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1 Introduction

Object of this paper is the description of the overall behaviour of variational pair-
interaction lattice systems defined on ‘thin’ domains of Z"; i.e. on domains con-
sisting on a finite number M of mutually interacting copies of a portion of a N —1-
dimensional discrete lattice (see Figure 1 ). On one hand we draw a parallel with

Figure 1: A discrete thin film.

the analog theories for ‘continuous’ thin films showing that general compactness
and homogenization results can be proven by adapting the techniques commonly
used for problems on Sobolev spaces; on the other hand we show that new phe-
nomena arise due to the different nature of the microscopic interactions, and in
particular that for long-range interactions a surface energy on the free surfaces of
the film due to boundary layer effects renders the effective behaviour depend in a
non-trivial way on the number M of layers.



In a more precise notation, we consider energies depending on functions pa-
rameterized on a portion of the lattice ZV consisting of a ‘cylindrical’ set

Z(w, M) = (wnZN"Y x{1,... M}

(see Fig. 1) of the form

Z ©Va,8(Ua — ug), u: Z(w, M) — R?
o,BEZ (w, M)

when the size of w is large. Upon introducing a small positive parameter ¢ and
scaling w to a fixed size, obtaining the discrete thin domain

Z(w, M) = (wNeZV71) x {¢,2¢,... Me}, (1.1)

this problem can be reformulated as the description of the I'-limit of energies of
the form

Flwy= Y N (““é_;“ﬁ) w: Zo(w, M) >R (1.2)
a,BEZ.(w,M)

(at this point a more general dependence of the energy densities on ¢ is introduced
for the sake of generality).
The energies above may be viewed as the discrete analog of thin-film energies
of the form
1

Fe(u) = 7/ We(z, Du(x)) dz u€ WhP(wx (0, Me);RY).  (1.3)
€ Jwx(0,Me)

For such functionals a number of results in the framework of variational conver-
gence have been obtained since the pioneering work of Le Dret and Raoult [22]; in
particular if W, uniformly satisfy some p-growth conditions, a general compact-
ness result by Braides, Fonseca and Francfort [9] shows that, upon subsequences,
we can always suitably define a I'-limit energy in the lower-dimensional set w of
the form

Flu) = / W, Du(®)de,  ueW'P(w;RY) (1.4)

(here, & = (x1,...,2,—1). Particular cases are when W, = Wy(Du) is independent
of € and z, in which the limit W is simply given [22] by

W(A)=MQWo(A),  Wo(A) =inf Wy(A]z), (1.5)

where @) stands for the operation of quasiconvexification (note the trivial depen-
dence on M), and when W, (z, A) = W(xz/e, A), in which suitable homogenization
formulas hold [9].



On the other hand, a general compactness theory for discrete systems with
energy densities of polynomial growth defined on ‘thick’ domains by Alicandro
and Cicalese [1] is also available. In particular, that theory can be applied in the
case above when M = 1 and the energies F. are simply interpreted as defined
on wNeZN~1 In this case again an energy of the same form as F above can be
proven to be the I-limit in a suitable sense of such F. (discrete functions must
be identified with piecewise-constant interpolations). Appropriate homogenization
formulas apply as well if the discrete interactions possess some periodicity. It must
be noted that homogenized energy densities in many ways behave differently than
the corresponding usual integral homogenization energies [8], as shown by the com-
putation of bounds for simple discrete mixtures of two types of quadratic interac-
tions by Braides and Francfort [10]. Even for simple non-convex next-to-nearest
interactions the formulas defining the limit energy densities highlight microscopic
oscillations (see Braides, Gelli and Sigalotti [14] and Pagano and Paroni [23] for
one-dimensional examples, and Friesecke and Theil [21] for a simple optically non-
linear example in dimension two).

In the general case M > 1 we note that the energies F. can also be seen
as defined on M copies of w N eZN~! interacting through pair-interactions cor-
responding to # — a with a non-zero component in the N-th variable. We first
show that functions on which the limit energy is finite, that are thus defined on
M copies of w, are actually equal on each of these copies, so that the limit energy
can be defined on the only set w. To prove a general compactness and representa-
tion theorem for the limit we adapt both the localization techniques on cylindrical
domains used by Braides, Fonseca and Francfort [9] to prove a compactness result
for energies on continuous thin films, and those used by Alicandro and Cicalese [1]
for thick discrete systems, where the main difficulty is taking care of long-range
interactions. More precise homogenization formulas are given in the case when the
energy densities are periodic; i.e. foiﬁ = faje,3/e and there exists an integer k
such that f;; = fuj if i —i' = j —j € kZN~1. As in [9] these formulas are de-
fined through minimum problems on rectangles with boundary conditions on the
lateral boundaries only. In the discrete case it must be noted that these formulas
are necessary also in the ‘trivial’ case when f; ; = f;j_;; ¢.e. the energy densities
depend only on the distance of a and 3 in the unscaled reference lattice Z, as
already observed for ‘thick’ domains, except when only nearest-neighbour interac-
tions are taken into account (see [5]). In the case of thin domains an additional
scale effect must be taken into account, since long-range interactions (next-to near-
est interactions and further) produce different effects close to the upper and lower
free boundaries than in the interior (see Figure 2). These effects can be viewed as
generating a surface energy through a boundary layer (see [6, 15]) that for thin
films is of the same order as the bulk energy. Note that this effect is present also
for simple quadratic interactions, as observed by Charlotte and Truskinovsky for
one-dimensional systems [18].

The paper is organized as follows: after introducing the necessary notation in



a)

b)

BL{
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Figure 2: Different effects in a simple model for thin films with nearest and next to
nearest interactions: a) ground state geometry for a two layers thin film; b) bulk
geometry (BG) and boundary layer effect (BL) for a multi-layer thin film subject
to a vertical deformation gradient z.

order to make the energies F. more tractable, the compactness and representation
theorem is proved in Section 2 together with the convergence of minimum prob-
lems. Section 3 is devoted to homogenization; in particular the simple case when
only ‘horizontal’ and ‘vertical’ interactions are present is treated, when a formula
can be given showing explicitly the non-trivial dependence of the homogenization
formula on the number M of layers. The asymptotic behaviour of homogeniza-
tion formulas as the number of layers increases is treated in Section 4, showing in
some cases a separation of scale effect so that we may first let M tend to infinity,
thus obtaining a bulk energy by the results of Alicandro and Cicalese [1] and then
applying the dimension-reduction formula by Le Dret And Raoult (1.5). Various
examples are presented in Section 5, where in particular the Cauchy-Born rule is
discussed, stating that microscopic arrays corresponding to affine boundary con-
ditions are regularly spaced on a lattice with the same overall affine deformation.
It is shown that the domain of affine boundary condition where the Cauchy-Born
rule fails decreases with the number M of layers.

Our techniques can be used also to cover types of non central interaction
energies even in the case of linear elasticity (see [2]). The extension of the result to
sub-linear growth densities will require to consider limit energies on discontinuous
functions (see [7],[15], [11], [12], [13] [17], [18], [25])



Finally, we mention that our work has connections with a number of papers
where variational methods for thin structures are dealt with but in a different
perspectives, most notably that of Friesecke and James [20], some works by Blanc
et al. [3] and more recently by Schmidt [24].

2 Compactness and integral representation

In this section we introduce the family of discrete energies we will consider in
the rest of the paper and then prove a compactness theorem, asserting that any
sequence of energies in this class has a subsequence whose I'-limit F' is an integral
functional.

2.1 Notation and Preliminaries

Given N, d € N, we denote by {ej,ea,...,en} the standard basis in RY | by |-| the
usual euclidean norm and by M¥*¥ the space of d x N matrices. For z, y € RV,
[x,y] denotes the segment between z and y. If 2 is an open subset of RY, A(Q)
is the family of all open subsets of © while A (£2) denotes the family of all open
subsets of Q whose closure is a compact subset of . If B C R¥ is a Borel set,
we will denote by | B| its Lebesgue measure. We use standard notation for L? and
Sobolev spaces.

