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Abstract

Here, we extend the weak KAM and Aubry-Mather theories to optimal switching problems. We
consider three issues: the analysis of the calculus of variations problem, the study of a generalized
weak KAM theorem for solutions of weakly coupled systems of Hamilton-Jacobi equations, and the
long-time behavior of time-dependent systems. We prove the existence and regularity of action
minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and
describe the asymptotic limit of the generalized Lax-Oleinik semigroup.

1 Introduction

Overview. Dynamical systems given by Tonelli Lagrangians have been extensively studied in recent
years, and the deep connections between the calculus of variations, the weak KAM theory, and the
Aubry-Mather theory have been a source of inspiration for researchers. Here, we extend these methods
to optimal switching problems. We prove the existence and regularity of minimizers to a generalized
Lagrangian action, extend the weak KAM theorem, and describe the long-time limit of weakly coupled
Hamilton-Jacobi systems.

Optimal switching is a class of control problems where the running cost or the dynamics of a system
can be modified by switching between different modes. The relation between viscosity solutions of
quasivariational inequalities and optimal switching problems is well known. In [6], motivated by earlier
publications [11, 7, 2], the authors extended the notion of viscosity solution to these problems and
proved that their value functions are viscosity solutions of a weakly coupled system of Hamilton-Jacobi
equations. Recently, several authors have investigated random switching problems, their weakly coupled
Hamilton-Jacobi equations [19], the corresponding extensions of the weak KAM and Aubry-Mather
theories [10, 17], the long-time behavior of solutions [3, 4, 18, 20, 22], and homogenization questions
[21]. In these references, as in the present paper, the state of the systems has different modes. However,
in those problems, the switching between modes is driven by a random process. In contrast, here, the
switches occur at deterministic times as considered in [15]. Our results complement the earlier research
in [15] and provide the counterpart of the aforementioned results for the optimal switching problem.

Setting of the problem. Let M be a compact, connected Riemannian manifold, TM its tangent
bundle, and I = {1, . . . ,m} a finite set of modes. The (multimodal) Lagrangian, L : TM×I → R, is, for
each i ∈ I, a Tonelli Lagrangian, L(·, ·, i) : TM → R, prescribing the running cost at the mode “i”. The
switching cost is given by the function ψ : M × I × I → R. A trajectory, γ = (γM , γI) : [0, t]→M × I,
determines both state and mode at each time. We denote by AC([0, t];M) the set of all absolutely
continuous curves from [0, t] into M , and by P([0, t]; I) the set of all piecewise constant functions on [0, t]
taking values on I. More precisely, κ ∈ P([0, t]; I) if there exists a partition P =

{
0 < t1 < . . . < tN < t

}
of [0, t] such that

κ is constant on (0, t1) ∪ . . . ∪ (t`, t`+1) ∪ . . . ∪ (tN , t). (1)

In other words, κ can jump in the interval [0, t] only at the times {0, t1, . . . , tn, t} (note that κ can jump
also at the initial and final times, 0 and t). The partition associated with κ is the smallest partition for
which (1) holds. For simplicity, these spaces are denoted by AC and P, respectively.
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Let t ∈ [0,+∞) and c ∈ R. The generalized Lagrangian action functional, Jt : AC × P → R, is

Jt[γ] :=

∫ t

0

L
(
γM (s), γ̇M (s), γI(s)

)
ds+ ψ

(
γM (0), γI(0), γI(0+)

)
+ ψ

(
γM (t), γI(t−), γI(t)

)
+

N∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
. (2)

In other words, the action of the curve, (γM , γI), is the sum of the action of the curves γM |[t`,t`+1] for
the Lagrangian, L(·, ·, κk), plus the sum of the switching costs corresponding to changes of state.

Here, we investigate the following topics:

1. Properties of the calculus of variations problem associated with the action functional Jt - existence
of minimizers, necessary conditions for minimality, and energy conservation.

2. A weak KAM-type theorem.

3. Extension of the Aubry-Mather Theory to system of Hamilton-Jacobi equations.

The existence of minimizers for Jt is a natural question that, to the best of our knowledge, was not
addressed previously in the literature. Here, we prove the existence and the regularity of minimizers.
Our assumptions are minimal in the sense that they are required in the “single” Lagrangian case.

For t > 0, we define ht : M × I ×M × I → R as

ht(A,B) := inf
{
Jt[γ]; γ ∈ AC × P, γ(0) = A, γ(t) = B

}
, ∀A,B ∈M × I. (3)

Our first main result is:

Theorem 1.1. Suppose that A1-A3 hold (see Section 3.1). Then, for every A = (x, i) and B = (y, j) ∈
M × I, there exists γ = (γM , γI) ∈ AC × P with γ(0) = A and γ(t) = B for which

Jt[γ] = ht(A,B).

Let P =
{

0 < t1 < t2 < · · · < tN < t
}

be the partition associated with γI . Then,

1. γM is C2 in (0, t)\{t1, t2, . . . , tN}, and, in this set, it solves the Euler-Lagrange equation

d

ds

[
∂L

∂v

(
γM (s), γ̇M (s), γI(s)

)]
=
∂L

∂x

(
γM (s), γ̇M (s), γI(s)

)
; (4)

2. Let γ̇M (t−` ) and γ̇M (t+` ) be the left and right derivatives of γM at t`, respectively. Then, for
` = 1, . . . , N ,

∂L

∂v

(
γM (t`), γ̇M (t−` ), γI(t−` )

)
=
∂L

∂v

(
γM (t`), γ̇M (t+` ), γI(t+` )

)
+ ∂xψ

(
γM (t`), γI(t−` ), γI(t+` )

)
; (5)

3. The (generalized) energy functional

E
(
γM (s), γ̇M (s), γI(s)

)
:=

∂L

∂v

(
γM (s), γ̇M (s), γI(s)

)
· γ̇M (s)− L

(
γM (s), γ̇M (s), γI(s)

)
(6)

is constant on (0, t).

Now, for u : M × I → R, we define Ψu : M × I → R as

Ψu(x, i) = min
j 6=i

{
u(x, j) + ψ(x, i, j)

}
. (7)

The Hamiltonian, H : T ∗M × I → R, is defined as

H(x, p, i) := sup
v∈TxM

{
p(v)− L(x, v, i)

}
. (8)

Given a constant c ∈ R, we consider the weakly coupled system of Hamilton-Jacobi equations

max
{
H
(
x, du(x, i), i

)
− c, u(x, i)−Ψu(x, i)

}
= 0 for every i ∈ I. (9)
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Definition 1.2. Let u : M × I → R be a continuous function.

1. We say that u is a viscosity subsolution of (9) if for any test function φ ∈ C1(M), and any
(x, i) ∈M × I such that x ∈ argmaxx u(·, i)− φ, we have

max
{
H
(
x, dφ(x), i

)
− c, u(x, i)−Ψu(x, i)

}
≤ 0. (10)

2. We say that u is a viscosity supersolution of (9) if for any test function φ ∈ C1(M), and any
(x, i) ∈M × I such that x ∈ argminx u(·, i)− φ, we have

max
{
H
(
x, dφ(x), i

)
− c, u(x, i)−Ψu(x, i)

}
≥ 0. (11)

3. We say that u is a viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.

Remark 1.3. A function u : M × I → R is a viscosity subsolution of (9) if and only if the following
two properties hold:

(i) u(·, i) satisfies H
(
x, du(x, i), i

)
≤ c in the viscosity sense;

(ii) u ≤ Ψu.

In addition, u : M × I → R is a viscosity supersolution of (9) if and only if at least one of the next two
conditions holds:

(i) u(·, i) satisfies H
(
x, du(x, i), i

)
≥ c in the viscosity sense;

(ii) u ≥ Ψu.

Our second main result is a weak KAM-type theorem, analog to the one of Fathi [12]:

Theorem 1.4 (Weak KAM). Suppose that A1-A3 hold. Then, there exists a unique constant c0 ∈ R
for which there exists a viscosity solution u : M × I → R of

max
{
H
(
x, du(x, i), i

)
− c0, u(x, i)−Ψu(x, i)

}
= 0 ∀ i ∈ I. (12)

In addition, c0 can be characterized as the unique constant such that the following holds: if (9) has a
viscosity subsolution, then c ≥ c0.

Consider a Tonelli Lagrangian, L. For a continuous function w : M × I → R and t ≥ 0, the
Lax-Oleinik semigroup, Ttw : M × I → R is defined as

Ttw(A) := inf
{
w(B) + ht(B,A); B ∈M × I

}
. (13)

Inspired by [12], we prove Theorem 1.4 by looking at the long-time behavior of the Lax-Oleinik
semigroup acting on a subsolution of (12). More precisely, we first show that u solves (12) if and only
if it is a fixed point of Ttu + c0t for all t ≥ 0, see Proposition 4.7. Next, we analyze the long-time
behavior of this Lax-Oleinik semigroup for any continuous initial condition u0 : M × I → R, and show
that long-time limit solves (12).

We define the generalized Peierls barrier h : M × I ×M × I → R as

h(A,B) := lim inf
t→+∞

ht(A,B) + c0t, (14)

and introduce the projected projected Aubry set as follows.

Definition 1.5. Let h be the Peierls barrier defined in (14). The projected Aubry set A ⊂M ×I is the
set of points B ∈M × I for which h(B,B) = 0.

Then, we have the following convergence theorem:

Theorem 1.6. Assume A1–A3 hold, let h be the Peierls barrier (14), and u0 : M×I → R be a continuous
function. Then, as t→ +∞, the Lax-Oleinik semigroup Ttu0 converges to a viscosity solution v of (12).
Moreover, v satisfies

v(A) := inf
B∈A

{
h(B,A) + inf

C∈M×I

{
u0(C) + h(C,B)

}}
. (15)
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Structure of the paper. In Section 2, we discuss classical notions from the calculus of variations,
including the lower semicontinuity of the action functional of Tonelli Lagrangians and the compactness
for minimizers of this functional. These properties are used in the proof of Theorem 1.1. Next, in Section
3, we examine the optimal switching problem. We present the proof of Theorem 1.1 in Subsection 3.5,
and we prove the semiconcavity of the cost function in Subsection 3.6. Finally, in Section 4, we present
the proofs of Theorems 1.4 and 1.6: we prove the Weak KAM Theorem (Theorem 1.4) in Subsection 4.2,
and we characterize the asymptotic limits of the Lax-Oleinik semigroup (Theorem 1.6) in Subsection 4.4.

2 Preliminaries

In this section, we recall some preliminary concepts. We define Tonelli Lagrangians and their action
functional. Then, we state a compactness lemma and the lower semicontinuity of the action, whose
proofs can be found in [13] and in [14, Appendix B]. Additional references include [1, 5, 8].

2.1 Definitions

Throughout this paper, (M, g) is a compact connected Riemannian manifold and TM its tangent bundle.

