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Abstract. We present a piecewise Korn inequality for generalized special functions of

bounded deformation (GSBD2) in a planar setting generalizing the classical result in elas-
ticity theory to the setting of functions with jump discontinuities. We show that for every

configuration there is a partition of the domain such that on each component of the cracked

body the distance of the function from an infinitesimal rigid motion can be controlled solely
in terms of the linear elastic strain. In particular, the result implies that GSBD2 func-

tions have bounded variation after subtraction of a piecewise infinitesimal rigid motion.

As an application we prove a density result in GSBD2. Moreover, for all d ≥ 2 we show
GSBD2(Ω) ⊂ (GBV (Ω;R))d and the embedding SBD2(Ω) ∩ L∞(Ω;Rd) ↪→ SBV (Ω;Rd)

into the space of special functions of bounded variation (SBV ). Finally, we present a Korn-
Poincaré inequality for functions with small jump sets in arbitrary space dimension.

May 6, 2016

1. Introduction

A natural framework for the investigation of damage and fracture models in a geometrically
linear setting is given by the space of special functions of bounded deformation investigated
in [3, 5]. The space SBDp(Ω) consists of all functions u ∈ L1(Ω;Rd) whose symmetrized
distributional derivative Eu := 1

2 ((Du)T + Du) is a finite Rd×dsym -valued Radon measure which

can be written as the sum of an Lp(Ω;Rd×dsym) function e(u) := 1
2 ((∇u)T + ∇u) and a part

concentrated on a rectifiable set Ju with finite Hd−1 measure. Starting with the seminal paper
[25] various variational problems for fracture mechanics in the realm of linearized elasticity have
recently been investigated in the literature (see e.g. [6, 10, 11, 24, 41]), where the common
ground of all these models is that the main energy term is essentially of the formˆ

Ω

|e(u)|2 dx+Hd−1(Ju) (1.1)

for u ∈ SBD2(Ω). These so-called Griffith functionals comprise elastic bulk contributions for
the unfractured regions of the body represented by the linear elastic strain e(u) and surface
terms that assign energy contributions on the crack paths comparable to the size of the ‘jump
set’ Ju.

For technical reasons models are often formulated in SBD2(Ω) ∩ L∞(Ω;Rd), e.g. in [5, 11,
41], since for this setting a compactness result in SBD was proved in [5, Theorem 1.1] and
hereby the existence of solutions to minimization problems related to (1.1) is guaranteed. To
overcome this restriction, the space of generalized special functions of bounded deformation,
denoted by GSBD(Ω), was introduced in [18], admitting a compactness result under weaker
assumptions and leading to the investigation of fracture models [28, 35] in a more general
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setting. (For an exact definition of GSBD, which is based on properties of one-dimensional
slices, we refer to Section 3.3.)

On the one hand, models of the form (1.1) with linearized elastic energies are in general
easier to treat than their nonlinear counterparts since in the regime of finite elasticity the
energy density of the elastic contributions is genuinely geometrically nonlinear due to frame
indifference rendering the problem highly non-convex. On the other hand, a major difficulty
of these models in contrast to nonlinear problems formulated in the space SBV of special
functions of bounded variation (see [4]) is given by the fact that one controls only the linear
elastic strain.

Indeed, as discussed in [15], it appears that various properties being well established in
SBV are only poorly understood in SBD due to the lack of control on the skew symmetric
part of the distributional derivative (Du)T − Du. Especially, to the best of our knowledge,
for the coarea formula in BV (see [4, Theorem 3.40]), being useful in various applications as
[7, 8, 19, 21, 26], no BD analog has been obtained in the literature.

Therefore, it is a natural and highly desirable issue to gain a deeper understanding of the
relation between SBD and SBV or even to show that in certain circumstances SBD functions
have bounded variation. In fact, one may expect that hereby various problems in SBD could
be solvable by a reduction to corresponding results in SBV .

Clearly, a generic function of bounded deformation does not necessarily lie in SBV as one can
already construct a function with Ju = ∅ such that e(u) ∈ L1(Ω), but∇u /∈ L1(Ω) (cf. [14, 40]).
Moreover, following the examples in [3, 18] one can define functions in GSBD2(Ω) not having
bounded variation (see Example 2.6 and Lemma 2.8 below), i.e. also the higher integrability
for the elastic strain and the finiteness of the energy (1.1) is in general not sufficient. However,
the examples involve unbounded configurations and it has therefore been conjectured that
SBD2(Ω) ∩ L∞(Ω;Rd) is a subspace of SBV (Ω;Rd).

A profound understanding of the connection between SBV and SBD functions is directly
related to the validity of a Korn-type inequality in the setting of functions exhibiting jump
discontinuities. In elasticity theory Korn’s inequality is the key estimate providing a relation
between the symmetric and the full part of the gradient (see e.g. [39]). It states that the
distance of ∇u from a skew symmetric matrix can be controlled solely in terms of the linear
elastic strain e(u). In the recently appeared contributions [16, 29] this well-know estimate has
been generalized in a planar setting to configurations in SBD with small jump set controlling
∇u away from a small exceptional set.

However, for general functions of bounded deformation Korn’s inequality in its basic form
is doomed to fail. In fact, the domain may be disconnected into various parts by the jump
set with completely different behavior on each component. In the special case that a brittle
material does not store elastic energy, i.e. e(u) = 0, Chambolle, Giacomini, and Ponsiglione
[13] showed that the body behaves piecewise rigidly, i.e. the only possibility that u is not an
affine mapping is that the body is divided into at most countably many parts each of which
subject to a different infinitesimal rigid motion.

Consequently, this observation already shows that an analogous statement of Korn’s inequal-
ity in (G)SBD has to be formulated in a considerably more complex way involving a partition
of the domain. The problem is related to the result in [31], where a quantitative piecewise
rigidity result in a geometrically nonlinear setting is established stating that in the planar case
the distance of the deformation gradient from a piecewise rigid motion can be controlled.

The main goal of the present work is the derivation of an analogous result in the geometrically
linear setting which we call a piecewise Korn inequality. We show in the planar case that for
each u ∈ GSBD2(Ω) there is an associated partition whose boundary length is controlled by
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H1(Ju) and a corresponding piecewise infinitesimal rigid motion a, being constant on each
connected component of the cracked body, such that the distance of u and ∇u from a can
be estimated in terms of ‖e(u)‖L2(Ω). This result for configurations storing elastic energy and
exhibiting cracks may be seen as a suitable combination of Korn’s inequality for elastic materials
and the qualitative result in [13].

The estimate proves to be useful to gain a deeper understanding of the relation between
SBV and SBD functions. Although, as discussed above, GSBD2 functions do not have
bounded variation in general, the piecewise Korn inequality yields that after subtraction of a
piecewise infinitesimal rigid motion the function lies in the space SBV p for all p < 2. Hereby
we particularly derive that each function in GSBD2 has bounded variation away from an at
most countable union of sets of finite perimeter with arbitrarily small Lebesgue measure.

It turns out that for the subspace of bounded functions this observation can be substantially
improved. In this case it is possible to control the piecewise infinitesimal rigid motion in terms
of ‖u‖∞ and Hd−1(Ju) and we indeed obtain the embedding

SBD2(Ω) ∩ L∞(Ω;Rd) ↪→ SBV (Ω;Rd), (1.2)

which is contrast to the piecewise Korn inequality is proved in arbitrary space dimension using
a slicing technique. Moreover, similar arguments yield that without the L∞-bound one may
derive the inclusion GSBD2(Ω) ⊂ (GBV (Ω;R))d for d ≥ 2. (See Section 3.3 below for the
definition of generalized functions of bounded variation.) In particular, from (1.2) we deduce
that in the space of bounded SBD2 functions, being a natural and widely adopted space in
the investigation of linear fracture models, the coarea formula is applicable.

Apart from the derivation of embeddings a major motivation for the derivation of the piece-
wise Korn inequality are applications to Griffith models. We show that the embedding result
and the coarea formula allow to derive a Korn-Poincaré inequality in SBD stating that for
a GSBD2 function with small jump set the distance from a single infinitesimal rigid motion
can be controlled outside a small exceptional set. This estimate, established in arbitrary space
dimension, enhances a result recently obtained by Chambolle, Conti, and Francfort [12] in the
sense that also the length of the boundary of the exceptional set can be bounded in terms of
Hd−1(Ju) and therefore compactness results in GSBD (see [18]) are applicable.

We also present an approximation result for GSBD2 functions in a planar setting improving
[35] in the sense that no L2-bound on the function is needed. Hereby we can complete the Γ-
convergence result for the linearization of Griffith energies [28] by providing recovery sequences
for every GSBD2 function. Moreover, the main statement of this paper will be a fundamental
ingredient to prove a general compactness theorem and to analyze quasistatic crack growth for
energies of the form (1.1) (see [32]).

The major difficulties in the derivation of the result come from the fact we treat a full free
discontinuity problem in the language of Ambrosio and De Giorgi [20] deriving an estimate
without any a priori assumptions on the the crack geometry. Already simplified situations, in
which the jump set decomposes the body into a finite number of sets with Lipschitz boundary,
are subtle since there are no uniform bounds on the constants in Poincaré’s and Korn’s in-
equality. In fact, in the basic case of simply connected sets, in [30] a lot of effort was needed to
derive a decomposition result into domains for which uniform bounds on the constants can be
derived. Even more challenging difficulties occur for highly irregular jump sets forming, e.g.,
infinite crack patterns on various mesoscopic scales.

At first sight the derivation of the piecewise Korn inequality appears to be easier than the
related problem [31] due to the geometrical linearity. However, whereas in [31] the statement is
established only for a suitable, arbitrarily small modification of the configuration, in the present
context the estimates hold for the original function, where this stronger result is indispensable
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to prove the announced embedding and approximation results. In particular, the modification
scheme for the deformation and jump set, which was iteratively applied in [31] on mesoscopic
scales becoming gradually larger, is not adequate in the present context and we need to use
comparably different proof techniques.

The general strategy will be to first derive an auxiliary piecewise Korn inequality, which
similarly as in [16, 29] holds up to a small exceptional set. Then the main result follows by
an iterative application of the estimate on various mesocopic scales. For the derivation of the
auxiliary statement we first identify the regions where the jump set is too large. Hereby we
can (1) construct a partition of the domain into simply connected sets and (2) use the Korn
inequality [16, 29] for functions with small jump sets to find a modification of the configuration,
which is smooth on each component of the domain. To control the shape of the components we
apply the main result of the paper [30] which allows to pass to a refined partition consisting of
John domains with uniformly controlled John constant. The auxiliary statement then follows
by using a Korn inequality for John domains (see e.g. [1]).

Let us remark that the piecewise Korn inequality is only proved in a planar setting since also
the major proof ingredients, the Korn inequality for functions with small jump sets [16, 29] and
the decomposition result [30], have only been shown in dimension two. Although the derivation
of a higher dimensional analog seems currently out of reach, the majority of the applications
in this contribution, namely the embedding (1.2) and the Korn-Poincaré inequality, hold in
arbitrary dimensions due to slicing arguments.

The paper is organized as follows. In Section 2 we present the main results including
the embedding and approximation for GSBD2 functions. In Example 2.6 we also recall a
standard construction for an SBD function not having bounded variation, which is based on
the idea to cut out small balls from the bulk part. Hereby we see that in view of the piecewise
Korn inequality examples of this type essentially represent the only possibility to define SBD2

functions not lying in SBV . Moreover, the construction shows that the embedding (1.2) is
sharp in the sense that the result is false if (1) SBV is replaced by SBV p, p > 1, and if (2)
L∞ is replaced by Lq, q <∞.

Section 3 is devoted to some preliminaries. We first recall the definition of John domains
and formulate the decomposition result established in [30]. Then we state some properties
of affine mappings being especially important for the derivation of (1.2), where we need fine
estimates how affine mappings and its derivatives can by controlled in terms of the volume and
diameter of the underlying set. Afterwards, we recall the definition of (G)SBV and (G)SBD
functions and discuss basic properties.

In Section 4 we prove a version of the piecewise Korn inequality outside a small exceptional
set. Together with the construction of a partition into simply connected sets we also provide
a covering of Whitney-type such that the jump set Ju in each element of the covering is
small. This then allows us to apply the inequality [29] in order to define a modification of the
deformation being smooth in each part of the domain. We discuss properties of the covering
and the exceptional set being crucial for the iterative application of the auxiliary result in
Section 5.1.

Section 5 then contains the proof of the piecewise Korn inequality. In Section 5.1 we first
prove the result for configurations in SBD with a regular jump set consisting of a finite number
of segments. Then in Section 5.2 we derive the general case by an approximation argument
similar to the one in [29]. Here we also prove our main approximation result.

Finally, Section 6 contains the proof of the embedding results and the Korn-Poincaré in-
equality. As an ingredient for the derivation of (1.2) we also provide a piecewise Poincaré
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inequality, which will allow to control the distance of configurations from piecewise infinites-
imal rigid motions in terms of the L∞-norm. For the latter as well as for the Korn-Poincaré
inequality the coarea formula in BV will turn out to be a key ingredient.

2. Main results

2.1. Piecewise Korn inequality. Before we formulate the main results of this article, let
us introduce some notions. We say a partition (Pj)

∞
j=1 of Ω ⊂ Rd is a Caccioppoli partition

if each Pj is a set of finite perimeter such that
∑∞
j=1Hd−1(∂∗Pj) < +∞ (see Section 3.3 for

details). Given corresponding affine mappings aj = aAj ,bj : Rd → Rd with aj(x) = Aj x+bj for

Aj ∈ Rd×dskew, bj ∈ Rd, we say aj is an infinitesimal rigid motion and the function
∑∞
j=1 ajχPj

is a piecewise infinitesimal rigid motion.
For the definition and properties of special functions of bounded variation (SBV ) and de-

formation (SBD) we refer to Section 3.3. In particular, for u ∈ SBD2(Ω) we denote by e(u)
the part of the strain Eu = 1

2 (DuT + Du) which is absolutely continuous with respect to Ld
and let Ju be the jump set. Our main goal is to show the following result.

Theorem 2.1. Let Ω ⊂ R2 open, bounded with Lipschitz boundary and p ∈ [1, 2). Then there
is a constant c = c(p) > 0 and a constant C > 0 only depending on diam(Ω) and p such that
for each u ∈ GSBD2(Ω) there is a Caccioppoli partition (Pj)

∞
j=1 of Ω with∑∞

j=1
H1(∂∗Pj) ≤ c(H1(Ju) +H1(∂Ω)) (2.1)

and corresponding infinitesimal rigid motions (aj)j = (aAj ,bj )j such that

v := u−
∑∞

j=1
ajχPj ∈ SBV p(Ω;R2) ∩ L∞(Ω;R2) (2.2)

and

(i) ‖v‖L∞(Ω) ≤ C(H1(Ju) +H1(∂Ω))−1‖e(u)‖L2(Ω),

(ii) ‖∇v‖Lp(Ω) ≤ C‖e(u)‖L2(Ω).
(2.3)

In its most general form the result holds in the generalized space GSBD2(Ω), which loosely
speaking arises from SBD2(Ω) by requiring that one-dimensional slices have bounded variation.
(We again refer to Section 3.3 for the exact definition.) The reader not interested in the
generalized space may readily replace GSBD2(Ω) by SBD2(Ω) here and in the following
(except for Lemma 2.8). The result will first be proved for configurations with a regular jump
set consisting of a finite number of segments. Only at the very end we pass to the general case
by using a density result (see Theorem 3.11, Lemma 5.4) and Ambrosio’s compactness theorem
in SBV . Consequently, the article is in large part accessible for readers without familiarity
with the properties of the above function spaces.

Remark 2.2. Let us comment the results of Theorem 2.1.

(i) An important special case is given by functions not storing linearized elastic energy,
i.e. e(u) = 0 a.e. Then (2.3) gives that u is a piecewise infinitesimal rigid motion
and thus Theorem 2.1 can be interpreted as a piecewise rigidity result. It shows that
the only way that global rigidity may fail is that the body is divided into at most
countably many parts each of which subject to a different infinitesimal rigid motion.
This result has been discussed for SBD functions in [13] and Theorem 2.1 may be seen
as a quantititive extension in the GSBD setting.
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(ii) It is a well known fact that in general ∇u and u are not summable for u ∈ GSBD2(Ω).
The result shows that one may gain control over the function and its derivative after
subtraction of a piecewise infinitesimal rigid motion. We hope that such an estimate
will be useful to reduce various problems from the (G)SBD to the SBV setting.

(iii) In contrast to [31], where a related result in a geometrically nonlinear setting is estab-
lished, in Theorem 2.1 no modification of the configuration u is necessary. This will
be crucial for the embedding results announced in Section 2.3.

(iv) In general one has
∑∞
j=1H1(∂∗Pj \Ju) > 0 even if Ju already induces a partition (P ′j)j

of Ω with Ju =
⋃
j ∂
∗P ′j ∩ Ω up to a set of negligible H1-measure. Indeed, it is well

known that in irregular domains, e.g. in domains with external cusps, Korn’s inequality
may fail (cf. [34]). Also in the case that each P ′j is a Lipschitz set,

∑∞
j=1H1(∂∗Pj\Ju) >

0 might be necessary since possibly the constants Ckorn(P ′j) involved in the W 1,p Korn
inequality tend to infinity as j →∞.

(v) Note that the constant in (2.3) depends on Ω only through its diameter and p ∈ [1, 2).
Consequently, the above result may be also interesting in the case of u ∈ H1(Ω) and
varying domains Ω.

(vi) At some points of the proof we have to pass to a slightly smaller exponent by Hölder’s
inequality and therefore we derive the result only for p < 2. In particular, we do not
know if a similar result holds in the critical case p = 2. Note, however, that for the
applications we have in mind, it is sufficient that (2.3) holds for p = 1.

The result is first shown up to a small exceptional set (see Theorem 4.1) and then Theorem
2.1 for functions with regular jump set follows from an iterative application of the estimate
in Theorem 4.1 (see Section 5.1). Finally, the general version is proved by approximation
arguments given in Section 5.2. For a more detailed outline of the proof we refer to the
beginning of Section 4 and Section 5.

In Remark 2.2(ii) we have discussed that in general GSBD functions are not summable. A
similar problem occurs in GSBV (see Section 3.3 for the exact definition). However, we get
that GSBV functions are integrable after subtraction of a piecewise constant function.

Theorem 2.3. Let Ω ⊂ Rd open, bounded with Lipschitz boundary. Let ρ > 0 and m ∈
N. Then there is a constant c = c(m) > 0 such that for each u ∈ (GSBV (Ω;R))m with
‖∇u‖L1(Ω;Rd×m) + Hd−1(Ju) < +∞ there is a Caccioppoli partition (Pj)

∞
j=1 of Ω and corre-

sponding translations (bj)
∞
j=1 ⊂ Rm such that v := u−

∑∞
j=1 bjχPj ∈ SBV (Ω;Rm)∩L∞(Ω;Rm)

and

(i)
∑∞

j=1
Hd−1((∂∗Pj ∩ Ω) \ Ju) ≤ cρ,

(ii) ‖v‖L∞(Ω;Rm) ≤ cρ−1‖∇u‖L1(Ω;Rd×m).
(2.4)

Note that for the special choice ρ = θ(Hd−1(Ju) +Hd−1(∂Ω)), θ > 0, (2.4)(ii) is similar to
(2.3)(i). In particular, in the proofs we will use Theorem 2.3 to derive (2.3)(i) once (2.3)(ii) is
established. The estimate is essentially based on the coarea formula in BV (see [4, Theorem
3.40]) and the argumentation in the proof goes back to [8, Proposition 6.2]. We remark that
in contrast to Theorem 2.1 the result is derived in arbitrary space dimension. The proof will
be given in Section 6.1.

Remark 2.4. Before we proceed with some applications of Theorem 2.1 let us comment on
the estimates (2.1) and (2.4)(i). In (2.4)(i) for the choice ρ = θ(Hd−1(Ju) +Hd−1(∂Ω)) with
θ small we obtain a fine estimate in the sense that the additional surface energy associated to
the partition may be taken arbitrarily small with respect to the original jump set, where the
constant in (2.4)(ii) blows up for θ → 0.
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In contrast to the embedding and approximation results addressed in this article, for certain
applications of the piecewise Korn inequality it is crucial to have also a refined version of
(2.1), e.g. for a jump transfer theorem in SBD or a general compactness and existence result
for Griffith energies in the realm of linearized elasticity (see [32]). The derivation of such an
estimate needs additional techniques and we refer to [32] for a deeper analysis.

2.2. Approximation of GSBD functions. For each u ∈ GSBD2(Ω) we can consider the
sequence

vn = u−
∑

j≥n
ajχPj ∈ SBV p(Ω;R2) ∩ L∞(Ω;R2) (2.5)

with (Pj)j and (aj)j as in Theorem 2.1. Hereby we can approximate GSBD2 functions by
bounded functions of bounded variation which coincide with the original function up to a set
of arbitrarily small measure. In particular, combining this observation with the density result
proved in [35] (see Theorem 3.11) we obtain the following improved approximation result for
GSBD2 functions in a planar setting (see Section 5.2 for the proof).

Theorem 2.5. Let Ω ⊂ R2 open, bounded with Lipschitz boundary. Let u ∈ GSBD2(Ω).
Then there exists a sequence (uk)k ⊂ SBV 2(Ω;R2) such that each Juk is the union of a finite
number of closed connected pieces of C1-curves, each uk belongs to W 1,∞(Ω \ Juk ;R2) and the
following properties hold:

(i) uk → u in measure on Ω,

(ii) ‖e(uk)− e(u)‖L2(Ω) → 0,

(iii) H1(Juk4Ju)→ 0.

(2.6)

Here the symbol 4 denotes the symmetric difference of two sets. Observe that in [11, 35]
the additional assumption u ∈ L2(Ω) was needed which can be circumvented in the planar
setting by (1) first approximating u by (vn)n ⊂ GSBD2(Ω)∩L2(Ω) as given in (2.5) and then
(2) applying the original density result [11, 35]. In fact, in various applications in fracture
mechanics approximation results are essential, e.g. for the construction of recovery sequences.
Consequently, to establish complete Γ-limits it is indispensable to have a density result for
all admissible functions. In particular, Theorem 2.5 allows us to complete the picture in the
linearization result for Griffith energies presented in [28].

Recall that we establish Theorem 2.1 first for functions with a regular jump set and the
general case then follows by approximation of any u ∈ GSBD2(Ω). Although Theorem 2.5
provides such a density result, in the proof we have to argue differently since we already use the
general version of Theorem 2.1 to prove Theorem 2.5. The strategy in the proof of Theorem 2.1
is to provide an adaption of the arguments in [11, 35] and to approximate each u ∈ GSBD2(Ω)
(without L2(Ω) assumption) by functions (uk)k with regular jump set such that (2.6)(i) holds
and ‖e(uk)‖L2(Ω) ≤ c‖e(u)‖L2(Ω), H1(Juk) ≤ cH1(Ju) (see Lemma 5.4), which is sufficient for
(2.1) and (2.3).

2.3. Relation between SBV and SBD: Embedding results. The standard examples for
functions of bounded deformation not having bounded variation are given by configurations
where small balls are cut out from the bulk part with an appropriate choice of the functions
on these specific sets (see e.g. [3, 15, 18]). We include the construction here for convenience of
the reader.

Example 2.6. Let Bk = Brk(xk) ⊂ B1(0) ⊂ Rd be pairwise disjoint balls for k ∈ N with xk
converging to some limiting point x∞. For k ∈ N let Ak = (akij) ∈ Rd×dskew with ak12 = −ak21 =
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dk ∈ R and akij = 0 otherwise. Define the piecewise infinitesimal rigid motion

u(x) =
∑∞

k=1
(Ak (x− xk))χBk(x). (2.7)

With the choice rk = ( 1
k(log(k))2 )

1
d−1 and dk = r−1

k we get u ∈ L∞(B1(0);Rd) and u ∈
SBV (B1(0);Rd) ∩ SBD(B1(0)) with e(u) = 0 a.e. and Hd−1(Ju) < +∞. However, ∇u /∈
Lp(B1(0);Rd×d) for p > 1.

In view of Theorem 2.1 we see that the above construction is essentially the only way to
define (G)SBD functions with e(u) ∈ L2(Ω) and H1(Ju) < +∞ not having bounded variation.
In particular, by considering uχ⋃n

j=1 Pj
, n ∈ N, with (Pj)j as in (2.1), we observe that each

u ∈ GSBD2(Ω) has bounded variation away from an at most countable union of sets of finite
perimeter with arbitrarily small Lebesgue measure.

Observe that ∇u ∈ L1(B1(0);Rd×d) for the function given in Example 2.6. An L∞ bound
indeed implies that functions are of bounded variation as the following embedding result shows.

Theorem 2.7. Let Ω ⊂ Rd open, bounded with Lipschitz boundary. Then SBD2(Ω) ∩
L∞(Ω;Rd) ↪→ SBV (Ω;Rd). More precisely, there is a constant C > 0 only depending on
Ω such that

‖∇u‖L1(Ω) ≤ C‖e(u)‖L2(Ω) + C‖u‖L∞(Ω)(Hd−1(Ju) + 1). (2.8)

Note that in contrast to Theorem 2.1 our main embedding result as well as the following
theorems are valid in arbitrary space dimension, where we apply a slicing technique to extend
the estimate from the planar to the d-dimensional setting. As a direct consequence we get
that one may apply the coarea formula in BV for functions in SBD2(Ω) ∩ L∞(Ω;Rd). This
estimate can be potentially applied in many situations and will hopefully reveal useful.

Note that the property u ∈ SBV (Ω;Rd) does not follow directly from (2.8). However,
by first deriving Theorem 2.7 for functions with regular jump set and then using a density
argument (see Theorem 3.11), we can show SBD2(Ω) ∩ L∞(Ω;Rd) ⊂ BV (Ω;Rd). The claim

then follows from Alberti’s rank one property in BV (see [2]) implying |Dcu|(Ω) ≤
√

2|Ecu|(Ω).
The first term on the right hand side in (2.8) controls the distance of u from a piecewise

infinitesimal rigid motion (aj)j = (aAj ,bj )j (cf. (2.3)(ii)) and the last term allows to estimate
the skew symmetric matrices (Aj)j . Let us note that the above inequality is optimal in following
sense: by Example 2.6 the L1-norm on the left cannot be replaced by any other Lp-norm.
Moreover, the bound Hd−1(Ju) < +∞ is essential by [15, Theorem 3.1], where a function
in u ∈ SBD(Ω) ∩ L∞(Ω;Rd) is constructed with e(u) = 0 a.e., Hd−1(Ju) = ∞ and ∇u /∈
L1(Ω;Rd×d). Finally, the following lemma based on the construction given in Example 2.6
shows that the L∞-norm cannot be replaced by any other Lq-norm.

Lemma 2.8. Let Ω ⊂ Rd open, bounded. Then for all 1 ≤ q < ∞ we find some u ∈
GSBD2(Ω) ∩ Lq(Ω;Rd) such that the approximate differential ∇u exists a.e. and ∇u /∈
L1(Ω;Rd×d).

Consequently, GSBD2(Ω)∩Lq(Ω;Rd) 6⊂ BV (Ω;Rd) for all q <∞. In Theorem 2.1 we have
seen that v = u − a ∈ SBV p(Ω;R2) ⊂ GBV (Ω;R2) for a piecewise infinitesimal rigid motion
a :=

∑∞
j=1 ajχPj . Moreover, one has that a ∈ GBV (Ω;R2) (see [15, Theorem 2.2]). Of course,

herefrom we cannot directly deduce that u = v + a ∈ GBV (Ω;R2) since GBV (Ω;R2) is not a
vector space. However, the property holds as the following inclusion shows.