We also introduce a useful notation for difference quotient along any direction.
Fix ¢ € RY; for € > 0 and for every u : RN — R? we define

u(z +€€) — u(x) .

Déu(z) := =]

Moreover we set

A(Q) = {u:RY = R? : u constant on o + [0,¢)" for any a € eZV NQ}.

2.2 Compactness Theorem

In what follows, for the sake of simplicity, w will denote a bounded convex open
set of RNV~! with Lipschitz boundary, the general case of a non-convex w being
dealt with similarly (see [1]). Given M € N and £ > 0, we set

Q. == w x [0,e(M —1)].

In the following we will identify the set of functions A.(Q.) with [A.(w)]™ through
the bijection u — (u® ul,... uM~1) where, for any i € {0,1,...,M — 1}, u® €
A (w) is defined by

u'(B) = u(B,ei) VB€ZN T Nw.



We consider the family of functionals F. : [LP(w;R%)]M — [0, +o00] defined

as
> > eN7LfE (o, DEu(a))  if u € A(9Q.)
FE(U) = { £€ZN a,ate€eQ.neZN (21)
+00 otherwise,

and f&: (eZV NQ.) x R4 — [0, +0c0) is a given function. Let p > 1, on f¢ we
make the following assumptions:

(o, 2) > er(|2]P — 1) Y(e,2) € (ZV NQ) xR i€ {1,...,N} (2.2)
fEa,2) CE(|2lP+1) Y(a,2) € (eZV NQ) xR, € € ZV, (2.3)
where ¢; > 0 and {C8}. ¢ satisfies:

limsup Y. Cf& < +o0; (H1)
e—0t ¢ezN

V6>0 IMs>0: limsup >, C&<4. (H2)
e—0T  |€]>Ms

We define also a “localized” version of our energies: given an open set A €

A(w), set

Ao = A x [0,e(M — 1)).

We isolate the contributions due to interactions within A. as follows. For
u€ A (Q:), A€ Aw) and € € ZN, set

FE(u, A) = Z eVt fE (o, DEu(a)) (2.4)
a€RE(A:)

where
RS(A) :={aceZV : [a,a+e] C A}

The function F¢ represents the energy due to the interactions within A, along
the direction £. Then the local version of the functional in (2.1) is given by

> ]-"Ef(u,A) ifue A(Q)
F.(u,A) = ¢ezy (2.5)
400 otherwise.

In the following, referring to [4] and [19] for all the definitions and properties of
I'-convergence, we will denote by F’(u, A) and F”(u, A) the I'-liminf. 4 Fr(u, A)
and the T-limsup,_,, F:(u, A) with respect to the [L?(w; R?)]*-topology. More-
over if u € [LP(w; RY)|M is such that u® = u! = ... = u™~1 we will simply write
u € LP(w;RY). The main result of this section is stated in the following theorem.



Theorem 2.1 (compactness) Let {f}. ¢ satisfy (2.2), (2.3) and let (H1)-(H2)
hold. Then:

(i) if u € [LP(w; RDM s such that F'(u, A) < +oo, then
W =ul = =uM e WhP(A;RY)
and
F(u, 4) = ¢ (IVull}, qpuensy — 14]) (2.6)
for some positive constant ¢ independent on u and A.

(ii) for every u € WHP(w;R?) there holds
F'(u, 4) < C ([IVullapan-sy +141) (2.7)

for some positive constant C independent on u and A.

(i) for every sequence (g;) of positive real numbers converging to 0, there exists
a subsequence (¢;,) and a Carathéodory function quasiconvez in the second
variable f : w x R>*N=1 satisfying

(ISP = 1) < f(2,5) < C(IS|" + 1),

with 0 < ¢ < C, such that (F; (-)) I'-converges with respect to the [LP(w; RHM.
topology to the functional F : [LP(w; R)M — [0, +00] defined as

/f(x,Vu) dr if u € WhP(w;R?)

F(u) = (2.8)

+00 otherwise.

Proof. (i) Let £, — 0% and let u,, converge to u in [LP(w; R?)]™ and be such that
liminf,, F; (uy,,A) < 400. By the growth condition (2.2) we get

N

Fo (un, A) > 1> > eNTDE up ()P — 1 N|A|
i=1 a€R, (Ac,)
M—-1N-1

= ay Y ) e psu (B

J=0 1=l geRZi (A)

M—2
+cq Z Z 67]:]71

Jj=0 BeeZN-1NnA

2 B) (B

. — ¢ N|AL(2.9)

where ~
RS (A):={aecZ ' [a,a+cf] C A}.



For any 1 > 0, set
A, ={x e A:dist(x,A°) > n}.

Note that for any j € {0,1,..., M — 2} and for n large enough it holds
ult (B) —up(8) "

1 , ,
= [ | @) - @)Pde < Y e
€n Ja, En

BeeZN-1NA

Thus, by (2.9) and the arbitrariness of 7, passing to the limit in the previous
inequality, we get that u® = u' = ... = u™~1. For any j, by (2.9) we have,

N-1
lim inf Z Z el THDE Ul (B)|P < +oo.
=1 BeRCi (A)

Then, by a slicing argument (see the proof of Proposition 3.4 in [1]), one can prove
that u € WHP(A;RY) and that

N—-1
liminf y > e THDE WL B 2 [ Vulll, apa)-
i=1 BeRCi (A)

Hence, by (2.9), (2.6) holds.

(ii) By a density argument it suffices to prove (2.7) for u € C°(RVN~1;R).
For such a u, consider the family (u.) C A¢ defined as

ue () == u(ay), aceZ.

Then u. — u in [LP(w;R?)]M as e — 0% and, following the same steps as in the
proof of Proposition 3.5 in [1], one can prove that

limsup Fy(ue, A) < C (/ [Vu(z)|P dz + A|) ,
e—0+t A
from which we deduce (2.7).
In order to prove (iii) we need some preliminary result we will state in the
next propositions. O

The next technical lemma is analogous to Lemma 3.6 in [1] and asserts that
finite difference quotients along any direction can be controlled by finite difference
quotients along the coordinate directions. We omit the proof since it is the same
as that of Lemma 3.6 in [1] up to small changes.

Lemma 2.2 Let A € A(w) and set A° ;= {x € A: dist(x,0A) > 2e+/N —1}.
Then for any & € ZN and u € A, there holds

N
Yo IDru@P<cy Y DS

a€RE(A%) =1 ae R (A)



In the next three propositions we establish the subadditivity, the inner regularity
and the locality of the set function F(u, -) which are the analogue of Propositions
3.7, 3.8 and 3.9 in [1]. In the proofs we will exploit the same cut-off argument used
in [1], the main difference being in the choice of the cut-functions depending only
on the planar variables.

Proposition 2.3 Let {f}. ¢ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Let A, B €
A(w) and let A’, B’ € A(w) be such that A’ CC A and B’ CC B. Then for any
u € WhP(w; R?),

F" (u, A" UB') < F" (u, A) + F" (u, B) . (2.10)

Proof. Without loss of generality, we may suppose F"(u, A) and F"(u, B) finite.
Let u.,v. € A. both converge to u in [LP(w;R%)]™ and be such that

limsup Fx(ue, A) = F"(u, A), limsup F.(ve, B) = F"'(u, B).

e—0t e—0t
By (2.2) and Lemma 2.2, we infer that

sup sup > eV ! Dfuc ()P < +oo,
¢ezZN >0 "
a€RE((4°).)

sup sup Z eNTHDEw ()P < 400,
€ezZN e>0 ¢
a€R:((B9):)

where A® and B® are defined as in Lemma 2.2. Moreover, since (u:) and (ve)
converge to u in the [LP(w; R%)]M-topology, we have

> N (Jue(@)P + [o=(a)P)
aceZNN(w’)e
< ||uEHpr(w;]Rd)]M + ||U€||1[)Lp(w;Rd)]]W <C< +00,

(2.11)