Definition 2.1 (Tonelli Lagrangian). L : TM → R is a Tonelli Lagrangian if it satisfies the following
conditions:

- Regularity: L belongs to C2(TM);

- Convexity: The second-order derivative in the fiber,
∂2L

∂v2
(x, v), is positive definite for every (x, v) ∈

TM ;

- Superlinearity: For every k ≥ 0 there exists a constant C = C(k) ∈ R, such that

L(x, v) ≥ k ‖v‖x − C ∀ (x, v) ∈ TM,

where ‖v‖x :=
√
gx(v, v), gx being the Riemannian metric on TxM .

Consider a Tonelli Lagrangian L. The action of an absolutely continuous curve γ : [a, b]→M is

J [γ] = Ja,b[γ] :=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds.

The action is well defined with values in R ∪ {+∞}. An action minimizer is a curve γ : [a, b] → M
satisfying Ja,b[γ] ≤ Ja,b[α] for all absolutely continuous curves α : [a, b]→ M with the same endpoints.
The next two propositions, stated here for convenience, are classical (see [13]).

Proposition 2.2 (Compactness). Let L : TM → R be a Lagrangian of class C0 satisfying the Super-
linearity condition. Suppose that γk ∈ AC([0, t];Rd) is a sequence of curves such that supk J [γk] < ∞.
Also, assume that supk ‖γk(t0)‖ <∞ for some t0 ∈ [0, t]. Then, up to a subsequence,

1. γk → γ uniformly for some γ ∈ AC([0, t];Rd);

2. γ̇k ⇀ γ̇ weakly in L1.

Proposition 2.3 (Lower semicontinuity). Suppose L : TM → R is a Lagrangian of class C0, bounded
from below, with L(x, ·) : TxM → R convex for any x ∈ M . Assume γk, γ ∈ AC([0, t];M) are such that
γk → γ uniformly in [0, t] and γ̇k ⇀ γ̇ weakly in L1. Then,∫ t

0

L
(
γ(s), γ̇(s)

)
ds ≤ lim inf

k

∫ t

0

L
(
γk(s), γ̇k(s)

)
ds.

Tonelli’s Theorem on the existence of minimizers is a corollary of the last two results.

Corollary 2.4 (Tonelli’s Theorem). Let L : TM → R be a Tonelli Lagrangian. Then, for x, y ∈M ,
there exists γ ∈ AC([a, b];M) such that γ(a) = x, γ(b) = y, and

J [γ] = inf
{
J [α]; α ∈ AC([a, b];M) with α(a) = x, α(b) = y

}
.

Remark 2.5. If a Tonelli Lagrangian L is of class Cr, so is the minimizer (see [13]).
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3 The optimal switching problem

Here, we study the optimal switching problem. In Subsection 3.1, we discuss the main assumptions. Next,
in Subsection 3.2, we prove the existence of minimizers of Jt. In Subsection 3.3, we obtain necessary
optimality conditions for (γM , γI) and show the regularity of γM . Then, in Subsection 3.4, we establish
an energy conservation principle. In Subsection 3.5, we prove Theorem 1.1. Finally, in Subsection 3.6,
we show that ht is semiconcave.

3.1 Main assumptions

Let L : TM × I → R be the Lagrangian and ψ : M × I × I → R the switching cost. We suppose the
following assumptions on L and ψ hold.

A1. For every i ∈ I, L(·, ·, i) is a Tonelli Lagrangian, as in Definition 2.1;

A2. ψ(·, i, j) is continuous for all i, j ∈ I, and satisfies the following inequality: for all i, j, k ∈ I with
i 6= k and j 6= k,

ψ(x, i, j) < ψ(x, i, k) + ψ(x, k, j) ∀x ∈M ;

A3. For any i ∈ I, ψ(·, i, i) ≡ 0;

A4. For all i, j ∈ I, ψ(·, i, j) ∈ C2(M).

Notice that we do not assume that the switching cost is nonnegative. Condition A2 is natural as
it avoids that, to lower the action, a curve switches from i to j by using a double switch, over an
infinitesimal amount of time, through an intermediate mode k. Condition A3 is also natural, as it states
that the cost of not switching is zero.

Since M is compact and I is a finite set, it follows by A2 that there exists a constant δ > 0 such that

ψ(x, i, k) + ψ(x, k, j) ≥ ψ(x, i, j) + 2δ ∀x ∈M, i, j, k ∈ I with i 6= k and j 6= k.

Hence, again by the compactness of M , since ψ(·, i, j) is continuous there exists η > 0 such that, for any
x, y ∈M, i, j, k ∈ I with i 6= k and j 6= k,

ψ(x, i, k) + ψ(y, k, j) ≥ ψ(x, i, j) + δ, provided dg(x, y) ≤ η, (16)

where dg : M ×M → R+ denotes the Riemannian distance on M .

Remark 3.1. Let i0, . . . , iN ∈ I be a sequence of states with N ≥ 2, i0 = iN , and such that ij 6= ij+1.
Let x0, . . . , xN be a sequence of points such that dg(x`, xm) ≤ η for all `,m = 0, . . . , N − 1. Then, by
applying (16) iteratively, we get

ψ(x0, i0, i1) + ψ(x1, i1, i2) + · · ·+ ψ(xN−1, iN−1, iN ) ≥ ψ(x0, i0, i2) + ψ(x2, i2, i3)

+ · · ·+ ψ(xN−1, iN−1, iN ) + δ ≥ ψ(x0, i0, iN−1) + ψ(xN−1, iN−1, iN ) + (N − 2)δ

≥ ψ(x0, i0, iN ) + (N − 1)δ ≥ δ,

where the last inequality follows from A3 (since, by i0 = iN ) and the fact that N ≥ 2.
Hence, we proved that a loop in the state space always has a nontrivial cost greater than δ, provided

all the switches happen at sufficiently nearby points.

Remark 3.2. Since I is a finite set, L(·, ·, i) is superlinear, uniformly with respect to i ∈ I. In particular,
we can find a superlinear, increasing, convex function θ : R+ → R+ with θ(0) = 0, and a constant C̄0 ∈ R,
such that

L(x, v, i) ≥ θ(‖v‖x)− C̄0 ∀ (x, v, i) ∈ TM × I.

3.2 Existence of action minimizers

For fixed t > 0, define Jt and ht as in (2) and (3), respectively. Observe that ht is finite: given A = (x, i)
and B = (y, j), consider a geodesic from x to y in M and one switch from i to j at an intermediate
point. Because this curve has finite action, ht is finite.

Using the direct method in the calculus of variations, we prove the existence of minimizers for Jt
under fixed boundary conditions. We notice that the proof never requires L(·, ·, i) to be Tonelli, but only
superlinearity and convexity in v, as in Propositions 2.2 and 2.3.
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Theorem 3.3. Assume A1–A3 hold, and let ht be the cost function defined by (3). Then, for every
A,B ∈M × I, there exists γ ∈ AC × P with γ(0) = A and γ(t) = B such that

ht(A,B) = Jt[γ].

Proof. Let γk = (γkM , γ
k
I) be a minimizing sequence for Jt with fixed endpoints: γk(0) = A = (x, i),

γk(t) = B = (y, j), and
Jt[γk]→ ht(A,B). (17)

Consider the partitions P k = {0 < tk1 < · · · < tkNk
< t} associated with γkI .

Step 1. We show that the total number of switches, Nk, is uniformly bounded with respect to k.
Using Remark 3.2 and (17), we see that

∫ t

0

θ(‖γ̇kM (s)‖γk
M (s)) ds+ ψ

(
γkM (0), γkI(0), γkI(0+)

)
+

Nk∑
`=1

ψ
(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
+ ψ

(
γkM (t), γkI(t−), γkI(t)

)
≤ Jt[γk] + C̄0t ≤ C̄1 (18)

for some constant C̄1 independent of k. We take η as in (16) and, for any k, we define a sequence of

times {τkm}
N̂k
m=0 as follows:

τk0 = 0, τN̂k
= t, τkm+1 = max

{
s ∈ (τkm, t) : dg

(
γkM (s), γkM (τkm)

)
≤ η/2

}
∀m = 0, . . . , N̂k − 2.

In other words, τkm+1 tells us when the curve γkM (s) exits the ball Bη/2(γkM (τkm)). In particular, for any

time interval Ikm := [τkm, τ
k
m+1), it follows by the definition of Ikm that

dg
(
γkM (s), γkM (s′)

)
≤ η ∀ s, s′ ∈ Ikm.

Thus, Remark 3.1 implies that every loop inside {γI(tk` )}tk`∈Ikm has a total switching cost that is greater
than δ. Consequently, consider the switching cost∑

tk`∈Ikm

ψ
(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
.

Every time we find a loop inside {γI(tk` )}tk`∈Ikm , we can remove it from the above sum, and the total
switching cost will decrease by δ. Thus, we argue as follows. First, to simplify the notation, we set
I0 := #I and Nk,m := #{tk` ∈ Ikm}. If Nk,m ≤ I0, we do nothing and bound the switching cost by∑

tk`∈Ikm

ψ
(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
≥ −I0 ‖ψ‖∞.

Instead, if Nk,m > I0, we consider the first I0 + 1 indices inside the set {γI(tk` ) : tk` ∈ Ikm}; that is, the
indices corresponding to the first I0 + 1 times. Then, we note that this set has to contain a loop because
inside a set containing I0 + 1 indices, at least two of them coincide. Observe that, by construction, this
loop will have length at most I0 + 1. We remove this loop; thus, the switching cost decreases by at least
δ. Then, we repeat this procedure: we consider again the first I0 + 1 times among the ones that remain,
we find a loop there, and we remove it. We iterate this procedure until no loop remains. When this is
achieved, the number of times remaining must be bounded by I0 (otherwise, we could find another loop
inside). We recall that the loops have length bounded by I0 + 1. Because each time we remove a loop
the set of times decreases by at most I0 and because at the end we are left with at most I0 times, the

number of loops we remove from the set {γI(tk` ) : tk` ∈ Ikm} is at least
(
Nk,m

I0
− 1
)

+
. Hence, bounding

the switching cost of the remaining times as in the case Nk,m ≤ I0, we obtain∑
tk`∈Ikm

ψ
(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
≥
(
Nk,m
I0
− 1

)
+

δ − I0 ‖ψ‖∞.