Theorem 2.9. Let Ω ⊂ Rd open, bounded with Lipschitz boundary. Then GSBD2(Ω) ⊂
(GBV (Ω;R))d ⊂ GBV (Ω;Rd). More precisely, there is a constant C > 0 only depending on Ω
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such that for all i = 1, . . . , d and all M > 0

|DuMi |(Ω) ≤ CM(Hd−1(Ju) + 1) + C‖e(u)‖L2(Ω). (2.9)

Here for u ∈ GSBD2(Ω) the functions u1, . . . , ud denote the components of u and uMi :=
min{max{ui,−M},M} for M > 0. Theorem 2.9 shows that the coarea formula in GBV (see
[4, Theorem 4.34]) is applicable in GSBD2(Ω). The results announced in this section will be
proved in Section 6.2.

2.4. A Korn-Poincaré inequality for functions with small jump set. As an application
of our embedding results and the coarea formula we present a Korn-Poincaré inequality for
functions with small jump set.

Theorem 2.10. Let Q ⊂ Rd be a cube. Then there is a constant C > 0 only depending on
diam(Q) and d ∈ N such that for all u ∈ GSBD2(Q) there is a set of finite perimeter E ⊂ Q
with

Hd−1(∂∗E ∩Q) ≤ C(Hd−1(Ju))
1
2 , |E| ≤ C(Hd−1(Ju))

d
d−1 (2.10)

and an infinitesimal rigid motion a = aA,b such that

(i) ‖u− a‖
L

2d
d−1 (Q\E)

≤ C‖e(u)‖L2(Q),

(ii) ‖u− a‖L∞(Q\E) ≤ C(Hd−1(Ju))−
1
2 ‖e(u)‖L2(Q).

(2.11)

Moreover, if Hd−1(Ju) > 0, ū := (u− a)χQ\E ∈ SBV (Q;Rd) ∩ SBD2(Q) ∩ L∞(Q;Rd) and

|Dū|(Q) ≤ C‖e(u)‖L2(Q). (2.12)

Note that the exceptional set E is associated to the parts of Q being detached from the bulk
part of Q by Ju. A variant of the proof shows that (Hd−1(Ju))

1
2 in (2.10), (2.11)(ii) can be

replaced by (Hd−1(Ju))
p
2 if in (2.11)(i) we replace 2d

d−1 by 2d
p(d−1) for 1 ≤ p ≤ 2.

This result improves an estimate recently obtained by Chambolle, Conti, and Francfort [12]
in the sense that Hd−1(∂∗E) can be controlled and therefore compactness results in GSBD
(see [18]) are applicable. In addition, we provide a Korn-type estimate in (2.12). Similar results
in a planar setting with an even finer estimate for the perimeter of E have been investigated
in [27] and [16, 29].

The statement essentially follows by combining (1) the result in [12] and (2) applying the
coarea formula in BV together with (2.9). In particular, the argument uses a truncation at a
specific level set (cf. (2.11)(ii)) which is reminiscent of the Poincaré inequality in SBV due to
De Giorgi, Carriero, Leaci (see [21]). The proof will be given in Section 6.3.

3. Preparations

3.1. John domains. A key step in our analysis will be the construction of a partition and
a corresponding modification of the deformation being in W 1,p on each component of the
partition. Then in the application of Poincaré’s and Korn’s inequality on each component it
is essential to provide uniform bounds for the constants involved in the inequalities. To this
end, we introduce the notion of John domains.

Definition 3.1. Let Ω ⊂ Rd be a bounded domain and let x0 ∈ Ω. We say Ω is a %-John
domain with respect to the John center x0 and with the constant % > 0 if for all x ∈ Ω there
exists a rectifiable curve γ : [0, lγ ] → Ω, parametrized by arc length, such that γ(0) = x,
γ(lγ) = x0 and t ≤ %dist(γ(t), ∂Ω) for all t ∈ [0, lγ ].
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Domains of this form were introduced by John [36] to study problems in elasticity theory
and the term was first used by Martio and Sarvas [37]. Roughly speaking, a domain is a
John domain if it is possible to connect two arbitrary points without getting too close to the
boundary of the set. This class is much larger than the class of Lipschitz domains and contains
sets which may possess fractal boundaries or internal cusps (external cusps are excluded), e.g.
the interior of Koch’s snow flake is a John domain. Although in the following we will only
consider domains with Lipschitz boundary, it is convenient to introduce the much more general
notion of John domains as the constants in Poincaré’s and Korn’s inequality only depend on
the John constant. More precisely, we have the following statement (see e.g. [1, 9, 22]).

Theorem 3.2. Let Ω ⊂ Rd be a c-John domain. Let p ∈ (1,∞) and q ∈ (1, d). Then there is

a constant C = C(c, p, q) > 0 such that for all u ∈W 1,p(Ω) there is some A ∈ Rd×dskew such that

‖∇u−A‖Lp(Ω) ≤ C‖e(u)‖Lp(Ω).

Moreover, for all u ∈W 1,q(Ω) there is some b ∈ Rd such that

‖u− b‖Lq∗ (Ω) ≤ C‖∇u‖Lq(Ω),

where q∗ = dq
d−q . The constant is invariant under rescaling of the domain.

We recall a result about the decomposition of sets into John domains.

Theorem 3.3. There is a universal constant c > 0 such that for all simply connected, bounded
domains Ω ⊂ R2 with Lipschitz boundary and all ε > 0 there is a partition Ω = Ω0 ∪ . . . ∪ ΩN
(up to a set of negligible measure) such that |Ω0| ≤ ε and the sets Ω1, . . . ,ΩN are c-John
domains with Lipschitz boundary such that∑N

j=0
H1(∂Ωj) ≤ cH1(∂Ω). (3.1)

Observe that in general it is necessary to introduce an (arbitrarily) small exceptional set Ω0

as can be seen, e.g., by considering polygons with very acute interior angles. The statement
is given explicitly in [30, Theorem 6.4], but can also easily be derived from the main result
of that paper ([30, Theorem 1.1]) since Lipschitz sets can be approximated from within by
smooth sets.

The essential step in the proof of Theorem 3.3 is to consider polygonal domains. One
observes that convex polygons can be (iteratively) separated into convex polygons such that
(3.1) holds and each set contains a ball whose size is comparable to the diameter of the set,
whereby Definition 3.1 (for fixed % > 0) can be confirmed. For general, nonconvex polygons
the property in Definition 3.1 may be violated if a concave vertex is ‘too close to the opposite
part of the boundary’. It is shown that in this case the set may be (iteratively) separated into
smaller polygons with less concave vertices, for which Definition 3.1 holds. We refer to [30] for
more details.

3.2. Properties of infinitesimal rigid motions. In this section we collect some properties
of infinitesimal rigid motions. As before a = aA,b stands for the mapping a(x) = Ax+ b with

A ∈ R2×2
skew and b ∈ R2. The following lemma is shown in [32, Lemma 2.3].

Lemma 3.4. Let M > 0, δ > 0 F ⊂ R2 bounded, measurable and ψ : R+ → R+ a con-
tinuous nondecreasing function satisfying lims→∞ ψ(s) = +∞. Then there is a constant
C = C(M, δ, ψ, F ) such that for every Borel set E ⊂ F with |E| ≥ δ and every infinitesi-
mal rigid motion aA,b one hasˆ

E

ψ(|Ax+ b|) dx ≤M ⇒ |A|+ |b| ≤ C. (3.2)
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In the following we denote by d(E) the diameter of a set E ⊂ R2.

Lemma 3.5. Let q ∈ [1,∞). There is a constant c = c(q) > 0 such that for every Borel set
E ⊂ R2 and every infinitesimal rigid motion a = aA,b one has for all x ∈ E

(i) |A| ≤ c|E|−
1
2−

1
q ‖a‖Lq(E), |A| ≤ c|E|− 1

2 ‖a‖L∞(E),

(ii) |Ax+ b| ≤ c|E|−
1
2−

1
q d(E)‖a‖Lq(E).

(3.3)

Proof. Without restriction assume that A 6= 0 as otherwise the statement is clear. The

assumption A ∈ R2×2
skew implies that A is invertible and that |Ay| =

√
2

2 |A||y| for all y ∈ R2.

Setting z := −A−1b we find for all x ∈ E
1√
2
|A||x− z| = |a(x)| ≤ ‖a‖L∞(E). (3.4)

Consequently, as |E \ Bρ(z)| ≥ 1
2 |E| with ρ = ( |E|2π )

1
2 , we find |E|ρq|A|q ≤ c‖a‖qLq(E) for

q < ∞, which implies the first part of (3.3)(i). In the case q = ∞ we immediately get

|A| ≤ c|E|− 1
2 ‖a‖L∞(E) from (3.4). As there is some x0 ∈ E with |Ax0 + b| ≤ |E|−

1
q ‖a‖Lq(E),

we conclude for all x ∈ E

|Ax+ b| ≤ |Ax0 + b|+ 1√
2
|A||x− x0| ≤ |E|−

1
q ‖a‖Lq(E) + cd(E)ρ−1|E|−

1
q ‖a‖Lq(E).

This concludes the proof since |E| 12 ≤ d(E) by the isodiametric inequality. �

Remark 3.6. Analogous estimates hold on lines. If, e.g., Γ ⊂ R× {0} with l := H1(Γ) <∞,
then for a constant c = c(q) > 0 we have for all infinitesimal rigid motions a = aA,b

lq|A|q ≤ cl−1

ˆ
Γ

|a(x)|q dH1(x).

With Lemma 3.5 at hand we now see that the Lq-norm on larger sets can be controlled.

Lemma 3.7. Let q ∈ [1,∞). Then there is a constant c = c(q) > 0 such that for all y ∈ R2,
R > 0, Borel sets E ⊂ QyR := y + (−R,R)2 and a = aA,b one has

‖a‖Lq(QyR) ≤ c(R2|E|−1)
1
2 + 1

q ‖a‖Lq(E).

Proof. Define F = QyR ⊃ E. We repeat the last estimate of the previous proof for each x ∈ F
and obtain with ρ = ( |E|2π )

1
2

|Ax+ b| ≤ |E|−
1
q ‖a‖Lq(E) + cd(F )ρ−1|E|−

1
q ‖a‖Lq(E).

This implies with |F | = 4R2 and d(F ) = 2
√

2R

‖a‖qLq(F ) ≤ cR
2|E|−1‖a‖qLq(E) + cR2+q|E|−

q
2−1‖a‖qLq(E).

In view of Rq|E|−
q
2 ≥ 4−

q
2 this concludes the proof. �

3.3. (G)SBV and (G)SBD functions. In this section we collect the definitions and funda-
mental properties of the function spaces needed in this article. In the following let Ω ⊂ Rd be
an open, bounded set.

SBV- and GSBV-functions. The spaceBV (Ω;Rd) consists of the functions u ∈ L1(Ω;Rd)
such that the distributional gradient Du is a Rd×d-valued finite Radon measure on Ω. BV -
functions have an approximate differential∇u(x) at Ld-a.e. x ∈ Ω ([4, Theorem 3.83]) and their
jump set Ju is Hd−1-rectifiable in the sense of [4, Definition 2.57]. The space SBV (Ω;Rd),
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often abbreviated hereafter as SBV (Ω), of special functions of bounded variation consists of
those u ∈ BV (Ω;Rd) such that

Du = ∇uLd + [u]⊗ νuHd−1bJu,

where νu is a normal of Ju and [u] = u+ − u− (the ‘crack opening’) with u± being the one-
sided limits of u at Ju. If in addition ∇u ∈ Lp(Ω) for 1 < p < ∞ and Hd−1(Ju) < +∞, we
write u ∈ SBV p(Ω). Moreover, (S)BVloc(Ω) denotes the space of functions which belong to
(S)BV (Ω′) for every open set Ω′ ⊂⊂ Ω.

We define the space GBV (Ω;Rd) of generalized functions of bounded variation consist-
ing of all Ld-measurable functions u : Ω → Rd such that for every φ ∈ C1(Rd;Rd) with
the support of ∇φ compact, the composition φ ◦ u belongs to BVloc(Ω) (see [20]). Like-
wise, we say u ∈ GSBV (Ω;Rd) if φ ◦ u belongs to SBVloc(Ω) and u ∈ GSBV p(Ω;Rd) for
u ∈ GSBV (Ω;Rd) if ∇u ∈ Lp(Ω) and Hd−1(Ju) < +∞. As usual we write for shorthand
GSBV (Ω) := GSBV (Ω;R). See [4] for the basic properties of these function spaces.

We now state a version of Ambrosio’s compactness theorem in GSBV adapted for our
purposes (see e.g. [4, 19]):

Theorem 3.8. Let 1 < p <∞. Let (uk)k be a sequence in GSBV p(Ω;Rd) with

‖∇uk‖Lp(Ω) +Hd−1(Juk) + ‖uk‖L1(Ω) ≤ C

for some C > 0 not depending on k. Then there is a subsequence (not relabeled) and a function
u ∈ GSBV p(Ω;Rd) such that uk → u a.e., ∇uk ⇀ ∇u weakly in Lp(Ω). If in addition
‖uk‖∞ ≤ C for all k ∈ N, we find u ∈ SBV p(Ω) ∩ L∞(Ω).

Caccioppoli-partitions. We say a partition P = (Pj)
∞
j=1 of Ω is a Caccioppoli partition

of Ω if
∑∞
j=1Hd−1(∂∗Pj) < +∞, where ∂∗Pj denotes the essential boundary of Pj (see [4,

Definition 3.60]). We say a partition is ordered if |Pi| ≥ |Pj | for i ≤ j. In the whole paper we
will always tacitly assume that partitions are ordered. We now state a compactness result for
ordered Caccioppoli partitions (see [4, Theorem 4.19, Remark 4.20]).

Theorem 3.9. Let Ω ⊂ Rd open, bounded with Lipschitz boundary. Let Pi = (Pj,i)
∞
j=1, i ∈ N,

be a sequence of ordered Caccioppoli partitions of Ω such that supi
∑∞
j=1Hd−1(∂∗Pj,i ∩ Ω) <

+∞. Then there exists a Caccioppoli partition P = (Pj)
∞
j=1 and a not relabeled subsequence

such that χPj,i → χPj in measure for all j ∈ N as i→∞.

SBD- and GSBD-functions. We say that a function u ∈ L1(Ω;Rd) is in BD(Ω;Rd) if
the symmetrized distributional derivative Eu := 1

2 ((Du)T +Du) is a finite Rd×dsym -valued Radon
measure. Likewise, we say u is a special function of bounded deformation if Eu has vanishing
Cantor part Ecu. Then Eu can be decomposed as

Eu = e(u)Ld + [u]� νuHd−1|Ju , (3.5)

where e(u) is the absolutely continuous part of Eu with respect to the Lebesgue measure Ld,
[u], νu, Ju as before and � denotes the symmetrized tensor product. If in addition e(u) ∈ L2(Ω)
and Hd−1(Ju) < +∞, we write u ∈ SBD2(Ω). For basic properties of this function space we
refer to [3, 5].

We now introduce the space of generalized functions of bounded variation. Observe that it
is not possible to follow the approach in the definition of GSBV since for u ∈ SBD(Ω) the
composite φ ◦u typically does not lie in SBD(Ω). In [18] another approach is suggested which



A PIECEWISE KORN INEQUALITY IN SBD 13

is based on certain properties of one-dimensional slices. For fixed ξ ∈ Sd−1 we set

Πξ := {y ∈ Rd : y · ξ = 0} , Ωξy := {t ∈ R : y + tξ ∈ Ω} for y ∈ Πξ ,

Ωξ := {y ∈ Πξ : Ωξy 6= ∅} .

Definition 3.10. An Ld-measurable function u : Ω → Rd belongs to GBD(Ω) if there exists
a positive bounded Radon measure λu such that, for all τ ∈ C1(Rd) with − 1

2 ≤ τ ≤ 1
2 and

0 ≤ τ ′ ≤ 1, and all ξ ∈ Sd−1, the distributional derivative Dξ(τ(u · ξ)) is a bounded Radon
measure on Ω whose total variation satisfies

|Dξ(τ(u · ξ))| (B) ≤ λu(B)

for every Borel subset B of Ω. A function u ∈ GBD(Ω) belongs to the subset GSBD(Ω) if in
addition for every ξ ∈ Sd−1 and Hd−1-a.e. y ∈ Πξ, the function uξy(t) := u(y + tξ) belongs to

SBVloc(Ωξy).

As before we say u ∈ GSBD2(Ω) if in addition e(u) ∈ L2(Ω) and Hd−1(Ju) < +∞. For
later we note that there is a compactness result in GSBD2(Ω) similar to Theorem 3.8 (see [18,
Theorem 11.3]).

Density results. We recall a density result in GSBD2 (see [35] and also [11, Theorem 3,
Remark 5.3].

Theorem 3.11. Let Ω ⊂ Rd open, bounded with Lipschitz boundary. Let u ∈ GSBD2(Ω) ∩
L2(Ω;Rd). Then there exists a sequence (uk)k ⊂ SBV 2(Ω;Rd) such that each Juk is the
union of a finite number of closed connected pieces of Cd−1-hypersurfaces, each uk belongs to
W 1,∞(Ω \ Juk ;Rd) and

(i) ‖uk − u‖L2(Ω) → 0,

(ii) ‖e(uk)− e(u)‖L2(Ω) → 0,

(iii) Hd−1(Juk4Ju)→ 0.

(3.6)

If in addition u ∈ L∞(Ω), one can ensure ‖uk‖∞ ≤ ‖u‖∞ for all k ∈ N.

Remark 3.12. The result together with [17] shows that the approximating sequence (uk)k
can also be chosen such that Juk is the finite union of closed (d− 1)-simplices intersected with
Ω. In this case (3.6)(iii) has to be replaced by Hd−1(Juk)→ Hd−1(Ju).

Korn inequality in SBD. As a final preparation we recall a Korn inequality in SBD2 in
a planar setting for functions with small jump set.

Theorem 3.13. Let p ∈ [1, 2]. Then there is a universal constant c > 0 such that for all
squares Qµ = (−µ, µ)2, µ > 0, and all u ∈ SBD2(Qµ) there is a set of finite perimeter
E ⊂ Qµ with

H1(∂E) ≤ cH1(Ju), |E| ≤ c(H1(Ju))2 (3.7)

and A ∈ R2×2
skew, b ∈ R2 such that

(i) ‖u− (A ·+b)‖Lp(Qµ\E) ≤ cµ
2
p ‖e(u)‖L2(Qµ),

(ii) ‖∇u−A‖Lp(Qµ\E) ≤ cµ
2
p−1‖e(u)‖L2(Qµ).

(3.8)

Moreover, there is a Borel set Γ ⊂ ∂Qµ such that

H1(Γ) ≤ cH1(Ju),

ˆ
∂Qµ\Γ

|Tu− (Ax+ b)|2 dH1(x) ≤ cµ‖e(u)‖2L2(Qµ), (3.9)

where Tu denotes the trace of u on ∂Qµ.
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The fact that the constant is independent of µ and p follows from a standard scaling argu-
ment and Hölder’s inequality. More generally, the result holds on connected, bounded Lipschitz
sets Ω for a constant C also depending on Ω.
Proof. The result stated in (3.7)-(3.8) has first been derived in [29] for p ∈ [1, 2) and was
then improved in [16] by showing the estimate for p = 2. In [12] the trace estimate has been
established. We need to confirm that in both estimates (3.8), (3.9) one can indeed take the
same infinitesimal rigid motion.

Let E and aA,b be given such that (3.7)-(3.8) hold for p = 2. By [12] we find Borel sets
F ⊂ Qµ, Γ ⊂ ∂Qµ and a′ = aA′,b′ such that (3.9) holds with a′ in place of a and |F | ≤
c(H1(Ju))2 as well as ‖u − a′‖L2(Qµ\F ) ≤ cµ‖e(u)‖L2(Qµ). We can assume that H1(Ju) is so

small that |E ∪ F | ≤ c(H1(Ju))2 ≤ 1
2 |Qµ| since otherwise passing to a larger c > 0 in (3.7)

we could choose E = Qµ and the statement was trivially satisfied. Consequently, we have
‖a − a′‖L2(Qµ\(E∪F )) ≤ cµ‖e(u)‖L2(Qµ) and by Lemma 3.7 ‖a − a′‖L2(Qµ) ≤ cµ‖e(u)‖L2(Qµ)

and thus by Lemma 3.5 ‖a− a′‖L∞(Qµ) ≤ c‖e(u)‖L2(Qµ). This yields (3.9) for the mapping a.
�

4. A piecewise Korn inequality up to a small exceptional set

As a key step for the proof of Theorem 2.1 we first derive a piecewise Korn inequality up
to a small exceptional set. By iterative application of this result in Section 5 we then derive
the main inequality. In this section we will consider configurations on a square with regular
jump set consisting of a finite number of segments and defer the general case also to Section
5, where we will make use of a density result (see Theorem 3.11 and Lemma 5.4).

For Ω ⊂ Rd open, bounded we let W(Ω) ⊂ SBV 2(Ω) be the functions u such that Ju =⋃n
j=1 Γuj is the finite union of closed (d−1)-simplices intersected with Ω and u|Ω\Ju ∈W 1,∞(Ω\

Ju). (In dimension d = 2 each Γuj is a closed segment.) In the following we say (Pj)
n
j=1 is

a partition of Ω if the sets are open, pairwise disjoint and satisfy |Ω \
⋃n
j=1 Pj | = 0. For

convenience we often write Ω =
⋃n
j=1 Pj although the identity only holds up to a set of

negligible L2-measure.

Theorem 4.1. Let p ∈ [1, 2) and θ > 0. Then there is a universal constant c > 0 and some
C = C(p, θ) > 0 such that the following holds:

(1) For each square Qµ = (−µ, µ)2 for µ > 0 and each u ∈ W(Qµ) one finds an exceptional
set E ⊂ Qµ with

|E| ≤ cµθ2H1(Ju), H1(∂E) ≤ CH1(Ju) (4.1)

such that there is a partition Qµ =
⋃n
j=1 Pj and corresponding infinitesimal rigid motions

(aj)j = (aAj ,bj )j such that the function v := u−
∑n
j=1 ajχPj satisfies

(i) H1
(⋃n

j=1
∂Pj ∩Qµ

)
≤ CH1

(⋃n

j=1
∂Pj ∩ Ju

)
,

(ii) ‖∇v‖Lp(Qµ\E) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ).

(4.2)

(2) One can choose E, (Pj)
n
j=1 and v such that we also have

‖v‖L∞(Qµ) ≤ C‖u‖L∞(Qµ). (4.3)

Note that (4.2)(ii) is similar to (2.3)(ii) with the correct scaling. Since (2.3)(i) will eventually
follow from (2.3)(ii) by Theorem 2.3 it is not necessary at this stage to derive an analog of
(2.3)(i). However, we establish (4.3) which may be of independent interest. Although not
needed and not derived explicitly in Section 5, let us remark that also in Theorem 2.1, if
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u ∈ L∞(Ω), the piecewise infinitesimal rigid motions can be chosen such that ‖v‖L∞(Ω) ≤
C‖u‖L∞(Ω) with v as in (2.2).

Estimate (4.2)(i) differs from (2.1) in the sense that the length of the boundary of the
partition can be controlled solely by the part of Ju contained in

⋃n
j=1 ∂Pj . This property will

be crucial for the iterative application of the arguments in Section 5 since hereby a blow up
of the length of the boundary of the partition can be avoided. Also the fact the volume of the
exceptional set in (4.1) is controlled in terms of a (small) parameter θ > 0 will be convenient
for the subsequent analysis. Note that therefore it will not be restrictive to concentrate on the
case θ ≤ 1 and

µθ2 ≤ H1(Ju) ≤ cµθ−2. (4.4)

In fact, for functions with smaller jump sets Theorem 4.1 directly follows from Theorem 3.13
for a partition only consisting of one element, and if the jump set is too large, one can choose
E = Qµ and (4.2) trivially holds.

The strategy for the proof of Theorem 4.1 is the following. We first identify squares Q of
various mesoscopic sizes where Ju ∩ Q is ‘too large’, i.e. comparable to the diameter of the
square. This will allow us to construct a partition of Qµ consisting of simply connected sets
and a corresponding Whitney covering such that H1(Ju ∩ Q) � d(Q) for the squares of the
covering (see Section 4.1). Then applying the Korn inequality for functions with small jump set
(Theorem 3.13) on each of these squares, we can modify the configuration on each component
of the partition to a Sobolev function ū whose distance from u can be controlled outside a small
exceptional set (see Section 4.2). Then we use Theorem 3.3 to find another refined partition
consisting of John domains whose John constant can be uniformly controlled. Theorem 4.1
then follows from Theorem 3.2 applied on ū and the fact that the difference of ∇u and ∇ū is
small on the bulk part of the domain (see Section 4.3).

Before we start with the construction of the auxiliary partition we introduce some further
notation. For s > 0 we partition R2 up to a set of measure zero into squares Qs(p) =
p+ s(−1, 1)2 for p ∈ s(1, 1) + 2sZ2 and write

Qs = {Q = Qs(p) : p ∈ s(1, 1) + 2sZ2}.

Let θ > 0 be given and assume without restriction that θ ∈ 2−N and θ small with respect to 1.
For all i ∈ N0 we define si = µθi and we consider the coverings of dyadic squares Qi := Qsi .
For each square Q of the above form we also introduce the corresponding enlarged squares
Q ⊂ Q′ ⊂ Q′′ ⊂ Q′′′ defined by

Q′ = 3
2Q, Q′′ = 3Q, Q′′′ = 5Q, (4.5)

where λQ denotes the square with the same center and orientation and λ-times the sidelength
of Q. By d(A) we again indicate the diameter of a set A ⊂ R2 and by dist(A,B) we denote
the euclidian distance between A,B ⊂ R2.

4.1. Construction of an auxiliary partition. To ensure that we provide an estimate which
is valid up to a small exceptional set (cf. (4.1)), it will be convenient to decompose Qµ into
smaller squares. To this end, we introduce the auxiliary jump set

J∗u := Ju ∪ J0 with J0 =
⋃

Q∈Q7,Q⊂Qµ
∂Q (4.6)

and observe that together with (4.4) we find

H1(J∗u) ≤ H1(Ju) + cθ−7µ ≤ cθ−9H1(Ju) (4.7)



16 MANUEL FRIEDRICH

for a universal constant c > 0. One of the main strategies will be the application of Theorem
3.13. As the result only provides an estimate for functions with small jump set, we introduce
for i ≥ 1 the set of ‘bad squares’

Qibad = {Q ∈ Qi : H1(J∗u ∩Q′) ≥ θ3si}. (4.8)

In particular, note that each square with Q′ ∩ J0 6= ∅ satisfies H1(Q′ ∩ J∗u) ≥ 2si and thus lies
in Qibad. Let Bi =

⋃
Q∈Qibad

Q′′′ and observe that Bi is the union of squares in Qi up to a set

of negligible measure (see Figure 1(a) below). In particular, we have Bi ⊃ Qµ for i = 1, . . . , 7.
We state a lemma about the union of ‘bad sets’.

Lemma 4.2. There is universal constant c > 0 such that for all 1 ≤ i1 ≤ i2 < ∞ and for all

Rj ⊂ Qjbad we have for R :=
⋃i2
j=i1

⋃
Q∈Rj Q

′′′

H1(∂R) ≤ cθ−3H1(J∗u ∩R).

Moreover, there is a set ΓR ⊃ ∂R being a finite union of closed segments with H1(ΓR) ≤
cθ−3H1(J∗u ∩R) such that for each connected component Rk of R the set ΓR∩Rk is connected.

