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Abstract

In this paper we show that every L1-integrable function on ∂Ω
can be obtained as the trace of a function of bounded variation in Ω
whenever Ω is a domain with regular boundary ∂Ω in a doubling metric
measure space. In particular, the trace class of BV (Ω) is L1(∂Ω)
provided that Ω supports a 1-Poincaré inequality. We also construct
a bounded linear extension from a Besov class of functions on ∂Ω to
BV (Ω).

1 Overview

A class of problems in analysis, called boundary value problems, is the group
of problems that seek to find solutions to a given equation in a domain,
subject to a prescribed condition on the behavior of the function at the
boundary of the domain. A wide category of such problems deal with the
Dirichlet boundary conditions; in such problems one wishes to prescribe the
trace value of the solution at the boundary of the domain. Given a domain
Ω, it is therefore natural to ask which functions f defined on ∂Ω can be
extended to functions F (of some specified regularity ) on the interior of Ω.
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More specifically, what class of functions on the boundary can be realized as
the traces of the functions F in the preceding question?

The model problem that motivates our study is the problem of finding
least gradient functions from the class of functions of bounded variation (BV),
with prescribed boundary data, see [4, 25]. Therefore the regularity of the
extended function inside the domain is BV regularity.

The paper [4] first studied the trace and extension problem for functions
of bounded variation in Euclidean Lipschitz domains. It was shown there
that the trace functions of BV functions on the domain lie in the L1-class
of the boundary. In contrast, the work [13] demonstrated that every L1-
function on the boundary of a Euclidean half-space (and hence boundaries of
Lipschitz domains) has a BV extension to the half-space. Together, these two
results indicate that the trace class of BV functions on a Euclidean Lipschitz
domain is the L1-class of its boundary.

In the metric setting, a version of the Dirichlet problem associated with
BV functions was considered in [15], but their notion of trace required that
the BV function be defined on a larger domain. In [23] this requirement was
dispensed with for domains whose boundaries are more regular (Euclidean
Lipschitz domains satisfy this regularity condition). In [23] it was shown that
if in addition the domain supports a 1-Poincaré inequality, then the trace of
a BV function on the domain lies in a suitable L1-class of the boundary,
thus providing an analog of the results of [4] in the metric setting. The
recent work [30] gave an analog of the extension result of [13] for Lipschitz
domains in Carnot–Carathéodory spaces, which indicated that it is possible
to identify the trace class of BV functions in more general metric measure
spaces. The goal of this paper is to provide such an identification, by adapting
the technique of [13] to the metric setting.

In this paper Ω denotes a domain in a metric measure space (X, d, µ). The
natural measure on Ω is the restriction of µ to Ω. The measure we consider
on the boundary ∂Ω is the co-dimension 1 Hausdorff measure H := H|∂Ω

(see (1.9) below). The function spaces related to ∂Ω will have norms com-
puted using the measure H, and this being understood, we will not explicitly
mention the measure in the notation representing these function spaces.

We now state the two main theorems of this paper. In what follows,
T : BV (Ω)→ L1(∂Ω) is the trace operator as constructed in [23], see (2.17).

thm:main1 Theorem 1.1. Let Ω be a bounded domain in X that satisfies the density
condition (1.14) and the co-dimension 1 Ahlfors regularity (1.15). Then there
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is a bounded linear extension operator E : B0
1,1(∂Ω)→ BV (Ω) such that T ◦E

is the identity operator on B0
1,1(∂Ω).

thm:main2 Theorem 1.2. With Ω a bounded domain in X that satisfies the density
condition (1.14) and the co-dimension 1 Ahlfors regularity (1.15), there is
a nonlinear bounded extension operator Ext : L1(∂Ω) → BV (Ω) such that
T ◦ Ext is the identity operator on L1(∂Ω).

The extension from L1(∂Ω) to BV (Ω) cannot in general be linear; this is
not an artifact of our proof, see [27, 28].

Combining the above results with those of [23] we obtain the following
identification of the trace class of BV (Ω).

Corollary 1.3. Let X support a 1-Poincaré inequality. With Ω a bounded
domain in X that satisfies the density condition (1.14), the co-dimension 1
Ahlfors regularity (1.15), and 1-Poincaré inequality, we have that the trace
class of BV (Ω) is L1(∂Ω).

For clarity, we note that the statements of Theorems 1.1 and 1.2 do not
require the domains or the ambient metric measure space to support any
Poincaré inequality, which allows the domains to have interior cusps or slits.
Thus, even in the Euclidean setting our methods give rise to new results, as
the results of [13] and [30] are in the setting of Lipschitz domains.

A related problem is to investigate the extensions of functions from a
domain Ω to the whole space. See [5, 8, 17, 22, 24].

Acknowledgement: The research of the first author was supported by
the Knut and Alice Wallenberg Foundation (Sweden), and the research of
the second author was partially supported by the NSF grant DMS-1500440
(U.S.A.). Majority of the research for this paper was conducted during the
visit of the third author to the University of Cincinnati; she wishes to thank
that institution for its kind hospitality.

1.4 Notation and definitions

In this section (Z, d, ν) denotes a metric measure space with ν a Radon
measure. We say that ν is doubling if there is a constant CD such that for
each z ∈ Z and r > 0,

0 < ν(B(z, 2r)) ≤ CD ν(B(z, r)) <∞.
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Given a Lipschitz function f on a subset A ⊂ Z, we set

LIP(f, A) := sup
x,y∈A :x 6=y

|f(x)− f(y)|
d(x, y)

.

When x is a point in the interior of A ⊂ Z, we set

Lip f(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

In what follows, given a metric measure space (Z, d, ν), the space L1
loc(Z)

consists of functions on Z that are integrable on bounded subsets of Z. We
follow [26] to define the function class BV (Z). The space BV (Z) of functions
of bounded variation consists of functions in L1(Z) that also have finite
total variation on Z. The total variation of a function on a metric measure
space is measured using upper gradients; the notion of upper gradients, first
formulated in [20] (with the terminology “very weak gradients”), plays the
role of |∇u| in the metric setting where no natural distributional derivative
structure exists. A Borel function g : Z → [0,∞] is an upper gradient of
u : Z → R∪{±∞} if the following inequality holds for all (rectifiable) curves
γ : [a, b]→ Z, (denoting x = γ(a) and y = γ(b)),

|u(y)− u(x)| ≤
ˆ
γ

g ds

whenever u(x) and u(y) are both finite, and
´
γ
g ds =∞ otherwise. For each

function u as above, we set I(u : Z) to be the infimum of the quantity
´
Z
g dν

over all upper gradients (in Z) g of u.

rem:lip-upp1 Remark 1.5. We note here that if u is a (locally) Lipschitz function on Z,
then Lipu is an upper gradient of u; see for example [19]. We refer the
interested reader to [6, 18] for more on upper gradients.

The total variation of the function u ∈ L1
loc(Z) is given by

‖Du‖(Z) := inf
{

lim inf
i→∞

I(ui : Z) : ui ∈ Liploc(Z), ui → u in L1
loc(Z)

}
.

rem:lip-upp2 Remark 1.6. From Remark 1.5 we know that if u is a locally Lipschitz
continuous function on Z, then ‖Du‖(Z) ≤

´
Z

Lipu dµ.
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For each open set U ⊂ Z we can set ‖Du‖(U) similarly:

‖Du‖(U) := inf
{

lim inf
i→∞

I(ui : U) : ui ∈ Liploc(U), ui → u in L1
loc(U)

}
.

