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1 Introduction

Object of this paper is the description of the overall behaviour of variational pair-
interaction lattice systems defined on ‘thin’ domains of Z

N ; i.e. on domains con-
sisting on a finite numberM of mutually interacting copies of a portion of a N−1-
dimensional discrete lattice (see Figure 1 ). On one hand we draw a parallel with

Figure 1: A discrete thin film.

the analog theories for ‘continuous’ thin films showing that general compactness
and homogenization results can be proven by adapting the techniques commonly
used for problems on Sobolev spaces; on the other hand we show that new phe-
nomena arise due to the different nature of the microscopic interactions, and in
particular that for long-range interactions a surface energy on the free surfaces of
the film due to boundary layer effects renders the effective behaviour depend in a
non-trivial way on the number M of layers.
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In a more precise notation, we consider energies depending on functions pa-
rameterized on a portion of the lattice Z

N consisting of a ‘cylindrical’ set

Z(ω,M) = (ω ∩ Z
N−1)× {1, . . .M}

(see Fig. 1) of the form

∑

α,β∈Z(ω,M)

ϕα,β(uα − uβ), u : Z(ω,M)→ R
d

when the size of ω is large. Upon introducing a small positive parameter ε and
scaling ω to a fixed size, obtaining the discrete thin domain

Zε(ω,M) = (ω ∩ εZN−1)× {ε, 2ε, . . .Mε}, (1.1)

this problem can be reformulated as the description of the Γ-limit of energies of
the form

Fε(u) =
∑

α,β∈Zε(ω,M)

εN−1fεα,β

(uα − uβ
ε

)
, u : Zε(ω,M)→ R

d (1.2)

(at this point a more general dependence of the energy densities on ε is introduced
for the sake of generality).

The energies above may be viewed as the discrete analog of thin-film energies
of the form

Fε(u) =
1

ε

∫

ω×(0,Mε)

Wε(x,Du(x)) dx u ∈W 1,p(ω × (0,Mε);Rd). (1.3)

For such functionals a number of results in the framework of variational conver-
gence have been obtained since the pioneering work of Le Dret and Raoult [22]; in
particular if Wε uniformly satisfy some p-growth conditions, a general compact-
ness result by Braides, Fonseca and Francfort [9] shows that, upon subsequences,
we can always suitably define a Γ-limit energy in the lower-dimensional set ω of
the form

F(u) =

∫

ω

W (x̂,Du(x̂)) dx̂, u ∈W 1,p(ω;Rd) (1.4)

(here, x̂ = (x1, . . . , xn−1). Particular cases are whenWε =W0(Du) is independent
of ε and x, in which the limit W is simply given [22] by

W (A) =M QW 0(A), W 0(A) = inf
z
W0(A | z), (1.5)

where Q stands for the operation of quasiconvexification (note the trivial depen-
dence on M), and when Wε(x,A) =W (x/ε,A), in which suitable homogenization
formulas hold [9].
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On the other hand, a general compactness theory for discrete systems with
energy densities of polynomial growth defined on ‘thick’ domains by Alicandro
and Cicalese [1] is also available. In particular, that theory can be applied in the
case above when M = 1 and the energies Fε are simply interpreted as defined
on ω ∩ εZN−1. In this case again an energy of the same form as F above can be
proven to be the Γ-limit in a suitable sense of such Fε (discrete functions must
be identified with piecewise-constant interpolations). Appropriate homogenization
formulas apply as well if the discrete interactions possess some periodicity. It must
be noted that homogenized energy densities in many ways behave differently than
the corresponding usual integral homogenization energies [8], as shown by the com-
putation of bounds for simple discrete mixtures of two types of quadratic interac-
tions by Braides and Francfort [10]. Even for simple non-convex next-to-nearest
interactions the formulas defining the limit energy densities highlight microscopic
oscillations (see Braides, Gelli and Sigalotti [14] and Pagano and Paroni [23] for
one-dimensional examples, and Friesecke and Theil [21] for a simple optically non-
linear example in dimension two).

