A PIECEWISE KORN INEQUALITY IN SBD AND APPLICATIONS TO
EMBEDDING AND DENSITY RESULTS
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ABSTRACT. We present a piecewise Korn inequality for generalized special functions of
bounded deformation (GSBD?) in a planar setting generalizing the classical result in elas-
ticity theory to the setting of functions with jump discontinuities. We show that for every
configuration there is a partition of the domain such that on each component of the cracked
body the distance of the function from an infinitesimal rigid motion can be controlled solely
in terms of the linear elastic strain. In particular, the result implies that GSBD? func-
tions have bounded variation after subtraction of a piecewise infinitesimal rigid motion.
As an application we prove a density result in GSBD?2. Moreover, for all d > 2 we show
GSBD?(Q) C (GBV(Q;R))¢ and the embedding SBD?(Q) N L= (Q; R?) — SBV(Q;R?)
into the space of special functions of bounded variation (SBV'). Finally, we present a Korn-
Poincaré inequality for functions with small jump sets in arbitrary space dimension.
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1. INTRODUCTION

A natural framework for the investigation of damage and fracture models in a geometrically
linear setting is given by the space of special functions of bounded deformation investigated
in [3, 5]. The space SBDP(f2) consists of all functions u € L'(£;R?) whose symmetrized
distributional derivative Eu := $((Du)” + Du) is a finite R&¢¢-valued Radon measure which
can be written as the sum of an LP(Q;RE<Y) function e(u) := 3((Vu)” + Vu) and a part
concentrated on a rectifiable set .J,, with finite #%~! measure. Starting with the seminal paper
[25] various variational problems for fracture mechanics in the realm of linearized elasticity have
recently been investigated in the literature (see e.g. [6, 10, 11, 24, 41]), where the common

ground of all these models is that the main energy term is essentially of the form

/|e(u)|2dx+Hd*1(Ju) (1.1)
Q

for u € SBD?*(Q). These so-called Griffith functionals comprise elastic bulk contributions for
the unfractured regions of the body represented by the linear elastic strain e(u) and surface
terms that assign energy contributions on the crack paths comparable to the size of the ‘jump
set’ J,,.

For technical reasons models are often formulated in SBD?(Q) N L>(Q;R?), e.g. in [5, 11,
41], since for this setting a compactness result in SBD was proved in [5, Theorem 1.1] and
hereby the existence of solutions to minimization problems related to (1.1) is guaranteed. To
overcome this restriction, the space of gemeralized special functions of bounded deformation,
denoted by GSBD(f2), was introduced in [18], admitting a compactness result under weaker
assumptions and leading to the investigation of fracture models [28, 35] in a more general
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setting. (For an exact definition of GSBD, which is based on properties of one-dimensional
slices, we refer to Section 3.3.)

On the one hand, models of the form (1.1) with linearized elastic energies are in general
easier to treat than their nonlinear counterparts since in the regime of finite elasticity the
energy density of the elastic contributions is genuinely geometrically nonlinear due to frame
indifference rendering the problem highly non-convex. On the other hand, a major difficulty
of these models in contrast to nonlinear problems formulated in the space SBV of special
functions of bounded variation (see [4]) is given by the fact that one controls only the linear
elastic strain.

Indeed, as discussed in [15], it appears that various properties being well established in
SBV are only poorly understood in SBD due to the lack of control on the skew symmetric
part of the distributional derivative (Du)? — Du. Especially, to the best of our knowledge,
for the coarea formula in BV (see [4, Theorem 3.40]), being useful in various applications as
[7, 8, 19, 21, 26], no BD analog has been obtained in the literature.

Therefore, it is a natural and highly desirable issue to gain a deeper understanding of the
relation between SBD and SBV or even to show that in certain circumstances SBD functions
have bounded variation. In fact, one may expect that hereby various problems in SBD could
be solvable by a reduction to corresponding results in SBV.

Clearly, a generic function of bounded deformation does not necessarily lie in SBV as one can
already construct a function with J,, = () such that e(u) € L(Q2), but Vu ¢ L'(Q) (cf. [14, 40]).
Moreover, following the examples in [3, 18] one can define functions in GSBD?(f2) not having
bounded variation (see Example 2.6 and Lemma 2.8 below), i.e. also the higher integrability
for the elastic strain and the finiteness of the energy (1.1) is in general not sufficient. However,
the examples involve unbounded configurations and it has therefore been conjectured that
SBD?*(Q) N L>®(;R?) is a subspace of SBV (Q;RY).

A profound understanding of the connection between SBV and SBD functions is directly
related to the validity of a Korn-type inequality in the setting of functions exhibiting jump
discontinuities. In elasticity theory Korn’s inequality is the key estimate providing a relation
between the symmetric and the full part of the gradient (see e.g. [39]). It states that the
distance of Vu from a skew symmetric matrix can be controlled solely in terms of the linear
elastic strain e(u). In the recently appeared contributions [16, 29] this well-know estimate has
been generalized in a planar setting to configurations in SBD with small jump set controlling
Vu away from a small exceptional set.

However, for general functions of bounded deformation Korn’s inequality in its basic form
is doomed to fail. In fact, the domain may be disconnected into various parts by the jump
set with completely different behavior on each component. In the special case that a brittle
material does not store elastic energy, i.e. e(u) = 0, Chambolle, Giacomini, and Ponsiglione
[13] showed that the body behaves piecewise rigidly, i.e. the only possibility that u is not an
affine mapping is that the body is divided into at most countably many parts each of which
subject to a different infinitesimal rigid motion.

Consequently, this observation already shows that an analogous statement of Korn’s inequal-
ity in (G)SBD has to be formulated in a considerably more complex way involving a partition
of the domain. The problem is related to the result in [31], where a quantitative piecewise
rigidity result in a geometrically nonlinear setting is established stating that in the planar case
the distance of the deformation gradient from a piecewise rigid motion can be controlled.

The main goal of the present work is the derivation of an analogous result in the geometrically
linear setting which we call a piecewise Korn inequality. We show in the planar case that for
each u € GSBD?(Q) there is an associated partition whose boundary length is controlled by
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H(J,) and a corresponding piecewise infinitesimal rigid motion a, being constant on each
connected component of the cracked body, such that the distance of v and Vu from a can
be estimated in terms of |[e(u)||12(q). This result for configurations storing elastic energy and
exhibiting cracks may be seen as a suitable combination of Korn’s inequality for elastic materials
and the qualitative result in [13].

The estimate proves to be useful to gain a deeper understanding of the relation between
SBV and SBD functions. Although, as discussed above, GSBD? functions do not have
bounded variation in general, the piecewise Korn inequality yields that after subtraction of a
piecewise infinitesimal rigid motion the function lies in the space SBVP for all p < 2. Hereby
we particularly derive that each function in GSBD? has bounded variation away from an at
most countable union of sets of finite perimeter with arbitrarily small Lebesgue measure.

It turns out that for the subspace of bounded functions this observation can be substantially
improved. In this case it is possible to control the piecewise infinitesimal rigid motion in terms
of ||ule and H4~1(J,) and we indeed obtain the embedding

SBD?*(Q) N L (;RY) — SBV(Q; RY), (1.2)

which is contrast to the piecewise Korn inequality is proved in arbitrary space dimension using
a slicing technique. Moreover, similar arguments yield that without the L°°-bound one may
derive the inclusion GSBD?(2) C (GBV(£;R))? for d > 2. (See Section 3.3 below for the
definition of generalized functions of bounded variation.) In particular, from (1.2) we deduce
that in the space of bounded SBD? functions, being a natural and widely adopted space in
the investigation of linear fracture models, the coarea formula is applicable.

Apart from the derivation of embeddings a major motivation for the derivation of the piece-
wise Korn inequality are applications to Griffith models. We show that the embedding result
and the coarea formula allow to derive a Korn-Poincaré inequality in SBD stating that for
a GSBD? function with small jump set the distance from a single infinitesimal rigid motion
can be controlled outside a small exceptional set. This estimate, established in arbitrary space
dimension, enhances a result recently obtained by Chambolle, Conti, and Francfort [12] in the
sense that also the length of the boundary of the exceptional set can be bounded in terms of
H?~1(J,) and therefore compactness results in GSBD (see [18]) are applicable.

We also present an approximation result for G.SBD? functions in a planar setting improving
[35] in the sense that no L?-bound on the function is needed. Hereby we can complete the I'-
convergence result for the linearization of Griffith energies [28] by providing recovery sequences
for every GSBD? function. Moreover, the main statement of this paper will be a fundamental
ingredient to prove a general compactness theorem and to analyze quasistatic crack growth for
energies of the form (1.1) (see [32]).

The major difficulties in the derivation of the result come from the fact we treat a full free
discontinuity problem in the language of Ambrosio and De Giorgi [20] deriving an estimate
without any a priori assumptions on the the crack geometry. Already simplified situations, in
which the jump set decomposes the body into a finite number of sets with Lipschitz boundary,
are subtle since there are no uniform bounds on the constants in Poincaré’s and Korn’s in-
equality. In fact, in the basic case of simply connected sets, in [30] a lot of effort was needed to
derive a decomposition result into domains for which uniform bounds on the constants can be
derived. Even more challenging difficulties occur for highly irregular jump sets forming, e.g.,
infinite crack patterns on various mesoscopic scales.

At first sight the derivation of the piecewise Korn inequality appears to be easier than the
related problem [31] due to the geometrical linearity. However, whereas in [31] the statement is
established only for a suitable, arbitrarily small modification of the configuration, in the present
context the estimates hold for the original function, where this stronger result is indispensable
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to prove the announced embedding and approximation results. In particular, the modification
scheme for the deformation and jump set, which was iteratively applied in [31] on mesoscopic
scales becoming gradually larger, is not adequate in the present context and we need to use
comparably different proof techniques.

The general strategy will be to first derive an auxiliary piecewise Korn inequality, which
similarly as in [16, 29] holds up to a small exceptional set. Then the main result follows by
an iterative application of the estimate on various mesocopic scales. For the derivation of the
auxiliary statement we first identify the regions where the jump set is too large. Hereby we
can (1) construct a partition of the domain into simply connected sets and (2) use the Korn
inequality [16, 29] for functions with small jump sets to find a modification of the configuration,
which is smooth on each component of the domain. To control the shape of the components we
apply the main result of the paper [30] which allows to pass to a refined partition consisting of
John domains with uniformly controlled John constant. The auxiliary statement then follows
by using a Korn inequality for John domains (see e.g. [1]).

Let us remark that the piecewise Korn inequality is only proved in a planar setting since also
the major proof ingredients, the Korn inequality for functions with small jump sets [16, 29] and
the decomposition result [30], have only been shown in dimension two. Although the derivation
of a higher dimensional analog seems currently out of reach, the majority of the applications
in this contribution, namely the embedding (1.2) and the Korn-Poincaré inequality, hold in
arbitrary dimensions due to slicing arguments.

The paper is organized as follows. In Section 2 we present the main results including
the embedding and approximation for GSBD? functions. In Example 2.6 we also recall a
standard construction for an SBD function not having bounded variation, which is based on
the idea to cut out small balls from the bulk part. Hereby we see that in view of the piecewise
Korn inequality examples of this type essentially represent the only possibility to define SBD?
functions not lying in SBV. Moreover, the construction shows that the embedding (1.2) is
sharp in the sense that the result is false if (1) SBV is replaced by SBVP, p > 1, and if (2)
L is replaced by L9, g < co.

Section 3 is devoted to some preliminaries. We first recall the definition of John domains
and formulate the decomposition result established in [30]. Then we state some properties
of affine mappings being especially important for the derivation of (1.2), where we need fine
estimates how affine mappings and its derivatives can by controlled in terms of the volume and
diameter of the underlying set. Afterwards, we recall the definition of (G)SBV and (G)SBD
functions and discuss basic properties.

In Section 4 we prove a version of the piecewise Korn inequality outside a small exceptional
set. Together with the construction of a partition into simply connected sets we also provide
a covering of Whitney-type such that the jump set J, in each element of the covering is
small. This then allows us to apply the inequality [29] in order to define a modification of the
deformation being smooth in each part of the domain. We discuss properties of the covering
and the exceptional set being crucial for the iterative application of the auxiliary result in
Section 5.1.

Section 5 then contains the proof of the piecewise Korn inequality. In Section 5.1 we first
prove the result for configurations in SBD with a regular jump set consisting of a finite number
of segments. Then in Section 5.2 we derive the general case by an approximation argument
similar to the one in [29]. Here we also prove our main approximation result.

Finally, Section 6 contains the proof of the embedding results and the Korn-Poincaré in-
equality. As an ingredient for the derivation of (1.2) we also provide a piecewise Poincaré
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inequality, which will allow to control the distance of configurations from piecewise infinites-
imal rigid motions in terms of the L°°-norm. For the latter as well as for the Korn-Poincaré
inequality the coarea formula in BV will turn out to be a key ingredient.

2. MAIN RESULTS

2.1. Piecewise Korn inequality. Before we formulate the main results of this article, let
us introduce some notions. We say a partition (P;)72; of Q C R? is a Caccioppoli partition
if each P; is a set of finite perimeter such that Zjoil HI1(0*P;) < 400 (see Section 3.3 for
details). Given corresponding affine mappings a; = aa; s, : RY — R? with aj(z) = A; x+b; for
Aj € ngxefv, b; € R?, we say a; is an infinitesimal rigid motion and the function Zjoi1 ajxp
is a piecewise infinitesimal rigid motion.

For the definition and properties of special functions of bounded variation (SBV) and de-
formation (SBD) we refer to Section 3.3. In particular, for u € SBD?()) we denote by e(u)
the part of the strain Fu = %(DuT + Du) which is absolutely continuous with respect to £%

and let J, be the jump set. Our main goal is to show the following result.

Theorem 2.1. Let Q C R? open, bounded with Lipschitz boundary and p € [1,2). Then there
is a constant ¢ = ¢(p) > 0 and a constant C > 0 only depending on diam(QY) and p such that
for each w € GSBD?(Q) there is a Caccioppoli partition (P;)32, of Q with

HY (0% P;) < c(H'(Ju) + H(09)) (2.1)

j=1

and corresponding infinitesimal rigid motions (a;j); = (aa,p,); such that
— o .2 0. P2
vi=u— ZFl ajxp, € SBVP(Q;R?) N L*=(Q;R?) (2.2)

and
(i) |vllze(o) < CH(Ju) +H(09)) 7 le(w)] 20

i (2.3)
(”) ||vv||Lp(Q) S C”e(u)HLz(Q)

In its most general form the result holds in the generalized space GSBD?()), which loosely
speaking arises from S BD?(Q) by requiring that one-dimensional slices have bounded variation.
(We again refer to Section 3.3 for the exact definition.) The reader not interested in the
generalized space may readily replace GSBD?(2) by SBD?(Q) here and in the following
(except for Lemma 2.8). The result will first be proved for configurations with a regular jump
set consisting of a finite number of segments. Only at the very end we pass to the general case
by using a density result (see Theorem 3.11, Lemma 5.4) and Ambrosio’s compactness theorem
in SBV. Consequently, the article is in large part accessible for readers without familiarity
with the properties of the above function spaces.

Remark 2.2. Let us comment the results of Theorem 2.1.

(i) An important special case is given by functions not storing linearized elastic energy,
ie. e(u) = 0 a.e. Then (2.3) gives that v is a piecewise infinitesimal rigid motion
and thus Theorem 2.1 can be interpreted as a piecewise rigidity result. 1t shows that
the only way that global rigidity may fail is that the body is divided into at most
countably many parts each of which subject to a different infinitesimal rigid motion.
This result has been discussed for SBD functions in [13] and Theorem 2.1 may be seen
as a quantititive extension in the GSBD setting.
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(ii) Tt is a well known fact that in general Vu and u are not summable for u € GSBD?().
The result shows that one may gain control over the function and its derivative after
subtraction of a piecewise infinitesimal rigid motion. We hope that such an estimate
will be useful to reduce various problems from the (G)SBD to the SBV setting.

(iii) In contrast to [31], where a related result in a geometrically nonlinear setting is estab-
lished, in Theorem 2.1 no modification of the configuration w is necessary. This will
be crucial for the embedding results announced in Section 2.3.

(iv) In general one has Z(;il H'(0*P;\ Ju) > 0 even if J, already induces a partition (P);
of Q with J, = Uj (’9*ij N Q up to a set of negligible H!-measure. Indeed, it is well
known that in irregular domains, e.g. in domains with external cusps, Korn’s inequality
may fail (cf. [34]). Also in the case that each P is a Lipschitz set, 3572 HY(O* P\ Jy) >
0 might be necessary since possibly the constants Ckorn(PJ’» ) involved in the W? Korn
inequality tend to infinity as j — oco.

(v) Note that the constant in (2.3) depends on € only through its diameter and p € [1, 2).
Consequently, the above result may be also interesting in the case of u € H'(Q) and
varying domains §2.

(vi) At some points of the proof we have to pass to a slightly smaller exponent by Hélder’s
inequality and therefore we derive the result only for p < 2. In particular, we do not
know if a similar result holds in the critical case p = 2. Note, however, that for the
applications we have in mind, it is sufficient that (2.3) holds for p = 1.

The result is first shown up to a small exceptional set (see Theorem 4.1) and then Theorem
2.1 for functions with regular jump set follows from an iterative application of the estimate
in Theorem 4.1 (see Section 5.1). Finally, the general version is proved by approximation
arguments given in Section 5.2. For a more detailed outline of the proof we refer to the
beginning of Section 4 and Section 5.

In Remark 2.2(ii) we have discussed that in general GSBD functions are not summable. A
similar problem occurs in GSBV (see Section 3.3 for the exact definition). However, we get
that GSBYV functions are integrable after subtraction of a piecewise constant function.

Theorem 2.3. Let Q C R? open, bounded with Lipschitz boundary. Let p > 0 and m €
N. Then there is a constant ¢ = c¢(m) > 0 such that for each w € (GSBV(;R))™ with
IV ul| 1 oraxmy + HIH(Jy) < 400 there is a Caccioppoli partition (P;)32, of Q and corre-
sponding translations (b;)32, C R™ such that v:=u—3772, bjxp, € SBV(Q;R™)NL>(QR™)

and
() D MO BN\ L) <cp,

(1) Nvllzoe(@mm) < ep™ [Vl @upaxm)-

Note that for the special choice p = O(HI~1(J,) + HI=1(99Q)), 6 > 0, (2.4)(ii) is similar to
(2.3)(i). In particular, in the proofs we will use Theorem 2.3 to derive (2.3)(i) once (2.3)(ii) is
established. The estimate is essentially based on the coarea formula in BV (see [4, Theorem
3.40]) and the argumentation in the proof goes back to [8, Proposition 6.2]. We remark that
in contrast to Theorem 2.1 the result is derived in arbitrary space dimension. The proof will
be given in Section 6.1.

(2.4)

Remark 2.4. Before we proceed with some applications of Theorem 2.1 let us comment on
the estimates (2.1) and (2.4)(i). In (2.4)(i) for the choice p = (H*1(J,) + HI~1(0N)) with
0 small we obtain a fine estimate in the sense that the additional surface energy associated to
the partition may be taken arbitrarily small with respect to the original jump set, where the
constant in (2.4)(ii) blows up for  — 0.
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In contrast to the embedding and approximation results addressed in this article, for certain
applications of the piecewise Korn inequality it is crucial to have also a refined version of
(2.1), e.g. for a jump transfer theorem in SBD or a general compactness and existence result
for Griffith energies in the realm of linearized elasticity (see [32]). The derivation of such an
estimate needs additional techniques and we refer to [32] for a deeper analysis.

2.2. Approximation of GSBD functions. For each u € GSBD?*(Q) we can consider the
sequence

Uy =u— an a;xp, € SBVP(Q;R?) N L™ (Q; R?) (2.5)

with (P;); and (a;); as in Theorem 2.1. Hereby we can approximate GSBD? functions by
bounded functions of bounded variation which coincide with the original function up to a set
of arbitrarily small measure. In particular, combining this observation with the density result
proved in [35] (see Theorem 3.11) we obtain the following improved approximation result for
GSBD? functions in a planar setting (see Section 5.2 for the proof).

Theorem 2.5. Let Q C R? open, bounded with Lipschitz boundary. Let v € GSBD?*(Q).
Then there exists a sequence (uy)r C SBV?(Q;R?) such that each J,, is the union of a finite
number of closed connected pieces of Ct-curves, each uy, belongs to WHo°(Q\ J,,; R?) and the
following properties hold:

(1) ux — w in measure on S,
(i) lle(ur) —e(u)llz2 (@) = 0, (2.6)
(iii) H' (Ju, AJy) — 0.

Here the symbol A denotes the symmetric difference of two sets. Observe that in [11, 35]
the additional assumption u € L?(£) was needed which can be circumvented in the planar
setting by (1) first approximating u by (v,), C GSBD?*() N L?(2) as given in (2.5) and then
(2) applying the original density result [11, 35]. In fact, in various applications in fracture
mechanics approximation results are essential, e.g. for the construction of recovery sequences.
Consequently, to establish complete I'-limits it is indispensable to have a density result for
all admissible functions. In particular, Theorem 2.5 allows us to complete the picture in the
linearization result for Griffith energies presented in [28].

Recall that we establish Theorem 2.1 first for functions with a regular jump set and the
general case then follows by approximation of any u € GSBD?(Q2). Although Theorem 2.5
provides such a density result, in the proof we have to argue differently since we already use the
general version of Theorem 2.1 to prove Theorem 2.5. The strategy in the proof of Theorem 2.1
is to provide an adaption of the arguments in [11, 35] and to approximate each u € GSBD?*(Q)
(without L?(Q2) assumption) by functions (uy), with regular jump set such that (2.6)(i) holds
and |le(ug) |2 < clle()]lr2@), H' (Ju,) < ¢H'(Jy) (see Lemma 5.4), which is sufficient for
(2.1) and (2.3).