Proof. For i1 ≤ j ≤ i2 let R̂j = {Q ∈ Rj : Q′′′ 6⊂
⋃j−1
i=i1

⋃
Q∈Ri Q

′′′} and R̂j =
⋃
Q∈R̂j Q

′.

Note that in view of (4.5) for θ small the sets (R̂j)i2j=i1 are pairwise disjoint and by (4.8) we
have for all i1 ≤ j ≤ i2

#R̂j ≤ θ−3s−1
j

∑
Q∈R̂j

H1(J∗u ∩Q′) ≤ 4θ−3s−1
j H

1(J∗u ∩ R̂j),

where we used that each x ∈ R2 is contained in at most four Q′, Q ∈ Qj . Since
⋃i2
j=i1

R̂j ⊂ R,

(R̂j)j are pairwise disjoint and H1(∂Q′′′) = 40sj for Q ∈ R̂j , we then derive

H1(∂R) ≤
∑i2

j=i1

∑
Q∈R̂j

H1(∂Q′′′) ≤
∑i2

j=i1
cθ−3H1(J∗u ∩ R̂j) ≤ cθ−3H1(J∗u ∩R).

To see the second part of the statement, we define ΓR =
⋃i2
j=i1

⋃
Q∈R̂j ∂Q

′′′ and note that
ΓR ∩Rk is connected for each connected component Rk of R. �

Let Bi := (Bik)k be the connected components of Bi for i ≥ 1. By the remark below (4.8)
for each i ∈ N there is a component Bik with J0 ⊂ Bik (see Figure 1(a)). Given p ∈ [1, 2) let
r = 1

24 (2− p) for shorthand. We say a set Bik ∈ Bi is an isolated component if

d(Bik) ≤ θ−irsi. (4.9)

Let Biiso ⊂ Bi be the subset consisting of the isolated components and see Figure 1(a),(b) for an
illustration. Note that the component Bik ∈ Bi containing J0 satisfies Bik /∈ Biiso. Consequently,
each set in Biiso is contained in a square Q ∈ Q7 and thus

d(Bik) ≤ 2
√

2µθ7 for all Bik ∈ Biiso. (4.10)

Recall the structure of J∗u (see the definition of W(Qµ) before Theorem 4.1) and denote the
connected components of J∗u by (Γ∗j )

N
j=1, each of which being the union of finitely many closed

segments. Choosing I ∈ N sufficiently large we see that for i ≥ I each set (Bik)k contains
exactly one connected component of J∗u. In particular, we can assume that I ∈ N is so large
that

(i) dist(Γ∗j1 ,Γ
∗
j2) ≥ θ−1sI for 1 ≤ j1 < j2 ≤ N,

(ii) Biiso = ∅ for i ≥ I.
(4.11)

Indeed, for (ii) we observe d(Bik) ≥ d(J∗u ∩ Bik) ≥ minj=1,...,N d(Γ∗j ) > 0 and θ−irsi → 0 for

i → ∞. Finally, we introduce the saturation of a bounded set A ⊂ R2 defined by sat(A) =
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R2 \ A′, where A′ denotes the (unique) unbounded connected component of R2 \ A. Loosely
speaking, sat(A) arises from A by ‘filling the holes of A’. In the construction of the partition
we will neglect the part of J∗u contained in

Ui := sat
(⋃

Bik∈B
i
iso

Bik

)
, i ≥ 1 (4.12)

as in these regions the discontinuity set of u can be removed by modifying the function u in a
suitable way. This will be described in detail in Section 4.2 below.

We now show that Qµ can be partitioned into simply connected components (P ′j)j with a

corresponding covering of Whitney-type in terms of squares in
⋃
i≥1Qi such that the size of

Ju is controllable in the squares not associated to the isolated components Ui.

Theorem 4.3. Let µ > 0, θ > 0 and p ∈ [1, 2). Then there is a universal constant c > 0 and
a constant C = C(θ, p) > 0 such that for all u ∈ W(Qµ) with (4.4) there is a partition (P ′j)

m
j=1

of Qµ consisting of open, simply connected sets satisfying

H1
(⋃m

j=1
∂P ′j

)
≤ CH1(Ju) (4.13)

with the following properties: the set
⋃m
j=1 ∂P

′
j is a finite union of closed segments. Moreover,

there is a covering C ⊂
⋃∞
i=8Qi of Qµ with pairwise disjoint dyadic squares, a closed set

Z ⊂ Qµ and an index I = I(u, θ, p) ∈ N such that

Z ⊂
⋃I

i=8
Ui (4.14)

for Ui as in (4.12) and with Ci := C ∩ Qi we have

(i) Qµ \
(
Ju ∩

⋃m

j=1
∂P ′j

)
⊂
⋃

Q∈C
Q′ ⊂ Qµ,

(ii) Q′1 ∩Q′2 6= ∅ for Q1, Q2 ∈ C ⇒ θd(Q1) ≤ d(Q2) ≤ θ−1d(Q1),

(iii) #{Q ∈ C : x ∈ Q′} ≤ 12 for all x ∈ Qµ, (4.15)

(iv) H1
(
Ju ∩Q′

)
≤ θ2si for all Q ∈ Ci with Q′′ 6⊂ Z,

(v) H1
(
Ju ∩Q′

)
≤ θ2si for all Q ∈ Ci with Q′′ ∩ Q̂′′ 6= ∅ for some Q̂ ∈ Ci−1 ∪ Ci+1,

(vi) Ju ∩
⋃∞

i≥I+1

⋃
Q∈Ci

Q′ = ∅,

where Q′, Q′′ denote the enlarged squares corresponding to Q ∈ C (cf. (4.5)).

The fact that the partition consists of simply connected sets will be essential since hereby
Theorem 3.3 will be applicable (see Section 4.3). Observe that (4.15)(ii),(iii) are the typical
properties of a Whitney covering, where C possibly does not cover the part of Ju contained
in the boundary of the partition (see (4.15)(i)). The crucial condition (4.15)(iv) states that
outside of Z the jump set in each square is small compared to its diameter. Later this will
allow us to apply Theorem 3.13 (in Z we will have to argue differently). Before we proceed
with the proof of Theorem 4.3 we give a more precise meaning to the exceptional set Z, which
is associated to the isolated components.

Lemma 4.4. Let be given the situation of Theorem 4.3 with (P ′j)j and Z as in (4.13)-(4.14).
Then the covering C can be chosen such that (4.15) holds and that there is a partition Z =⋃I
i=8 Z

i into pairwise disjoint, closed sets such that each Zi is the union of squares in Ci =
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C ∩ Qi up to a set of measure zero. We have

(i)
∣∣Z∣∣ ≤ cµθ5H1(Ju), |Zi| ≤ Cθ−irsiH1(Ju),

(ii)
∑I

i=8
H1(∂Zi) ≤ CH1(Ju)

(4.16)

for a universal c > 0 and C = C(θ) > 0 only depending on θ. Denote by (Xi
k)k the connected

components of Zi and let X ik = {Q ∈ Ci : Q ⊂ Xi
k, ∂Q∩∂Xi

k 6= ∅}. We get for each i = 8, . . . , I
and each Xi

k

(i) d(Xi
k) ≤ θ−irsi, #X ik ≤ cθ−2ir,

(ii) Q′ ∩ Z ⊂ Xi
k for all Q ∈ X ik,

(iii)
∑

k
#X ik ≤ CH1(Ju)s−1

i .

(4.17)

We now prove Theorem 4.3 and Lemma 4.4.
Proof of Theorem 4.3. Let u and the corresponding sets J∗u, (Bi)i≥1 and (Ui)i≥1 be given
as defined in (4.6)-(4.12). We first concern ourselves with the ‘bad sets’ Bi and the union of
bad sets for different i ∈ N (Step I). The sets not associated to isolated components will then
be the starting point for the construction of a partition into simply connected components
(P ′j)j (Step II and III). In this context, the fact that the length of not isolated components

Bi \ Biiso compared to si increases in i ∈ N (see (4.9)) will be crucial to control the length of
the segments, which are introduced to define the partition (cf. (4.25) below).

Finally, we define a covering consisting of pairwise disjoint dyadic squares and prove property
(4.15) (Step IV). In particular, the fact that the area of the ‘bad sets’ becomes gradually smaller
for larger i ∈ N allows us to confirm (4.15)(i),(iv). For (4.15)(v) we will exploit that the ‘bad
sets’ are defined in terms of enlarged squares (cf. (4.5)) and (4.15)(vi) will follow from (4.11).
In the following c > 0 stands for a universal constant and C = C(θ, p) > 0 for a generic
constant independent of all other parameters.

Step I (Definition of ‘bad sets’): Let I ∈ N be given such that (4.11) holds, where in
general the choice of I depends on u, θ and p. We define sets forming the starting point for
the construction of the partition. Recall the definition of Bi below (4.8). For 1 ≤ i ≤ I let

Di = (Di
k)k be the connected components of

⋃I
l=iB

l having nonempty intersection with Bi

and satisfying

d(Di
k) > θ−irsi. (4.18)

Observe that by definition of Biiso, in particular (4.9), each Bik ∈ Bi \ Biiso is contained in a
component of Di. As each connected component is a finite union of squares, we find d(Di

k) ≤
H1(∂Di

k) and thus by Lemma 4.2 (for Rj = Qjbad, i ≤ j ≤ I) we obtain∑
k
d(Di

k) ≤ H1
(
∂
⋃I

l=i
Bl
)
≤ cθ−3H1

(
J∗u ∩

⋃I

l=i
Bl
)
≤ cθ−3H1(J∗u) (4.19)

independently of 1 ≤ i ≤ I.
Recall that by the definition of J0 and (4.8) we have Bi ⊃ Qµ for i = 1, . . . , 7. We start

with the set E7 :=
⋃
kD

7
k ⊃ Qµ and assume that Ek, 7 ≤ k ≤ i − 1, have been constructed.

Let

E i = {Di
k : Di

k ∩ Ei−1 6= ∅} and Ei =
⋃

Dik∈Ei
Di
k. (4.20)

(See also Figure 1(b),(c).) We notice that Ei ⊂ Ej for 7 ≤ j < i ≤ I. Indeed, each Di
k ∈ E i

is contained in a connected component of
⋃I
l=i−1B

l, denoted by Di−1
k′ . Since Di

k intersects

Ei−1, Di−1
k′ intersects Ei−1 and the definition of Ei−1 implies Di−1

k′ ∈ E i−1 and Di−1
k′ ⊂ Ei−1.
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This yields Ei ⊂ Ei−1, as desired. Moreover, note that each Ei contains J0 and therefore
particularly ∂Qµ ⊂ Ei for i ≥ 1. For later we also introduce the associated ‘removed sets’

Pi =
{
Q ∈

⋃I

l=i
Qlbad : Q′′′ ⊂ Ei, Q′′′ ∩ Ei+1 = ∅}, Ri =

⋃
Q∈Pi

Q′′′ (4.21)

for 7 ≤ i ≤ I − 1 and observe that

Rj ∩Ri = ∅ for 7 ≤ j < i ≤ I − 1. (4.22)

To see this, consider j < i and note that Q′′′ ∩ Ei = ∅ for Q ∈ Pj since Ei ⊂ Ej+1. Thus, we
find Rj ∩ Ei = ∅ and therefore (4.22) holds as Ri ⊂ Ei.

(a) (b)

(c) (d)

BI−1
1

BI−1
2

BI−1
3

J0
BI2

BI1

BI4

BI3

DI−1
1

DI−1
2

S S

RI−1
2

RI−1
1

Figure 1. (a) A part of Qµ is depicted with BI−1 =
⋃3
k=1B

I−1
k in light gray

and the squares QI−1
bad in dark gray. Note that BI−1

1 ∈ BI−1
iso and J0 ⊂ BI−1

2 .
(b) In light gray we see BI−1 and in dark gray BI . The sets BI1 , B

I
2 , B

I
3 are

contained in BIiso with BI2 ⊂ sat(BI1). We suppose BI4 /∈ BIiso and observe

BI4 ∩ BI−1 = ∅. (c) The set EI−1 = DI−1
1 ∪ DI−1

2 is sketched. Note that
BI4∩EI−1 = ∅ although BI4 /∈ BIiso. Whereas EI−1 consists of two components,

EI−1
S := EI−1 ∪ S is connected. (d) In light gray EI ∪ S is depicted and in

dark gray RI−1 = RI−1
1 ∪RI−1

2 .

Essentially, Ei arises from Ei−1 by removing the squares Pi−1. Moreover, Ei still intersects
the squares {Q ∈ Qi−1 \Pi−1 : Q′′′ ⊂ Ei−1}, but in general covers a smaller portion compared
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to Ei−1 (cf. Figure 1(d)). More precisely, we get

dist(x,Ei) ≤ 10
√

2si−1 for all x ∈ Ei−1 \Ri−1. (4.23)

In fact, since x ∈ Ei−1, by (4.20) we find Q ∈
⋃I
l=i−1Qlbad such that x ∈ Q′′′ ⊂ Ei−1. As

x /∈ Ri−1, we obtain Q /∈ Pi−1 and therefore Q′′′ ∩ Ei 6= ∅, which implies (4.23). Before
we proceed with the construction of the partition, we notice E7 =

⋃
kD

7
k ⊃ Qµ and E7 is

connected. Note, however, that this property in general fails for Ei, i ≥ 8. The strategy in the
following will be to connect the components of Ei by suitable segments lying in Ei−1.

Step II (Construction of the partition, induction step): We construct the partition
inductively. To this end, we show that for i ≥ 7 there is a family of closed sets Si with

#Si ≤ θ−4θirs−1
i H

1(J∗u), (4.24)

such that each S ∈ Si is a finite union of closed segments and EiS := Ei∪
⋃
S∈Si S is connected.

Since ∂Qµ ⊂ Ei, we then get that the components of Qµ \ EiS are simply connected sets.
Moreover, we assume (recall (4.21))

H1
(⋃

S∈Si
S
)
≤ cθ−5H1(J∗u)

∑i

j=8
θjr + cθ−3

∑i−1

j=7
H1(J∗u ∩Rj). (4.25)

We begin with i = 7 and set S7 = ∅. As seen at the end of Step I, E7
S is connected.

Now assume the above assertions, in particular (4.24)-(4.25), hold for i − 1, i ≥ 8. We
construct Si and EiS as follows. Recall that each connected component Di

k ∈ E i satisfies
d(Di

k) ≥ θ−irsi by (4.18). Consequently, by (4.19) we get for θ small

#E i ≤ θirs−1
i

∑
k
d(Di

k) ≤ cθ−3θirs−1
i H

1(J∗u) ≤ 1
4θ
−4θirs−1

i H
1(J∗u). (4.26)

We denote the connected components of Ei ∪
⋃
S∈Si−1

S by F i := (F ik)Mi

k=1 in the following.

Observe that each F ik is a union of closed sets with Hausdorff-dimension one or two. By (4.24)
(for i− 1) and (4.26) we have

Mi = #F i ≤ 1
4θ
−4θirs−1

i H
1(J∗u) + θ−4θ(i−1)rs−1

i−1H
1(J∗u) ≤ 1

2θ
−4θirs−1

i H
1(J∗u) (4.27)

for θ small enough recalling that 0 < r ≤ 1
24 (see before (4.9)) and si = θsi−1. Now the

strategy is to add segments in order to eventually obtain a connected set. By the definition of
F i, Ei−1

S = Ei−1 ∪
⋃
S∈Si−1

S and the fact that Ei ⊂ Ei−1 (see before (4.21)) we get

Ei−1
S =

⋃Mi

k=1
F ik ∪ (Ei−1 \ Ei). (4.28)

Recall that Ei−1
S is connected by hypothesis. We denote the connected components of Ri−1

(see (4.21)) by Ri−1 = (Ri−1
k )k and let c̄ = 10

√
2 for shorthand. Observe that by (4.23) and

the fact that Ei ⊂
⋃Mi

k=1 F
i
k

dist
(
x,
⋃Mi

k=1
F ik
)
≤ c̄si−1 for all x ∈ Ei−1 \Ri−1. (4.29)

We now claim that for all F ij ∈ F i there is another component F ik ∈ F i such that (a)

dist(F ij , F
i
k) ≤ 4c̄si−1 or (b) there is a corresponding Ri−1

l ∈ Ri−1 such that

dist(F ij , R
i−1
l ) ≤ 4c̄si−1, dist(F ik, R

i−1
l ) ≤ 4c̄si−1. (4.30)

In fact, fix F ij ∈ F i and assume (a) does not hold, i.e. dist(F ij , F
i
k) > 4c̄si−1 for all k 6= j. By

(4.28) we can find F ik ∈ F i, j 6= k, and a (closed) curve γ in Ei−1 \ Ei such that F ij ∪ F ik ∪ γ
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is connected (see Figure 2(a)). We let γ′ be the (unique) connected component of

γ ∩ {x ∈ Qµ : dist(x, F ij ) ≥ 2c̄si−1}

having nonempty intersection with F ik. By (4.29) and the fact that (a) does not hold, we then
find some x ∈ Ri−1 ∩ γ′ with 2c̄si−1 ≤ dist(x, F ij ) ≤ 4c̄si−1.

Let Ri−1
l ∈ Ri−1 be the component containing x and define γ′′ = γ′ ∩Ri−1

l . If γ′′ intersects

F ik, we see that Ri−1
l has the desired property (4.30). Otherwise, we find y ∈ γ′′ with y ∈ ∂Ri−1

l

and therefore by (4.29) and the definition of γ′ we get some F ik′ ∈ F i, k′ 6= j (and possibly
k′ 6= k), so that dist(y, F ik′) ≤ c̄si−1. Herefrom we again deduce (4.30) with F ik′ in place of F ik.

(a) (b)

F I2

F I4 F I5

F I1

F I3

ΓI−1

@

x

y

γ

RI−1
2

��

RI−1
1

Figure 2. (a) The components of F I and S∗ are depicted, where the (union
of) segments Sl, l = 1, . . . , 4, connecting (F I)5

k=1 are highlighed in red and (a
possible choice of) the set ΓI−1 is illustrated in black. While in the example

we can choose ΓI−1 ∩RI−1
1 = ∂RI−1

1 , in RI−1
2 a more elaborated definition of

ΓI−1 is necessary (cf. Lemma 4.2) since RI−1
2 is not simply connected. We

also sketched a curve γ as introduced below (4.30) such that F I3 ∪ F I5 ∪ γ is
connected. (b) In black the segments in SI as well as the components (Γ∗k)k
contained in EI are illustrated. The components are combined to a connected
set by the red segments.

We observe that in case (a) one can choose a (closed) segment S with H1(S) ≤ 4c̄si−1

such that F ij ∪ S ∪ F ik is connected and in case (b) we can find two segments S1, S2 with

H1(S1 ∪ S2) ≤ 8c̄si−1 such that S1 ∪ S2 ∪Ri−1
l ∪ F ij ∪ F ik is connected, where the component

Ri−1
l is chosen as above. Thus, for a universal c > 0 large enough we can find Mi − 1 sets

(R̂i−1
l )Mi−1

l=1 ⊂ Ri−1 ∪ {∅} and sets (Sl)
Mi−1
l=1 with

H1(Sl) ≤ csi−1, (4.31)

where each Sl consists of at most two segments, so that
⋃Mi

k=1 F
i
k ∪

⋃Mi−1
l=1 (R̂i−1

l ∪ Sl) is con-
nected. Indeed, the construction of sets connecting two different components (F ik)k has been
addressed above and the fact that it suffices to consider Mi−1 = #F i−1 sets may be seen by
induction over the number of components Mi. Recalling (4.21) we apply Lemma 4.2 for the
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squares Rj = Pi−1 ∩ Qj ⊂ Qjbad, i− 1 ≤ j ≤ I and obtain a set Γi−1 ⊃ ∂Ri−1, being a finite

union of closed segments, such that Γi−1 ∩ R̂i−1
l is connected for l = 1, . . . ,Mi − 1 and

H1
(⋃Mi−1

l=1
R̂i−1
l ∩ Γi−1

)
≤ H1

(
Γi−1

)
≤ cθ−3H1(Ri−1 ∩ J∗u). (4.32)

Then we introduce the new jump components

S∗ =
(
Sl ∪ (R̂i−1

l ∩ Γi−1)
)Mi−1

l=1
, Si = Si−1 ∪ S∗.

We are now in the position to confirm (4.24)-(4.25). First, each component in Si is closed and
a finite union of closed segments. Moreover, we observe that EiS := Ei ∪

⋃
S∈Si S is connected

by the definition of (F ik)k and S∗ (cf. Figure 2(a)). By (4.24) (for i− 1) and (4.27) we find

#Si ≤ #Si−1 + #F i − 1 ≤ θ−4θr(i−1)s−1
i−1H

1(J∗u) + 1
2θ
−4θirs−1

i H1(J∗u) ≤ θ−4θirs−1
i H

1(J∗u)

for θ small enough. This gives (4.24). Moreover, we use (4.27) as well as (4.31) to find∑Mi−1

l=1
H1(Sl) ≤ c(Mi − 1)si−1 ≤ cθ−5θirH1(J∗u).

This together with (4.32) and (4.25) for step i− 1 yield (4.25) for step i.

Step III (Construction of the partition, final step): We are now in a position to define
a partition (P ′j)j with the desired properties. After iteration step I we have the connected set

EIS = EI ∪
⋃
S∈SI S. Note that by the definition of DI in (4.18) and the choice of I (see

(4.11)(ii)) we have DI = BI . Consequently, recalling (4.20) we see that EI consists of the
connected components of BI having nonempty intersection with EI−1. Similarly as before, by
EI ⊂ DI = BI we denote the connected components DI

k with DI
k ∩ EI−1 6= ∅.

In view of the remark before (4.11) we observe that each DI
k contains exactly one connected

component Γ∗jk of J∗u. More precisely, by (4.8), (4.11)(ii) we have

dist(x,Γ∗jk) ≤ csI for all x ∈ DI
k (4.33)

for a universal constant c > 0. Moreover, possibly passing to a larger I we may assume
#EI ≤ s−1

I H1(J∗u) since #EI is bounded from above by the number of components of J∗u
independently of I ∈ N.

Consequently, arguing similarly as in Step II we can connect the components SI and (J∗u ∩
DI
k)k with segments (cf. Figure 2(b)). By (4.24) we get #EI + #SI ≤ cθ−4s−1

I H1(J∗u) and

thus in view of (4.33) we can find a family of closed segments Ŝ with #Ŝ ≤ cθ−4s−1
I H1(J∗u)

and H1(Ŝ) ≤ csI for all Ŝ ∈ Ŝ such that⋃
DIk∈EI

Γ∗jk ∪
⋃

Ŝ∈Ŝ
Ŝ ∪

⋃
S∈SI

S

is connected, where as before Γ∗jk denotes the component contained in DI
k. Note that ∂Qµ ⊂⋃

DIk∈EI
Γ∗jk since ∂Qµ ⊂ J0 ⊂ EI . Thus, letting

S = SI ∪ Ŝ ∪ {Γ∗jk : DI
k ∈ EI} (4.34)

we finally find that the connected components of Qµ \
⋃
S∈S S, denoted by (P ′j)

m
j=1, are simply

connected and form a partition of Qµ (up to a set of negligible measure). By construction⋃m
j=1 ∂P

′
j is a finite union of closed segments. Using (4.25),

∑
S∈Ŝ H1(S) ≤ cθ−4H1(J∗u) and

the fact that the sets (Ri)i are pairwise disjoint (cf. (4.22)) we obtain for C = C(θ, p)

H1
(⋃m

j=1
∂P ′j

)
≤
∑m

j=1
H1(∂P ′j) ≤ CH1(J∗u) ≤ CH1(Ju),

where in the last step we employed (4.7). This gives (4.13).
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Step IV (Covering): We now finally define a Whitney-type covering of Qµ associated to
the partition (P ′j)

m
j=1. For each 8 ≤ i ≤ I we define the sets

T i =
⋃

Q∈T i
Q with T i = {Q ∈ Qi : Q ⊂ Qµ \ Ei},

T i− =
⋃

Q∈T i−
Q with T i− = {Q ∈ T i : Q′′ ⊂ T i},

T i−− =
⋃

Q∈T i−−
Q with T i−− = {Q ∈ T i− : Q′′ ⊂ T i−},

(4.35)

where loosely speaking T i−, T
i
−− arise from T i by removing ‘layers’ of squares. (We refer to

Figure 3 for an illustration.) As a preparation we observe that T j ⊃ T i for 8 ≤ i < j ≤ I since
Ej ⊂ Ei and sj < si. This particularly implies

T i−1
− ⊂ T i−, dist(∂T i−1

− , ∂T i−) ≥ si−1 (4.36)

for 9 ≤ i ≤ I. Moreover, we find

T i \ T i−− ∩
⋃

Q∈Qibad
Q = ∅. (4.37)

In fact, for Q ⊂ T i \ T i−− we have Q′′′ 6⊂ Ei and Q′′′ ∩ Ei 6= ∅ (see Figure 3(a)). If Q ∈ Qibad,

however, the connected component Di
k of

⋃I
l=iB

l containing Q′′′ has nonempty intersection

with Ei and then the definition in (4.20) implies Q′′′ ⊂ Di
k ⊂ Ei. This gives a contradiction.

We now introduce the covering as follows. Recall that each set T i− \T i−1
− for 8 ≤ i ≤ I is the

union of squares in Qi (up to a negligible set), where we set T 7
− = ∅. We define for 8 ≤ i ≤ I

Ci = {Q ∈ Qi : Q ⊂ T i− \ T i−1
− }. (4.38)

Hereby we obtain a covering of Qµ \ T I−. More precisely we have

T I− ⊂
⋃

Q∈
⋃
k≤I Ck

Q′ ⊂ Qµ, (4.39)

where the second inclusion follows from (4.35) and the fact that ∂Qµ ⊂ Ei for all i ∈ N. To
complete the covering, we introduce for all k ≥ I + 1

Gk = {Q ∈ Qk : Q′′ ⊂ Qµ, Q′′ ∩ (EI ∩ Ju) = ∅}. (4.40)

Assuming that we have already constructed CI , . . . , Cn for n ≥ I we define

Cn+1 =
{
Q ∈ Gn+1 : Q ∩

⋃n

k=8

⋃
Q̂∈Ck

Q̂ = ∅
}
. (4.41)

Clearly, C :=
⋃∞
k=8 Ck is a covering of Qµ (up to a set of negligible measure) consisting of

pairwise disjoint, dyadic squares. Finally, for 8 ≤ i ≤ I we define with Ui as given in (4.12)

Yi = {Q ∈ Ci : Q′′ ⊂ Ui, H1(Ju ∩Q′) > θ2si}, Y i = sat
(⋃

Q∈Yi
Q′′
)
. (4.42)

Let Z =
⋃

8≤i≤I Y
i and observe that (4.14) holds since Y i ⊂ Ui.

We now confirm (4.15). First, we already noticed (4.39). Then taking (4.40) into account,
using EI ∩ Ju ⊂

⋃
DIk∈EI

Γ∗jk ∩ Ju ⊂
(⋃m

j=1 ∂P
′
j ∩ Ju

)
(see (4.34)) and arguing as in the

construction of a Whitney covering for open sets, we obtain (4.15)(i).
To see (4.15)(ii), we fix Q1 ∈ Ci and Q2 ∈ Cj with j ≥ i and Q′1 ∩ Q′2 6= ∅. If i ≥ I + 1,

we deduce j ≤ i + 1 in view of (4.40)-(4.41), where one argues as in the construction of a
Whitney covering. If i ≤ I − 1, we suppose we had j ≥ i+ 2. Then by (4.38) we get Q1 ⊂ T i−
and Q2 ∩ T i+1

− = ∅. Consequently, using (4.36) we obtain dist(Q1, Q2) ≥ si and thus the
contradiction Q′1 ∩Q′2 = ∅.
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Finally, for the case i = I it suffices to show that all Q ∈ QI+1 with Q ⊂ Qµ \ T I− and

Q′1∩Q′ 6= ∅ fulfill Q ∈ CI+1. First, Q satisfies Q′′ ⊂ T I by (4.35) and (4.38). Then Q′′∩EI = ∅
by (4.35), which also implies Q′′ ⊂ Qµ since ∂Qµ ⊂ EI . Consequently, Q ∈ GI+1 and thus
Q ∈ CI+1 as Q ⊂ Qµ \ T I−.

