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Abstract

Functions of bounded variation in an abstract Wiener space, i.e., an infinite di-
mensional Banach space endowed with a Gaussian measure and a related differential
structure, have been introduced by M. Fukushima and M. Hino using Dirichlet forms,
and their properties have been studied with tools from analysis and stochastics. In this
paper we reformulate, in an integralgeometric vein and with purely analytical tools, the
definition and the main properties of BV functions, and investigate further properties.

1 Introduction

The spaces BV of functions of bounded variation in Euclidean spaces are by now a classical
setting where several problems, mainly (but not exclusively) of variational nature, find their
natural framework. Recently, generalizations in metric measure spaces have been studied,
but mostly under the hypothesis that the measure is doubling, which is not the case when
dealing with probability measures in vector spaces, not even locally in infinite dimensions.
However, there are several motivations for studying BV functions in this context, i.e., Ba-
nach spaces, also of infinite dimensions, endowed with a probability measure. Among them,
let us quote isoperimetric inequalities and mass concentration, see [20], [21], infinite dimen-
sional analysis and semigroups (see e.g. [9], [11]). Moreover, the importance of generalizing
the classical notion of perimeter and variation has been pointed out in several occasions by
E. De Giorgi: we refer to [13], where the infinite dimensional context is explicitly mentioned.

BV functions in an abstract Wiener space, i.e., a Banach space X endowed with a
Gaussian measure γ and a related differential structure, have been defined by M. Fukushima
in [18], M. Fukushima and M. Hino in [19], relying upon Dirichlet forms theory. The starting
point of these papers has been a characterization of sets with finite perimeter in finite
dimensions in terms of the behaviour of suitable stochastic processes (see [17]), and in fact
some arguments in [18], [19] come from stochastics.

In this infinite-dimensional context, the main difficulty arises from the fact that the mea-
sures appearing in the integration by parts formula can’t be built by a direct approximation
by smooth functions, since Riesz theorem is not available and the dual of Cb(X) strictly
contains the class of signed measures; so, looking for instance at the approximation of u by
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the Ornstein–Uhlenbeck semigroup Ttu as t ↓ 0, one has to prove tightness of the family of
measures

∇HTtuγ

as t ↓ 0. In the above mentioned papers this difficulty is overcome (after a reduction to
nonnegative functions u) by looking at the Dirichlet form Eu(v, v) =

∫
X

u‖∇Hv‖2Hdγ and
applying the capacity theory of Dirichlet forms.

One of the aims of this paper is to study BV functions in abstract Wiener spaces with
tools closer to those used in the Euclidean case. We analyse the connections between the
distributional notion of (vector-valued) measure gradient and the approximation by smooth
functions, as well as the relevant properties of the Ornstein-Uhlenbeck semigroup. Our
methods rely basically on an integralgeometric approach, a viewpoint which has already
proved to be very useful in the finite-dimensional theory (see also [16] for a recent con-
tribution in the same direction in Wiener spaces). This approach allows to build directly
the measure distributional derivative and to obtain the tightness property only as a conse-
quence. Some of the main results of this paper have been presented, together with several
open problems, in [2].

The paper is organized as follows: in Section 2 we describe the Wiener space setting and
the tools useful to rephrase in this framework the characterizations of total variation that
are known in the Euclidean case. A more detailed comparison with the Euclidean case is
presented in [2]. In Section 3 we define BV functions in Wiener spaces and discuss their
basic properties. In Section 4 we provide a complete characterization of BV functions in
terms of integration by parts formulae and approximation by smooth functions.

It is known that neither Sobolev nor BV spaces are compactly embedded in Lp spaces,
but our integral-geometric viewpoint provides new natural compactness criteria, both in
the Sobolev and BV classes. In Section 5, in the case when the Wiener space is Hilbert,
we compare Sobolev and BV classes with those developed by Da Prato and collaborators,
proving compactness of these “stronger” Sobolev and BV classes.

2 Wiener space setting

In this section we describe our setting: given an (infinite dimensional) separable Banach
space X, we denote by ‖ · ‖X its norm and by BX(x, r) = {y ∈ X : ‖y− x‖X < r} the open
ball centred at x ∈ X and with radius r > 0. X∗ denotes the topological dual, with duality
〈·, ·〉. Given the elements x∗1, . . . , x

∗
m in X∗, we denote by Πx∗1 ,...,x∗m

: X → Rm the map

(1) Πx∗1 ,...,x∗mx = (〈x, x∗1〉, . . . , 〈x, x∗m〉),

also denoted by Πm : X → Rm if it is not necessary to specify the elements x∗1, . . . , x
∗
m. The

symbol FCk
b (X) denotes the space of k times continuously differentiable cylindrical functions

with bounded derivatives up to the order k, that is, u ∈ FCk
b (X) if u(x) = v(Πmx) for some

v ∈ Ck
b (Rm).

We divide this section in some subsections; first of all we recall some notion of measure
theory, with particular emphasis on the infinite dimensional (i.e., non locally compact)
setting, then we pass to the definition and description of abstract Wiener spaces. In the
third subsection we discuss the integration by parts formula and recall the definitions of
gradient and divergence. Finally, we introduce Sobolev classes and the Ornstein-Uhlenbeck
semigroup together with some of their basic properties.

2



2.1 Infinite dimensional measure theory

We denote by B(X) the Borel σ-algebra; since X is separable, B(X) is generated by the
cylindrical sets, that is by the sets of the form E = Π−1

m B with B ∈ B(Rm), see [24, Theorem
I.2.2]; this fact remains true even if we fix a sequence (x∗i ) ⊂ X∗ which separates the points
in X and use only elements from that sequence to generate the maps Πm. We shall make
later some special choices of (x∗i ), induced by a Gaussian probability measure γ in X.

We also denote by M (X, Y ) the set of countably additive measures on X with finite
total variation with values in a Hilbert space Y , M (X) if Y = R. We denote by |µ| the
total variation measure of µ, defined by

(2) |µ|(B) := sup

{ ∞∑
h=1

‖µ(Bh)‖Y : B =
∞⋃

h=1

Bh

}
,

for every B ∈ B(X), where the supremum runs along all the countable disjoint unions.
Notice that, using the polar decomposition, there is a unit |µ|-measurable vector field σ :
X → Y such that µ = σ|µ|, and then the equality

|µ|(X) = sup
{∫

X

〈σ, φ〉d|µ|, φ ∈ Cb(X, Y ∗), ‖φ(x)‖Y ∗ ≤ 1 ∀x ∈ X

}
,

holds, where 〈·, ·〉 denotes the duality between Y and Y ∗. Note that, by the Stone-
Weierstrass theorem, the algebra FC1

b (X) of C1 cylindrical functions is dense in C(K)
in sup norm, since it separates points, for all compact sets K ⊂ X. Since |µ| is tight, it
follows that FC1

b (X) is dense in L1(X, |µ|). Arguing componentwise, it follows that also
the space FC1

b (X, Y ∗) of cylindrical functions with a finite-dimensional range is dense in
L1(X, |µ|, Y ∗). As a consequence σ can be approximated in L1(X, |µ|, Y ∗) by a uniformly
bounded sequence of functions in FC1

b (X, Y ∗), and we may restrict the supremum above to
these functions only to get

(3) |µ|(X) = sup
{∫

X

〈σ, φ〉d|µ|, φ ∈ FC1
b (X, Y ∗), ‖φ(x)‖Y ∗ ≤ 1 ∀x ∈ X

}
.

We now recall a tightness criterion and we include its proof for the reader’s convenience.

Lemma 2.1. Let (σn) ⊂ M+(X) be a bounded sequence, σ ∈ M+(X) and assume that
lim supn σn(X) ≤ σ(X), while

lim inf
n→∞

σn(A) ≥ σ(A) for all A ⊂ X open.

Then (σn) is tight and σn → σ in the duality with Cb(X).

Proof. Let (xi) ⊂ X a dense sequence and ε > 0 be fixed. We claim that for all k ≥ 1 there
exists N = N(k) such that

sup
n

σn

(
X \

N⋃
i=1

B1/k(xi)
)

< ε2−k.