Notice that the bound above is valid both in the case Nk,m > I0 and in the case Nk,m ≤ I0. Therefore,

summing this bound over m ∈ {0, . . . , N̂k − 1}, we conclude that

N∑
`=1

(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
≥
N̂k−1∑
m=0

(
Nk,m
I0
− 1

)
+

δ − N̂k I0 ‖ψ‖∞.
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The preceding estimate combined with (18) yields∫ t

0

θ(‖γ̇kM (s)‖γk
M (s)) ds− 2 ‖ψ‖∞ +

N̂k−1∑
m=0

(
Nk,m
I0
− 1

)
+

δ − N̂k I0 ‖ψ‖∞ ≤ C̄1. (19)

To deal with the first term above, we apply Jensen’s inequality to the increasing, convex function θ on
each time interval Ikm. Set ∆k

m := |Ikm| = τkm+1 − τkm. Then,

∫ t

0

θ(‖γ̇kM (s)‖γk
M (s)) ds =

N̂k−1∑
m=0

∫ τk
m+1

τk
m

θ(‖γ̇kM (s)‖γk
M (s)) ds ≥

N̂k−1∑
m=0

∆k
m θ

(
1

∆k
m

∫ τk
m+1

τk
m

‖γ̇kM (s)‖γk
M (s) ds

)

≥
N̂k−1∑
m=0

∆k
m θ

(
dg
(
γM (τkm), γM (τkm+1)

)
∆k
m

)
≥
N̂k−2∑
m=0

∆k
m θ

(
η

2∆k
m

)
,

where, for the last inequality, we used that θ ≥ 0 and that, from the definition of τkj ,

dg
(
γM (τkm), γM (τkm+1)

)
= η/2 ∀ j = 0, . . . , N̂k − 2.

We now set ∆k :=
∑N̂k−2
m=0 ∆k

m. Notice that ∆k ≤ t. Then, by the superlinearity of θ, for any κ > 0
there exists a constant Cκ such that

N̂k−2∑
m=0

∆k
m θ

(
η

2∆k
m

)
≥
N̂k−2∑
m=0

∆k
m

(
κ

η

2∆k
m

− Cκ
)

=
κ η

2

(
N̂k − 1

)
− Cκ ∆ ≥ κ η

2

(
N̂k − 1

)
− Cκ t.

Inserting this estimate in (19), we finally get

N̂k−1∑
m=0

(
Nk,m
I0
− 1

)
+

δ +
κ η

2

(
N̂k − 1

)
− N̂k I0 ‖ψ‖∞ ≤ C̄1 + Cκ t+ 2 ‖ψ‖∞.

Choosing κ large enough, we can reabsorb the negative term in the left-hand side into the second term,
and we get

N̂k−1∑
m=0

(
Nk,m
I0
− 1

)
+

δ +
κ η

4
N̂k ≤ C̄2 (20)

for some constant, C̄2, independent of k. Thanks to this bound, we deduce that N̂k, and, therefore, the

total number of switches, Nk =
∑N̂k−1
m=0 Nk,m, is bounded independently of k.

Step 2. We find a candidate minimizer.
By the previous step and extracting a subsequence, if necessary, we can assume Nk ≡ N for all k.

Then,
P k := {0 < tk1 < · · · < tkN < t}. (21)

For every ` = 1, . . . , N , (tk` )k is a bounded sequence; so, up to a subsequence, it converges to some
t` ∈ [0, t]. We have 0 ≤ t1 ≤ · · · ≤ tN ≤ t. Removing repeated points, if necessary, we obtain a limiting
partition {0 = t∗0 < t∗1 < t∗2 < . . . < t∗m < t∗m+1 = t}. Observe that instantaneous jumps at the endpoints
can occur.

We then define γI as follows: for ε > 0 small and k sufficiently large, we have that γkI is constant in
each subinterval (0, t∗1−ε), (t∗1 +ε, t∗2−ε), . . . , (t∗m−1 +ε, t∗m−ε), (t∗m+ε, t). Hence, up to a subsequence,
the values of γkI will converge to some value i` ∈ I inside the interval (t∗`−1 + ε, t∗` − ε), and we get

γkI → γI =

m∑
`=0

i` χ(t∗` ,t
∗
`+1) (22)

pointwise inside ∪m`=0(t∗` , t
∗
`+1). Also, recalling that by assumption γkI(0) = i and γkI(t) = j, we set

γI(0) = i and γI(t) = j.
Concerning the curves γkM , we note that, since the number of switching times is bounded, it follows

from (18) that ∫ t

0

θ(‖γ̇kM (s)‖γk
M (s)) ds ≤ Ĉ1
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for some constant Ĉ1 independent of k. Since θ is superlinear, it follows from Proposition 2.2 applied with
L(x, v) = θ(‖v‖|x) that, up to a subsequence, there exists an absolutely continuous curve γM : [0, t]→M
such that

γkM → γM uniformly in [0, t], and γ̇kM ⇀ γ̇M weakly in L1. (23)

Step 3. Lower semicontinuity and conclusion.
Since L is bounded from below, we have∫ t

0

L(γkM (s), γ̇kM (s), γkI(s)) ds ≥
∫ t∗1−ε

0

L(γkM (s), γ̇kM (s), γI(0)) ds

+

∫ t∗2−ε

t∗1+ε

L(γkM (s), γ̇kM (s), γI(t∗1)) ds+ . . .+

∫ t

t∗m+ε

L(γkM (s), γ̇kM (s), γI(t∗m)) ds− C0 ε

(24)

Note that some intervals [tk` , t
k
`+1] can collapse when k → ∞, and, in that case, we are removing the

corresponding switches. Then, the triangle inequality A2 and the continuity of ψ give

ψ
(
x, i, γkI(0+)

)
+

N∑
`=1

ψ
(
γkM (tk` ), γkI((tk` )−), γkI((tk` )+)

)
+ ψ

(
y, γkI(t−), j

)
+ ε

≥ ψ
(
x, i, γI(0+)

)
+

m∑
`=1

ψ
(
γM (t∗` ), γI((t∗` )

−), γI((t∗` )
+)
)

+ ψ
(
y, γI(t−), j

)
(25)

for all k sufficiently large. Next, we add (24) and (25), and, by taking the lim inf and using the lower
semicontinuity (Proposition 2.3) with respect to the convergence in (23), we obtain

ht(A,B) = lim inf
k

(∫ t

0

L(γkM (s), γ̇kM (s), γkI(s)) ds+

N−1∑
`=0

ψ
(
γM (tk`+1), γI(tk` ), γI(tk`+1)

))

≥
∫ t∗1−ε

0

L(γM (s), γ̇M (s), γI(0)) ds+

∫ t∗2−ε

t∗1+ε

L(γM (s), γ̇M (s), γI(t∗1)) ds+ . . .+

+

∫ t

t∗m+ε

L
(
γM (s), γ̇M (s), γI(t∗m)

)
ds+ ψ

(
x, i, γI(0+)

)
+

m∑
`=1

ψ
(
γM (t∗` ), γI((t∗` )

−), γI((t∗` )
+)
)

+ ψ
(
y, γI(t−), j

)
− C1 ε

(26)

for all ε > 0. Hence, the limit ε→ 0 yields

ht(A,B) ≥
∫ t

0

L(γM (s), γ̇M (s), γI(s)) ds+ ψ
(
x, i, γI(0+)

)
+

m−1∑
`=0

ψ
(
γM (t∗` ), γI((t∗` )

−), γI((t∗` )
+)
)

+ ψ
(
y, γI(t−), j

)
= Jt[γ].

(27)

Therefore, γ = (γM , γI) is a minimizer of Jt.

3.3 Euler-Lagrange equations

In this subsection, we obtain necessary conditions for minimality. First, we show that the Euler-Lagrange
equation is satisfied, except possibly where γI has a jump. Furthermore, if γI has a jump, then (5) holds.
Next, we obtain regularity for the minimizers of the optimal switching problem.

Proposition 3.4 (Euler-Lagrange equations). Assume that A1–A3 hold. Let γ = (γM , γI) be a
minimizer of Jt and let P = {0 < t1 < · · · < tN < t} be the partition associated with γI . Then, the
Euler-Lagrange equations (4) hold in [0, t]\{t1, t2, . . . , tN}.

Proof. Observe that γM |[t`,t`+1] is a minimizer of∫ t`+1

t`

L
(
α(s), α̇(s), γI(t+` )

)
ds,

among all curves α ∈ AC([t`, t`+1],M) with α(t`) = γM (t`), α(t`+1) = γM (t`+1). Then, (4) follows from
the classical Euler-Lagrange equations for the Lagrangian L(·, ·, γI(t`)).
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Remark 2.5 implies the following corollary.

Corollary 3.5. Assume that A1–A3 hold. Let γ = (γM , γI) be a minimizer of Jt . Then γM is of
class C2 in U = (0, t)\{t1, . . . , tN}, and the left and right derivatives γ̇M (t−` ) and γ̇M (t+` ) exist for every
0 ≤ ` ≤ N + 1. Moreover, if all Lagrangians L(·, ·, i) are of class Cr, then so is γM in U .

Now, by the Euler-Lagrange equations, we obtain further necessary minimality conditions.

Proposition 3.6 (Necessary conditions for minimality II). Assume that A1–A4 hold, and let
γ = (γM , γI) ∈ AC ×P be a minimizer for the action Jt given by (2). Then (5) holds for ` = 1, . . . , N.

Proof. Let t̄ = min{t` − t`−1, t`+1 − t`} and fix ω ∈ C∞([0, t];M) such that ω ≡ 1 in [t` − t̄/2, t` + t̄/2]
and ω ≡ 0 outside [t` − t̄, t` + t̄]. Then,

0 =
d

dσ
|σ=0 Jt[γM + σω, γI ] =

∫ t`

t`−1

(
∂L

∂x

(
γM , γ̇M , γI

)
ω +

∂L

∂v

(
γM , γ̇M , γI

)
ω̇

)
ds

+

∫ t`+1

t`

(
∂L

∂x

(
γM , γ̇M , γI

)
ω +

∂L

∂v

(
γM , γ̇M , γI

)
ω̇

)
ds+ ∂xψ

(
γM (t`), γI(t−` ), γI(t+` )

)
ω(t`)

=

∫ t`+1

t`−1

(
∂L

∂x

(
γM , γ̇M , γI

)
− d

ds

∂L

∂v

(
γM , γ̇M , γI

))
ω ds+

∂L

∂v

(
γM (t`), γ̇M (t−` ), γI(t−` )

)
− ∂L

∂v

(
γM (t`), γ̇M (t+` ), γI(t+` )

)
+ ∂xψ

(
γM (t`), γI(t−` ), γI(t+` )

)
=
∂L

∂v

(
γM (t`), γ̇M (t−` ), γI(t−` )

)
− ∂L

∂v

(
γM (t`), γ̇M (t+` ), γI(t+` )

)
+ ∂xψ

(
γM (t`), γI(t−` ), γI(t+` )

)
,

(28)

where we used that, by construction, ω(t`) = 1 and ω(t`−1) = ω(t`+1) = 0, while the last identity follows
from the Euler-Lagrange equations (4).

Remark 3.7. Let ψ be a switching cost independent of the state variable; that is, ψ(x, i, j) ≡ ψ(i, j)
for any x ∈M and i, j ∈ I. By Proposition 3.6, if γ is an action minimizer,

s 7→ ∂L

∂v

(
γM (s), γ̇M (s), γI(s)

)
is continuous in [0, t].