Moreover, property (4.15)(iii) directly follows from (4.15)(ii) recalling the fact that each
x ∈ Qµ is contained in at most four sets Q′, Q ∈ Qi.

(a) (b)
Ei−1

Q′′′
Q

B

A

Q2

Q1

Ei
∂T i−

∂T i−1
−

T i−1
−

T i− \ T i−1
−

Bi1

Figure 3. (a) The set Ei−1 and the ‘layers’ A = T i−1\T i−1
− , B = T i−1

− \T i−1
−−

are sketched, where in general Ei−1 is not a union of squares in Qi−1. Note
that a square Q in A∪B is not in Qi−1

bad since Q′′′ would then belong to Ei−1.
(b) In dark gray we have depicted Ei, which is a subset of Ei−1. The sets
T i−1
− and T i− \ T i−1

− are illustrated in white and light gray, respectively. Note

that ∂T i−1
− , ∂T i− satisfy (4.36). Let Bi1 ∈ Biiso be the only isolated component

in the example. Observe that Bi1 is also contained in T i− \ T i−1 and does not

belong to Ei, although Bi1 ⊂ Ei−1. Moreover, the black squares Q1, Q2 are
not in Qibad since otherwise they would either be contained in Ei or in an
isolated component in Biiso.

To see (4.15)(vi), we note that each Q ∈ Ci for i ≥ I+1 satisfies Q∩(Qµ\T I−) 6= ∅. Recalling
(4.33)-(4.34) and (4.40) we derive

dist(Q′,
⋃

DIk∈EI
Γ∗jk) ≤ csI , dist(Q′,

⋃
DIk∈EI

Γ∗jk ∩ Ju) > 0.

Consequently, (4.11)(i) for θ small enough yields (vi). It now remains to prove (4.15)(iv),(v),
where by (4.15)(vi) it suffices to consider 8 ≤ i ≤ I.

We confirm (4.15)(iv). To this end, fix Q ∈ Ci, 8 ≤ i ≤ I, with Q′′ 6⊂ Z. By (4.42) we can
even assume that Q′′ 6⊂ Ui since Q′′ 6⊂ Z together with Q′′ ⊂ Ui already implies (4.15)(iv).
Let Q∗ ∈ Qi−1 with Q ⊂ Q∗. First, if Q ⊂ T i−1 \ T i−1

− , we see Q∗ /∈ Qi−1
bad by (4.37). Then by

(4.8) we get

H1(Ju ∩Q′) ≤ H1(J∗u ∩Q′∗) ≤ θ3si−1 = θ2si. (4.43)

Otherwise, we have Q ⊂ T i− \ T i−1. Thus, as T i−1 consists of squares in Qi−1, we get Q∗ ∩
T i−1 = ∅ and then Q∗ ∩ Ei−1 6= ∅ by (4.35). If now Q /∈ Qibad or Q∗ /∈ Qi−1

bad, the assertion
follows directly from (4.8) or similarly as in (4.43), respectively.

Otherwise, we get Q ∈ Qibad, Q∗ ∈ Qi−1
bad and thus Q′′′∗ ⊂ Bi−1. Recalling Q∗ ∩ Ei−1 6= ∅

and (4.20) (for i − 1) we get that Q′′′∗ is contained in a component of E i−1, which implies
Q ⊂ Q′′′∗ ⊂ Ei−1. Recall also that Q′′ 6⊂ Ui. Consequently, Q′′′ is contained in a component
Bi \ Biiso and therefore by the remark below (4.18), Q′′′ is contained in a component of Di.



A PIECEWISE KORN INEQUALITY IN SBD 25

Since Q ⊂ Ei−1, again by (4.20) (for i) we derive Q′′′ ⊂ Ei (cf. also Figure 3(b)). This,
however, gives a contradiction as Q ∈ Ci and thus Q ⊂ T i−, where T i−∩Ei = ∅. This concludes
the proof of (iv).

Finally, to see (4.15)(v) we suppose that for Q ∈ Ci, 8 ≤ i ≤ I, there is a neighbor Q̂ ∈ Ci−1

such that Q′′ ∩ Q̂′′ 6= ∅. Then by construction we find Q̂ ⊂ T i−1
− \ T i−1

−− and a further square

Q∗ ∈ Qi−1 with Q ⊂ Q∗ ⊂ T i−1 \ T i−1
− . In view of (4.37) the desired property follows as in

(4.43). Likewise, if there is a neighbor Q̂ ∈ Ci+1 with Q′′ ∩ Q̂′′ 6= ∅, we see Q ⊂ T i− \ T i−− and
then again by (4.37) we get the claim from (4.8). �

(a) (b)
∂Xi

k

X ik = X̂ ik X̄ ik
Yi

Y j1

Y j2

Figure 4. (a) The squares X ik are depicted in light gray and the dark gray

squares are contained in Yi. It is possible that Y j1 ⊂ Xi
k, whereas Y j2 , which

overlaps with Xi
k, cannot exist since this contradics (4.15)(v). (b) In light

and dark gray the squares in X̄ ik are depicted (see (4.56) below). We have
also illustrated the part of C contained in Xi

k, which may (in contrast to C∗)
contain squares in Qj , j < i.

Proof of Lemma 4.4. Let C be given satisfying (4.15) and I as in (4.11). Recall (4.42). We
denote the (closed) connected components of Y i by (Y ik )k. We first show that

Q ∈ Ci, Q ⊂ Y ik for all Q ∈ Ŷik := {Q ∈ C : Q ∩ Y ik 6= ∅, ∂Q ∩ ∂Y ik 6= ∅}. (4.44)

In fact, for each Q ∈ Ŷik there is Q̃ ∈ Yi, Q̃′′ ⊂ Y ik such that |Q̃′′ ∩ Q| > 0. Since Q̃ fulfills

the condition stated in (4.42), property (4.15)(v) yields Q̃′′ ⊂
⋃
Q∗∈Ci Q∗. As C consists of

pairwise disjoint dyadic squares, this yields Q ∈ Ci and Q ⊂ Q̃′′ ⊂ Y ik , as desired. We now see

that each pair Y ik , Y jl , i < j, either satisfies

dist∞(Y ik , Y
j
l ) ≥ 1

2si (4.45)

or one set is contained in the other. (Here dist∞ denotes the distance with respect to the

maximum norm.) If not, we would find Qi ∈ Ŷik and Qj ∈ Ŷjl such that Q′j ∩ Q′i 6= ∅. Then

j = i + 1 by (4.15)(iv) and (4.44). Moreover, there would be Q∗ ∈ Yj , Q′′∗ ⊂ Y jl , such that
Q′′∗ ∩ Q′′i 6= ∅. This, however, contradicts (4.15)(v) and the fact that H1(Ju ∩ Q′∗) > θ2sj by
(4.42). (We also refer to Figure 4(a).)

Now for each 8 ≤ i ≤ I let (Xi
k)k ⊂ (Y ik )k be the components such that for all j 6= i

we have Xi
k 6⊂ Y jl for all components Y jl . Accordingly, we denote the sets defined in (4.44)

by X̂ ik. Define Zi =
⋃
kX

i
k and note that by (4.45) the sets (Zi)i are pairwise disjoint with

Z =
⋃I
i=8 Z

i. Recalling the definition of X ik before (4.17) we then see that X̂ ik = X ik. We now
show (4.16) and (4.17).
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As each component (Xi
k)k of Zi is contained in a component of Ui, (4.17)(i) follows directly

from (4.9). By (4.45) and the fact that dist∞(Xi
k, X

i
l ) ≥ 2si for all i and k 6= l, we obtain

(4.17)(ii). The proof of (4.44) showed that for each square in X ik there is an adjacent square
in Yi (cf. Figure 4(a)). Consequently, we obtain by (4.42) for c > 0 sufficiently large∑

k
#X ik ≤ 8

∑
k

#{Q ∈ Yi : Q′′ ⊂ Xi
k} ≤ cθ−2s−1

i

∑
Q∈Yi

H1(Q′ ∩ Zi ∩ Ju)

≤ cθ−2s−1
i H

1(Ju ∩ Zi),

where we again used that each x ∈ Qµ is contained in at most four enlarged squares. Since
(Zi)i are pairwise disjoint, the previous estimate also yields∑I

i=8
H1(∂Zi) ≤

∑I

i=8

∑
k
H1(∂Xi

k) ≤
∑I

i=8

(∑
Q∈

⋃
k X ik
H1(∂Q)

)
≤
∑I

i=8
cθ−2H1(Ju ∩ Zi) ≤ cθ−2H1(Ju),

i.e. (4.16)(ii) holds. Moreover, by (4.17)(i) and the fact that d(Xi
k) ≤ H1(∂Xi

k) (see (4.19) for
a similar argument)

|Zi| =
∑

k
|Xi

k| ≤
∑

k
d(Xi

k)2 ≤ θ−irsi
∑

k
H1(∂Xi

k) ≤ cθ−irsiθ−2H1(Ju).

Likewise, as each component (Xi
k)i,k also satisfies d(Xi

k) ≤ 2
√

2µθ7 by (4.10), we conclude the
proof of (4.16) by calculating

|Z| =
∣∣⋃I

i=8
Zi
∣∣ ≤ cµθ7

∑I

i=8

∑
k
H1(∂Xi

k) ≤ cµθ5H1(Ju).

Finally, we now define a modification C∗ of C such that each Zi consists of squares Ci∗ := C∗∩Qi.
To this end, fix a component Xi

k. By (4.38) and (4.44) we have
⋃
Q∈X̂ ik

Q ⊂ T i− \ T i−1
− , which

by (4.35) has empty intersection with Ei. Since the diameter of each connected component
of Ei exceeds siθ

−ir (see (4.18)), (4.17)(i) then yields Xi
k ∩ Ei = ∅. Consequently, Xi

k ⊂ T i−
and again by (4.38) we then obtain Xi

k ⊂
⋃i
j=8

⋃
Q∈Cj Q (see Figure 3(b) and Figure 4). This

together with the fact that X̂ ik ⊂ Qi by (4.44) shows that we can replace the covering C in each
component Xi

k by a covering C∗ consisting exclusively of squares in Qi such that all conditions
in (4.15) remain true. �

4.2. Modification of the deformation. In the last section we have seen that for a configu-
ration u ∈ W(Qµ) the jump Ju outside of

⋃m
j=1 ∂P

′
j ∪ Z can be controlled in a suitable way.

We now show that we can provide a modification ū of u such that ū|P ′j is smooth for every P ′j .

To this end, we will proceed similarly as in [29] with the additional difficulty, that we have to
treat the isolated components with particular care.

Theorem 4.5. Let µ > 0, θ > 0 and p ∈ [1, 2). Then there are a universal c > 0 and a
constant C = C(θ, p) > 0 such that for all u ∈ W(Qµ) with (4.4) and for the corresponding
partition (P ′j)

m
j=1 and covering C as given by Theorem 4.3 and Lemma 4.4 the following holds:

There is a modification ū : Qµ → R2, being smooth in
⋃
Q∈C Q

′ ⊃ Qµ \ (Ju ∩
⋃m
j=1 ∂P

′
j), and

an exceptional set F ⊂ Qµ with

|F | ≤ cµθ5H1(Ju), H1(∂F ) ≤ CH1(Ju) (4.46)
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such that ū = u on ∂Qµ (in the sense of traces) and

(i) ‖e(ū)‖Lp(Qµ) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ),

(ii) ‖∇ū−∇u‖Lp(Qµ\F ) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ),

(iii) ‖ū− u‖Lp(Qµ\F ) ≤ Cµ
2
p ‖e(u)‖L2(Qµ).

(4.47)

Proof. Let (P ′j)j , Z =
⋃I
i=8 Z

i and a Whitney-type covering C of Qµ \ (Ju ∩
⋃m
j=1 ∂P

′
j) be

given such that (4.15) holds and each Zi is a union of squares in Ci. We will first use Theorem
3.13 to define infinitesimal rigid motions for each Q ∈ C (Step I), where on each connected
component of Z we choose a single infinitesimal rigid motion. Afterwards, we estimate the
difference of the affine mappings on adjacent squares (Step II).

Finally, with the help of a partition of unity associated to C we will construct a function
being smooth in

⋃
Q∈C Q

′ and confirm (4.47) (Step III). In this context, we explicitly exploit

p < 2 and Hölder’s inequality as we hereby can compensate the difficulty that d(Xi
k)s−1

i →∞
as i → ∞ is possible, where (Xi

k)k,i denote the connected components of Z (cf. (4.17)(i) and
(4.58) below).

In the following C = C(θ, p) > 0 denotes a generic constant and c > 0 is universal. We can
suppose that θ is small with respect to c.

Step I (Definition of infinitesimal rigid motions): Let us first consider the subset of
‘good squares’

Cg :=
{
Q ∈ C : Q′′ 6⊂ Z} ⊂

⋃
i≥1

{
Q ∈ Ci : H1(Ju ∩Q′) ≤ θ2si

}
, (4.48)

where the inclusion follows from (4.15)(iv). We apply Theorem 3.13 on Q′, Q ∈ Cg, to find
infinitesimal rigid motions aQ = aAQ,bQ and exceptional sets EQ ⊂ Q′ such that

d(Q)−
2
p ‖u− aQ‖Lp(Q′\EQ) + d(Q)1− 2

p ‖∇u−AQ‖Lp(Q′\EQ) ≤ c‖e(u)‖L2(Q′). (4.49)

Moreover, taking (4.48) into account we find for all Q ∈ Cg
|EQ| ≤ cd(Q)θ2H1(Ju ∩Q′) ≤ cθ4d(Q)2, H1(∂EQ) ≤ cH1(Ju ∩Q′). (4.50)

As a preparation for Step II, we now estimate the difference of the infinitesimal rigid motions
for neighboring sets in Cg. For Q ∈ Cg we let

Ng(Q) = {Q̂ ∈ Cg \ {Q} : Q′ ∩ Q̂′ 6= ∅} (4.51)

and observe that by (4.15)(ii) we have θd(Q̂) ≤ d(Q) ≤ θ−1d(Q̂) for all Q̂ ∈ Ng(Q). This

also implies #Ng(Q) ≤ cθ−2. Moreover, as the covering consists of dyadic squares, Q′ ∩ Q̂′
contains a ball B with radius larger than cmin{d(Q), d(Q̂)} ≥ cθd(Q) for some small c > 0.

Consequently, by (4.50) we find |Ê ∩ B| ≤ 1
2 |B| for θ sufficiently small, where Ê = EQ̂ ∪ EQ.

Thus, |B \ Ê| ≥ cθ2|Q′| and then we find by Lemma 3.7, (4.49) and the triangle inequality

‖aQ − aQ̂‖
p
Lp(Q′) ≤ C‖aQ − aQ̂‖

p

Lp(B\Ê)
≤ Cd(Q)2‖e(u)‖p

L2(Q′∪Q̂′)
(4.52)

for all Q̂ ∈ Ng(Q). Therefore, by #Ng(Q) ≤ cθ−2 we get∑
Q̂∈Ng(Q)

‖aQ − aQ̂‖
p
Lp(Q′) ≤ Cd(Q)2‖e(u)‖pL2(NQ), (4.53)

where NQ :=
⋃
Q̂∈Ng(Q)∪{Q} Q̂

′.

To conclude Step I, it remains to define infinitesimal rigid motions for the squares in C \ Cg.
Consequently, in view of (4.48) and Lemma 4.4 we have to concern ourselves with the behavior
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of u inside the isolated components (X l
k)k for 8 ≤ l ≤ I. Since Q′ 6⊂ X l

k for all Q ∈ X lk,
(4.17)(ii) yields X lk ⊂ Cg. Consequently, we can derive an estimate of the form (4.53) for all
Q ∈ X lk. Note that N l

k :=
⋃
Q∈X lk

Q′ is connected (cf. Figure 4) and since d(X l
k) ≤ θ−lrsl by

(4.17)(i) we have by Lemma 3.7

‖aQ1 − aQ2‖Lp(N lk) ≤ Cθ
−(1+ 2

p )lr(‖aQ1
− aQ2

‖Lp(Q′1) + ‖aQ1
− aQ2

‖Lp(Q′2))

for all Q1, Q2 ∈ X lk. Thus, the triangle inequality and the fact that N l
k is connected yield

max
Q1,Q2∈X lk

‖aQ1
− aQ2

‖Lp(N lk) ≤ Cθ
−(1+ 2

p )lr
∑

Q̃∈X lk

∑
Q̂∈Ng(Q̃)∩X lk

‖aQ̃ − aQ̂‖Lp(Q̃′)

and therefore the discrete Hölder inequality together with #X lk ≤ cθ−2lr (see (4.17)(i)),

#Ng(Q̃) ∩ X lk ≤ 8 for all Q̃ ∈ X lk and (4.52) implies

max
Q1,Q2∈X lk

‖aQ1 − aQ2‖
p

Lp(N lk)
≤ Cθ−3plr

∑
Q̃∈X lk

∑
Q̂∈Ng(Q̃)∩X lk

‖aQ̃ − aQ̂‖
p

Lp(Q̃′)

≤ Cs2
l θ
−3plr‖e(u)‖p

L2(N lk)
. (4.54)

(See [33, Section 4] for similar arguments.) For each X l
k we fix an infinitesimal rigid motion

by setting alk = aQ for an arbitrary Q ∈ X lk.
We can now define affine mappings associated to each Q ∈ C \ Cg. Given Q ∈ Cl with

Q′′ ⊂ Zl we choose the component X l
k with Q ⊂ X l

k and define aQ = alk.

Step II (Difference of affine mappings on neighboring squares): Similarly as in
(4.51) we introduce the neighbors of each Q ∈ C defined by

N (Q) = {Q̂ ∈ C \ {Q} : Q′ ∩ Q̂′ 6= ∅}.

Let us compare the infinitesimal rigid motions on neighboring squares. First, consider Q ∈ C
with Q ∩ Z = ∅. Then N (Q) ⊂ Cg since each Q̂ ∈ N (Q) satisfies Q̂′′ 6⊂ Z. Consequently, the
results of Step I are applicable and we find by (4.53) for all Q ∈ C with Q ∩ Z = ∅∑

Q̂∈N (Q)
‖aQ − aQ̂‖

p
Lp(Q′) ≤ Cd(Q)2‖e(u)‖pL2(NQ). (4.55)

We now concern ourselves with the squares contained in the isolated components. Recall the
definition of N l

k below (4.53). Let X̄ lk = {Q ∈ Ql : Q ⊂ X l
k, Q∩N l

k 6= ∅}, which consists of the
squares X lk and its neighbors contained in X l

k (cf. Figure 4(b)). Fix Q ∈ X̄ lk and recall that
aQ as in (4.49) if Q ∈ X lk and aQ = alk otherwise. Moreover, by (4.17)(ii) we get aQ̂ = alk for

all Q̂ ∈ N (Q) \ Ng(Q). We apply (4.53)-(4.54) and find for all Q ∈ X̄ lk using #N (Q) ≤ cθ−2

and the definition of alk∑
Q̂∈N (Q)

‖aQ − aQ̂‖
p
Lp(Q′) ≤ Cs

2
l ‖e(u)‖pL2(NQ) + Cs2

l θ
−3plr‖e(u)‖p

L2(N lk)
. (4.56)

Finally, if Q ⊂ X l
k, Q /∈ X̄ lk (see the white squares in Figure 4(b)), we observe that all neighbors

lie in the same isolated component and thus by definition∑
Q̂∈N (Q)

‖aQ − aQ̂‖
p
Lp(Q′) = 0. (4.57)

We now sum over all components and obtain collecting (4.55)-(4.57)

H :=
∑

Q∈C

∑
Q̂∈N (Q)

d(Q)−p‖aQ − aQ̂‖
p
Lp(Q′)

≤ C
∑

l≥8

∑
k

#X̄ lk s
2−p
l θ−3plr‖e(u)‖p

L2(N lk)
+ C

∑
Q∈C

d(Q)2−p‖e(u)‖pL2(NQ).
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Since #X̄ lk ≤ c#X lk ≤ cθ−2lr by (4.17)(iii), we get

H ≤ C
∑

l≥8

∑
k
(#X̄ lk)1− p2 s2−p

l θ−4plr‖e(u)‖p
L2(N lk)

+ C
∑

Q∈C
d(Q)2−p‖e(u)‖pL2(NQ)

Taking (4.15)(iii) into account we see that each x ∈ Qµ is contained in a bounded number of
different neighborhoods NQ, Q ∈ Cg, with NQ as defined in (4.53). Moreover, we note that
for each 8 ≤ l ≤ I the sets (N l

k)k are pairwise disjoint. We observe that Ml :=
∑
k #X̄ lk ≤

c
∑
k #X lk ≤ Cs−1

l µ by (4.17)(iii) and the assumption that H1(Ju) ≤ cθ−2µ (see (4.4)). Con-
sequently, using the discrete Hölder inequality we derive

H ≤ C
∑

l≥8
M

1− p2
l s2−p

l θ−4plr
(∑

k
‖e(u)‖2L2(N lk)

) p
2 + C

(∑
Q∈C

d(Q)2
)1− p2 ‖e(u)‖pL2(Qµ)

≤ C
∑

l≥8
(µsl)

1− p2 θ−4plr‖e(u)‖pL2(Qµ) + Cµ2−p‖e(u)‖pL2(Qµ)

≤ Cµ2−p(∑
l≥8

θplr + 1
)
‖e(u)‖pL2(Qµ) ≤ Cµ

2−p‖e(u)‖pL2(Qµ), (4.58)

where in the second step we used that
∑
Q∈C d(Q)2 ≤ c|Qµ| ≤ cµ2. In the last two steps we

employed sl = µθl, used 1 − p
2 ≥ 6pr ≥ 5pr as r = 1

24 (2 − p) (see before (4.9)), as well as∑
l≥8 θ

plr ≤ C = C(θ, p).

Step III (Definition of the modification): We are now in a position to define the
modification. First, we choose a partition of unity (ϕQ)Q∈C ⊂ C∞(R2) with

∑
Q∈C ϕQ(x) = 1

for x ∈
⋃
Q∈C Q

′ and

(i) supp(ϕQ) ⊂ Q′ for all Q ∈ C,
(ii) ‖∇ϕQ‖∞ ≤ cd(Q)−1 for all Q ∈ C.

(4.59)

As the proof of the existence of such a partition is very similar to the construction of a partition
of unity for Whitney coverings (see [23, 42]), we omit it here. Let us just briefly mention that
the idea it to take a cut-off function ϕ̄ ∈ C∞c ((0, 1)2) and to define the functions ϕQ as suitably
rescaled versions of ϕ̄ taking the fact into account that each point is contained in only a bounded
number of different squares Q′, Q ∈ C. We now define the modification ū : Qµ → R2 by

ū =
∑

Q∈C
ϕQaQ =

∑
Q∈C

ϕQ(AQ ·+bQ) (4.60)

in Qµ. First, observe that ū is smooth in
⋃
Q∈C Q

′ and that
⋃
Q∈C Q

′ ⊃ Qµ \ (Ju ∩
⋃m
j=1 ∂P

′
j)

by (4.15)(i). Let

F :=
⋃

Q∈Cg
EQ ∪ Z. (4.61)

By (4.15)(iii), (4.16), (4.50) and d(Q) ≤ 2
√

2µθ8 for all Q ∈ C ⊂
⋃
j≥8Qj we derive |F | ≤

cµθ5H1(Ju) and H1(∂F ) ≤ CH1(Ju). This gives (4.46). We obtain ∇ū =
∑
Q̂∈C

(
ϕQ̂AQ̂ +

aQ̂ ⊗∇ϕQ̂
)

and using that ∇(
∑
Q̂∈C ϕQ̂) = 0 we find for x ∈ Q, Q ∈ C

∇ū(x) =
∑

Q̂∈C

(
ϕQ̂(x)AQ̂ + (aQ̂(x)− aQ(x))⊗∇ϕQ̂(x)

)
.

Then we get by (4.15)(ii),(iii), (4.58), (4.59) and the discrete Hölder inequality

‖e(ū)‖pLp(Qµ) ≤ C
∑

Q∈C

∑
Q̂∈N (Q)

d(Q)−p‖aQ − aQ̂‖
p
Lp(Q′) ≤ Cµ

2−p‖e(u)‖pL2(Qµ), (4.62)
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which implies (4.47)(i). Similarly, we find using (4.15)(ii),(iii), (4.49), (4.58), (4.59) and the
fact that

⋃
Q∈Cg Q

′ ⊃ Qµ \ F

‖∇ū−∇u‖pLp(Qµ\F ) ≤ C
∑

Q∈Cg
‖∇u−AQ‖pLp(Q′\F ) + CH

≤ C
∑

Q∈Cg
d(Q)2−p‖e(u)‖pL2(Q′) + CH ≤ Cµ2−p‖e(u)‖pL2(Qµ),

where we repeated the Hölder-type estimate in (4.58). Let Sk = {x ∈ Qµ : dist(x, ∂Qµ) ≤ sk}
and observe d(Q) ≤ 2

√
2sk for all Q ∈ C with Q ∩ Sk 6= ∅ by (4.15)(i). Then we recall (4.60)

and get by (4.15)(iii), (4.49)

‖ū− u‖p
Lp(Sk\F )

≤ C
∑

l≥k

∑
Q∈Cg∩Cl

‖u− aQ‖pLp(Q′\F ) ≤ Cs
2
k‖e(u)‖pL2(Qµ). (4.63)

In particular for k = 0 this implies (4.47)(iii).
Finally, to show that ū = u on ∂Qµ one may argue, e.g., as in the proof of [16, Theorem

2.1]. We briefly sketch the argument for the reader’s convenience. Choose ψk ∈ C∞(Qµ) such

that ψk = 1 in a neighborhood of ∂Qµ and ψk = 0 on Qµ \Sk with ‖∇ψk‖∞ ≤ cs−1
k . Note that

(4.15)(vi) and (4.61) imply F∩Sk = ∅ for k large enough. We define vk = ψk(u−ū) ∈ SBD(Qµ)
and show vk → 0 strongly in BD which implies vk|∂Qµ → 0 in L1 and implies the assertion.
In fact, by (4.63) and Hölder’s inequality we get for k sufficiently large

‖ū− u‖L1(Sk) ≤ C(µsk)1− 1
p ‖u− u‖Lp(Sk) ≤ Cµ1− 1

p s
1+ 1

p

k ‖e(u)‖L2(Qµ).

Now we derive that

|Evk|(Qµ) ≤ |Eu|(Sk) + |Eū|(Sk) + cs−1
k ‖ū− u‖L1(Sk)

vanishes for k →∞ and likewise ‖vk‖L1(Qµ) ≤ ‖u− ū‖L1(Sk) → 0. This implies vk → 0 in BD,
as desired. �

Remark 4.6. (i) For later reference we recall that the exceptional set F consists of the isolated
components and the exceptional sets EQ for Q ∈ Cg (cf. (4.61)). In particular, by (4.15)(ii),(iii)
and (4.50) we find (for θ small) that |F ∩Q′| ≤ θ|Q| for all Q ∈ C with Q ∩ Z = ∅.

(ii) Moreover, in view of (4.48), each Q ∈ C with Q ∩ Z = ∅ satisfies (4.49).