In the general case M > 1 we note that the energies Fε can also be seen
as defined on M copies of ω ∩ εZN−1 interacting through pair-interactions cor-
responding to β − α with a non-zero component in the N -th variable. We first
show that functions on which the limit energy is finite, that are thus defined on
M copies of ω, are actually equal on each of these copies, so that the limit energy
can be defined on the only set ω. To prove a general compactness and representa-
tion theorem for the limit we adapt both the localization techniques on cylindrical
domains used by Braides, Fonseca and Francfort [9] to prove a compactness result
for energies on continuous thin films, and those used by Alicandro and Cicalese [1]
for thick discrete systems, where the main difficulty is taking care of long-range
interactions. More precise homogenization formulas are given in the case when the
energy densities are periodic; i.e. f εα,β = fα/ε,β/ε and there exists an integer k

such that fi,j = fi′,j′ if i − i′ = j − j′ ∈ kZ
N−1. As in [9] these formulas are de-

fined through minimum problems on rectangles with boundary conditions on the
lateral boundaries only. In the discrete case it must be noted that these formulas
are necessary also in the ‘trivial’ case when fi,j = fj−i; i.e. the energy densities
depend only on the distance of α and β in the unscaled reference lattice Z

N , as
already observed for ‘thick’ domains, except when only nearest-neighbour interac-
tions are taken into account (see [5]). In the case of thin domains an additional
scale effect must be taken into account, since long-range interactions (next-to near-
est interactions and further) produce different effects close to the upper and lower
free boundaries than in the interior (see Figure 2). These effects can be viewed as
generating a surface energy through a boundary layer (see [6, 15]) that for thin
films is of the same order as the bulk energy. Note that this effect is present also
for simple quadratic interactions, as observed by Charlotte and Truskinovsky for
one-dimensional systems [18].

The paper is organized as follows: after introducing the necessary notation in
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Figure 2: Different effects in a simple model for thin films with nearest and next to
nearest interactions: a) ground state geometry for a two layers thin film; b) bulk
geometry (BG) and boundary layer effect (BL) for a multi-layer thin film subject
to a vertical deformation gradient z.

order to make the energies Fε more tractable, the compactness and representation
theorem is proved in Section 2 together with the convergence of minimum prob-
lems. Section 3 is devoted to homogenization; in particular the simple case when
only ‘horizontal’ and ‘vertical’ interactions are present is treated, when a formula
can be given showing explicitly the non-trivial dependence of the homogenization
formula on the number M of layers. The asymptotic behaviour of homogeniza-
tion formulas as the number of layers increases is treated in Section 4, showing in
some cases a separation of scale effect so that we may first let M tend to infinity,
thus obtaining a bulk energy by the results of Alicandro and Cicalese [1] and then
applying the dimension-reduction formula by Le Dret And Raoult (1.5). Various
examples are presented in Section 5, where in particular the Cauchy-Born rule is
discussed, stating that microscopic arrays corresponding to affine boundary con-
ditions are regularly spaced on a lattice with the same overall affine deformation.
It is shown that the domain of affine boundary condition where the Cauchy-Born
rule fails decreases with the number M of layers.

Our techniques can be used also to cover types of non central interaction
energies even in the case of linear elasticity (see [2]). The extension of the result to
sub-linear growth densities will require to consider limit energies on discontinuous
functions (see [7],[15], [11], [12], [13] [17], [18], [25])
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Finally, we mention that our work has connections with a number of papers
where variational methods for thin structures are dealt with but in a different
perspectives, most notably that of Friesecke and James [20], some works by Blanc
et al. [3] and more recently by Schmidt [24].

2 Compactness and integral representation

In this section we introduce the family of discrete energies we will consider in
the rest of the paper and then prove a compactness theorem, asserting that any
sequence of energies in this class has a subsequence whose Γ-limit F is an integral
functional.

2.1 Notation and Preliminaries

Given N, d ∈ N, we denote by {e1, e2, . . . , eN} the standard basis in R
N , by | · | the

usual euclidean norm and by Md×N the space of d×N matrices. For x, y ∈ R
N ,

[x, y] denotes the segment between x and y. If Ω is an open subset of R
N , A(Ω)

is the family of all open subsets of Ω while A0(Ω) denotes the family of all open
subsets of Ω whose closure is a compact subset of Ω. If B ⊂ R

N is a Borel set,
we will denote by |B| its Lebesgue measure. We use standard notation for Lp and
Sobolev spaces.

We also introduce a useful notation for difference quotient along any direction.
Fix ξ ∈ R

N ; for ε > 0 and for every u : R
N → R

d we define

Dξ
εu(x) :=

u(x+ εξ)− u(x)
ε|ξ| .

Moreover we set

Aε(Ω) := {u : R
N → R

d : u constant on α+ [0, ε)N for any α ∈ εZN ∩ Ω}.