3.4 Energy Conservation

Here, we prove an energy conservation principle similar to the one for single Lagrangians.

Proposition 3.8 (Conservation of Energy). Suppose that A1–A3 hold and let γ = (γM , γI) ∈ AC×I
be an action minimizer for Jt. Set γI(t`) := γI(t−` ) for any switching time t`. Then the energy is
conserved; that is,

E(γM (s), γ̇M (s), γI(s)) :=
∂L

∂v

(
γM (s), γ̇M (s), γI(s)

)
· γ̇M (s)− L

(
γM (s), γ̇M (s), γI(s)

)
(29)

is constant on (0, t).

Proof. The energy is conserved on each subinterval (t`, t`+1) by (4). So, it is enough to check the
energy conservation at the switching times. Let ω : [0, t] → [0, t] be smooth and compactly supported
in [t`−1, t`+1] with ω(t`−1) = ω(t`+1) = 0 and ω ≡ 1 in [t` − δ, t` + δ] for some small δ > 0. Define
γε : [0, t]→ M × I as γε(s) = γ

(
s− εω(s)

)
, so that the function f(ε) := Jt[γε]− Jt[γ] has a minimum

at ε = 0. Because γε switches from one state to another at the same position as γ (just at a different
time), this does not affect the switching cost. In other words, the part in the energy of γε coming from
the switching cost is the same as the one of γ. Therefore,

f(ε) =

∫ t`+ε

t`−1

L
(
γεM (s), γ̇εM (s), γI(t−` )

)
ds+

∫ t`+1

t`+ε

L
(
γεM (s), γ̇εM (s), γI(t+` )

)
ds

−
∫ t`

t`−1

L
(
γM (s), γ̇M (s), γI(t−` )

)
ds−

∫ t`+1

t`

L
(
γM (s), γ̇M (s), γI(t+` )

)
ds,
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and, by differentiating with respect to ε and setting ε = 0, we get

0 = L
(
γM (t`), γ̇M (t−` ), γI(t−` )

)
+

∫ t`

t`−1

(
∂L

∂x

(
γM (s), γ̇M (s), γI(t−` )

)
· γ̇Mω

+
∂L

∂v

(
γM (s), γ̇M (s), γI(t−` )

)
· (γ̈Mω + γ̇M ω̇)

)
ds− L

(
γM (t`), γ̇M (t+` ), γI(t+` )

)
−
∫ t`

t`−1

(
∂L

∂x

(
γM (s), γ̇M (s), γI(t+` )

)
· γ̇Mω +

∂L

∂v

(
γM (s), γ̇M (s), γI(t+` )

)
· (γ̈Mω + γ̇M ω̇)

)
ds.

(30)

Integrating by parts and using the Euler-Lagrange equations (4), we get

L
(
γM (t`), γ̇M (t−` ), γI(t−` )

)
− ∂L

∂v

(
γM (t`), γ̇M (t−` ), γI(t−` )

)
· γ̇(t−` )

= L
(
γM (t`), γ̇M (t+` ), γI(t+` )

)
− ∂L

∂v

(
γM (t`), γ̇M (t+` ), γI(t+` )

)
· γ̇(t+` ),

as claimed.

3.5 Proof of Theorem 1.1

Here, we gather the results from previous subsections to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of minimizers under fixed endpoint constraint is given in Theo-
rem 3.3. Next, the Euler-Lagrange equations are proved in Proposition 3.4. Then, (5) corresponds to
Proposition 3.6. Finally, the energy conservation follows from Proposition 3.8.

3.6 Semiconcavity of the cost

In this subsection, we study the regularity of the value function. For convenience, we recall the definition
of a semiconcave function (for example, see [5]).

Definition 3.9. Let A ⊆ Rd. A function f : A→ R is semiconcave if there exists a modulus of continuity
ω : R+ → R such that, for each x ∈ A, there exists `x ∈ Rd for which

f(y)− f(x) ≤ `x · (y − x) + |y − x|ω
(
|y − x|

)
for all y ∈ A.

If M is Riemannian manifold, we say that a function f : M → R is semiconcave if, in any chart
ϕ : A→ ϕ(A) ⊆M with A ⊆ Rd, the function f ◦ ϕ : A→ R is semiconcave.

Semiconcavity is well defined in the Riemannian setting because the composition with smooth func-
tions preserves semiconcavity, see [5, 14].

Remark 3.10. We say that f : A→ R is semiconcave with a linear modulus of continuity if there exists
C > 0 such that

f(y)− f(x) ≤ `x · (y − x) + C|y − x|2 for all y ∈ A.

To study the semiconcavity of h, we use the conservation of energy to bound the norms of speed
curves of minimizers. We consider this matter in the next lemma:

Lemma 3.11. Assume that A1–A3 hold, and let γ = (γM , γI) be a minimizer for Jt with γM (0) = x,
γM (t) = y. Then, there exists a constant C > 0 such that ‖γ̇M (s)‖γM (s) ≤ C for every s ∈ [0, t].

Proof. Fix a point x0 ∈M . Since M is compact, d(x, y) ≤ R for all x, y ∈M for some R > 0. Thus, the
minimizing constant speed geodesic α : [0, t]→M connecting x to y satisfies

‖α̇(s)‖α(s) =
d(x, y)

t
≤ R

t
.

Note that the Lagrangian L(·, ·, i) is bounded on the compact set

L :=

{
(z, v) : ‖v‖z ≤

R

t

}
⊂ TM
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for all i ∈ I. Thus, there exists B ≥ 0 such that L(z, v, i) ≤ B for every (z, v, i) ∈ L × I. Then,∫ t

0

L
(
γM (s), γ̇M (s), γI(s)

)
ds ≤

∫ t

0

L
(
α(s), α̇(s), γI(s)

)
ds ≤ Bt. (31)

According to the third condition in Definition 2.1, there exists C ∈ R such that∫ t

0

‖γ̇M (s)‖γM (s) ds− Ct ≤
∫ t

0

L
(
γM (s), γ̇M (s), γI(s)

)
ds. (32)

Combining (31) and (32), we obtain

1

t

∫ t

0

‖γ̇M (s)‖γM (s) ds ≤ B + C =: C1, (33)

which implies the existence of s̄ ∈ (0, t) such that ‖γ̇M (s̄)‖γM (s̄) ≤ C1.
Set

θ := max
{
E(x, v, i) : (x, v, i) ∈ TM × I, x ∈M , ‖v‖x ≤ C1

}
.

Then E
(
γM (s̄), γ̇M (s̄), γI(s̄)

)
≤ θ and, by the conservation of energy (Proposition 3.8), we obtain

E
(
γM (s), γ̇M (s), γI(s)

)
≤ θ for every s ∈ [0, t]. Therefore (γM , γ̇M ) is contained in the compact

set
{

(x, v) ∈ TM ; x ∈ M, E(x, v, i) ≤ θ ∀ i
}
. Thus, there exists a constant C ′ > 0 such that

‖γ̇M (s)‖γM (s) ≤ C ′ for all s ∈ [0, t].

Our regularity result is the following.

Proposition 3.12 (Semiconcavity). Assume that A1–A4 hold. Then,

(i) For any i, j ∈ I, the restricted cost function h̄t(·, ·) := ht
(
(·, i), (·, j)

)
: M ×M → R given by (3) is

semiconcave on M ×M , with a linear modulus of semiconcavity.

(ii) For any x, y ∈M and any i, j, k ∈ I,

ht
(
(x, i), (y, j)

)
− ht

(
(x, i), (y, k)

)
≤ ψ(x, k, j).

Remark 3.13. Proposition 3.12 implies that h̄t is differentiable almost everywhere.

Proof of Proposition 3.12. First, we prove (i). We fix a local chart and identify M with an open subset
of Rd, for definiteness, BR(0), with R > 0 large enough. For x1, x2 ∈ B1(0), we consider γ ∈ AC ×P an
action minimizer from (x1, i) to (x2, j). Hence,

h̄t(x1, x2) =

∫ t

0

L
(
γM (s), γ̇M (s), γI(s)

)
ds+ ψ

(
x1, i, γI(0+)

)
+

N∑
`=0

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
+ ψ

(
x2, γI(t−), j

)
.

(34)

We claim that h̄t is semiconcave in B1(x1) × B1(x2). By Lemma 3.11, there exists a constant C such
that

‖γ̇M (s)‖ ≤ C for all s ∈ [0, t].

Moreover, we know γM
(
[0, t]

)
⊂ BR(0). Next, we choose ε > 0 such that Cε < 1. This implies

γM ([0, ε]) ⊂ B2(x1) and γM ([t− ε, t]) ⊂ B2(x2).

For y1, y2 ∈ B2, we define

γ̃M (s) =


ε− s
ε

y1 + γM (s) for s ∈ [0, ε],

γ(s) for s ∈ [ε, t− ε],
s− t+ ε

ε
y2 + γM (s) , for s ∈ [t− ε, t].

(35)
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Observe that γ̃M and ˙̃γM are bounded as well. Because γ̃M (0) = x1 + y1, γ̃M (t) = x2 + y2, and we can
take ε > 0 sufficiently small such that ε < min{t1, t− tN}, we have

h̄t(x1 + y1, x2 + y2)− h̄t(x1, x2) ≤ Jt[γ̃M ]− Jt[γM ]

=

∫ ε

0

[
L
(ε− s

ε
y1 + γM (s),−1

ε
y1 + γ̇M (s), γI(s)

)
− L(γM , γ̇M , γI)

]
ds

+

∫ t

t−ε

[
L
(s− 1 + ε

ε
y2 + γM (s),

1

ε
y2 + γ̇M (s), γI(s)

)
− L(γM , γ̇M , γI)

]
ds

+ ψ
(
x1 + y1, i, γI(0+)

)
− ψ

(
x1, i, γI(0+)

)
+ ψ

(
x2 + y2, γI(t−), j

)
− ψ

(
x2, γI(t−), j

)
.

(36)

Since L and ψ are both of class C2, we obtain

h̄t(x1 + y1, x2 + y2)− h̄t(x1, x2) ≤ Ft(y1, y2) + C
(
‖v‖2 + ‖z‖2

)
,

where

Ft(y1, y2) :=

∫ ε

0

(
ε− s
ε

∂L

∂x

(
γM , γ̇M , γI

)
· y1 −

1

ε

∂L

∂v

(
γM , γ̇M , γI

)
· y1

)
ds

+

∫ t

t−ε

(
s− 1 + ε

ε

∂L

∂x

(
γM , γ̇M , γI

)
· y2 +

1

ε

∂L

∂v

(
γM , γ̇M , γI

)
· y2

)
ds

+ ∂xψ
(
x1, i, γI(0+)

)
· y1 + ∂xψ

(
x2, γI(t−), j

)
· y2.