Z eV (Jue (@) — ve(a)P) < Jlue — vEHZ[)LP(w;Rd)]M 0t
aceZNN(w’)e

for any w’ CC w. Set
d := dist (A", A%)

and, given L € N, for any i € {1,..., L} define

Aji={z € A: dist(z,A") < z%}



Let ¢; be a cut-off function between A; and A; 11, with [|[Vyi]le < 2%. Then for
any i € {1,...,L} consider the family of functions w! € A. still converging to u
in [LP(w; R%)]M defined as

wi(@) = pi(an)ua(@) + (1 — i(an)) ve(a).
Then, proceeding as in the proof of Proposition 3.7 in [1], we can choose i(e) €

{1,...,L — 3} such that wi® still converges to u in [LP(w; RHM and,

lim sup Fg(wé(s),A/ UB') < F"(u,A) + F"(u,B) + ——,
e—0*t L-3

from which we easily deduce (2.10). O

Proposition 2.4 Let {f5}. ¢ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Then for
any u € WHP(w;RY) and for any A € A(w), there holds

sup F'(u,A") = F"(u, A).
ArccA

Proof. Since F”(u,-) is an increasing set function, it suffices to prove that

sup F"(u,A") > F"(u, A).
A'CCA

To do this, we apply the same argument of the proof of Proposition 2.3. Given
0 > 0, there exists A” CC A such that

AN p
ANA| 4+ [Vull?, o <6

Let @ DD w and let @ € WHP(©;R?) an extension of u. By Theorem 2.1 (i7), we
may find v. € A.(@) such that v. converges to @ in [LP(&; R%)]M and

limsup F (v, A\ A7) < C (JA\ 47| + || Vu|

e—0*t

P )<
LP(A\A,,)) < ¢, (2.12)

We remark that this extension on @ is just a technical tool to exploit an analogue
of inequality (2.11) and obtain a control of the interactions near the boundary of
w. Let A" € A(w) be such that A” cC A’ CC A and let u. € A, converge to u in
[LP(w; RDM | with

limsup Fe(ue, A") = F"(u, A"). (2.13)

e—0+

Set
d := dist(A”, A’°).

10



Given L € N, for any i € {1,...,L} let A; , »; and w’ be defined as in the
previous proposition. By reasoning as before, taking into account (2.12), we can

choose i(¢) € {1,...,L — 3} such that wi® converges to u in [LP(w; RM and
. 1
lim sup F. (w!®), A) < limsup F.(u, A') + C(——= + & + 0LP). (2.14)
e—0t e—0t L-3

Then, by using (2.13) we deduce that

1
F"(u,A) < sup F"(u,A")+ C(=——= + & + INP).
ArccA L-3

Eventually, letting § go to zero and L go to infinity, we obtain the thesis. O

Proposition 2.5 Let {f¢}. ¢ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Then for
any A € A(w) and for any u, v € WHP(w;RY), such that u = v a.e. there holds

F"(u, A) = F"(v, A).
Proof. Thanks to Proposition 2.4, we may assume that A € Ay(w). We first prove
F"(u, A) > F" (v, A). (2.15)

Once more we apply the argument used in the previous proposition. Given § > 0,
there exists As CC A such that

ANT |+ [ Vul, o, <8
Let v, € A (w) and u. € A.(w) be such that
ve — v in[LP(w; RY)M
ue — u in[LP(w; R M
and
lim sup F-(ue, A) = F"(u, A), (2.16)

e—0t

<Co

lim sup L (v2, A\ ) = F(0, A\ T5) < € (JAN T + |V, ) <

e—0*t

Set
d = dist(As, A°)

and, given L € N, for any i € {1,..., L} define

A :={z e A: dist(z, As) < z%}

11



Let then ¢; and w! € A. be as in the previous proposition. Hence, as in the proof

of Propositions 2.3 and 2.4, we can choose i(¢) € {1,...,L — 3} such that w®
converges to v in [LP(w; RY)]M and

) 1
lim sup Fa(wé(‘g)7 A) <limsup F.(us, A)+ C | ——= + 5+ L") .
e—0t e—0t L-3

By (2.16), we get

F”(’U,A) <F’I(U,A)+C’<L13+5+5LP).

Eventually, letting first § — 0% and then L — +o0o, we obtain (2.15). Reversing
the roles of v and v we obtain the thesis. O

Proof of Theorem 2.1 (iii). By the compactness property of the I'-convergence
and by Proposition 2.4, there exists a subsequence (¢, ) such that, for any (u, A) €
WhP(w; R?) x A(w), there holds

T(LP)- liin F, (u, A) =: F(u, A)
(see [8] Theorem 10.3). Moreover, by (i),
T(LP)- lilgn F.,; (u) = +o00
for u € LP(w; RY) \ WP (w; RY). So far, it suffices to check that, for every (u, A) €
WP (w;RY) x A(w), F(u, A) satisfies the following hypotheses:
(1) (locality) F' is local, i.e. F(u,A) = F(v,A) if u=v a.e. on A € A(Q);

(2) (measure property) for all u € W1P(Q;R?) the set function F(u,-) is the
restriction of a Borel measure to A(2);

(3) (growth condition) there exists ¢ > 0 and a € L*(Q) such that
Fu, A) < c/(a(x) +|Dul?) dz
A
for all u € WHP(Q;R?) and A € A(RQ);

(4) (translation invariance in u) F(u + z,A) = F(u, A) for all z € R%, u €
Whr(Q;R?) and A € A(Q);

(5) (lower semicontinuity) for all A € A(Q) F(-, A) is sequentially lower semi-
continuous with respect to the weak convergence in WP (w;RY).

12



In fact (see [16]), if all these hypotheses are fulfilled, there exists a Carathéodory
function f:w x M¥*(N=1) [0, +00) satisfying the growth condition

c(|SI" = 1) < f(2,5) < C(IS]" + 1),

with 0 < c¢< C for all z € w and S € MW= and such that

F(u,A) = /f(x,Du(x)) dx
A

for all w € WHP(w;R?) and A € A(w).

It can be easily seen that the superadditivity property of F.(u,-) is conserved in
the limit. Thus, as an easy consequence of (), (#4) and Propositions 2.3, 2.4, 2.5
and thanks to De Giorgi - Letta Criterion (see [8]), hypotheses (1), (2), (3) hold
true. Moreover, as F.(u, A) depends on u only through its difference quotients,
hypothesis (4) is satisfied and finally, by the lower semicontinuity property of I'-
limit, also hypothesis (5) is fulfilled. O

2.3 Convergence of minimum problems

In order to treat minimum problems with boundary data, we also derive a com-
pactness theorem in the case that our functionals are subject to Dirichlet boundary
conditions.

Given ¢ € Lip (RN¥~!) and | € N, set, for any ¢ > 0 and A € A(w)

Aé,w(A) = {u € A(RY) :u(a) = p(an) if (ax + [—le, 1]V 1) N A° # 0)}.(2.17)
Then define F#+! : [LP(w; RH)M x A(w) — [1, +00] as

Fo(u,A) ifue Al (A)
F#l(u, A) = (2.18)
+00 otherwise.

By simplicity of notation we set A. ,(A) := Al J(A) and F? := F#'.

Theorem 2.6 Let {f}. ¢ satisfy (2.2), (2.3) and let (H1)-(H2) hold. Given (g;) a
sequence of positive real numbers converging to 0, let (¢;,) and f be as in Theorem
2.1 (iii). For any ¢ € Lip (RN7Y), let F¥ : [LP(w;R)M x A(w) — [0, +00] be
defined as

z,Vu)dr ifu— @€ WiP(A;RY

N ) R A OLR SRR GRS

+o00 otherwise.

Then, for any A € A(w) with Lipschitz boundary and | € N, (ng;l(~,A)) I-
converges with respect to the [LP(w; RY)|M -topology to the functional F¢(-, A).

13



Proof. For the sake of simplicity we prove the Theorem with [ = 1, the proof
being the same in the other cases. Let us first prove the I'-liminf inequality. Let
(ur) be a sequence of functions belonging to A.; ,(A) converging to u in the
[LP(w; RY)]M topology such that

limkiang‘;)c (ug, A) = ligngjk (ug, A) < +o0.