2.2 Compactness Theorem

In what follows, for the sake of simplicity, ω will denote a bounded convex open
set of R

N−1 with Lipschitz boundary, the general case of a non-convex ω being
dealt with similarly (see [1]). Given M ∈ N and ε > 0, we set

Ωε := ω × [0, ε(M − 1)].

In the following we will identify the set of functions Aε(Ωε) with [Aε(ω)]
M through

the bijection u 7→ (u0, u1, . . . , uM−1) where, for any i ∈ {0, 1, . . . ,M − 1}, ui ∈
Aε(ω) is defined by

ui(β) = u(β, εi) ∀β ∈ εZN−1 ∩ ω.
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We consider the family of functionals Fε : [Lp(ω;Rd)]M → [0,+∞] defined
as

Fε(u) =





∑
ξ∈ZN

∑
α,α+εξ∈Ωε∩εZN

εN−1fξε
(
α,Dξ

εu(α)
)

if u ∈ Aε(Ωε)

+∞ otherwise,

(2.1)

and f ξε : (εZN ∩Ωε)×R
d → [0,+∞) is a given function. Let p > 1, on f ξε we

make the following assumptions:

feiε (α, z) ≥ c1(|z|p − 1) ∀(α, z) ∈ (εZN ∩ Ω)× R
d, i ∈ {1, . . . , N} (2.2)

fξε (α, z) ≤ Cξ
ε (|z|p + 1) ∀(α, z) ∈ (εZN ∩ Ω)× R

d, ξ ∈ Z
N , (2.3)

where c1 > 0 and {Cξ
ε}ε,ξ satisfies:

lim sup
ε→0+

∑
ξ∈ZN

Cξ
ε < +∞; (H1)

∀δ > 0 ∃Mδ > 0 : lim sup
ε→0+

∑
|ξ|>Mδ

Cξ
ε < δ. (H2)

We define also a “localized” version of our energies: given an open set A ∈
A(ω), set

Aε := A× [0, ε(M − 1)].

We isolate the contributions due to interactions within Aε as follows. For
u ∈ Aε(Ωε), A ∈ A(ω) and ξ ∈ Z

N , set

Fξ
ε (u,A) :=

∑

α∈Rξε(Aε)

εN−1fξε
(
α,Dξ

εu(α)
)
, (2.4)

where
Rξ
ε(Aε) := {α ∈ εZN : [α, α+ εξ] ⊂ Aε}.

The function Fξ
ε represents the energy due to the interactions within Aε along

the direction ξ. Then the local version of the functional in (2.1) is given by

Fε(u,A) =





∑
ξ∈ZN

Fξ
ε (u,A) if u ∈ Aε(Ωε)

+∞ otherwise.

(2.5)

In the following, referring to [4] and [19] for all the definitions and properties of
Γ-convergence, we will denote by F ′(u,A) and F ′′(u,A) the Γ- lim infε→0+ Fε(u,A)
and the Γ- lim supε→0+ Fε(u,A) with respect to the [Lp(ω;Rd)]M -topology. More-
over if u ∈ [Lp(ω;Rd)]M is such that u0 = u1 = . . . = uM−1 we will simply write
u ∈ Lp(ω;Rd). The main result of this section is stated in the following theorem.
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Theorem 2.1 (compactness) Let {f ξε }ε,ξ satisfy (2.2), (2.3) and let (H1)-(H2)
hold. Then:

(i) if u ∈ [Lp(ω;Rd)]M is such that F ′(u,A) < +∞, then

u0 = u1 = . . . = uM−1 ∈W 1,p(A;Rd)

and
F ′(u,A) ≥ c

(
‖∇u‖p

Lp(A;Rd×N−1)
− |A|

)
(2.6)

for some positive constant c independent on u and A.

(ii) for every u ∈W 1,p(ω;Rd) there holds

F ′′(u,A) ≤ C
(
‖∇u‖p

Lp(A;Rd×N−1)
+ |A|

)
(2.7)

for some positive constant C independent on u and A.

(iii) for every sequence (εj) of positive real numbers converging to 0, there exists
a subsequence (εjk) and a Carathéodory function quasiconvex in the second
variable f : ω × R

d×N−1 satisfying

c(|S|p − 1) ≤ f(x, S) ≤ C(|S|p + 1),

with 0 < c < C, such that (Fεjk (·)) Γ-converges with respect to the [Lp(ω;Rd)]M -

topology to the functional F : [Lp(ω;Rd)]M → [0,+∞] defined as

F (u) =





∫

ω

f(x,∇u) dx if u ∈W 1,p(ω;Rd)

+∞ otherwise.