It this property holds, the totally bounded and closed set Kε := ∩k ∪N(k)
1 B1/k(xi) satisfies

supn σn(X \Kε) < ε, proving the tightness of (σn).
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We prove the claimed property by contradiction, assuming that for some k there exist
n(`) such that σn(`)(X \∪`

i=1B1/k(xi)) > ε2−k for all ` ≥ 1. Obviously n(`) →∞ as ` →∞
and for any `0 we have

σ
( `0⋃
i=1

B1/k(xi)
)

≤ lim inf
`→∞

σn(`)

( `0⋃
i=1

B1/k(xi)
)
≤ lim inf

`→∞
σn(`)

(⋃̀
i=1

B1/k(xi)
)

≤ lim sup
n→∞

σn(X)− ε2−k ≤ σ(X)− ε2−k.

Letting `0 →∞ gives a contradiction, since ∪`0
1 B1/k(xi) ↑ X.

The last statement is a simple consequence of the Cavalieri formula, taking into account
that σn(E) → σ(E) for all Borel sets E with σ(∂E) = 0, and that σ({u = t}) = 0 with at
most countably many exceptions for all u ∈ Cb(X).

Finally, let us define the sup of (the total variation of) an arbitrary family of measures
{µα : α ∈ I} by setting

∨
α∈I

|µα|(A) = sup

{ ∞∑
n=1

|µαn |(An)

}
,

where the supremum runs along all the countable pairwise disjoint partitions A =
⋃

n An

and all the choices of the sequence (αn) ⊂ I.

2.2 The abstract Wiener space

Assume that a nondegenerate centred Gaussian measure γ is defined on X. This means that
γ is a probability measure and for all x∗ ∈ X∗ the law x∗#γ is a centred Gaussian measure
on R, that is, the Fourier transform of γ is given by

γ̂(x∗) =
∫

X

exp{−i〈x, x∗〉}dγ(x) = exp
{
− 1

2
〈Qx∗, x∗〉

}
, ∀x∗ ∈ X∗,

where Q ∈ L(X∗, X) is the covariance operator. The nondegeneracy hypothesis means
that γ is not concentrated on a proper subspace of X, in terms of Q this means that
〈Qx∗, x∗〉 > 0 for x∗ 6= 0. The covariance operator is a symmetric and positive operator
uniquely determined by the relation

(4) 〈Qx∗, y∗〉 =
∫

X

〈x, x∗〉〈x, y∗〉dγ(x), ∀x∗, y∗ ∈ X∗;

we also write N (0, Q) for γ. The fact that the operator Q defined by (4) is bounded is a
consequence of Fernique’s Theorem (see e.g. [7, Theorem 2.8.5]), asserting that

(5)
∫

X

exp{α‖x‖2X}dγ(x) < ∞

if and only if
α−1 > σ := sup

{
〈Qx∗, x∗〉1/2 : x∗ ∈ X∗, ‖x∗‖X∗ ≤ 1

}
;

as another consequence of this we also get that any x∗ ∈ X∗ defines a function x 7→ 〈x, x∗〉
that belongs to Lp(X, γ) for all p ≥ 1. In particular, we can think of any x∗ ∈ X∗ as a
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continuous element of L2(X, γ). Let us denote by R∗ : X∗ → L2(X, γ) the embedding,
R∗x∗(x) = 〈x, x∗〉. The space H given by the closure of R∗X∗ in L2(X, γ) is called the
reproducing kernel of the Gaussian measure γ and obviously R∗X∗ turns out to be dense in
it. The above definition is motivated by the fact that if we consider the operator R : H → X
whose adjoint is R∗, then

(6) Rĥ =
∫

X

ĥ(x)xdγ(x),

where the integral is understood in Bochner’s sense. As a consequence Q = RR∗:

〈RR∗x∗, y∗〉 = [R∗x∗, R∗y∗]H =
∫

X

〈x, x∗〉〈x, y∗〉dγ(x) = 〈Qx∗, y∗〉.

It can be easily proved that R is injective. In addition, the operator R is compact and
even more, i.e., it belongs to the ideal γ(H , X) of γ-Radonifying, or Gaussian-Radonifying
operators, see e.g. [22]. This remark shows that another presentation is possible: one can
start with R ∈ γ(H , X) for some separable Hilbert space H and construct a Gaussian
measure γ whose covariance operator is Q = RR∗. In any case, the measure γ built with
this construction is concentrated on the separable subspace of X defined as the closure of
RH in X.

The space H = RH ⊂ X is called the Cameron-Martin space; it is a separable Hilbert
space with inner product defined by

[h1, h2]H = [ĥ1, ĥ2]H

for all h1, h2 ∈ H, where hi = Rĥi, i = 1, 2. It is a dense subspace of X and the embedding
of (H, ‖ · ‖H) in (X, ‖ · ‖) is compact since R is compact. In addition, γ(H) = 0 if X is
infinite-dimensional [7, Theorem 2.4.7], while H = X if X is finite-dimensional.

With this notation, the Fourier transform of the Gaussian measure γ reads

γ̂(x∗) = exp
{
− 1

2
‖x̂∗‖2H

}
, ∀x∗ ∈ X∗,

where x̂∗ = R∗x∗.
Using the embedding R∗X∗ ⊂ H , we shall say that a family {x∗j} of elements of X∗

is orthonormal if the corresponding family {R∗x∗j} is orthonormal in H . Starting from a
sequence (y∗j ) in X∗ whose image under R∗ is dense in H , we may construct an orthonormal
basis (R∗x∗j ) in H (by the Gram-Schmidt procedure), hence hj = Qx∗j = RR∗x∗j provide an
orthonormal basis of H. Set also Hm = span{h1, . . . , hm}, and define X⊥

m = kerΠx∗1 ,...,x∗m
and Xm the (m-dimensional) complementary space. Since the variables R∗x∗j are Gaussian
and uncorrelated, they are independent, hence the image γm of γ under Πx∗1 ,...,x∗m is a
standard Gaussian in Rm; in addition it can be proved that we have a product decomposition
γ = γm ⊗ γ⊥m of the measure γ, with γ⊥m Gaussian. Since R∗X∗ is dense in H the following
proposition is easily estabilished by approximation:

Proposition 2.2. Let ĥ1, . . . , ĥm be in H . Then the law of the variable

x 7→ (ĥ1, . . . , ĥm)

under γ is Gaussian. If ĥi are orthonormal, the law is the standard Gaussian γm in Rm.
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One more property of Gaussian measures we shall use is rotation invariance, i.e., if
% : X×X → X×X is given by %(x, y) = (cos ϑx+sin ϑy,− sinϑx+cos ϑy) for some ϑ ∈ R,
then %#(γ ⊗ γ) = γ ⊗ γ. We shall use, in particular, the following equality:∫

X

∫
X

u(cos ϑx + sinϑy)dγ(x)dγ(y) =
∫

X

u(x)dγ(x), ∀u ∈ L1(X, γ),(7)

which is obtained by the above relation by integrating the function u⊗ 1 on X ×X.
For every function u ∈ L1(X, γ) we define its canonical cylindrical approximations Emu

as the conditional expectations relative to the σ-algebras generated by {〈x, x∗1〉, . . . , 〈x, x∗m〉},
denoted by Bm(X), i.e.,

(8)
∫

A

udγ =
∫

A

Emudγ, ∀A ∈ Bm(X).

Then, Emu → u in L1(X, γ) and γ-a.e. (see e.g. [7, Corollary 3.5.2]). More explicitly, we
have

Emu(x) =
∫

X

u(Πmx + (I −Πm)y)dγ(y) =
∫

X⊥
m

u(Πmx + y′)dγ⊥m(y′),

where Πm is the projection onto Xm. Notice that Emu is invariant under translations along
all the vectors in X⊥

m, hence we may write Emu(x) = v(Πmx) for some function v, and, with
an abuse of notation, we may write Emu(xm) instead of Emu(x).

Finally, let us recall the Cameron–Martin Theorem: the shifted measure

γh(B) = γ(B − h), B ∈ B(X),

also denoted by N (h, Q), is absolutely continuous with respect to γ if and only if h ∈ H

and, in this case, with the usual notation h = Rĥ, we have, see e.g. [7, Corollary 2.4.3],

(9) dγh(x) = exp
{

ĥ(x)− 1
2
‖h‖2H

}
dγ(x).

It is also important to notice that if we define for any λ ∈ R the measure

(10) γλ(B) = γ(λB), ∀B ∈ B(X)

then γλ � γσ if and only if |λ| = |σ| (see for instance [7, Example 2.7.4]).