It was shown in [26] that if ‖Du‖(Z) is finite, then U 7→ ‖Du‖(U) is the
restriction of a Radon measure to open sets of Z. We use ‖Du‖ to also
denote this Radon measure.

Definition 1.7. The space BV (Z) of functions of bounded variation is
equipped with the norm

‖u‖BV (Z) := ‖u‖L1(Z) + ‖Du‖(Z).

This definition of BV agrees with the standard notion of BV functions in
the Euclidean setting, see [2, 12, 31]. See also [3] for more on the BV class
in the metric setting.

We say that a measurable set E ⊂ Z is of finite perimeter if χE ∈ BV (Z).
It follows from [26] that the superlevel set Et := {z ∈ Z : u(z) > t} has
finite perimeter for almost every t ∈ R and that the coarea formula

‖Du‖(A) =

ˆ
R
‖DχEt‖(A) dt

holds true whenever A ⊂ Z is a Borel set.

Definition 1.8 (cf. [1]). A metric space Z supports a 1-Poincaré inequality
if there exist positive constants λ and C such that for all balls B ⊂ Z and
all u ∈ L1

loc(Z),

 
B

|u− uB| dν ≤ C rad(B)
‖Du‖(λB)

ν(λB)
.

Here and in the rest of the paper, fA denotes the integral mean of a
function f ∈ L0(Z) over a measurable set A ⊂ Z of finite positive measure,
defined as

fA =

 
A

f dν =
1

ν(A)

ˆ
A

f dν

whenever the integral on the right-hand side exists, not necessarily finite
though. Furthermore, given a ball B = B(x, r) ⊂ Z and λ > 0, the symbol
λB denotes the inflated ball B(x, λr).
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Given A ⊂ Z, we define its co-dimension 1 Hausdorff measure H(A) by

H(A) = lim
δ→0+

inf

{∑
i

ν(Bi)

rad(Bi)
: Bi balls in Z, rad(Bi) < δ,A ⊂

⋃
i

Bi

}
.

(1.9) eq:deff-mathcal

It was shown in [1] that if ν is doubling and supports a 1-Poincaré in-
equality, then there is a constant C ≥ 1 such that whenever E ⊂ Z is of
finite perimeter,

C−1H(∂mE) ≤ ‖DχE‖(Z) ≤ CH(∂mE),

where ∂mE is the measure-theoretic boundary of E. It consists of those points
z ∈ Z for which

lim sup
r→0+

µ(B(z, r) ∩ E)

µ(B(z, r))
> 0 and lim sup

r→0+

µ(B(z, r) \ E)

µ(B(z, r))
> 0.

We next turn our attention to the definition of other function spaces to be
considered in this paper. The Besov classes, much studied in the Euclidean
setting, made their first appearance in the metric setting in [9] and were
explored further in [14].

Definition 1.10. For a fixed R > 0, the Besov space Bθ
1,1(Z) of smoothness

θ ∈ [0, 1] consists of functions of finite Besov norm that is given by

‖u‖Bθ1,1(Z) = ‖u‖L1(Z) +

ˆ R

0

ˆ
Z

 
B(x,t)

|u(y)− u(x)| dν(y) dν(x)
dt

t1+θ
. (1.11) eq:Besov

We will show that the function class Bθ
1,1(Z) is in fact independent of the

choice of R ∈ (0,∞), see Lemma 3.3 below.
The following fractional John–Nirenberg space was first generalized to

the metric measure space setting in [17]. In the Euclidean setting it was
first studied in [10] and [11], but the case θ = 0 in the Euclidean setting
appeared in the earlier work of John and Nirenberg [21]. The fractional
John–Nirenberg space Aθ1,τ (Z), where θ ∈ [0, 1] is its smoothness and τ ≥ 1
the dilation factor, is defined via its norm

‖u‖Aθ1,τ (Z) = ‖u‖L1(Z) + sup
Bτ

∑
B∈Bτ

1

rad(B)θ

ˆ
τB

|u− uτB| dν, (1.12) eq:JN

where the supremum is taken over all collections Bτ of balls in Z of radius at
most R/τ such that τB1∩τB2 is empty whenever B1, B2 ∈ Bτ with B1 6= B2.
The class Aθ1,τ (Z) is also independent of the exact choice of R ∈ (0,∞).
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1.13 Standing assumptions

Throughout this paper (X, d, µ) is a metric measure space, with µ a Borel
regular measure. We assume that X is complete and that µ is doubling on
X. Furthermore, Ω ⊂ X is a bounded domain and there is a constant C ≥ 1
such that for all x ∈ ∂Ω, z ∈ Ω, and 0 < r ≤ diam(Ω), we have

µ(B(z, r) ∩ Ω) ≥ C−1µ(B(z, r)), (1.14) density

and

C−1µ(B(x, r))

r
≤ H(B(x, r) ∩ ∂Ω) ≤ C

µ(B(x, r))

r
. (1.15) boundary-Ahlfors-regularity

The property of satisfying (1.15) will be called Ahlfors codimension 1 regu-
larity of ∂Ω.

Throughout the paper C represents various constants that depend solely
on the doubling constant, constants related to the Poincaré inequality, and
the constants related to (1.14) and (1.15). The precise value of C is not of
interest to us at this time, and its value may differ in each occurrence. Given
expressions a and b, we say that a ≈ b if there is a constant C ≥ 1 such that
C−1a ≤ b ≤ Ca.

2 Bounded linear extension from Besov class

to BV class: proof of Theorem 1.1
sec:B110-extension

2.1 Whitney cover and partition of unity

The following theorem from [18, Section 4.1] gives the existence of a Whitney
covering of an open subset Ω of a doubling metric space X by balls whose
radii are comparable to their distance from the boundary, see also [7].

Theorem 2.2. Let Ω ( X be open. Then there exists a countable collection
WΩ = {B(pj,i, rj,i) = Bj,i} of balls in Ω so that

•
⋃
j,iBj,i = Ω,

•
∑

j,i χB(pj,i,2rj,i) ≤ 2C5
D,

• 2j−1 < rj,i ≤ 2j for all i,

• and so that rj,i = 1
8

dist(pj,i, X \ Ω).

Here the constant CD is the doubling constant of the measure µ.
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Since the radii of the balls are sufficiently small, we have that 2Bi ⊂ Ω.
By the boundedness of Ω there is a largest exponent j that occurs in the cover;
we denote this exponent by j0. Hence −j ∈ N ∪ {0, · · · ,−j0}. Note that 2j0

is comparable to diam(Ω). One wishing to keep track of the relationships
between various constants should therefore keep in mind that the constants
that depend on j0 then depend on diam(Ω).