(2.8)

Proof. (i) Let εn → 0+ and let un converge to u in [Lp(ω;Rd)]M and be such that
lim infn Fεn(un, A) < +∞. By the growth condition (2.2) we get

Fεn(un, A) ≥ c1

N∑

i=1

∑

α∈R
ei
εn
(Aεn )

εN−1n |Dei
εnun(α)|p − c1N |A|

= c1

M−1∑

j=0

N−1∑

i=1

∑

β∈R̃
ei
εn
(A)

εN−1n |Dei
εnu

j
n(β)|p

+c1

M−2∑

j=0

∑

β∈εZN−1∩A

εN−1n

∣∣∣∣
uj+1n (β)− ujn(β)

εn

∣∣∣∣
p

− c1N |A|.(2.9)

where
R̃ξ
εn(A) := {α ∈ εZN−1 : [α, α+ εξ] ⊂ A}.
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For any η > 0, set
Aη := {x ∈ A : dist(x,Ac) > η}.

Note that for any j ∈ {0, 1, . . . ,M − 2} and for n large enough it holds

1

εpn

∫

Aη

|uj+1n (x)− ujn(x)|p dx ≤
∑

β∈εZN−1∩A

εN−1n

∣∣∣∣
uj+1n (β)− ujn(β)

εn

∣∣∣∣
p

Thus, by (2.9) and the arbitrariness of η, passing to the limit in the previous
inequality, we get that u0 = u1 = . . . = uM−1. For any j, by (2.9) we have,

lim inf
n

N−1∑

i=1

∑

β∈R̃
ei
εn
(A)

εN−1n |Dei
εnu

j
n(β)|p < +∞.

Then, by a slicing argument (see the proof of Proposition 3.4 in [1]), one can prove
that u ∈W 1,p(A;Rd) and that

lim inf
n

N−1∑

i=1

∑

β∈R̃
ei
εn
(A)

εN−1n |Dei
εnu

j
n(β)|p ≥ ‖∇u‖pLp(A;Rd).

Hence, by (2.9), (2.6) holds.

(ii) By a density argument it suffices to prove (2.7) for u ∈ C∞c (RN−1;Rd).
For such a u, consider the family (uε) ⊂ Aε defined as

uε(α) := u(απ), α ∈ εZN .

Then uε → u in [Lp(ω;Rd)]M as ε → 0+ and, following the same steps as in the
proof of Proposition 3.5 in [1], one can prove that

lim sup
ε→0+

Fε(uε, A) ≤ C

(∫

A

|∇u(x)|p dx+ |A|
)
,

from which we deduce (2.7).
In order to prove (iii) we need some preliminary result we will state in the

next propositions.

The next technical lemma is analogous to Lemma 3.6 in [1] and asserts that
finite difference quotients along any direction can be controlled by finite difference
quotients along the coordinate directions. We omit the proof since it is the same
as that of Lemma 3.6 in [1] up to small changes.

Lemma 2.2 Let A ∈ A(ω) and set Aε := {x ∈ A : dist(x, ∂A) > 2ε
√
N − 1}.

Then for any ξ ∈ Z
N and u ∈ Aε there holds

∑

α∈R̃ξε(Aε)

|Dξ
εu(α)|p ≤ C

N∑

i=1

∑

α∈R̃
ei
ε (A)

|Dei
ε u(α)|p.
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In the next three propositions we establish the subadditivity, the inner regularity
and the locality of the set function F ′′(u, ·) which are the analogue of Propositions
3.7, 3.8 and 3.9 in [1]. In the proofs we will exploit the same cut-off argument used
in [1], the main difference being in the choice of the cut-functions depending only
on the planar variables.

Proposition 2.3 Let {f ξε }ε,ξ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Let A,B ∈
A(ω) and let A′, B′ ∈ A(ω) be such that A′ ⊂⊂ A and B′ ⊂⊂ B. Then for any
u ∈W 1,p(ω;Rd),

F ′′ (u,A′ ∪B′) ≤ F ′′ (u,A) + F ′′ (u,B) . (2.10)

Proof. Without loss of generality, we may suppose F ′′(u,A) and F ′′(u,B) finite.
Let uε, vε ∈ Aε both converge to u in [Lp(ω;Rd)]M and be such that

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A), lim sup
ε→0+

Fε(vε, B) = F ′′(u,B).