2.3. Relation between SBV and SBD: Embedding results. The standard examples for
functions of bounded deformation not having bounded variation are given by configurations
where small balls are cut out from the bulk part with an appropriate choice of the functions
on these specific sets (see e.g. [3, 15, 18]). We include the construction here for convenience of
the reader.

Example 2.6. Let By = B,, (71) C B1(0) C R? be pairwise disjoint balls for k& € N with =y,

converging to some limiting point .. For k € N let Ay = (afj) € ngxe‘viv with a¥, = —a}, =
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dr € R and afj = 0 otherwise. Define the piecewise infinitesimal rigid motion

u(@) = (Ax (@ —1)xp, (@). (2.7)
With the choice r, = (m)ﬁ and d, = ;' we get u € L>(B;(0);R?) and u €
SBV(B;1(0); R?) N SBD(B1(0)) with e(u) = 0 a.e. and H?1(J,) < +oo. However, Vu ¢
LP(B1(0); R™*4) for p > 1.

In view of Theorem 2.1 we see that the above construction is essentially the only way to
define (G)SBD functions with e(u) € L*(Q) and H!(J,) < +00 not having bounded variation.
In particular, by considering uxyr_, p;, M € N, with (P;); as in (2.1), we observe that each
u € GSBD?() has bounded variation away from an at most countable union of sets of finite
perimeter with arbitrarily small Lebesgue measure.

Observe that Vu € L'(B;(0); R?*9) for the function given in Example 2.6. An L bound
indeed implies that functions are of bounded variation as the following embedding result shows.

Theorem 2.7. Let @ C R? open, bounded with Lipschitz boundary. Then SBD?(Q) N
L>(Q;RY) — SBV(:;RY). More precisely, there is a constant C > 0 only depending on
Q such that

IVullL1 o) < Clle(u)|z2q) + C||“HL°°(Q)(Hd71(JU) +1). (2.8)

Note that in contrast to Theorem 2.1 our main embedding result as well as the following
theorems are valid in arbitrary space dimension, where we apply a slicing technique to extend
the estimate from the planar to the d-dimensional setting. As a direct consequence we get
that one may apply the coarea formula in BV for functions in SBD?(Q) N L°°(£;R). This
estimate can be potentially applied in many situations and will hopefully reveal useful.

Note that the property u € SBV(;R?%) does not follow directly from (2.8). However,
by first deriving Theorem 2.7 for functions with regular jump set and then using a density
argument (see Theorem 3.11), we can show SBD?(Q2) N L>=(Q;RY) ¢ BV (Q;R?). The claim
then follows from Alberti’s rank one property in BV (see [2]) implying | Du|(Q) < v/2|E°u|(Q).

The first term on the right hand side in (2.8) controls the distance of u from a piecewise
infinitesimal rigid motion (a;); = (aa;,;); (cf. (2.3)(ii)) and the last term allows to estimate
the skew symmetric matrices (A;);. Let us note that the above inequality is optimal in following
sense: by Example 2.6 the L'-norm on the left cannot be replaced by any other LP-norm.
Moreover, the bound H?~1(J,) < +oc is essential by [15, Theorem 3.1], where a function
in u € SBD(Q) N L>(Q;R?) is constructed with e(u) = 0 a.e., H"1(J,) = co and Vu ¢
L' (Q;R¥*4), Finally, the following lemma based on the construction given in Example 2.6
shows that the L°°-norm cannot be replaced by any other L%-norm.

Lemma 2.8. Let Q C R? open, bounded. Then for all 1 < q¢ < oo we find some u €
GSBD?(Q) N LI(Q;RY) such that the approvimate differential Vu exists a.e. and Vu ¢
LY (Q; RI*d),

Consequently, GSBD?(Q)NL4(;RY) ¢ BV (Q;RY) for all ¢ < oo. In Theorem 2.1 we have
seen that v = u —a € SBVP(Q;R?) C GBV(Q;R?) for a piecewise infinitesimal rigid motion
a:= 3y 72, ajxp,. Moreover, one has that a € GBV (Q;R?) (see [15, Theorem 2.2]). Of course,

herefrom we cannot directly deduce that u = v + a € GBV (Q;R?) since GBV (;R?) is not a
vector space. However, the property holds as the following inclusion shows.

Theorem 2.9. Let Q C R? open, bounded with Lipschitz boundary. Then GSBD?*(Q) C
(GBV(Q;R))4 € GBV (Q;RY). More precisely, there is a constant C > 0 only depending on §
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such that for alli=1,...,d and all M >0
|Du|(2) < CM(HH(Ju) +1) + Clle(w)| 12 (@) (2.9)

Here for v € GSBD?(Q) the functions uy,...,uy denote the components of v and uM :=
min{max{u;, -M}, M} for M > 0. Theorem 2.9 shows that the coarea formula in GBV (see
[4, Theorem 4.34]) is applicable in GSBD?(2). The results announced in this section will be
proved in Section 6.2.

2.4. A Korn-Poincaré inequality for functions with small jump set. As an application
of our embedding results and the coarea formula we present a Korn-Poincaré inequality for
functions with small jump set.

Theorem 2.10. Let Q C R? be a cube. Then there is a constant C > 0 only depending on
diam(Q) and d € N such that for all u € GSBD?*(Q) there is a set of finite perimeter E C Q
with
HIHOENQ) < C(HH ()2, Bl < C(H' ()7 (2.10)
and an infinitesimal rigid motion a = aa such that
@ lu—all 22 o < Clle@lzz@),
(i) flu = allz=@\p) < CH ()2 lle(w) 22(0)-
Moreover, if H*™1(Jy,) >0, 4 := (u— a)xg\r € SBV(Q;RY) N SBD?*(Q) N L>(Q; RY) and
|Dul(Q) < Clle(u)|r2(q)- (2.12)

Note that the exceptional set E is associated to the parts of @) being detached from the bulk
part of Q by J,. A variant of the proof shows that (%4 1(.J,))z in (2.10), (2.11)(ii) can be
replaced by (H4'(J,))% if in (2.11)(i) we replace 24 by p(ngl) for 1 <p<2.

This result improves an estimate recently obtained by Chambolle, Conti, and Francfort [12]
in the sense that H?~1(0*E) can be controlled and therefore compactness results in GSBD
(see [18]) are applicable. In addition, we provide a Korn-type estimate in (2.12). Similar results
in a planar setting with an even finer estimate for the perimeter of E have been investigated
in [27] and [16, 29].

The statement essentially follows by combining (1) the result in [12] and (2) applying the
coarea formula in BV together with (2.9). In particular, the argument uses a truncation at a
specific level set (cf. (2.11)(ii)) which is reminiscent of the Poincaré inequality in SBV due to
De Giorgi, Carriero, Leaci (see [21]). The proof will be given in Section 6.3.

(2.11)

3. PREPARATIONS

3.1. John domains. A key step in our analysis will be the construction of a partition and
a corresponding modification of the deformation being in WP on each component of the
partition. Then in the application of Poincaré’s and Korn’s inequality on each component it
is essential to provide uniform bounds for the constants involved in the inequalities. To this
end, we introduce the notion of John domains.

Definition 3.1. Let Q C R? be a bounded domain and let 2y € . We say Q is a o-John
domain with respect to the John center xy and with the constant o > 0 if for all z € €2 there
exists a rectifiable curve « : [0,1,] — €, parametrized by arc length, such that v(0) = «z,
Y(ly) = zo and t < pdist(y(t),09Q) for all t € [0,1,].
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Domains of this form were introduced by John [36] to study problems in elasticity theory
and the term was first used by Martio and Sarvas [37]. Roughly speaking, a domain is a
John domain if it is possible to connect two arbitrary points without getting too close to the
boundary of the set. This class is much larger than the class of Lipschitz domains and contains
sets which may possess fractal boundaries or internal cusps (external cusps are excluded), e.g.
the interior of Koch’s snow flake is a John domain. Although in the following we will only
consider domains with Lipschitz boundary, it is convenient to introduce the much more general
notion of John domains as the constants in Poincaré’s and Korn’s inequality only depend on
the John constant. More precisely, we have the following statement (see e.g. [1, 9, 22]).

Theorem 3.2. Let Q C R? be a c-John domain. Let p € (1,00) and q € (1,d). Then there is
a constant C' = C(c,p,q) > 0 such that for all u € WHP(Q) there is some A € RY*¢ such that

skew
[Vu = AllLe o) < Clle(w)|| e o)-
Moreover, for all u € Wh4(S)) there is some b € R? such that
[u=bl[La= () < ClIVullLa(n),

where ¢* = ddqu. The constant is invariant under rescaling of the domain.

We recall a result about the decomposition of sets into John domains.

Theorem 3.3. There is a universal constant ¢ > 0 such that for all simply connected, bounded
domains Q C R? with Lipschitz boundary and all € > 0 there is a partition Q = Qo U...U QN
(up to a set of negligible measure) such that |Qo| < € and the sets Qq,...,Qn are c-John
domains with Lipschitz boundary such that

1o M (09) < ! (00). (3.1)

Observe that in general it is necessary to introduce an (arbitrarily) small exceptional set Qo
as can be seen, e.g., by considering polygons with very acute interior angles. The statement
is given explicitly in [30, Theorem 6.4], but can also easily be derived from the main result
of that paper ([30, Theorem 1.1]) since Lipschitz sets can be approximated from within by
smooth sets.

The essential step in the proof of Theorem 3.3 is to consider polygonal domains. One
observes that convex polygons can be (iteratively) separated into convex polygons such that
(3.1) holds and each set contains a ball whose size is comparable to the diameter of the set,
whereby Definition 3.1 (for fixed o > 0) can be confirmed. For general, nonconvex polygons
the property in Definition 3.1 may be violated if a concave vertex is ‘too close to the opposite
part of the boundary’. Tt is shown that in this case the set may be (iteratively) separated into
smaller polygons with less concave vertices, for which Definition 3.1 holds. We refer to [30] for
more details.

3.2. Properties of infinitesimal rigid motions. In this section we collect some properties
of infinitesimal rigid motions. As before a = a4 stands for the mapping a(x) = Az + b with
A€ R%32 and b € R%. The following lemma is shown in [32, Lemma 2.3].

skew
Lemma 3.4. Let M > 0, § > 0 F C R? bounded, measurable and : Rt — Rt a con-
tinuous nondecreasing function satisfying limg_, oo ¥ (s) = +oo. Then there is a constant

C = C(M,d,%,F) such that for every Borel set E C F with |E| > § and every infinitesi-
mal rigid motion aap one has

/1/;(|Aa:+b|)d;z: <M = |A+pl<cC (3.2)
E
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In the following we denote by d(E) the diameter of a set E C R2.

Lemma 3.5. Let g € [1,00). There is a constant ¢ = c(q) > 0 such that for every Borel set
E C R? and every infinitesimal rigid motion a = a4y one has for all v € E

. —i_1 _1
(@) [Al<cE["27lallLam), Al < B2 ]lall~(m),

¢ (ailz (3.3)
(1) [Az+b] < c|B|7>7vd(E)|allLe(m)-

Proof. Without restriction assume that A # 0 as otherwise the statement is clear. The
assumption A € R%X2 implies that A is invertible and that |Ay| = §|A||y| for all y € R

skew

Setting z := —A~'b we find for all z € E

7 Allz — 2 = la(@)] < [lallz=()- (3.4)
Consequently, as |E \ B,(z)| > 1|E| with p = (%)%, we find |E|p?]Al? < c||a||qu(E) for

g < oo, which implies the first part of (3.3)(i). In the case ¢ = oo we immediately get
|A] < C|E‘7%||(ZHLOO(E) from (3.4). As there is some z¢ € E with |[Azg + | < |E|_%||a||Lq(E),
we conclude for all z € E

[Az +0] < |Azo +b| + 5l Alle — 20| < |E|77 |lallpagm) + cd(E)p~ B |lall La(m).-
This concludes the proof since |E|2 < d(E) by the isodiametric inequality. O

Remark 3.6. Analogous estimates hold on lines. If, e.g., ' C R x {0} with [ := H}(T) < oo,
then for a constant ¢ = ¢(q) > 0 we have for all infinitesimal rigid motions a = aa

194l < crl/ la(z)|? dH ().
T

With Lemma 3.5 at hand we now see that the L%-norm on larger sets can be controlled.

Lemma 3.7. Let q € [1,00). Then there is a constant ¢ = c(q) > 0 such that for all y € R?,
R >0, Borel sets E C Q% :==y+ (—R,R)? and a = aa one has

111
lallLacgy) < «(R*|EIY) 2 4 |al| po(m)-

Proof. Define F = QY% D E. We repeat the last estimate of the previous proof for each z € F'
@)é

and obtain with p = (5

1 1L
Az +b] <|E|" = HaHL‘I(E) +cd(F)p 1|E| 4 ||ULHLq(E)-
This implies with |F| = 4R? and d(F) = 2v2R

< cR?|E|[™ all + cRPIETE a]],

q q
||a||Lq(F) Li(E) (E)"

In view of RI|E|~3 > 473 this concludes the proof. O

3.3. (G)SBYV and (G)SBD functions. In this section we collect the definitions and funda-
mental properties of the function spaces needed in this article. In the following let Q C R? be
an open, bounded set.

SBV- and GSBV-functions. The space BV (£2; R?) consists of the functions u € L!(€2; R%)
such that the distributional gradient Du is a R%*?-valued finite Radon measure on 2. BV-
functions have an approximate differential Vu(z) at L%-a.e. € Q ([4, Theorem 3.83]) and their
jump set J, is H9 l-rectifiable in the sense of [4, Definition 2.57]. The space SBV (Q2;R?),
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often abbreviated hereafter as SBV (), of special functions of bounded variation consists of
those u € BV (€;R?) such that

Du = Vul® + [u] @ v, H | T,

where v, is a normal of J, and [u] = ut — u~ (the ‘crack opening’) with u* being the one-
sided limits of u at J,. If in addition Vu € LP(Q) for 1 < p < oo and H4"1(J,) < +o0, we
write u € SBVP(Q). Moreover, (5)BWVc(£2) denotes the space of functions which belong to
(S)BV (€) for every open set ' CC Q.

We define the space GBV (;R?) of generalized functions of bounded variation consist-
ing of all £%-measurable functions u : @ — R? such that for every ¢ € C'(R?%R?) with
the support of V¢ compact, the composition ¢ o u belongs to BVi,.(2) (see [20]). Like-
wise, we say u € GSBV(Q;R?) if ¢ o u belongs to SBVioc(2) and u € GSBVP(Q;RY) for
u € GSBV(Q;R?) if Vu € LP(Q) and H?1(J,) < +oo. As usual we write for shorthand
GSBV () := GSBV(;R). See [4] for the basic properties of these function spaces.

We now state a version of Ambrosio’s compactness theorem in GSBV adapted for our
purposes (see e.g. [4, 19]):

Theorem 3.8. Let 1 < p < oo. Let (ug)x be a sequence in GSBVP(Q;R%) with
IVurll ooy + HO ™ (Tu) + llukllio) < ©

for some C' > 0 not depending on k. Then there is a subsequence (not relabeled) and a function
u € GSBVP(Q;R?Y) such that upy — u a.e., Vur — Vu weakly in LP(Q). If in addition
luklloo < C for all k € N, we find u € SBVP(Q) N L>(Q).

Caccioppoli-partitions. We say a partition P = (P;)32; of Q is a Caccioppoli partition
of Qif 3372, HIL(0*P;) < 400, where 0*P; denotes the essential boundary of P; (see [4,
Definition 3.60]). We say a partition is ordered if |P;| > |P;| for i < j. In the whole paper we
will always tacitly assume that partitions are ordered. We now state a compactness result for
ordered Caccioppoli partitions (see [4, Theorem 4.19, Remark 4.20]).

Theorem 3.9. Let Q C R? open, bounded with Lipschitz boundary. Let P; = (Pji)321, 1 €N,
be a sequence of ordered Caccioppoli partitions of Q such that sup;, 2;11 ”Hd_l(a*Pj7i nY) <
+00. Then there ezists a Caccioppoli partition P = (Pj);";l and a not relabeled subsequence
such that xp; , — xp, in measure for all j € N as i — 0.

SBD- and GSBD-functions. We say that a function u € L'(Q;R?) is in BD(;R?) if
the symmetrized distributional derivative Fu := %((Du)T + Du) is a finite R‘S’lyxlg—valued Radon
measure. Likewise, we say u is a special function of bounded deformation if Eu has vanishing

Cantor part E°u. Then Fu can be decomposed as

Fu = e(u)L? + [u] © v,HI?

Jus (35)

where e(u) is the absolutely continuous part of Eu with respect to the Lebesgue measure £4,
[u], vy, Ju as before and ® denotes the symmetrized tensor product. If in addition e(u) € L?(Q)
and H4"1(J,) < 400, we write u € SBD?(€). For basic properties of this function space we
refer to [3, 5].

We now introduce the space of generalized functions of bounded variation. Observe that it
is not possible to follow the approach in the definition of GSBYV since for u € SBD(RQ) the
composite ¢ ou typically does not lie in SBD(2). In [18] another approach is suggested which



A PIECEWISE KORN INEQUALITY IN SBD 13

is based on certain properties of one-dimensional slices. For fixed ¢ € S9! we set
I = {y e R : y- £ =0}, Qg ={teR:y+t£cQ}foryecll,
§ . §.0f
QO ={y eIl*: Q3 #0}.
Definition 3.10. An L%-measurable function u : Q — RY belongs to GBD(Q) if there erists
a positive bounded Radon measure \, such that, for all 7 € CY(R?) with —% <7< % and

0<7 <1, and all £ € S, the distributional derivative De¢(t(u - €)) is a bounded Radon
measure on ) whose total variation satisfies

| De(7(u- ) (B) < Au(B)
for every Borel subset B of Q. A function u € GBD(2) belongs to the subset GSBD(R) if in
addition for every &€ € S4' and HY ' -a.e. y € TI¢, the function ug(t) = u(y + t§) belongs to
SBViee(€25).

As before we say u € GSBD?(Q) if in addition e(u) € L?(Q) and H?1(J,) < +oo. For
later we note that there is a compactness result in GSBD?(Q) similar to Theorem 3.8 (see [18,
Theorem 11.3]).

Density results. We recall a density result in GSBD? (see [35] and also [11, Theorem 3,
Remark 5.3].

Theorem 3.11. Let Q C RY open, bounded with Lipschitz boundary. Let u € GSBD?(2) N
L%(Q;R%).  Then there evists a sequence (ug)r C SBVZ?(4;RY) such that each J,, is the
union of a finite number of closed connected pieces of C?-hypersurfaces, each uy belongs to
W (Q\ Jy,; RY) and
(@) llur —ullLz@) =0,

(1) [le(ux) — e(w)lL2@) = 0, (3.6)

(i17) HH(Ju AJy) — 0.
If in addition u € L (), one can ensure ||uk|lco < ||ulloo for all k € N.

Remark 3.12. The result together with [17] shows that the approximating sequence (u)g
can also be chosen such that .J,, is the finite union of closed (d — 1)-simplices intersected with
€. In this case (3.6)(iii) has to be replaced by H4"1(J,, ) — HI1(J,).

Korn inequality in SBD. As a final preparation we recall a Korn inequality in SBD? in
a planar setting for functions with small jump set.

Theorem 3.13. Let p € [1,2]. Then there is a universal constant ¢ > 0 such that for all
squares Q, = (—p,p)%, p > 0, and all w € SBD?*(Q,) there is a set of finite perimeter
E CQ, with

HYOE) < cH'(Ju),  |B| < c(H'(Ju))? (3.7)

and A € R¥*2 b e R? such that

skew

. 2
(@) lu—=(A-+0)|r@um < cprlle(w)lL2(q,),

- 34 (3.8)
(@) [[Vu = Allruam < cur ™ lle(uw)llzz(q,)-
Moreover, there is a Borel set I' C 0Q,, such that
WO SH W), [ [T As 4 )P @) < e, (39)
9Qu\T’

where Tu denotes the trace of u on 0Q),,.
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The fact that the constant is independent of p and p follows from a standard scaling argu-

ment and Holder’s inequality. More generally, the result holds on connected, bounded Lipschitz
sets Q2 for a constant C' also depending on §2.
Proof. The result stated in (3.7)-(3.8) has first been derived in [29] for p € [1,2) and was
then improved in [16] by showing the estimate for p = 2. In [12] the trace estimate has been
established. We need to confirm that in both estimates (3.8), (3.9) one can indeed take the
same infinitesimal rigid motion.

Let E and a4 be given such that (3.7)-(3.8) hold for p = 2. By [12] we find Borel sets
F C Qu T C 0Q, and o' = aa p such that (3.9) holds with o’ in place of a and |F| <
c(H'(Ju))? as well as [[u — a'|| r2(g,\r) < cplle(u)]r2(q,). We can assume that H'(J,) is so
small that |E U F| < ¢(H'(J,))? < 5|Qy]| since otherwise passing to a larger ¢ > 0 in (3.7)
we could choose £ = @, and the statement was trivially satisfied. Consequently, we have
la —a'l|L2@,\(eur)) < culle(u)l|L2(q,) and by Lemma 3.7 [|a — a’||r2(q,) < culle(u)lz2(q,)
and thus by Lemma 3.5 [|a — a'||p~(q,) < clle(u)||L2(q,)- This yields (3.9) for the mapping a.

]

4. A PIECEWISE KORN INEQUALITY UP TO A SMALL EXCEPTIONAL SET

As a key step for the proof of Theorem 2.1 we first derive a piecewise Korn inequality up
to a small exceptional set. By iterative application of this result in Section 5 we then derive
the main inequality. In this section we will consider configurations on a square with regular
jump set consisting of a finite number of segments and defer the general case also to Section
5, where we will make use of a density result (see Theorem 3.11 and Lemma 5.4).

For Q C R? open, bounded we let W(Q2) € SBV?(Q2) be the functions u such that J, =
Uj=, T'¥ is the finite union of closed (d—1)-simplices intersected with Q and ulqy s, € Whee(Q\
Ju). (In dimension d = 2 each I'} is a closed segment.) In the following we say (P;)j_; is
a partition of € if the sets are open, pairwise disjoint and satisfy |2\ U?Zl Pj| = 0. For
convenience we often write 0 = U?:1 P; although the identity only holds up to a set of

negligible £2-measure.

