[ o) =)+ o) g2 () o) T (0 0 = O g

R2N |z — y[Ntep
and letting 7 — +o00, by Fatou’s Lemma

— _ p—2 o — )t — (1 — ) — )T 2
[ ) ) o) w0 ) == DR g,
R2N |z — y[NHep
Being the integrand non-negative, it is standard to obtain
u<wt+e<v+e a.e. in

and the thesis follows letting € — 0. 0

In light of Theorem 4.2 we are now in position to conclude the proof of our main results.



NONLOCAL PROBLEMS WITH SINGULAR NONLINEARITY 19

Proof of Theorem 1.4. If u and v are two solutions to (1.1) with zero Dirichlet boundary condition,
then we have that v < v by Theorem 4.2. In the same way it follows that v < wu. O

We now deduce a symmetry result from the uniqueness of the solution. We have the following;:

Proof of Theorem 1.7. By rotation and translation invariance, we may and we will assume that 2
is symmetric in the zi-direction and f(x1,2') = f(—21,2') (with 2’ € RVN~1). Setting v(x1,2') :=
u(—z1,2") it follows that v is a solution to (1.1) with zero Dirichlet boundary condition. By
uniqueness, namely applying Theorem 1.4, it follows that u = v, that is u(x1,2') = u(—xz1,2’) a.e.,
ending the proof. O
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