By (2.2) and Lemma 2.2, we infer that

sup
ξ∈ZN

sup
ε>0

∑

α∈Rξε((Aε)ε)

εN−1|Dξ
εuε(α)|p < +∞,

sup
ξ∈ZN

sup
ε>0

∑

α∈Rξε((Bε)ε)

εN−1|Dξ
εvε(α)|p < +∞,

where Aε and Bε are defined as in Lemma 2.2. Moreover, since (uε) and (vε)
converge to u in the [Lp(ω;Rd)]M -topology, we have

∑

α∈εZN∩(ω′)ε

εN−1 (|uε(α)|p + |vε(α)|p)

≤ ‖uε‖p[Lp(ω;Rd)]M + ‖vε‖p[Lp(ω;Rd)]M ≤ C < +∞,
(2.11)

∑

α∈εZN∩(ω′)ε

εN−1 (|uε(α)− vε(α)|p) ≤ ‖uε − vε‖p[Lp(ω;Rd)]M → 0+

for any ω′ ⊂⊂ ω. Set
d := dist (A′, Ac)

and, given L ∈ N, for any i ∈ {1, . . . , L} define

Ai := {x ∈ A : dist(x,A′) < i
d

L
}.
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Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 2Ld . Then for
any i ∈ {1, . . . , L} consider the family of functions wi

ε ∈ Aε still converging to u
in [Lp(ω;Rd)]M defined as

wiε(α) := ϕi(απ)uε(α) + (1− ϕi(απ)) vε(α).

Then, proceeding as in the proof of Proposition 3.7 in [1], we can choose i(ε) ∈
{1, . . . , L− 3} such that w

i(ε)
ε still converges to u in [Lp(ω;Rd)]M and,

lim sup
ε→0+

Fε(w
i(ε)
ε , A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,B) +

C

L− 3
,

from which we easily deduce (2.10).

Proposition 2.4 Let {f ξε }ε,ξ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Then for
any u ∈W 1,p(ω;Rd) and for any A ∈ A(ω), there holds

sup
A′⊂⊂A

F ′′(u,A′) = F ′′(u,A).

Proof. Since F ′′(u, ·) is an increasing set function, it suffices to prove that

sup
A′⊂⊂A

F ′′(u,A′) ≥ F ′′(u,A).

To do this, we apply the same argument of the proof of Proposition 2.3. Given
δ > 0, there exists A′′ ⊂⊂ A such that

|A \A′′|+ ‖∇u‖p
Lp(A\A′′)

≤ δ.

Let ω̃ ⊃⊃ ω and let ũ ∈ W 1,p(ω̃;Rd) an extension of u. By Theorem 2.1 (ii), we
may find vε ∈ Aε(ω̃) such that vε converges to ũ in [Lp(ω̃;Rd)]M and

lim sup
ε→0+

Fε(vε, A \A′′) ≤ C
(
|A \A′′|+ ‖∇u‖p

Lp(A\A′′)

)
≤ Cδ. (2.12)

We remark that this extension on ω̃ is just a technical tool to exploit an analogue
of inequality (2.11) and obtain a control of the interactions near the boundary of
ω. Let A′ ∈ A(ω) be such that A′′ ⊂⊂ A′ ⊂⊂ A and let uε ∈ Aε converge to u in
[Lp(ω;Rd)]M , with

lim sup
ε→0+

Fε(uε, A
′) = F ′′(u,A′). (2.13)

Set
d := dist(A′′, A′c).
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Given L ∈ N, for any i ∈ {1, . . . , L} let Ai , ϕi and wiε be defined as in the
previous proposition. By reasoning as before, taking into account (2.12), we can

choose i(ε) ∈ {1, . . . , L− 3} such that w
i(ε)
ε converges to u in [Lp(ω;Rd)]M and

lim sup
ε→0+

Fε(w
i(ε)
ε , A) ≤ lim sup

ε→0+
Fε(uε, A

′) + C(
1

L− 3
+ δ + δLp). (2.14)

Then, by using (2.13) we deduce that

F ′′(u,A) ≤ sup
A′⊂⊂A

F ′′(u,A′) + C(
1

L− 3
+ δ + δNp).

Eventually, letting δ go to zero and L go to infinity, we obtain the thesis.

Proposition 2.5 Let {f ξε }ε,ξ satisfy (2.2),(2.3) and let (H1)-(H2) hold. Then for
any A ∈ A(ω) and for any u, v ∈W 1,p(ω;Rd), such that u = v a.e. there holds

F ′′(u,A) = F ′′(v,A).