We close this section with the observation that also ‖ū‖∞ can be controlled, which is nec-
essary for the proof of (4.3). The reader not interested in the derivation of (4.3) (which will
indeed not be needed in the sequel for the proof of Theorem 2.1) may readily skip the following
lemma.

Lemma 4.7. Let be given the situation of Theorem 4.5. Then the modification ū : Qµ → R2

can be chosen such that (4.46)-(4.47) hold and ‖ū‖L∞(Qµ\F ) ≤ C‖u‖∞ for C = C(θ, p).

Proof. The goal is to show that for each Q ∈ Cg there is an infinitesimal rigid motion âQ such
that

‖âQ‖L∞(Q′) ≤ C‖u‖∞ (4.64)

and (4.49) still holds for a possibly larger constant with âQ in place of aQ. Then we can repeat
the previous proof with âQ in place of aQ and since for each x ∈ Qµ \ F we have Q ∈ Cg for
all Q ∈ C with x ∈ Q′, we obtain |ū(x)| ≤ C‖u‖∞ in view of (4.60). Let us now show (4.64).
Fix Q ∈ Cg. Using (4.49) for the affine mapping aQ we find by (4.50) and Lemma 3.7

‖aQ‖pLp(Q′) ≤ C‖aQ‖
p
Lp(Q′\EQ) ≤ Cd(Q)2‖e(u)‖pL2(Q′) + C|Q′|‖u‖p∞.
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Applying Lemma 3.5 we find for all x ∈ Q′

d(Q)|AQ|+ |AQ x+ bQ| ≤ C(‖e(u)‖L2(Q′) + ‖u‖∞). (4.65)

If now ‖e(u)‖L2(Q′) ≤ ‖u‖∞, then (4.64) directly follows with âQ = aQ. Otherwise, (4.64) is
clearly satisfied with âQ := 0 and in view of (4.65) also (4.49) holds for a larger constant since
then

‖aQ‖Lp(Q′) ≤ Cd(Q)
2
p ‖e(u)‖L2(Q′), ‖AQ‖Lp(Q′) ≤ Cd(Q)

2
p−1‖e(u)‖L2(Q′).

�

4.3. Partitions into John domains. The essential goals of Section 4.1 and Section 4.2
were to provide a partition of Qµ into simply connected sets and an associated configuration,
which is smooth on each component. We will now apply Theorem 3.3 to obtain a refined
decomposition into John domains such that we can apply Korn’s inequality (see Theorem
3.2) with uniform constants. This allows to control the distance of the modification from an
associated infinitesimal rigid motion on each component and leads to the proof of Theorem 4.1.
At the end of this section we will collect all the properties needed for the subsequent analysis
in Section 5. The following result is the key ingredient for the derivation of Theorem 4.1.

Theorem 4.8. Let µ, θ, η > 0 and p ∈ [1, 2). There are a universal c > 0 and a constant C =
C(θ, p) > 0 such that for all u ∈ W(Qµ) with (4.4) and for the corresponding partition (P ′j)

m
j=1,

covering C and modification ū as derived in Theorem 4.3 and Theorem 4.5, respectively, the
following holds:
There is a partition (Pj)

n
j=1 of Qµ and a Borel set R ⊂ Qµ such that each Pj with Pj 6⊂ R is

a c-John domain with Lipschitz boundary. We have

(i) H1
(⋃n

j=1
∂Pj

)
≤ CH1(Ju), H1

(⋃m

j=1
∂P ′j \

⋃n

j=1
∂Pj

)
= 0,

(ii) |R| ≤ η, H1(∂R) ≤ CH1(Ju),
(4.66)

and there are infinitesimal rigid motions aj, j = 1, . . . , n, such that

‖∇v̄‖Lp(Qµ\R) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ), ‖v̄‖Lp(Pj\R) ≤ Cd(Pj)‖∇v̄‖Lp(Pj), (4.67)

where v̄ :=
∑n
j=1 χPj (ū− aj).

Note that the occurrence of a ‘rest set’ R is unavoidable as we have discussed below Theorem
3.3.
Proof. We apply Theorem 4.3 and Theorem 4.5 to obtain a partition (P ′j)

m
j=1, a covering C,

and a modification ū associated to u. Let us first note that Theorem 3.3 cannot be applied
directly since the sets are possibly not Lipschitz. However, we can introduce a refined partition
as follows. (Note that this is just a technical point and not the core of the argument.)

For fixed i ∈ N let Ri be the squares Qi whose closure have nonempty intersection with⋃m
j=1 ∂P

′
j . Since

⋃m
j=1 ∂P

′
j consists of finitely many closed segments, we clearly get for I ∈ N

large enough that R1 :=
⋃
Q∈RI Q

′′ satisfies |R1| ≤ η
2 , H1(∂R1) ≤ cH1(

⋃m
j=1 ∂P

′
j) and there is

a partition (P ′′j )Mj=1 of Qµ such that

(i)
⋃M

j=1
∂P ′′j =

⋃m

j=1
∂P ′j ∪ ∂R1,

(ii) H1
(⋃M

j=1
∂P ′′j

)
≤ cH1

(⋃m

j=1
∂P ′j

) (4.68)

for a universal c > 0. We order the partition such that P ′′j = P ′j \ R1 for j = 1, . . . ,m, and
note that (again for I ∈ N large enough) the sets (P ′′j )mj=1 are simply connected domains with
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Lipschitz boundary, in particular the union of squares. Moreover, we have that R1 ∪
⋃m
j=1 P

′′
j

forms a partition of Qµ.
Now we apply Theorem 3.3 for ε = η

2m on each set in (P ′′j )mj=1 and find a partition Qµ =

R1 ∪ R2 ∪ P ′′′1 ∪ . . . ∪ P ′′′N (up to a set of negligible measure) with R2 =
⋃m
j=1 Ωj0 such that

|Ωj0| ≤
η

2m , H1(∂Ωj0) ≤ cH1(∂P ′′j ) for j = 1, . . . ,m and P ′′′1 , . . . , P ′′′N are c-John domains with

Lipschitz boundary. Then |R2| ≤ η
2 and since

∑m
j=1H1(∂P ′′j ) ≤ 2H1(

⋃m
j=1 ∂P

′′
j ), we get by

(4.13) and (4.68)

H1
(⋃m

j=1
∂Ωj0

)
+H1

(⋃N

j=1
∂P ′′′j

)
≤ cH1

(⋃M

j=1
∂P ′′j

)
≤ cH1

(⋃m

j=1
∂P ′j

)
≤ CH1(Ju).

By (Pj)
n
j=1 we denote the partition consisting of (P ′′′j )Nj=1, (Ωj0)mj=1, and (P ′′j )Mj=m+1. Then in

view of (4.68) and the previous estimate, (4.66) follows. We let R = R1 ∪ R2 and observe
|R| ≤ η as well as H1(∂R) ≤ CH1(Ju). Recall that ū is smooth on each P ′′′j , j = 1, . . . , N .

Applying Theorem 3.2 on each P ′′′j we obtain infinitesimal rigid motions (aj)
N
j=1 such that by

Hölder’s inequality and the fact that Qµ \R =
⋃N
j=1 P

′′′
j

‖∇v̄‖Lp(Qµ\R) ≤ C‖e(ū)‖Lp(Qµ) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ), (4.69)

where v̄ := ū −
∑N
j=1 χP ′′′j aj . By Poincaré’s inequality and a scaling argument we also have

‖v̄‖Lp(P ′′′j ) ≤ Cd(P ′′′j )‖∇v̄‖Lp(P ′′′j ) for j = 1, . . . , N . With aj = 0 for all other components we

indeed get v̄ =
∑n
j=1 χPj (ū− aj). �

We are now in a position to give the proof of Theorem 4.1. The reader not interested in the
derivation of (4.3) may readily skip the second part of the proof.
Proof of Theorem 4.1. (1) Let p ∈ [1, 2). We may without restriction assume that H1(Ju) ≤
cθ−2µ as otherwise the claim is trivially satisfied (cf. (4.4)). Let (P ′j)

m
j=1, C be the partition

and covering constructed in Theorem 4.3 and let ū be the modification given by Theorem 4.5.
We distinguish two cases:

(a) Suppose first that H1(Ju \
⋃
Q∈C Q

′) ≥ µθ2. Then H1(Ju∩
⋃m
j=1 ∂P

′
j) ≥ µθ2 by (4.15)(i).

We apply Theorem 4.8 to obtain the partition Qµ =
⋃n
j=1 Pj such that by (4.4) and (4.66)(i)

H1
(⋃n

j=1
∂Pj

)
≤ CH1(Ju) ≤ Cµ ≤ CH1(Ju ∩

⋃m

j=1
∂P ′j) ≤ CH1(Ju ∩

⋃n

j=1
∂Pj),

where in the last step we used
⋃m
j=1 ∂P

′
j ⊂

⋃n
j=1 ∂Pj up to a set of negligible H1-measure.

This gives (4.2)(i). Let F be the exceptional set derived in Theorem 4.5 (see (4.46)), let R the
set in (4.66)(ii) and define

E = F ∪R. (4.70)

Then (4.1) follows directly from (4.46) and (4.66)(ii) since η can be chosen arbitrarily small.
To see (4.2)(ii), we apply (4.47)(ii) and (4.67) to find

‖∇v‖Lp(Qµ\E) ≤ ‖∇v̄‖Lp(Qµ\R) + ‖∇u−∇ū‖Lp(Qµ\F ) ≤ Cµ
2
p−1‖e(u)‖L2(Qµ), (4.71)

where v = u−
∑n
j=1 χPjaj and v̄ as in (4.67) for infinitesimal rigid motions (aj)

n
j=1.

(b) We now supposeH1(Ju\
⋃
Q∈C Q

′) ≤ µθ2. (Observe that this includes the caseH1(Ju) ≤
µθ2). By the construction of ū in Theorem 4.5 this implies H1(Jū) ≤ µθ2. Consequently, we

may directly apply Theorem 3.13 on ū and define E = Ẽ ∪ F with Ẽ as in (3.7) and F as in
(4.46). Observe that also in this case (4.1) holds and that (4.2)(i) is trivially satisfied for the
partition consisting only of Qµ. Similarly as in case (a) property (4.2)(ii) follows from (3.8)
and (4.47)(ii).
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(2) We now show that we can find an exceptional set E′ and a configuration v′ = u −∑n
j=1 a

′
jχPj such that (4.1)-(4.3) hold. We only treat the case (a) where H1(Ju \

⋃
Q∈C Q

′) ≥
µθ2 since (b) is similar. With E as in part (1) we define P = {Pj : |Pj \E| ≥ 1

2 |Pj |} and define

E′ = E∪
⋃
P /∈P P . Observe that H1(∂E′) ≤ CH1(Ju) by (4.1), (4.66)(i) and |E′| ≤ 2|E|. This

yields (4.1) for E′.
Note that P ⊂ (P ′′′j )Nj=1 for the components considered before (4.69). Since P ′′′j is a c-John

domain, we get |P ′′′j | ≥ c′d(P ′′′j )2 for c′ = c′(c). Therefore, |Pj \ E| ≥ 1
2c
′(d(Pj))

2 for all
Pj ∈ P and by Lemma 3.7 we get ‖aj‖Lp(Q) ≤ C‖aj‖Lp(Pj\E), where Q is a square containing
Pj with |Pj \ E| ≥ c′|Q| for a possibly smaller c′. By Lemma 3.5, (4.67) and the fact that
‖ū‖L∞(Qµ\F ) ≤ C‖u‖∞ (see Lemma 4.7) we then derive

d(Pj)|Aj |+ ‖aj‖L∞(Pj) ≤ Cd(Pj)|Pj |−
1
2−

1
p ‖aj‖Lp(Pj) ≤ C|Pj |

− 1
p ‖aj‖Lp(Pj)

≤ C|Pj |−
1
p ‖aj‖Lp(Pj\E) ≤ C|Pj |−

1
p ‖ū− aj‖Lp(Pj\E) + C‖ū‖L∞(Qµ\F )

≤ C(d(Pj))
1− 2

p ‖∇v̄‖Lp(Pj) + C‖u‖∞.

If (d(Pj))
1− 2

p ‖∇v̄‖Lp(Pj) ≤ ‖u‖∞, we indeed obtain ‖v‖L∞(Pj) ≤ C‖u‖∞ and set v′ = v on Pj ,
i.e. a′j = aj . Otherwise, we set v′ = u on Pj , i.e a′j = 0, and derive by a short calculation using
the previous estimate

‖∇v′‖pLp(Pj\E) ≤ C‖∇v‖
p
Lp(Pj\E) + C|Pj ||Aj |p ≤ C‖∇v‖pLp(Pj\E) + C‖∇v̄‖pLp(Pj)

.

Consequently, summing over all components Pj ∈ P and using (4.67), (4.71) we see that also
v′ satisfies (4.2)(ii) and additionally ‖v′‖∞ ≤ C‖u‖∞, which gives (4.3). �

The goal in the next section will be to apply Theorem 4.1 iteratively on various mesoscopic
scales. In this context, however, we will not only need the result of Theorem 4.1, but also the
structure of the Whitney-type covering and the exceptional sets analyzed in this section. In
the following lemma we investigate the relation between the partition given by Theorem 4.8,
the ‘rest set’ and the covering C constructed in Theorem 4.3. As a preparation we define

R′ = R ∪
⋃

Q∈C:|Q′∩R|≥θ|Q|
Q (4.72)

and note that |R′| ≤ 12θ−1η by (4.66) and (4.15)(iii).

Lemma 4.9. Let be given the situation of Theorem 4.8 with (Pj)
n
j=1, R as in (4.66) and

R′ as in (4.72). Then there is another partition (P ∗j )Nj=1 = PR ∪ Pgood ∪ Psmall of Qµ and

(Aj)
N
j=1 ⊂ R2×2

skew such that Pgood consists of c-John domains, H1
(⋃N

j=1 ∂P
∗
j

)
≤ CH1(Ju) and

with P ∗j,C :=
⋃
Q∈C,Q∩P∗j 6=∅

Q we get

(i)
∑N

j=1
‖∇ū−Aj‖pLp(P∗j \R) ≤ Cµ

2−p‖e(u)‖pL2(Qµ),

(ii) P ∗j ⊂ R′ for all P ∗j ∈ PR,

(iii) d(Q) ≤ 4
√

2d(P ∗j ) for all Q ∈ C : Q ∩ P ∗j 6= ∅ and for all P ∗j ∈ Pgood,

(iv) for all P ∗k ∈ Psmall there is P ∗j ∈ Pgood with P ∗k,C ⊂ P ∗j,C .

(4.73)

Remark 4.10. Combining (4.73)(i) with (4.47) and letting E as in (4.1) we also get (see (4.71)
for a similar argument)∑N

j=1
‖∇u−Aj‖pLp(P∗j \E) ≤ Cµ

2−p‖e(u)‖pL2(Qµ). (4.74)



34 MANUEL FRIEDRICH

Proof of Lemma 4.9. With (Pj)
n
j=1 from Theorem 4.8 we let

P ′good = {Pj : d(Q) ≤ 4
√

2d(Pj) for all Q ∈ C : Q ∩ Pj 6= ∅} (4.75)

and by P ′small we denote the remaining components. Recalling (4.5) we find for each Pj ∈ P ′small

some Q ∈ C such that Pj ⊂ Q′. Then (4.15)(ii) shows that Pj ∈ P ′small intersects at most cθ−2

different squares of C. Consequently, indicating by P ′′small the nonempty sets in {Q ∩ Pj : Pj ∈
P ′small, Q ∈ C} we derive for c > 0 large enough∑

P∈P′′small

H1(∂P ) ≤ cθ−2
∑

Pj∈P′small

H1(∂Pj). (4.76)

Note that P ′good ∪P ′′small forms a partition. We let PR = {P ∈ P ′good ∪P ′′small : P ⊂ R′} and let

P ′′good = P ′good \ PR, P ′′′small = P ′′small \ PR. By Csmall we denote the squares Q ∈ C with Q 6⊂ R′

and Q∩
⋃
Pj∈P′′good

Pj = ∅. As then |Q∩
⋃
P∈P′′′small

P | ≥ |Q \R′| ≥ (1− θ)|Q| = 1−θ
16 (H1(∂Q))2

for Q ∈ Csmall by (4.72), the isoperimetric inequality and (4.76) yield for C = C(θ) > 0∑
Q∈Csmall

H1(∂Q) ≤ C
∑

Q∈Csmall

∑
P∈P′′′small

H1(∂P ∩Q) ≤ C
∑

Pj∈P′small

H1(∂Pj). (4.77)

We define Pgood = P ′′good∪(Q)Q∈Csmall
and let Psmall ⊂ P ′′′small be the components not contained

in some Q,Q ∈ Csmall. We denote the sets of the partition PR ∪ Pgood ∪ Psmall by (P ∗j )Nj=1.

Note that by Theorem 4.8, Pgood consists of c-John domains. The assertion H1
(⋃N

j=1 ∂P
∗
j

)
≤

CH1(Ju) follows from (4.66)(i) and (4.76)-(4.77). Moreover, (4.73)(ii) follows directly from the
definition of PR, (4.73)(iii) is obvious for (Q)Q∈Csmall

and otherwise we recall (4.75). Likewise,
(4.73)(iv) follows from the construction of Psmall, in particular the definition of Csmall.

Finally, by (4.47), the fact that ū is smooth in Q,Q ∈ Csmall, and Korn’s inequality there
are matrices AQ ∈ R2×2

skew such that∑
Q∈Csmall

‖∇ū−AQ‖pLp(Q) ≤ Cµ
2−p‖e(u)‖pL2(Qµ).

For the components P ′good∪Psmall we apply (4.67) and then get that there are matrices (Aj)
N
j=1

such that (4.73)(i) holds. �

The following lemma collects the properties needed for the following analysis in Section 5.
Similarly as in the proof of Theorem 4.1 we will distinguish two cases depending on whether
the jump set is large or not. This will be reflected in (4.79) below.

Given a covering C as in Theorem 4.3, a partition (Pj)j as in Theorem 4.8 (or Lemma 4.9)
and an exceptional set R′ as in (4.72) we define

Q(Pj ; C, R′) = {Q ∈ C : Q ∩ Pj 6= ∅, Q ∩ Pj 6⊂ R′} (4.78)

and the sets Pj,cov =
⋃
Q∈Q(Pj ;C,R′)Q, which will play a crucial role in Section 5 to control the

difference of infinitesimal rigid motions. Note that the definition of Pj,cov always depends on
C, R′ although not made explicit in the notation.

Lemma 4.11. Let µ, θ > 0, η > 0, p ∈ [1, 2) and r as in (4.9). Then there are a universal
constant c > 0 and C = C(θ, p) > 0 such the the following holds:

(1) For each u ∈ W(Qµ) with H1(Ju) ≤ 2
√

2θ−2µ there is a partition Qµ =
⋃n
j=0 Pj with

P0 = ∅ or P0 = Qµ, (4.79)
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a covering Cu ⊂
⋃
i≥1Qi of Qµ and sets Zlu, l ≥ 8, as given in Lemma 4.4 such that with

Su := Ju \
⋃
Q∈Cu Q

′ we have

(i) H1
(⋃n

j=1
∂Pj

)
≤ CH1(Su),

(ii) Q ⊂ Qµ \ Su for all Q ∈ Cu, Q ⊂ Qµ \ Su for all Q ⊂
⋃

l≥8
Zlu,

(iii)
⋃

l≥8

⋃
k
∂X l

k ⊂
⋃n

j=1
∂Pj ,

(4.80)

where (X l
k)k denote the connected components of Zlu. Each Zlu is the union of squares in Ql∩Cu

up to a set of measure zero. Moreover, there are exceptional sets Eu, Ru such that for l ≥ 8
one has

(i) |Eu| ≤ cµθ2H1(Ju) ≤ cd(Qµ)θ2H1(Ju ∩Qµ) ≤ Cµ2, |Ru| ≤ η

(ii) |Q′ ∩ Eu| ≤ cθ|Q| for all Q ∈ Cu with Q 6⊂ Ru, Q ∩
⋃

l≥8
Zlu = ∅,

(iii) d(X l
k) ≤ θ−rlsl for all X l

k,

(iv) |Zlu| ≤ Cθ−lrslH1(Ju) ≤ Cθ−rlslµ,

(4.81)

and there are infinitesimal rigid motions aj = aAj ,bj , j = 1, . . . , n, such that

(i)
∑n

j=0
‖∇u−Aj‖pLp(Pj,cov\Eu) ≤ Cµ

2−p‖e(u)‖pL2(Qµ),

(ii) #{Pj,cov : x ∈ Pj,cov} ≤ c for all x ∈ Qµ,
(4.82)

where Pj,cov as defined in (4.78) with respect to Cu, Ru.
(2) If P0 = Qµ, then P0,cov = Qµ, Su = ∅,

⋃
l≥8 Z

l
u = ∅ and there is a set Γu ⊂ ∂Qµ with

H1(Γu) ≤ cθµ such that ˆ
∂Qµ\Γu

|Tu− a0|2 dH1 ≤ cµ‖e(u)‖2L2(Qµ), (4.83)

where Tu denotes the trace of u on ∂Qµ.

Proof. Similarly as in the proof of Theorem 4.1 we distinguish two cases depending on whether
the jump set is large or not. Let C be the covering constructed in Lemma 4.4 and ū the
modification given by Theorem 4.5.

(a) First assume H1(Ju \
⋃
Q∈C Q

′) ≥ µθ2. We define Cu = C and (Zlu)l≥8 = (Zl)l≥8 as in

Lemma 4.4 such that (4.15) holds. We let Eu as in Theorem 4.1 and Ru = R′ as in (4.72).
Denote the partition given in Lemma 4.9 by (P ∗j )Nj=1 = PR ∪ Pgood ∪ Psmall and note that

H1
(⋃N

j=1 ∂P
∗
j

)
≤ CH1(Ju).

For each P ∗j ∈ Pgood choose a set T (P ∗j ) ⊂ Psmall with P ∗k,C ⊂ P ∗j,C for P ∗k ∈ T (P ∗j ) (cf.

(4.73)(iv)) such that Psmall =
⋃̇
P∗j ∈Pgood

T (P ∗j ) is a partition of Psmall. Set T (P ∗j ) = ∅ for

P ∗j ∈ PR. Let (Pj)
n
j=0 be the partition of Qµ with P0 = ∅ consisting of the components (X l

k)l,k
of (Zlu)l≥8 and the sets

Pj :=
(
P ∗j ∪

⋃
P∗k∈T (P∗j )

P ∗k
)
\
⋃

l≥8
Zlu, for P ∗j ∈ PR ∪ Pgood. (4.84)

We now confirm (4.80)-(4.82). First, the definition of the partition directly implies (4.80)(iii).
By (4.16)(ii) and H1(Ju) ≤ cµθ−2 we see H1(

⋃n
j=1 ∂Pj) ≤ CH1(Ju) ≤ Cµ. Then (4.80)(i)

follows from the assumption H1(Su) ≥ µθ2, where Su = Ju\
⋃
Q∈Cu Q

′. Likewise, the definition
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of Su and the fact that Q′ ⊂ Qµ for all Q ∈ Cu (see (4.15)(i)) imply Q′ ⊂ Qµ \ Su and
particularly (4.80)(ii).

Moreover, the first part of (4.81)(i) follows from (4.1) and H1(Ju) ≤ cµθ−2. Applying
(4.66)(ii) with θ

12η in place of η, we get |Ru| ≤ η by (4.72). Likewise, (4.81)(iii),(iv) are
consequences of Lemma 4.4. Recalling (4.70) we find Eu \ R ⊂ F with F as defined in The-
orem 4.5 and R as in (4.66)(ii). Thus, Remark 4.6(i) implies |Q′ ∩ (Eu \ R)| ≤ θ|Q| for all
Q ∩

⋃
l≥8 Z

l
u = ∅. Then the fact that |Q′ ∩R| ≤ θ|Q| for all Q ∈ Cu with Q 6⊂ Ru (see (4.72))

yields (4.81)(ii).

It remains to show (4.82). First, each component Pj ∈ (X l
k)l,k of Zu :=

⋃
l≥8 Z

l
u consists of

a union of squares in Ql ∩ Cu and thus Pj,cov ⊂ Pj ⊂ F ⊂ Eu (cf. Remark 4.6(i) and (4.61)).
Now consider Pj such that P ∗j ∈ PR with P ∗j as in (4.84). As Pj ⊂ P ∗j ⊂ Ru, (4.78)

implies Pj,cov = ∅. For Pj with P ∗j ∈ Pgood we recall that P ∗j is a c-John domain. Let
Q ∈ Q(Pj ; Cu, Ru) and note that by (4.73)(iv), (4.84), and the choice of T (P ∗j ) we have

Q∩P ∗j 6= ∅. Since d(Q) ≤ 4
√

2d(P ∗j ) by (4.73)(iii), Definition 3.1 implies that |Q′∩P ∗j | ≥ c′|Q|
for some c′ small only depending on the John constant c. As for Q ∈ Q(Pj ; Cu, Ru) we have
Q ∩ Zu = ∅ (see (4.84)) and Q 6⊂ Ru, this also yields

|(P ∗j ∩Q′) \ Eu| ≥ c|Q| (4.85)

for θ small by (4.81)(ii). Consequently, each Q ∈ Cu intersects only a bounded number of
different (Pj,cov)nj=1, which establishes (4.82)(ii). Recall that by Remark 4.10 we get (Aj)

N
j=1 ⊂

R2×2
skew such that (4.74) holds (with Eu in place of E).

For Q ∈ Q(Pj ; Cu, Ru) we have Q∩Zu = ∅ and thus by Remark 4.6(ii) there is AQ ∈ R2×2
skew

such that (4.49) holds. This together with Lemma 3.7 and (4.85) yields

‖∇u−Aj‖pLp(Q\Eu) ≤ C‖∇u−AQ‖
p
Lp(Q\EQ) + C‖AQ −Aj‖pLp((P∗j ∩Q′)\Eu)

≤ C‖∇u−AQ‖pLp(Q′\EQ) + C‖∇u−Aj‖pLp((P∗j ∩Q′)\Eu)

≤ Cd(Q)2−p‖e(u)‖pL2(Q′) + C‖∇u−Aj‖pLp((P∗j ∩Q′)\Eu).

Summing over all Pj with P ∗j ∈ Pgood and Q ∈ Q(Pj ; Cu, Ru) we finally get (4.82)(i). Indeed,
for the term on the right we use (4.74) and the fact that each x ∈ Qµ is contained in a bounded
number of different Q′, Q ∈ Cu. For the left term we apply the discrete Hölder inequality to
compute (cf. (4.58) for a similar argument)∑

Q∈Cu
(d(Q))2−p‖e(u)‖pL2(Q′) ≤

(∑
Q∈Cu

|Q|
)1− p2 ‖e(u)‖pL2(Qµ). (4.86)

(b) We now concern ourselves with the case H1(Ju \
⋃
Q∈C Q

′) ≤ µθ2. In particular, we have

H1(Jū) ≤ µθ2. We proceed as in case (b) in the proof of Theorem 4.1 and let Eu = E′ ∪ F
with E′ as in (3.7) and F as given by Theorem 4.5. Moreover, we let P0 = Qµ, a0 as in (3.8),
Ru = ∅, Cu = {Q ∈ Q1 : Q ⊂ Qµ} and Zlu = ∅ for all l ≥ 8.

First, (4.80)(i),(iii) are trivially satisfied since the partition only consists of P0. Moreover,
(4.80)(ii) follows from the fact that

⋃
l≥8 Z

l
u = ∅ and Su = ∅. Properties (4.81)(iii),(iv) are

trivial. By H1(Ju) ≤ cµθ−2, (3.7) and (4.46) we get

|Eu| ≤ |E′|+ |F | ≤ c(H1(Jū))2 + cµθ5H1(Ju) ≤ cµ2θ3.