Theorem 4.1. Let p € [1,2) and 0 > 0. Then there is a universal constant ¢ > 0 and some
C = C(p,0) > 0 such that the following holds:

(1) For each square Q, = (—p, u)? for >0 and each u € W(Q,,) one finds an exceptional
set B C Q, with

|E| < cub?*H'(J,),  HYOE) < CH'(J.) (4.1)

such that there is a partition Q, = U;-Lzl P; and corresponding infinitesimal rigid motions
(aj); = (aa,p,); such that the function v :=u — Z?Zl ajxp; satisfies

(i) HY( U;’Zl dP;NQ,) < CH( U;; OP; N ),

B ., (4.2)

(@) [[Vvllze@\z) < Cpur ™ lle(u)|lL2(q,)-

(2) One can choose E, (P;)7_; and v such that we also have
[0l (@u) < Cllulle(q,)- (4.3)

Note that (4.2)(ii) is similar to (2.3)(ii) with the correct scaling. Since (2.3)(i) will eventually
follow from (2.3)(ii) by Theorem 2.3 it is not necessary at this stage to derive an analog of
(2.3)(i). However, we establish (4.3) which may be of independent interest. Although not
needed and not derived explicitly in Section 5, let us remark that also in Theorem 2.1, if
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u € L(Q), the piecewise infinitesimal rigid motions can be chosen such that [v||ze~(q) <
Cllul| o (@) with v as in (2.2).

Estimate (4.2)(i) differs from (2.1) in the sense that the length of the boundary of the
partition can be controlled solely by the part of J, contained in U?Zl O0P;. This property will
be crucial for the iterative application of the arguments in Section 5 since hereby a blow up
of the length of the boundary of the partition can be avoided. Also the fact the volume of the
exceptional set in (4.1) is controlled in terms of a (small) parameter 8 > 0 will be convenient
for the subsequent analysis. Note that therefore it will not be restrictive to concentrate on the
case 0 <1 and

pb* < HY (J,) < cub2. (4.4)

In fact, for functions with smaller jump sets Theorem 4.1 directly follows from Theorem 3.13
for a partition only consisting of one element, and if the jump set is too large, one can choose
E = Q, and (4.2) trivially holds.

The strategy for the proof of Theorem 4.1 is the following. We first identify squares @ of
various mesoscopic sizes where J, N Q is ‘too large’, i.e. comparable to the diameter of the
square. This will allow us to construct a partition of @), consisting of simply connected sets
and a corresponding Whitney covering such that H!'(J, N Q) < d(Q) for the squares of the
covering (see Section 4.1). Then applying the Korn inequality for functions with small jump set
(Theorem 3.13) on each of these squares, we can modify the configuration on each component
of the partition to a Sobolev function u whose distance from u can be controlled outside a small
exceptional set (see Section 4.2). Then we use Theorem 3.3 to find another refined partition
consisting of John domains whose John constant can be uniformly controlled. Theorem 4.1
then follows from Theorem 3.2 applied on @ and the fact that the difference of Vu and Vu is
small on the bulk part of the domain (see Section 4.3).

Before we start with the construction of the auxiliary partition we introduce some further
notation. For s > 0 we partition R? up to a set of measure zero into squares Q*(p) =
p+s(—1,1)2 for p € s(1,1) + 2sZ? and write

Q°*={Q=0Q°(p): pes(l,1)+ 2sZ?}.

Let @ > 0 be given and assume without restriction that # € 2~ and # small with respect to 1.
For all i € Ny we define s; = uf* and we consider the coverings of dyadic squares Q' := Q%
For each square ) of the above form we also introduce the corresponding enlarged squares
QCQ cQ'c Q" defined by

Q' =3Q, Q"=3Q, Q"=5Q, (4.5)

where AQ denotes the square with the same center and orientation and A-times the sidelength
of Q. By d(A) we again indicate the diameter of a set A C R? and by dist(A, B) we denote
the euclidian distance between A, B C R2.

4.1. Construction of an auxiliary partition. To ensure that we provide an estimate which
is valid up to a small exceptional set (cf. (4.1)), it will be convenient to decompose @,, into
smaller squares. To this end, we introduce the auxiliary jump set

Jii=J,UJy with Jy = UQeQ7 oco, 0@ (4.6)

and observe that together with (4.4) we find
HYUTH) < HY (W) + 0T < e OH(T,) (4.7)



16 MANUEL FRIEDRICH

for a universal constant ¢ > 0. One of the main strategies will be the application of Theorem
3.13. As the result only provides an estimate for functions with small jump set, we introduce
for i > 1 the set of ‘bad squares’

Qbaa = {Q € Q" HI(J;NQ) > 0si}. (4.8)
In particular, note that each square with Q"N .Jo # 0 satisfies HY(Q' N JE) > 2s; and thus lies
in Q} ;. Let B' = UQEQ{) X Q" and observe that B is the union of squares in Q' up to a set
of negligible measure (see Figure 1(a) below). In particular, we have B* > @, for i = 1,...,7.

We state a lemma about the union of ‘bad sets’.

Lemma 4.2. There is universal constant ¢ > 0 such that for all 1 < iy < iy < oo and for all
RI C Q,q we have for R:= U, Ugers Q"
HY(OR) < 0 *H (JF N R).

Moreover, there is a set T D OR being a finite union of closed segments with H'(T'r) <
cd3HI(J} N R) such that for each connected component Ry, of R the set TN Ry, is connected.

Proof. For i1 < j < io let RI = {QeR Q" ¢ UZ “ UQeRZ Q"} and R UQE@. Q.
Note that in view of (4.5) for § small the sets (RJ)
have for all i1 < j <9

#RI <03 ZQ o PN Q) <4073 1Y (I N RY),

> ;, are pairwise disjoint and by (4.8) we

where we used that each x € R? is contained in at most four Q’, Q € Q7. Since U;;l RI C R,
(R]) . are pairwise disjoint and H!'(0Q"") = 405j for Q € R/, we then derive

" 3 * 2] =391 7%
(OR) <Z] i1 ZQGRJ (0Q™) <Z -60 H'(J; N RY) < 0 *H' (J; N R).

To see the second part of the statement, we define I'g = UJ i Ugers Q" and note that
I'r N Ry, is connected for each connected component Ry of R. O

Let B' := (B.)) be the connected components of B’ for i > 1. By the remark below (4.8)
for each i € N there is a component Bl with Jy C B. (see Figure 1(a)). Given p € [1,2) let

r = 57(2 — p) for shorthand. We say a set B}, € B' is an isolated component if

24
d(Bi) < 67s,. (4.9)
Let Bl C B’ be the subset consisting of the isolated components and see Figure 1(a),(b) for an

180

illustration. Note that the component Bj, € B’ containing Jy satisfies B, ¢ B, . Consequently,
each set in B!_ is contained in a square @ € Q7 and thus

180
d(BL) < 2v2u8"  for all B, € B, (4.10)
Recall the structure of J (see the definition of W(Q,,) before Theorem 4.1) and denote the
connected components of J;; by (I‘*) j=1. each of which being the union of finitely many closed
segments. Choosing I € N sufficiently large we see that for ¢ > I each set (B,’C);€ contains

exactly one connected component of J;;. In particular, we can assume that I € N is so large
that
(i) dist(I%,,T%5) >0 sy for 1<j; <jo <N, i
(ii) B, =0 for i>1I. '

Indeed, for (ii) we observe d(Bj,) > d(J; N By) > minj—; .y d(I'}) > 0 and 6~"s; — 0 for
i — oo. Finally, we introduce the saturation of a bounded set A C R? defined by sat(A) =
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R2\ A’, where A’ denotes the (unique) unbounded connected component of R? \ A. Loosely
speaking, sat(A) arises from A by ‘filling the holes of A’. In the construction of the partition
we will neglect the part of J¥ contained in

Ui = sat(UBieB? B,@), i>1 (4.12)

iso

as in these regions the discontinuity set of u can be removed by modifying the function u in a
suitable way. This will be described in detail in Section 4.2 below.

We now show that (), can be partitioned into simply connected components (P]' ); with a
corresponding covering of Whitney-type in terms of squares in J,~, Q' such that the size of
J, is controllable in the squares not associated to the isolated components Uj.

Theorem 4.3. Let >0, 0 >0 and p € [1,2). Then there is a universal constant ¢ > 0 and
a constant C = C(0,p) > 0 such that for all w € W(Q,,) with (4.4) there is a partition (P}).,
of Q. consisting of open, simply connected sets satisfying

7{1(U;":1 OP!) < CH'(J,) (4.13)

with the following properties: the set U;nzl 8Pj( s a finite union of closed segments. Moreover,

there is a covering C C J;og Q' of Q, with pairwise disjoint dyadic squares, a closed set
Z C Q, and an index I = I(u,0,p) € N such that

I
ZC Uizg U; (4.14)
for U; as in (4.12) and with C* := C N Q' we have

@) @\ (U oP) c U, @ cQu

)
(i) @N@y#0 for QuQ2€C = 0d(Q1) < d(Q2) <07'd(Qn),
) #{QeC:xeQ'} <12 forall zeQ,, (4.15)
(iv) H'(J.NQ') <6%s; forall QeC withQ" ¢ Z,
)
)

(iii

(v) H'(J.NQ') <0%s; forall Q€C withQ" NQ" #0 for some Q € C'1UCT,
. oo ro_
(vi) Ju 0 UiZIJrl UQeCi @ =0
where Q', Q" denote the enlarged squares corresponding to Q € C (cf. (4.5)).

The fact that the partition consists of simply connected sets will be essential since hereby
Theorem 3.3 will be applicable (see Section 4.3). Observe that (4.15)(ii),(iii) are the typical
properties of a Whitney covering, where C possibly does not cover the part of J, contained
in the boundary of the partition (see (4.15)(i)). The crucial condition (4.15)(iv) states that
outside of Z the jump set in each square is small compared to its diameter. Later this will
allow us to apply Theorem 3.13 (in Z we will have to argue differently). Before we proceed
with the proof of Theorem 4.3 we give a more precise meaning to the exceptional set Z, which
is associated to the isolated components.

Lemma 4.4. Let be given the situation of Theorem 4.3 with (P}); and Z as in (4.13)-(4.14).
Then the covering C can be chosen such that (4.15) holds and that there is a partition Z =
Uf:s Z' into pairwise disjoint, closed sets such that each Z' is the union of squares in C' =
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CN Q" up to a set of measure zero. We have
(i) |Z| < cpb®H (Ju), |Z°] < CO s (J),
iy I i 1
(i) ZZ—ZSH (8ZY) < CH(J.,)

for a universal ¢ > 0 and C = C(6) > 0 only depending on 6. Denote by (Xi)x the connected
components of Z* and let X ={Q € C": Q C X}, 0QNIX]. # 0}. We get for eachi=38,...,1
and each X}

(4.16)

(1) d(X}) <0 7"s;, H#X < ch7H
(i) Q'NZC X} foral QE€X], (4.17)
(i) Y #Xi < OH'(Ju)s; "

We now prove Theorem 4.3 and Lemma 4.4.

Proof of Theorem 4.3. Let u and the corresponding sets J¥, (B%);>1 and (U;);>1 be given
as defined in (4.6)-(4.12). We first concern ourselves with the ‘bad sets’ B? and the union of
bad sets for different ¢ € N (Step I). The sets not associated to isolated components will then
be the starting point for the construction of a partition into simply connected components
(Pj); (Step II and III). In this context, the fact that the length of not isolated components
Bi\ Bi,, compared to s; increases in i € N (see (4.9)) will be crucial to control the length of
the segments, which are introduced to define the partition (cf. (4.25) below).

Finally, we define a covering consisting of pairwise disjoint dyadic squares and prove property
(4.15) (Step IV). In particular, the fact that the area of the ‘bad sets’ becomes gradually smaller
for larger ¢ € N allows us to confirm (4.15)(i),(iv). For (4.15)(v) we will exploit that the ‘bad
sets’ are defined in terms of enlarged squares (cf. (4.5)) and (4.15)(vi) will follow from (4.11).
In the following ¢ > 0 stands for a universal constant and C = C(6,p) > 0 for a generic
constant independent of all other parameters.

Step I (Definition of ‘bad sets’): Let I € N be given such that (4.11) holds, where in
general the choice of I depends on u,6 and p. We define sets forming the starting point for
the construction of the partition. Recall the definition of B? below (4.8). For 1 < i < T let
D' = (D})k be the connected components of U{:l B! having nonempty intersection with B’
and satisfying

d(D}) > 67"s;. (4.18)
Observe that by definition of B, in particular (4.9), each Bi € B\ Bl is contained in a

. iso? iso :
component of D*. As each connected component is a finite union of squares, we find d(D},) <

H'(8D}) and thus by Lemma 4.2 (for RY = Q] ,, i < j < I) we obtain
i I - . e, - .
S oy <u (o B) <o H (0 BY) < 0 M) (4.19)

independently of 1 < i < [I.

Recall that by the definition of Jy and (4.8) we have B* > @, for i = 1,...,7. We start
with the set E7 := Uk D,Z D @, and assume that E* 7 <k <i—1, have been constructed.
Let

iy i i—1 i i
E={Dj:DiNE"'#0} and E'= UDQE& Di. (4.20)
(See also Figure 1(b),(c).) We notice that E* C EJ for 7 < j < i < I. Indeed, each D} € &'
is contained in a connected component of U{:i_l B!, denoted by D;Tl. Since D}‘C intersects
E=1 D! intersects E~1 and the definition of E~! implies D}, ! € £~1 and Dj,! ¢ B~ L.
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This yields EY C B!, as desired. Moreover, note that each E® contains .Jy and therefore
particularly 0Q, C E* for i > 1. For later we also introduce the associated ‘removed sets’

) I __ o ) ) ___
i l . O i 7 i+l i 1"
Pt = {Q € Ul:i Qbad : Q -y s Q ne - 0}) R' = Ueri Q (421)
for 7 < i < I —1 and observe that
RNR =0 for7<j<i<I-—1. (4.22)

To see this, consider j < i and note that Q" N E* = () for Q € P’ since E* C E/*!. Thus, we
find RY N E* = () and therefore (4.22) holds as R' C E°.

(a) i 1 (b)
. . —pl-1
] 1 Bl
.
|
I
“B?{_l - —
" __LI
(c) g (d)
_Dg_l
x
DIt

FIGURE 1. (a) A part of @, is depicted with B/~! = Ui:l B,g_l in light gray
and the squares Q{ ! in dark gray. Note that B{ * € B/, and Jy C By~ ".
(b) In light gray we see B/~! and in dark gray B. The sets B, B, BI are
contained in BL, with Bf C sat(Bf). We suppose Bl ¢ BL_  and observe
BN B! = (. (c) The set E/~' = DI~ U DJ~! is sketched. Note that
BINET=! = () although B} ¢ BL . Whereas E1~! consists of two components,

EL ! = BE'71U S is connected. (d) In light gray E' U S is depicted and in
dark gray RI~! = R{_l U Ré_l.

Essentially, E* arises from E'~! by removing the squares P*~*. Moreover, E* still intersects
the squares {Q € Q=1 \ P~1: Q" C E*~1}, but in general covers a smaller portion compared
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to Ei=1 (cf. Figure 1(d)). More precisely, we get
dist(x, ') < 10v/2s;_; forall z € E~1\ R*7L (4.23)

In fact, since x € E'~1, by (4.20) we find Q € Uljzi_1 Q! 4 such that z € Q” C E*~1. As
v ¢ Rl we obtain Q ¢ P! and therefore Q"7 N E* # (), which implies (4.23). Before
we proceed with the construction of the partition, we notice E” = |J, DI D @, and E7 is
connected. Note, however, that this property in general fails for E? i > 8. The strategy in the
following will be to connect the components of E* by suitable segments lying in E*~L.

Step II (Construction of the partition, induction step): We construct the partition
inductively. To this end, we show that for ¢ > 7 there is a family of closed sets S; with

#S; <070 s H (), (4.24)

such that each S € S; is a finite union of closed segments and Ef := E' UUges, S is connected.
Since 8Q, C E', we then get that the components of Q, \ E% are simply connected sets.
Moreover, we assume (recall (4.21))

7 . i—1 .
H( USG&. S) < B SHY(JE) ijg 07" 4 ch3 Zjﬂ H(JE N RY). (4.25)

We begin with ¢ = 7 and set S; = ). As seen at the end of Step I, E is connected.

Now assume the above assertions, in particular (4.24)-(4.25), hold for ¢ — 1, ¢ > 8. We
construct S; and E% as follows. Recall that each connected component D € &' satisfies
d(D}) > 0~""s; by (4.18). Consequently, by (4.19) we get for § small

#E < s Zk d(Dy) < 7207 s, T H(TE) < L0740 s T H (). (4.26)
We denote the connected components of E* U Jges, , S by F' := (F{)pl; in the following.

Observe that each F} is a union of closed sets with Hausdorff-dimension one or two. By (4.24)
(for ¢ — 1) and (4.26) we have

M; = #F <1070 sT 1 (T0) + 07400 s L 1 () < Lo7tems T H(TE) (4.27)

for § small enough recalling that 0 < r < 5; (see before (4.9)) and s; = fs;_1. Now the

strategy is to add segments in order to eventually obtain a connected set. By the definition of
FiES'=F~lu Uses,_, S and the fact that E* C E*~" (see before (4.21)) we get

i M; i i— i
ESt = Uk:1 FlU (B \ EY). (4.28)

Recall that E};l is connected by hypothesis. We denote the connected components of R*~!
(see (4.21)) by R~! = (Ri")), and let & = 10v/2 for shorthand. Observe that by (4.23) and
the fact that B C UQ/[:1 F}
M, . . ,
: ¢ i\ < Fg. i—1 i—1
dist (=, LJIC:1 F}) <ées;—y forall z€ B\ R (4.29)

We now claim that for all FjZ € F' there is another component Ff € F' such that (a)
dist(F}, F}}) < 4¢s; 1 or (b) there is a corresponding Rj™' € R*=! such that

dist(F}, R™") < 4és;—1,  dist(F{, Rj™") < 4ési_1. (4.30)

In fact, fix Fj € F' and assume (a) does not hold, i.e. dist(Fj,F,i) > 4¢s;_q for all k # j. By
(4.28) we can find Fj € F', j # k, and a (closed) curve v in E~1\ E‘ such that Fj’ UFf Uy
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is connected (see Figure 2(a)). We let v/ be the (unique) connected component of
yN{z € Q, : dist(z, F}) > 2¢s;_1}
having nonempty intersection with F}. By (4.29) and the fact that (a) does not hold, we then
find some z € R*~! N+’ with 2¢s,_; < dist(x, F;) < 4¢s;_1.
Let R;~' € R*~! be the component containing  and define v =~ N R;~". If " intersects
F}, we see that Rfl has the desired property (4.30). Otherwise, we find y € 4" with y € ('“)Rf1

and therefore by (4.29) and the definition of 7/ we get some F}, € F', k' # j (and possibly
k' # k), so that dist(y, F{,) < s;_. Herefrom we again deduce (4.30) with F}, in place of F}.

(0) |

(a)

FIGURE 2. (a) The components of F! and S, are depicted, where the (union
of) segments Sy, | = 1,...,4, connecting (F!)?_, are highlighed in red and (a
possible choice of) the set I'/ ! is illustrated in black. While in the example
we can choose TT"'NRI™! = 9RI~! in R}~ a more elaborated definition of
I~ is necessary (cf. Lemma 4.2) since RL™' is not simply connected. We
also sketched a curve « as introduced below (4.30) such that F{ U Ff U~ is
connected. (b) In black the segments in Sy as well as the components (I'})
contained in E' are illustrated. The components are combined to a connected
set by the red segments.

We observe that in case (a) one can choose a (closed) segment S with H!(S) < 4és;_;
such that F; U S U Fj is connected and in case (b) we can find two segments S', S? with
H1(S' U S?) < 8cs;_1 such that ST U S?U Rli_1 U FJZ U F} is connected, where the component
Rffl is chosen as above. Thus, for a universal ¢ > 0 large enough we can find M; — 1 sets
(RIFHM~L ¢ RI-1U {0} and sets (S;)M! with

HY(S)) < esia, (4.31)

where each S; consists of at most two segments, so that U,iw:l Fi U Ulﬂiifl(]%f_l U S;) is con-
nected. Indeed, the construction of sets connecting two different components (F,z) , has been
addressed above and the fact that it suffices to consider M; — 1 = #F° — 1 sets may be seen by
induction over the number of components M;. Recalling (4.21) we apply Lemma 4.2 for the
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squares RY = P""1N QI € Q] ,,i—1<j<TI and obtain a set T"~' D AR, being a finite
union of closed segments, such that T*"* N R{~! is connected for I = 1,...,M; — 1 and
Mi=1l 5i1 riel 1 (i1 391 pi-1 ~ 7%
Hl(Ul:1 RPN < HY(DTY) < e 3HYRTENJD). (4.32)
Then we introduce the new jump components
Se=(SURINTY) S;=8i-1US..

We are now in the position to confirm (4.24)-(4.25). First, each component in S; is closed and
a finite union of closed segments. Moreover, we observe that £ := E*U|Jgcg, S is connected

by the definition of (F})x and S, (cf. Figure 2(a)). By (4.24) (for i — 1) and (4.27) we find
#S; < #HSi_1 +H#F -1 <0749 D W () + 307007 s HU(TD) < 0700 s T HA ()
for O small enough. This gives (4.24). Moreover, we use (4.27) as well as (4.31) to find

M;—1
=1 7

Mifl .
ZH HY(S)) < e(M; —1)si—1 < 207 H (J7).

This together with (4.32) and (4.25) for step ¢ — 1 yield (4.25) for step 1.