Proof. Thanks to Proposition 2.4, we may assume that A ∈ A0(ω). We first prove

F ′′(u,A) ≥ F ′′(v,A). (2.15)

Once more we apply the argument used in the previous proposition. Given δ > 0,
there exists Aδ ⊂⊂ A such that

|A \Aδ|+ ‖∇u‖pLp(A\Aδ) ≤ δ.

Let vε ∈ Aε(ω) and uε ∈ Aε(ω) be such that

vε → v in[Lp(ω;Rd)]M

uε → u in[Lp(ω;Rd)]M

and

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A), (2.16)

lim sup
ε→0+

Fε(vε, A \Aδ) = F ′′(v,A \Aδ) ≤ C
(
|A \Aδ|+ ‖∇u‖pLp(A\Aδ)

)
≤ Cδ

Set
d := dist(Aδ, A

c)

and, given L ∈ N, for any i ∈ {1, . . . , L} define

Ai := {x ∈ A : dist(x,Aδ) < i
d

L
}.
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Let then ϕi and w
i
ε ∈ Aε be as in the previous proposition. Hence, as in the proof

of Propositions 2.3 and 2.4, we can choose i(ε) ∈ {1, . . . , L − 3} such that w
i(ε)
ε

converges to v in [Lp(ω;Rd)]M and

lim sup
ε→0+

Fε(w
i(ε)
ε , A) ≤ lim sup

ε→0+
Fε(uε, A) + C

(
1

L− 3
+ δ + δLp

)
.

By (2.16), we get

F ′′(v,A) ≤ F ′′(u,A) + C

(
1

L− 3
+ δ + δLp

)
.

Eventually, letting first δ → 0+ and then L → +∞, we obtain (2.15). Reversing
the roles of u and v we obtain the thesis.

Proof of Theorem 2.1 (iii). By the compactness property of the Γ-convergence
and by Proposition 2.4, there exists a subsequence (εjk) such that, for any (u,A) ∈
W 1,p(ω;Rd)×A(ω), there holds

Γ(Lp)- lim
k
Fεjk (u,A) =: F (u,A)

(see [8] Theorem 10.3). Moreover, by (i),

Γ(Lp)- lim
k
Fεjk (u) = +∞

for u ∈ Lp(ω;Rd) \W 1,p(ω;Rd). So far, it suffices to check that, for every (u,A) ∈
W 1,p(ω;Rd)×A(ω), F (u,A) satisfies the following hypotheses:

(1) (locality) F is local, i.e. F (u,A) = F (v,A) if u = v a.e. on A ∈ A(Ω);

(2) (measure property) for all u ∈ W 1,p(Ω;Rd) the set function F (u, ·) is the
restriction of a Borel measure to A(Ω);

(3) (growth condition) there exists c > 0 and a ∈ L1(Ω) such that

F (u,A) ≤ c

∫

A

(a(x) + |Du|p) dx

for all u ∈W 1,p(Ω;Rd) and A ∈ A(Ω);

(4) (translation invariance in u) F (u + z,A) = F (u,A) for all z ∈ R
d, u ∈

W 1,p(Ω;Rd) and A ∈ A(Ω);

(5) (lower semicontinuity) for all A ∈ A(Ω) F (·, A) is sequentially lower semi-
continuous with respect to the weak convergence in W 1,p(ω;Rd).
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In fact (see [16]), if all these hypotheses are fulfilled, there exists a Carathéodory
function f : ω ×M

d×(N−1) → [0,+∞) satisfying the growth condition

c(|S|p − 1) ≤ f(x, S) ≤ C(|S|p + 1),

with 0 < c < C for all x ∈ ω and S ∈Md×(N−1) and such that

F (u,A) =

∫

A

f(x,Du(x)) dx

for all u ∈W 1,p(ω;Rd) and A ∈ A(ω).
It can be easily seen that the superadditivity property of Fε(u, ·) is conserved in
the limit. Thus, as an easy consequence of (i), (ii) and Propositions 2.3, 2.4, 2.5
and thanks to De Giorgi - Letta Criterion (see [8]), hypotheses (1), (2), (3) hold
true. Moreover, as Fε(u,A) depends on u only through its difference quotients,
hypothesis (4) is satisfied and finally, by the lower semicontinuity property of Γ-
limit, also hypothesis (5) is fulfilled.

2.3 Convergence of minimum problems

In order to treat minimum problems with boundary data, we also derive a com-
pactness theorem in the case that our functionals are subject to Dirichlet boundary
conditions.