We also note that no ball in level j intersects a ball in level j + 2. This
follows by the reverse triangle inequality d(pj,i, pj+2,k) ≥ 2j+4 − 2j+3 = 2j+3

and the bounds on the radii: 2j−1 < rj,i ≤ 2j and 2j+1 < rj+2,k ≤ 2j+2.
As in [18, Section 4.1], there is a Lipschitz partition of unity {ϕj,i} sub-

ordinate to the Whitney decomposition WΩ, that is,
∑

j,i ϕj,i ≡ χΩ and for
every ball Bj,i ∈ WΩ, we have that χBj,i ≤ ϕj,i ≤ χ2Bj,i and ϕj,i is C/rj,i-
Lipschitz continuous.

2.3 An extension of Besov functions
ssec:BesovExt

Suppose that f : ∂Ω → R is a function in B0
1,1(∂Ω). We want to define a

function F : Ω→ R whose trace is the original function f on ∂Ω.
Consider the center of the Whitney ball pj,i ∈ Ω and choose a closest point

qj,i ∈ ∂Ω. Define Uj,i := B(qj,i, rj,i) ∩ ∂Ω. We set aj,i :=
ffl
Uj,i

f(y) dH(y).

Then for x ∈ Ω set
F (x) :=

∑
j,i

aj,iϕj,i.

In subsequent results in this section we will show that F ∈ BV (Ω). From
the following proposition and Remark 1.6 we obtain the desired bound for
‖DF‖(Ω).

prop:extnBounds Proposition 2.4. Given Ω ⊂ X and f ∈ B0
1,1(∂Ω), there exists C > 0 such

that ˆ
Ω

LipF dµ ≤ C‖f‖B0
1,1(∂Ω).

Proof. Fix a ball B`,m ∈ WΩ, and fix a point x ∈ B`,m. For all y ∈ B`,m,

|F (y)− F (x)| =

∣∣∣∣∣∑
j,i

aj,i(ϕj,i(y)− ϕj,i(x))

∣∣∣∣∣
=

∣∣∣∣∣∑
j,i

(aj,i − a`,m)(ϕj,i(y)− ϕj,i(x))

∣∣∣∣∣ ≤ ∑
j,i s.t.

2Bj,i∩B`,m 6=∅

|aj,i − a`,m|
C

rj,i
d(y, x).
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The last inequality in the above sequence follows from the Lipschitz constant
of ϕj,i. Rearranging and noting that if the balls intersect then |j − `| ≤ 1,
we see that

|F (y)− F (x)|
d(y, x)

≤ C

r`,m

∑
j,i s.t.

2Bj,i∩B`,m 6=∅

|aj,i − a`,m|.

Hence, we want to bound terms of the form |aj,i − a`,m|:

|aj,i − a`,m| =

∣∣∣∣∣
 
Uj,i

f(z) dH(z)−
 
U`,m

f(z) dH(z)

∣∣∣∣∣
=

∣∣∣∣∣
 
Uj,i

 
U`,m

(
f(z)− f(w)

)
dH(w) dH(z)

∣∣∣∣∣
≤
 
Uj,i

 
U`,m

|f(z)− f(w)| dH(w) dH(z)

≤ 1

H(Uj,i)H(U`,m)

ˆ
Uj,i

ˆ
U`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C

H(U∗`,m)H(U∗`,m)

ˆ
Uj,i

ˆ
U`,m

|f(z)− f(w)| dH(w) dH(z) (2.5) ineq:expandballs1

≤ C

H(U∗`,m)H(U∗`,m)

ˆ
U∗`,m

ˆ
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

= C

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z),

where U∗`,m denotes the expanded subset of the boundary:

U∗`,m := B(q`,m, 2
6r`,m) ∩ ∂Ω. (2.6) eq:expandedsubset

By the doubling property of X, the boundary regularity condition on ∂Ω,
and the definition of codimension-1 Hausdorff measure, we have

H(U∗`,m) ≤ CH(U`,m) ,

which gave inequality (2.5). The above estimates together with the bounded
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overlap of the Whitney balls yield the following inequality:

LipF (x) = lim sup
y→x

|F (y)− F (x)|
d(y, x)

≤ C

r`,m

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z) (2.7) eq:pointwise-Lip-est

for x ∈ B`,m. From (2.7) and (1.15) we see that
ˆ

Ω

LipF (x) dµ(x) ≤
∑
`,m

ˆ
B`,m

LipF (x) dµ(x)

≤
∑
`,m

µ(B`,m)
C

r`,m

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C
∑
`,m

H(U`,m)

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C

j0∑
`=−∞

∑
m

ˆ
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C

j0∑
`=−∞

ˆ
∂Ω

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z) .

Here the last inequality follows from the uniformly bounded overlap of the
balls U∗`,m for each `. Without loss of generality, we may choose R = 2j0+7 in
the definition of the Besov norm (1.11). Note that R ≈ diam(Ω) then. The
following estimate (cf. the proof of [14, Theorem 5.2]) concludes the proof:

j0∑
`=−∞

ˆ
∂Ω

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z)

≈
ˆ 2j0+7

t=0

ˆ
∂Ω

 
B(z,t)

|f(z)− f(w)| dH(w) dH(z)
dt

t
(2.8) eq:BesovEquivSum

≤ C‖f‖B0
1,1(∂Ω) .

We will use the extension constructed in this section in formulating a
nonlinear bounded extension from L1(∂Ω,H) to BV (Ω) in the subsequent
sections. There we will need the following estimates for the integral of the
gradient and the function on layers of Ω.
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layer-est-grad Lemma 2.9. For 0 ≤ ρ1 < ρ2 < diam(Ω)/2, set

Ω(ρ1, ρ2) := {x ∈ Ω : ρ1 ≤ dist(x,X \ Ω) < ρ2}. (2.10) eq:def-OmRhoRho

Let J (ρ1, ρ2) be the collection of all ` ∈ Z such that there is some m ∈ N
with 2B`,m ∩ Ω(ρ1, ρ2) non-empty. Thenˆ

Ω(ρ1,ρ2)

LipF dµ ≤ C
∑

`∈J (ρ1,ρ2)

ˆ
∂Ω

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z).

Proof. For each ` ∈ J (ρ1, ρ2) let I(`) denote the collection of all m ∈ N for
which 2B`,m ∩ Ω(ρ1, ρ2) is non-empty. Then by (2.7) and (1.15),ˆ

Ω(ρ1,ρ2)

LipF dµ ≤
∑

`∈J (ρ1,ρ2)

∑
m∈I(`)

ˆ
B`,m

LipF dµ

≤ C
∑

`∈J (ρ1,ρ2)

∑
m∈I(`)

µ(B`,m)

r`,m

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C
∑

`∈J (ρ1,ρ2)

∑
m∈I(`)

H(U`,m)

 
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

= C
∑

`∈J (ρ1,ρ2)

∑
m∈I(`)

ˆ
U∗`,m

 
U∗`,m

|f(z)− f(w)| dH(w) dH(z)

≤ C
∑

`∈J (ρ1,ρ2)

∑
m∈I(`)

ˆ
U∗`,m

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z)

≤ C
∑

`∈J (ρ1,ρ2)

ˆ
∂Ω

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z).

cor:layer-est-grad-lip Corollary 2.11. Using the notation of Lemma 2.9, we have thatˆ
Ω(ρ1,ρ2)

LipF dµ ≤ Cρ2H(∂Ω) LIP(f, ∂Ω)

whenever f is Lipschitz on ∂Ω.