Step III (Construction of the partition, final step): We are now in a position to define
a partition (P); with the desired properties. After iteration step I we have the connected set
EL = E'U Uses, S- Note that by the definition of D! in (4.18) and the choice of I (see
(4.11)(ii)) we have D! = B!. Consequently, recalling (4.20) we see that E! consists of the
connected components of B! having nonempty intersection with £/~1. Similarly as before, by
&' ¢ DI = B! we denote the connected components D} with DI N E1=1 #£ (.

In view of the remark before (4.11) we observe that each D} contains exactly one connected
component I';, of J;;. More precisely, by (4.8), (4.11)(ii) we have

dist(z,I% ) <cs; for all z € Dj (4.33)

for a universal constant ¢ > 0. Moreover, possibly passing to a larger I we may assume
#E < s7'HY(JZ) since #&! is bounded from above by the number of components of J
independently of I € N.

Consequently, arguing similarly as in Step IT we can connect the components Sy and (J; N
D});, with segments (cf. Figure 2(b)). By (4.24) we get #&7 + #S; < 0~ *s;"H'(J}) and
thus in view of (4.33) we can find a family of closed segments S with #S < cf~*s; 'H!(J*)
and H'(S) < csy for all § € S such that

UDieSI T Y Uﬁeé S USeS; s
is connected, where as before I';, denotes the component contained in D,ﬁ. Note that 0Q,, C
UDieS’ % since 0Q,, C Jo C E’. Thus, letting
S=8uUSu{r;, :Die&’} (4.34)

we finally find that the connected components of Q,, \ Jgcs S, denoted by (P})7.,, are simply
connected and form a partition of @, (up to a set of negligible measure). By construction
/L, OP; is a finite union of closed segments. Using (4.25), Y gcg H'(S) < cf~*H'(J;) and
the fact that the sets (R?); are pairwise disjoint (cf. (4.22)) we obtain for C' = C(6, p)

Hl(U;n:l op)) < Z;":l HU(OP)) < CHY(JE) < CH (),

where in the last step we employed (4.7). This gives (4.13).
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Step IV (Covering): We now finally define a Whitney-type covering of @), associated to
the partition (P;)L;. For each 8 <i < I we define the sets

T = UQeTi Q with TZ = {Q S Ql 1 QC Qu\Ei}a
T =, @ with T ={QeT:Q"cT (4.35)
T = UQeTi_ Q with 7T'_={QeT':Q"cT},

" arise from T by removing ‘layers’ of squares. (We refer to
Figure 3 for an illustration.) As a preparation we observe that 77 D> T for 8 < i < j < I since
FEJ C E' and s; < s;. This particularly implies
Tt T, dist(T Y, OTY) > s 4 (4.36)
for 9 < i < I. Moreover, we find

T\T' N UQE% ) Q=10. (4.37)

In fact, for Q@ C 7%\ T?_ we have Q" ¢ E* and Q"' N E* # () (see Figure 3(a)). If Q € Qi _,,
however, the connected component D}'c of UzI:z B! containing Q" has nonempty intersection
with E’ and then the definition in (4.20) implies Q"7 C D} C E'. This gives a contradiction.
We now introduce the covering as follows. Recall that each set T \Tf1 for 8 < i < I is the
union of squares in Q° (up to a negligible set), where we set 77 = (). We define for 8 <i < I

where loosely speaking T%,T"

C'={QeQ :QcT \T '} (4.38)

Hereby we obtain a covering of Q,, \ TX. More precisely we have
T! C ' CQu, 4.39
! UQeUkSICk Q' CQu (4.39)

where the second inclusion follows from (4.35) and the fact that 0Q, C E° for all i € N. To
complete the covering, we introduce for all k > I + 1

Gr={QecQ": Q"cQ, Q'n(E'NJ,) =0} (4.40)
Assuming that we have already constructed C’,...,C" for n > I we define
n+l _ . " Y —

ct={QeGu:@nl,_ Uy @ =0} (4.41)
Clearly, C := [pq C* is a covering of @, (up to a set of negligible measure) consisting of

pairwise disjoint, dyadic squares. Finally, for 8 < i < I we define with U; as given in (4.12)
= {QeCQ U, H(INQ) > 0%}, Y =sat( Q). 4.42
V'={QeC: Q" c U H'(JuNQ) > s}, sat( U,y @ (4.42)

Let Z = Jge;<; Y" and observe that (4.14) holds since Y* C U;.

We now confirm (4.15). First, we already noticed (4.39). Then taking (4.40) into account,
using Ef N J, C UD}ﬁEgl I (U;n:1 oP; N Ju) (see (4.34)) and arguing as in the
construction of a Whitney covering for open sets, we obtain (4.15)(i).

To see (4.15)(ii), we fix Q1 € C* and Q2 € C7 with j > i and QN QY # 0. Ifi > I+ 1,
we deduce j < i+ 1 in view of (4.40)-(4.41), where one argues as in the construction of a
Whitney covering. If i < I — 1, we suppose we had j > i + 2. Then by (4.38) we get Q; C T
and Qo N T = (). Consequently, using (4.36) we obtain dist(Q1,Q2) > s; and thus the
contradiction @} N Q%5 = 0.
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Finally, for the case i = I it suffices to show that all @ € Q' with Q@ C @, \ T! and
Q\NQ' # 0 fulfill Q € CI*L. First, Q satisfies Q" C T by (4.35) and (4.38). Then Q"NET = ()
by (4.35), which also implies Q" C Q,, since 9Q,, C E’. Consequently, @ € Gr41 and thus
QelCl™asQcQ,\T.

Moreover, property (4.15)(iii) directly follows from (4.15)(ii) recalling the fact that each
T € @, is contained in at most four sets Q’, Q € Q°.

(a)

Q
l

\
Q//l

FIGURE 3. (a) The set E*~! and the ‘layers’ A = T*~'\T"', B = 7" "\ 7"}
are sketched, where in general E*~! is not a union of squares in Q°~!. Note
that a square @ in AU B is not in Qgé since Q" would then belong to E*~1.
(b) In dark gray we have depicted E?, which is a subset of E‘~!. The sets
T and T% \Tﬁ‘_1 are illustrated in white and light gray, respectively. Note
that 9T, OT" satisty (4.36). Let Bi € B, be the only isolated component
in the example. Observe that B! is also contained in 7% \ T°~! and does not
belong to E*, although Bi C Ei~!. Moreover, the black squares Q1, Q2 are
not in Q%)ad since otherwise they would either be contained in E* or in an
isolated component in B!

180°

To see (4.15)(vi), we note that each Q € C for i > I +1 satisfies QN (Q,\T1) # 0. Recalling

(4.33)-(4.34) and (4.40) we derive

dist(Q’, UDWI ) <esr, dist(Q’, UDéegl I NJ,) > 0.
Consequently, (4.11)(i) for 6 small enough yields (vi). It now remains to prove (4.15)(iv),(v),
where by (4.15)(vi) it suffices to consider 8 <7 < I.

We confirm (4.15)(iv). To this end, fix Q € C%, 8 < i < I, with Q" ¢ Z. By (4.42) we can
even assume that Q" ¢ U; since Q" ¢ Z together with Q" C U; already implies (4.15)(iv).
Let Q. € Q' with Q C Q.. First, if Q C T°"*\ T !, we see Q. ¢ Q. by (4.37). Then by
(4.8) we get

Hl(Ju n QI) S Hl(J: N Q;) S 938i_1 = 9281'. (443)

Otherwise, we have Q C T® \ T°~!. Thus, as T°~! consists of squares in Q*~!, we get Q. N
T~ = () and then Q. N E*"! # () by (4.35). If now Q ¢ Qi , or Q. ¢ O}, the assertion
follows directly from (4.8) or similarly as in (4.43), respectively.

Otherwise, we get Q € Q}_,, Q. € Qi and thus Q) C B""!. Recalling Q. N E"! #£ 0
and (4.20) (for i — 1) we get that Q” is contained in a component of £~!, which implies
Q C Q" C E*'. Recall also that Q" ¢ U;. Consequently, Q" is contained in a component
B\ Bi_ and therefore by the remark below (4.18), Q" is contained in a component of D’.

150
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Since Q C E~1, again by (4.20) (for i) we derive Q" C E' (cf. also Figure 3(b)). This,
however, gives a contradiction as Q € C* and thus @ C 7%, where T° N E? = (). This concludes
the proof of (iv).

Finally, to see (4.15)(v) we suppose that for Q € C?, 8 <i < I, there is a neighbor Qecit
such that Q" N Q" # 0. Then by construction we find Q ¢ T°7*\ T°~! and a further square
Q. € Q1 with Q c Q, c T 1 \Ti_l. In view of (4.37) the desired property follows as in
(4.43). Likewise, if there is a neighbor Q € Ct! with Q" N Q" # 0, we see Q C T" \ T* _ and

then again by (4.37) we get the claim from (4.8). O
(a) I O (0)
11 X,
] v FX = X _

Y7 (] LA =¥

. EEEEN i

H L] Y

By

FIGURE 4. (a) The squares X,j are depicted in light gray and the dark gray
squares are contained in )?. It is possible that Ylj C X,i, whereas Y2j, which
overlaps with X}, cannot exist since this contradics (4.15)(v). (b) In light
and dark gray the squares in X} are depicted (see (4.56) below). We have
also illustrated the part of C contained in X}, which may (in contrast to C.)
contain squares in 97, j < 1.

Proof of Lemma 4.4. Let C be given satisfying (4.15) and I as in (4.11). Recall (4.42). We
denote the (closed) connected components of Y by (Y})). We first show that

QeC,QcyY] forall QeYi:={QeC:QnNY{#£0, 0Q Y] # 0} (4.44)

In fact, for each Q € 37,2 there is Q € Vi, Q" C Y} such that Q" N Q| > 0. Since Q fulfills
the condition stated in (4.42), property (4.15)(V)‘ yields Q" C UQ*gci Q.. As C consists of
pairwise disjoint dyadic squares, this yields @ € C* and Q C Q" C Y}, as desired. We now see
that each pair Y, Y/, i < j, either satisfies

disteo (Y7, Y/) > 35 (4.45)

or one set is contained in the other. (Here dist,, denotes the distance with respect to the
maximum norm.) If not, we would find Q; € JAJ}C and Q; € 3713 such that QN Q; # 0. Then
j =i+1 by (4.15)(iv) and (4.44). Moreover, there would be Q. € 7, Q" C Y/, such that
QY N QY # 0. This, however, contradicts (4.15)(v) and the fact that H'(J, N QL) > 62s; by
(4.42). (We also refer to Figure 4(a).)

Now for each 8 < i < I let (X})r C (Y?)r be the components such that for all j # ¢
we have X} ¢ Ylj for all components Ylj. Accordingly, we denote the sets defined in (4.44)
by X{. Define Z* = |J, X}, and note that by (4.45) the sets (Z%); are pairwise disjoint with
Z =g Z'. Recalling the definition of X} before (4.17) we then see that Xj = ;.. We now
show (4.16) and (4.17).



26 MANUEL FRIEDRICH

As each component (X} ) of Z* is contained in a component of U;, (4.17)(i) follows directly
from (4.9). By (4.45) and the fact that disteo (X7, X)) > 2s; for all i and k # [, we obtain
(4.17)(ii). The proof of (4.44) showed that for each square in X} there is an adjacent square
in V! (cf. Figure 4(a)). Consequently, we obtain by (4.42) for ¢ > 0 sufficiently large

i " i 2 —1 i
Z#Xk<8z #{QeYV Q' CcXi}y<ch™ ZQW Q' NZ'NJ,)
< ch s ' HY (T, N ZY),

where we again used that each x € @), is contained in at most four enlarged squares. Since
(Z*); are pairwise disjoint, the previous estimate also yields

I . I . I
IR ACAES S S A AES S (ZQGUk 2 H1(0Q)
< Z;g A 2H (T, N Z7) < e 2H (),

i.e. (4.16)(ii) holds. Moreover, by (4.17)(i) and the fact that d(X}) < H'(0X}) (see (4.19) for

a similar argument)
27 =" X <D0 dX))? <077y HNOX]) < b si0 7 H ().

Likewise, as each component (X} ); » also satisfies d(X}) < 2v/2u67 by (4.10), we conclude the
proof of (4.16) by calculating

2l = |J_ 2| <ent™ " 3" HOX]) < cnt®H (1),

Finally, we now define a modification C, of C such that each Z* consists of squares C. := C.NQ".
To this end, fix a component X!. By (4.38) and (4.44) we have UQe??,j, Q CT:\ T, which
by (4.35) has empty intersection with E*. Since the diameter of each connected component
of E' exceeds s;07" (see (4.18)), (4.17)(i) then yields Xi N E* = (). Consequently, X} C T"
and again by (4.38) we then obtain X} C U;_s Ugecs Q (see Figure 3(b) and Figure 4). This
together with the fact that /\A,’,é C Q' by (4.44) shows that we can replace the covering C in each

component X }C by a covering C, consisting exclusively of squares in Q° such that all conditions
n (4.15) remain true. O

4.2. Modification of the deformation. In the last section we have seen that for a configu-
ration v € W(Q,,) the jump J, outside of Um OP; U Z can be controlled in a suitable way.
We now show that we can provide a modlﬁcatlon U of u such that | p; is smooth for every P

To this end, we will proceed similarly as in [29] with the additional dlfﬁculty, that we have to
treat the isolated components with particular care.

Theorem 4.5. Let > 0,0 > 0 and p € [1,2). Then there are a universal ¢ > 0 and a
constant C = C(6,p) > 0 such that for all u € W(Q,,) with (4.4) and for the corresponding
partition (P’) L, and covering C as given by Theorem 4.3 and Lemma 4.4 the following holds:

There is a modzﬁcatwn u:Qu — R?, being smooth in Ugee @ D Qu\ (JuN Uj=, 9P)), and
an exceptional set F' C Q, with

|F| < cub® H'(Ju),  HY(OF) < CH'(Ju) (4.46)
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such that @ =u on 0Q, (in the sense of traces) and

) _ 2_
(@) lle@)ze(q,) < Curle()lra(q,),

(i1) Vi — Vullpognm < Cur e r2qu), (4.47)

e — 2
(iii) ||a — ullr(@,\F) < Curlle(u)lL2(q,)-

Proof. Let (P});, Z = Uf:g Z" and a Whitney-type covering C of @, \ (J, N U;nzl OPj) be
given such that (4.15) holds and each Z is a union of squares in C*. We will first use Theorem
3.13 to define infinitesimal rigid motions for each @ € C (Step I), where on each connected
component of Z we choose a single infinitesimal rigid motion. Afterwards, we estimate the
difference of the affine mappings on adjacent squares (Step II).

Finally, with the help of a partition of unity associated to C we will construct a function
being smooth in UQeC @ and confirm (4.47) (Step III). In this context, we explicitly exploit
p < 2 and Hoélder’s inequality as we hereby can compensate the difficulty that d(X;i)s[l — 00
as i — oo is possible, where (X} ) ; denote the connected components of Z (cf. (4.17)(i) and
(4.58) below).

In the following C' = C'(6,p) > 0 denotes a generic constant and ¢ > 0 is universal. We can
suppose that 6 is small with respect to c.

Step I (Definition of infinitesimal rigid motions): Let us first consider the subset of
‘good squares’
. . i, 1 / 2.
Ce={QeC:Q gZZ}CUiZl{QeC.H(JuﬁQ)gﬁsl}, (4.48)

where the inclusion follows from (4.15)(iv). We apply Theorem 3.13 on @', @ € Cg, to find
infinitesimal rigid motions aq = a, b, and exceptional sets Eq C Q" such that

d(Q)77 [lu— agllr@pe) + (@) 7 [ Vu — AgllLr (@i mo) < clle(w)l| 2@ (4.49)
Moreover, taking (4.48) into account we find for all Q € Cq
|Eq| < cd(Q0*H' (J.NQ') < cb'd(Q)*, H'(IEq) < H'(J.NQ"). (4.50)

As a preparation for Step II, we now estimate the difference of the infinitesimal rigid motions
for neighboring sets in Cy. For @ € C; we let

Ne(Q) ={Q € C,\{Q}: Q' Q' #0} (4.51)

and observe that by (4.15)(ii) we have 0d(Q) < d(Q) < #~d(Q) for all Q € Ng(Q). This
also implies #N,(Q) < 02, Moreover, as the covering consists of dyadic squares, Q' N Q'
contains a ball B with radius larger than ¢cmin{d(Q),d(Q)} > ¢fd(Q) for some small ¢ > 0.
Consequently, by (4.50) we find |E N B| < 3|B| for 0 sufficiently small, where E= EsU Eq.

Thus, | B\ E| > ¢6?|Q’| and then we find by Lemma 3.7, (4.49) and the triangle inequality
lag — aglug < Cllag — gl ) < CAQP e Ly (452)
for all Q € Ng(Q). Therefore, by #N,(Q) < ™2 we get
3 a7~ @0y < CAQP el (453)

L R ol

where Ng := UQeNg(Q)u{Q} Q.
To conclude Step I, it remains to define infinitesimal rigid motions for the squares in C \ Cg.
Consequently, in view of (4.48) and Lemma 4.4 we have to concern ourselves with the behavior
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of u inside the isolated components (X!), for 8 < I < I. Since Q' ¢ X! for all Q € X},
(4.17)(ii) yields X} C C4. Consequently, we can derive an estimate of the form (4.53) for all
Q € X}. Note that N} := UQeX,i Q' is connected (cf. Figure 4) and since d(X}) < 6~'"s; by
(4.17)(i) we have by Lemma 3.7

7(1+%)lr(

lag, — aqQ,llr(nty < C lag, —aq,llzr(@)) + llag, — aq.llLr(qy))

for all Q1,Q2 € X}. Thus, the triangle inequality and the fact that N} is connected yield

< 1+ lr
oax llags —aqullrony < COTTD 10 D e pana 196~ %l

and therefore the discrete Hélder inequality together with #X} < c072I" (see (4.17)(i)),
#N(Q)N X} <8 forall Q € X} and (4.52) implies

]
X Han CLQ2HL10 Nty S co= ZQGXL ZQEN (@)nxl lag = GQ”I;”(Q’)

Q1,Q2€
< Os20737!" ||e(u) (4.54)

HL2 (Ni;) *
(See [33, Section 4] for similar arguments.) For each X! we fix an infinitesimal rigid motion
by setting afﬁ = aq for an arbitrary Q) € X,é.

We can now define affine mappings associated to each Q € C\ C,. Given Q € C! with
Q" C Z' we choose the component X} with @ C X}, and define ag = al.

Step II (Difference of affine mappings on neighboring squares): Similarly as in
(4.51) we introduce the neighbors of each @ € C defined by

N@Q) ={QeC\{Q}: Q'nQ #0}.
Let us compare the infinitesimal rigid motions on neighboring squares. First, consider @) € C

with QN Z = 0. Then N(Q) C C since each Q € N(Q) satisfies Q" ¢ Z. Consequently, the
results of Step I are applicable and we find by (4.53) for all Q € C with QN Z =

3 oeni 190 — a1y < CAUQP () Fa (4.55)
We now concern ourselves with the squares contained in the isolated components. Recall the
definition of N}, below (4.53). Let X} = {Q € Q' : Q C X}, QN N}, # 0}, which consists of the
squares X} and its neighbors contained in X! (cf. Figure 4(b)). Fix Q € &} and recall that
ag as in (4.49) if @ € X} and ag = a}, otherwise. Moreover, by (4.17)(ii) we get ag = al for

all Q € N(Q) \ Ng(Q). We apply (4.53)-(4.54) and find for all Q € X} using #N(Q) < ch~2
and the definition of a!,

> seniar 190 = 0l < Ctle@ g, + 50~ le(w) oy (456)

Finally, if Q@ C X!, Q ¢ X/ (see the white squares in Figure 4(b)), we observe that all neighbors
lie in the same isolated component and thus by definition

P _
ZQEN(Q) lag aQHLP(Q/) = 0. (4.57)
We now sum over all components and obtain collecting (4.55)-(4.57)
-p _
H:= ZQeC ZQEN(Q) lag aq ”L” Q")

2— r
SO Do #E s T ) [ gy + O Y UQP el vy
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. vl ! —21r
Since #X;, < c#XL < b by (4.17)(iii), we get

BSOS G E 0 )y, + €Y Q1) gy

Taking (4.15)(iii) into account we see that each x € @), is contained in a bounded number of
different neighborhoods Ng, Q € Cs, with Ng as defined in (4.53). Moreover, we note that
for each 8 <1 < I the sets (N})x are pairwise disjoint. We observe that M =Y, #X <
e, #X} < Cs; ' by (4.17)(iii) and the assumption that H'(J,) < 02y (see (4.4)). Con-
sequently, using the discrete Holder inequality we derive

1—2 T 4 1—2
H<CY M, 22 Py Z le(u)lIZ2 1) +C(zQecd(Q)2) eI},
< CZ (us1) E9_4plr‘|e(u)||L2(Q y T Clﬂ_pHe(“)H;(Qu)
< Cp* ”(Zl>89””+1)||e(u)||Lz(Q ) < O Ple(u)llfz g, ) (4.58)

where in the second step we used that > . d(Q)* < ¢|Q,] < cu?®. In the last two steps we
employed s; = pé', used 1 — B> 6pr > bprasr = i(Q — p) (see before (4.9)), as well as
Yizs 07 < C = C(0,p).