This implies (4.81)(i) and also (4.81)(ii) since |Q| = 4µ2θ2 for all Q ∈ Cu. As P0,cov = P0,
(4.82) follows from (3.8). Finally, (3.9) applied on ū together with H1(Jū) ≤ µθ2 and the fact
that Tu = T ū on ∂Qµ yields (4.83). �
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5. Derivation of the piecewise Korn inequality

This section is devoted to the proof of our piecewise Korn inequality. We first assume that
Ω = (−µ0, µ0)2 is a square with µ0 > 0. Similarly as in (4.5) we define Qi := Qti for ti = µ0θ

i,
θ > 0, and denote by Q′ = 3

2Q the enlarged square corresponding to Q ∈ Qi. (We will apply

the results of Section 4 on squares (−µ, µ)2 of different sizes and thus in general si 6= ti, where
si as defined before (4.5).) Recall the definition of the set W(Ω) before Theorem 4.1. We first
establish the main result for functions in W(Ω) which additionally satisfy

H1(Q ∩ Ju) ≤ θ−1d(Q) for all Q ∈
⋃

i≥1
Qi. (5.1)

Afterwards, we drop assumption (5.1) and show the result for all functions in W(Ω). Finally,
we pass to general domains with Lipschitz boundary and Theorem 2.1 will be derived using a
density argument (see Section 5.2).

5.1. Proof for configurations with regular jump set. In this section we let Ω = Qµ0
=

(−µ0, µ0)2. We first prove Theorem 2.1 for configurations in W(Qµ0) satisfying (5.1), which
already represents the core of the argument. If (5.1) is violated on a square Q, we add ∂Q to
the boundary of the partition and treat the problem on Q as a separate problem independent
from the analysis on the rest of the domain (see Theorem 5.2 below for details).

The strategy is to apply first Lemma 4.11 on Qµ0
whereby we derive a partition and corre-

sponding infinitesimal rigid motions. Moreover, we obtain a Whitney covering and an associ-
ated exceptional set (Step I). We then apply the arguments iteratively on the squares of the
covering in order to establish a partition and estimates which hold up to an exceptional set
progressively becoming smaller (cf. (4.81)(i),(ii)). Here we will crucially need the properties
(4.80)(i),(ii) which ensure that each part of Ju is only ‘used’ in one single iteration step to
control the length of the boundary of the partition (Step II). Moreover, the validity of Korn’s
inequality on the enlarged components Pj,cov (see (4.82)(i)) will allow to control the difference
of infinitesimal rigid motions given in different iteration steps (Step III). In this context it is
again fundamental that p < 2 as hereby using Hölder’s inequality a blow up of the energy can
be avoided (cf. (5.26) below). As before we have to treat the contributions of isolated compo-
nents separately, where we exploit (4.80)(iii) and (4.81)(iii),(iv). Finally, as ∇u ∈ L∞(Qµ0

),
after a finite number of iteration steps the exceptional set, denoted by EI , is small enough such
that the contribution of ‖∇u‖Lp(EI) is negligible (Step IV).

Theorem 5.1. Let p ∈ [1, 2). Then Theorem 2.1 holds for all u ∈ W(Qµ0
) satisfying (5.1).

Proof. Let p ∈ [1, 2) and u ∈ W(Qµ0
) be given satisfying (5.1). Note that this particularly im-

pliesH1(Ju) ≤ 2
√

2θ−2µ0. A classical result states that u is piecewise rigid if ‖e(u)‖L2(Qµ0 ) = 0

(see also Remark 2.2(i)), so we can concentrate on the case ‖e(u)‖L2(Qµ0 ) > 0. Since ∇u ∈
Lp(Qµ0

), we can select ε sufficiently small such that for all Borel sets B ⊂ Qµ0
with |B| ≤ 4ε

one has

‖∇u‖pLp(B) ≤ µ
2−p
0 ‖e(u)‖pL2(Qµ0 ). (5.2)

We introduce p′ = 1 + p
2 ∈ (p, 2). Later we will pass from p′ to p by Hölder’s inequality. We

let r = 2−p
24 as in (4.9) and set λ = (1−r)(2−p)

3p+2 . In the following c > 0 stands for a universal

constant and C = C(θ, p) > 0 for a generic constant independent of ε and µ0. We can suppose
that θ is small with respect to c and λ, particularly that cθλ ≤ 1

6 (cf. (5.22) below). At the
end of the proof we will fix θ depending on p such that eventually the constant C depends only
on p.
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Step I (Induction hypothesis): We first formulate the induction hypothesis for step i.
Assume we have a partition Pi = (P ij )

∞
j=1 of Qµ0 (up to a set of negligible measure), a covering

Ci of Qµ0
with Ci ⊂

⋃
j≥i+1Qj consisting of pairwise disjoint dyadic squares, exceptional sets

Ei, Ri ⊂ Qµ0
with |Ri| ≤ ε

2

∑i
j=0 2−j , a set Si ⊂ Ju and sets (Zli)l≥i+8 such that

(i) H1
(⋃∞

j=1
∂P ij \ ∂Qµ0

)
≤ C1H1(Si),

(ii) Q ⊂ Qµ0
\ Si for all Q ∈ Ci, Q ⊂ Qµ0

\ Si for all Q ⊂
⋃

l≥i+8
Zli ,

(iii)
⋃

l≥i+8

⋃
k
∂X l,i

k ⊂
⋃∞

j=1
∂P ij

(5.3)

for some C1 = C1(θ, p), where (X l,i
k )k denote the connected components of Zli . Each set Zli is

the union of squares in Ql ∩ Ci up to a set of measure zero. Moreover, we have for l ≥ i+ 8

(i) |Ei| ≤ C1tiµ0,

(ii) |Zli | ≤ C1θ
−rltlµ0,

(iii) d(X l,i
k ) ≤ θ−rltl for all X l,i

k ,

(iv) |Q ∩ Ei| ≤ cθ|Q| for Q ∈ Ci with Q 6⊂ Ri, Q ∩
⋃

l≥i+8
Zli = ∅.

(5.4)

We further suppose that that there is a decomposition Qµ0
=
⋃i
l=0D

i
l of Qµ0

such that for
some C2 = C2(θ, p)

|Di
l | ≤ C2θ

−rltlµ0 for all 1 ≤ l ≤ i. (5.5)

For each P ij we set P ij,cov =
⋃
Q∈Q(Pj ;Ci,Ri)Q with Q(Pj ; Ci, Ri) as defined in (4.78). We assume

that for each P ij there is Aij ∈ R2×2
skew such that for all 0 ≤ l ≤ i

(i)
∑∞

j=1
‖∇u−Aij‖

p′

Lp′ ((P ij,cov∩Dil )\Ei)
≤ C3θ

−λlµ2−p′
0 ‖e(u)‖p

′

L2(Qµ0 ),

(ii) #{P ij,cov : x ∈ P ij,cov} ≤ N0 for all x ∈ Qµ0
,

(5.6)

for some N0 ∈ N and a constant C3 = C3(θ, p) large enough, which will eventually be specified
in (5.18) and (5.22). Note that the constant in (5.6)(i) blows up for l→∞, but that Di

l covers
only a comparably small set (see (5.5)).

First, the properties hold for i = 0. To see this, we apply Lemma 4.11 on Qµ0 with η = ε
2

to find a partition Qµ0 =
⋃n0

j=0 P
0
j and define C0 = Cu, E0 = Eu, R0 = Ru, Zl0 = Zlu for l ≥ 8

as well as S0 := Ju \
⋃
Q∈C0 Q

′. (Lemma 4.11 is applicable as H1(Ju) ≤ 2
√

2θ−2µ0 by (5.1).)

Then with η = ε
2 we get |R0| ≤ ε

2 and (5.3)-(5.4) follow from (4.80)-(4.81). Moreover, (5.6)

is a consequence of (4.82) with D0
0 = Qµ0 and p′ in place of p if we choose C3 large enough.

Step II (Induction step: Partition): We now pass from step i − 1 to i. For each
Q ∈ Ci−1 we apply Lemma 4.11 with p′ in place of p, η = ε2−i−1|Qµ0

|−1|Q| and µ = tk with
k such that Q ∈ Qk. Note that Lemma 4.11 is applicable due to (5.1). We obtain a partition

Q =
⋃nQ
j=0 P

Q
j up to a set of negligible measure satisfying (4.79), a set RQ ⊂ Q with

|RQ| ≤ ε2−i−1|Qµ0
|−1|Q|, (5.7)

an exceptional set EQ, a covering CQ with CQ ⊂
⋃
j≥i+1Qj , the set SQ = (Ju∩Q)\

⋃
Q̂∈CQ Q̂

′,

sets (ZlQ)l≥8 as in Lemma 4.4 and infinitesimal rigid motions (aQj )
nQ
j=0 such that (4.80)-(4.82)

hold (with sl = tkθ
l for l ∈ N and µ = tk). Recall particularly that depending on the case in
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(4.79) either PQ0 or
⋃nQ
j=1 P

Q
j forms a partition of Q. We split up the covering into different

sets as follows. Let C′i−1 be the squares Q ∈ Ci−1 with PQ0 = ∅, define

C′′′i−1 :=
{
Q ∈ Ci−1 \ C′i−1 : Q ⊂

⋃
l≥i+7

Zli−1, H1(Ju ∩ ∂Q) ≥ θd(Q)
}

(5.8)

and C′′i−1 = Ci−1 \ (C′i−1 ∪ C′′′i−1). For C′′i−1 ∪ C′′′i−1 the associated partition is trivial (see Lemma
4.11 (2)). (Note that the introduction of C′′′i−1 is only a technical point. The core of the
argument lies in the separation of C′i−1 and C′′i−1.)

Let Ri = Ri−1 ∪
⋃
Q∈Ci−1

RQ and observe that |Ri| ≤ ε
2

∑i
j=0 2−j by (5.7). Recall that the

connected components (X l,i−1
k )k≥1 of Zli−1 consist of squares Ql ∩ Ci−1, i.e. {Q ∈ Ql : Q ⊂

X l,i−1
k } = {Q ∈ Ci−1 : Q ⊂ X l,i−1

k }. Then by P lk we denote the connected components of the
set

Y lk := int
(⋃

Q∈C′′i−1,Q⊂X
l,i−1
k

Q
)

= int
(⋃

Q∈Ql\(C′i−1∪C′′′i−1),Q⊂Xl,i−1
k

Q
)
. (5.9)

Note that by (4.80)(i) we have H1(∂Q) ≤ H1(
⋃nQ
j=1 ∂P

Q
j ) ≤ CH1(SQ) for all Q ∈ C′i−1. Then∑

P∈Plk
H1(∂P \ ∂X l,i−1

k ) ≤
∑

Q∈C′i−1∪C′′′i−1,Q⊂X
l,i−1
k

H1(∂Q) (5.10)

≤ C
∑

Q∈C′i−1,Q⊂X
l,i−1
k

H1(SQ) +
∑

Q∈C′′′i−1,Q⊂X
l,i−1
k

H1(∂Q).

We now introduce the partition Pi for iteration step i and show (5.3)-(5.4). We set

Pa = {PQj : Q ∈ C′i−1, j = 1, . . . , nQ} ∪ {PQ0 = Q : Q ∈ C′′′i−1},

Pb = {P ∈ P lk : l ≥ i+ 7, k ≥ 1}

P ′j := P i−1
j \

⋃
P∈Pa∪Pb

P for all P i−1
j ∈ Pi−1, Pc = (P ′j)

∞
j=1.

(5.11)

Define Pi = Pa ∪ Pb ∪ Pc and denote the sets also by Pi = (P ij )
∞
j=1. We observe that Pi is

a partition of Qµ0 up to a set of negligible measure and that the sets in Pc do not intersect⋃
l≥i+7 Z

l
i−1.

By (5.8) with ŜQ := Ju ∩ ∂Q we find H1(∂Q) = 2
√

2d(Q) ≤ CH1(ŜQ) for Q ∈ C′′′i−1.
Consequently, using (4.80)(i) for the components C′i−1 and applying (5.3)(iii) for step i− 1 as
well as (5.10) we get

H1
(⋃∞

j=1
∂P ij \

(⋃∞
j=1

∂P i−1
j ∪ ∂Qµ0

))
≤ C

∑
Q∈C′i−1

H1(SQ) + C
∑

Q∈C′′′i−1

H1(ŜQ).

Letting Si = Si−1 ∪ S∗i with S∗i :=
⋃
Q∈C′i−1

SQ ∪
⋃
Q∈C′′′i−1

ŜQ we obtain Si ⊂ Ju and confirm

(5.3)(i) as follows. Since SQ = ∅ for all Q ∈ C′′i−1 ∪ C′′′i−1 (see Lemma 4.11 (2)), SQ ⊂ Q ⊂
Qµ0
\ Si−1 for all Q ∈ C′i−1 and ŜQ ⊂ Q ⊂ Qµ0

\ Si−1 for all Q ∈ C′′′i−1 by (5.3)(ii) for step

i− 1, we get Si−1 ∩S∗i = ∅. Moreover, each x ∈ Qµ0 is contained in at most four different ŜQ.
Then the claim follows from (5.3)(i) for step i− 1 (if we choose C1 ≥ C).

Moreover, we define Ci =
⋃
Q∈Ci−1

CQ ⊂
⋃
j≥i+1Qj and for l ≥ i+ 8

Zli =
⋃

k≥i

⋃
Q∈C′i−1∩Qk

Zl−kQ , Ei =
⋃

Q∈Ci−1

EQ. (5.12)

Each Zli consists of squares in Ql ∩ Ci up to a set of negligible measure since, as noted below

(4.80), for each Q ∈ Ci−1 ∩ Qk the sets ZjQ consist of squares with sidelength 2sj , where

according to the notation in the previous section we have sj = tkθ
j for j ∈ N.
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We now confirm (5.3)(ii). Consider Q ∈ Ci. First, the fact that Ci is a refinement of Ci−1

yields some Q̂ ∈ Ci−1 such that Q ⊂ Q̂ . Then (5.3)(ii) for step i− 1 implies Q ⊂ Qµ0
\ Si−1.

Likewise, recalling the definition of the set S∗i , we get Q ∩ S∗i = ∅ by (4.80)(ii) and therefore
Q ∩ Si = ∅.

In the special case that Q̂ ∈ C′i−1 and Q ⊂
⋃
l≥8 Z

l
Q̂
⊂
⋃
l≥i+8 Z

l
i , we get Q ⊂ Q̂ by (4.80)(ii)

and thus as before by (5.3)(ii), (4.80)(ii) we also derive Q ⊂ Qµ0 \ Si−1 and Q ∩ S∗i = ∅.
Property (5.3)(iii) directly follows from (4.80)(iii) and the definition of Pa in (5.11). By

(4.81)(iv) and (5.12) we get for each square Q ∈ Ci−1 ∩Qk, k ≥ i and l ≥ i+ 8

|Zli ∩Q| ≤ Cθ−(l−k)rsl−kH1(Ju ∩Q) = Ctkθ
(l−k)(1−r)H1(Ju ∩Q) ≤ Ctlθ−rlH1(Ju ∩Q),

where as before we have sj = tkθ
j for j ∈ N. Then taking the sum over all squares we

derive (5.4)(ii), where we use the fact that H1(Ju) ≤ cθ−2µ0. Likewise, (5.4)(iii) follows from
(4.81)(iii) and a similar calculation. Moreover, (4.81)(ii) yields (5.4)(iv) by the definition in
(5.12) and the fact that RQ ⊂ Ri. Finally, to see (5.4)(i) we recall that for all Q ∈ Ci−1

|EQ| ≤ cθ2d(Q)H1(Ju ∩Q) ≤ CtiH1(Ju ∩Q)

by (4.81)(i). Consequently, in view of (5.12) and H1(Ju) ≤ cθ−2µ0 the result follows when we
take the sum over all Q ∈ Ci−1 (if we choose C1 ≥ C).

We close this step by defining a decomposition of Qµ0
and confirming (5.5). Let Di

i =

Ei−1 ∪
⋃
P∈Pa∪Pb P and Di

l = Di−1
l \Di

i for 0 ≤ l ≤ i− 1. Then (5.5) for 0 ≤ l ≤ i− 1 follows

directly. Moreover, recalling (5.3)(i), (5.11) and H1(Ju) ≤ cθ−2µ0 we compute∣∣⋃
P∈Pa

P
∣∣ =

∣∣⋃
Q∈C′i−1∪C′′′i−1

Q
∣∣ ≤ cti∑

Q∈C′i−1∪C′′′i−1

H1(∂Q \ ∂Qµ0
)

≤ cC1tiH1(Si) ≤ cC1tiH1(Ju) ≤ C · C1tiµ0.
(5.13)

Likewise, by (5.11) and (5.4)(ii) we see |
⋃
P∈Pb P | ≤

∑
l≥i+7 |Zli−1| ≤ C · C1θ

−ritiµ0. This

together with the estimate for |Ei−1| in (5.4)(i) yields (5.5) for Di
i if one chooses C2 ≥ C ·C1.

Step III (Induction step: Korn inequalities): It remains to define matrices (Aij)
∞
j=1 ⊂

R2×2
skew and to establish (5.6). First, we observe that by (4.82) we have for all Q ∈ Ci−1∑nQ

j=0
‖∇u−AQj ‖

p′

Lp′ (PQj,cov\EQ)
≤ Cd(Q)2−p′‖e(u)‖p

′

L2(Q) (5.14)

for suitable (aQj )j , where PQj,cov =
⋃
Q̂∈Q(PQj ;CQ,RQ) Q̂ is defined as in (4.78). As a preparation

we analyze the behavior in the ‘isolated components’. Fix some X l,i−1
k with l ≥ i + 7 and

recalling (5.9) we consider a corresponding connected component P ∈ P lk. By definition there

is a set Q(P ) ⊂ {Q ∈ Ql : Q ⊂ X l,i−1
k } such that P = int(

⋃
Q∈Q(P )Q).

As Q ∈ C′′i−1 for Q ∈ Q(P ), a single infinitesimal rigid motion aQ0 is given such that (5.14)

holds with PQ0,cov = Q (see Lemma 4.11 (2)) and by (4.83)ˆ
∂Q\ΓQ

|Tu− aQ0 |2 dH1 ≤ ctl‖e(u)‖2L2(Q)

for a set ΓQ with H1(ΓQ) ≤ cθtl. We can estimate the difference of the infinitesimal rigid
motions on adjacent squares as follows. Consider Q1, Q2 ∈ Q(P ) such that ∂Q1 and ∂Q2 have
a common edge. Then the previous estimate implies with Γ := ΓQ1 ∪ ΓQ2 ∪ (Ju ∩ ∂Q1 ∩ ∂Q2)ˆ

(∂Q1∩∂Q2)\Γ
|aQ1

0 − a
Q2

0 |2 dH1 ≤ c
∑

k=1,2

ˆ
∂Qk\Γ

|Tu− aQk0 |2 dH1 ≤ ctl‖e(u)‖2L2(Q1∪Q2),
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where we used that the traces Tu on ∂Q1 and ∂Q2 coincide on (∂Q1∩∂Q2)\Γ. By (5.8) we get

H1(Γ) ≤ cθtl as Q1, Q2 /∈ C′′′i−1. Therefore, by Remark 3.6 we get for θ small t2l |A
Q1

0 −A
Q2

0 |2 ≤
C‖e(u)‖2L2(Q1∪Q2). Consequently, recalling that P is connected, #Q(P ) ≤ cθ−2rl by (5.4)(iii)

and using the discrete Hölder inequality we find

max
Q1,Q2∈Q(P )

t2l |A
Q1

0 −A
Q2

0 |p
′
≤ ct2−p

′

l θ−2rl(p′−1)
∑

Q∈Q(P )
‖e(u)‖p

′

L2(Q). (5.15)

Applying (5.14), #Q(P ) ≤ cθ−2rl, p′ ≤ 2 and recalling (5.12) we derive for each Q̂ ∈ Q(P )

‖∇u−AQ̂0 ‖
p′

Lp′ (P\Ei)
≤ (C + cθ−4rl)t2−p

′

l

∑
Q∈Q(P )

‖e(u)‖p
′

L2(Q). (5.16)

We are now in the position to define matrices associated to Pi. Recalling the definition of

the partition Pi in (5.11) we distinguish the the following cases: (a) For P ij = PQk for some

Q ∈ C′i−1 and k = 1, . . . , nQ we let Aij = AQk and for P ij = PQ0 for some Q ∈ C′′′i−1 we let

Aij = AQ0 as given by (5.14). (b) If P ij ∈ P lk, we set Aij = AQ̂0 for an (arbitrary) Q̂ ∈ Q(P ij ).

(c) Finally, for all P ij with P ij = P ′k for some P i−1
k ∈ Pi−1 we let Aij = Ai−1

k .
We now show (5.6)(i). As a preparation we recall that the discrete Hölder inequality together

with #{Q ∈ Ci : Q ⊂ Zli} ≤ ct−2
l |Zli | ≤ cC1t

−1
l θ−rlµ0 (see (5.4)(ii)), r = 1

24 (2 − p), and

tl = µ0θ
l implies

(i)
∑

Q∈Ci−1

(d(Q))2−p′‖e(u)‖p
′

L2(Q) ≤ cµ
2−p′
0 ‖e(u)‖p

′

L2(Qµ0 ), (5.17)

(ii) t2−p
′

l θ−4rl
∑

Q∈Ci:Q⊂Zli
‖e(u)‖p

′

L2(Q) ≤ cC1θ
−4rl(θ−rltlµ0)1−p′/2‖e(u)‖p

′

L2(Qµ0 )

≤ cC1θ
rlµ2−p′

0 ‖e(u)‖p
′

L2(Qµ0 ).

For (i) we refer to (4.86) and for (ii) to (4.58) for similar arguments, where we particularly use

1 − p′

2 = 1
2 (1 − p

2 ) = 6r. We first consider the set Di
i as defined before (5.13) and show that

for k = a, b, c∑
P ij∈Pk

‖∇u−Aij‖
p′

Lp′ ((P ij,cov∩Dii)\Ei)
≤ 1

3C3θ
−λiµ2−p′

0 ‖e(u)‖p
′

L2(Qµ0 ). (5.18)

First, for the components Pa the property in (5.18) directly follows from (5.14) and (5.17)(i)
provided that C3 is chosen large enough, where in this case the additional factor θ−λi is not

needed. In fact, P ij = PQk for some Q ∈ C′i−1 ∪ C′′′i−1 for all P ij ∈ Pa and P ij,cov = PQk,cov due to

the definition of Ci with P ij,cov as defined before (5.6). Likewise, for sets P ij ∈ Pb we get (5.18)

by (5.16) and (5.17)(ii) using P ij,cov ⊂
⋃
Q∈Q(P ij )Q ⊂ P ij as well as the fact that the sets Q(P )

for P ∈ Pb are pairwise disjoint. Note that again the additional factor θ−λi is not needed, but
the choice of C3 also depends on C1 and

∑
l θ
rl < +∞. (We omit details here as a very similar

computation has already been performed in (4.58).)
Finally, we concern ourselves with a component P ij = P ′k ∈ Pc. Note P ′k ⊂ P i−1

k with

P i−1
k ∈ Pi−1. Recall the definition of the sets P ij,cov, P

i−1
k,cov before (5.6). As Ci is a refinement

of Ci−1 and Ri ⊃ Ri−1, we obtain

P ij,cov ⊂ P ∗j :=
⋃
{Q ∈ Ci−1 : Q ∩ P ij 6= ∅, Q ⊂ P i−1

k,cov} ⊂ P
i−1
k,cov. (5.19)

Fix Q ∈ Ci−1 ∩ Ql with Q ⊂ P ∗j . As P ij ∩ Q 6= ∅, (5.11) implies Q ∩ Zli−1 = ∅ and that the

partition associated to Q, introduced before (5.7), is trivial, i.e. PQ0 = PQ0,cov = Q. We observe

(i) |Ei−1 ∩Q| ≤ cθt2l , (ii) |EQ| ≤ cθt2l .
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In fact, (i) follows from (5.4)(iv) for step i − 1 and the fact that Q ⊂ P i−1
k,cov (cf. (4.78)). By

(4.81)(i) and (5.1) we obtain (ii). Thus, for θ sufficiently small with respect to c we obtain by
(5.14) and the triangle inequality

|Q||AQ0 −A
i−1
k |

p′ ≤ c‖∇u−AQ0 ‖
p′

Lp′ (Q\(EQ∪Ei−1))
+ c‖∇u−Ai−1

k ‖
p′

Lp′ (Q\(EQ∪Ei−1)

≤ Ct2−p
′

l ‖e(u)‖p
′

L2(Q) + c‖∇u−Ai−1
k ‖

p′

Lp′ (Q\Ei−1)
. (5.20)

Consequently, we find using again (5.14)

‖∇u−Ai−1
k ‖

p′

Lp′ (Q\Ei)
≤ C(d(Q))2−p′‖e(u)‖p

′

L2(Q) + c‖∇u−Ai−1
k ‖

p′

Lp′ (Q\Ei−1)
. (5.21)

Now we are in the position to confirm (5.18). Note that each Q ∈ Ci−1 is contained only in a
bounded number N0 of different P ∗j by (5.6)(ii) and (5.19). Summing over all squares Q ⊂ P ∗j
and all P ij = P ′k ∈ Pc we deduce using (5.6) for step i− 1 as well as (5.17)-(5.21)∑

P ij=P ′k∈Pc
‖∇u−Ai−1

k ‖
p′

Lp′ ((P ij,cov∩Dii)\Ei)
≤
∑

P ij=P ′k∈Pc
‖∇u−Ai−1

k ‖
p′

Lp′ ((P∗j ∩Dii)\Ei)

≤ N0 · Cµ2−p′
0 ‖e(u)‖p

′

L2(Qµ0 ) + c
∑

P i−1
k ∈Pi−1

‖∇u−Ai−1
k ‖

p′

Lp′ (P i−1
k,cov\Ei−1)

≤ (CN0 + cC3θ
−(i−1)λ)µ2−p′

0 ‖e(u)‖p
′

L2(Qµ0 ) ≤
1
3C3θ

−iλµ2−p′
0 ‖e(u)‖p

′

L2(Qµ0 ), (5.22)

where the last step holds for C3 = C3(θ, p) large enough and θ small (depending on λ) such
that CN ≤ 1

6C3 and cθλ ≤ 1
6 .

To conclude the proof of (5.6)(i) it remains to consider the sets (Di
l)
i−1
l=0 . Recalling the

definition of the decomposition before (5.13), we see Di
l \ Ei ⊂ Di−1

l \ Ei−1 for 0 ≤ l ≤ i− 1.
Consequently, (5.6)(i) for 0 ≤ l ≤ i − 1 follows directly from the corresponding estimates in
step i− 1 and (5.19).

To show (5.6)(ii), it suffices to treat the cases (a)-(c) separately. Indeed, by the definition
of Ci we have Pj1,cov and Pj2,cov are disjoint if they lie in different sets Pa,Pb,Pc. For Pa the
desired property follows directly from (4.82)(ii). For Pb it is obvious as the sets P ij,cov ⊂ P ij ∈ Pb
are pairwise disjoint. Finally, by (5.19) for each P ij ∈ Pc we have a (different) P i−1

k,cov with

P ij,cov ⊂ P
i−1
k,cov and the property follows from (5.6)(ii) for step i− 1.