Then, from (2.2), we get in particular that

N
supd Y, e IDE un(@) < oo (2.19)

i=LaeRs (A,

Thanks to the boundary conditions on uy it is easy to deduce that

N
sipz Z 5%71|D§;kun(a)\p < +o0.

=1 a,atej, € Engk ﬂgijN

Then, by reasoning as in the proof of Theorem 2.1 (i), we can prove that
u € WHP(w;R?) and, since (uy) converge to ¢ in [LP(w \ A;RY)|M | we get that
u— @ € WP (A;RY). By Theorem 2.1 one has

limkinf F;‘;k (ug, A) = limkinf F., (ug, A) > F?(u, A).

To prove the I-limsup inequality, let us first consider u € WP (w; R?) such that
supp (u —¢) CC A. Let uy € A (w), be such that (ux) converges to u in
[LP(w; RHM and

limksup Fe, (ug, A) = F?(u, A).

Then, by reasoning as in the proof of Proposition 2.4, given § > 0, we can find
suitable cut-off functions ¢, with supp (u — ¢) CC supp ¢ CC A such that, set

k(@) = ¢x(am)ur(@) + (1 = ¢r(ax))p(or),

then (vg) still converges to u in [LP(w;R)M | v, € A:;, o(w) for k large enough
and
limksup Fe, (vi, A) <limsup Fe, (ug, A) + 9.

Thus, thanks to the definition of I'-limsup we have
F—limsung‘;k (u, A) < F¥(u, A) + 4.

By the arbitrariness of d, we obtain the required inequality. In the general case
the thesis follows by a density argument, thanks to the lower semicontinuity of
I-limsup and to the continuity of F' with respect to the strong convergence in
WP (w; RY). O

As a consequence of the previous theorem we derive the following result about
the convergence of minimum problems with boundary data.
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Corollary 2.7 Under the hypotheses of Theorem 2.6 we get that, for any ¢ €
Lip (RN=1), 1 € N and A € A(w) with Lipschitz boundary

liin inf{F., (u,A): ue Alsjkw(A)} = min{F(u, A) : u—¢ e WyP(A4;RH)}.

Moreover, if (ug) is a converging sequence such that

lilgn Fe, (ug, A) = lilgn inf{F,; (u,A): ue AL .M(,(A)},

then its limit is a minimizer for min{F(u, A) : u — ¢ € Wy (4;R%)}.

Proof. Let (uy) be a sequence such that FE (ug, A) < +00. Then, by (2.2) and by
the boundary conditions on ug, it is easy to show that, for any j € {0,1,..., M —1}

N-1
sup Yoo > VDL w (B < +oo,

i=1 Bee;, ZN-1NK

for any compact set K of RN—1. By virtue of this property, up to passing to a
continuous extension of uj, vanishing outside a bounded open set containing w, we
get ) )

|f1Li|I—I»10 sgp lTnug, — wpll L (mN-1,Ra) = 0,

where we have set

(thu)(x) ;= u(z 4+ h), e RV h e RVNL,
Then, by Frechét-Kolmogorov Theorem and by (i) of Theorem 2.1, there exists a
subsequence (uy, ) converging in [LP (w; R4)]M to a function u € LP(w;R?). Arguing
as in the previous proof it is easy to show that u—p € WO1 P(w). The thesis follows

thanks to Theorem 2.6. O

We can also derive the analogue of Theorem 2.6 and Corollary 2.7 about the
convergence of minimum problems with periodic conditions. We omit the proof
since it is similar to that of the previous proposition up to small changes.

Let Q(w) be the family of all open N — 1-cubes contained in w. For any £ > 0,
r>0,Q=(rg,z0 +7)V"! € Q(w) and ¢ € Lip (RN 1), set

ome((2]-2)

A7 (Q) = {uec A(RY): v/ — ¢ r. —periodic, j € {0,...,M —1}}, (2.20)

where ¢ € A(RV71), ¢(a) = ¢(a) for any a € eZV~L. Then define F¥# :
117w RO x Q(w) — [0, +oo] as

F.(u,Q) ifue Af’&@(Q)
F&#(u,Q) = (2.21)

+o00 otherwise.
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Theorem 2.8 Let {f¢}. ¢ satisfy (2.2), (2.3) and let (H1)-(H2) hold. Given (g;) a
sequence of positive real numbers converging to 0, let (¢; k) cmd f be as in Theorem
2.1. Then, for any ¢ € Lip (RN71), let F# : [LP(w; RM x Q(w) — [0, +00] be
defined as

Fo#(u,Q) = /fou)dx zquW’p(QRd)

+00 otherwise.

Then, for any Q € Q(w), (F;‘;;C#Q, Q)) T-converges with respect to the [LP (w; R4)|M -
topology to the functional F¢% (u, Q).

As a consequence of the previous theorem, by reasoning as in the proof of
Corollary 2.7 one can prove the following result.

Corollary 2.9 Under the hypotheses of Theorem 2.8 we get that, for any ¢ €
Lip (RN=1) and Q € Q(w)

lilgn inf{F., (v,Q): ue Afj,k L @)} =min{F(u,Q): u—ypE¢€ W#p(Q;Rd)}.

Moreover, if (u) s a converging sequence such that

liinFEjk (ug, Q) = hmlnf{F (@) ue Afi L@},

then its limit is a minimizer for min{F(u,Q) : u— ¢ € W#p(Q;Rd)}.

3 Homogenization

In this section we will give a homogenization result by presenting a I'-convergence
theorem for the energies F. in the case that the functions f¢ are obtained by
rescaling by e functions f¢ periodic in the space variable.

Let k = (ky,...,kxy_1) € N¥~! be given and set

Rk = (O,k'l) X oo X (OakN—l)-

For any ¢ € ZN, let f¢ : ZV x R? — [0,4+00) be such that f&((-,an),2) is
Ri-periodic for any ay € Z and z € R%. Then we consider f¢ of the following
form

fg(a,z) = f¢ (g,z> . (3.1)

In this case, the growth conditions (2.2) and (2.3) and hypotheses (H1) and (H2)
can be rewritten as follows:

fEi(OéaZ) ch(‘z|p71)a Vi€{17'~~aN}a (32)

16



f e, 2) < C8(J2P + 1), (3.3)

where
D Cf < oo, (H3)
£eZN
In the sequel we will use the following notation: for any z = (x1,...,2ny-1) €
RV~ define

o (B )

Moreover, for any A € A(w), e > 0,1 € N and S € M¥>N~1 we denote by AQ,S(A)
the set defined in formula (2.17) with ¢(z) = Sz. By simplicity of notation, we
set Al g(A) := A. 5(A). Finally for every r > 0 we set @, := (0,r)"~'. The
following homogenization theorem is the main result of this section. Since, up to
minor changes, it can be proved as Theorem 4.1 in [1], we only sketch the proof
for reader’s convenience.

Theorem 3.1 Let {f}. ¢ satisfy (3.1)-(3.3) and let (H3) hold. Then, (Fv)
I'-converges with respect to the [LP(w; RY)|M -topology to the functional
F: [LP(w; RYIM — [0, +o0] defined as

/fhom(Vu) de if u € WhP(w; R%)
u) = Q

F( (3.4)

400 otherwise,

where from : MPN=1 — [0, +00) is given by the following homogenization for-
mula

From(8) i= | Tim thfl inf{ > > F8(8,D50(B)), wve s (Q;L)}(S.S)

EEZN B, B+E€(Qn)1NZN

Proof. Let (£,) be a sequence of positive numbers converging to 0. Then, by Theo-
rem 2.1, we can extract a subsequence (not relabelled) such that (F. ) I'-converges

n

to a functional F defined as in (2.8) and such that, for any u € WhP(w; R9),
A€ Alw)

I-lim F, (u, A) = / f(z, Vu) dz.
n A
The theorem is proved if we show that

(1) f does not depend on the space variable z,

(2) f = fhom~

17



By the periodicity assumptions one shows that
F(Sz,B(y,p)) = F(Sz, B(z,p))

for all S € M¥*N=1 4 > € w and p > 0 such that B(y, p) U B(z, p) C w and then
(1) follows. Let 29 € w and r > 0 be such that Q,.(z¢) = (zo, 70 + 1)V Cw.
By the quasiconvexity of f and by Corollary 2.7, one has

£(S) = TT: min {/Q SV - sie ngP(Qrmo);Rd)}

= TN% min { P(u, @, (z0) : u— So € WyP(Qu(wo)RY) |

= 7J%li,rgﬂinf{Fan(u,Qr(oco)): u € A, s(Qr(0))}.