2.3 Gradient, divergence and Sobolev spaces

For a given function f : X → R and h ∈ H, we define

∂hf(x) := lim
t→0

f(x + th)− f(x)
t

.

and
∂∗hf(x) = ∂hf(x)− f(x)ĥ(x),

wherever this makes sense. Here, as usual, h = Rĥ. We shall use the shorter notation
∂j = ∂hj , ∂∗j = ∂∗hj

. The gradient ∇Hf : X → H of f is defined as

∇Hf(x) :=
∑
j∈N

∂jf(x)hj .
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Notice that if f(x) = g(Πmx) with g ∈ C1(Rm), then

∂hf(x) = ∇g(Πmx) ·Πmh.

The operator ∂∗h is (up to a change of sign) the adjoint of ∂h with respect to L2(X, γ),
namely

(11)
∫

X

φ∂hfdγ = −
∫

f∂∗hφdγ ∀φ, f ∈ FC1
b (X).

The divergence operator is defined for Φ : X → H as

∇∗HΦ(x) :=
∑
j∈N

∂∗j [Φ(x), hj ]H .

We define the space FC1
b (X, H) of cylindrical H-valued functions as the vector space spanned

by functions φh, where φ runs in FC1
b (X) and h in H. With this notation, the integration

by parts formula (11) gives

(12)
∫

X

[∇Hf,Φ]Hdγ = −
∫

X

f∇∗HΦ dγ

for every f ∈ FC1
b (X), Φ ∈ FC1

b (X, H).
Thanks to (12), the gradient ∇H is a closable operator in the topologies Lp(X, γ),

Lp(X, γ, H) for any p ∈ [1,∞) and we denote by D1,p(X, γ) the domain of its closure.
Notice that the space denoted by D1,p(X, γ) by Fukushima in [18] is denoted by W p,1(X, γ)
in [7]. Anyway, these spaces coincide, see [7, Section 5.2] and (12) holds for every f ∈
D1,p(X, γ), Φ ∈ FC1

b (X, H).
Let us recall the Gaussian isoperimetric inequality, see [20]. Let E ⊂ X, and set Br =

{x ∈ H : ‖x‖H < r}, Er = E + Br; then

(13) Φ−1(γ(Er)) ≥ Φ−1(γ(E)) + r, with Φ(t) =
∫ t

−∞

e−s2/2

√
2π

ds.

Then, setting

U (t) = (Φ′ ◦ Φ−1)(t) ≈ t
√

2 log(1/t), as t → 0;(14)

the inequality

(15) γ(Er) ≥ γ(E) + rU (γ(E)) + o(r)

follows. The isoperimetric inequality implies also the following Gauss–Sobolev inequality

(16) ‖∇Hf‖L1(X,γ) ≥
∫ ∞

0

U (γ({|f | > s})) ds,

which implies the continuous embedding of D1,1(X, γ) into the Orlicz space

L log1/2L(X, γ) :=
{

u : X → R measurable : A1/2(λ|u|) ∈ L1(X, γ) for some λ > 0
}

,
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endowed with the Luxenbourg norm

‖u‖L log1/2L := inf
{

λ > 0 :
∫

X

A1/2(|u|/λ) dγ ≤ 1
}

,

see [19, Proposition 3.2]. Here A1/2 is defined by

A1/2(t) :=
∫ t

0

log1/2(1 + s)ds.

Analogously, using the continuity of the map f 7→ |f |p from D1,p(X, γ) to D1,1(X, γ), one
obtains that D1,p(X, γ) embeds continuously into the Orlicz space

(17) Lp log1/2L(X, γ) :=
{

u : X → R meas. : A1/2(λ|u|p) ∈ L1(X, γ) for some λ > 0
}

.

Finally we recall the Poincaré inequality, see [7, Theorem 5.5.11]: for any u ∈ D1,p(X, γ),
p ≥ 1

(18)
∫

X

∣∣∣∣u− ∫
X

udγ

∣∣∣∣p dγ ≤ Cp

∫
X

‖∇Hu‖p
Hdγ,

where Cp depends only on p.

2.4 The Ornstein–Uhlenbeck semigroup

Let us define the Ornstein–Uhlenbeck semigroup (Tt)t≥0, by Mehler’s formula

(19) Ttu(x) =
∫

X

u
(
e−tx +

√
1− e−2ty

)
dγ(y)

for all u ∈ L1(X, γ), t ≥ 0.
For our purposes, the following properties of the Ornstein–Uhlenbeck semigroup are

relevant: Tt is a contraction semigroup in L1(X, γ) and Ttu ∈ D1,1(X, γ) for any u ∈
L log1/2L(X, γ), t > 0, (see [19, Proposition 3.6]). In addition, a direct consequence of (7)
and of Jensen’s inequality is

(20)
∫

X

‖Ttu‖Y dγ ≤
∫

X

‖u‖Y dγ, for any u ∈ L1(X, γ, Y ),

with Y Hilbert (here Tt is defined componentwise, namely 〈Ttu, y〉 = Tt〈u, y〉).
Stronger smoothing properties of Tt hold for bounded functions; in particular if f ∈

Lp(X, γ) for any p > 1, then Ttf ∈ Dk,q(X, γ) for any k ∈ N, q > 1 (see [7, Proposition
5.4.8]). Moreover, the following commutation relation holds (again componentwise) for any
u ∈ D1,1(X, γ):

(21) ∇HTtu = e−tTt∇Hu, t > 0.

Therefore, we get

∇HTt+su = ∇HTt(Tsu) = e−tTt∇HTsu, t ≥ 0, s > 0

8



for any u ∈ L log1/2L(X, γ), see [7, Proposition 5.4.8]. As a consequence, we obtain that
the limit (possibly infinite)

(22) I(u) := lim
t↓0

∫
X

‖∇HTtu‖Hdγ

always exists for u ∈ L log1/2L(X, γ). Indeed, consider the map

s 7−→
∫

X

‖∇HTt+su‖H dγ = e−t

∫
X

‖Tt∇HTsu‖H dγ

and observe that∫
X

‖∇HTtu‖H dγ ≤ lim inf
s→0

∫
X

‖∇HTt+su‖H dγ = e−t lim inf
s→0

∫
X

‖Tt∇HTsu‖H dγ

≤e−t lim inf
s→0

∫
X

‖∇HTsu‖H dγ

by (20), which obviously implies that the limit exists.
It also follows from (21) and (12) that

(23)
∫

X

Ttf∇∗HΦdγ = e−t

∫
X

f∇∗H(TtΦ)dγ,

for all f ∈ L log1/2L(X, γ), Φ ∈ FC1
b (X, H). Indeed, we can assume by a density argument

that f ∈ D1,1(X, γ) to get∫
X

Ttf∇∗HΦdγ = −
∫

[∇HTtf,Φ]Hdγ = −e−t

∫
[∇Hf, TtΦ]Hdγ

= e−t

∫
X

f∇∗HTtΦdγ.

Another important consequence of (21) is that if u ∈ D1,1(X, γ) then

(24) lim
t→0

‖∇HTtu−∇Hu‖L1(X,γ) = 0.

Finally, notice that if Emu are the canonical cylindrical approximations of a function u ∈
L log1/2L(X, γ) defined in (8) then

(25)
∫

X

‖∇HTtEmu‖Hdγ ≤
∫

X

‖∇HTtu‖Hdγ, ∀ t > 0.

To prove (25), let us first notice that, by the rotational invariance of γ⊥m,

TtEmu = EmTtu.

Indeed,

TtEmu(x) =
∫

X

Emu(e−tx +
√

1− e−2tz)dγ(z)

=
∫

X

∫
X⊥

m

u(e−tΠmx +
√

1− e−2tΠmz + y′)dγ⊥m(y′)dγ(z)
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and by apply the rotation invariance of Gaussian measures (7) to γ⊥m we get

EmTtu(x) =
∫

X⊥
m

Ttu(Πmx + w′)dγ⊥m(w′)

=
∫

X⊥
m

∫
X

u
(
e−t(Πmx + w′) +

√
1− e−2tz

)
dγ⊥m(w′)dγ(z)

=
∫

Xm

∫
X⊥

m

∫
X⊥

m

u
(
e−tΠmx + e−tw′ +

√
1− e−2tzm

+
√

1− e−2tz′
)
dγ⊥m(w′)dγ⊥m(z′)dγm(zm)

=
∫

X

∫
X⊥

m

u
(
e−tΠmx +

√
1− e−2tΠmz + y′

)
dγ⊥m(y′)dγ(z).