Step IV (Conclusion): We are now in a position to define the partition and the infinites-
imal rigid motions such that the assertion of Theorem 2.1 holds. As lim supi→∞ |Ei| = 0 by
(5.4)(i) we can choose I ∈ N so large that |EI | ≤ ε. By PI = (P Ij )∞j=1 we denote the partition
given in iteration step I and get by (5.3)(i) that∑∞

j=1
H1(∂P Ij \ ∂Qµ0

) ≤ CH1(SI) ≤ CH1(Ju), (5.23)

where in the last step we used SI ⊂ Ju. In view of the definition (4.78) we get∑∞

j=1
|P Ij \ P Ij,cov| ≤

∑∞

j=1

∑
Q∈CI

|P Ij ∩Q ∩RI | ≤ |RI | ≤ ε.

Thus, letting E′ = EI∪
⋃∞
j=1(P Ij \P Ij,cov) we get |E′| ≤ 2ε. We set P∗ = {P Ij ∈ PI : |P Ij \E′| ≥

1
2 |P

I
j |} and define

v′ := u−
∑

P Ij ∈P∗
(AIj x)χP Ij , E′′ = E′ ∪

⋃
P Ij /∈P∗

P Ij , (5.24)
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where (AIj )j ⊂ R2×2
skew are the matrices corresponding to (P Ij )j (cf. (5.6)). We now show (2.3)(ii)

for v′. We deduce from (5.6)

‖∇v′‖p
′

Lp′ ((Qµ0\E′′)∩D
I
l )
≤ Cµ2−p′

0 θ−lλ‖e(u)‖p
′

L2(Qµ0 ) (5.25)

for all 0 ≤ l ≤ I for a constant C = C(θ, p). Moreover, by (5.5)

|DI
l | ≤ Cθ−rltlµ0 ≤ Cθl(1−r)µ2

0

for all 0 ≤ l ≤ I. Recall the definition p′ = 1 + p
2 , r = 2−p

24 and λ = (1−r)(2−p)
3p+2 . Passing from

p′ to p and using (5.24), (5.25) we obtain by Hölder’s inequality

‖∇v′‖pLp(Qµ0\E′′)
=
∑I

l=0
‖∇v′‖p

Lp((Qµ0\E′′)∩D
I
l )
≤
∑I

l=0
|DI

l |1−p/p
′
‖∇v′‖p

Lp′ ((Qµ0\E′′)∩D
I
l )

≤ Cµ2−p
0

∑
l≥0

θl(1−r)(1−p/p
′)−lλp/p′‖e(u)‖pL2(Qµ0 )

≤ Cµ2−p
0

∑
l≥0

θlλ‖e(u)‖pL2(Qµ0 ) ≤ Cµ
2−p
0 ‖e(u)‖pL2(Qµ0 ) (5.26)

with C = C(θ, p, λ) = C(θ, p). Now we have to analyze the behavior in E′′. To this end, we
fix some P Ij ∈ PI . If P Ij ∈ P∗, we can choose a measurable set Fj with P Ij ∩ E′ ⊂ Fj ⊂ P Ij
and |Fj | = 2|P Ij ∩ E′|. We find by |Fj | ≤ 2|Fj \ E′| = 2|Fj \ E′′|

|Fj ||AIj |p ≤ c‖∇u−AIj‖
p
Lp(Fj\E′′) + c‖∇u‖pLp(Fj\E′′). (5.27)

If P Ij /∈ P∗, we set Fj = P Ij . Then we see that F :=
⋃∞
j=1 Fj satisfies |F | ≤ 2|E′| ≤ 4ε and

thus by (5.2) we derive ‖∇u‖pLp(F ) ≤ µ2−p
0 ‖e(u)‖pL2(Qµ0 ). Consequently, as E′′ ⊂ F we obtain

by (5.26)-(5.27)

‖∇v′‖pLp(Qµ0 ) ≤ ‖∇v
′‖pLp(Qµ0\E′′)

+ ‖∇v′‖pLp(F ) (5.28)

≤ Cµ2−p
0 ‖e(u)‖pL2(Qµ0 ) + c‖∇u‖pLp(F ) + c

∑
P Ij ∈P∗

|Fj ||AIj |p

≤ Cµ2−p
0 ‖e(u)‖pL2(Qµ0 ) + c‖∇v′‖pLp(Qµ0\E′′)

≤ Cµ2−p
0 ‖e(u)‖pL2(Qµ0 ).

All arguments hold for a fixed θ sufficiently small and thus the constant C eventually only
depends on p. To obtain (2.3)(i) we apply Theorem 2.10 on v′ and ρ = H1(Ju) +H1(∂Qµ0)
to get a Caccioppoli partition (P ′j)j and corresponding translations (bj)j such that with v :=
v′ −

∑
j bjχP ′j by (5.23) and Hölder’s inequality∑

j
H1(∂∗P ′j) ≤ H1(Jv′) +H1(∂Qµ0

) + cρ ≤ C(H1(Ju) +H1(∂Qµ0
)),

‖v‖L∞(Qµ0 ) ≤ cρ−1‖∇v′‖L1(Qµ0 ) ≤ cµ0ρ
−1‖e(u)‖L2(Qµ0 ).

(For the proof of Theorem 2.10, which is completely independent from the arguments in Section
4 and Section 5, we refer to Section 6.1 below.) Let (Pj)j be the Caccioppoli partition consisting
of the sets (P Ii ∩P ′j)i,j and observe that (2.1) follows. Choosing corresponding (aj)j such that
v = u−

∑
j ajχPj , we obtain (2.3) as ∇v′ = ∇v. Finally, since u ∈ W(Qµ0), we also have that

v ∈ SBV 2(Qµ0
) ∩ L∞(Qµ0

). �

We now drop assumption (5.1). The idea is to add the boundary of the squares violating
(5.1) to the boundary of the partition. As in each such square H1(Ju) is large, eventually the
length of the added boundary can be controlled, cf. (5.34) below. On each of these squares we
then separately proceed as in Theorem 5.1. For the following proof we introduce the notation
Fk := {F = int(

⋃
Q∈QF Q) : QF ⊂ Qk} for k ∈ N.
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Theorem 5.2. Let p ∈ [1, 2). Then Theorem 2.1 holds for all u ∈ W(Qµ0
).

Proof. We reduce the problem to Theorem 5.1 by passing to suitable modifications of u. Since
u ∈ W(Qµ0

), we have Ju =
⋃n
j=1 Γuj consists of closed segments and ∇u ∈ Lp(Qµ0

). As in

Theorem 5.1 it suffices to treat the case ‖e(u)‖L2(Qµ0 ) > 0. We choose I ∈ N such that for

R0 = {Q ∈ QI : Q ∩ Ju 6= ∅}

(i) ‖∇u‖pLp(A) ≤ µ
2−p
0 ‖e(u)‖pL2(Qµ0 ) for A ⊂ R2 with |A| ≤ θ−1H1(Ju)tI ,

(ii)
∑

Q∈R0

H1(∂Q) ≤ cH1(Ju). (5.29)

Let R0 =
⋃
Q∈R0

Q. Clearly, we have |R0| ≤ cH1(Ju)tI ≤ θ−1H1(Ju)tI for θ small (with

respect to c). Moreover, Ju ∩Q = ∅ for each Q ∈
⋃
j≥I Qj with Q ∩R0 = ∅. For later we also

define J ′u = Ju ∪ ∂R0.
Set u0 = uχQµ0\R0

. Assume uj ∈ W(Qµ0
) and Rj ⊂ QI−j , 0 ≤ j ≤ i, have already been

constructed with Rj :=
⋃
Q∈Rj Q. For all j = 1, . . . , i we define the sets Sjτ , τ = (τ0, . . . , τj−1) ∈

Jj := {0, 1}j , by

Sjτ =
(
Rj ∩

⋃
k:τk=1

Rk
)
\
⋃

k:τk=0
Rk for τ 6= 0, Sj0 = Rj \

⋃j−1

k=0
Rk.

For j = 0 we let J0 = {0} and S0
0 = R0. Denoting by #τ =

∑j−1
k=0 τk for τ ∈ Jj we assume

that for all j = 0, . . . , i

(i) Juj ⊂ Γj :=
⋃j

k=0

(
∂Rk \

⋃j

l=k+1
Rl
)
∪
(
Ju \

⋃j

k=0
Rk
)
⊂ Qµ0 \

⋃j

k=0
Rk,

(ii) H1(Juj ∩Q) ≤ θ−1d(Q) for all Q ∈
⋃∞

k=I−j
Qk, (5.30)

(iii) H1(∂Rj ∩ F ) ≤
∑j

k=0

∑
τ∈Jj :#τ=k

2−k H1
(
J ′u ∩ Sjτ ∩ F

)
for all F ∈ FI−(j+1).

From the above discussion we get that the properties hold for i = 0 where particularly (iii)
follows from the fact that J ′u ⊃ ∂R0. We define ui+1 and Ri+1 as follows. Let

Ri+1 = {Q ∈ QI−i−1 : H1(Γi ∩Q) > 16tI−i−1} (5.31)

and Ri+1 =
⋃
Q∈Ri+1

Q. Set ui+1 = uiχQµ0\Ri+1
. Then (for θ small) (5.30)(i),(ii) hold by

construction and (5.30)(i),(ii) for step i. We now show (iii). Fix F ∈ FI−(i+2) and recall that
F is open. Then (5.31) and the fact that H1(∂Q) = 8tI−i−1 yield by (5.30)(i)

H1(∂Ri+1 ∩ F ) ≤ 1

2
H1(Γi ∩ F ∩Ri+1) ≤ 1

2
H1
(
Ju ∩ F ∩

(
Ri+1 \

⋃i

k=0
Rk

))
+

1

2

∑i

j=0
H1
(

(∂Rj ∩ F ) \
⋃i

k=j+1
Rk

)
.

We then note that by definition of Si+1
0

H1
(
Ju ∩ F ∩

(
Ri+1 \

⋃i

k=0
Rk
))

= H1(Ju ∩ F ∩ Si+1
0 ). (5.32)

Moreover, for each τ ∈ Jj we have Sjτ \
⋃i
k=j+1Rk = Si+1

τ ′ = Si+1
τ ′ ∩ (Rj \

⋃i
k=j+1Rk) with

τ ′ = (τ, 1, 0 . . . , 0) ∈ Ji+1. Consequently, since #τ ′ = #τ + 1 we find by (5.30)(iii) for step
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i− 1 and the fact that F \
⋃i
l=j+1Rl ∈ FI−(j+1)

1

2

∑i

j=0
H1
(
(∂Rj ∩ F ) \

⋃i

l=j+1
Rl
)

≤
∑i

j=0

∑j

k=0

∑
τ∈Jj :#τ=k

2−k−1 H1
(
J ′u ∩ Sjτ ∩ (F \

⋃i

l=j+1
Rl)
)

≤
∑i

j=0

∑j+1

k=1

∑
τ ′∈Ji+1:#τ ′=k

2−k H1
(
J ′u ∩ Si+1

τ ′ ∩ F ∩ (Rj \
⋃i

l=j+1
Rl)
)

≤
∑i+1

k=1

∑
τ ′:#τ ′=k

2−k H1
(
J ′u ∩ Si+1

τ ′ ∩ F
)
.

This together with (5.32) yields (5.30)(iii). For later we also note that for all Q ∈ QI−i−1\Ri+1

we get for θ small by (5.31)∣∣Q ∩⋃
k≤i

Rk
∣∣ ≤ 2tI−iH1(Γi ∩Q) ≤ 2tI−i(16tI−i−1 + 8tI−i−1) ≤ 2t2I−i−1 = 1

2 |Q|, (5.33)

where in the first step we used that
⋃
k≤iRk consists of squares with sidelength smaller than

2tI−i whose boundaries are contained in Γi.
We proceed in this way until step i = I − 1 and finally let RI = Qµ0

, RI = {Qµ0
}. By

(5.30)(iii) and the fact that (SIτ ′)τ ′∈JI is a partition of Qµ0
we derive∑I−1

j=0
H1(∂Rj ∩Qµ0

) ≤
∑I−1

j=0

∑j

k=0

∑
τ∈Jj :#τ=k

2−k H1
(
J ′u ∩ Sjτ

)
=
∑

τ ′∈JI

∑I−1

j=0

∑j

k=0

∑
τ∈Jj :#τ=k

2−k H1
(
J ′u ∩ Sjτ ∩ SIτ ′

)
.

Note that Sjτ ∩ SIτ ′ 6= ∅ if and only if τ coincides with the first j entries of τ ′ and τ ′j = 1.

Consequently, with H1(J ′u) ≤ cH1(Ju) we find∑I−1

j=0
H1(∂Rj ∩Qµ0

) ≤
∑

τ ′∈JI

∑
j:τ ′j=1

2−(
∑j−1
l=0 τ

′
l ) H1

(
J ′u ∩ SIτ ′

)
+H1

(
J ′u ∩ SI0

)
≤ c

∑
τ ′∈JI

H1
(
J ′u ∩ SIτ ′

)
≤ cH1(Ju). (5.34)

We now apply Theorem 5.1 separately on each square Q ∈ Rj , j = 1, . . . , I, for the function
uj−1. In fact, in view of (5.30)(ii) condition (5.1) is satisfied (replacing Qµ0 by Q and u by
uj−1). Hereby, by (5.23) we obtain a partition of the square Q ∈ Rj , which we can restrict to

Q \
⋃j−1
k=0Rk. Consequently, taking the union over all partitions defined on each Q ∈

⋃I
j=1Rj

we obtain a partition (P ′j)
∞
j=0 of Qµ0

with
⋃I
j=0 ∂Rj ⊂

⋃∞
j=0 ∂P

′
j , where we set P ′0 = R0. By

(5.30)(i) and the fact that
∑I−1
j=0 H1(∂Rj ∩Qµ0

) ≤ cH1(Ju) we get∑I−1

j=1

∑
Q∈Rj

(
H1(∂Q ∩Qµ0

) +H1(Juj−1
∩Q)

)
+H1(uI−1 ∩Qµ0

)

≤
∑I−1

j=1
H1(∂Rj ∩Qµ0

) +
∑I

j=1
H1(Γj−1 ∩Rj)

≤ cH1(Ju) +

I∑
j=1

H1
(⋃j−1

k=0
∂Rk ∩

(
Rj \

⋃j−1

k=0
Rk
))

+

I∑
j=1

H1
(
Ju ∩

(
Rj \

⋃j−1

k=0
Rk
))

≤
∑I−1

j=0
H1(∂Rj ∩Qµ0

) + cH1(Ju) ≤ cH1(Ju).

Consequently, applying (5.23) for each Q ∈
⋃I
j=1Rj we find that

∑∞
j=1H1(∂P ′j \ ∂Qµ0

) ≤
CH1(Ju). Moreover, Theorem 5.1 yields piecewise constant R2×2

skew-valued functions ĀQ on
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each Q ∈
⋃I
j=1Rj (being constant on each component of the partition) such that by (5.28)

and the definition of uj−1 we have

‖∇u− ĀQ‖pLp(Q\
⋃
k<j Rk)

≤ ‖∇uj−1 − ĀQ‖pLp(Q) ≤ Ct
2−p
I−j‖e(uj−1)‖pL2(Q)

= Ct2−pI−j‖e(u)‖p
L2(Q\

⋃
k<j Rk)

.

If |Q\
⋃
k<j Rk| > 0, we find some Q̂ ∈ QI−j+1 \Rj−1 with Q̂ ⊂ Q. Then (5.33) (for i = j−2)

implies |Q \
⋃
k<j Rk| ≥ |Q̂ \

⋃
k<j−1Rk| ≥ 2t2I−j+1 = 2θ2t2I−j . Thus, for each Q ∈

⋃I
j=1Rj

‖∇u− ĀQ‖pLp(Q\
⋃
k<j Rk)

≤ C|Q \
⋃

k<j
Rk|1−

p
2 ‖e(u)‖p

L2(Q\
⋃
k<j Rk)

.

Therefore, for each (P ′j)j≥1 we find a corresponding A′j ∈ R2×2
skew such that for v′ := u −∑∞

j=1(A′j x)χP ′j we have by summing over all squares

‖v′‖pLp(Qµ0\R0) ≤ Cµ
2−p
0 ‖e(u)‖pL2(Qµ0 ),

where similarly as before we have used the discrete Hölder inequality. (See e.g. (4.86), (5.17).
We omit the details.) It remains to analyze the behavior on R0. Observe that Theorem 5.1 is
not applicable in the squares contained in R0 since property (5.1) might not hold. However,
we may argue similarly as in Step IV of the previous proof. By (5.29)(i) and the fact that

|R0| ≤ θ−1H1(Ju)tI we find ‖∇u‖pLp(R0) ≤ µ2−p
0 ‖e(u)‖pL2(Qµ0 ). Since u = v′ on R0 = P ′0, we

get ‖∇v′‖pLp(Qµ0 ) ≤ Cµ
2−p
0 ‖e(u)‖pL2(Qµ0 ) and therefore have re-derived (5.28). To conclude the

proof of (2.3), it now remains to apply Theorem 2.10 on v′ as in the previous proof. �

Remark 5.3. The proof of Theorem 5.1 and Theorem 5.2, in particular (5.23), show that
applying Theorem 2.10 with ρ = H1(Ju) instead of ρ = H1(Ju) +H1(∂Qµ0

) yields a partition
(Pj)j and a function v such that (2.3)(ii) still holds and (2.1), (2.3)(i) are replaced by∑∞

j=1
H1(∂∗Pj \Qµ0

) ≤ CH1(Ju), ‖v‖L∞(Qµ0 ) ≤ C(H1(Ju))−1‖e(u)‖L2(Ω).

5.2. Density arguments. This section is devoted to the proof of the general version of The-
orem 2.1 and to the proof of Theorem 2.5. The strategy is to approximate a given function
u ∈ GSBD2(Ω) by a sequence (un)n ⊂ W(Ω). (Recall the definition before Theorem 4.1.) We
then apply Theorem 5.2 on (un)n and show that the desired properties can be recovered for
the limiting function u. We first present a variant of Theorem 3.11 which yields an approxima-
tion result for every GSBD2 function at the expense of a nonoptimal estimate for the surface
energy. The reader only interested in the main result for functions in (G)SBD2(Ω) ∩ L2(Ω)
may skip the following lemma and corollary and may replace Corollary 5.5 by Theorem 3.11
in the proof of Theorem 2.1 below.

Lemma 5.4. Let Ω ⊂ Rd open, bounded. Let u ∈ GSBD2(Ω) and Ω′ ⊂⊂ Ω with Lipschitz
boundary. Then there exists a sequence (uk)k ⊂ W(Ω′) such that for a universal constant c > 1
one has

(i) uk → u a.e. in Ω′ as k →∞, (5.35)

(ii) ‖e(uk)‖L2(Ω′) ≤ c‖e(u)‖L2(Ω), Hd−1(Ju) ≤ Hd−1(Juk) ≤ cHd−1(Ju), k ∈ N.

Proof. We follow closely the proofs in [11, Theorem 1]), [35, Theorem 3.5] and only indicate
the necessary changes. By [35, Lemma 2.2] one can find a basis e1, . . . , ed of Rd such that

Hd−1({x ∈ Ju : [u](x) · e = 0}) = 0



A PIECEWISE KORN INEQUALITY IN SBD 47

for all e ∈ D := {ei, 1 ≤ i ≤ d, ei + ej , 1 ≤ i < j ≤ d}. For h > 0 small and each y ∈ [0, 1)d we
introduce the discretized function of u defined by

uyh(ξ) = u(hy + ξ), ξ ∈ hZd ∩ (Ω− hy).

Moreover, letting 4(x) =
∏d
i=1 max{(1− |xi|), 0} we define the continuous interpolation

wyh(x) =
∑

ξ∈hZd∩Ω
uyh(ξ)4

(x− (ξ + hy)

h

)
.

Note that wyh ∈W 1,∞(Ω′) and for h small enough wyh is indeed well defined for all x ∈ Ω′ since

Ω′ ⊂⊂ Ω. We now show that wyh → u in measure on Ω′ as h → 0 for a.e. y ∈ [0, 1)d which is
equivalent to ˆ

y∈[0,1)d
‖ϕ1(|wyh − u|)‖L1(Ω′) → 0, (5.36)

where ϕt(s) = min{s, 1
t } for s ≥ 0 and t > 0. Using the subadditivity of ϕ1, a change of

variables and the fact that
∑
ξ∈hZd∩Ω4

(
x−ξ
h − y

)
= 1 for all x ∈ Ω′, y ∈ [0, 1)d we deduce

ˆ
y∈[0,1)d

dy

ˆ
Ω′
ϕ1(|wyh(x)− u(x)|) dx

=

ˆ
y∈[0,1)d

dy

ˆ
Ω′
ϕ1

(∣∣∣∑
ξ∈hZd∩Ω

4
(x− ξ

h
− y
)

(u(x)− u(hy + ξ))
∣∣∣) dx

≤
ˆ
y∈[0,1)d

dy

ˆ
Ω′

∑
ξ∈hZd∩Ω

ϕ1

(∣∣∣4(x− ξ
h
− y
)

(u(x)− u(hy + ξ))
∣∣∣) dx

≤
∑

ξ∈hZd∩Ω

ˆ
x−ξ
h −[0,1)d

ˆ
Ω′
ϕ1(|4(z)(u(x)− u(x− hz))|) dx dz

≤
ˆ

(−1,1)d

ˆ
Ω′
ϕ1(|4(z)(u(x)− u(x− hz))|) dx dz.

In the last step we used that the sets x−ξ
h − [0, 1)d are pairwise disjoint for ξ ∈ hZd ∩Ω. Sinceˆ

Ω′
ϕ1(|4(z)(u(x)− u(x− hz))|) dx =

ˆ
Ω′
4(z)ϕ4(z)(|u(x)− u(x− hz)|) dx→ 0

for h→ 0 and is uniformly bounded by |Ω′| for all z ∈ (−1, 1)d, we obtain (5.36) by dominated
convergence. We now follow closely the proof in [35]. For a specific choice of y ∈ [0, 1)d and a
set of ‘bad cubes’ (see (3.13)-(3.15) in [35] for details)

Qh ⊂ {Qξ = ξ + hy + [0, h)d : ξ ∈ hZd} (5.37)

with #Qh ≤ Ch−(d−1) one defines the function uh = wyhχΩ′\
⋃
Q∈Qh

Q. Clearly, uh ∈ W(Ω′) as

the jump set is given by the boundary of the cubes Qh. (Strictly speaking Juh is only contained
in the boundary of the cubes. However, the desired property may always be achieved by an
infinitesimal perturbation of uh, see [11, Remark 5.3]). In view of (5.36) and |

⋃
Q∈Qh Q| ≤ Ch

we get, possibly passing to a not relabeled subsequence, uh → u a.e. on Ω′ which gives (5.35)(i).
Following the lines of [35], for a suitable choice of y ∈ [0, 1)d we get ‖e(uh)‖L2(Ω′) ≤

c‖e(u)‖L2(Ω) and Hd−1(Juh) ≤ cHd−1(Ju) for a universal constant c > 1 after passage to
a not relabeled subsequence. In fact, in the estimates for the elastic energy, which are based
on a slicing technique, the assumption u ∈ L2(Ω) is not needed. (This assumption was only
needed to define an extension of u, which is not necessary in our setting.) To conclude the
proof of (5.35)(ii) we remark that the inequality Hd−1(Ju) ≤ Hd−1(Juh) has not been stated
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explicitly in [35], but can always be achieved by introducing arbitrary additional ‘bad squares’
in (5.37). �

The proof of the following corollary is now straightforward.

Corollary 5.5. Let Ω ⊂ Rd open, bounded with Lipschitz boundary and let Q ⊂ Rd be a cube
with Ω ⊂⊂ Q. Let u ∈ GSBD2(Ω). Then there exists a sequence (uk)k ⊂ W(Q) such that for
a universal constant c > 1 one has

(i) uk → u a.e. in Ω as k →∞,
(ii) ‖e(uk)‖L2(Q) ≤ c‖e(u)‖L2(Ω),

(iii) Hd−1(Ju) +Hd−1(∂Ω) ≤ Hd−1(Juk) ≤ cHd−1(Ju) + cHd−1(∂Ω).

(5.38)

Proof. Choose a sequence of Lipschitz sets Ωn ⊂⊂ Ω with Hd−1(∂Ω) ≤ Hd−1(∂Ωn) ≤
cHd−1(∂Ω) and |Ω \Ωn| ≤ 1

n for all n ∈ N such that ∂Ωn consists of a finite number of closed
(d − 1)-simplices. For each n ∈ N we apply Lemma 5.4 on Ωn ⊂⊂ Ω and obtain sequences
(vnl )l ⊂ W(Ωn) converging in measure to u on Ωn such that ‖e(vnl )‖L2(Ωn) and Hd−1(Jvnl )

are uniformly controlled by c‖e(u)‖L2(Ω) and cHd−1(Ju), respectively. Define the extensions

v̂nl = vnl χΩn ∈ W(Q). Possibly replacing v̂nl by v̂nl + tnl for a suitable tnl ∈ Rd, |tnl | ≤ 1
l , we

obtain (not relabeled) sequences still converging to u on Ωn such that Hd−1(∂Ωn \ Jv̂nl ) = 0
and thus

Hd−1(Ju) +Hd−1(∂Ω) ≤ Hd−1(Jv̂nl ) ≤ cHd−1(Ju) + cHd−1(∂Ω).

Consequently, by a standard diagonal sequence argument taking into account that convergence
in measure is metrizable (take (f, g) 7→

´
Ω

min{|f − g|, 1}) we get a sequence (wk)k ⊂ W(Q)
satisfying (5.38). �

We are now in the position to give the proof of Theorem 2.1.
Proof of Theorem 2.1. Let p ∈ (1, 2) and let u ∈ GSBD2(Ω) be given. Without restriction
we assume that Ω is connected as otherwise the following arguments are applied on each
connected component of Ω. Choose a square Qµ0

⊃⊃ Ω with H1(∂Qµ0
) ≤ cH1(∂Ω) for a

universal constant c > 0.
By Corollary 5.5 we find a sequence (uk)k ⊂ W(Qµ0

) satisfying (5.38). (The reader only
interested in the case (G)SBD2(Ω) ∩ L2(Ω) can instead apply Theorem 3.11 and Remark
3.12.) We apply Theorem 5.2 on each uk and obtain a sequence of (ordered) Caccioppoli
partitions (P kj )j of Qµ0

and corresponding infinitesimal rigid motions (akj )j = (aAkj ,bkj )j such

that vk := uk −
∑∞
j=1 a

k
jχPkj ∈ SBV

p(Qµ0) ∩ L∞(Qµ0) satisfies by (2.1) and (2.3)

(i)
∑∞

j=1
H1(∂∗P kj ) ≤ c(H1(Juk) +H1(∂Qµ0

)) ≤ c(H1(Ju) +H1(∂Ω)),

(ii) ‖∇vk‖Lp(Qµ0 ) ≤ C‖e(uk)‖L2(Qµ0 ) ≤ C‖e(u)‖L2(Ω), (5.39)

(iii) ‖vk‖L∞(Qµ0 ) ≤ C(H1(Juk))−1‖e(uk)‖L2(Qµ0 ) ≤ C(H1(Ju) +H1(∂Ω))−1‖e(u)‖L2(Ω).