(37)

is a linear function. This proves that ht is locally semiconcave. By the compactness of M ×M , ht is
semiconcave and (i) holds.

Next, we prove (ii). Let γ ∈ AC([0, t];M)× P([0, t]; I) be such that γ(0) = (x, i), γ(t) = (y, k), and

ht
(
(x, i), (y, k)

)
= Jt[γ].

Define γ̃ : [0, t+ δ]→M × I by

γ̃(s) :=

{
γ(s) in [0, t),
(y, j) in [t, t+ δ].

(38)

Then
ht+δ

(
(x, i), (y, j)

)
≤ Jt+δ[γ̃] = ht

(
(x, i), (y, k)

)
+ δ L(x, 0, j) + ψ(x, k, j).

Letting δ → 0 ends the proof (note that ht is continuous with respect to t, as it is easy to prove by a
simple reparametrization argument).

Proposition 3.12 characterizes the superdifferential of h̄t, as we state next:

Corollary 3.14. Assume that A1–A4 hold. For any action minimizer γ = (γM , γI) satisfying γM (0) = x
and γM (t) = y, the linear functional Ft given by (37) is a superdifferential of h̄t at (x, y), and it can be
written as

Ft(y1, y2) =
∂L

∂v

(
γM (t), γ̇M (t), γI(t−)

)
· y2 −

∂L

∂v

(
γM (0), γ̇M (0), γI(0+)

)
· y1

+ ∂xψ
(
γM (0), i, γI(0+)

)
· y1 + ∂xψ

(
γM (t), γI(t−), j

)
· y2.

(39)

In particular, if h̄t is differentiable at (x, y), then

d(x,y)h̄t · (y1, y2) =
∂L

∂v

(
γM (t), γ̇M (t), γI(t−)

)
· y2 −

∂L

∂v

(
γM (0), γ̇M (0), γI(0+)

)
· y1

+ ∂xψ
(
γM (0), i, γI(0+)

)
· y1 + ∂xψ

(
γM (t), γI(t−), j

)
· y2.

(40)

Proof. Clearly, Ft given by (37) is in the superdifferential of h̄t. To prove the representation formula
(39), it is enough to use the Euler-Lagrange equations (4) and integrate by parts in (37).

Remark 3.15. The terms involving ∂xψ disappear if there are no switches at the endpoints.
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4 Weakly coupled systems of Hamilton-Jacobi equations

Here, we prove Theorem 1.4 and Theorem 1.6. First, in Subsection 4.1, we introduce time-dependent
systems and begin our study of the Lax-Oleinik semigroup (13). We define viscosity solutions of (9) and
explain their relation to the Lax-Oleinik semigroup. Next, in Subsection 4.2, we prove Theorem 1.4.
Then, in Subsection 4.3, we define the Aubry set and study its properties. Finally, in Subsection 4.4, we
examine the long-time behavior of the Lax-Oleinik semigroup.

4.1 Lax-Oleinik semigroup and viscosity solutions

We investigate the connection between the optimal switching problem and weakly coupled systems of
Hamilton-Jacobi equations (see Propositions 4.1, 4.6, and 4.7).

Let L : TM×I → R be a Lagrangian and ψ : M×I×I → R be a switching cost. Let H : T ∗M×I →
R be the Hamiltonian (8). Consider the time-dependent system of weakly coupled Hamilton-Jacobi
equations:

max

{
∂tu(t, x, i) +H

(
x, ∂xu(t, x, i), i

)
, u(t, x, i)−min

j 6=i

{
u(t, x, j) + ψ(x, i, j)

}}
= 0, (41)

on [0,+∞)×M×I. Here, we examine viscosity solutions of (41) according to Definition 1.2, with obvious
modifications.

As in the unimodal case, the Lax-Oleinik semigroup Ttu defined by (13) gives a viscosity solution of
the time-dependent system (41).

Proposition 4.1. Assume that A1–A3 hold. Let u0 ∈ C(M × I) and Ttu0 be as in (13). Then the
function u : [0,+∞)×M × I → R defined by

u(t, A) := Ttu0(A), t ≥ 0, A ∈M × I,

is a viscosity solution of (41) with u(0, A) = u0(A).

Proof. The proof is standard and can be found in [16] (see also [1, 15]).

Proposition 4.2. Assume that A1–A4 hold. For u ∈ C(M×I), t > 0, and i ∈ I, the map x 7→ Ttu(x, i)
is semiconcave. More precisely, suppose that γ = (γM , γI) is an action minimizer from (x, i) to (x+h, i).
Then, choosing a local chart for M , we have

Ttu(x+ h, i)− Ttu(x, i) ≤ ∂L

∂v

(
γM (t), γ̇M (t), γI(t−)

)
· h+ C ‖h‖2 . (42)

Consequently,
∂L

∂v

(
γM (t), γ̇M (t), γI(t−)

)
∈ ∂+

(
Ttu
)
(x, i).

Proof. By compactness, there exists B ∈M × I such that

Ttu(A) = u(B) + ht(B,A).

Thus,
Ttu(x+ h, i)− Ttu(x, i) ≤ ht

(
B, (x+ h, i)

)
− ht(B,A).

Reasoning as in the proof of Proposition 3.12, we have

Ttu(x+ h, i)− Ttu(x, i) ≤ ∂L

∂v

(
γM (t), γ̇M (t), γI(t−)

)
· h+K ‖h‖2 , (43)

as desired.

Before discussing the Lax-Oleinik semigroup and the solutions of (9), we prove some auxiliary results:

Lemma 4.3. Assume that A1–A4 hold. Let v ∈ C(M × I) and A = (x, i) ∈ M × I. Then there exists
a minimizer γ = (γM , γI) ∈ AC × P for the Lax-Oleinik operator (13). In other words, there exists γ
such that

Ttv(A) = v
(
γ(0)

)
+ Jt[γ].

Moreover, if v is a subsolution of (9) for some constant c ∈ R, we can choose γ to have no switch at
t = 0.
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Proof. Let A = (x, i) ∈ M × I. By compactness, there exists B = (y, j) ∈ M × I such that Ttv(A) =
v(B) + ht(B,A). Furthermore, Theorem 1.1 implies the existence of a curve, γ : [0, t] → M × I, with
γ(0) = B and γ(t) = A, for which

Ttv(A) = v(γ(0)) +

∫ t

0

L(γM , γ̇M , γI) + ψ
(
γM (0), γI(0), γI(0+)

)
+

N∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), γI(t)).

(44)

This proves the existence of a minimizing curve.
Now we prove that, if v is a subsolution, γ can be chosen such that γI(0) = γI(0+). Let B̃ =(

γM (0), γI(0+)
)
. Thus,

Ttv(A) ≤ v(B̃) + ht(B̃, A) = v
(
γM (0), γI(0+)

)
+

∫ t

0

L(γM , γ̇M , γI)

+

N∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), γI(t)).

(45)

According to (44) and (45), we have

v
(
γM (0), γI(0)

)
+ ψ

(
γM (0), γI(0), γI(0+)

)
≤ v
(
γM (0), γI(0+)

)
.

Because v is a subsolution, the opposite inequality holds (recall Remark 1.3(ii)). Hence,

v
(
γM (0), γI(0)

)
+ ψ

(
γM (0), γI(0), γI(0+)

)
= v
(
γM (0), γI(0+)

)
.

Consequently, the switch at t = 0 is unnecessary, and we can set γI(0) := γI(0+).

Lemma 4.4. Assume that A1–A4 hold. Let v is a subsolution of (9) for some constant c ∈ R. Fix
t > 0, and let γ = (γM , γI) ∈ AC × P be a minimizer for the Lax-Oleinik operator as in Lemma 4.3.
Then, if t > 0 sufficiently small, γ has at most one switch.

Proof. First, by the same argument as in the unimodal case, viscosity subsolutions are Lipschitz. Hence,
there exists K1 > 0 such that

|v(z, i)− v(y, i)| ≤ K1d(z, y) for any z, y ∈M and for all i ∈ I.

Fix K2 > 0 to be selected later. By the superlinearity of L, there exists a constant C ≥ 0 such that

(K1 +K2) ‖v‖x − C ≤ L(x, v, i).

Let K3 > 0 be the Lipschitz constant of ψ, that is,

|ψ(z, i, j)− ψ(y, i, j)| ≤ K3d(z, y) for any y, z ∈M and i, j ∈ I.

Let γ be a minimizer. Because v is a subsolution we have v
(
x, γI(0)

)
≥ v(x, i) − ψ(x, γI(0), i) (see
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Remark 1.3(ii)). In addition, by Lemma 4.3, we can assume that no switch occurs at t = 0. Therefore,

Ttv(A) ≥ v
(
x, γI(0)

)
+ (K1 +K2)

∫ t

0

‖γ̇M (τ)‖γM (τ) dτ − Ct+ v
(
γM (0), γI(0)

)
− v
(
x, γI(0)

)
+

N∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)

≥ v(x, i)−K1d
(
γM (0), x

)
+ (K1 +K2)

∫ t

0

‖γ̇M (τ)‖γM (τ) dτ − Ct

+

N∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)− ψ(x, γI(0), i)

≥ v(x, i) +K2

∫ t

0

‖γ̇M (τ)‖γM (τ) dτ − Ct+

N∑
`=1

ψ
(
x, γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)

− ψ(x, γI(0), i) +

N∑
`=1

[
ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
− ψ

(
x, γI(t`), γI(t`+1)

)]
≥ v(x, i) +K2

∫ t

0

‖γ̇M (τ)‖γM (τ) dτ − Ct+

N∑
`=1

ψ
(
x, γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)− ψ(x, γI(0), i)−K3

N∑
`=1

d
(
γM (t`), x

)
.

(46)

Select K2 ≥ N K3. Because the number of switches of any minimizer is universally bounded (see the
first step in the proof of Theorem 3.3), K2 is bounded by a universal constant. Consequently, we have

Ttv(A) ≥ v(A)− Ct+

N∑
`=1

ψ
(
x, γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)− ψ(x, γI(0), i). (47)

Because γI(t−1 ) = γI(0) (recall that no switch occurs at t = 0), if γ has two or more switches, it follows
from A2 that

N∑
`=1

ψ
(
x, γI(t−` ), γI(t+` )

)
+ ψ(x, γI(t−), i)− ψ(x, γI(0), i) ≥ δ > 0. (48)

Therefore,

Ttv(A) ≥ v(A) + δ − Ct. (49)

On the other hand, by choosing γ̄(s) := A for s ∈ [0, t], we get

Ttv(A) ≤ v(A) + Jt[γ̄] ≤ v(A) + Ct.

The previous inequality combined with (49) gives a contradiction if t > 0 is sufficiently small.