Step IIT (Definition of the modification): We are now in a position to define the
modification. First, we choose a partition of unity (¢g)gec C C*°(R?) with dgecrolz) =1

for x € Ugee @ and

(i) supp(pq) C Q' for all Q € C,

(i) [[Vpqlleo < cd(Q)™" for all Q € C. (4.59)

As the proof of the existence of such a partition is very similar to the construction of a partition
of unity for Whitney coverings (see [23, 42]), we omit it here. Let us just briefly mention that
the idea it to take a cut-off function ¢ € C2°((0,1)?) and to define the functions ¢ as suitably
rescaled versions of ¢ taking the fact into account that each point is contained in only a bounded
number of different squares @', Q € C. We now define the modification @ : @, — R? by

a=) 09200 =) valAq +bq) (4.60)

in Q. First, observe that @ is smooth in Jge @ and that Ugee @ D Qu \ (Ju N Um oP;)
by (4.15)(i). Let

F = UQGCg EqUZ. (4.61)

By (4.15)(iii), (4.16), (4.50) and d(Q) < 2v2uf® for all Q € C C J;55 Q7 we derive |F| <
cpf>H(J,) and HY(OF) < CH(J,). This gives (4.46). We obtain Vu = 2oec (chAQ +
ag ® V@Q) and using that V(3 5cc ¢g) = 0 we find for x € Q, Q € C

Vi(z) = ZQGC (po(2)Ag + (ag(z) —ag(z)) @ Vegy(a)).
Then we get by (4.15)(ii),(iii), (4.58), (4.59) and the discrete Holder inequality

lle(u) LP(Q‘L > ZQEC ZQE/\/ PHaQ - CLQH S C/ﬂ—pue(u)”ti“)» (4.62)
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which implies (4.47)(i). Similarly, we find using (4.15)(ii),(iii), (4.49), (4.58), (4.59) and the
fact that Ugee, @ D Qu\ F

(Vi — VUHIEP(QM\F) < CZQng [Vu — AQ||I£17(Q/\F) +CH
2— P 2— p
< CZQECg d(@)"Plle(u)lz @y + CH < Cu™Plle(u)l12(q,),

where we repeated the Holder-type estimate in (4.58). Let S* = {z € Q,, : dist(z,0Q,,) < sx}
and observe d(Q) < 2v/2sy, for all Q € C with Q N S* # @ by (4.15)(i). Then we recall (4.60)
and get by (4.15)(iii), (4.49)

- 2
e — u‘llz,p(sk\m < CZle ZQngnCl [Ju— aQle,p(Qf\F) < CskHe(u)HiQ(Q“). (4.63)

In particular for k = 0 this implies (4.47)(iii).

Finally, to show that & = u on 9Q,, one may argue, e.g., as in the proof of [16, Theorem
2.1]. We briefly sketch the argument for the reader’s convenience. Choose 9, € C*°(Q,) such
that ¢ = 1 in a neighborhood of Q,, and ¥, = 0 on Q,,\ S* with ||Vibg|leo < csgl. Note that
(4.15)(vi) and (4.61) imply FNSy, = () for k large enough. We define vy, = ¢y (u—1u) € SBD(Q,)
and show v, — 0 strongly in BD which implies vi|ag, — 0 in L' and implies the assertion.
In fact, by (4.63) and Holder’s inequality we get for k sufficiently large

_ _1,_ _1 142
12— ull g1 (sry < Cluse)' 7 [0 = ullosry < Cp' =7 sy P lle(u)|l2(g,)-
Now we derive that
|Evkl(Qp) < [Eul(S*) + | Eul(S*) + sy | — ull 1 sk

vanishes for k — oo and likewise vk ||£1(q,) < [lw—@l|g1(s+) — 0. This implies v, — 0 in BD,
as desired. (]

Remark 4.6. (i) For later reference we recall that the exceptional set F' consists of the isolated
components and the exceptional sets Eg for Q) € Cq (cf. (4.61)). In particular, by (4.15)(ii), (iii)
and (4.50) we find (for 8 small) that [FNQ’'| < 0|Q| for all @ € C with QN Z = .

(ii) Moreover, in view of (4.48), each @ € C with Q N Z = () satisfies (4.49).

We close this section with the observation that also |G|l can be controlled, which is nec-
essary for the proof of (4.3). The reader not interested in the derivation of (4.3) (which will
indeed not be needed in the sequel for the proof of Theorem 2.1) may readily skip the following
lemma.

Lemma 4.7. Let be given the situation of Theorem 4.5. Then the modification i : Q,, — R?
can be chosen such that (4.46)-(4.47) hold and ||il| Lo (g, \r) < Cllullec for C = C(0,p).

Proof. The goal is to show that for each () € C, there is an infinitesimal rigid motion a¢g such
that

lagllze(@n < Cllulle (4.64)

and (4.49) still holds for a possibly larger constant with ag in place of ag. Then we can repeat
the previous proof with d¢g in place of ag and since for each € @, \ F' we have Q € C, for
all Q € C with z € Q’, we obtain |u(z)| < Cllul|~ in view of (4.60). Let us now show (4.64).
Fix @ € C,. Using (4.49) for the affine mapping ag we find by (4.50) and Lemma 3.7

laall% oy < Cllaalon sy < CAUQ ()22 + CIQ lulZ-
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Applying Lemma 3.5 we find for all z € Q’
d(Q)Aql + |Aq = + bol < C(lle(w)llL2(qr) + llulloo)- (4.65)

If now |le(u)||z2(qg/) < [|ulloo, then (4.64) directly follows with aq = aq. Otherwise, (4.64) is
clearly satisfied with dg := 0 and in view of (4.65) also (4.49) holds for a larger constant since
then

2 2 _
lagllze@y < CA@Q)7 lle(w)lr2@y,  I1Aqllr@n < CAQ)?  le(u)llL2(q)-
O

4.3. Partitions into John domains. The essential goals of Section 4.1 and Section 4.2
were to provide a partition of (), into simply connected sets and an associated configuration,
which is smooth on each component. We will now apply Theorem 3.3 to obtain a refined
decomposition into John domains such that we can apply Korn’s inequality (see Theorem
3.2) with uniform constants. This allows to control the distance of the modification from an
associated infinitesimal rigid motion on each component and leads to the proof of Theorem 4.1.
At the end of this section we will collect all the properties needed for the subsequent analysis
in Section 5. The following result is the key ingredient for the derivation of Theorem 4.1.

Theorem 4.8. Let 11,0, > 0 and p € [1,2). There are a universal ¢ > 0 and a constant C' =
C(0,p) > 0 such that for allu € W(Q,,) with (4.4) and for the corresponding partition (P;)7L,,
covering C and modification 4 as derived in Theorem 4.3 and Theorem 4.5, respectively, the
following holds:

There is a partition (Pj)?:1 of Qu and a Borel set R C Q,, such that each P; with P; ¢ R is

a c-John domain with Lipschitz boundary. We have

o w(U_op) <cont), ® (U opJ_ op) =0,

(4.66)
(i) |R|<n, H'(OR) < CH'(J),
and there are infinitesimal rigid motions aj, j = 1,...,n, such that
_ 2_ _ _
IVOllLr@ur) < Cu Hle()ll2,y,  I10lLepmy < CAP)IIVD| Locpy), (4.67)

where ¥ 1= Z;»L:l xp; (4 — aj).

Note that the occurrence of a ‘rest set’ R is unavoidable as we have discussed below Theorem

3.3.
Proof. We apply Theorem 4.3 and Theorem 4.5 to obtain a partition (P})}.,, a covering C,
and a modification u associated to u. Let us first note that Theorem 3.3 cannot be applied
directly since the sets are possibly not Lipschitz. However, we can introduce a refined partition
as follows. (Note that this is just a technical point and not the core of the argument.)

For fixed i € N let R’ be the squares Q' whose closure have nonempty intersection with
U;nzl OP;. Since U;nzl OPj consists of finitely many closed segments, we clearly get for I € N
large enough that Ry := {Joerr Q7 satisfies |Ry| < 4, H'(9R,) < ¢H'(U]L, OP}) and there is
a partition (P}')}L, of @, such that

M m
(i) szl oP! = szl 9P UORy,

(i4) Hl(Ujil OP)') < cH'( U;”:l oP))

for a universal ¢ > 0. We order the partition such that P/ = P/ \ R; for j = 1,...,m, and

note that (again for I € N large enough) the sets (ij’ )7L, are simply connected domains with

(4.68)
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Lipschitz boundary, in particular the union of squares. Moreover, we have that Ry U U;”:l P}
forms a partition of @Q,,.

Now we apply Theorem 3.3 for € = 5L on each set in (P;')/2; and find a partition @, =
Rl'U Ry U P/"U LU Py (up to a set of negligible measure) with Ry = |J;~, QJ such that
|| < 5L, HY(0Q) < H'(OP)) for j =1,...,m and P{",..., Py/ are c-John domains with
Lipschitz boundary. Then |Ry| < 3 and since Y7 H'(OP)) < 2H' (]2, dP}'), we get by
(4.13) and (4.68)

’Hl(U;": o) +7{1(U2V: opP!") < cHl(Uin oP!) < c’Hl(U;”: OP)) < CH'(Ju).

we denote the partition consisting o an en in

By (Pj)j=1 d he p g f(P/”)J 1 (Qj)] 1, and (PN)] —my1- Then i

view o and the previous estimate, ollows. e let = R U {2 and observe
f (4.68 d th 4.66) foll We let R R R d ob

|R| < n as well as H'(OR) < CH'(J,). Recall that @ is smooth on each P/, j =1,...,N.

Applying Theorem 3.2 on each P} we obtain infinitesimal rigid motions (aj)évzl such that by
Hélder’s inequality and the fact that Q, \ R = U;‘V:1 P

_ _ 2_
IVOlle@ur) < Clle(@ @, < Cur e r2q,)s (4.69)

where v := u — Zjvzl XPya. By Poincaré’s inequality and a scaling argument we also have
||'D||Lp(P}”) < Cd(Pj{”)”v'l_}”Lp(PJ{”) for j =1,...,N. With a; = 0 for all other components we
indeed get v = >"7_; xp, (4 — a;). O
We are now in a position to give the proof of Theorem 4.1. The reader not interested in the
derivation of (4.3) may readily skip the second part of the proof.
Proof of Theorem 4.1. (1) Let p € [1,2). We may without restriction assume that H!(J,) <
021 as otherwise the claim is trivially satisfied (cf. (4.4)). Let (P})7L;, C be the partition
and covering constructed in Theorem 4.3 and let % be the modification given by Theorem 4.5.
We distinguish two cases:
(a) Suppose first that H'(J, \Ugee Q') = p6?. Then H'(J,NUJL, OP)) > pb? by (4.15)(i).
We apply Theorem 4.8 to obtain the partition @, = U _, P; such that by (4.4) and (4.66)(i)

HI(U::18Pj)<CH( W) < Cu < CHY (T, mU 3]3 < CHM(J, mLJ

where in the last step we used Uj:1 (‘9P]( C szl OP; up to a set of negligible H!-measure.
This gives (4.2)(i). Let F be the exceptional set derived in Theorem 4.5 (see (4.46)), let R the
set in (4.66)(ii) and define

E=FUR. (4.70)

Then (4.1) follows directly from (4.46) and (4.66)(ii) since 1 can be chosen arbitrarily small.
To see (4.2)(ii), we apply (4.47)(ii) and (4.67) to find

2 _
IVl Lo@ue) < IVOllLe@uar) + IV = Vil Lo r) < Cur el z2(q,), (4.71)

where v = u — 3", xp,a; and v as in (4.67) for infinitesimal rigid motions (a;)7_;.

(b) We now suppose H' (J, \Ugee @) < 1#6?. (Observe that this includes the case H'(J,) <
©6?). By the construction of % in Theorem 4.5 this implies H(Jz) < ub?. Consequently, we
may directly apply Theorem 3.13 on % and define E = E U F with E as in (3.7) and F as in
(4.46). Observe that also in this case (4.1) holds and that (4.2)(i) is trivially satisfied for the
partition consisting only of @,. Similarly as in case (a) property (4.2)(ii) follows from (3.8)
and (4.47)(ii).
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(2) We now show that we can find an exceptional set E’ and a configuration v/ = u —
> iy aixp, such that (4.1)-(4.3) hold. We only treat the case (a) where H'(J, \ Ugee @) >
p6? since (b) is similar. With E as in part (1) we define P = {P; : |P;\ E| > 3|P;|} and define
E' = EUUpgp P. Observe that HY(OE') < CH(J,) by (4.1), (4.66)(i) and \E’| < 2|E|. This
yields (4.1) for E'.

Note that P C (P}")}L, for the components considered before (4.69). Since P} is a ¢-John
domain, we get |P}’| > /d(P}")? for ¢ = ¢/(c). Therefore, |P; \ E| > §¢/(d(P;))? for all
P; € P and by Lemma 3.7 we get ||a;||z»(@) < Clla;||Lr(p;\r), Where @ is a square containing
P; with |P; \ E| > ¢/|Q| for a possibly smaller ¢/. By Lemma 3.5, (4.67) and the fact that
@l o (@, \F) < Cllulloo (see Lemma 4.7) we then derive

7771 _1
d(Py)|A;| + llajllLe<p;) < Cd(P. )\P| ?llajllepyy < CIPIT 7 lajllLepy)
1, _ _
< C|Pj| 77 laj Lo P\E) < C|Pj|" 7 |la — ajl| Lo (pp\ &) + ClltllLo(@,\F)
< C(d(P)) ™7 V0]l o(ry) + Cllulloo-

If (d ( ))1_7||vv||Lp(P ) < ||uHoo, we indeed obtain [|v||p~(p,) < C|lull and set v = v on Pj,
ie. a] = a;j. Otherwise, we set v' = won P}, i.e a = 0, and derive by a short calculation using
the previous estimate

HVU/”Lp(p \E) < CHVUHLp(p \g) t C|P;[|A;1P < CHVUHLp(p \g) t CHVUHLp(p
Consequently, summing over all components P; € P and using (4.67), (4.71) we see that also
v satisfies (4.2)(ii) and additionally ||v'||cc < C||u||co, Which gives (4.3). O

The goal in the next section will be to apply Theorem 4.1 iteratively on various mesoscopic
scales. In this context, however, we will not only need the result of Theorem 4.1, but also the
structure of the Whitney-type covering and the exceptional sets analyzed in this section. In
the following lemma we investigate the relation between the partition given by Theorem 4.8,
the ‘rest set’ and the covering C constructed in Theorem 4.3. As a preparation we define

R =RU Q (4.72)

UQec:\Q'ﬂRlze\Q\
and note that |R'| < 12071 by (4.66) and (4.15)(iii).

Lemma 4.9. Let be given the situation of Theorem 4.8 with (P;)7_;, R as in (4.66) and
R’ as in (4.72). Then there is another partition (Pf);-vzl = Pr U Pgood U Psman of Q,, and
(Aj)y CRES2 such that Pgooa consists of c-John domains, ’Hl(Ué\f:l oPr) < CH'(Jy) and

skew

with Pfo = UQec,QﬂPT*?éQ)Q we get

(9) Z IVE = A0%0 pmy < Ok Plle@lZa(q, ),

(it) PfC R/ for all P} € Pk,

(i) ( ) < 4V2d(P;) for all Q € C: QN P} # 0 and for all P} € Pyoou,
(iv) for all Py € Psman there is P} € Pgooa with P o C Pc.

(4.73)

Remark 4.10. Combining (4.73)(i) with (4.47) and letting E as in (4.1) we also get (see (4.71)
for a similar argument)

N
ijl Ve = AGl1L0 (poy iy < Cr?P|le(w)ll} g, (4.74)
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Proof of Lemma 4.9. With (P;)7_; from Theorem 4.8 we let

rood = {15 1 d(Q) < 4v/2d(P;) forall Q €C:QNP; # 0} (4.75)

and by P, we denote the remaining components. Recalling (4.5) we find for each P; € P! smal]
some @ € C such that P; C Q. Then (4.15)(ii) shows that P; € P, ., intersects at most cf~>
different squares of C. Consequently, indicating by P2 ., the nonempty sets in {QNP;: P; €

smal
Pl . Q € C} we derive for ¢ > 0 large enough

< 2 LP;). .

Z1367:'5,:)1&11 H aP 69 Z small H (8PJ) (4 76)

Note that ’P’Ood UPL . forms a partltlon We let Pr = {P € PyooqUPapan : £ C R} and let
vood = Peaood \ PR, b'inau =P/ 1\ Pr. By Csman we denote the squares @ € C with Q ¢ R’

QU cpy, P =0 A9 then QU P12 QR 2 (1 -010] = 500400
for Q € Coman by (4.72), the isoperimetric inequality and (4.76) yield for C' = C(6) >

Yo HQ<Cc > > H(PNQ)<C > H'Y(OP). (4.77)

QECsman QECsman PEP!!! P;eP!

small small

We define Pgood = Pé’ood U(Q)QeC.man and let Pspman C Pl 1 be the components not contained

in some Q,Q € Csman. We denote the sets of the partition Pr U Pgood U Psman by (P, );V 1
Note that by Theorem 4.8, Pgooq consists of c-John domains. The assertion HE ( U =1 8P]*) <
CH'(J,) follows from (4.66)(i) and (4.76)-(4.77). Moreover, (4.73)(ii) follows directly from the
definition of Pg, (4.73)(iii) is obvious for (Q)gec.,..,, and otherwise we recall (4.75). Likewise,
(4.73)(iv) follows from the construction of Pgsman, in particular the definition of Cypan-
Finally, by (4.47), the fact that @ is smooth in @, Q € Csman, and Korn’s inequality there

are matrices Ag € Rkaefv such that

ZQecsmu IVa = Aql7n gy < CH*Plle(w)lzzq,)-
N

For the components ’P/Ood UPsman we apply (4.67) and then get that there are matrices (Aj)j:1
such that (4.73)(i) holds. O

The following lemma collects the properties needed for the following analysis in Section 5.
Similarly as in the proof of Theorem 4.1 we will distinguish two cases depending on whether
the jump set is large or not. This will be reflected in (4.79) below.

Given a covering C as in Theorem 4.3, a partition (P;); as in Theorem 4.8 (or Lemma 4.9)
and an exceptional set R’ as in (4.72) we define

QP;CR)={QeC:QNP;#0, QNP; ¢ R’} (4.78)

and the sets Pj cov = UQEQ(Pj CR) @, which will play a crucial role in Section 5 to control the
difference of infinitesimal rigid motions. Note that the definition of Pj .o, always depends on
C, R although not made explicit in the notation.

Lemma 4.11. Let p,0 > 0, n > 0, p € [1,2) and r as in (4.9). Then there are a universal
constant ¢ > 0 and C = C(0,p) > 0 such the the followmg holds:
(1) For each u € W(Q,,) with H'(J,,) < 212072y there is a partition Q,, = Uj=o P; with

PO = @ or Po = Q;H (479)
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a covering C, C L_Ji21 Q' of Q, and sets ZL. 1 > 8, as given in Lemma 4.4 such that with
Sy = Ju \ Ugee, @ we have

(i) "Hl(Uj:1 OP;) < CH'(S,),
(i1) Q C Qu\ Sy forallQeCy, QCQu\Sy foral@cC Ul>8 zl, (4.80)

(i) . U, Xt ¢ U:Zl oP

where (X})i, denote the connected components of Z.. Each Z., is the union of squares in Q'NC,
up to a set of measure zero. Moreover, there are exceptional sets E,, R, such that for 1 > 8
one has

(1) |Bu| < cpb®H(Ju) < cd(Qu)0*H (Ju N Q) < Cp?, Ry <7
(ii) |Q" N E,| < Q| for all Q € Cy wztthZRu,QﬂU zZl =9,
)

(4.81)
(iii) d(XL) <0 s, for all X},
(iv) |ZL] < COsHI (J,) < COsyp,
and there are infinitesimal rigid motions aj = aa;p,, j = 1,...,n, such that
i " Vu— A%, < Cp27P|le(w)|? ,
( ) Zj:o || ‘]HL (Pj,COV\Eu) M || ( )||L2(QH) (482)

(1) #{Pjocov:T € Pjcov} <c forall zeQy,

where Pj oy as defined in (4.78) with respect to Cy, R,,.
(2) If Py = Qu, then Pycov = Qpu, Su =0, UlZS ZL =0 and there is a set T, C 0Q,, with
HY(Ty,) < cOu such that

/6 o, T ol < ez, (4.83)
7 u

where Tu denotes the trace of u on 0Q),,.

Proof. Similarly as in the proof of Theorem 4.1 we distinguish two cases depending on whether
the jump set is large or not. Let C be the covering constructed in Lemma 4.4 and @ the
modification given by Theorem 4.5.

(a) First assume H'(Jy, \ Ugee @) > p6?. We define C, = C and (Z})i>s = (Z')1>8 as in
Lemma 4.4 such that (4.15) holds. We let E, as in Theorem 4.1 and R, = R’ as in (4.72).
Denote the partition given in Lemma 4.9 by (P;‘);-V:l = Pr U Pgood U Psmanl and note that
HU (UL, 0P;) < CHI(J,).

For each P} € Pgooa choose a set T(P}) C Psman with Py C Pre for Py € T(P}) (cf.
(4.73)(iv)) such that Psman = Upj*epgoodT(P*) is a partition of Psmall~ Set T(P})

")
¢ = () for
P! € Pg. Let (P);I o be the partition of Q,, with Py = ) consisting of the components (X}); x
of (Z%)1>s and the sets

.— * * l *
P; = (P;U Up,;ef(p;) P\ Ul28 Z., for P} € PrU Pgooa. (4.84)

We now confirm (4.80)-(4.82). First, the definition of the partition directly implies (4.80)(iii).
By (4.16)(ii) and H!(J,) < cufd=2 we see Hl(U?:1 dP;) < CH'(J,) < Cu. Then (4.80)(i)
follows from the assumption #'(S,,) > p?, where S, = Ju,\Ugee, @'+ Likewise, the definition
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of S, and the fact that Q" C Q, for all @ € C, (see (4.15)(i)) imply @ C Q. \ S, and
particularly (4.80)(ii).

Moreover, the first part of (4.81)(i) follows from (4.1) and H!'(J,) < cuf~2. Applying
(4.66)(if) with Zn in place of n, we get |R,| < n by (4.72). Likewise, (4.81)(iii),(iv) are
consequences of Lemma 4.4. Recalling (4.70) we find E, \ R C F with F as defined in The-
orem 4.5 and R as in (4.66)(ii). Thus, Remark 4.6(i) implies |Q’' N (E, \ R)| < 0|Q)| for all
QN U;>g Z., = 0. Then the fact that |Q' N R| < 0|Q| for all Q € C, with Q ¢ R, (see (4.72))
yields (4.81)(ii).