Given ϕ ∈ Lip (RN−1) and l ∈ N, set, for any ε > 0 and A ∈ A(ω)

Al
ε,ϕ(A) := {u ∈ Aε(R

N ) : u(α) = ϕ(απ) if
(
απ + [−lε, lε]N−1) ∩Ac 6= ∅

)
}.(2.17)

Then define Fϕ,l
ε : [Lp(ω;Rd)]M ×A(ω)→ [′,+∞] as

Fϕ,l
ε (u,A) =




Fε(u,A) if u ∈ Al

ε,ϕ(A)

+∞ otherwise.

(2.18)

By simplicity of notation we set Aε,ϕ(A) := A1ε,ϕ(A) and Fϕ
ε := Fϕ,1

ε .

Theorem 2.6 Let {f ξε }ε,ξ satisfy (2.2), (2.3) and let (H1)-(H2) hold. Given (εj) a
sequence of positive real numbers converging to 0, let (εjk) and f be as in Theorem
2.1 (iii). For any ϕ ∈ Lip (RN−1), let Fϕ : [Lp(ω;Rd)]M ×A(ω)→ [0,+∞] be
defined as

Fϕ(u,A) =





∫

A

f(x,∇u) dx if u− ϕ ∈W 1,p
0 (A;Rd)

+∞ otherwise.

Then, for any A ∈ A(ω) with Lipschitz boundary and l ∈ N, (F ϕ,l
εjk

(·, A)) Γ-

converges with respect to the [Lp(ω;Rd)]M -topology to the functional Fϕ(·, A).
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Proof. For the sake of simplicity we prove the Theorem with l = 1, the proof
being the same in the other cases. Let us first prove the Γ-liminf inequality. Let
(uk) be a sequence of functions belonging to Aεjk ,ϕ

(A) converging to u in the

[Lp(ω;Rd)]M topology such that

lim inf
k

Fϕ
εjk

(uk, A) = lim
k
Fϕ
εjk

(uk, A) < +∞.

Then, from (2.2), we get in particular that

sup
k

N∑

i=1

∑

α∈R
ei
εjk

(Aεjk
)

εN−1jk
|Dei

εjk
un(α)|p < +∞. (2.19)

Thanks to the boundary conditions on uk it is easy to deduce that

sup
k

N∑

i=1

∑

α,α+εjkei∈ωεjk
∩εjkZN

εN−1jk
|Dei

εjk
un(α)|p < +∞.

Then, by reasoning as in the proof of Theorem 2.1 (i), we can prove that
u ∈ W 1,p(ω;Rd) and, since (uk) converge to ϕ in [Lp(ω \ A;Rd)]M , we get that
u− ϕ ∈W 1,p

0 (A;Rd). By Theorem 2.1 one has

lim inf
k

Fϕ
εjk

(uk, A) = lim inf
k

Fεjk (uk, A) ≥ Fϕ(u,A).

To prove the Γ-limsup inequality, let us first consider u ∈ W 1,p(ω;Rd) such that
supp (u − ϕ) ⊂⊂ A. Let uk ∈ Aεjk

(ω), be such that (uk) converges to u in

[Lp(ω;Rd)]M and
lim sup

k
Fεjk (uk, A) = Fϕ(u,A).

Then, by reasoning as in the proof of Proposition 2.4, given δ > 0, we can find
suitable cut-off functions φk with supp (u− ϕ) ⊂⊂ supp φk ⊂⊂ A such that, set

vk(α) := φk(απ)uk(α) + (1− φk(απ))ϕ(απ),
then (vk) still converges to u in [Lp(ω;Rd)]M , vk ∈ Aεjk ,ϕ

(ω) for k large enough
and

lim sup
k

Fεjk (vk, A) ≤ lim supFεjk (uk, A) + δ.

Thus, thanks to the definition of Γ-limsup we have

Γ-limsupFϕ
εjk

(u,A) ≤ Fϕ(u,A) + δ.

By the arbitrariness of δ, we obtain the required inequality. In the general case
the thesis follows by a density argument, thanks to the lower semicontinuity of
Γ-limsup and to the continuity of F with respect to the strong convergence in
W 1,p(ω;Rd).

As a consequence of the previous theorem we derive the following result about
the convergence of minimum problems with boundary data.
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Corollary 2.7 Under the hypotheses of Theorem 2.6 we get that, for any ϕ ∈
Lip (RN−1), l ∈ N and A ∈ A(ω) with Lipschitz boundary

lim
k

inf{Fεjk (u,A) : u ∈ A
l
εjk ,ϕ

(A)} = min{F (u,A) : u− ϕ ∈W 1,p
0 (A;Rd)}.