Lemma 4.5. Assume that A1–A4 hold. Let v be a subsolution of (9) and fix (x, i) ∈ M × I. Assume
further that

v(x, i) < min
j 6=i

{
v(x, j) + ψ(x, i, j)

}
. (50)

Then, there exists s0 = s0(x) such that

Tsv(x, i) = inf
γM (s)=x

{
v(γM (0), i) +

∫ s

0

L(γM , γ̇M , i)

}
∀ s ∈ [0, s0]. (51)

Proof. Fix a neighborhood N of x in M such that (50) holds in N . We claim that we can select s > 0
so that any minimizing curve γ for Tsv(x, i) is contained in N . To see this, we recall that Tsv(y, i) ≤ C
for (s, y) ∈ [0, s0]×M . Accordingly, by the superlinearity of L(·, ·, i), for any ε > 0 there exists Cε ≥ 0
such that

− C +
1

ε

∫ s

0

‖γ̇M‖γM − Cεs ≤ v
(
γ(0)

)
+

∫ s

0

L
(
γM , γ̇M , γI

)
≤ C. (52)
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The prior inequality implies that

d
(
γM (s′), x

)
≤
∫ s

0

‖γ̇M‖γM ≤ Cε+ Cεεs ∀ s′ ∈ [0, s].

Given ρ > 0, we choose ε < δ/2C; then, we fix s > 0 sufficiently small such that Cεεs ≤ δ/2. Therefore
we have

d
(
γM (s′), x

)
≤ ρ ∀ s′ ∈ [0, s]. (53)

Now, suppose γI(0) = j 6= i. By Lemma 4.4, we have only one switch if s > 0 is small enough.
Thanks to (50) and (53), by choosing ρ sufficiently small, we gather that

v
(
γM (0), j

)
+ ψ

(
γM (0), j, i

)
≥ v
(
γM (0), i

)
+ δ0 (54)

for some δ0 > 0. Then, arguing as in the proof of Lemma 4.4 and using (54) instead of (48), we get that

Tsv(A) ≥ v(A) + δ0 − Cs,

which is a contradiction if s is sufficiently small. Consequently, we cannot have switches for 0 < s <
s0(x).

Next, we investigate the connection between the Lax-Oleinik semigroup and viscosity solutions of
(9).

Proposition 4.6. Assume that A1–A4 hold. A Lipschitz function u : M × I → R is a viscosity
subsolution of (9) if and only if u ≤ Ttu+ ct for all t ≥ 0.

Proof. To simplify, we assume that c = 0. This can be achieved, without loss of generality, by subtracting
c from L if necessary. If u is a subsolution then, as in the unimodal case (see for instance [13]),

u(γM (τ), i)− u(γM (τ ′), i) ≤
∫ τ

τ ′
L
(
γM (s), γ̇M (s), i

)
ds

for any 0 ≤ τ ′ ≤ τ and any γM : [τ ′, τ ]→M .
We fix a curve γ : [0, t] → M × I with γ(t) = A, and we recall that γI(t+` ) = γI(t−`+1). Using the

convention γI(t+N+1) = γI(t), we get

u(A)− u
(
γ(0)

)
=

N∑
`=0

[
u
(
γ(t+`+1)

)
− u
(
γ(t+` )

)]
=

N∑
`=0

[
u
(
γM (t`+1), γI(t+` )

)
− u
(
γM (t`), γI(t+` )

)]
+

N∑
`=0

[
u
(
γM (t`+1), γI(t+`+1)

)
− u
(
γM (t`+1), γI(t+` )

)]
≤

N∑
`=0

∫ t`+1

t`

L
(
γM (s), γ̇M (s), γI(t+` )

)
ds+

N∑
`=0

ψ
(
γM (t`+1), γI(t−`+1), γI(t+`+1)

)
.

(55)

Therefore, u ≤ Ttu.
To prove the converse implication, we fix (x0, i0) and take γ satisfying γ(t0) = (x0, i0), γM (t) = x,

γI ≡ i0, and γ̇M (t0) = v. Then,

u(x0, i0) ≤ u
(
γM (t), i0

)
+

∫ t0

t

L
(
γM , γ̇M , i0

)
ds.

Fix a C1 function φ such that u(·, i0)− φ has a maximum at x0. Then,

φ(x0)− φ(γM (t))

t0 − t
≤ 1

t0 − t

∫ t0

t

L
(
γM , γ̇M , γI

)
ds.

Hence,
dφ(x0) · v ≤ L(x0, v, i0).

Because v is arbitrary, we get
H
(
x0, dφ(x0), i0

)
≤ 0.
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To complete the proof, we observe that the Lax-Oleinik semigroup solves (41) (see Proposition 4.1).
Consequently,

Ttu(x, i) ≤ Ttu(x, j) + ψ(x, i, j).

We let t→ 0 to obtain
u(x, i) ≤ u(x, j) + ψ(x, i, j).

Proposition 4.7. Suppose A1–A4 hold. A semiconcave function u : M × I → R is a viscosity solution
of (9) if and only if u = Ttu+ ct for all t ≥ 0.

Proof. Again, we assume for simplicity that c = 0. The ‘if’ part is the same as in the classical case (see
Proposition 4.1).

To prove the converse statement, assume that u : M × I → R solves (9). Then, for any i ∈ I,

max
{
H
(
x, du(x), i

)
− c0, u(x, i)−Ψu(x, i)

}
= 0 (56)

in the viscosity sense (see Definition 1.2). We claim that, for each (x, i) ∈ M × I, there exists s0 =
s0(x, i) > 0 such that Tsu = u for all 0 ≤ s < s0(x, i). This claim and the semigroup property give that
the set of times s such that Tsu = u is open. By continuity, this set is also closed; this proves the result.

To establish the claim, we consider two cases.
Case 1: u(x, i) < Ψu(x, i). Select a neighborhood Ũ of x such that u < Ψu in Ũ . Next, we apply
Lemma 4.5 as follows. If s > 0 is sufficiently small, there exists U ⊆ Ũ such that Tsu(y, i) cannot have
switches for any y ∈ U ⊂ Ũ . Hence, because u is semiconcave and H

(
y, du(y), i

)
= c0 on U, the classical

theory implies u(y, i) = Tsu(y, i) for all y ∈ U ; this proves the claim in this case.
Case 2: u(x, i) = Ψu(x, i). This means that there exists j ∈ I\{i} such that

u(x, i) = u(x, j) + ψ(x, j, i). (57)

We claim that
u(x, j) < Ψu(x, j). (58)

To verify the claim, we argue by contradiction. If the preceding inequality fails, we have u(x, j) =
Ψu(x, j) = u(x, k) + ψ(x, k, j) for some k 6= i, j. Hence, (57) and Assumption A2 imply that

Ψu(x, i) = u(x, i) = u(x, k) + ψ(x, k, j) + ψ(x, j, i) > u(x, k) + ψ(x, k, i),

which is a contradiction. Therefore, (58) holds.
By the argument in Case 1, we have u(x, j) = Tsu(x, j) for s > 0 small. This, together with (57) and

Proposition 4.1, implies

u(x, i) = u(x, j) + ψ(x, j, i) = Tsu(x, j) + ψ(x, j, i) ≥ Tsu(x, i).

Because u is a subsolution, the other inequality follows from the previous proposition.

To end this section, we prove two more properties of the Lax-Oleinik semigroup.

Proposition 4.8. Assume that A1–A4 hold. For every i ∈ I, the map u 7→ Ttu(·, i) is a weak contraction
in the L∞(M)-norm; that is, for any two continuous functions g, h : M × I → R, we have

‖Ttg(·, i)− Tth(·, i)‖L∞(M) ≤ ‖g(·, i)− h(·, i)‖L∞(M) .

Proof. From (13), we have Tt(g + c)(·, i) = Ttg(·, i) + c for c ∈ R. Moreover, if g(·, i) ≤ h(·, i), for every
i ∈ I, then Ttg(·, i) ≤ Tth(·, i). Thus, from

h(·, i)− ‖g(·, i)− h(·, i)‖L∞(M) ≤ g(·, i) ≤ h(·, i) + ‖g(·, i)− h(·, i)‖L∞(M) ,

we conclude that

Tth(·, i)− ‖g(·, i)− h(·, i)‖L∞(M) ≤ Ttg(·, i) ≤ Tth(·, i) + ‖g(·, i)− h(·, i)‖L∞(M) ,

as desired.
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Proposition 4.9. Assume that A1–A4 hold. The Lax-Oleinik semigroup (13) is a semigroup; that is,

Tt(Tsu) = Tt+su ∀ t, s ≥ 0. (59)

Proof. First, the same argument as in the classical unimodal case (see, for instance, [13]) shows that the
function ht given by (3) satisfies

ht+s(A,B) = inf
C∈M×I

{
ht(A,C) + hs(C,B)

}
. (60)

Hence, using (60), for A ∈M × I we have

Tt+su(A) = inf
B∈M×I

{
u(B) + ht+s(B,A)

}
= inf
B∈M×I

{
u(B) + inf

C∈M×I

[
ht(B,C) + hs(C,A)

]}
= inf
C∈M×I

{
hs(C,A) + inf

B∈M×I

[
u(B) + ht(B,C)

]}
= inf
C∈M×I

{
Tt(C) + hs(C,A)

}
= Ts(Ttu)(A),

(61)

which proves (59).

4.2 The Weak KAM theorem for optimal switching problems

Here we prove Theorem 1.4. As in the original Weak KAM Theorem, see [12], we show that the Lax-
Oleinik semigroup converges to a viscosity solution of (12).

We begin by proving that the critical value c0 can be defined as the infimum among all constants
c ∈ R for which (9) admits a viscosity subsolution.

Proposition 4.10. Assume that A1–A4 hold. Then, there exists a unique constant c0 ∈ R for which:

(i) the equation (12) has a subsolution;

(ii) for any c ∈ R such that (9) has a subsolution, c ≥ c0.

Proof. Define c0 ∈ R by
c0 := inf

{
c ∈ R : (9) has a subsolution

}
.

For c large enough, u ≡ 0 is a subsolution. Therefore, the previous infimum is taken over a nonempty
set. Moreover c0 ≥ min(x,p,i)∈T∗M×I H(x, p, i) > −∞, hence c0 cannot be −∞.

To show that this infimum is a minimum, let cj ∈ R be a minimizing sequence for c0, that is, cj → c0.
Let uj be a subsolution of (9) for c = cj . Because uj(·, i) is uniformly Lipschitz, up to adding a constant
to uj and extracting a subsequence, there exists u such that uj(·, i) → u(·, i). The stability of viscosity
subsolutions implies that u is a subsolution of (12).

Lemma 4.11. Assume that A1–A4 hold and that u : M × I → R is a subsolution of (12). Then, for
any t ∈ [0,∞), there exists At = (xt, it) ∈M × I such that u(At) = Ttu(At) + c0t.