Eventually, through the change of variable

« 1
5=2 w(B) = culep) (36)
and setting
T, = [T} +1,
En
one can show that
fS)=lmogrinf§ 32 3 D). vedis(Qr)

£€ZN B, B+€e(Qr, )1NZN
Then (2) follows by showing that there exists the limit in (3.5). The proof of this
fact is analogous to that of Proposition 4.2 in [1]. O
Remark 3.2 In formula (3.5) we can replace A; 5(Qn) by Af ¢(Qp) for any fixed
I € N, the proof being exactly the same.
Remark 3.3 The function f4., in Theorem 3.1 also satisfies
1 §
- ; 3 3
frm®) = it (X (a8 Dfus)).
EEZN B, B+E€(Qn)1NZN
ve At @Qu}, (3.7)
where Afk (Q) is given by (2.20) with e = 1 and ¢ = 0. The proof of this charac-

terization is analogous to that of Theorem 3.1, taking into account Corollary 2.9
and the following alternative formula for a quasiconvex function f

£(8) = TN% min{ ) F(S+ V) da: o) € W#p(QT;Rd)} .

18



As a consequence of Theorem 2.6, Corollary 2.7 and Theorem 3.1 we immedi-
ately derive the following result about I'-convergence and convergence of minimum
problems for homogeneous functionals subject to Dirichlet boundary conditions.

Theorem 3.4 For any ¢ € Lip (RVN™1) and | € N let F$! be defined by (2.18)
and let F? : [LP(w; RY)M x A(w) — [0, +00] be defined as

om(Vu)dz if u—p € WHP(A4; R?
prtay 2 | BT e iup e Wi (AR -
+00 otherwise.

Under the hypotheses of Theorem 3.1, F¥(-, A) T'-converges with respect to the
[LP (w; R)]M -topology to F¥# (-, A) for any A € A.

Corollary 3.5 Under the hypotheses of Theorem 3.4, for any ¢ € Lip (RN 1), I €
N and A € A(w)

lim inf{F.(u, 4) : u e AL} =min{F(u,A) : u— € Wy? (AR}

Moreover, for any (g;) converging to zero as j tends to infinity, if (u;) is a con-
verging sequence such that

lim ., (u;, A) = liminf{F. (u, A) : ue AL _},
J J »

then its limit is a minimizer for min{F(u, A) : u— ¢ € WoP(4;R4)}.

An analogous result about the convergence of minimum problems with periodic
conditions follows by Theorem 2.8 and Corollary 2.9.

3.1 The convex case: a cell problem formula

In this section we will see that in the convex case the function f},,, can be rewritten
by a single periodic minimization problem on Ry x {0,1,...,M — 1}. Set

N—-1

];32: H ki,

i=1

N-—1
Ik = H{O,...,ki—l}
=1
and
A4 (Ry) = {u e AA/(RN™1) : w? is Ry — periodic, j € {0,..., M —1}}.

We remark that the following result is analogous to Theorem 5.1 in [1].

19



Theorem 3.6 Let (fsf)g’g satisfies all the assumptions of Theorem 3.1 and in
addition let f&(a,-) be convex for all a € €ZN, ¢ > 0 and & € ZN. Then the
conclusion of Theorem 3.1 holds with frem satisfying

From(S mf{z Z & (ﬁ S D (ﬁ)), ve Af (Ri)},

EEZN ger,
for all S € M¥*N=1 where I§4 ={=&nVO0,....M -1+ (=&ny N0)}.
Proof. Set

7(s ::kmf{z Z f5<6,S|§|+va(6)>, veAf(Rk)}.

EEZN per x

By the characterization of fjon, given by (3.7) and noting that A% (Ry) c A¥ (@,1)
for all n € N, one can show that

from (8) < f(S).

To prove the opposite inequality for simplicity we will suppose that there ex1sts

R > 0 such that f& =0 if |¢| > R and that we can replace A; 5(Qp) by A (Qh)
in the definition of fj,,m,. For the general case we refer to the proof of Theorem

5.1in [1]. For n € N, let u € A[lli,];(an) and let v € Af&(ing) be such that
v(a) = u(e) — Sax, VYaeQ,;x{0,1,...M —1}.

Moreover we set
N—-1
= JJH{0.....n ]k — 1}
i=1 j#i
Then, we get

o= DD D (ﬂ s +D§v<ﬂ>>

[EISR B, B+E€(Q,,i)1

_ ! ¢ £ s — ok
- s Y Y f(asgenhm)-og)

7. — 13
IEISR gefo,....,nk}N-1x1I5,

N-1
1
S SN S — <B7M|§|+D§ 7+ 3 e -0t
|§|<R BeI x IS, ~Nely i=1
N—-1
1
zf YooY S ﬂMm v 2 DB+ Y ke | —O(),
|£|<R BeIL XI5, yEID i=1
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where in the last inequality we have used the convexity hypothesis on f¢. Eventu-
ally, set

N-1
Un(ﬁ) = m Z U(ﬁ+ Z ’yikiei).

NEID i=1
It is easy to show that v, € Af& (Ri) and so, by the previous inequality, we get

)N DDA (B S|§| +D§v(ﬂ))

ISR B, B+E€(Q 1)1

1
21 Y % (a4 pin®) - o)

[EISR ger, xI8,

Passing to the inf with respect to u € A[llg(Qn,;) and then, letting n tend to +oo,
we obtain that

fhom(S) Z ?(S)

Remark 3.7 Note that if Ry = (0,1)V~1, that is
f£<a7 Z) = fg(aNa Z)a
in Theorem 3.6 we obtain
M-1
Sér
hn(®)= 3 ff( =)

J=0 {&nv=
M—1+( §NA0)

+ inf{ Z Z fg( Sgﬂ—l—M):v:{O,...,M—l}HRd}.

{En#0}  j=—¢&NnVO |£| |£|

3.2 Interactions along independent directions

In the section we will see how the formula defining fr,m can be simplified in some
particular case.
On f¢ we will consider the following additional hypotheses:

(I1) f¢(a, z) £ 0 if and only if &5 =0 or &, = 0;
(12) f&(e,2) = f&(an, 2) if En = 0;
(I3) fé(a,2) = f&((an,2) if & = 0.
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Assumption (I1) asserts that only planar or vertical interactions are allowed, while
assumptions (I12) and (I3) state that the potentials accounting for planar interac-
tions do not depend on the vertical space variable and the potentials accounting
for vertical interactions do not depend on the planar space variables.

Theorem 3.8 Let f¢ satisfy the hypotheses of Theorem 3.1 and (I1)—(13). Then
the conclusion of Theorem 3.1 holds with from given by

fhom(s) = Mf;{om(s) (39)
M—-1M-1-k . ,
—|—inf{z Z fkeN(j,M: w:{0,...,M —1} — R},

k=1 j=0
where f7 . is given by (4.4) by replacing N with N — 1.