From the above commutation relation it follows that the vector ∇HTtEmu = ∇HEmTtu
coincides with its projection ∇m on Hm, since Emu depends only on xm ∈ Xm. Moreover,
by Jensen’s inequality we have

‖∇HTtEmu(x)‖H =‖Em(∇mTtu)(x)‖H =
∥∥∥∫

X⊥
m

∇mTtu(Πmx + x′)dγ⊥m(x′)
∥∥∥

H

≤
∫

X⊥
m

‖∇mTtu(Πmx + x′)‖Hdγ⊥m(x′) = Em‖∇mTtu(x)‖H .

Since ‖∇mTtu(x)‖H ≤ ‖∇HTtu(x)‖H we can integrate both sides to get (25).

3 BV functions in infinite dimensions

We have collected in the preceding section the tools we need in order to discuss BV functions
in the Wiener space setting. The BV (X, γ) class can be defined as follows.

Definition 3.1 (BV space). Let u ∈ L log1/2L(X, γ). We say that u ∈ BV (X, γ) if there
exists a measure µ ∈ M (X, H) such that for any φ ∈ FC1

b (X) we have

(26)
∫

X

u(x)∂∗j φ(x)dγ(x) = −
∫

X

φ(x)dµj(x) ∀j ∈ N,

where µj = [hj , µ]H . In particular, if u = χE and u ∈ BV (X, γ), then we say that E has
finite perimeter.

Equivalently, we may require the existence of measures µj as in (26) satisfying

(27) sup
m
|(µ1, . . . , µm)|(X) < ∞.

Indeed, if µj = [µ, hj ]H , then the total variation of the Rm valued measure (µ1, . . . , µm)
in X is less than |µ|(X). Conversely, if (27) holds, then the measure µ :=

∑
j µjhj is well

defined and belongs to M (X, H) (it suffices to consider the densities fi of µi with respect
to the measure σ := supm |(µ1, . . . , µm)| to obtain

∑m
1 f2

i ≤ 1 σ-a.e., hence ‖(fi)‖`2 ≤ 1
σ-a.e. and µ =

∑
fjhjσ).
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Remark 3.2. Notice that in the previous definition we have required that the measure µ is
defined on the whole of B(X) and is σ-additive there. Since cylindrical functions generate
the Borel σ-algebra the measure µ verifying (26) is unique, and will be denoted Dγu. Using
(3) the total variation of Dγu is given by

|Dγu|(X) = sup
{
〈Dγu, Φ〉; Φ ∈ Cb(X, H), ‖Φ(x)‖H ≤ 1 ∀ x ∈ X

}
= sup

{∫
X

u∇∗HΦdγ; Φ ∈ FC1
b (X, H), ‖Φ(x)‖H ≤ 1 ∀ x ∈ X

}
.(28)

Actually it will be convenient to define also an even smaller space FC1
c (X, H) of vector fields

Φ representable as follows:

Φ(x) =
m∑

i=1

φi(〈x∗1, x〉, . . . , 〈x∗m, x〉)hi

with hi = Qx∗i and φi ∈ C1
c (Rm). The space FC1

c (X, H) has an additional technical
advantage: the divergence ∇∗HΦ of Φ above is

∑
i ∂iφi − φiR

∗x∗i and is a bounded function
because R∗x∗i is bounded on the support of φi. By a further approximation, based on
the fact that any Φ ∈ FC1

b (X, H) is the pointwise limit of a uniformly bounded sequence
(Φn) ⊂ FC1

c (X, H), we have also

(29) |Dγu|(X) = sup
{∫

X

u∇∗HΦdγ; Φ ∈ FC1
c (X, H), ‖Φ(x)‖H ≤ 1 ∀x ∈ X

}
.

In the case u = χE , we write Pγ(E, ·) for the measure |DγχE | and we shall also write
Pγ(E) for Pγ(E,X).

Remark 3.3 (About the L log1/2L(X, γ) assumption). The L log1/2L(X, γ) membership
hypothesis we made on u is necessary to give sense to the integral of the product u∂∗j φ:
indeed, this term is the sum of the function u∂jφ (which makes sense for u ∈ L1(X, γ) only)
and uφĥj , which makes sense by Orlicz duality if u ∈ L log1/2L(X, γ) and exp(c|ĥj |2) ∈
L1(X, γ) for some c > 0. Since ĥj = R∗x∗j for some x∗j ∈ X∗, by our construction of hj ,
this exponential integrability property follows by Fernique’s theorem (5). Nevertheless, we
shall provide different equivalent definitions of BV where this extra integrability property
is not needed (as in the finite-dimensional case) but rather derived as a consequence. These
equivalent definitions will also show that Definition 3.1 is independent of the choice of the
basis (hj).

Let us see an equivalent way of defining the BV class, with partial derivatives along all
directions h ∈ H; in this case, since ĥ is in L2(X, γ) and not better, we have to assume
u ∈ L2(X, γ) to give a sense to the integration by parts formula, even when cylindrical test
functions are involved.

Proposition 3.4. Let u ∈ L2(X, γ). Then, u ∈ BV (X, γ) if and only if for every h ∈ H
there is a real measure µh such that

(30)
∫

X

u(x)∂∗hφ(x)dγ(x) = −
∫

X

φ(x)dµh(x) ∀φ ∈ FC1
b (X),

with
∨

‖h‖H=1

|µh| finite. In this case, |Dγu| =
∨

‖h‖H=1

|µh|.

11



Proof. If u ∈ BV (X, γ) then the existence of µh = [h, Dγu]H for all h ∈ H follows from
the linearity of the ∂h operator with respect to h, and the boundedness of |µh| from the
finiteness of |Dγu|. In particular,

∨
‖h‖H=1 |µh| ≤ |Dγu|(X).

Conversely, define µj = µhj and

µ =
∞∑

j=1

µjhj ,

so that µh = [h, µ]H . The integration by parts (26) clearly holds; we have to prove that µ
is a finite measure. If we fix a partition (Bn)n∈N of X, if µ(Bn) 6= 0, we define

αn =
µ(Bn)

‖µ(Bn)‖H

so that we obtain∑
n∈N

‖µ(Bn)‖H =
∑
n∈N

‖[µ(Bn), αn]Hαn‖H =
∑
n∈N

|µαn(Bn)|

≤
∑
n∈N

|µαn |(Bn) ≤
∨

‖h‖H=1

|µh|,

and then u ∈ BV (X, γ) with Dγu := µ and |µ| ≤
∨
‖h‖H=1 |µh|.

It is easy to verify that if u ∈ D1,1(X, γ), then u ∈ BV (X, γ) with Dγu = ∇Huγ.
Now we relate BV functions in Rm with cylindrical functions in X. We denote as before

by γm the standard Gaussian distribution on Rm and we point out that all directional
derivatives ∂ν and their adjoints ∂∗ν have the same meaning as in the infinite dimensional
case, but without restriction on directions, since H = X in this case; we shall try to use
as much as possible a consistent notation, valid both for the finite-dimensional and the
infinite-dimensional case.

Proposition 3.5. Let u ∈ L log1/2L(X, γ) be a cylindrical function,

u(x) = v(Πx∗1 ,...,x∗mx),

with R∗x∗i orthonormal. Then v ∈ BV (Rm, γm) if and only if u ∈ BV (X, γ) and

|Dγu|(X) = |Dγmv|(Rm).

Proof. Recalling that the law of Π under γ is γm, we have

|Dγu|(X) = sup
{∫

X

u(x)∇∗Φ(x)dγ(x) : Φ ∈ FC1
b (X, H), ‖Φ(x)‖H ≤ 1 ∀x ∈ X

}
= sup

{∫
X

u(x)∇∗Φ(x)dγ(x) : Φ ∈ FC1
b (X, Hm), ‖Φ(x)‖H ≤ 1 ∀x ∈ X

}
= sup

{∫
Rm

v(y)∇∗Ψ(y)dγm(y) : Ψ ∈ [C1
b (Rm)]m, ‖Ψ‖∞ ≤ 1

}
.

As a particular example of Sobolev functions we can consider Lipschitz functions.
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Definition 3.6 (H-Lipschitz functions). A Borel function f : X → R is said to be H-
Lipschitz if there exists a constant C such that for γ-a.e. x one has

(31) |f(x + h)− f(x)| ≤ C‖h‖H , ∀h ∈ H.

It can be proved that for a H-Lipschitz function f there exists a full-measure γ-measu-
rable set X0 such that X0 + H = X0 and, for every x ∈ X0, one has

|f(x + h)− f(x)| ≤ C‖h‖H , ∀h ∈ H.