It remains to show (4.82). First, each component P; € (X}) 1 of Z, := ;55 Z., consists of
a union of squares in Q' NC, and thus Pj .oy C Pj C F C E, (cf. Remark 4.6(i) and (4.61)).

Now consider P; such that P/ € Pr with P} as in (4.84). As P; C P C R,, (4.78)
implies Pjcov = (. For P; with P]fk € Pgooa we recall that P;‘ is a c-John domain. Let
Q € Q(Pj;Cy, Ry) and note that by (4.73)(iv), (4.84), and the choice of 7 (P}) we have
QNP; #0. Since d(Q) < 4v/2d(P}) by (4.73)(iii), Definition 3.1 implies that |Q'NP;| > ¢/|Q)|
for some ¢ small only depending on the John constant c¢. As for Q € Q(P;;Cy, R,) we have
QNZ, =0 (see (4.84)) and Q ¢ R,, this also yields

(P N @)\ Bl 2 i) (1.85)

for @ small by (4.81)(ii). Comnsequently, each @ € C, intersects only a bounded number of
different (P;, cov)] 1, which establishes (4.82)(ii). Recall that by Remark 4.10 we get (Aj)évzl -
R2X2 such that (4.74) holds (with E, in place of E).

For Q € Q(P};Cy, R,) we have QN Z,, = 0 and thus by Remark 4.6(ii) there is Ag € R%2
such that (4.49) holds. This together with Lemma 3.7 and (4.85) yields

[Vu — Aj”ip(Q\Eu) < C|Vu-— AQH]ZP(Q\EQ) + C”AQ - Aj”ip((ijQ')\Eu)
< C|[Vu-— AQHip(Q/\EQ) +C|[Vu — Aj”ip((pj*mQI)\Eu)
< Cd@Q)* lle(w)lls gy + ClIVE = A1 T0((pr g e

Summing over all P; with P} € Pgooq and Q € Q(Pj;Cu, R,) we finally get (4.82)(i). Indeed,
for the term on the right we use (4.74) and the fact that each z € @), is contained in a bounded
number of different Q’, Q € C,. For the left term we apply the discrete Holder inequality to
compute (cf. (4.58) for a similar argument)

> e, U@ el < (3, 10D el g, (4.86)

(b) We now concern ourselves with the case H'(J, \Ugee @) < p6°. In particular, we have
HY(Jaz) < ph?. We proceed as in case (b) in the proof of Theorem 4.1 and let E, = E' U F
with £ as in (3.7) and F' as given by Theorem 4.5. Moreover, we let Py = Q,,, ao as in (3.8),
R,=0,C,={QeQ':QCQ,}and Z, =0 for all | > 8.

FII‘S , (4.80)(i),(iii) are trivially satisfied since the partition only consists of Py. Moreover,
(4. 80)(11) follows from the fact that Ul>8 = (0 and S, = 0. Properties (4.81)(iii),(iv) are
trivial. By H!(J,) < cuf=2, (3.7) and (4. 46) we get

Bl < ||+ [F| < c(H'(Ja))? + cut™H (1) < cn®0®.

This implies (4.81)(i) and also (4.81)(ii) since |Q| = 4u?6? for all Q € Cy. As Pycov = Po,
(4.82) follows from (3.8). Finally, (3.9) applied on @ together with H!(J;z) < uf? and the fact
that Tu = T'a on 0Q), yields (4.83). O
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5. DERIVATION OF THE PIECEWISE KORN INEQUALITY

This section is devoted to the proof of our piecewise Korn inequality. We first assume that
Q = (—po, po)? is a square with pg > 0. Similarly as in (4.5) we define Q% := Q% for t; = 0",
6 > 0, and denote by Q' = %Q the enlarged square corresponding to @ € Q°. (We will apply
the results of Section 4 on squares (—u, u)? of different sizes and thus in general s; # t;, where
s; as defined before (4.5).) Recall the definition of the set W(2) before Theorem 4.1. We first
establish the main result for functions in W(2) which additionally satisfy

HY QN J,) <07H(Q) forall Qe UZ_21 Q' (5.1)

Afterwards, we drop assumption (5.1) and show the result for all functions in W(Q)). Finally,
we pass to general domains with Lipschitz boundary and Theorem 2.1 will be derived using a
density argument (see Section 5.2).

5.1. Proof for configurations with regular jump set. In this section we let 2 = Q,, =
(—pos f10)?. We first prove Theorem 2.1 for configurations in W(Q,,,) satisfying (5.1), which
already represents the core of the argument. If (5.1) is violated on a square @, we add 9Q to
the boundary of the partition and treat the problem on @) as a separate problem independent
from the analysis on the rest of the domain (see Theorem 5.2 below for details).

The strategy is to apply first Lemma 4.11 on @),,, whereby we derive a partition and corre-
sponding infinitesimal rigid motions. Moreover, we obtain a Whitney covering and an associ-
ated exceptional set (Step I). We then apply the arguments iteratively on the squares of the
covering in order to establish a partition and estimates which hold up to an exceptional set
progressively becoming smaller (cf. (4.81)(i),(ii)). Here we will crucially need the properties
(4.80)(i),(ii) which ensure that each part of J, is only ‘used’ in one single iteration step to
control the length of the boundary of the partition (Step II). Moreover, the validity of Korn’s
inequality on the enlarged components P;j .oy (see (4.82)(i)) will allow to control the difference
of infinitesimal rigid motions given in different iteration steps (Step III). In this context it is
again fundamental that p < 2 as hereby using Hoélder’s inequality a blow up of the energy can
be avoided (cf. (5.26) below). As before we have to treat the contributions of isolated compo-
nents separately, where we exploit (4.80)(iii) and (4.81)(iii),(iv). Finally, as Vu € L™(Q,),
after a finite number of iteration steps the exceptional set, denoted by F7, is small enough such
that the contribution of ||Vul|z»(g,) is negligible (Step IV).

Theorem 5.1. Let p € [1,2). Then Theorem 2.1 holds for all uw € W(Q,,) satisfying (5.1).

Proof. Let p € [1,2) and u € W(Q,,) be given satisfying (5.1). Note that this particularly im-
plies H'(J,,) < 2v/207219. A classical result states that u is piecewise rigid if ||e(u) [22(Q,) =0
(see also Remark 2.2(i)), so we can concentrate on the case |[e(u)|r2(q,,) > 0. Since Vu €
LP(Qp,), we can select € sufficiently small such that for all Borel sets B C @, with |B| < 4e
one has

2

||V“||I£p(3) < pg p‘le(u)lli%Q%)- (5.2)

We introduce p’ = 1+ & € (p,2). Later we will pass from p’ to p by Hélder’s inequality. We
let r = 22;4” as in (4.9) and set A = (173’2#. In the following ¢ > 0 stands for a universal

constant and C' = C(6,p) > 0 for a generic constant independent of & and pg. We can suppose
that 6 is small with respect to ¢ and \, particularly that c6* < } (cf. (5.22) below). At the
end of the proof we will fix § depending on p such that eventually the constant C' depends only
on p.
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Step I (Induction hypothesis): We first formulate the induction hypothesis for step i.
Assume we have a partition Pi‘ = (P;);”;l of @, (up to a set of negligible measure), a covering
C; of Qu, with C; C U > it Q7 consisting of pairwise disjoint dyadic squares, exceptional sets
E;i, R; C Qu, with |R;| < %Z;:o 277 aset S; C J, and sets (Z!);>i1s such that

(4) Hl(U; opPi\ aQM) < OVHY(S)),
(i1) QC Qu, \Siforall QeCi, QCQy\Siforall QcC Um+8 zl, (5.3)

i) U, U, axl ¢ U:; oP;

for some Cy = C1(6, p), where (X,lcz);€ denote the connected components of Z!. Each set Z! is
the union of squares in Q' N C; up to a set of measure zero. Moreover, we have for { > i + 8

(i) |E;| < Citipo,

i) |Zi] < Cr0™ " tupuo,
(131) d(X “) <67 "'t; for all X,lf’i,
(iv) QN E;| < cf|Q| for Q € C; with Q ¢ Ry, QN zb=10.

1>i+8

(5.4)

We further suppose that that there is a decomposition Q,, = ngo Di of Q,, such that for
some Cy = C3(0,p)

|D}| < Co0 "ty forall 1 <1 <. (5.5)
For each P} we set Pj ., UQEQ(P ¢, ;) @ with Q(P;; C;, R;) as defined in (4.78). We assume
that for each P; there is Aé- € Rflfe%v such that for all 0 <1 <%

(Z) Z._ Hvu—A7||Lp (Pi

j,cov

( ) #{ _]cov'xep]?,cov}SNO for all xEQuov

for some Ny € N and a constant C5 = C5(6, p) large enough, which will eventually be specified
n (5.18) and (5.22). Note that the constant in (5.6)(i) blows up for [ — oo, but that D} covers
only a comparably small set (see (5.5)).

First, the properties hold for 7 = 0. To see this, we apply Lemma 4.11 on Q,, with n = §
to find a partition @, = U?io P0 and define Cy = C,, Eyg = E,, Ry = R, Zl = Zl forl > 8
as well as So := Jy, \ Ugee, @ (Lemma 4.11 is applicable as H!(J,) < 2v/202ug by (5.1).)

Then with n = § we get [Ro| < § and (5.3)-(5.4) follow from (4.80)-(4.81). Moreover, (5.6)
is a consequence of (4.82) with D0 @, and p’ in place of p if we choose C3 large enough.

Ay, -’ '
ey < G0 le@z@.

Step II (Induction step: Partition): We now pass from step ¢ — 1 to i. For each
Q € Ci—1 we apply Lemma 4.11 with p in place of p, n = £27711Q,,|*|Q] and p = t), with
k such that Q € Q*. Note that Lemma 4.11 is applicable due to (5.1). We obtain a partition
Q= U Q PQ up to a set of negligible measure satisfying (4.79), a set R? C Q with

|R?| < e2771Qu Q) (5.7)

an exceptional set E9, a covering C9 with C9 C Ujsisa Q7. the set S = (J,NQ) \Ugece Q'
sets (Zég)lzg as in Lemma 4.4 and infinitesimal rigid motions (a?)?go such that (4.80)-(4.82)
hold (with s; = t40' for [ € N and p = t,). Recall particularly that depending on the case in
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(4.79) either POQ or U?gl PJ.Q forms a partition of ). We split up the covering into different
sets as follows. Let C/_; be the squares Q € C;—; with POQ = (), define

Cy={QeCi1\C,:QC Ulzi+7 Zl_y, H'(J.NOQ) > 0d(Q)} (5.8)

and C!' ; =C;—1\ (C/_;y UC!" ). For C/'_ { UC}"” the associated partition is trivial (see Lemma
4.11(2)). (Note that the introduction of C/”, is only a technical point. The core of the
argument lies in the separation of C;_; and C_;.)

Let R; = Ri—1 UUgee,_, R? and observe that |R;| < %Z;:o 277 by (5.7). Recall that the
connected components (X,i’iil)kzl of Z!_| consist of squares Q' NC;_1, i.e. {Q € Q' :Q C

X,i’i_l} ={QeC_-1:QC X,i’i_l}. Then by P, we denote the connected components of the
set

1 I - s -~
Vi = lnt<UQ€C;L1,QcX,i'i’1 Q) N mt( UQGQL\(CLIuC;’jl),QCX,lc’i*I Q)' (5.9)
Note that by (4.80)(i) we have #'(9Q) < H'(U;<, anQ) < CHY(S?) for all Q € C/_,. Then
1 li—1 1
’ < . .
ZPE% HY(OP\0X,"h) < dec;,luc;zlgcx,gﬂ 1 (0Q) (5.10)
<cC 3 HL(S?) + > ' (0Q).
Qeci_y,Qcxyt Qec”, Qe
We now introduce the partition P for iteration step i and show (5.3)-(5.4). We set
Pa={P?:Q€eC_, j=1,...nQ} U{P’ =Q:QeC,},
Py={PecPL:1>i+7k>1} (5.11)
_ pi—1 5) i—1 i—1 _ 0o
P =PI\ Upemm P forall P7'ePl P.=(P)5,.

Define P’ = P, U P, U P, and denote the sets also by P* = (P})52,. We observe that P’ is
a partition of (),, up to a set of negligible measure and that the sets in P, do not intersect
Uisisr Zi_y.

By (5.8) with §9 := J, N dQ we find H'(8Q) = 2v2d(Q) < CH'(S9) for Q € C!",.
Consequently, using (4.80)(i) for the components C._; and applying (5.3)(iii) for step i — 1 as
well as (5.10) we get

w (U or\ (U 0p voau,)) < O

Letting S; = S;—1 U S} with S} := UQGC;,l SQ U UQGCQ’LI 5@ we obtain S; C J, and confirm
(5.3)(i) as follows. Since S9 = @Afor alLQ € Cl' Ul (see Lemma 4.11(2)), S? Cc Q C
Quy \ Si—1 for all Q € Cj_; and 59 C Q C Q,, \ Si—1 for all Q € C”; by (5.3)(ii) for step

i

H(S9) + CZQGCW HL(S9).

1

i—1, we get S;_1 NS = 0. Moreover, each z € Q,, is contained in at most four different SQ.
Then the claim follows from (5.3)(i) for step i — 1 (if we choose C1 > C).
Moreover, we define C; = Ugpee, , C% CU;5ipq @7 and for I >+ 8

b= Ik o 0
Z; UkZi UQGC,leQk Zg ", E; UQeci_lE . (5.12)

Each Z! consists of squares in Q' NC; up to a set of negligible measure since, as noted below
(4.80), for each Q € C;_1 N QF the sets Zé) consist of squares with sidelength 2s;, where
according to the notation in the previous section we have s; = ¢;6” for j € N.
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We now confirm (5.3)(ii). Consider @ € C;. First, the fact that C; is a refinement of C;_;
yields some Q € C;_1 such that Q@ € Q . Then (5.3)(ii) for step ¢ — 1 implies Q C Qu \ Si—1.
Likewise, recalling the definition of the set S}, we get Q N SF = ) by (4.80)(ii) and therefore
Q N SZ == (Z)

In the special case that Q € C/_, and Q C Uiss Zé? CUisirs Zi, weget Q C Q by (4.80)(ii)
and thus as before by (5.3)(ii), (4.80)(ii) we also derive Q@ C @, \ Si—1 and Q@ N S} = 0.

Property (5.3)(iii) directly follows from (4.80)(iii) and the definition of P, in (5.11). By
(4.81)(iv) and (5.12) we get for each square Q € C;_; N Q¥ k>iandl>i+8

1ZLnQl < o~ Rrs 1Y (T, N Q) = CtdPOEIHY(T, NQ) < CLoT"HY (J.NQ),

where as before we have s; = #,67 for j € N. Then taking the sum over all squares we
derive (5.4)(ii), where we use the fact that H'(J,) < cf~2pug. Likewise, (5.4)(iii) follows from
(4.81)(iii) and a similar calculation. Moreover, (4.81)(ii) yields (5.4)(iv) by the definition in
(5.12) and the fact that R? C R;. Finally, to see (5.4)(i) we recall that for all Q € C;_1

|EQ] < ch?d(Q)HY (J. N Q) < Ct;H (J, N Q)

by (4.81)(i). Consequently, in view of (5.12) and H!(J,) < cf~2pq the result follows when we
take the sum over all Q € C;_; (if we choose C; > ().

We close this step by defining a decomposition of @, and confirming (5.5). Let D! =
Ei-1UUpep,up, P and D = Dj~"\ D! for 0 <1 <i— 1. Then (5.5) for 0 <1 <i— 1 follows
directly. Moreover, recalling (5.3)(i), (5.11) and H!(J,) < c0~2uy we compute

— 1
| UPePa Pl =] chec;_lucy_’1 Q| < et ZQec;_luc;/_/l H(0Q\ 9Qy,)
S CCltiﬂl(Si) S CClti/Hl(Ju) S C- CltiMO-

(5.13)

Likewise, by (5.11) and (5.4)(ii) we see |Upep, P| < D 2j5ivr |ZL | < C - C107 ;1. This
together with the estimate for |E;_1| in (5.4)(i) yields (5.5) for D! if one chooses Cy > C - Cy.

Step III (Induction step: Korn inequalities): It remains to define matrices (Aj);";l C
R2X2 and to establish (5.6). First, we observe that by (4.82) we have for all Q € C;_,

skew
> IVu— AT < Cd(Q ™ lew)I7 5.14
j=0 i o (P2 \pa) = 12(Q) (5.14)

for suitable (a?)j, where wav = UQGQ(PJQ;CQ,RQ) Q is defined as in (4.78). As a preparation
we analyze the behavior in the ‘isolated components’. Fix some X,i’if1 with [ > ¢4 7 and
recalling (5.9) we consider a corresponding connected component P € P,i. By definition there
isaset Q(P)c{QeQ :QcC Xé’iil} such that P = int(Ugeg(p) Q).

As Q € €/, for Q € Q(P), a single infinitesimal rigid motion a$ is given such that (5.14)
holds with POC?COV = @ (see Lemma 4.11 (2)) and by (4.83)

[ ru-afPan < )l
aQ\I?
for a set I'? with H'(T'?) < cft;. We can estimate the difference of the infinitesimal rigid

motions on adjacent squares as follows. Consider @1, Q2 € Q(P) such that 0Q; and dQ2 have
a common edge. Then the previous estimate implies with T' := I'?* UT'92 U (J, N Q1 N IQ2)

a9 —aQ2|2d’H1§C / \Tu—aQ’“|2d’H1 SCtlHe(“)HQ‘Z )
/(anmaQQ)\l" 0 0 Zkzlg DQ\T 0 L2(Q1UQ2)
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where we used that the traces Tw on 9@ and 9Q2 coincide on (0Q1NIQ2)\T. By (5.8) we get
HYT) < cbt; as Q1, Qs & C/ . Therefore, by Remark 3.6 we get for 6 small £2|A" — AZ?|2 <
Clle(ul2(g,uq,)- Consequently, recalling that P is connected, #Q(P) < e~ by (5.4)(iii)
and using the discrete Holder inequality we find

max t2 AQ1 _AQ2 p’ < ctQ—P/9—27"l(p’—1)
o BTGy A — AT < et 2

Applying (5.14), #Q(P) < ¢#~2"!, p/ < 2 and recalling (5.12) we derive for each Q € Q(P)
IV — AZ|| et TN e gy (5.16)

P
e <

We are now in the position to define matrices associated to P’. Recalling the definition of
the partition P’ in (5.11) we distinguish the the following cases: (a) For Pj = PkQ for some
QeC_yand k=1,...,nq we let A} = A9 and for P} = PE for some Q € €/, we let
Al = AZ as given by (5.14).' (b) If P} € Py, we set A; = A9 for an (aybitrary) Q€ Q(Pj).
(c) Finally, for all P} with P} = P{ for some P! € P'~! we let A} = A}~".

We now show (5.6)(i). As a preparation we recall that the discrete Holder inequality together
with #{Q € Ci : Q C ZI} < ety 2|Z} < cCrt7 07 g (see (5.4)(ii)), r = (2 — p), and
t; = pof' implies

(D) Y ee, (UQD T eaq) < ey 7 lle(®lEeq,,) (5.17)
(1) ¢ 7ot ZQeci;chi le(@)72 gy < cC1O™H (O tipo) 7 P lle(w) 2 g,

< 010" 1577 le(u)

wcorm €@ Hg): (5.15)

p/
HLZ(QHO)'

For (i) we refer to (4.86) and for (ii) to (4.58) for similar arguments, where we particularly use
1—

’

B = 1(1—2) = 6r. We first consider the set D! as defined before (5.13) and show that
for k =a,b,c

< 10307 P |le(u)

— AL
ZP;E% IV = A5 (pr . mpinE) < 3 (5.18)

||1£2(Qu0)'
First, for the components P, the property in (5.18) directly follows from (5.14) and (5.17)(i)
provided that Cj is chosen large enough, where in this case the additional factor #~** is not
needed. In fact, P} = P2 for some Q € C_, UC, for all Pl € P, and P}, = P,?COV due to
the definition of C; with P; ., as defined before (5.6). Likewise, for sets P} € Py, we get (5.18)

by (5.16) and (5.17)(ii) using P} .o, C Ugeg(piy @ C P} as well as the fact that the sets Q(P)

j,cov
for P € P, are pairwise disjoint. Note that again the additional factor 6=** is not needed, but
the choice of Cj also depends on C; and >, 6™ < +00. (We omit details here as a very similar
computation has already been performed in (4.58).)

Finally, we concern ourselves with a component P]? = P, € P.. Note P C P,ifl with
P! € Pi1. Recall the definition of the sets P;’COV, P,i;év before (5.6). As C; is a refinement
of C;_1 and R; D R;_1, we obtain

Pl CP = JIQeCiy: QNPI£0, QC Pl Y C Pk (5.19)
Fix Q € C;_1 N Q' with Q C P;. As P/NQ # 0, (5.11) implies @ N Z}_;, = () and that the
partition associated to @, introduced before (5.7), is trivial, i.e. POQ =pP2 = Q. We observe

0,cov

() |EioinNQ| < chbt?, (ii) |E9| < cht?.
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In fact, (i) follows from (5.4)(iv) for step i — 1 and the fact that Q C P! (cf. (4.78)). B

k,cov

(4.81)(i) and (5.1) we obtain (ii). Thus, for # sufficiently small with respect to ¢ we obtain by
(5.14) and the triangle inequality

Q i—1p’ QP 1—1
|Q||A0 _Ak P <cl|Vu - Ag ||Lp (Q\(EQUE, _ +C||Vu A HLp (Q\(EQUE;_1)

<Ot el + c||w AT o (5.20)
Consequently, we find using again (5.14)
VU — A, ey < CQ)* T lle(u)lf2 gy + el Vu — 437 1HLP (Q\E:_ (5.21)

Now we are in the position to confirm (5.18). Note that each @ € C;_1 is contained only in a
bounded number Ny of different P} by (5.6)(ii) and (5.19). Summing over all squares Q C P;
and all P} = P € P, we deduce using (5.6) for step i — 1 as well as (5.17)-(5.21)

i—1 i—1
ZPJ?:P;@C IVu = 47, (P} co mD?)\E-)SZpt ppep, V0~ A I ((P;NDI\E)
2—p’ i—
< No- oty ()2, + €3 s V0= 45 1\|LP peen

< (ONo + cCs0~ N ig P lle(u)ll7a g, ) < 5Cs07 3 fle(w)]} (5.22)

1o)’

where the last step holds for C5 = C5(0,p) large enough and 6 small (depending on \) such
that CN < %03 and c6* < %.