Proof. It suffices to observe that, thanks to (I1)-(I3), in the definition of frem (S)
one can reduce to consider test functions of the type

u(a) = v(ag) + w(ay),

with v € Ay (RY™1) such that v(a,) = Sa, if ay € dQp, + [~1,1]V "1 and with

w:{0,...,M — 1} — R%. Moreover, for such u one has
Yo >, D) = MY Y. folax, Div(ax))
E€ZN a,a+€€(Qn)1 EEZN -1 ag,ar+EEQH
M—1M-1—k ) .
ken (; WU HK) —w(j)
Py e MR )
k=1 j=0
Then one can easily get the conclusion taking into account (4.1). O

Remark 3.9 If fken(j, 2) = fken(2) and f*» = 0 for all k # 1, that is only
homogeneous nearest neighbours interactions along the vertical direction are taken
into account, then

fhom(S) = MffTLrom(S) + infd feN(Z)'
zER

4 Layer dependence: asymptotic formulas

In this section we are interested in analyzing the asymptotic behavior of the func-
tion from given by formula (3.5) when the number of layers M tends to infinity.
To this aim, we will assume that the energy densities f¢ satisfy the hypotheses of
Theorem 3.1 and, given ky € N, the additional condition

S ((ax,-),2) is (0, ky)-periodic Vz € RY, (4.1)
that is f¢ fulfill all the hypotheses of Theorem 4.1 in [1] whose statement is written

in the following subsection to fix some notation.
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4.1 Homogenization result for thick domains
Let k = (ky,...,kyn) € Z" be given and set
Pr :=(0,k1) x -+ x (0,kn).

For any & € ZV, let f¢ : ZV xR? — [0, +00) be such that f¢(-, 2) is Py-periodic for
any z € R? and satisfies hypotheses (3.2), (3.3) and (H3) of the previous section.
Given a convex bounded open set @ C R, consider the family of functionals
F.: LP(Q;RY) — [0, +0c] defined as

> S eNfE (%, Dgu(a)) if ue A.(Q)
Fsb(u) = EEZN a,a+e£€Q (42)
+o00 otherwise.

The following Theorem has been proved in [1].

Theorem 4.1 (F?) T-converges with respect to the LP(2;R%)-topology to the
functional F® : LP(Q; RY) — [0, +o0] defined as

b ; 1, .Rd
Fb(u) _ /thom(vu) dz qu ew P(Q7R ) (43)

400 otherwise,

where f}zom s MN[0, +00) is given by the following homogenization formula

1
b — 1
fhom(S) T hgrfoo hN

minf 3 3 48058, vedS@u). (44)

£€ZN B,8+£€Q
with h € N, Qp = (0,h)N and
A%(Qp) == {ue A (RY): u(a) = Sa ifacdqQy +[-1,1]V}.

In the following, given A € A(RY), we will use the notation F?(u, A) to denote
the energy in (2.1) with € replaced by A.

4.2 Discrete and continuous models for dimension reduction

From now on we will denote F. by FM and from by f, thus highlighting the
dependence on M in all the formulas we obtained in the previous sections for the
energy densities.

Given § > 0, suppose that in the definition (2.1) we replace M by M. =
Then MLEFEME(U) = F’(u) where F? is given by (4.2) with Q = w x (0,6). By
Theorem 4.1 we have that, for all u € WP (w x (0,0); R%),

1

. 1 M. _ - b .
Dl P =5 [ flon(Vula)) do = Fiw).
wx(0,6)

[
2.
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In the pioneering paper by Le Dret and Raoult [22] it has been proved that Fj
I'-converges, as ¢ tends to zero, to the functional

/Q?hom(vu(x))dx u e WLP(M;Rd)’

where

Fhom(8) :=mf{f;,,,(Sl2), 2 € R} (4.5)

and Qfj,om denotes the quasi-convex envelope of f,. ... This considerations lead
us to ask ourselves if

1 _
Afl—iTEOO M %m(s) = thom(s)' (46)

Here we provide a partial answer to this problem by showing that (4.6) holds under
some additional assumptions on the energy densities f¢, while in the general case
we are only able to prove the following inequality.

Proposition 4.2 Under the hypotheses of Theorem 4.1, for all S € R¥>*(N-1)
there holds

() < QF (),
where f,,, is given by (4.5).
Proof. One can write Qf,,, as (see [9])
Qo (S) = infint {t [ fh(Vule))de, we W(Q x (0, iR, (@1)
Q'x(0,%
Wxr, xN) = Sty ifr, € aQ’},

where Q' = (0,1)N~!. Thus, by Theorem 4.1 and by the convergence of minimum
problems proved in [1], we get

_ 1
. . . b / - /
QF o (8) = inf lim inf {tF2(u, Q' x (0, 7)), u € Aeis(@) }-
On the other hand, by Corollary 2.7,
Flam(S) = lim inf {FM (u.Q'), u € A.s(Q)}.

With fixed ¢t > 0 and M € N, given u. € A, s(Q’) we set vi(a) = uc(Qr, any+iMe)

for i € {0,1,...,[77z] — 1}. Since v¢ € A 5(Q'), it holds
1 [tl\ife]il
P e @ % (0,0) > e S PN, Q)
t i=0
> et ) - Dinf {FY(.Q). we As(@))
- tMe € ) ) €,S
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Then . .
lim inf {tF? (us, @ % (0, ;)) ue A 5(Q)} > 27 from (5)

and the conclusion holds by letting M go to infinity and passing to the infimum
on t. 0

In the following two propositions we provide two particular cases in which
(4.6) holds.

Proposition 4.3 Under the hypotheses of Theorem 8.8, if fren(j,2) = fFen(2),
then

. 1 - . z

N[1—>+oo thom( ) - fhom(S) + zlerg,d f(Z),

where f is given by formula (4.4) when N =1 that is
M—1M—-1—k

f(z):= lim %inf{ Z Z fhen M), w(0) =0 u(M-1) = (M—l)z}

M — oo
k=1 =0
Remark 4.4 Note that, under the hypotheses of Proposition 4.3,

From(512) = fiiom(8) + [ (2).

Since f]7 . is quasiconvex, we get that
Q?ham(s) - fl;rom(S) + inf f(Z),
z€R4

where f},,,, is given by (4.5).
Proof of Proposition 4.3. Set

M—-1M-1-k

F]W Z Z fkeN 7’+k) ( ))

and cpy := inf{FM(u): uw:{0,...,M — 1} — R%}. By (3.9)

f]\?)[m(s) _pT CM
hT - fhom(S) + M

By Proposition 4.2 and Remark 4.4 it suffices to prove that

. CMm . 4
—_— > .
P v )

Set

JfM




By Theorem 4.1 with N =1 we have

FM () "D /0 Flul () dt. (4.8)

By a change of variables it holds that

CM . M 1 d
= f M = M Z 1
7 1 inf{F*(u): u(0)=0u U1 no,1] — R},
then there exist C' > 0 such that
CM M
<F <C. 4.
< PY(0) <O (49)
For § > 0, let ups be such that ups(0) = 0 and
c
M”_f c+d 2 FM(u) (4.10)

Note that, thanks to growth conditions f¢ and by convexity, it holds

1 Mo W i C
M M — "M
Flu) 2 37— X ’ 1 T M1
=0 M-1
C
> 1) — P .
2 Clun(1) —un () — -7

Set zpr = |uar (1) —upr(0)], by (4.9) and the previous chain of inequalities, we have
that, up to subsequences, zpy — Z and uy — u with @ € Whr((0,1); R?) and
u(0) =0, u(1) = Z. Then, by (4.8) and the convexity of f we get

1
lim nf oy () > / F () dt > FZ) > inf f(2).
0 z
By the previous inequality and (4.10) we have that
lim M > lim inf 7, —5>inf f(z) -6
im —7 > limin M (unr) > in (z) = 9.
This estimate proves the claim by the arbitrariness of . O

Remark 4.5 By [14] we have that, if f**» =0 for all k # 1,2, then the homoge-
nization formula defining f reduces to a finite formula

f(z) = 12" (2) + %inf{fe’v(zl) + [N (22) 1 21 + 20 = 22}
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Proposition 4.6 (Convex case) Under the hypotheses of Theorem 4.1 and The-
orem 3.0,

! fhom( ):?hom(s)’

lim
M—>+OO M

where f,,, is given by (4.5).