In particular, f has a version such that the previous inequality is satisfied for every x ∈ X.
By the arguments in [7, Section 5.11], it can be proved that H-Lipschitz functions belong
to D1,p(X, γ) for every p ≥ 1, and in particular to BV (X, γ).

An important result is the following coarea formula, which can be proved by following
verbatim the proof of [15, Section 5.5].

Theorem 3.7. If u ∈ BV (X, γ), then for every Borel set B ⊂ X the following equality
holds:

(32) |Dγu|(B) =
∫

R
Pγ({u > t}, B)dt.

As a corollary, we have that almost every ball has finite perimeter, since the distance
function is H–Lipschitz. We do not know whether every ball has finite perimeter, because
Pγ(Br(x)) is not trivially monotone with respect to r and no homothety argument can be
used in view of (10).

We now extend from finite dimensions to infinite dimensions some typical tools of the
BV theory. The following definition is a very convenient tool in the theory of BV functions:

Definition 3.8 (Total variation). We define total variation of a function v ∈ L1(X, γ) by

Vγ(v) := sup
{∫

X

v∇∗HΦdγ : Φ ∈ FC1
c (X, H), ‖Φ(x)‖H ≤ 1 ∀x ∈ X

}
.(33)

The name is justified by the following observation: if v ∈ BV (X, γ), then (29) shows
that Vγ(v) = |Dγv|(X); on the other hand, if X is finite-dimensional and the supremum
in (33) is finite, then a direct application of Riesz theorem provides us with a X-valued
measure µ, with total variation less than Vγ(v), such that∫

X

v∇∗HΦdγ = −〈Φ, µ〉 ∀Φ ∈ C1
b (X, H).

Hence µ = Dγu and Vγ(u) = |Dγv|(X). This equivalence is much less obvious in the
infinite-dimensional case, since Riesz theorem is not available, and it will be discussed in
the next section. Notice that v 7→ Vγ(v) is lower semicontinuous with respect to the L1(X, γ)
convergence, since it is the supremum of a family of continuous functionals. Since v 7→ Vγ(v)
is easily seen to be nonincreasing under cylindrical approximation (with the same argument
used in Proposition 3.5), we can combine this property with lower semicontinuity to get

(34) Vγ(v) = lim
m→∞

Vγ(Emv).

Analogous definitions can be given for the total variation along a direction ν ∈ Hm for some
m; in this case, in order to have a bounded adjoint derivative ∇∗νφ, we consider the space
FνC1

c (X) of cylindrical functions φ with support contained in a strip {a < 〈x, x∗〉 < b},
where ν = Qx∗.
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Definition 3.9 (Directional total variation). Let ν ∈ ∪mHm be a unit vector. We define
total variation of a function v ∈ L1(X, γ) along ν by

V ν
γ (v) := sup

{∫
X

v∂∗νφdγ : φ ∈ FνC1
c (X), ‖φ(x)‖H ≤ 1 ∀x ∈ X

}
.(35)

Again v 7→ V ν
γ (v) is lower semicontinuous with respect to the L1(X, γ) convergence and,

in finite dimensional spaces, Riesz theorem shows that the quantity is finite if and only if
the integration by parts formula

(36)
∫

X

v∂∗νφdγ = −
∫

X

φdµ ∀φ ∈ C1
b (X)

holds for some real-valued measure µ with finite total variation, that we shall denote by
Dν

γv; if this happens, |µ|(X) coincides with V ν
γ (v). Finally,

(37) V ν
γ (v) = lim

m→∞
V ν

γ (Emv).

We can now discuss 1-dimensional sections of Gaussian BV functions in the same spirit
as Section 3.11 of [1]. Notice that any u ∈ BV (Rm, γm) is in the classical space BVloc(Rm),
so that we can use all the (local) properties known in Euclidean case, and

(38) Dγu = GmDu

where Gm(x) = (2π)−m/2 exp(−|x|2/2) is the standard Gaussian kernel and Du stands
for the classical derivative of u in the sense of distributions. Let us fix a unit direction
ν = Qx∗ ∈ H, let Π(x) = 〈x, x∗〉 be the induced projection and let us write x ∈ X
as y + Π(x)ν. Then, denoting by K the kernel of Π, γ admits a product decomposition
γ = γ⊥ ⊗ γ1 with γ⊥ Gaussian in K. For u : X → R and y ∈ K we define the function
uy : R → R by uy(t) = u(y + tν).

Theorem 3.10. Let u ∈ L log1/2L(X, γ) and let ν ∈ ∪mHm; then

V ν
γ (u) =

∫
K

Vγ1(uy) dγ⊥(y).

In particular Definition 3.9 is independent of the choice of the basis and makes sense for all
h ∈ H.

Proof. Let us fix φ ∈ FνC1
b (X) with ‖φ‖∞ ≤ 1. Then∫

X

u(x)∂∗νφ(x)dγ(x) =
∫

K

(∫
R

uy(t)(φ′y(t)− tφy(t)dγ1(t)
)
dγ⊥(y) ≤

∫
K

Vγ1(uy)dγ⊥(y),

whence
V ν

γ (u) ≤
∫

K

Vγ1(uy)dγ⊥(y).

For the reverse inequality we can assume that V ν
γ (u) is finite. First we prove the inequality

in the finite-dimensional case X = Rm and γ = γm, and then we consider the general case.
If X = Rm and γ = γm then the measure µ = Dν

γm
u in (36) is a real valued measure
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with total variation in Rm less than V ν
γ (u). Let us show that we may find a sequence

(un) ⊂ C∞(Rm) ∩ D1,1(Rm, γm) such that un → u in L1(Rm, γm) and

lim
n→∞

∫
Rm

|∂νun(y)|dγm(y) ≤ V ν
γm

(u).

For, set un = T1/nu and notice that for every φ ∈ FνC1
b (Rm) with |φ| ≤ 1∣∣∣ ∫

Rm

φ∂νundγm

∣∣∣ =
∣∣∣ ∫

Rm

∂∗νφundγm

∣∣∣ → ∣∣∣ ∫
Rm

∂∗νφudγm

∣∣∣ ≤ V ν
γm

(u),

then the sequence (∂νun) is bounded in M (Rm), and (up to a subsequence which we do not
relabel) weakly∗ converges to a measure µ. The above limit relation shows that µ = Dν

γm

and that the whole sequence is convergent. By Fubini theorem (possibly passing to a
subsequence) for γ⊥-a.e. y ∈ K the sequence (un,y) converges to uy in L1(R, γ1) and then
by semicontinuity we get

V ν
γ (u) ≥ lim inf

n→+∞

∫
Rm

|∂νun(y)|dγ(y) = lim inf
n→+∞

∫
K

∫
R
|u′n,y(t)|dγ1(t)dγ⊥(y)

= lim inf
n→+∞

∫
K

Vγ1(un,y)dγ⊥(y) ≥
∫

K

Vγ1(uy)dγ⊥(y).

In the infinite-dimensional case we consider the cylindrical approximations vm := Emu;
since they converge in L1(X, γ) we can find a subsequence (mi) such that vmi,y → uy in
L1(R, γ1) for γ⊥-a.e. y ∈ K; then, lower semicontinuity of v 7→ Vγ1(v), Fatou’s lemma and
monotonicity give∫

K

Vγ1(uy)dγ⊥(y) ≤ lim inf
i→∞

∫
K

Vγ1(umiy)dγ⊥(y) ≤ sup
m

Vγ(vm) ≤ Vγ(u).

Corollary 3.11. Let h = Rĥ ∈ H and c ∈ R; then the sets E = {x ∈ X : ĥ(x) ≤ c} have
finite perimeter with

(39) Pγ(E) =
1√
2π

exp
{
− c2

2‖h‖2H

}
.