Proof. For a fixed ` ∈ Z, we can estimateˆ
∂Ω

 
B(z,27+`)

|f(z)− f(w)| dH(w) dH(z)

≤
ˆ
∂Ω

 
B(z,27+`)

LIP(f, ∂Ω)d(z, w) dH(w) dH(z)

≤ CH(∂Ω) LIP(f, ∂Ω) 27+` .
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Therefore,

ˆ
Ω(ρ1,ρ2)

LipF dµ ≤ CH(∂Ω) LIP(f, ∂Ω)
∑

`∈J (ρ1,ρ2)

2`.

Every ball B = B(p, r) ∈ I(`) satisfies 2`−1 < r ≤ 2` and dist(p,X \Ω) = 8r.
There is C ≥ 1 such that C−1ρ1 ≤ 2` ≤ Cρ2 whenever ` ∈ J (ρ1, ρ2). Thus,∑

`∈J (ρ1,ρ2) 2` ≤ Cρ2.

We next turn our attention to the L1-estimates for F .

lem:L1-est_Whitney Lemma 2.12. There exists C > 0 such thatˆ
Ω

|F | dµ ≤ C diam(Ω)‖f‖L1(∂Ω).

Proof. We first consider a fixed ball B`,m from the Whitney cover. Then

ˆ
B`,m

|F (x)| dµ(x) =

ˆ
B`,m

∣∣∣∣∣∑
j,i

 
Uj,i

f(y) dH(y)ϕj,i(x)

∣∣∣∣∣ dµ(x)

≤
ˆ
B`,m

∑
j,i

∣∣∣∣∣
 
Uj,i

f(y) dH(y)

∣∣∣∣∣ϕj,i(x) dµ(x)

=

ˆ
B`,m

∑
j,i s.t.

2Bj,i∩B`,m 6=∅

∣∣∣∣∣
 
Uj,i

f(y) dH(y)

∣∣∣∣∣ϕj,i(x) dµ(x).

Recall that if 2Bj,i ∩ B`,m 6= ∅, then |j − `| ≤ 1, so H(Uj,i) ≈ H(U∗`,m).
Also, for U∗`,m as defined in equation (2.6), Uj,i ⊂ U∗`,m. Furthermore, by the
construction of the Whitney decomposition, each point is in a fixed number
of dilated Whitney balls 2Bj,i. Hence,

ˆ
B`,m

∑
j,i s.t.

2Bj,i∩B`,m 6=∅

∣∣∣∣ 
Uj,i

f(y) dH(y)

∣∣∣∣ϕj,i(x) dµ(x)

≤ C

ˆ
B`,m

 
U∗`,m

|f(y)| dH(y) dµ(x) ≤Cµ(B`,m)

 
U∗`,m

|f(y)| dH(y).

12



In view of (1.15), we obtain that

ˆ
B`,m

|F (x)| dµ(x) ≤ C r`,m

ˆ
U∗`,m

|f(y)| dH(y). (2.13) eq:Ball-F-est

Summing up and noting that Ω =
⋃
`,mB`,m, we have

ˆ
Ω

|F | dµ ≤ C

j0∑
`=−∞

∑
m

r`,m

ˆ
U∗`,m

|f | dH ≤ C

j0∑
`=−∞

2`
∑
m

ˆ
U∗`,m

|f | dH

≤ C

j0∑
`=−∞

2`
ˆ
∂Ω

|f | dH ≤C diam(Ω)‖f‖L1(∂Ω). �

We now aim to obtain an analog of Lemma 2.9 for the L1-norm of F on
the layer Ω(ρ1, ρ2).

layer-est-Fn-boundaryball Lemma 2.14. Let z ∈ ∂Ω and r ∈ (0, diam(Ω)/2). Then,

ˆ
B(z,r)∩Ω(ρ1,ρ2)

|F | dµ ≤ C min{r, ρ2}
ˆ
B(z,28r)∩∂Ω

|f | dH

whenever 0 ≤ ρ1 < min{r, ρ2} and ρ2 < diam(Ω)/2.

Proof. Since B(z, r) ∩ Ω(ρ1, ρ2) = B(z, r) ∩ Ω(ρ1,min{r, ρ2}), we do not
lose any generality by assuming that ρ2 ≤ r. Similarly as in the proof of
Lemma 2.9, we set J ′(ρ1, ρ2) to be the collection of all ` for which there
is some m such that 2B`,m ∩ Ω(ρ1, ρ2) ∩ B(z, r) is non-empty, and for each
` ∈ J ′(ρ1, ρ2) we set I ′(`) to be the collection of all m ∈ N for which
2B`,m ∩ Ω(ρ1, ρ2) ∩B(z, r) is non-empty. Then by (2.13),

ˆ
B(z,r)∩Ω(ρ1,ρ2)

|F | dµ ≤
∑

`∈J ′(ρ1,ρ2)

∑
m∈I′(`)

ˆ
B`,m

|F | dµ

≤ C
∑

`∈J ′(ρ1,ρ2)

∑
m∈I′(`)

r`,m

ˆ
U∗`,m

|f | dH.

The triangle inequality yields that

d(z, q`,m) ≤ d(z, p`,m) + d(p`,m, q`,m) ≤ 2d(z, p`,m) ≤ 2(r + 2r`,m),
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where B`,m = B(p`,m, r`,m) and U`,m = B(q`,m, r`,m)∩∂Ω with q`,m ∈ ∂Ω being
a boundary point lying closest to p`,m. Moreover, 8r`,m = dist(p`,m, X \Ω) ≤
d(p`,m, z) ≤ r + 2r`,m. Hence, r`,m ≤ 1

6
r. Consequently, d(z, q`,m) ≤ 8

3
r and

U`,m ⊂ B(z, (8
3

+ 1
6
)r). Thus, U∗`,m ⊂ B(z, 28r) and

ˆ
B(z,r)∩Ω(ρ1,ρ2)

|F | dµ ≤ C
∑

`∈J ′(ρ1,ρ2)

2`
ˆ
B(z,28r)∩∂Ω

|f | dH

≤ Cρ2

ˆ
B(z,28r)∩∂Ω

|f | dH,

where the last inequality can be verified as follows: Every ball B = B(p, r) ∈
I ′(`) satisfies 2`−1 < r ≤ 2` and dist(p,X \Ω) = 8r. There is C ≥ 1 such that
C−1ρ1 ≤ 2` ≤ Cρ2 whenever ` ∈ J ′(ρ1, ρ2). Thus,

∑
`∈J ′(ρ1,ρ2) 2` ≤ Cρ2.

By covering ∂Ω by balls of radii r, whose overlap is bounded, we obtain
the following corollary.

layer-est-Fn Corollary 2.15. With the notation of Lemma 2.9, we have

ˆ
Ω(ρ1,ρ2)

|F | dµ ≤ C ρ2

ˆ
∂Ω

|f | dH.