To conclude the proof of (5.6)(i) it remains to consider the sets (Dj)i_). Recalling the
definition of the decomposition before (5.13), we see Di \ E; C D;™' \ E;_y for 0 <1 <i— 1.
Consequently, (5.6)(i) for 0 < [ < i — 1 follows dlrectly from the corresponding estimates in
step ¢ — 1 and (5.19).

To show (5.6)(ii), it suffices to treat the cases (a)-(c) separately. Indeed, by the definition
of C; we have P}, cov and Pj, cov are disjoint if they lie in different sets P, Py, P.. For P, the
desired property follows directly from (4.82)(ii). For P, it is obvious as the sets P; .., C P} € P,

are pairwise disjoint. Finally, by (5.19) for each P; € P. we have a (different) P,z C(l)v with
Pi .. C Pl and the property follows from (5.6)(ii) for step i — 1.

j,cov k,cov

Step IV (Conclusion): We are now in a position to define the partition and the infinites-
imal rigid motions such that the assertion of Theorem 2.1 holds. As limsup,_, . |F;| = 0 by
(5.4)(i) we can choose I € N so large that |Er| <e. By P! = (Pf)?il we denote the partition
given in iteration step I and get by (5.3)(i) that

(o)
ijl HY(OP\ 0Qu,) < CH'(S1) < CH'(Ju), (5.23)
where in the last step we used Sy C J,,. In view of the definition (4.78) we get

o)
Z PP CovlSzjzleecl|PfﬂQﬂR1|§\Rzlﬁa.

Thus, letting E' = ErUU;Z L(PINP].,) we get |E'| < 2e. Weset P* = {P/ e P':|P/\E'| >
%\Pj[ |} and define

o 1 _ I
v o=y — ZP;IEP* (Aj m)XPan E"=FE U UP,IQ'P* Pj s (524)
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where (A§)j C R2*2 are the matrices corresponding to (P 1), (cf. (5.6)). We now show (2.3)(ii)

skew

for v'. We deduce from (5. 6)

192117, ((Quo\E")ND) <Oop? 0~ ez g, ) (5.25)

for all 0 <1 < I for a constant C' = C(6,p). Moreover, by (5.5)
|DJ| < OO0~ tayro < OO

for all 0 <1 < I. Recall the definition p’ = 145, r = 22;47” and \ = (1_32#. Passing from

p’ to p and using (5.24), (5.25) we obtain by Holder’s inequality

1
1P _}: / }: I1-p/p’ np
va ||LP(QMO\E”) - va ||L”((Q;LO\E”)0DI) — 1=0 |Dl | ||V11 ||Lp/((Q“O\E//)leI)

< Cﬂo pzzzo gl(1—r)(1—p/p")—iAp/p lle(u )||L2(Q

<CT Y e, ) < Ol e, (5.26)

with C = C(0,p,\) = C(6,p). Now we have to analyze the behavior in E”. To this end, we
fix some PjI e PLIf P]-I € P*, we can choose a measurable set [} with PjI NE' CF; C le
and |F;| = 2|Pf N E’|. We find by |F;| < 2|F; \ E'| = 2|F; \ E"|

|F ||A1|p < ¢[|[Vu— AI”LP F\E") + C‘|vu||zjip(Fj\Ew)- (5.27)

If P/ ¢ P*, we set F; = P/. Then we see that F := U;il F; satisfies |F| < 2|E’| < 4¢ and
thus by (5.2) we derive ||Vu||’£p(F) < u§7p||e(u)||122(Quo). Consequently, as E” C F we obtain
by (5.26)-(5.27)

195 2,y < 190 Wy + 199 Wiy (5.28)
2
< O e, + IV €3, SIIALY

< Cpg Plle@lzq,,) + el VYL, \mm < Cho "lle@llze g,

All arguments hold for a fixed 0 sufficiently small and thus the constant C eventually only
depends on p. To obtain (2.3)(i) we apply Theorem 2.10 on v" and p = H'(J,) + H'(0Q,,)
to get a Caccioppoli partition (P;); and corresponding translations (b;); such that with v :=
=3 bjxp; by (5.23) and Holder’s inequality

Z HYO*P)) < H (o) + HYOQu,) + cp < CH () + HHOQu,)),

[vllLe(@,,) < Cﬂ_1||VU'HL1<Qu0> < cpuop™le(w) | 12(Q,y)-

(For the proof of Theorem 2.10, which is completely independent from the arguments in Section
4 and Section 5, we refer to Section 6.1 below.) Let (P;); be the Caccioppoli partition consisting
of the sets (PN P});,; and observe that (2.1) follows Choosing corresponding (a;); such that
v=u~—3_;a;xp,;, we obtain (2.3) as Vo' = Vv. Finally, since u € W(Q,,), we also have that
UGSBVQ(Quo)mLOO(Quo)- O

We now drop assumption (5.1). The idea is to add the boundary of the squares violating
(5.1) to the boundary of the partition. As in each such square H!(.J,,) is large, eventually the
length of the added boundary can be controlled, cf. (5.34) below. On each of these squares we
then separately proceed as in Theorem 5.1. For the following proof we introduce the notation
Fk={F = int(UQGQF Q): Qr C QF} for k € N.
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Theorem 5.2. Let p € [1,2). Then Theorem 2.1 holds for all u € W(Q,)-

Proof. We reduce the problem to Theorem 5.1 by passing to suitable modifications of u. Since
u € W(Qy,), we have J, = U?:1 I'} consists of closed segments and Vu € LP(Qy,). As in
Theorem 5.1 it suffices to treat the case [le(u)||r2(q,,) > 0. We choose I € N such that for

Ro={Qe Q' :QnJ, #0}
(1) IVullfpa) < ué—Pne(wnfzg(% for A C R* with |A| < 07'"H'(J,)t5,
(i4) ZQGRO L0Q) < cH (). (5.29)

Let Ry = Uger, @- Clearly, we have |Ro| < ¢H'(J, )t; < 07'H(J,)t; for § small (with
respect to c). Moreover, J, N Q = 0 for each @ € U,>; @’ with Q N Ry = (). For later we also
define J,, = J,, U ORy.

Set ug = UXQ,u0\Ro- Assume u; € W(Q,) and R; C Q=7 0 < j < i, have already been
constructed with R; := UQeRj Q. Forall j = 1,...,i we define the sets S, 7 = (79,...,7j_1) €
J;:={0,1}7, by '

_ _ _ o
= (R;N Ulmk:l Ri)\ Ukn—k:O Ry for 7 #0, S} =R;\ U] .

For j = 0 we let Jy = {0} and SJ = Ry. Denoting by #7 = ?;E T for 7 € J; we assume
that for all j =0,...,1
. J
(i) Ju, cTi=J,_, (ORk\ Ul por B U (Ju \U ) C Quo \Uk o B
(i1) H'(Jy, NQ) <071d(Q) forall Qe U (5.30)

klj

i) HORNF) <Y S 2R RN NSINF) forall F e U,

From the above discussion we get that the properties hold for ¢ = 0 where particularly (iii)
follows from the fact that J, D ORg. We define u;4+1 and R;11 as follows. Let

Ri+1 = {Q S Ql_i_l : ”H,l(I‘z N Q) > 1675172‘,1} (531)

and Ry = UQER;,.H Q. Set w1 = u;XQ,,\Ri;,- LThen (for  small) (5.30)(i),(ii) hold by

construction and (5.30)(i),(ii) for step i. We now show (iii). Fix F € F/=0*+2) and recall that
F is open. Then (5.31) and the fact that H'(9Q) = 8t;_;_1 yield by (5.30)(i)

—_

1 A
Hl(aRH_l n F) < iHl(FZ NEN Ri—l—l) 57‘[ ( NFN (Ri+1 \ Uk:O Rk))
1 1 i _
+3 Z H ((aRj "\U,_ Rk).
We then note that by definition of S5
H (Ju N F N (Rigr \ U;O Ri)) =H' (JuNFNS. (5.32)

Moreover, for each 7 € J; we have S7 '\ UZ:;‘H Ry = S5 = ST 0 (Ry\ UZ:;‘H Ry,) with
7 =(71,1,0...,0) € Ji11. Consequently, since #7' = #7 + 1 we find by (5.30)(iii) for step
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i — 1 and the fact that '\ {J;_, , R, € FI-U+D
1 i i
3 ZFO H((OR; N F)\ UZ:]+1
g J —k— : A N
= Zj Ozk 0 ZTeJq#T:kQ LAY (TN SIN(F U i Ry))
A - / 1+1
< Y s arn @A\, )
1+1 B ;
< Zk:l ZT,:#T/:]C 27F HN (T, NS N F).

This together with (5.32) yields (5.30)(iii). For later we also note that for all Q € Q' 7=\ R,
we get for @ small by (5.31)

QN Uk<i Ri| <2t H' (TiNQ) <2t (16t + 8t;——1) <2t7_, ;= 3|Q|, (5.33)

where in the first step we used that J, ., Ri consists of squares with sidelength smaller than
2t;_; whose boundaries are contained in T;.

We proceed in this way until step @ = I — 1 and finally let R; = Q,, Rr = {Qu,}. By
(5.30)(iii) and the fact that (SL,)./cj, is a partition of Q,, we derive

Zj;; 'Hl(aRj NQuy) < Zj;o Zk:o ZTer:#T:k 9=k 941 (JL N Si)
I—-1 j )
— ZT,EJI ijo Z;:O ZTer:#T:k 278 1M (I N SN SL).

Note that S N S, # @ if and only if 7 coincides with the first j entries of 7/ and T =1
Consequently, with H(J}) < ¢cH!(J,) we find

T, 1 I 1 I

> om0 T S 0, 58 + 00 )

< CZ J’ NSL) < ' (Ju). (5.34)
We now apply Theorem 5.1 separately on each square Q) € Rj, j = 1,...,1, for the function
uj—1. In fact, in view of (5.30)(ii) condition (5.1) is satisfied (replacing @,, by @ and u by
uj_1). Hereby, by (5.23) we obtain a partition of the square ) € R;, which we can restrict to
Q\ Ufc;é Ry.. Consequently, taking the union over all partitions defined on each @ € U§:1 R
we obtain a partition (P})$2, of @, with UJI 0OR; C U2, 9P, where we set Py = Ro. By
(5.30)(i) and the fact that Zl_é HYOR; N Q) < cHY(J,) we get

Z] IZQER aQﬂQNO)—’_H ( Uj—1 mQ)) +H1(U1710Q;¢0)
< Z, . (8ijQ,m)+Zj:1 HY(Dj1 N R;)

i—1 -1 ! i1
< H (L) + ZHl (U_, omn ®BAU_ Re)) + 1 (0 (RAU_ )
j=1

<Z ’H (OR; ﬁQMO)—i—cH( W) < cHY(TL).

Consequently, applying (5.23) for each Q € U§:1 R, we find that Zj‘;l Hl(aPJf \ 0Qu,) <

CH'(J,). Moreover, Theorem 5.1 yields piecewise constant Rkaefv—valued functions Ag on



46 MANUEL FRIEDRICH

each @ € U§:1 R; (being constant on each component of the partition) such that by (5.28)
and the definition of u;_; we have

|Vu— Ag]? iy S 19510 = Aol g < CE A (1) 2

2—p p
= Ctlfj He(u) ||L2(Q\Uk<J Ri)’

IF1Q\ U< Ry| > 0, we find some Q € Q771 \R;_1 with Q C Q. Then (5.33) (for i = j —2)
implies [Q \ Uy, Ri| > 1Q\ Uk<j1 Bel > 2t7_;,, = 20°t] ;. Thus, for each Q € UJI-:1 R;
IVe = Aall}, g\, 7 < CIRAU, , Brl" Flle@, g, 7y

Therefore, for each (P});>1 we find a corresponding A’ € R%2 such that for v/ = u —
> j:l(Aj )X Xp; we have by summing over all squares

L (Q\Up <

||U/HLP(Q o \Ro) <Oﬂ0 p” ( )HL2(Qu

where similarly as before we have used the discrete Holder inequality. (See e.g. (4.86), (5.17).
We omit the details.) It remains to analyze the behavior on Ry. Observe that Theorem 5.1 is
not applicable in the squares contained in Rq since property (5.1) might not hold. However,
we may argue similarly as in Step IV of the previous proof. By (5.29)(i) and the fact that
|Ro| < 0~ H'(J,)t; we find ||Vul[7, (Ro) S g_p||e(u)||§2(Q%). Since u = v’ on Ry = P, we

get ||Vv'||Lp(QMO) < Cpud?|le(u )||L2(Q and therefore have re-derived (5.28). To conclude the

proof of (2.3), it now remains to apply Theorem 2.10 on v’ as in the previous proof. (]

Remark 5.3. The proof of Theorem 5.1 and Theorem 5.2, in particular (5.23), show that
applying Theorem 2.10 with p = H!(J,,) instead of p = H*(J,) + H'(0Q,,) yields a partition
(Pj); and a function v such that (2.3)(ii) still holds and (2.1), (2.3)(i) are replaced by

ZilHl(a*Pj\Quo) SCH (W), vlli=(@uy) < CH ()™ e(w)llz2(o)-

5.2. Density arguments. This section is devoted to the proof of the general version of The-
orem 2.1 and to the proof of Theorem 2.5. The strategy is to approximate a given function
u € GSBD?(Q) by a sequence (), C W(Q2). (Recall the definition before Theorem 4.1.) We
then apply Theorem 5.2 on (u,), and show that the desired properties can be recovered for
the limiting function u. We first present a variant of Theorem 3.11 which yields an approxima-
tion result for every G.SBD? function at the expense of a nonoptimal estimate for the surface
energy. The reader only interested in the main result for functions in (G)SBD?*(Q) N L?*()
may skip the following lemma and corollary and may replace Corollary 5.5 by Theorem 3.11
in the proof of Theorem 2.1 below.

Lemma 5.4. Let Q C R? open, bounded. Let u € GSBD?(Q) and Q' CC Q with Lipschitz
boundary. Then there exists a sequence (uy)ry C W(Q') such that for a universal constant ¢ > 1
one has

(1) up = u a.e. inQ ask — oo, (5.35)
(@) Nle(ur)ll2y < elle(w)llzzi), HH(Ju) S HT (Juy) < HTH (W), k€N

Proof. We follow closely the proofs in [11, Theorem 1]), [35, Theorem 3.5] and only indicate
the necessary changes. By [35, Lemma 2.2] one can find a basis ey, ..., e; of R? such that

HI Y {z e Ty : [u)(x) - e=0}) =0
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foralle € D :={e;,1<i<d,e;+e;,1 <i<j<d}. Forh>0small and each y € [0,1)¢ we
introduce the discretized function of u defined by

ul(€) = u(hy + &), €echZin(Q—hy).
Moreover, letting A () = [, max{(1 — |z;]),0} we define the continuous interpolation
Y(p) = y z—(E+hy)
@) = D O ().

Note that w) € W*°(Q') and for h small enough w} is indeed well defined for all z € ' since
Q' cC Q. We now show that w} — u in measure on Q' as h — 0 for a.e. y € [0,1)¢ which is
equivalent to

[y lent = llscan 0 (5.30
Y )

where ¢;(s) = min{s, %} for s > 0 and ¢t > 0. Using the subadditivity of (1, a change of
variables and the fact that ¢ cj,74n0 A(‘”T*& — y) =1forallz €, yel0,1)%we deduce

[ ] o) - @l
B /ye[o,l)d w /Q Al 2 cerzna A= " = ) (u(2) = ulhy + )| ) do
= /ye[o,l)d dy /Q D ecnzing © (la(= ‘- y)(u(@) = ulhy +€)| ) dv
< eenzonn /mhg_[oyl)d /Q o1 (|10 () () — u(w — h2))]) do dz

- /(—1,1)d / P1(1A(2)(u(@) — ulz — ha))]) do dz.

In the last step we used that the sets % —[0,1)? are pairwise disjoint for ¢ € hZ? N . Since

/ o1 (10(2) () — u( — h2))) do = / A2 (lulz) — ule — hz))) dz — 0
Q Q/

for h — 0 and is uniformly bounded by [€'| for all z € (—1,1)%, we obtain (5.36) by dominated
convergence. We now follow closely the proof in [35]. For a specific choice of y € [0,1)¢ and a
set of ‘bad cubes’ (see (3.13)-(3.15) in [35] for details)

Qn C{Qe =€+ hy+[0,h): € € hzt} (5.37)

with #Q;, < Ch~(@=1) one defines the function u;, = waQ/\UQEQh g- Clearly, up, € W(SY') as
the jump set is given by the boundary of the cubes Q. (Strictly spéaking Ju,, is only contained
in the boundary of the cubes. However, the desired property may always be achieved by an
infinitesimal perturbation of uy, see [11, Remark 5.3]). In view of (5.36) and [Ugcg, @ < Ch
we get, possibly passing to a not relabeled subsequence, u, — u a.e. on €’ which gives (5.35)(i).

Following the lines of [35], for a suitable choice of y € [0,1)? we get [le(un)||r2@) <
clle(u)||p2) and HYY(Jy,) < cH1(J,) for a universal constant ¢ > 1 after passage to
a not relabeled subsequence. In fact, in the estimates for the elastic energy, which are based
on a slicing technique, the assumption u € L%(f2) is not needed. (This assumption was only
needed to define an extension of w, which is not necessary in our setting.) To conclude the
proof of (5.35)(ii) we remark that the inequality H?1(J,) < H?1(J,,) has not been stated
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explicitly in [35], but can always be achieved by introducing arbitrary additional ‘bad squares’
in (5.37). O

The proof of the following corollary is now straightforward.

Corollary 5.5. Let Q C R? open, bounded with Lipschitz boundary and let Q C R? be a cube
with Q CC Q. Let u € GSBD?(Q). Then there exists a sequence (ug)r, C W(Q) such that for
a universal constant ¢ > 1 one has

(1) up — u a.e. inQ ask — oo,
(1) [le(ur)llzz(@) < clle(w)lz2(a)s (5.38)
(i) HIH () + HITH(O9Q) S HTH () < HITH (W) + cHITH(09).

Proof. Choose a sequence of Lipschitz sets €, CcC Q with H?~1(9Q) < HI71(09Q,) <
cHAH(09) and |2\ Q,| < L for all n € N such that 0%, consists of a finite number of closed
(d — 1)-simplices. For each n € N we apply Lemma 5.4 on ,, CC Q2 and obtain sequences
(v/")1 € W(S2,) converging in measure to u on €, such that [le(v]")|12(q,) and H!(Jyp)
are uniformly controlled by c[le(u)||12(q) and ¢H"!(J,), respectively. Define the extensions
8" = v'xa, € W(Q). Possibly replacing 9" by o7 + ¢} for a suitable ¢ € R?, [t] < I, we
obtain (not relabeled) sequences still converging to u on €, such that H41(0Q, \ Jgn) =0
and thus

HE (L) + HITH09Q) < HTH (Jop) < cHTN (W) 4+ cHTTH(09).

Consequently, by a standard diagonal sequence argument taking into account that convergence
in measure is metrizable (take (f,g) — [, min{|f — g|,1}) we get a sequence (wy)r C W(Q)
satisfying (5.38). O
We are now in the position to give the proof of Theorem 2.1.
Proof of Theorem 2.1. Let p € (1,2) and let u € GSBD?(2) be given. Without restriction
we assume that €2 is connected as otherwise the following arguments are applied on each
connected component of Q. Choose a square Q,, DD Q with H'(9Q,,) < ¢H'(99) for a
universal constant ¢ > 0.
By Corollary 5.5 we find a sequence (u)r C W(Q,,) satisfying (5.38). (The reader only
interested in the case (G)SBD?(Q) N L*(Q) can instead apply Theorem 3.11 and Remark
3.12.) We apply Theorem 5.2 on each u; and obtain a sequence of (ordered) Caccioppoli

partitions (Pf)j of @, and corresponding infinitesimal rigid motions (a?)- = (ayn 4v); such
373
that vg 1= up — Y02, a?xpf € SBVP(Qu,) N L>®(Q,,) satisfies by (2.1) and (2.3)

() D HNO"PY) < el () + HH0Qu,)) < e(H (Ju) +H' (00),
(i6) 190k 2o(@y) < Clle(un)l12(@y) < Cle(®)lz2a); (5:30)
(i11) [[0rll2(@y) < COL (i) ™ ()l 22(@,) < COH () + HOD) (w2 (0.

Possibly passing to a (not relabeled) refinement of the partition (consisting of the sets (Pf N
Q); U(Pf\ Q);) we may assume that each component PJ satisfies P C Q or Pf N Q = and
(5.39)(i) still holds. Therefore, Theorem 3.9 implies the existence of a Caccioppoli partition
(Pj)32, of © and a (not relabeled) subsequence such that Xpr = Xp; In LY(Q2), when k — oo,
for all j € N and such that, passing to the limit in (5.39)(i) via the lower semicontinuity of the
perimeter

T N1 07 P;) < (MM () + HHORQ)).