Proof. With no loss of generality we can assume that ‖h‖H = 1. We prove the identity first
in the case when ĥ = R∗x∗ for some x∗ ∈ X∗; without loss of generality, we may assume that
‖Qx∗‖H = 1. In this case the assertion simply follows by noticing that E is a cylindrical
set of the form

E =
{

x ∈ X : 〈x, x∗〉 ∈ B
}

,

with B = {s ∈ R : s ≤ c}. This implies that Pγ(E) = Pγ1(B) = e−c2/2/
√

2π. In the general
case, density of QX∗ in H and lower semicontinuity of the perimeter provides the inequality
≤ in (39); to prove the inequality ≥ we fix φ ∈ C∞

c (R) with φ(c) = 1, |φ| ≤ 1, k = Qk∗,
‖k‖H = 1 and ‖k − h‖2H < 2ε and the field Φε(x) = φ(〈x, k∗〉)k; then

Pγ(E) ≥
∫

E

∂∗kφ(〈x, k∗〉)dγ.
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By Proposition 2.2 and considering the map x 7→ (ĥ(x), 〈x, k∗〉), the right hand side can be
represented as

∫
{x1≤c} ∂∗φ(x2)dηε(x1, x2), where ηε are Gaussian in R2 with γ1 as marginals

and
∫

x1x2dηε(x1, x2) > 1− ε; as ε → 0 these Gaussians converge to the standard Gaussian
on the diagonal of R2, so that

Pγ(E) ≥
∫
{z≤c}

∂∗φ(z)dγ1(z) =
φ(c)√

2π
e−c2/2.

In connection with the proof of the previous Corollary, notice that it would be desirable
to extend Theorem 3.10 even to the case when ν = Rĥ ∈ H; however, this extension presents
some difficulties, since ĥ is not really a linear map on X.

4 Main results

We are now in a position to characterize BV functions in the same way as they are charac-
terized in the classical case. Notice that in the classical case the original definition of BV
given by E. De Giorgi in [12] was based on property (4) below, with the heat semigroup
instead of the Ornstein-Uhlenbeck one.

Theorem 4.1. Given u ∈ L1(X, γ), the following are equivalent:

(1) u belongs to BV (X, γ);

(2) the quantity Vγ(u) in (33) is finite;

(3) Lγ(u) := inf
{

lim inf
n→∞

∫
X
‖∇Hun‖Hdγ : un ∈ D1,1(X, γ), un

L1

→ u
}

< ∞;

(4) u ∈ L log1/2L(X, γ) and the quantity I(u) in (22) is finite.

Moreover, |Dγu|(X) = Vγ(u) = Lγ(u) = I[u] and

(40)
∫

X

‖∇HTtu‖Hdγ ≤ e−t|Dγu|(X) ∀t > 0.

Proof. (1) ⇒ (2). Simply comparing the classes of competitors, we notice that Vγ(u) ≤
|Dγu|(X).
(2) ⇒ (3). Let tn ↓ 0 and un = Ttnu. Then, for all Φ ∈ FC1

b (X, H) with ‖Φ(x)‖H ≤ 1 for
every x ∈ X, from (23) we deduce∫

X

[∇Hun,Φ]Hdγ = −e−tn

∫
X

u∇∗(TtnΦ)dγ ≤ Vγ(u).

Therefore, ‖∇Hun‖L1(X,γ) ≤ Vγ(u). In particular, we have proved that Lγ(u) ≤ Vγ(u).
(3) ⇒ (4). Let (un)n∈N be such that un → u in L1(X, γ) and ‖∇Hun‖L1(X,γ) → Lγ(u).
Then,∫

X

‖∇HTtu‖Hdγ ≤ lim inf
n→∞

∫
X

‖∇HTtun‖Hdγ = e−t lim inf
n→∞

∫
X

‖∇Hun‖Hdγ = Lγ(u).
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In addition, Fatou’s lemma and (16) yield

(41)
∫ ∞

0

U (γ({|f | > s})) ds ≤ Lγ(u) < ∞,

so that u ∈ L log1/2L(X, γ). Observe that in particular we have proved that I(u) ≤ Lγ(u).
(4) ⇒ (1). We first prove that for all j the derivative µj along the direction hj exists, and
then we prove (27) to conclude that u ∈ BV (X, γ).

Since Ttu ∈ D1,1(X, γ) for t > 0, we have

V hj
γ (Ttu) = |Dhj

γ Ttu| =
∫

X

|∂jTtu|dγ.

In particular, setting ν = hj and adopting the same notation as in Theorem 3.10, we have∫
K

Vγ1((Ttu)y)dγ⊥(y) =
∫

X

|∂jTtu|dγ ≤
∫

X

‖∇HTtu‖Hdγ.

Now we can find tn → 0 sufficiently fast in such a way that (Ttnu)y converge to uy in
L1(R, γ1) for γ⊥-a.e. y ∈ K and conclude, by the lower semicontinuity of v 7→ Vγ1(v), that∫

K

Vγ1(uy)dγ⊥(y) ≤ I(u) < ∞.

It follows that for γ⊥-a.e. y ∈ K the function uy has bounded variation in R. By a Fubini
argument, based on the factorization γ = γ⊥ ⊗ γ1, the 1-dimensional integration by parts
formula yields that the measure µj = Dγ1uy ⊗ γ⊥, i.e.

µj(A) =
∫

K

Dγ1uy(Ay)dγ⊥(y)

(where Ay := {t : y + thj ∈ A} is the y-section of a Borel set A) provides the derivative of
u along hj . Notice that µj is well defined, since we have just proved that

∫
K
|Dγ1uy|(R)dγ⊥

is finite.
Now, setting µi = Dhi

γ u, we check (27); by a density argument, it suffices to prove that

m∑
i=1

∫
φidµi ≤ I(u)

for all φi ∈ FC1
b (X) with

∑
i φ2

i ≤ 1; by integration by parts, it suffices to show that

lim sup
t↓0

m∑
i=1

∫
φidDhi

γ Ttu ≤ I(u)

or equivalently

lim sup
t↓0

m∑
i=1

∫
φi∂iTtudγ ≤ I(u).

The latter inequality is trivial, since |
∑m

1 φi∂hi
Ttu| ≤ ‖∇HTtu‖H .

Passing to the limit as s ↓ 0 in the inequality∫
X

‖∇HTt+su‖Hdγ ≤ e−t

∫
X

‖∇HTsu‖Hdγ

provides
∫

X
‖∇HTtu‖Hdγ ≤ e−tI(u) and concludes the proof.
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Remark 4.2. Arguing as in the proof of the implication (2) ⇒ (3) we see that for all
u ∈ BV (X, γ) and all closed subspaces K ⊂ H the following inequality holds:

lim sup
t↓0

∫
X

‖πK∇HTt‖Hdγ ≤ |DK
γ u|(X).

Here πK : H → K is the orthogonal projection and DK
γ u = πKDγu.

Remark 4.3. It is worth noticing that sets of finite perimeter E can also be characterized
using the functional

JE(t) =
∫

X

√
U (TtχE)2 + ‖∇HTtχE‖2Hdγ,

in the spirit of [5]. In fact, it can be proved that

(42)
d

dt
JE(t) ≤ 0, lim

t→0
JE(t) = Pγ(E).

With minor modifications the proof of Theorem 4.1 allows also to show that, for all j,
the family of measures ∇jTtuγ is tight and the limit as t ↓ 0 is 〈Dγu, hj〉, in the duality
with Cb(X); in addition, the limit of |〈Dγu, hj〉γ| is |〈Dγu, hj〉|. We give just a sketch of
proof, since this result is a consequence, rather than a tool, in our characterization theorem
of BV functions. We also notice that similar results could be stated and proved for the
measures ‖πK∇HTtu‖Hγ and |πKDγu|, with K ⊂ H closed subspace.

Theorem 4.4. Let u ∈ BV (X, γ) and j ≥ 1. Then

lim
t↓0

∂jTtuγ = 〈Dγu, hj〉, lim
t↓0

|∂jTtu|γ = |〈Dγu, hj〉|

in the duality with Cb(X).

Proof. Since, by the integration by parts formula, ∇jTtuγ weakly converge to 〈Dγu, hj〉 in
the duality with FC1

b (X) as t ↓ 0, in order to show the convergence of ∂jTtuγ it suffices to
show that |∇jTtu|γ is tight. Indeed, this ensures by Prokhorov theorem the compactness in
the duality with Cb(X), and the weak limit must be the same as above, by the density of
FC1

b (X) in Cb(X).
By Remark 4.2 we have

lim sup
t↓0

∫
X

|∂jTtu|dγ ≤ |〈Dγu, hj〉|(X),

hence tightness is achieved, thanks to Lemma 2.1, by

lim inf
t↓0

∫
A

|∂jTtu|dγ ≤ |〈Dγu, hj〉|(A) for all A ⊂ X open.