Proof. By contradiction, assume that the statement is false. Thus, there exists t0 > 0 such that, for
every A ∈M × I,

u(A) < Tt0u(A) + c0t0.

Because M is compact, there exists ε > 0 such that, for all A ∈M × I,

u(A) < Tt0u(A)− ε+ c0t0 =: T̃t0u(A), (62)

where

T̃tu(A) := inf

{
u(γ(0)) +

∫ t

0

(
L
(
γM (s), γ̇M (s), γI(s)

)
+ c̃
)
ds+

N+1∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)}
,

with t+N+1 := t and c̃ := c0 − ε/t0.
Let

ũ := inf
τ≥0

T̃τu.

Note that by (62) and the semigroup property, T̃nt0u ≥ u for all n ≥ 1. Thanks to this fact, it follows
easily that ũ is finite. Next, for any h > 0, we have

T̃hũ = inf
τ≥0

T̃τ+hu = inf
τ≥h

T̃τu ≥ ũ. (63)
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Consequently, Proposition 4.6 shows that ũ is a subsolution of

max
{
H
(
x, du(x, i), i

)
− c̃, u(x, i)−Ψu(x, i)

}
= 0 ∀ i. (64)

On the other hand, by the definition of c0, we have

c0 < c̃ = c0 − ε/t0,

a contradiction.

Proposition 4.12. Assume that A1–A4 hold and that u : M × I → R is a subsolution of (12). Then,
for every i ∈ I, Ttu(·, i) + c0t is uniformly bounded in t; that is,

sup
t≥0
‖Ttu(·, i) + c0t‖L∞(M) < +∞.

Proof. Without loss of generality, by subtracting c0 from L if necessary, we assume that c0 = 0.
Thanks to Lemma 4.11, for any t ≥ 0 there exists At = (xt, it) ∈M ×I such that (Ttu− u)(At) = 0.

Since Ttu(·, it)− u(·, it) is uniformly Lipschitz and vanishes at one point, we have

|Ttu(x, it)− u(x, it)| = |(Ttu− u)(x, it)− (Ttu− u)(At)|
≤ 2Cd(x, xit) ≤ 2C diam(M) ≡ CM .

(65)

By Proposition 4.1, Ttu solves (41) for any i ∈ I. Consequently, we have that

Ttu(x, it)− ψ(x, it, i) ≤ Ttu(x, i) ≤ Ttu(x, it) + ψ(x, i, it).

This implies that
|Ttu(·, i)| ≤ ‖u(·, it)‖L∞(M) + CM + sup

x∈M,i6=j
ψ(x, i, j),

proving the result.

Proposition 4.13. Assume that A1–A4 hold. If u : M ×I → R is a subsolution of (12), then Ttu+ c0t
converges to a fixed point of Tt + c0t.

Proof. Again, without loss of generality, we assume that c0 = 0. Because u is a subsolution of (9),
u ≤ Ttu, for all t ≥ 0. By the monotonicity of the Lax-Oleinik semigroup, we have

Tsu ≤ Ts+tu for all t ≥ 0.

By Proposition 4.12, Ttu is also uniformly bounded in t. Thus, the pointwise limit

u∞(x, i) := lim
t→+∞

Ttu(x, i)

exists everywhere in M . Since Ts is continuous, we conclude that, for any s ≥ 0,

Tsu
∞(x, i) = lim

t→+∞
Ts+tu(x, i) = u∞(x, i).

Proof of Theorem 1.4. By Proposition 4.7, the proof follows by combining Propositions 4.10 and 4.13.

4.3 The Aubry set

In this section we examine the Aubry set A and investigate various properties used in the analysis of
the Lax-Oleinik semigroup. The Aubry set for optimal switching problems was first defined in [15]. Our
definition, Definition 1.5, is distinct from that one. There, A is the set of all points B in M × I for
which property (ii) of the next proposition is satisfied. However, these two definitions are equivalent as
we prove next.

Proposition 4.14. Assume that A1–A4 hold. The following are equivalent:

(i) B ∈ A;
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(ii) there exists δ > 0 such that inf
{
Jt[γ] + c0t

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}

= 0;

(iii) for every δ > 0, inf
{
Jt[γ] + c0t

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}

= 0.

Proof. (i) =⇒ (ii). Let ε > 0. If B ∈ A, then there exists a sequence tk → +∞ for which htk(B,B) +
c0tk → 0. Let γk : [0, tk]→M × I with γk(0) = γk(tk) = B be such that

htk(B,B) + c0tk +
ε

2
≥ Jtk [γk] + c0tk.

Without loss of generality, we can assume tk ≥ 1 for all k. Since htk(B,B) + c0tk → 0, if k is large
enough we get ε ≥ Jtk [γk] + c0tk. Thus, (ii) holds with δ = 1.

Before proceeding further we recall that, by Proposition 4.6, any critical subsolution satisfies

u
(
γ(t)

)
− u
(
γ(0)

)
≤ Jt[γ] + c0t ∀ γ ∈ AC([0, t];M)× P([0, t]; I).

Hence, the action on loops is always nonnegative.
(ii) =⇒ (iii). Let δ0 > 0 be such that the infimum in (ii) is zero. To show (iii), fix any δ > 0.
If δ < δ0,

0 ≤ inf
{
Jt[γ] + c0t

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}
≤ inf

{
Jt[γ] + c0t

∣∣∣ t ≥ δ0, γ(0) = γ(t) = B
}

= 0,

where the first inequality follows from the fact that the action on loops is nonnegative.
Otherwise, if δ > δ0, we fix m ∈ N such that δ < mδ0. For any γ : [0, t]→M ×I with period t ≥ δ0,

we denote the concatenation of γ with itself m times by γ̄ : [0,mt]→M × I. Naturally,

Jmt[γ̄] + c0mt = m
(
Jt[γ] + c0t

)
.

The concatenation does not create new switches since γ is a loop. Since mt ≥ mδ0 ≥ δ, we know

0 ≤ inf
{
Jt[γ] + c0t

∣∣∣ t ≥ δ, γ(0) = γ(t) = B
}
≤ inf

{
Jt[γ] + c0t

∣∣∣ t ≥ mδ0, γ(0) = γ(t) = B
}

= 0,

so (iii) holds in the general case.
(iii) =⇒ (i). Take k ∈ N and δ = k. By (iii), there exist tk ≥ k and γk with γk(0) = γk(tk) = B

such that

Jtk [γk] + c0tk <
1

k
.

Hence, by (14), B ∈ A.

Definition 4.15 (Critical Curve). γ : R → M × I is a critical curve if, for any subsolution u :
M × I → R of (12) and all t1 < t2,

u
(
γ(t2)

)
− u
(
γ(t1)

)
=

∫ t2

t1

[
L
(
γM (s), γ̇M (s), γI(s)

)
+ c0

]
ds+

N+1∑
`=1

ψ
(
γM (s`), γI(s−` ), γI(s+

` )
)
,

where the sum above is taken for all ` such that t1 < s` < t2, with the convention s+
N+1 = t2.

Proposition 4.16 (Existence of critical curves). Assume that A1–A4 hold. Given B = (y, j) ∈ A,
there exists a critical curve γ : R→M × I with γ(0) = B.

Proof. Without loss of generality, assume c0 = 0. Let ηk : [0, tk]→M ×I, with ηk(0) = B = ηk(tk) and
tk ≥ k, be such that

Jtk [ηk] =

∫ tk

0

L
(
ηkM (s), η̇kM (s), ηI(s)

)
ds+

Nk∑
`=1

ψ
(
ηkM (s`), η

k
I(s−` ), ηkI(s+

` )
)
→ 0.

We set γk : [−tk/2, tk/2]→M × I as γk(s) := ηk(s+ t`/2). Then,∫ tk/2

−tk/2
L
(
γkM (s), γ̇kM (s), γkI(s)

)
ds+

Nk∑
`=1

ψ
(
γkM (s`), γ

k
I(s−` ), γkI(s+

` )
)
→ 0.
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It follows from the argument in Theorem 3.3 that the number of switches grows at most linearly,
otherwise Jtk [ηk] would diverge. Also, we can take γk to be an action minimizer. Thus,

0 ≤ 1

tk

∫ tk/2

−tk/2
L
(
γkM (s), γ̇kM (s), γkI(s)

)
ds+

1

tk

Nk∑
`=1

ψ
(
γkM (s`), γ

k
I(s`)

−, γkI(s+
` )
)
→ 0.

Furthermore, there exists tk0 ∈ [−tk/2, tk/2] for which L
(
γkM (tk0), γ̇kM (tk0), γkI(tk0)

)
≤ C. Consequently, by

the superlinearity of L, ∥∥γ̇kM (tk0)
∥∥
γk
M (tk0 )

≤ L
(
γkM (tk0), γ̇kM (tk0), γkI(tk0)

)
+ C ≤ C.

By energy conservation (see Proposition 3.8), the curve (γkM , γ̇
k
M ) is contained in a compact subset of

TM . Thus, by a diagonal argument, we can build a curve γM : R→M such that, for every fixed interval
[−T, T ],

γkM → γM , uniformly in [−T, T ], and γ̇kM ⇀ γ̇M , weakly in L1
(
[−T, T ]

)
. (66)

The argument in the proof of Theorem 3.3 shows that we can define a limit γI of γkI (see (22)) for which∫ b

a

L(γM (s), γ̇M (s), γI(s)) ds+

N∑
`=0

ψ
(
γI(t`), γI(t−` ), γI(t+` )

)
≤ lim inf

k

(∫ b

a

L(γkM (s), γ̇kM (s), γkI(s)) ds+

N∑
`=0

ψ
(
γI(tk` ), γI((tk` )−), γI((tk` )+)

))
.

Finally, we prove γ is a critical curve. Consider a subsolution u of (12), and a ≤ b. We have

0 ≤ u(γk(a))− u(γk(b)) +

∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)

=: Ik1 . (67)

Since γk : [−tk/2, tk/2] → M is a loop, assuming that k is large enough so that [a, b] ⊂ [−tk/2, tk/2],
using again that u is a subsolution u of (12) we have

0 ≤ u(γk(b))− u(γk(a)) +

∫ tk/2

b

L(γkM , γ̇
k
M , γ

k
I) +

∫ a

−tk/2
L(γkM , γ̇

k
M , γ

k
I)

+
∑

[−tk/2,tk/2]\[a,b]

ψ(γkM , γ
k−
I , γk+

I ) =: Ik2 .
(68)

By adding these inequalities, we obtain

0 ≤
∫ tk/2

−tk/2
L(γkM , γ̇

k
M , γ

k
I) +

∑
[−tk/2,tk/2]

ψ(γkM , γ
k−
I , γk+

I )→ 0.

This proves that the numbers Ik1 ≥ 0 and Ik2 ≥ 0 satisfy Ik1 + Ik2 → 0. In particular, each of them
converges to zero. Therefore,

lim
k

{
u(γk(a))− u(γk(b)) +

∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)}

= 0.