2.16 Trace of extension is the identity mapping

From the above lemma we know that given a function f ∈ B0
1,1(∂Ω) the

corresponding function F is in the class N1,1(Ω) ⊂ BV (Ω), where N1,1(Ω)
is a Newtonian class introduced in [29]. The mapping f 7→ F is denoted
by the operator E : B0

1,1(∂Ω) → BV (Ω). This operator is bounded by
Proposition 2.4 and Lemma 2.12, and it is linear by construction.

We now wish to show that the trace of F returns the original function f ,
i.e., T ◦ E is the identity function on B0

1,1(∂Ω). It was shown in [23] that if
Ω satisfies our standing assumptions and supports a 1-Poincaré inequality,
then for each u ∈ BV (Ω) and for H-a.e. z ∈ ∂Ω there is a number Tu(z) ∈ R
such that

lim sup
r→0+

 
B(z,r)∩Ω

|u(y)− Tu(z)| dµ(y) = 0. (2.17) defoftrace

The map u 7→ Tu is called the trace of BV (Ω). Moreover, Tu ∈ L1(∂Ω)
provided that u ∈ BV (Ω).
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Note also that B0
1,1(∂Ω) ⊂ L1(∂Ω) and the inclusion is strict in general,

which is shown in Example 3.11 below. Further properties of the Besov
classes are explored in Section 3.

For the sake of clarity, let us explicitly point out that the following lemma
shows that the BV extension of a function of the Besov class B0

1,1(∂Ω), as con-
structed above, has a well-defined trace even though no Poincaré inequality
for Ω or for X is assumed.

trace-Besov Lemma 2.18. For f and F as above, and for H-a.e. z ∈ ∂Ω,

lim
r→0+

 
B(z,r)∩Ω

|F (x)− f(z)| dµ(x) = 0.

That is, TEf(z) exists for H-a.e. z ∈ ∂Ω.

Proof. Since f ∈ B0
1,1(∂Ω) ⊂ L1(∂Ω), we know by the doubling property of

H|∂Ω that H-a.e. z ∈ ∂Ω is a Lebesgue point of f . Let z be such a point.
Since

∑
j,iϕj,i = χΩ, we have

 
B(z,r)∩Ω

|F − f(z)| dµ =

 
B(z,r)∩Ω

∣∣∣∣∣∑
j,i

( 
Uj,i

f dH

)
ϕj,i(x)− f(z)

∣∣∣∣∣ dµ(x)

=

 
B(z,r)∩Ω

∣∣∣∣∣∑
j,i

( 
Uj,i

(f − f(z)) dH

)
ϕj,i(x)

∣∣∣∣∣ dµ(x)

≤
 
B(z,r)∩Ω

∑
j,i

( 
Uj,i

|f − f(z)| dH

)
ϕj,i(x) dµ(x) .

By the properties of the Whitney covering WΩ,

ˆ
B(z,r)∩Ω

∑
j,i

( 
Uj,i

|f − f(z)| dH

)
ϕj,i(x) dµ(x)

≤
∑

`,m s.t.
2B`,m∩B(z,r)6=∅

ˆ
B`,m

∑
j,i

( 
Uj,i

|f − f(z)| dH

)
ϕj,i(x) dµ(x)

≤
∑

`,m s.t.
2B`,m∩B(z,r)6=∅

ˆ
B`,m

∑
j,i s.t.

2Bj,i∩B`,m 6=∅

( 
Uj,i

|f − f(z)| dH

)
dµ(x).
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If 2Bj,i ∩B`,m is non-empty, then Uj,i ⊂ U∗`,m and H(Uj,i) ≈ H(U∗`,m). There-
fore by (1.15) we have

ˆ
B(z,r)∩Ω

∑
j,i

( 
Uj,i

|f − f(z)| dH

)
ϕj,i(x) dµ(x)

≤ C
∑

`,m s.t.
2B`,m∩B(z,r)6=∅

( 
U∗`,m

|f − f(z)| dH

)
µ(B`,m)

≤ C
∑

`,m s.t.
2B`,m∩B(z,r)6=∅

r`,m

ˆ
U∗`,m

|f − f(z)| dH.

Let J (B(z, r)) denote the collection of all ` ∈ Z for which there is some
m ∈ N such that 2B`,m ∩ B(z, r) is non-empty. For each ` ∈ J (B(z, r)), set
I(`) to be the collection of all m ∈ N for which 2B`,m∩B(z, r) is non-empty.
Then,

ˆ
B(z,r)∩Ω

∑
j,i

( 
Uj,i

|f − f(z)| dH

)
ϕj,i(x) dµ(x)

≤ C
∑

`∈J (B(z,r))

2`
∑

m∈I(`)

ˆ
U∗`,m

|f − f(z)| dH

≤ C
∑

`∈J (B(z,r))

2`
ˆ
B(z,27r)∩∂Ω

|f − f(z)| dH

≤ C r

ˆ
B(z,27r)∩∂Ω

|f − f(z)| dH.

In the above, we used the fact that
∑

`∈J (B(z,r)) 2` ≈ r, since only the indices

` ∈ Z for which 2` ≈ dist(B`,m, X \ Ω) ≤ r are allowed to be in J (B(z, r)).
From the fact that z is a Lebesgue point of f , we now have 

B(z,r)∩Ω

|F − f(z)| dµ ≤ C
r

µ(B(z, r) ∩ Ω)

ˆ
B(z,27r)∩∂Ω

|f − f(z)| dH

≤ C

 
B(z,27r)∩∂Ω

|f − f(z)| dµ→ 0 as r → 0+.

This completes the proof of the lemma.
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3 Comparison of B0
1,1(∂Ω) and other function

spaces
sec:spaces

We now wish to show that B0
1,1(∂Ω) has more interesting functions than mere

constant functions. What functions are in B0
1,1(∂Ω)? Since the results of this

section deal with function spaces based on more general doubling metric
measure spaces, we consider the underlying metric measure space (Z, d, ν).
The other function spaces include L1, BV, and the fractional John–Nirenberg
spaces as well as the class of Lipschitz functions.

Let Z = (Z, d, ν) be a metric space endowed with a doubling measure.
In applications in this paper, Z will be ∂Ω ⊂ X and ν will be the Hausdorff
co-dimension 1 measure H|∂Ω.

3.1 Preliminary results

cor:ballcovering Lemma 3.2. For every τ > 3, there is C = C(CD, τ) ≥ 1 such that for every
r > 0 there is an at most countable set of points {xj}j ⊂ Z (alternatively,
{xj}j ⊂ Ω, where Ω ⊂ Z is arbitrary) such that

• B(xj, r) ∩B(xk, r) = ∅ whenever j 6= k;

• Z =
⋃
j B(xj, τr) (alternatively, Ω ⊂

⋃
j B(xj, τr));

•
∑

j χB(xj ,τr) ≤ C.

The above lemma is widely known to experts in the field, but we were
unable to find it in current literature; hence we provide a sketch of its proof.