This inequality, in turn, can be derived as in the proof of the implication (3) ⇒ (4) in the
proof of Theorem 4.1, using the fact that the sections Ay = {t ∈ R : y + thj ∈ A} are open,
and the lower semicontinuity of

v ∈ BV (R, γ1) 7→ |Dγ1v|(J)

with respect to the L1(γ1) convergence, for all J ⊂ R open.
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An immediate consequence of Theorem 4.1 is the extension, by approximation, of many
properties of Sobolev functions to BV : for instance BV (X, γ)∩L∞(X, γ) is an algebra (and
therefore sets of finite perimeter are stable under union and intersection), BV (X, γ) is stable
under left composition with Lipschitz maps f , and |Dγf ◦u|(X) ≤ Lip(f)|Dγu|(X), etc. We
need in particular the inequalities stated in the following proposition, a direct consequence
of (16) and (18) for D1,1(X, γ) functions, and of the equality |Dγu|(X) = Lγ(u).

Proposition 4.5 (Sobolev and Poincaré inequalities). Let u ∈ BV (X, γ). Then∫ +∞

0

U (γ({|u| > s}))ds ≤ |Dγu|(X)

and ∫
X

∣∣∣∣u− ∫
X

udγ

∣∣∣∣ dγ ≤ C1|Dγu|(X),

where C1 is the constant in the Poincaré inequality (18) for p = 1.

The following approximation result for sets of finite perimeter is a consequence of the
approximation in BV through smooth functions and the coarea formula.

Proposition 4.6. Let E ⊂ X be a set with finite perimeter; then there exist cylindrical sets
Ej = Π−1

mj
Bj, with Bj ∈ Rmj smooth sets, such that

lim
j→∞

‖χEj − χE‖L1(X,γ) = 0 and lim
j→∞

Pγ(Ej) = Pγ(E).

Proof. According to Theorem 4.1, for every u ∈ BV (X, γ) there is a sequence of D1,1(X, γ)
functions such that the L1 norms of their gradients converge to the total variation of u.
Moreover, smooth cylindrical functions are dense in D1,1(X, γ), hence there exists a sequence
(uj) of smooth cylindrical functions with

uj → χE in L1(X, γ) and
∫

X

‖∇Huj‖Hdγ → Pγ(E).

Assuming with no loss of generality that 0 ≤ uj ≤ 1, the conclusion then follows from the
coarea formula by taking smooth levels Bj of uj .

Due to the previous proposition, we say that E is a smooth set if E = Π−1
m B for some

set B ∈ Rm with smooth boundary. Denoting by Hm−1 the Hausdorff (m− 1)-dimensional
measure in Rm, since by (38) Dγm

χB = GmDχB and |DχB |(A) = Hm−1(A ∩ ∂B) for all
Borel sets A, for the sets Ej of the previous proposition we get

Pγ(E) = lim
j→+∞

∫
∂Bj

Gmj dHmj−1.

Remark 4.7. Using the results in [5], it is possible to repeat the same argument contained
in [8] to show that the isoperimetric inequality and extremality of half–spaces hold in infinite
dimension as well. That is, for any E ⊂ X with finite perimeter,

Pγ(E) ≥ U (γ(E)),

with U defined in (14) with equality if and only if E is an arbitrary half–space. The proof
is based on analysis of the quantity JE introduced in Remark 4.3; in particular, once one
has (42), by using the fact that JE(t) is twice differentiable, (see [7, Proposition 5.4.8]), one
shows that if equality holds for a set E in the isoperimetric inequality, then χE is affine (see
[8, Lemma 2.1]), that is E is a half–space.
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In the next corollary we consider a finite dimensional subspace K ⊂ H. We shall denote
by ΠK : X → K the canonical projection (induced by the choice of a basis of K) and set
Π⊥K(x) = x − ΠK(x); since ΠK ◦ ΠK = ΠK and ΠK |K = ΠK we may write in a unique
way x = x1 + x2 with x1 ∈ K and x2 ∈ Ker(ΠK) and, accordingly, ux1(x2) = u(x1 + x2).
Setting X1 = K and X2 = Ker(ΠK) (the closure of K⊥ in X), we have also the factorization
dγ(x1, x2) = dγ1(x1)⊗dγ2(x2) with γ1 Gaussian in X1 and γ2 Gaussian in X2; furthermore,
the Cameron-Martin spaces are respectively K and K⊥.

The next proposition is the natural complement of Theorem 3.10: in that theorem the
slices are 1-dimensional, and with minor changes the same result could be proved for finite-
dimensional slices. Here we consider, instead, slices of finite codimension; for the sake of
simplicity we state it assuming a priori that the map u is globally BV , hence without using
variations, and we consider only one implication.

In the sequel, for a given closed subspace L ⊂ H and u ∈ BV (X, γ) we set, in accordance
with Remark 4.2,

DL
γ u := πLDγu ∈ M (X, L),

where πL : H → L is the orthogonal projection.

Proposition 4.8. Let u ∈ BV (X, γ); then ux1 ∈ BV (X2, γ2) for γ1-a.e. x1 ∈ X1 and

(43) |DK⊥

γ u|(X) =
∫

X1

|Dγ2ux1 |(X2)dγ1(x1).

Proof. Let un = Ttnu, with tn → 0, and assume with no loss of generality that (un)x1

converge to ux1 in L1(X2, γ2) for γ1-a.e. x1. We have∫
X1

∫
X2

‖∇K⊥(un)x1(x2)‖K⊥dγ2(x2)dγ1(x1) =
∫

X

‖∇K⊥un‖Hdγ

and, passing to the limit as n →∞, Fatou’s lemma and Remark 4.2 give∫
X1

Lγ2(ux1)dγ1(x1) ≤ |DK⊥

γ u|(X),

with Lγ2 as in (3) of Theorem 4.1. From Theorem 4.1 we deduce ux1 ∈ BV (X2, γ2) for
γ1-a.e. x1 ∈ X1 and the inequality ≥ holds in (43).

Arguing as in the first part of the proof of Theorem 3.10 we see that the factorization
γ = γ1 ⊗ γ2 yields

〈h, Dγu〉 =
∫

X1

〈h, Dγ2ux1〉dγ1(x1)

for all h ∈ K⊥ (indeed, both measures satisfy the integration by parts formula in the
direction h), hence

DK⊥

γ u =
∫

X1

Dγ2ux1dγ1(x1).

This immediately gives

|DK⊥

γ u|(X) ≤
∫

X1

|Dγ2ux1 |(X2)dγ1(x1).
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Corollary 4.9. Let u ∈ BV (X, γ) let K ⊂ H be finite-dimensional and EKu the conditional
expectation relative to K. If K⊥ is the complementary subspace of K, we have∫

X

|u− EKu|dγ ≤ C1|DK⊥

γ u|(X).

Proof. We write as in Proposition 4.8 x = x1 + x2 with x1 ∈ X1 = K and x2 ∈ X2 =
Ker(ΠK), and denote by ux1(x2) = u(x1 + x2); using the Poincaré inequality in X⊥

K we get∫
X

|u(x)− EKu(x)|dγ(x) =
∫

X1×X2

|u(x1 + x2)− EKu(x1)|dγ1(x1)dγ2(x2)

=
∫

X1

∫
X2

∣∣∣∣ux1(x2)−
∫

X2

ux1(z)dγ2(z)
∣∣∣∣ dγ2(x2)dγ1(x1)

≤C1

∫
X1

|DK⊥

γ2
ux1 |(X2)dγ1(x1) = C1|DK⊥

γ u|(X),

where in the last line we have used Proposition 4.8.

In an analogous way one can prove that

(44)
∫

X

|u− EKu|pdγ ≤ Cp

∫
X

‖πK⊥∇Hu‖p
H dγ ∀u ∈ D1,p(X, γ).

The next Theorem generalises Theorem 5.12.5 of [7], for the part concerning Sobolev
spaces. The part concerning BV functions is, to our knowledge, totally new.

Theorem 4.10. The following statements hold.

(i) For p > 1, let F be a bounded family of functions in D1,p(X, γ); assume that for every
ε > 0 there exists a finite dimensional subspace K of H such that,

(45)
∫

X

‖∇K⊥u‖p
Hdγ ≤ ε, ∀u ∈ F;

then F is relatively compact in Lp(X, γ).

(ii) Let F be a bounded family of functions in BV (X, γ); assume that for every ε > 0 there
exists a finite dimensional subspace K of H such that,

(46) |DK⊥u|(X) ≤ ε, ∀u ∈ F;

then F is relatively compact in L1(X, γ).