To conclude, we note that the lower semicontinuity implies

u(γ(b))− u(γ(a)) = lim inf
k

{∫ b

a

L(γkM , γ̇
k
M , γ

k
I) ds+

∑
[a,b]

ψ
(
γkM , γ

k−
I , γk+

I
)}

≥
∫ b

a

L(γM , γ̇M , γI) +
∑
[a,b]

ψ
(
γM , γ

−
I , γ

+
I
)

while the opposite inequality follows by Proposition 4.6.
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Proposition 4.17. Let U ⊂ M × I be an open set such that U ⊆ (M × I)\A. Then there exists a
subsolution v of (12) that strict in U ; that is,

(i) for all (y, j) 6∈ A and p ∈ ∂+vj(y), we have H(y, p, j) < 0;

(ii) for all i 6= j, vj(y)− vi(y) < ψ(i, j).

Furthermore, v is smooth in (M × I)\A.

Proof. See [15, Lemma 4.2].

Proposition 4.18. Assume A1–A4 hold. Then, every critical curve is contained in the projected Aubry
set A.

Proof. From the remarks after [15, Theorem 3.6], we have that for every (x, i) ∈ A and every subsolution
u of (12), u(·, i) cannot be a strict subsolution at x. Accordingly, at least one of the following holds:

(i) either H
(
x, du(x, i), i

)
= 0, in the viscosity sense;

(ii) or v(x, i)− v(x, j) = ψ(x, i, j) for some j 6= i.

Then the result follows from the previous proposition.

Consider a subsolution u of (12). The proof of Proposition 4.17 ensures that, given U with Ū ⊂
(M × I)\A, we can approximate u uniformly by subsolutions v that are strict and smooth in U . We
apply this result to prove a comparison principle:

Corollary 4.19 (Comparison Principle). Suppose that A1–A4 hold. Let u be a subsolution of (12),
w be a supersolution of (12), and assume that u ≤ w on A. Then, u ≤ w in M × I.

Proof. By contradiction, suppose that
min
M×I

(w − u) < 0, (69)

and consider a set U , with Ū ⊂ (M × I)\A, such that minM×I(w − u) = minU (w − u). Then, consider
a sequence vn of subsolutions, strict and smooth in U , that converges uniformly to u and such that

w(xn, in)− vn(xn, in) = min
M×I

(w − vn), (70)

with (xn, in) ∈ U for n � 1. By (70), it follows that dxnvn ∈ ∂−w(xn, in). Since w is a supersolution,
we have:

- either H(xn, dxn
vn, in) ≥ 0;

- or vn(xn, in)− vn(xn, j) = ψ(xn, in, j) for some j 6= in.

Because both alternatives contradict Proposition 4.17, the result follows.

Next, we examine properties of a particular solution of (12) that we use later to study the large time
behavior of the Lax-Oleinik semigroup.

Given u0 ∈ C(M × I), we consider

v(A) := inf
B∈A

{
h(B,A) + inf

C∈M×I

{
u0(C) + h(C,B)

}}
, (71)

where h is the Peierls barrier defined in (14). Next, we prove that v is a critical solution in M × I. We
have (compare to [9, Theorem 3.1]) the following result.

Proposition 4.20. Suppose that A1–A4 hold and set

v0(B) := inf
C∈M×I

{
u0(C) + h(C,B)

}
∀B ∈M × I.

Let v be as in (71). Then
v(A) = inf

B∈A

{
v0(B) + h(B,A)

}
and the following hold:
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1. v0 is the maximal subsolution with v0 ≤ u0 on M × I;

2. v is a solution and v = v0 on A;

3. If u0(B)− u0(A) ≤ h(B,A) for all A,B ∈M × I, then

v(A) = inf
B∈A

{
u0(B) + h(B,A)

}
in M × I, (72)

and v0 = u0 on A.

Proof. 1. By setting C = B, we get that v0 ≤ u0 on M × I. Moreover, because the infimum of
subsolutions is a subsolution, v0 is a subsolution. Consequently, the first property holds.

2. Next, select C ∈M × I such that

v0(B) = u0(C) + h(C,B).

Then,
v0(A)− v0(B) ≤ h(C,A)− h(C,B) ≤ h(B,A).

Furthermore, because h(C,B) + h(B,A) ≥ h(C,A), we have v(A) = v0(A) for A ∈ A. Thus, the second
claim follows from [15, Proposition 4.3].

3. If u0(B) − u0(A) ≤ h(B,A) for all A,B ∈ M × I, then u0 is a subsolution. Therefore u0 = v0

and thus (72) holds.

4.4 Large-time behavior of the generalized Lax-Oleinik semigroup

Let u0 : M × I → R be a subsolution of (12) and Ttw be given by (13). Theorem 1.4 combined with
Proposition 4.1 gives that the solution u(t, x) = Ttu0 +c0t of (41) converges, as t→ +∞, to a solution of
(12). Here, we investigate the convergence of the Lax-Oleinik semigroup for arbitrary initial conditions.
The long-time behavior of different but related systems was studied in [3]. The proof of Theorem 1.6 is
inspired by [9].

Without loss of generality, we assume that c0 = 0 and we set

ω(u0) :=
{
ψ : M × I → R such that ψ = Ttnu0 for some tn → +∞

}
. (73)

Next, we define the semilimits:

u(A) = sup
{
ψ(A)

∣∣ ψ ∈ ω(u0)
}

(74)

and
u(A) = inf

{
ψ(A)

∣∣ ψ ∈ ω(u0)
}
. (75)

Because the family {Ttu0}t>0 is uniformly bounded and uniformly Lipschitz, u and u are well defined.

Proposition 4.21. Suppose that A1–A4 hold. Let u and u be given by (74) and (75), respectively.
Then, u is a subsolution of (12) and u is a supersolution of (12).

Proof. To prove that u is a subsolution of (12), we use Propositions 4.6 and 4.7. A similar argument
shows that u is a supersolution. Fix t > 0. From (74), u ≥ ϕ for any ϕ ∈ ω(u0). Consequently,

Ttu ≥ Ttϕ ∀ ϕ ∈ ω(u0).

Thus,
Ttu ≥ sup

{
Ttϕ | ϕ ∈ ω(u0)

}
.

By Proposition 4.6, to prove the statement, it suffices to show that{
Ttϕ | ϕ ∈ ω(u0)

}
=
{
ϕ | ϕ ∈ ω(u0)

}
.

If ϕ ∈ ω(u0), we have
ϕ = lim

n
Ttnu0

for some tn → +∞. Also, thanks to Proposition 4.12, up to a subsequence,

Ttn−tu0 → ϕ̃ ∈ ω(u0)

Thus, Ttϕ̃ = limTtnu0 = ϕ, as desired.
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To prove Theorem 1.6, we establish the identity u = u = v on M × I.

Proposition 4.22. Suppose that A1–A4 hold. Let u and u be given by (74) and (75), respectively, and
let v be the solution of (12) given by (71). We have

v ≤ u ≤ u on M × I. (76)

Proof. Set
v0(B) := inf

C∈M×I

{
u0(C) + h(C,B)

}
.

By Proposition 4.20, v0 is the maximal subsolution below u0; that is, v0 ≤ u0 on M × I. Therefore,
Ttv0 ≤ Ttu0 on M × I.

We claim that, because v0 is a subsolution, we have Ttv0 → v. First, note that v0 ≤ Ttv0. Because v
is the maximal subsolution with v = v0 on A, we have v0 ≤ v on M × I. Hence, since v = Ttv for any
t > 0, we get

v0 ≤ Ttv0 ≤ v on M × I.

Now, v = v0 on A implies Ttv0 = v on A for all t > 0. In particular,

v = lim
t→+∞

Ttv0 on A.

Next, the Comparison Principle (Corollary 4.19) implies the same equality on M × I, as claimed.
This claim, together with Ttv0 ≤ Ttu0 on M ×I, implies that v ≤ u and v ≤ u. Since u ≤ u is clear,

the result follows.

The last step of the proof of Theorem 1.6 is to show that v ≥ u on A.

Proposition 4.23. Suppose A1–A4 hold. Let u be given by (74) and let v be the solution of (9) given
by (71). Then, u ≤ v on A.

Proof. Let φ : M × I → R be in the ω-limit set of u0; that is, φ = limn→+∞ Ttnu0 for some sequence
tn → +∞. By extracting a subsequence, we can assume that sn := tn+1 − tn →∞.

We claim that
φ = lim

n→+∞
Tsnφ.

Indeed, given ε > 0 there exists an integer, nε, such that

φ− ε ≤ Ttnu0 ≤ φ+ ε ∀n ≥ nε

Then, since sn = tn+1 − tn, we get

Tsnφ− ε ≤ Ttn+1u0 ≤ Tsnφ+ ε,

and our claim follows.
Let A ∈ A. By Proposition 4.16 there exists a critical curve γ such that A = (x, i) ∈ ω(γ); that

is, A = limt̃n→+∞ γ(t̃n) for some sequence t̃n → +∞. By extracting a suitable subsequence of t̃n, if

necessary, we can assume τn := t̃n − sn → +∞. Because γ is a critical curve and v is a subsolution, we
have

Tsnφ(γ(t̃n))− φ(γ(t+ τn)) ≤
∫ t̃n

t+τn

L(γM , γ̇M , γI) +

N+1∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
= v(γ(t̃n))− v(γ(t+ τn)).

Set
η(t) := lim

n
γ(t+ τn),

through some suitable subsequence. Then, η is also a critical curve. Moreover, by letting n → +∞, we
obtain

φ(A)− φ(η(t)) ≤ v(A)− v(η(t)).

Hence, to conclude the proof, it remains to show that

lim inf
t→∞

{
φ(η(t))− v(η(t))

}
≤ 0.
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For that, we observe

v(η(t))− v(η(0)) =

∫ t

0

L(γM , γ̇M , γI) +

N+1∑
`=1

ψ
(
γM (t`), γI(t−` ), γI(t+` )

)
≥ Ttu0(η(t))− u0(η(0)).

Because η(R) ⊂ A and v = u0 on A, we have

φ(η(t))− v(η(t)) ≤ φ(η(t))− Ttu0(η(t)) + u0(η(0))− v(η(0)) ≤ max
B∈A

∣∣φ(B)− Ttu0(B)
∣∣. (77)

Since φ = limn→+∞ Ttnu0, (77) implies the claim.

Proof of Theorem 1.6. Let u and u be given, respectively, by (74) and (75). Proposition 4.21 ensures
these are, respectively, a subsolution and a supersolution of (12). By Propositions 4.19, 4.22, and 4.23,
we have

v ≤ u ≤ u ≤ v on M × I.

Thus, these are all identities. Therefore, ω(u0) = {v}; that is, lim
t→+∞

Ttu0 = v.
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