Possibly passing to a (not relabeled) refinement of the partition (consisting of the sets (P kj ∩
Ω)j ∪ (P kj \Ω)j) we may assume that each component P kj satisfies P kj ⊂ Ω or P kj ∩Ω = ∅ and
(5.39)(i) still holds. Therefore, Theorem 3.9 implies the existence of a Caccioppoli partition
(Pj)

∞
j=1 of Ω and a (not relabeled) subsequence such that χPkj → χPj in L1(Ω), when k →∞,

for all j ∈ N and such that, passing to the limit in (5.39)(i) via the lower semicontinuity of the
perimeter ∑∞

j=1
H1(∂∗Pj) ≤ c(H1(Ju) +H1(∂Ω)).
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This gives (2.1). Applying Ambrosio’s compactness theorem (Theorem 3.8) on the sequence
(vk)k we find v ∈ SBV p(Qµ0) ∩ L∞(Qµ0) such that vk → v a.e. and ∇vk ⇀ ∇v weakly in
Lp(Qµ0) up to a not relabeled subsequence. In particular, we have considering the restriction
of v to Ω

‖v‖L∞(Ω) ≤ C(H1(Ju) +H1(∂Ω))−1‖e(u)‖L2(Ω), ‖∇v‖Lp(Ω) ≤ C‖e(u)‖L2(Ω). (5.40)

Since (Pj)j is a partition of Ω, it now suffices to show the existence of infinitesimal rigid motions
(aj)j = (aAj ,bj )j such that

(u− v)χPj = ajχPj (5.41)

a.e. in Pj for all j ∈ N. Indeed, (2.3) then is immediate by (5.40). Clearly, if |Pj | = 0 it suffices
to set aj = 0. If instead |Pj | > 0, then it exists δ > 0 independently of k such that |P kj | ≥ δ.
As ukχPkj → uχPj a.e. and vkχPkj → vχPj a.e., the sequence

akjχPkj = (uk − vk)χPkj

converges in measure to (u − v)χPj . Therefore, it exists a positive nondecreasing continuous

function ψ with lims→∞ ψ(s) = +∞ such that supk≥1

´
Pkj
ψ(|akj |) dx ≤ 1 (see e.g. [32, Remark

2.2]). By Lemma 3.4 we infer that (akj )k are bounded in W 1,∞(Ω) for a constant independent

of k. Consequently, we find an infinitesimal rigid motion aj such that akjχPkj → ajχPj in L1(Ω).

By the convergence of akjχPkj to (u− v)χPj , this implies (5.41) and concludes the proof. �

Now with Theorem 2.1 at hand the proof of our density result Theorem 2.5 is straightforward.
Proof of Theorem 2.5. Let u ∈ GSBD2(Ω). By Theorem 2.1 applied for some p ∈ [1, 2) we
obtain a Caccioppoli partition (Pj)j of Ω and corresponding infinitesimal rigid motions (aj)j
such that v := u −

∑
j ajχPj ∈ SBV p(Ω) ∩ L∞(Ω). As motivated in (2.5) we consider the

sequence

vk = u−
∑

j≥k
ajχPj ∈ SBV p(Ω) ∩ L∞(Ω)

and observe that vk → u in measure on Ω, e(vk) = e(uk) for all k ∈ N and H1(Jvk4Ju) → 0
when k → ∞. Using Theorem 3.11 each function vk can be approximated in L2(Ω) by a
sequence with the properties stated in Theorem 3.11 such that (3.6) holds. Now the assertion
follows from a diagonal sequence argument. �

6. Proof of further results

6.1. Piecewise Poincaré inequality. We start with the proof of the piecewise Poincaré
inequality which is essentially based on the coarea formula for BV functions and can be derived
completely independently from the results discussed in the previous sections.
Proof of Theorem 2.3. Without restriction we assume ‖∇u‖L1(Ω) > 0 as otherwise u is piecewise
constant (see [4, Theorem 4.23], [13]) and there is nothing to show. We start with the case
m = 1 and u ∈ SBV (Ω;R). Following ideas in [8, 26] we can use the coarea formula in BV
(see [4, Theorem 3.40]) to write

‖∇u‖L1(Ω) = |Du|(Ω \ Ju) =

ˆ ∞
−∞
Hd−1

(
(Ω \ Ju) ∩ ∂∗{u > t}

)
dt.

Consequently, with M := ρ−1‖∇u‖L1(Ω) we find ti ∈ (iM, (i+ 1)M ] for all i ∈ Z such that

Hd−1
(
(Ω \ Ju) ∩ ∂∗{u > ti}

)
≤ 1

M

ˆ (i+1)M

iM

Hd−1
(
(Ω \ Ju) ∩ ∂∗{u > t}

)
dt. (6.1)
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Let Ei = {u > ti} \ {u > ti+1} and note that each set has finite perimeter in Ω since it is the
difference of two sets of finite perimeter. Now (6.1) implies∑

i∈Z
Hd−1

(
(Ω ∩ ∂∗Ei) \ Ju

)
≤ 2

M
‖∇u‖L1(Ω) = 2ρ. (6.2)

Since |Ω \
⋃
i∈ZEi| = 0, (Ei)i is a Caccioppoli partition of Ω. Moreover, we note that the

function v := u −
∑
i tiχEi lies in L∞(Ω) and satisfies ‖v‖L∞(Ei) ≤ 2M . This implies (2.4).

Consider the sequence vn =
∑
|i|≤n(u− ti)χEi for n ∈ N with vn ∈ SBV (Ω;R) by [4, Theorem

3.84]. Since vn → v in BV norm and SBV is a closed subspace of BV , we conclude v ∈
SBV (Ω;R) ∩ L∞(Ω). This concludes the proof in the case m = 1 and u ∈ SBV (Ω;R).

If u ∈ GSBV (Ω;R), we apply the analog of the coarea for GSBV functions (see [4, Theorem
4.34]) and again obtain (ti)i∈Z, (Ei)i∈Z such that v := u −

∑
i tiχEi ∈ L∞(Ω) and (2.4)

holds. (Note that ∇u, Ju have to be understood in a weaker sense, cf. [4, Section 4.5].)
The characterization of scalar GSBV functions (see [4, Remark 4.27]) together with ∇u ∈
L1(Ω), Hd−1(Ju) <∞, yields min{max{−n, u}, n} ∈ SBV (Ω;R) for all n ∈ N. Consequently,
similarly as before the sequence vn =

∑
|i|≤n(u − ti)χEi lies in SBV (Ω;R), converges to v in

BV norm and thus v ∈ SBV (Ω;R) ∩ L∞(Ω).
Now let u ∈ (GSBV (Ω;R))m for m ≥ 2. We repeat the above argumentation for each

component uj , j = 1, . . . ,m, and obtain corresponding (Eji )i∈Z and (tji )i∈Z such that (6.2)

holds with Eji in place of Ei and vj := uj −
∑
i t
j
iχEji

satisfies ‖vj‖∞ ≤ 2ρ−1‖∇u‖L1(Ω). We

introduce the Caccioppoli partition of Ω, denoted by (Pj)j≥1, consisting of the (nonempty)
sets in

{E1
i1 ∩ . . . ∩ E

m
im : i1, . . . , im ∈ Z}.

In view of (6.2) we get that (2.4)(i) holds for a constant also depending on the dimension m.
Fix Pj = E1

i1
∩. . .∩Emim and define the corresponding translation bj ∈ Rm by bj = (ti1 , . . . , tim).

Then we conclude that v := u −
∑
j bjχPj satisfies (2.4)(ii) for a constant depending on m.

Arguing as before for each component we find v ∈ SBV (Ω;Rm) ∩ L∞(Ω;Rm). �

6.2. Embedding results. We now prove the results stated in Section 2.3.
Proof of Theorem 2.7. We first prove (2.8) for u ∈ W(Q) for a square Q ⊂ R2 in dimension
two. Afterwards, we use a slicing and density argument to derive the result for domains in Rd.
By Theorem 5.2 for p = 1 we find a Caccioppoli partition (Pj)j of Q ⊂ R2 and corresponding
infinitesimal rigid motions (aj)j such that v := u−

∑
j ajχPj ∈ SBV (Q) ∩ L∞(Q) and

‖v‖∞ ≤ C(H1(Ju) +H1(∂Q))−1‖e(u)‖L2(Q), ‖∇v‖L1(Q) ≤ C‖e(u)‖L2(Q),∑
j
H1(∂∗Pj) ≤ CH1(Ju) + CH1(∂Q),

(6.3)

where C only depends on the diameter of Q. To conclude the proof of (2.8) for d = 2, it now
suffices to show that∑

j
|Aj ||Pj | ≤ C(H1(Ju) + 1)‖u‖∞ + C‖e(u)‖L2(Q) (6.4)

for C = C(Q). To this end, we use Lemma 3.5 and the isoperimetric inequality to obtain∑
j
|Aj ||Pj | ≤ c

∑
j
|Pj |

1
2 ‖aj‖L∞(Pj) ≤ c(‖u‖∞ + ‖v‖∞)

∑
j
H1(∂∗Pj). (6.5)

Then (6.4) follows from (6.3).
We now treat the case Q = (−µ, µ)d and u ∈ W(Q) ⊂ SBV (Q) ∩ L∞(Q). To prove the

assertion, we need to control ‖∂jui‖L1(Ω) for each 1 ≤ i, j ≤ d. For notational convenience
we only treat the case i, j ∈ {1, 2}. The other terms follow analogously due to the symmetry
of the problem. For x ∈ Q we write x = (x1, x2, y) with y ∈ (−µ, µ)d−2 and introduce the
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functions wy : (−µ, µ)2 → R2, wy(x1, x2) = (u1(x), u2(x)) for y ∈ (−µ, µ)d−2. Applying the
result in d = 2 we obtain for a.e. y ∈ (−µ, µ)d−2∑

1≤i,j≤2
‖∂jwyi ‖L1((−µ,µ)2;R) ≤ C‖e(wy)‖L2((−µ,µ)2;R2×2

sym) + C‖u‖∞(H1(Jwy ) + 1),

where C = C(µ). Once we have provedˆ
(−µ,µ)d−2

H1(Jwy ) dHd−2(y) ≤ CHd−1(Ju), (6.6)

we take the integral over (−µ, µ)d−2, use Fubini’s theorem and Hölder’s inequality to conclude∑
1≤i,j≤2

‖∂jui‖L1(Q;R) ≤ C‖e(u)‖L2(Q;Rd×dsym ) + C‖u‖∞(Hd−1(Ju) + 1).

To see (6.6), we apply slicing techniques for BV functions (see [4, Section 3.11]): for f ∈
SBV ((−µ, µ)n;Rm) and j = 1, . . . , n we define fj,s : (−µ, µ) → Rm by fj(t) = f(s + tej) for
s ∈ Πn

j := {s ∈ (−µ, µ)n : s · ej = 0}. We obtainˆ
Πnj

#Jfj,s dHn−1(s) =

ˆ
Jf

|ξf · ej | dHn−1,

where ξf denotes a normal of the jump set Jf . First, applying this estimate on wy ∈
SBV ((−µ, µ)2;R2) for j = 1, 2 and y ∈ (−µ, µ)n−2 a.e. we obtainˆ

Π2
1

#Jwy1,s dH
1(s) +

ˆ
Π2

2

#Jwy2,s dH
1(s) =

ˆ
Jwy

(|ξwy · e1|+ |ξwy · e2|) dH1 ≥ H1(Jwy ).

Repeating the argument for the function w = (u1, u2) ∈ SBV ((−µ, µ)d;R2) for j = 1, 2 we
also get ˆ

Πd1

#Jw1,s
dHd−1(s) +

ˆ
Πd2

#Jw2,s
dHd−1(s) =

ˆ
Jw

(|ξw · e1|+ |ξw · e2|) dHd−1

≤ 2Hd−1(Jw) ≤ 2Hd−1(Ju).

Taking the integral over (−µ, µ)d−2 we derive (6.6) from the last two estimates.
It remains to consider general Lipschitz domains Ω ⊂ Rd and u ∈ SBD2(Ω)∩L∞(Ω). First,

we choose a cube Q containing Ω and define the extension ū = uχΩ ∈ SBD2(Q) ∩ L∞(Q).
Clearly, the choice of Q depends only on Ω. Note that Hd−1(Jū) ≤ (Hd−1(Ju) +Hd−1(∂Ω)).
By Theorem 3.11, Remark 3.12 we find a sequence (uk)k ⊂ W(Q) with uk → ū in L2(Q) and
‖uk‖∞ ≤ ‖u‖∞ such that by the above arguments

|Duk|(Q) = ‖∇uk‖L1(Q) +

ˆ
Juk

|[uk]| dHd−1 ≤ C‖e(u)‖L2(Ω) + C‖u‖∞(Hd−1(Ju) + 1) (6.7)

for C = C(Ω), where we used |[uk]| ≤ 2‖u‖∞ a.e. As (uk)k is uniformly bounded in BV norm,
we deduce u ∈ BV (Ω) and that (2.8) holds by lower semicontinuity. Finally, by Alberti’s rank

one property |Dcu| ≤
√

2|Ecu| and the fact that u ∈ SBD(Ω) we conclude u ∈ SBV (Ω). �

Proof of Theorem 2.9. Let u ∈ GSBD2(Ω). We show that each component ui, i = 1, . . . , d,
satisfies (2.9) for the truncation uMi = min{max{ui,−M},M}. Herefrom we particularly
deduce ui ∈ GBV (Ω;R) since in the scalar case this property is equivalent to uMi ∈ BVloc(Ω)
for all M > 0 (see [4, Remark 4.27]). As in the previous proof it essentially suffices to show

|DuMi |(Q) ≤ ‖∇uMi ‖L1(Q) + 2MHd−1(JuMi ) ≤ CM(Hd−1(Ju) + 1) + C‖e(u)‖L2(Q), (6.8)

where Ω = Q is a cube, C = C(Q) and u ∈ W(Q) ⊂ SBV (Q). In fact, we then establish the
general case using the approximation of u given by Corollary 5.5 and repeating the argument
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in (6.7). (Note, however, that in contrast to (6.7) we cannot apply Alberti’s theorem and
therefore only obtain uMi ∈ BV (Ω).) Finally, in view of the slicing argument (6.6) it is enough
to treat the planar case u ∈ W(Q) for a square Q ⊂ R2.

By Theorem 5.2 for p = 1 we get that v := u −
∑
j ajχPj ∈ SBV (Q) ∩ L∞(Q) satisfying

‖v‖L∞(Q) ≤ M ′ with M ′ := C(H1(Ju) +H1(∂Q))−1‖e(u)‖L2(Q) by (2.3). Let a =
∑
j ajχPj

and ai be the i-th component for i = 1, 2. From [15, Theorem 2.2] we obtain a ∈ (GSBV (Q))2,
in particular it is shown that for a universal c > 0

|DaMi |(Q) ≤ cM
∑

j
H1(∂∗Pj) ≤ cM(H1(Ju) +H1(∂Q)). (6.9)

Up to sets of negligible L2-measure we have

T := {∇uMi 6= 0} ⊂ {|ui| ≤M} ⊂ {|ai| ≤M +M ′}

since ‖v‖L∞(Q) ≤M ′. Therefore, we compute using (6.9) and (2.3)

‖∇ui‖L1(T ) ≤ ‖∇vi‖L1(T ) + ‖∇ai‖L1(T ) ≤ ‖∇vi‖L1(Q) + ‖∇aM+M ′

i ‖L1(Q)

≤ c(M +M ′)(H1(Ju) +H1(∂Q)) + C‖e(u)‖L2(Q)

≤ CM(H1(Ju) + 1) + C‖e(u)‖L2(Q).

(6.10)

As ‖∇uMi ‖L1(Q) = ‖∇ui‖L1(T ) and H1(JuMi \Ju) = 0, we obtain the second inequality in (6.8).

The first inequality follows from the decomposition of the distributional derivative and the fact
that ‖uMi ‖∞ ≤M . This concludes the proof. �

We also obtain the following variant of (2.9) needed in Section 6.3.

Corollary 6.1. Let Q ⊂ Rd be a cube. Then there is a constant C = C(Q) > 0 such that for
all u ∈ W(Q) and Borel sets F ⊂ Q one has

|DuMi |(Q) ≤ CM
(
Hd−1(Ju) + |F |

)
+ C

(
‖e(u)‖L2(Q) + ‖u‖L1(Q\F )

)
.

for all i = 1, . . . , d and M > 0, where uMi =: min{max{ui,−M},M}.

Proof. Similarly as in the proof of Theorem 2.9 it suffices to show this estimate in the planar
setting d = 2 for a square Q ⊂ R2 as the general case then follows by Fubini and the slicing
argument (6.6) for a constant depending on the dimension. Let c̄ = c̄(Q) > 0 to be specified
below. If H1(Ju) + |F | ≥ c̄, the result follows directly from (6.8) for a constant depending on
c̄.

Now let H1(Ju)+ |F | ≤ c̄. By Theorem 5.2 for p = 1 in the version of Remark 5.3 we obtain
an ordered Caccioppoli partition (Pj)j and v := u−

∑
j ajχPj such that for C = C(Q) > 0

‖∇v‖L1(Q) +H1(Ju)‖v‖L∞(Q) ≤ C‖e(u)‖L2(Q),
∑

j
H1(∂∗Pj ∩Q) ≤ CH1(Ju).

The essential step is now to show

‖∇aM+M ′

i ‖L1(Q) ≤ C
(
(M +M ′)H1(Ju) + ‖u‖L1(Q\F ) + ‖e(u)‖L2(Q)

)
(6.11)

for a :=
∑
j ajχPj and M ′ := C(H1(Ju))−1‖e(u)‖L2(Q). Indeed, the claim then follows by

repeating the argument in (6.10) noting that {∇uMi 6= 0} ⊂ {|ai| ≤M+M ′} since ‖v‖∞ ≤M ′.
For notational convenience we set M̄ = M +M ′.

Since
∑
j H1(∂∗Pj∩Q) ≤ Cc̄, for c̄ small enough the relative isoperimetric inequality implies

|P1| > 1
2 |Q| and |Pj | ≤ C(H1(∂∗Pj ∩Q))2 for j ≥ 2. Without restriction we assume that the

sets (Pj)j≥2 are connected (more precisely indecomposable, see [4, Example 4.18]) as otherwise
we consider the indecomposable components. By [32, Lemma 4.8] we get that the diameter
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of each Pj is controlled in terms of CH1(∂∗Pj ∩ Q) for C = C(Q), which then also yields
H1(∂∗Pj) ≤ CH1(∂∗Pj ∩Q) for all j ≥ 2. Then again by [15, Theorem 2.2] (cf. also (6.9))∑

j≥2

‖∇aM̄i ‖L1(Pj) ≤ cM̄
∑
j≥2

H1(∂∗Pj) ≤ CM̄
∑
j≥2

H1(∂∗Pj ∩Q) ≤ CM̄H1(Ju). (6.12)

By Theorem 3.13 we find an infinitesimal rigid motion a′ = aA′,b′ and an exceptional set
F ′ ⊂ Q with

‖∇u−A′‖L1(Q\F ′) + ‖u− a′‖L1(Q\F ′) ≤ C‖e(u)‖L2(Q), |F ′| ≤ C(H1(Ju))2 ≤ Cc̄2.

Consequently, for c̄ small we have |F ∪ F ′| ≤ Cc̄ ≤ 1
4 |Q| and derive using Lemma 3.5 and the

triangle inequality with G := F ∪ F ′

‖∇aM̄i ‖L1(P1) ≤ |P1||A1| ≤ 2|P1 \G||A1|
≤ 2|Q \G||A′|+ 2‖∇u−A1‖L1(P1) + 2‖∇u−A′‖L1(Q\F ′)

≤ C|Q \G|− 1
2 ‖a′‖L1(Q\G) + C‖e(u)‖L2(Q)

≤ C‖u− a′‖L1(Q\F ′) + C‖u‖L1(Q\F ) + C‖e(u)‖L2(Q)

≤ C‖u‖L1(Q\F ) + C‖e(u)‖L2(Q).

This together with (6.12) concludes the proof of (6.11). �

We close this section with the proof of Lemma 2.8.
Proof of Lemma 2.8. Let q ∈ [1,∞). Consider the function defined in (2.7) with rk = k−p and
dk = k−1+dp, where p = 1

d−1 + 1
q(d−1)2 . (Note that the existence of pairwise disjoint balls with

this property is guaranteed by [18, Lemma 12.2] and the approximate differential of u in the

sense [4, Definition 3.70] exists a.e.) We first see that Hd−1(Ju) < +∞ as
∑
k r

d−1
k < ∞ due

to the fact that p > 1
d−1 . To see that u ∈ Lq(Ω) and ∇u /∈ L1(Ω), it suffices to show∑

k
rdk(rkdk)q <∞,

∑
k
rdkdk =∞.

The latter is immediate since −pd − 1 + pd = −1. To see the first property we calculate
−p(d+ q)− q + dpq = 1

d−1 − pd < −1, where in the last step we used p > 1
d−1 .

It remains to show that u ∈ GSBD2(Ω). To this end, we consider the sequence of functions

uj =
∑j

k=1
(Ak (x− xk))χBk(x) ∈ GSBD2(Ω) ∩ Lq(Ω)

converging to u and by the compactness theorem for GSBD (see [18, Theorem 11.3]) we see
that u ∈ GSBD2(Ω) since e(uj) = 0 a.e., supj Hd−1(Juj ) <∞ and supj ‖u‖Lq(Ω) <∞. �

6.3. A Korn-Poincaré inequality for functions with small jump set. We finally give
the proof of the Korn-Poincaré inequality for functions with small jump set.
Proof of Theorem 2.10. As in the previous sections we first treat the case u ∈ W(Q) ⊂ SBV (Q)
with Hd−1(Ju) > 0 and at the end of the proof we indicate the adaptions if u ∈ GSBD2(Q).
We may assume that Hd−1(Ju) ≤ Hd−1(∂Q) since otherwise the theorem trivially holds with
E = Q for C = C(Q) > 0 sufficiently large. We apply the Korn-Poincaré inequality due to
Chambolle, Conti, and Francfort (see [12, Theorem 1]) which is as the assertion of Theorem
2.10 with the difference that only the volume of the exceptional set can be controlled. We find

F ⊂ Q with |F | ≤ C(Hd−1(Ju))
d
d−1 for C = C(Q) > 0 and an infinitesimal rigid motion a such

that with q = 2d
d−1 and v := u− a

‖v‖Lq(Q\F ) ≤ C‖e(u)‖L2(Q). (6.13)



54 MANUEL FRIEDRICH

We now consider a suitable truncation of v. As a preparation let η ∈ C1
c (Rd;Rd) be a function

with

η(z) = z for |z| ≤ 1, |η(z)| ≤ |z| for z ∈ Rd, η(z) = 0 for |z| ≥ 2 (6.14)

and let ηi(z) = iη(z/i) for i ∈ N. Then ηi ∈ C1
c (Rd;Rd), ηi(z) = z for |z| ≤ i, ηi = 0 on

{|z| ≥ 2i} and ‖∇ηi‖∞ ≤ c for c independent of i. We now define

M = (Hd−1(Ju))−
d

q(d−1) ‖e(u)‖L2(Q) = (Hd−1(Ju))−
1
2 ‖e(u)‖L2(Q)

and observe that by (6.13)

|{|v| > M}| ≤ |F |+ 1
Mq ‖v‖qLq(Q\F ) ≤ C(Hd−1(Ju))

d
d−1 . (6.15)

Define v′ = η2
√
dM (v) and note v′ ∈ SBV (Q) with Hd−1(Jv′ \ Ju) = 0. We apply Corollary

6.1 and then by ‖∇η2
√
dM‖∞ ≤ c, ‖η2

√
dM‖∞ ≤ 4

√
dM , ∇η2

√
dM = 0 on {|z| ≥ 4

√
dM} and

the chain rule in BV (see [4, Theorem 3.96])

|Dv′|(Q) ≤ c
∑d

i=1
‖∇v4

√
dM

i ‖L1(Q) + 2‖η2
√
dM‖∞H

d−1(Ju)

≤ CM(Hd−1(Ju) + |F |) + C‖e(v)‖L2(Q) + C‖v‖L1(Q\F )

≤ CMHd−1(Ju) + C‖e(u)‖L2(Q),

(6.16)

where in the last step we used (6.13) and |F | ≤ C(Hd−1(Ju))
d
d−1 ≤ CHd−1(Ju). (Recall

Hd−1(Ju) ≤ Hd−1(∂Q).) Moreover, (6.14) yields v′ = v on {|v| < 2
√
dM}. Now arguing

similarly as in the proof of Theorem 2.3 (see Section 6.1), using the coarea formula, we can
find ti ∈ (M, 2M) such that Gi := {−ti < v′i < ti} is a set of finite perimeter and

Hd−1(Q ∩ ∂∗Gi) ≤
1

M

ˆ ∞
−∞
Hd−1

(
Q ∩ ∂∗{v′i > t}

)
dt ≤ 1

M
|Dv′|(Q) (6.17)

≤ 1

M

(
CMHd−1(Ju) + C‖e(u)‖L2(Q)

)
≤ C(Hd−1(Ju))

1
2 ,

where in the last step we used Hd−1(Ju) ≤ C(Hd−1(Ju))
1
2 for a constant C = C(Q).

We define E = Q\
⋂d
i=1Gi. As Q\Gi ⊂ {|v′| > M} and {|v′| > M} ⊂ {|v| > M} by (6.14),

(6.15) yields the second part of (2.10). By (6.17) we get Hd−1(∂∗E ∩ Q) ≤ C(Hd−1(Ju))
1
2 ,

which shows the first part of (2.10). Since v′ = v on {|v′| < 2
√
dM} and

Q \ E ⊂ {|v′i| < 2M, i = 1, . . . , d} ⊂ {|v′| < 2
√
dM},

we observe ‖v‖L∞(Q\E) ≤ C(Hd−1(Ju))−
1
2 ‖e(u)‖L2(Q) by the definition of M . This gives

(2.11)(ii) and together with (6.13), |F | ≤ C(Hd−1(Ju))
d
d−1 we obtain

‖v‖Lq(Q\E) ≤ ‖v‖Lq(Q\F ) + ‖v‖Lq(F∩{|v|≤2
√
dM}) ≤ C‖e(u)‖L2(Q) + CM |F |

1
q ≤ C‖e(u)‖L2(Q),

which establishes (2.11)(i). Finally, ū := (u − a)χQ\E = vχQ\E = v′χQ\E clearly lies in

SBV 2(Q) ∩ L∞(Q) since u ∈ W(Q). We use (6.16) and [4, Theorem 3.84] to calculate

|Dū|(Q) ≤ |Dv′|(Q) + CMHd−1(∂∗E ∩Q) ≤ CM(Hd−1(Ju))
1
2 + C‖e(u)‖L2(Q),

which by the definition of M gives (2.12). The variant announced below Theorem 2.10 with
p ∈ [1, 2] follows by replacing q = 2d

d−1 by q′ = 2d
p(d−1) in the above proof.

Finally, we treat the case u ∈ GSBD2(Q) with Hd−1(Ju) > 0. We proceed similarly as
in the density argument in the proof of Theorem 2.1 (see Section 5.2) and refer therein for
details. Let (uj)j be a sequence of rescaled versions of u defined on squares Qj ⊃⊃ Q with
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|Qj \Q| → 0 for j → ∞. Using Lemma 5.4 we approximate (uj)j with a (diagonal) sequence
(uk)k ⊂ W(Q) such that (5.35) holds with uk → u a.e. on Q.

We then obtain infinitesimal rigid motions (ak)k and exceptional sets (Ek)k such that (2.10)-
(2.12) hold for each k ∈ N. By compactness we find a set of finite perimeter E satisfying (2.10)
such that χEk → χE in measure after extracting a not relabeled subsequence. Moreover,
applying Lemma 3.4 we find that also the infinitesimal rigid motions converge to some a and
(2.11) follows by lower semicontinuity.

The sequence ūk := (uk − ak)χQ\Ek is uniformly bounded in BV norm and we therefore
deduce ū := (u − a)χQ\E ∈ BV (Q) satisfies (2.12) by lower semicontinuity. Likewise, a

compactness result in SBD2 together with the uniform bound on ‖ūk‖∞ gives ū ∈ SBD2(Q)
(see [5]). Finally, Alberti’s rank one property also yields ū ∈ SBV (Q). �
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