Remark 4.7 Note that, under the hypotheses of Proposition 4.6, since fgom 18
convex, one can easily show that also f,,,,, is convex and then

Q?ham(‘g) = ?hom (S)
Proof of Proposition 4.6. Given ¢ > 0, let vas € Ay »(Ri) be such that

fz Z f5<6 S|§|+D10M( >)Sf%m(8>+6

EGZN BEIx X

Let up(a) = 575vm ((M — 1)a). Then up € A 4(R_x ) and

(S z,;Z > f(55|£|+D§vm(ﬂ)>—5

€EZN pe g (hexI)

Let us denote by uﬁ the periodic extension of uy; on @', then

1

71 lhem(S) = FL (un(e) +(S]0)a, Q" x (0,1)) =4 (4.11)

By the coerciveness assumption, up to additive constants and subsequences, uy; —
u with u € W;’p (Q"; R%). By I'-convergence and convexity it holds

liminf F*,(upr(a) + (5]0)a, Q" x (0,1)) > / From(Vzuldnu) + (S]0)) da
M M-T Q'x(0,1)

\%

1
/ de/ From(Vau+S) dr,
0 Q'
> fhom (S)

By (4.11) and the previous inequality, thanks to the arbitrariness of 6 we get that

1 =

limn — fiiom ($) = From(S)-

O

Remark 4.8 The proof of Theorem 4.6 is based on the fact that, in the convex

case, hom has a non-asymptotic formula. Then the conclusion of Theorem 4.6
holds whenever f  enjoys this property.
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Proposition 4.9 (Symmetric case) Let f$ satisfy the hypotheses of Theorem
4.1 and

fola, 2)

$(an,2), VEE€ZN
f(ﬁmﬁN) (

f
flem=en), (4.12)

Then

. 1 7
]V[li}.ﬂoo M %m(S) = fhom(S)7

where f,,, is given by (4.5).

Remark 4.10 Note that if (4.12) holds, then, for all S € RIN=1fb  (S|y) =
fﬁom(S| —y) and, since f}jom is quasi-convex, then Qf ., (S) = f}bwm(S|0).

Proof. We suppose that there exists R € N such that
f&=0, iflén| >R,

the general case being dealt with similarly up to minor changes. Let § € R¥*(N—1),
By Corollary 3.5, there exists u. € A. s(Q') such that

limFEM(uE7 Q/) = f%m(s)
£
Moreover, by the growth assumptions on f¢ we get
FM(ue, Q") < C(1+|S[7) M.

Set

Ge(u,[3,J]) :== Z ct Z N DEu(a)P.

€€ZN  aatefeQ’ x[icje]

By the growth hypotheses on f¢ and by Lemma 2.2, we have

sup Ge (ue, [0, M — 1]) < C||S||PM.

With fixed L € N, there exist il,i2 € {0,..., L — 1} such that

L—1 C
" Gelue, iR, (i + D)) < SIS,
=0

1
Ge(ue, [i;R, (Z; +1R]) < i3

Ga(usa [M -1- (Z? + 1)R7M -1- ZiRD

L—1
1 C

< 75 1 (i —1—4iR]) < 2| S|P M.
< Li:O Ge(ug,[M —1—-(i+1)R,M —1—iR]) < L||SH M
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Set
M.=M—-1-(?+i)R

and
Ve(r, an) = ue(ap,ay +itRe) 0 < ay < M.e.

Since
M-1-2(L-1)R<M. <M -1,

up to subsequences, we may suppose that M. — M with M —1— 2(L-1)R <
M<M-1,
FMe (0, Q") < FM(ue,Q"),

Gelve, [0, ]V Ge(ve, [M: — R ML < S S0

Set
175(0471-704N) = UE(QW7€ME - aN)v

we note that by (4.12), we get
FEME (Ve, Q/) = FEJ\/IE (ve, QI)
Let us define w, € A.(Q" x R) as

wo(a) = Ve, ay — jMee) if jM.e < any < (j+1)M.e, j even
ST Ve(am, any — jMee) if jMee < ay < (5 + 1)Mee, j odd,

then, by (4.12)

(3r=]

] +1) FMe (v, @)+ Y Bl(w.),
j=1

P <0 =< ([

e€

where 4 o
Bl(w.) = Z Z EN_lfg(?ﬂ7D§w5(a)),

lEn|>1 aeBl®

with
Bt ={aceZVN: ar,ar +e£ € Q,jM. —e(énVO) < ay < jM. —(Ex N0)}.

Note that for a € B2, we have that

Dgws(a) = Mnge(aTmaN - (] - 1)M5€)7

) ~ liel

where € = (&, 2(jM. — %) — &y). Since [|€]] < ||¢]| we get

|D§w€(oz)\p < |D§Ue(a7rvaN —(j —1)M.e)lP
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and thus, by the growth hypotheses on f¢,
- 1
Bl(w.) < C(1 4+ G(ve, [0, R] V Ge(ve, [Me — R, M.]) < C(1+ EHSHPM)

Hence

1
M.e

] + 1) FMe (0, Q') + & [1} ca+ %HSHPM).

R @ <o) < | T

By the construction of w. one can easily show that, up to subsequences (not
relabelled), there exists w € WP(Q'; R?) with w(xr) = Sz on 9Q’ such that
w. — w in LP(Q" x (0,1); R?). Then, by Theorem 4.1, from the previous estimate
we get that

ron(S) < [ fhon(Vul0)ds < liminf F(we,Q  (0,1))
Q'x(0,1) :
M, 1 c
< (= —|1S]P).
< G + TSI

Letting first M and then L tend to infinity, we get

Q?hom(s) S 151}1 #-

Then the thesis follows by Proposition 4.2. O

5 Examples

In this section we will consider two special cases of nearest and next to nearest
neighbours interactions in a 2D — 1D dimension reduction problem in which we

show that £ ’XI‘J[ has a non-asymptotic formula for M = 2 and for M — 4o0. As
highlighted in Figure 3, were the geometry of these discrete systems is shown, both
the examples can be seen as particular cases of the most simple geometry in 2D
which takes into account nearest and next to nearest interactions and which, at
the same time, is invariant under discrete rotations compatible with the lattice
structure (see [21]).

Example 5.1 In the following example we will consider energies defined for u €
A:((0,1) x [0,6(M —1)]) as

FM (u) = Y. eh(Dgu(e) + > ef2(DEF2u(a))

a,atee1€(0,1) a,a+te(er+ez)€(0,1).

+ > efs(DE % u(a)), (5.1)

a,a+te(er—e2)€(0,1),
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Figure 3: Reference configurations of the discrete system in Example 5.1 and 5.5
(the dashed lines represent negligible interactions).

with f; : RY — [0, +00) satisfying
clzl" =1) < fi(z) <C(lz[P +1), i=12,  fs(z) <C([z)" +1).

Note that in this example interaction along direction es are not taken into account
(see Figure 3 a)). Thus, hypotheses of Section 3 are not satisfied. Anyway, thanks
to the additional coerciveness condition on fs, it is easy to see that again finite
difference quotients along e, can be controlled and so the conclusion of Theorem
(3.1) still holds true.