Proof. An application of Zorn’s lemma or [18, Lemma 4.1.12] gives a count-
able set A ⊂ Z such that for distinct points x, y ∈ A we have d(x, y) ≥ r,
and for each z ∈ Z there is some x ∈ A such that d(z, x) < r. The countable
collection {B(x, r) : x ∈ A} can be seen to satisfy the requirements set forth
in the lemma because of the doubling property of ν.

lem:BesovIndepR Lemma 3.3. Let f ∈ L1(Z). Then,

ˆ r

0

ˆ
Z

 
B(x,t)

|f(y)− f(x)| dν(y) dν(x)
dt

t1+θ
<∞ if and only if

ˆ R

0

ˆ
Z

 
B(x,t)

|f(y)− f(x)| dν(y) dν(x)
dt

t1+θ
<∞ ,
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where 0 < r < R < ∞. If θ > 0, then the equivalence holds true even for
R =∞.

Proof. By the triangle inequality, we obtain for t > 0 that
ˆ
Z

 
B(x,t)

|f(y)− f(x)| dν(y) dν(x) ≤
ˆ
Z

 
B(x,t)

(
|f(y)|+ |f(x)|

)
dν(y) dν(x)

=

ˆ
Z

(
|f(x)|+

 
B(x,t)

|f(y)| dν(y)

)
dν(x)

= ‖f‖L1(Z) +

ˆ
Z

 
B(x,t)

|f(y)| dν(y) dν(x).

The Fubini theorem and the doubling condition then yield

ˆ
Z

 
B(x,t)

|f(y)| dν(y) dν(x) ≈
ˆ
Z×Z

|f(y)|χ(0,t)(d(x, y))

ν(B(y, t))
d(ν × ν)(x, y)

=

ˆ
Z

|f(y)|
 
B(y,t)

dν(x) dν(y) = ‖f‖L1(Z) .

For r > 0 set

I(r) :=

ˆ r

0

ˆ
Z

 
B(x,t)

|f(y)− f(x)| dν(y) dν(x)
dt

t1+θ
.

Then,

I(R) = I(r) +

ˆ R

r

ˆ
Z

 
B(x,t)

|f(y)− f(x)| dν(y) dν(x)
dt

t1+θ

≤ I(r) + C

ˆ R

r

‖f‖L1(Z)

dt

t1+θ
= I(r) + C‖f‖L1(Z)

( 1

rθ
− 1

Rθ

)
,

with obvious modification for θ = 0.

lem:BesovEquiv Lemma 3.4. Let R ≤ 2 diam(Z) and θ ∈ [0, 1]. Then,

I(R) ≈
ˆ
Z

ˆ
B(x,R)

|f(y)− f(x)|
ν(B(x, d(x, y)))d(x, y)θ

dν(y) dν(x).

Proof. The equivalence follows from the Fubini theorem, see also [14, Theo-
rem 5.2].

18



lem:BesovEquivFixedBalls Lemma 3.5. There is a constant C ≥ 1 and there are collections of balls
Bk, k = 0, 1, . . ., such that

C−1I(1) ≤
∞∑
k=0

∑
B∈Bk

1

rad(B)θ

ˆ
B

|f − fB| dν ≤ CI(4).

Moreover, rad(B) ≈ 2−k whenever B ∈ Bk, and the balls within each collec-
tion Bk have bounded overlap (also after inflation by a given factor τ ≥ 1).

Proof. By Lemma 3.2, there is a constant C = C(CD, τ) ≥ 1 and collections

of balls B̃k, k = 0, 1, . . ., such that rad(B) = 2−k for every B ∈ B̃k and
1 ≤

∑
B∈B̃k χ2τB(x) ≤ C for all x ∈ Z. Then, by (2.8),

I(1) ≤
∞∑
k=0

2kθ
∑
B∈B̃k

ˆ
B

 
B(x,2−k)

|f(y)− f(x)| dν(y) dν(x)

≤ C
∞∑
k=0

2kθ
∑
B∈B̃k

ˆ
B

 
2B

|f(y)− f(x)| dν(y) dν(x)

≤ C
∞∑
k=0

∑
B∈B̃k

1

(2−k)θ

ˆ
2B

 
2B

|f(y)− f(x)| dν(y) dν(x)

≤ C
∞∑
k=0

∑
B∈B̃k

1

rad(B)θ

ˆ
2B

|f − f2B| dν.

Thus, we choose Bk = {2B : B ∈ B̃k}, k = 0, 1, . . ., to conclude the proof of
the first inequality.

The proof of the second inequality follows analogous steps backwards.
Recall that rad(B) = 21−k whenever B ∈ Bk. Thus,

∞∑
k=0

∑
B∈Bk

1

rad(B)θ

ˆ
B

|f − fB| dν

≈
∞∑
k=0

∑
B∈Bk

2kθ
ˆ
B

 
B

|f(y)− f(x)| dν(y) dν(x)

≤ C

∞∑
k=0

2kθ
∑
B∈Bk

ˆ
B

 
B(x,22−k)

|f(y)− f(x)| dν(y) dν(x)

≤ C
∞∑
k=0

2kθ
ˆ
Z

 
B(x,22−k)

|f(y)− f(x)| dν(y) dν(x),
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where we used the fact that the balls have uniformly bounded overlap within
each collection Bk.
Remark 3.6. Let 0 ≤ θ < η ≤ 1. Then, ‖u‖Bθ1,1 ≤ C(1 + Rη−θ)‖u‖Bη1,1 and

‖u‖Aθ1,τ ≤ C(1 +Rη−θ)‖u‖Aη1,τ for any τ ≥ 1.

3.7 Comparison of function spaces with Bθ
1,1(Z)

Proposition 3.8. Let θ ∈ [0, 1] and τ ≥ 1 be arbitrary. Then there is a
constant C ≥ 1, which depends on θ and τ , such that

‖u‖Aθ1,τ ≤ C‖u‖Bθ1,1 .

Proof. Let Bτ be a fixed collection of non-overlapping balls in Z of radius at
most R/τ . Then,∑
B∈Bτ

1

rad(B)θ

ˆ
τB

|u− uτB| dν

≈
∑
B∈Bτ

1

(τ rad(B))θ

ˆ
τB

 
τB

|u(x)− u(y)| dν(y) dν(x)

=

ˆ
Z

∑
B∈Bτ

χτB(x)

(τ rad(B))θ

 
τB

|u(x)− u(y)| dν(y) dν(x)

≤
ˆ
Z

∑
B∈Bτ

χτB(x)

ˆ
τB

|u(x)− u(y)|
ν(B(x, d(x, y)))d(x, y)θ

dν(y) dν(x)

≤
ˆ
Z

ˆ
B(x,2R)

|u(x)− u(y)|
ν(B(x, d(x, y)))d(x, y)θ

dν(y) dν(x) ≈ I(2R),

where we used that ν is doubling and B(x, d(x, y)) ⊂ 3τB for all x, y ∈ τB.
Taking supremum over all collections of balls concludes the proof.

Proposition 3.9. Assume that Z is bounded. Let 0 ≤ θ < η ≤ 1 and τ ≥ 1.
Then, Aη1,τ (Z) ⊂ Bθ

1,1(Z).

Proof. We use the characterization of Besov functions from Lemma 3.5.
∞∑
k=0

∑
B∈Bk

1

rad(B)θ

ˆ
B

|f − fB| dν

≤ C
∞∑
k=0

∑
B∈Bk

2k(θ−η)

rad(B)η

ˆ
B

|f − fB| dν ≤ C
∞∑
k=0

2k(θ−η)‖f‖Aη1,τ (Z).
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Lemma 3.10. For every τ ≥ 1, we have L1(Z) = A0
1,τ (Z).