Jj=1
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This gives (2.1). Applying Ambrosio’s compactness theorem (Theorem 3.8) on the sequence
(vg)r we find v € SBVP(Q,,) N L>®(Q,,) such that vy — v a.e. and Vv, — Vv weakly in
LP(Q,,) up to a not relabeled subsequence. In particular, we have considering the restriction
of v to Q

vl () < CHN(Ju) +HHOQ) ey, IVUllr) < Clle(u)llzz).  (5.40)

Since (P;), is a partition of €, it now suffices to show the existence of infinitesimal rigid motions
(aj)j = (aAj,bj )j such that

(u—v)xp, = ajxp (5.41)
a.e. in P; for all j € N. Indeed, (2.3) then is immediate by (5.40). Clearly, if | P;| = 0 it suffices
to set a; = 0. If instead |P;| > 0, then it exists § > 0 independently of k such that [PJ| > 4.
As UkXpr = UXP; A-C. and UkXpE — UXP; AL, the sequence

k — —
ajXpr = (uk Uk)XP]!c

converges in measure to (u — v)y p;- Therefore, it exists a positive nondecreasing continuous
function ¢ with lim,_, 1(s) = 400 such that supy>; [ps ¢¥(|a}]) dz < 1 (see e.g. [32, Remark
=0

2.2]). By Lemma 3.4 we infer that (a})x are bounded in W">°(Q) for a constant independent
of k. Consequently, we find an infinitesimal rigid motion a; such that a? XpF = QjXF in LY().

By the convergence of a?xpk to (u — v)xp;, this implies (5.41) and concludes the proof. [
J

Now with Theorem 2.1 at hand the proof of our density result Theorem 2.5 is straightforward.
Proof of Theorem 2.5. Let u € GSBD?*(Q). By Theorem 2.1 applied for some p € [1,2) we
obtain a Caccioppoli partition (P;); of Q and corresponding infinitesimal rigid motions (a;);
such that v 1= u — 3, a;xp, € SBVP(Q2) N L>(€2). As motivated in (2.5) we consider the
sequence

Vp = U — ZM a;xp, € SBVP(Q) N L>(Q)

and observe that v, — u in measure on Q, e(vy) = e(uy) for all k € N and H!(J, AJ,) — 0
when k — oco. Using Theorem 3.11 each function v, can be approximated in L?(Q) by a
sequence with the properties stated in Theorem 3.11 such that (3.6) holds. Now the assertion
follows from a diagonal sequence argument. O

6. PROOF OF FURTHER RESULTS

6.1. Piecewise Poincaré inequality. We start with the proof of the piecewise Poincaré
inequality which is essentially based on the coarea formula for BV functions and can be derived
completely independently from the results discussed in the previous sections.

Proof of Theorem 2.3. Without restriction we assume || Vul[1(qy > 0 as otherwise u is piecewise
constant (see [4, Theorem 4.23], [13]) and there is nothing to show. We start with the case
m =1 and u € SBV(Q;R). Following ideas in [8, 26] we can use the coarea formula in BV
(see [4, Theorem 3.40]) to write

IVl o) = [Dul(Q\ J,) = /_Oo HEL((Q\ J,) N O*{u > t}) dt.

Consequently, with M := p~!|Vul|11(q) we find ¢; € (iM, (i + 1)M] for all i € Z such that

(i+1)M

HIH((Q\ Ju) N0 {u > t;}) < % HITL((Q\ J,) N0 {u > t}) dt. (6.1)
iM
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Let E; = {u > t;} \ {u > t;1+1} and note that each set has finite perimeter in  since it is the
difference of two sets of finite perimeter. Now (6.1) implies

_ . 2
Ziez HITH((QN O E)\ J) < 371Vl ) =20, (6.2)

Since |2\ U,z Ei| = 0, (E;); is a Caccioppoli partition of Q. Moreover, we note that the
function v := u — >, tixg, lies in L>(Q2) and satisfies ||[v|[o(p,) < 2M. This implies (2.4).
Consider the sequence v, =3, <, (u —t;)xp, for n € N with v, € SBV(Q2;R) by [4, Theorem
3.84]. Since v, — v in BV norm and SBYV is a closed subspace of BV, we conclude v €
SBV (;R) N L*°(€2). This concludes the proof in the case m =1 and v € SBV ({; R).

If u € GSBV (4;R), we apply the analog of the coarea for GSBV functions (see [4, Theorem
4.34]) and again obtain (t;)icz, (E;)icz such that v = v — >, tixg, € L™(2) and (2.4)
holds. (Note that Vu, J, have to be understood in a weaker sense, cf. [4, Section 4.5].)
The characterization of scalar GSBV functions (see [4, Remark 4.27]) together with Vu €

LY(Q), H1(J,) < oo, yields min{max{—n,u}, n} € SBV(Q;R) for all n € N. Consequently,
similarly as before the sequence v,, = Z\z|<n( —ti)xE, lies in SBV(;R), converges to v in
BV norm and thus v € SBV(Q;R) N L=(Q).

Now let u € (GSBV(;R))™ for m > 2. We repeat the above argumentation for each
component u’, j = 1,...,m, and obtain correbpondlng (E!)icz and (#));cz such that (6.2)
holds with E7 in place ofE and v/ =l — 3. t] iXp satisfies [v7]|oe < 207 |Vl L1 (). We

introduce the Caccioppoli partition of €2, denoted by (Pj)j>1, consisting of the (nonempty)
sets in

{E,N...NE" :i1,... im € Z}.
In view of (6.2) we get that (2. 4)( ) holds for a constant also depending on the dimension m.
Fix P; = E1 N...NE" and define the corresponding translation b; € R™ by b; = (t;,,...,;,, ).
Then we conclude that v = u— > ;bixp, satisfies (2.4)(ii) for a constant dependmg on m.
Arguing as before for each component we find v € SBV (Q; R™) N L (Q; R™). O

6.2. Embedding results. We now prove the results stated in Section 2.3.

Proof of Theorem 2.7. We first prove (2.8) for u € W(Q) for a square @ C R? in dimension
two. Afterwards, we use a slicing and density argument to derive the result for domains in R<.
By Theorem 5.2 for p = 1 we find a Caccioppoli partition (P;); of @ C R? and corresponding
infinitesimal rigid motions (a;); such that v:=wu— 3 a;xp, € SBV(Q) N L>*(Q) and

[v]loc < CH'(Ju) +H' Q) Hle(w)L2(@): VllLi@) < Clle(w)lz2()
Z HYO*P;) < OHY(J,) + CHL(Q),

where C only depends on the diameter of (). To conclude the proof of (2.8) for d = 2, it now
suffices to show that

Zj [Aj11Pj] < CH (Ju) + Dllulloe + Clle(w) | L2(q) (6.4)
for C = C(Q). To this end, we use Lemma 3.5 and the isoperimetric inequality to obtain
1 *
Zj |45||1P;] < ch P12 |ajll Lo (pyy < ell|ulls + ||v||<>o)z:j7'll(a Bj). (6.5)

Then (6.4) follows from (6.3).

We now treat the case Q = (—pu, )% and u € W(Q) C SBV(Q) N L>=(Q). To prove the
assertion, we need to control ||0;u;||11(q) for each 1 < 4,5 < d. For notational convenience
we only treat the case i,j € {1,2}. The other terms follow analogously due to the symmetry
of the problem. For x € Q we write © = (21, 22,y) with y € (—p, #)?~2? and introduce the
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functions w¥ : (—p, p)? — R2, w¥(x1,22) = (u1(x),us(x)) for y € (—p, u)42. Applying the
result in d = 2 we obtain for a.e. y € (—pu, u)?2

S e o IO ey < Cle@?)| g ypegzy + Cllulloo(H () + 1),

sym

where C'= C(u). Once we have proved
/ HY Ty ) dHT2(y) < CHEL(T), (6.6)
(—p,p)4=2

we take the integral over (—pu, p)?2

Zl<i <o 10juillr(@my < C||e(u)||L2(Q;ng><n;i) + CHUHOO(Hd_l(Ju) +1).

To see (6.6), we apply slicing techniques for BV functions (see [4, Section 3.11]): for f €
SBV ((—p, p)";R™) and j = 1,...,n we define f; s : (—p, n) — R™ by f;(t) = f(s + te;) for
sell} :={s € (~p,u)" : s-e; = 0}. We obtain

, use Fubini’s theorem and Hélder’s inequality to conclude

YTp dH"(s) = / €5 - e dHP Y,

H;‘ Jy

where {; denotes a normal of the jump set J;. First, applying this estimate on wY €
SBV ((—p, )% R?) for j =1,2 and y € (—p, #)" "2 a.e. we obtain

/ #yy AH' (s) Jr/ #Juy dH' (s)= [ (|wr - er| + [€wv - €2]) dH' > H (Juw).

2 I3 h Jwy

Repeating the argument for the function w = (u1,uz) € SBV ((—u, u)% R?) for j = 1,2 we
also get

[ g 6+ [ a6 = [ (el + 6 - eal) an
m¢ g

w

< 2HYTY(T,) < 2HATL(T).

Taking the integral over (—pu, 1)~2 we derive (6.6) from the last two estimates.

It remains to consider general Lipschitz domains Q C R? and u € SBD?(Q)NL>(Q). First,
we choose a cube @ containing © and define the extension @ = uxq € SBD?*(Q) N L>=(Q).
Clearly, the choice of @ depends only on Q. Note that H4™1(Jz) < (HI1(J,) + HI™H(09Q)).
By Theorem 3.11, Remark 3.12 we find a sequence (ug)r C W(Q) with uj, — 4 in L?*(Q) and
lluklloo < |Juloo such that by the above arguments

|Dui|(Q) = [[Vurll L1 () +/ [ur]| a1 < Clle(u)l| ) + Cllulloo(HH(Ju) +1) (6.7)
Juy,

for C = C(§2), where we used |[ux]] < 2||ul|co a.e. As (ug)g is uniformly bounded in BV norm,

we deduce v € BV (Q) and that (2.8) holds by lower semicontinuity. Finally, by Alberti’s rank

one property |Du| < v/2|E°u| and the fact that u € SBD(Q) we conclude v € SBV(Q). O

Proof of Theorem 2.9. Let u € GSBD?(f2). We show that each component u;, i = 1,...,d,
satisfies (2.9) for the truncation uM = min{max{u;, —M}, M}. Herefrom we particularly
deduce u; € GBV (£;R) since in the scalar case this property is equivalent to u} € BVjo.(f)

for all M > 0 (see [4, Remark 4.27]). As in the previous proof it essentially suffices to show
1Du|(Q) < [Vui |l (@) + 2MAH T () < CM(HTH () +1) + Clle(w) L2y, (6.8)

where Q = @ is a cube, C' = C(Q) and v € W(Q) C SBV(Q). In fact, we then establish the
general case using the approximation of u given by Corollary 5.5 and repeating the argument
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in (6.7). (Note, however, that in contrast to (6.7) we cannot apply Alberti’s theorem and
therefore only obtain uM € BV(2).) Finally, in view of the slicing argument (6.6) it is enough
to treat the planar case u € W(Q) for a square Q C R?.

By Theorem 5.2 for p = 1 we get that v 1= u — > a;xp, € SBV(Q) N L>=(Q) satisfying
[v][ Lo (@) < M with M := C(H'(J,) + H'(0Q))*||e(u)| r2(q) by (2.3). Let a = > aiXP
and a; be the i-th component for i = 1,2. From [15, Theorem 2.2] we obtain a € (GSBV(Q))?,
in particular it is shown that for a universal ¢ > 0

D" |(Q) < eM Y | H' (07 Fy) < eM(H! (Ju) + H'(9Q))- (6.9)

Up to sets of negligible £2-measure we have
T i= {VuM £ 0} C {lul < M} C {Jai] < M + M}
since ||v]| (@) < M'. Therefore, we compute using (6.9) and (2.3)

IVuillLaery < Vil iy + [ Vall oy < Vil + I1IVa ™ 1o
< oM+ M"Y (H'(J,) +H(0Q)) + Clle(w) || L2(q) (6.10)
< CM(H'(Ju) +1) + Clle(u)| z2(q)-

As [[Vu | L1(@) = Vil i (ry and H' (T, \ Ju) = 0, we obtain the second inequality in (6.8).
The first inequality follows from the decomposition of the distributional derivative and the fact
that ||uM |« < M. This concludes the proof. O

We also obtain the following variant of (2.9) needed in Section 6.3.

Corollary 6.1. Let Q C R? be a cube. Then there is a constant C = C(Q) > 0 such that for
all w € W(Q) and Borel sets F C Q one has

1Du[(Q) < CM(HY'(Ju) + |F|) + C(lle(w)llz2(@) + llull 21 @\r))-
foralli=1,...,d and M > 0, where u} =: min{max{u;, —M}, M}.

Proof. Similarly as in the proof of Theorem 2.9 it suffices to show this estimate in the planar
setting d = 2 for a square Q C R? as the general case then follows by Fubini and the slicing
argument (6.6) for a constant depending on the dimension. Let ¢ = ¢(Q) > 0 to be specified
below. If H!(J,) + |F| > ¢, the result follows directly from (6.8) for a constant depending on
C.
Now let H!(.J,)+ |F| < & By Theorem 5.2 for p = 1 in the version of Remark 5.3 we obtain
an ordered Caccioppoli partition (P;); and v:=u— 3, a;xp, such that for C = C(Q) >0

IVl @) + H (Ju)llvl (@) < Clle()]l 2@ Zj HY(O* PN Q) < CH' (Ju).
The essential step is now to show
[Va ™M [ La ) < C((M + MYH (L) + ullioumy + le(w)llz@)) (6.11)

for a := 3" a;xp, and M’ := C(H'(Ju))"'lle(u)||r2(q)- Indeed, the claim then follows by
repeating the argument in (6.10) noting that {VuM # 0} C {|a;| < M +M'} since |[v]|oo < M'.
For notational convenience we set M = M + M’.

Since > j HY (9" P;NQ) < Cé, for ¢ small enough the relative isoperimetric inequality implies
|P1| > £|Q| and |P;| < C(H'(0*P; N Q))? for j > 2. Without restriction we assume that the
sets (Pj);>2 are connected (more precisely indecomposable, see [4, Example 4.18]) as otherwise
we consider the indecomposable components. By [32, Lemma 4.8] we get that the diameter
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of each P; is controlled in terms of CH'(0*P; N Q) for C = C(Q), which then also yields
HY(0*P;) < CHY(0*PjNQ) for all j > 2. Then again by [15, Theorem 2.2] (cf. also (6.9))

S IVaMlip,y < MY HY(O'P) < CMY H'(9"P;NQ) < CMH'(J,). (6.12)
jz2 Jj=2 Jj=2
By Theorem 3.13 we find an infinitesimal rigid motion @’ = aa/p and an exceptional set
F' C Q with
IVu— A'l| L) + [u = d'l| ey < Clle(u)llzg),  [F'] < C(H!(Ju))? < C2.

Consequently, for ¢ small we have |[F'U F'| < C¢ < 1|Q| and derive using Lemma 3.5 and the
triangle inequality with G := F'U F’

IVaM| L1 (py < |P1]|A1] < 2|P0\ G| A4
<2|1Q\ GI|A'| 4+ 2||[Vu — Al pr(py) + 2 Vu — A'|| Lo\ )

< CIR\ G| z[ld |1 @\@) + Clle(w)llL2(q)

< Cllu=d'llnveny + CllullLi@vr) + Clle(w)llz2(q)

< Cllullr@\r) + Clle(w)] L2 (q)-
This together with (6.12) concludes the proof of (6.11). O

We close this section with the proof of Lemma 2.8.

Proof of Lemma 2.8. Let q € [1,00). Consider the function defined in (2.7) with r, = kP and
dp = k=119 where p = ﬁ + ﬁ. (Note that the existence of pairwise disjoint balls with
this property is guaranteed by [18, Lemma 12.2] and the approximate differential of u in the

sense [4, Definition 3.70] exists a.e.) We first see that H?~1(J,) < +00 as >, ri ' < oo due
to the fact that p > —25. To see that u € L4(Q) and Vu ¢ L*(12), it suffices to show

d dj _
Zk i (redi)? < oo, Zk rid = 00.

The latter is immediate since —pd — 1 + pd = —1. To see the first property we calculate
—p(d+q) — g+ dpq = ﬁ — pd < —1, where in the last step we used p > d—il.

It remains to show that u € GSBD?(2). To this end, we consider the sequence of functions

u; =" (A~ 2))vs, () € GSBD(Q) N LI(Q)

converging to u and by the compactness theorem for GSBD (see [18, Theorem 11.3]) we see
that u € GSBD?(Q) since e(u;) = 0 a.e., sup; H(Jy,) < oo and sup; [[ul| La(o) < oc. O
6.3. A Korn-Poincaré inequality for functions with small jump set. We finally give
the proof of the Korn-Poincaré inequality for functions with small jump set.
Proof of Theorem 2.10. As in the previous sections we first treat the case u € W(Q) C SBV(Q)
with H4=1(J,) > 0 and at the end of the proof we indicate the adaptions if u € GSBD?(Q).
We may assume that H4~1(J,) < H?"1(0Q) since otherwise the theorem trivially holds with
E = Q for C = C(Q) > 0 sufficiently large. We apply the Korn-Poincaré inequality due to
Chambolle, Conti, and Francfort (see [12, Theorem 1]) which is as the assertion of Theorem
2.10 with the difference that only the volume of the exceptional set can be controlled. We find
F C Qwith |F| < C(’Hd_l(Ju))% for C = C(Q) > 0 and an infinitesimal rigid motion a such
that with ¢ = d%dl and v:=u—a

[vllLa@\ry < Clle(u)|lL2(q)- (6.13)
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We now consider a suitable truncation of v. As a preparation let n € C}(R¢;R¢) be a function
with

n(z) =z for |2| <1, |n(z)| <|z| for z € RY, n(z) =0 for |z| >2 (6.14)

and let 7;(z) = in(z/i) for i € N. Then 1, € CL(R%RY), n;(2) = 2 for |z| < i, ; = 0 on
{|z] > 2i} and ||Vn;||ec < ¢ for ¢ independent of i. We now define

__d _ 1
M = (R ()" 7@ e(u)llz2g) = (K (Ju) 2 lle(w) ] 22 ()
and observe that by (6.13)

d

{lvl > MY < 1F| + 53 [0l Loy < CHTH ()7 (6.15)

Define v = 1, /z,,(v) and note v € SBV(Q) with H*~!(J, \ J,) = 0. We apply Corollary
6.1 and then by |V, /gasllee < ¢ 105 g0llee < 4V/dM, Vnyyan = 0 on {|z] > 4y/dM} and

the chain rule in BV (see [4, Theorem 3.96])

DY@ <3 IV 11 gy + 2l K ()
< CMHTNT) + [F)) + Cle®)ll2@) + Cllvllni vy (6.16)
< CMHH (L) + Clle(u) | z2(q),
where in the last step we used (6.13) and |F| < C(H4"1(J,)7 T < CHI1(J,). (Recall
HI(T,) < HIH(DQ).) Moreover, (6.14) yields v = v on {|v] < 2v/dM}. Now arguing

similarly as in the proof of Theorem 2.3 (see Section 6.1), using the coarea formula, we can
find ¢; € (M,2M) such that G; := {—t; < v} < t;} is a set of finite perimeter and

HITHQNo*Gy) < % /_OO HTHQNo{vl > t})dt < %|Dv’\(@) (6.17)

IN

1 _ - 1
L(CMHITI (1) 4 Cletw)2()) < CH1 (),
where in the last step we used H41(J,) < C(H?"1(J,))? for a constant C' = C(Q).

We define £ = Q\ﬂ?zl G;. AsQ\G; C {|v'| > M} and {|v'| > M} C {|v| > M} by (6.14),
(6.15) yields the second part of (2.10). By (6.17) we get H4L(*EN Q) < C(H*(J,))2,
which shows the first part of (2.10). Since v' = v on {|v/| < 2v/dM} and

Q\EcC{|v|<2M, i=1,...,d} c {|v'| < 2vVdM},
we observe |[v]|p(\p) < C’(’H,dfl(Ju))’%||e(u)||L2(Q) by the definition of M. This gives
(2.11)(ii) and together with (6.13), |F| < C(’;’-ld_l(Ju))f%1 we obtain

1
lollzaovey < Iellzacvm + 1l pogrngi<avasry < Cle@llzzi) + CMIF|E < Clle(w)]|z2(q)-

which establishes (2.11)(i). Finally, @ := (v — a)xo\r = vXo\r = V'XqQ\g clearly lies in
SBVZ(Q) N L*(Q) since u € W(Q). We use (6.16) and [4, Theorem 3.84] to calculate

1Dul(Q) < [DV|(Q) + CMHT (" ENQ) < CM(H™' (Ju))? + Clle(w)] 12(q)-

which by the definition of M gives (2.12). The variant announced below Theorem 2.10 with
p € [1, 2] follows by replacing ¢ = % by ¢ = % in the above proof.

Finally, we treat the case v € GSBD?(Q) with H%~1(J,) > 0. We proceed similarly as
in the density argument in the proof of Theorem 2.1 (see Section 5.2) and refer therein for

details. Let (u?); be a sequence of rescaled versions of u defined on squares Q; DD Q with
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|Q; \ Q| — 0 for j — co. Using Lemma 5.4 we approximate (u’); with a (diagonal) sequence
(ug)r € W(Q) such that (5.35) holds with ur, — u a.e. on Q.

We then obtain infinitesimal rigid motions (ay), and exceptional sets (Ej)y such that (2.10)-
(2.12) hold for each k € N. By compactness we find a set of finite perimeter E satisfying (2.10)
such that xg, — xg in measure after extracting a not relabeled subsequence. Moreover,
applying Lemma 3.4 we find that also the infinitesimal rigid motions converge to some a and
(2.11) follows by lower semicontinuity.

The sequence uy := (ur — ar)XQ\ g, is uniformly bounded in BV norm and we therefore
deduce 4 := (u — a)xq\r € BV(Q) satisfies (2.12) by lower semicontinuity. Likewise, a
compactness result in SBD? together with the uniform bound on ||t ||« gives @ € SBD?(Q)
(see [5]). Finally, Alberti’s rank one property also yields @ € SBV(Q). O
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