Proposition 5.2 Let FM be defined by (5.1) and let f  be the density energy
of its I'-limit. Then it holds

2((M=2)(F () + (F)"() < Sty <2(M=2F+F) " (5) (52)

for any z € R, where f : RY — [0,4+00) and f: R? — [0,+00) are defined by the
following formulas

—
—
N
-
I

iinf{fl(zl) + fi(z2) 1 21+ 20 = 22} + ;inf{fg(\%) +f3(%) 121+ 29 = 22},

f(z) = %inf {fi(z1) + fi(z2) : 21 + 20 = 22} + %inf {fz (%) + fg(%) 121+ 2o = 22} (5.3)

Proof. We first prove the lower bound estimate. For 5 € (0,1) NeZ set
D:u(8) = D u(B,ej), DZu’(8) = D***u(B,ej),  Dlu’ (B) = D'~ **u(B,j).
—2 I3 . .
FMw) = Y >0 5 (ADW(8) + (DI (6 +¢)))

Jj=1 g even/odd
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(f2(D2 (B)) + f3(D2 T (B +¢)))

2

+ > S (ADW(B) + A(DI(B+2)

Jj=1 g even/odd

(fo(D2w’ =1 (B +€)) + f3(DZu’ (B))

2

n 3 g(flwgu()(ﬁ)) + [1(DL (B +¢)))

1 g even/odd
+5 (fo(D2°(B)) + f3(D2u' (B +¢)))
+ Y 5 (ADRMTNE) + ADIM T (B + )

g even/odd

5 (F(D2M 2B+ ) + fo(D2M(B))
Then by (5.3) we get

M—2
23 Y e+ Y. Y ef(DLw(B)

Jj=1 g even/odd j:OxM_lg even/odd

M—-2
> Y i ety Y Y Db,

Jj=1 g even/odd jZOvalg even/odd

2 +
o] o

g+
(o] o™

<.
Il

| ™

FM (u)

v

This estimate provides a lower bound of our energies FM by one-dimensional
discrete energies involving only nearest neighbours interactions on a lattice of
spacing 2¢. Then by the I'-convergence result in [14] we get that, if u, — zt in
(LP(0,1))™ then

liminf FM (uz) > 2(M - 2)f(2) + f(2))-

We now prove the upper bound estimate. For the sake of simplicity we consider
the case f; are lower semicontinuous functions. Fix z € R such that

2((M=2f() + fi2)) =2 (M -2+ ) (2)
and set

z1,22 € R inf{fi(21) + fi(22) : 21 + 22 = 22} = f1(21) + f1(22)

21,2, € R inf{fz(j%) +f3(%> t 2420 = 22} - f2(\z/i§) Jrfg(\%)'
Let u. € A-((0,1):) — R? be such that

o J(B=Dz4z+ 42— 2))e if £isodd
20 ={ (0 Y it is oven, (54
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Figure 4: Reference configuration and optimizing sequences of the discrete system
in Proposition 5.2.

(see Figure 4). Then u. — zt in (L”(0,1)) and

2
+ 2 (;(fl(zl) + fi(22)) + %h(i) + fs(é)> +0(1)

~ ~

= 2(M-2)f(2)+2f(2) +0O(1).

FMu,) = 2(M-2) (i(fl(z1)+f1(zz))+1f2()+f3(2ré2))

Hence we get that
Tl () < limsup FM (uz) = 2 (M = 2)](2) + [(2))
If otherwise z is such that
2((M=2)f(5)+ 7)) >2 (M -2F+F) ()
there exist a, b € R and A € (0,1) such that
z=Xda+ (1—-A)b

and that



Let \. € QN (0, 1) be such that A\. — A and let p., ¢- € N be such that

Ae = &, limeg. = 0.
qe €

Let 2§, 28,242, 202, 2% 28 210 21" € R be such that

inf  {fi(z1) + fi(z2) : 21 + 22 = 2a} = f1(2]) +f1 Zz)

ot {1(2)+£(3) v - () ()

inf  {fi(z1) + fi(22) : 21 + 22 = 2b} = fi(2} +f1(52) ,

(1(25) - 1(35) v m=) =) e (L)

Let u? and ub be deﬁned asin (5.4) with 21, 21, 2 replaced respectively by z¢, z1%, 24
and by 2%, 2, 2. Let u. € A.(0,1) be such that

—

n

o = (2] mton [ 2]
w) = (e tashla, 59

Then u. — zt in (L2(0,1)) and
flln(z) < timsup 2 (ue)
= 2 (M =2)f(0) + fl@) + 201 = 3) (M = 2)](b) + (b))
= 2((M-2)fx)+ fi2)

Remark 5.3 Note that, by (5.2) we deduce that
hrom(2) = 2(f )™ (2)
and that

 Thom(2) _ o F e
Jim DremlS) (7 ey,
with f and f as in (5.3).

Remark 5.4 (Cauchy-Born rule) Let N = 2 and let F. and fho, be as in
Theorem 3.1 with w = (0,1). We say that z € R% is a strong Cauchy-Born (sCB)
state or a weak Cauchy-Born (wCB) state if respectively, for any

ue(t) — 2zt such that F.(u:) — from(2),
it holds
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(i) #{a € (0,1)NeZ: u(a+e) —u(a) #ez} =o(2),
(ii) #{a € (0,1)NeZ: u.(a+2e) — uc(a) # 2ez} = o().

In the previous two cases we simply say that the Cauchy-Born (CB) rule holds at
z or, shortly, that z is a CB state.

From a mechanical point of view, in this two different cases, to a macroscopic
strain z it corresponds a micro-structure of

(i) uniformly displaced material points,
(ii) periodically displaced material points on the microscopic scale 2e.

Let now ue be as in (5.4) or in (5.5). Since us — 2t and

m F2 (us) = fiiom(2),
M Ue ~ ~ *k M z
nsmFeT() = (M -2f)+ ) = fM()JrO(ﬁL

the validity or failure of the CB rule related to FM given by (5.1), when M = 2
or M — +00, can be reduced to study whether the cases (i), (i7) hold for such a
ue. Then the set

C(M):={z € R*: zis not a CB state},

is given, by all z € R? such that

(F )™ (2) < f(2)
if M = 2 or such that

(f )7 (2) < f(2)
if M — +o0.
We now provide an example giving us some insight in the dependence of the
Cauchy-Born rule to the number of layers M. Let

hE)=(E+1)?A(z=1)"  fa(2) = fa(z) = 2"
Then an easy computation gives
5 1 15
cancom=(-5-5)v(G5)
) 3 1 13
Jm on = (= 3,-7)u(33) <)

This means that a scale transition phenomenon occurs: there exists a macroscopic
state with uniform strain z which is not a CB state for M = 2, corresponding to
an oscillation on a mesoscopic scale . such that 6. — 0, % — +00, and which,
asymptotically in M, becomes a CB state, thus corresponding to an oscillation on
the microscopic scale .
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Example 5.5 In the following example we will consider energies defined for u €
A:((0,1) x [0,e(M —1)]) as

FM(u) = Y. eh@fue)+ Y efa(D2u(a)
a,atee; €(0,1), a,atee; €(0,1),
+ > efs(DE (), (5.6)

a,ate(er+e2)€(0,1).
with f; : R? — [0, +00) satisfying
c(lzIP =1) < filz) <C(]zIP+1), =12 [f3(z) <C(|]z[" +1).

This is a particular homogeneous case of the model considered in Section 3 with
N =2 w=(0,1), fS =0if £ # e1,e2,e1 + e (see Figure 3 b)).

Proposition 5.6 Let FM be defined by (5.6) and let f  be the density energy
of its I'-limit. Then it holds

2((M=2)(F )" () + (7)) < () <2 (M =2F+F) " (5) (57)

for any = € R4, where f: R4 — [0,4+00) and f: R? — [0, +00) are defined by the
following formulas

f(z) — f1§Z) + ;inf{fQ(zl) + fg(%) t2y— 2 = Z} ,
f(z) = f1(z) + %inf {fQ(Zl) + f3(%> D29 — 21 = z} . (5.8)

Proof. The proof is analogous to that of Proposition 5.2. In particular, fixed
z € R% such that

2(M=2f+F) () =2(M-f+7)" (2)

and given z1, zo such that

inf {f2(z1) + f3 (\%) f20 — 21 = z} = fa(z1) + f3(%)’

the upper bound inequality can be obtained by arguing as before with (5.4) re-
placed by _
ul(B) = 2B+ jze.
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Remark 5.7 Note that, by (5.7) we deduce that

Fiom(2) = 2(f )™*(2)

and that

fjvo[m(z) _ T\ k%
i JrnE (o)

with f and f as in (5.8).

Remark 5.8 By Remark 4.8, if f,%m is as in Example 5.1 and 5.5, one can prove

that

. ISY; _7
M1—1>IROO thom(z) - fhom(z)’
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