Proof. We first discuss briefly the finite-dimensional case, X = Rm, γ = γm, for BV func-
tions (for Sobolev functions, see [6, Theorem 9.3.19] or adapt the argument below, taking
into account the continuous embedding of D1,p into the space Lp log1/2L in (17)). Since
the family F is bounded also in L log1/2L(Rm, γm), we obtain that F is equi-integrable in
L1(Rm, γm), hence by a truncation argument we can assume with no loss of generality that
F is uniformly bounded also in L∞(Rm, γm). Under this assumption relative compactness
follows obviously from relative compactness in L1

loc(Rm); the latter is a consequence of the
classical compact embedding of BVloc in L1

loc and of the identity Dγmu = GmDu, showing
that supu∈F |Du|(K) is finite for any compact set K ⊂ Rm.
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We shall prove only (ii) by showing that F is totally bounded (the proof of (i) is analo-
gous). By Corollary 4.9 we have∫

X

|u− EKu|dγ ≤ C1ε ∀ u ∈ F.

Since the result holds in finite dimension, the family FK = {EKu : u ∈ F} is totally bounded
in L1(X, γ) and the thesis follows.

Remark 4.11. Statement (i) is not true in D1,1(X, γ) under condition (45) with p = 1.
In this case the family F is only pre–compact and the limit is in general only in BV (X, γ).
Moreover, bounded families in BV (X, γ) are not in general pre–compact; as an example it
suffices to consider the family F of characteristic functions of the sets

{x : 〈x, x∗〉 ≤ 0}, x∗ ∈ X∗, ‖Qx∗‖H = 1.

Condition (45) is satisfied if there exist a compact operator K on H such that ∇Hu ∈ K(H)
almost everywhere for all u ∈ F and

∫
X
‖K−1∇Hu‖p

Hdγ is uniformly bounded on F. Indeed,
a simple compactness argument proves that

‖h−Πmh‖H → 0 uniformly on {h ∈ K(H) : ‖K−1h‖H ≤ 1},

hence we may find ωm → 0 such that∫
X

‖∇Hu−∇Hmu‖p
Hdγ ≤ ωm

∫
X

‖K−1∇Hu‖p
Hdγ.

Analogously, in the BV case we have that (46) is fulfilled if there exists a compact operator
K on H such that the Radon-Nikodym densities Dγu/|Dγu| belong to K(H) |Dγu|-a.e. for
all u ∈ F and ∫

X

∥∥∥∥K−1 Dγu

|Dγu|

∥∥∥∥
H

d|Dγu|

is uniformly bounded on F. Indeed,

|DH⊥
m

γ u|(X) = |Dγu−DHm
γ u|(X) =

∫
X

∥∥∥∥ Dγu

|Dγu|
− πHm

Dγu

|Dγu|

∥∥∥∥
H

d|Dγu|

≤ ωm

∫
H

∥∥∥∥K−1 Dγu

|Dγu|

∥∥∥∥
H

d|Dγu|.

5 The case when X is a Hilbert space

The results presented above show that there are strict links between the notion of derivative
∂h, the semigroup Tt and the measure γ, which turns out to be invariant under Tt. Indeed,
if X is an Hilbert space, different notions of derivative can be given, related to different
semigroups still having γ as invariant measure (see Remark 5.2).

In this section we briefly describe another point of view and confine ourselves to deriving
the corresponding compact embedding theorem both for Sobolev and BV functions.

In this section we assume that (X, 〈·, ·〉X) is a separable Hilbert space; let γ = N (0, Q)
be as before. Identifying X and its dual X∗ with the inner product, we fix an orthonormal
basis (ek) in X such that

Qek = λkek, ∀ k ≥ 1,
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with λk > 0 and
∑

k λk < ∞. If we set xk = 〈x, ek〉, since R∗ek = xk and Rxk = λkek it
follows that

‖λkek‖H = ‖xk‖L2(x,γ) =
√

λk.

Consequently an orthonormal basis in H is given by εk = λ
1/2
k ek, the Cameron-Martin norm

is (
∑

k x2
k/λk)1/2 and

H = Q1/2X =
{

x ∈ X : ∃y ∈ X with x = Q1/2y
}

=
{

x ∈ X :
∞∑

k=1

x2
k

λk
< ∞

}
.

Notice that Q1/2 is still a compact operator on X.
Setting for all k ≥ 1

Dkf(x) = ∂ek
f(x) = lim

t→0

f(x + tek)− f(x)
t

,

we define by linearity a gradient operator D : FC1
b (X) → FCb(X, X). The gradient turns

out to be a closable operator with respect to the topologies Lp(X, γ) and Lp(X, γ, X) for
every p ≥ 1, and we denote by W 1,p(X, γ) the domain of the closure in Lp(X, γ), endowed
with the norm

‖u‖1,p =
(∫

X

|u(x)|pdγ +
∫

X

( ∞∑
k=1

|Dku(x)|2
)p/2

dγ
)1/p

,

where we keep the notation Dk also for the closure of the partial derivative operator.
As a consequence of the relation εk = λ

1/2
k ek we have also

(47) ∂εk
= λ

1/2
k Dk,

so that W 1,p(X, γ) ⊂ D1,p(X, γ), since ‖∇Hf‖H = (
∑

k λk|Dkf |2)1/2.
Since êk = xk/λk, the integration by parts formula (11) becomes

(48)
∫

X

g(x)Dkf(x)dγ(x) = −
∫

X

f(x)Dkg(x)dγ(x) +
1
λk

∫
X

xkf(x)g(x)dγ(x)

for f, g ∈ FC1
b (X). However, we point out that even though Dvf =

∑
i viDif makes sense

for v ∈ X, the corresponding integration by parts along v does not, since at least convergence
of ∑

k

|vk|
λk

∫
|xk|dγ =

1√
2π

∑
k

|vk|√
λk

is needed (this is ensured for v ∈ Q(X) = Q1/2(H)).
In this context, we may give a corresponding definition of BV functions.

Definition 5.1. A function u ∈ L1(X, γ) belongs to BVX(X, γ) if there exists νu ∈
M (X, X) such that for any k ∈ N we have∫

X

u(x)Dkϕ(x)dγ = −
∫

X

ϕ(x)dνu
k +

1
λk

∫
X

xku(x)ϕ(x)dγ, ϕ ∈ FC1
b (X),

with νu
k = 〈νu, k〉X .
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It is immediate to check that BVX(X, γ) is contained in BV (X, γ) and that

(49) 〈Dγu, εi〉 = λ
1/2
i νu

i .

Remark 5.2. Even though we do not further pursue this point of view here, let us point
out that the transition semigroup corresponding to the gradient D is given by

Rtf(x) =
∫

X

f(e−tQ−1/2x + y)dγt(y), f ∈ Cb(X),

where γt = N (0, Qt) and

Qt = Q

∫ t

0

e−sQ−1
ds = Q(1− e−tQ−1

).

Notice that ‖e−tQ−1‖ ≤ e−ωt, t ≥ 0, where ω = inf 1
λk

.
Therefore N (0, Qt) → N (0, Q) = γ weakly as t → ∞, so that γ is invariant for Rt.

Moreover Rt maps L1(X, γ) into W 1,1(X, γ) for every t > 0, see e.g. [11, Proposition 10.3.1],
and this is coherent with the hypothesis u ∈ L1(X, γ) in Definition 5.1. In [3] we plan to
investigate further relations between BVX(X, γ) and the semigroup Rt.

Let us show that both Sobolev and BV spaces in the present context are compactly
embedded into the corresponding Lebesgue spaces. The following statement easily follows
from Theorem 4.10 and the relation (47).

Theorem 5.3. For every p ≥ 1, the embedding of W 1,p(X, γ) into Lp(X, γ) is compact.
The embedding of BVX(X, γ) into L1(X, γ) is compact.

Proof. Let us prove the statement in the Sobolev case, that of BV is similar and uses (49).
It suffices to show that every family F bounded in W 1,p(X, γ) is totally bounded in Lp(X, γ).
If ‖u‖1,p ≤ C for all u ∈ F, then in particular∫

X

( ∞∑
k=1

|Dku|2
)p/2

dγ ≤ Cp ∀ u ∈ F,

whence by (47) ∫
X

( ∞∑
k=1

∣∣∣ 1
λk

∂εk
u
∣∣∣2)p/2

dγ ≤ Cp ∀ u ∈ F.

By applying Remark 4.11 with K = Q1/2 the thesis follows.
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