Proof. Let Bτ be a fixed collection of balls in Z that remain pairwise disjoint
after being inflated τ -times. Then, the triangle inequality yields that∑

B∈Bτ

1

rad(B)0

ˆ
τB

|u− uτB| dν ≈
∑
B∈Bτ

(ˆ
τB

|u|+
∣∣∣∣ 
τB

u dν

∣∣∣∣) dν
=
∑
B∈Bτ

2

ˆ
τB

|u| dν ≤ 2

ˆ
Z

|u| dν .

Hence, ‖u‖A0
1,τ (Z) ≤ 3‖u‖L1(Z).

Conversely, ‖u‖A0
1,τ (Z) ≥ ‖u‖L1(Z) by the definition (1.12).

The following example shows that the inclusion B0
1,1(Z) ⊂ A0

1,τ (Z) may,
in general, be strict.

exa:Bes0!=L1 Example 3.11. Let

f(x) =
∞∑
j=1

χ[1/(j+1),1/j)(x)u(4jx), x ∈ (0, 1),

where u is the 1-periodic extension of χ[0,1/2). Obviously, f ∈ L∞(0, 1).
Hence, f ∈ L1(0, 1) = A0

1,τ (0, 1). On the other hand, u /∈ B0
1,1(0, 1), which

we are about to show.
We will use the characterization of B0

1,1(0, 1) from Lemma 3.5. There, we
may choose Bk = {(l2−k, (l+2)2−k) : l = 0, 1, . . . , 2k−2} to get

ffl
B
|f−fB| ≈ 1

whenever B ⊂ (0, 1/j) and B ∈ Bk for some k ≤ j. Then,

∞∑
k=0

∑
B∈Bk

ˆ
B

|f − fB| ≥ C−1

∞∑
k=0

∑
B∈Bk

B⊂(0,k−1)

|B| ≈
∞∑
k=0

1

k
=∞.

Next, we will provide a family of examples that show that BV (Z) is, in
general, strictly smaller space than Bθ

1,1(Z) for every θ ∈ [0, 1).

Example 3.12. Let α ∈ (θ, 1). Then, the Weierstrass function

uα(x) =
∞∑
k=1

cos(2kπx)

2kα
, x ∈ [0, 1],

21



is α-Hölder continuous but nowhere differentiable in [0, 1] by Hardy [16].
Hence, uα /∈ BV [0, 1] as it would have been differentiable a.e. otherwise.
Since α > θ, we have C0,α[0, 1] ⊂ Bθ

1,1[0, 1] by [14, Lemma 6.2].

In conclusion, we have now proved the following theorem.

Theorem 3.13. Let τ ≥ 1 and θ ∈ (0, 1] be arbitrary. Then,

L1(Z) = A0
1,τ (Z) ⊃ B0

1,1(Z) ⊃ Aθ1,τ (Z) ⊃ A1
1,τ (Z) ⊂ BV (Z),

where all but the last of the inclusions are strict in general. Furthermore,
Lipschitz functions on Z belong to B0

1,1(Z).

We know from [17, Theorem 1.1] that A1
1,τ (Z) ⊂ BV (Z). Note however

that A1
1,τ (Z) = BV (Z) holds by [17, Corollary 1.3] whenever Z supports a

1-Poincaré inequality.

4 Extension theorem for L1 boundary data:

proof of Theorem 1.2
sec:l1-extension

Given an L1-function on ∂Ω, we will construct its BV extension in Ω using
the linear extension operator for B0

1,1(∂Ω) boundary data. Observe however
that the mapping f ∈ L1(∂Ω) 7→ F ∈ BV (Ω) will be nonlinear, which is not
surprising in view of [27].

Instead of constructing the extension using a Whitney decomposition of
Ω, we will set up a sequence of layers inside Ω whose widths depend not only
on their distance from X \Ω, but also on the function itself (more accurately,
on the choice of the sequence of Lipschitz approximations of the function in
L1-class). Using a partition of unity subordinate to these layers, we will glue
together BV extensions (from Theorem 1.1) of Lipschitz functions on ∂Ω that
approximate the boundary data in L1(∂Ω). Roughly speaking, the closer the
layer lies to X \ Ω, the better we need the approximating Lipschitz data to
be. The core idea of such a construction can be traced back to Gagliardo [13]
who discussed extending L1(Rn−1) functions to W 1,1(Rn

+).
First, we approximate f in L1(∂Ω) by a sequence of Lipschitz continuous

functions {fk}∞k=1 such that ‖fk+1 − fk‖L1(∂Ω) ≤ 22−k‖f‖L1(∂Ω). Note that
this requirement of rate of convergence of fk to f also ensures that fk → f
pointwise H-a.e. in ∂Ω. For technical reasons, we choose f1 ≡ 0.

Next, we choose a decreasing sequence of real numbers {ρk}∞k=1 such that:
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• ρ1 ≤ diam(Ω)/2;

• 0 < ρk+1 ≤ ρk/2;

•
∑

k ρk LIP(fk+1, ∂Ω) ≤ C‖f‖L1(∂Ω).

These will now be used to define layers in Ω. Let

ψk(x) = max

{
0,min

{
1,
ρk − dist(x,X \ Ω)

ρk − ρk+1

}}
, x ∈ Ω.

Then, the sequence of functions {ψk−1 − ψk : k = 2, 3, . . .} serves as a
partition of unity in Ω(0, ρ2) subordinate to the system of layers given by
{Ω(ρk+1, ρk−1) : k = 2, 3, . . .}.

Recall that Lipschitz continuous functions lie in the Besov class B0
1,1.

Thus, we can apply the linear extension operator E : B0
1,1(∂Ω) → BV (Ω),

whose properties were established in Section 2, to define the extension of
f ∈ L1(∂Ω) by extending its Lipschitz approximations in layers, i.e.,

F (x) :=
∞∑
k=2

(
ψk−1(x)− ψk(x)

)
Efk(x)

=
∞∑
k=1

ψk(x)
(
Efk+1(x)− Efk(x)

)
, x ∈ Ω. (4.1) eq:L1-ext

The following result shows that the above extension is in the class BV (Ω)
with appropriate norm bounds (see Remark 1.6).

prop:trace-L1 Proposition 4.2. Given f ∈ L1(∂Ω), the extension defined by (4.1) satisfies

‖F‖L1(Ω) ≤ C diam(Ω)‖f‖L1(∂Ω) and

‖LipF‖L1(Ω) ≤ C(1 +H(Ω))‖f‖L1(∂Ω).

Proof. Corollary 2.15 allows us to obtain the desired L1 estimate for F . Since
the extension on B0

1,1(∂Ω) is linear, we have that Efk+1−Efk = E(fk+1−fk).
Therefore,

‖F‖L1(Ω) ≤
∞∑
k=1

‖ψkE(fk+1 − fk)‖L1(Ω) ≤
∞∑
k=1

‖E(fk+1 − fk)‖L1(Ω(0,ρk))

≤C
∞∑
k=1

ρk‖fk+1 − fk‖L1(∂Ω) ≤ Cρ1‖f‖L1(∂Ω) ≤ C diam(Ω)‖f‖L1(∂Ω) .
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In order to obtain the L1 estimate for LipF , we first apply the product rule
for locally Lipschitz functions, which yields that

LipF =
∞∑
k=1

(
|E(fk+1 − fk)|Lipψk + ψk Lip(E(fk+1 − fk))

)
≤

∞∑
k=1

( |E(fk+1 − fk)|χΩ(ρk+1,ρk)

ρk − ρk+1

+ χΩ(0,ρk) Lip(E(fk+1 − fk))
)

It follows from Corollary 2.15 that

∞∑
k=1

∥∥∥∥E(fk+1 − fk)
ρk − ρk+1

∥∥∥∥
L1(Ω(ρk+1,ρk))

≤ C

∞∑
k=1

ρk
ρk − ρk+1

‖fk+1 − fk‖L1(∂Ω)

≤ C
∞∑
k=1

‖fk+1 − fk‖L1(∂Ω) ≤ C‖f‖L1(∂Ω) .

Next, we apply Corollary 2.11 to see that

∞∑
k=1

∥∥LipE(fk+1 − fk)
∥∥
L1(Ω(0,ρk))

≤ C
∞∑
k=1

ρkH(∂Ω) LIP(fk+1 − fk, ∂Ω)

≤ CH(∂Ω)
∞∑
k=1

ρk
(
LIP(fk+1, ∂Ω) + LIP(fk, ∂Ω)

)
≤ CH(∂Ω)‖f‖L1(∂Ω),

where we used the defining properties of {ρk}∞k=1 to obtain the ultimate
inequality. Altogether, ‖LipF‖L1(Ω) ≤ C(1 +H(∂Ω))‖f‖L1(∂Ω).

4.3 Trace of the extended functions
subsec-L1Trace

In this section we complete the proof of Theorem 1.2 by showing that the
trace of the extended function yields the original function back.

Proposition 4.4. Let F ∈ BV (Ω) be the extension of f ∈ L1(∂Ω) as con-
structed in (4.1). Then,

lim
r→0

 
B(z,r)∩Ω

|F − f(z)| dµ = 0

for H-a.e. z ∈ ∂Ω.
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Proof. Let E0 be the collection of all z ∈ ∂Ω for which limk fk(z) = f(z), and
for k ∈ N let Ek be the collection of all z ∈ ∂Ω for which TEfk(z) = fk(z)
exists. Lemma 2.18 yields that H(∂Ω \

⋂∞
k=0Ek) = 0. We define also an

auxiliary sequence {Fn}∞n=1 of functions approximating F by

Fn =
n∑
k=2

(ψk−1 − ψk)Efk +
∞∑

k=n+1

(ψk−1 − ψk)Efn, n ∈ N.

It can be shown that Fn → F in BV (Ω), but we will not need this fact here.
Note that Fn = Efn in Ω(0, ρn) and hence the trace of Fn exists on ∂Ω and
coincides with the trace of Efn, i.e., with fn.

Fix a point z ∈
⋂∞
k=0Ek and let ε > 0. Then, we can find j ∈ N such

that |fk(z) − f(z)| < ε for every k ≥ j. Next, we choose k0 > j such that
R := ρk0 satisfies:

• RLIP(fj, ∂Ω) < ε;

•
ffl
B(z,r)

|Fj − fj(z)| dµ < ε for every r < R;

•
∑∞

k=k0
ρk LIP(fk+1, ∂Ω) < ε.

For every r ∈ (0, ρk0+1) ⊂ (0, R/2), we can then estimate

 
B(z,r)∩Ω

|F − f(z)| dµ

≤
 
B(z,r)∩Ω

|F − Fj| dµ+

 
B(z,r)∩Ω

|Fj − fj(z)| dµ+ |fj(z)− f(z)|

≤
 
B(z,r)∩Ω

|F − Fj| dµ+ 2ε. (4.5) eq:L1-trace

For such r, choose kr > k0 such that ρkr+1 ≤ r < ρkr . Then,

ˆ
B(z,r)∩Ω

|F − Fj| dµ ≤
∞∑

k=kr

ˆ
B(z,r)∩Ω

(ψk−1 − ψk)
∣∣E(fk − fj)

∣∣ dµ
≤

∞∑
k=kr

ˆ
B(z,r)∩Ω(ρk+1,ρk−1)

∣∣E(fk − fj)
∣∣ dµ

≤ C

∞∑
k=kr

min{r, ρk−1}
ˆ
B(z,28r)∩∂Ω

|fk − fj| dH (4.6) eq:L1-trace-A
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by Lemma 2.14. In the last inequality above, we used the fact that when
k = kr, we must have B(z, r)∩Ω(ρkr+1, ρkr−1) = B(z, r)∩Ω(ρkr+1, r) by the
choice of r < ρkr .

Let us, for the sake of brevity, write Ur = B(z, 28r) ∩ ∂Ω. As fk − fj is
Lipschitz continuous, we have by the choice of j, and the fact that k ≥ j,

ˆ
Ur

|fk − fj| dH ≤
ˆ
Ur

∣∣fk − fj − (fk(z)− fj(z))
∣∣ dH + |fk(z)− fj(z)|H(Ur)

≤ CrH(Ur) LIP(fk − fj, Ur) + 2εH(Ur). (4.7) eq:L1-trace-B

Observe that rH(Ur) ≈ µ(B(z, r)) by (1.14), (1.15), and the doubling condi-
tion for µ. Note that

∑∞
k=kr

ρk−1 ≤ Cρkr−1 ≤ CR. Combining this with (4.6)
and (4.7) gives us that

ˆ
B(z,r)∩Ω

|F − Fj| dµ ≤
∞∑

k=kr

Cρk−1µ(B(z, r))
(
LIP(fk, ∂Ω) + LIP(fj, ∂Ω)

)
+ 2εµ(B(z, r))

∞∑
k=kr

min{r, ρk−1}
r

≤ Cµ(B(z, r))

( ∞∑
k=k0

(
ρk LIP(fk+1, ∂Ω)

)
+RLIP(fj, ∂Ω) + ε

)
≤ Cµ(B(z, r))ε.

Plugging this estimate into (4.5) completes the proof.

4.8 Summary

In conclusion, we have shown that every function in L1(∂Ω) has an extension
to BV (Ω) in such a way that the trace of the extension returns the original
function. This extension is nonlinear, but it is bounded. In a preceding
section we demonstrated that there is a bounded linear extension from the
subclass B0

1,1(∂Ω) to BV (Ω). Note that B0
1,1(∂Ω), containing all the Lipschitz

functions on ∂Ω, must necessarily be dense in L1(∂Ω). It therefore follows
that the extension from L1(∂Ω) to BV (Ω) cannot be continuous on L1(∂Ω)
(see [27] for the fact that in general any extension from L1(∂Ω) to BV (Ω)
cannot be both bounded and linear).
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functions in Carnot–Carathéodory spaces, to appear in Ann. Sc. Norm.
Super. Pisa Cl. Sci.

Zie89 [31] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and func-
tions of bounded variation, Graduate Texts in Mathematics, 120.
Springer-Verlag, New York, 1989.

Address:
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