Moreover, if (uk) is a converging sequence such that

lim
k
Fεjk (uk, A) = lim

k
inf{Fεjk (u,A) : u ∈ A

l
εjk ,ϕ

(A)},

then its limit is a minimizer for min{F (u,A) : u− ϕ ∈W 1,p
0 (A;Rd)}.

Proof. Let (uk) be a sequence such that Fϕ
εjk

(uk, A) < +∞. Then, by (2.2) and by

the boundary conditions on uk, it is easy to show that, for any j ∈ {0, 1, . . . ,M−1}

sup
k

N−1∑

i=1

∑

β∈εjkZN−1∩K

εN−1|Dei
εjk
ujk(β)|p < +∞,

for any compact set K of R
N−1. By virtue of this property, up to passing to a

continuous extension of ujk vanishing outside a bounded open set containing ω, we
get

lim
|h|→0

sup
k
‖τhujk − u

j
k‖Lp(RN−1;Rd) = 0,

where we have set

(τhu)(x) := u(x+ h), x ∈ R
N−1, h ∈ R

N−1.

Then, by Frechét-Kolmogorov Theorem and by (i) of Theorem 2.1, there exists a
subsequence (ukn) converging in [Lp(ω;Rd)]M to a function u ∈ Lp(ω;Rd). Arguing
as in the previous proof it is easy to show that u−ϕ ∈W 1,p

0 (ω). The thesis follows
thanks to Theorem 2.6.

We can also derive the analogue of Theorem 2.6 and Corollary 2.7 about the
convergence of minimum problems with periodic conditions. We omit the proof
since it is similar to that of the previous proposition up to small changes.

Let Q(ω) be the family of all open N−1-cubes contained in ω. For any ε > 0,
r > 0, Q = (x0, x0 + r)N−1 ∈ Q(ω) and ϕ ∈ Lip (RN−1), set

rε = ε
([r
ε

]
− 2
)
,

A#ε,ϕ(Q) =
{
u ∈ Aε(R

N ) : uj − ϕ̂ rε − periodic, j ∈ {0, . . . ,M − 1}
}
, (2.20)

where ϕ̂ ∈ Aε(R
N−1), ϕ̂(α) = ϕ(α) for any α ∈ εZN−1. Then define Fϕ,#

ε :
[Lp(ω;Rd)]M ×Q(ω)→ [0,+∞] as

Fϕ,#
ε (u,Q) =




Fε(u,Q) if u ∈ A#ε,ϕ(Q)

+∞ otherwise.

(2.21)
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Theorem 2.8 Let {f ξε }ε,ξ satisfy (2.2), (2.3) and let (H1)-(H2) hold. Given (εj) a
sequence of positive real numbers converging to 0, let (εjk) and f be as in Theorem
2.1. Then, for any ϕ ∈ Lip (RN−1), let F# : [Lp(ω;Rd)]M × Q(ω) → [0,+∞] be
defined as

Fϕ,#(u,Q) =





∫

Q

f(x,∇u) dx if u ∈W 1,p
# (Q;Rd)

+∞ otherwise.

Then, for any Q ∈ Q(ω), (Fϕ,#
εjk

(·, Q)) Γ-converges with respect to the [Lp(ω;Rd)]M -

topology to the functional Fϕ,#(u,Q).

As a consequence of the previous theorem, by reasoning as in the proof of
Corollary 2.7 one can prove the following result.

Corollary 2.9 Under the hypotheses of Theorem 2.8 we get that, for any ϕ ∈
Lip (RN−1) and Q ∈ Q(ω)

lim
k

inf{Fεjk (u,Q) : u ∈ A#εjk ,ϕ(Q)} = min{F (u,Q) : u− ϕ ∈W 1,p
# (Q;Rd)}.

Moreover, if (uk) is a converging sequence such that

lim
k
Fεjk (uk, Q) = lim

k
inf{Fεjk (u,Q) : u ∈ A#εjk ,ϕ(Q)},

then its limit is a minimizer for min{F (u,Q) : u− ϕ ∈W 1,p
# (Q;Rd)}.

3 Homogenization

In this section we will give a homogenization result by presenting a Γ-convergence
theorem for the energies Fε in the case that the functions f ξε are obtained by
rescaling by ε functions f ξ periodic in the space variable.

Let k = (k1, . . . , kN−1) ∈ NN−1 be given and set

Rk := (0, k1)× · · · × (0, kN−1).

For any ξ ∈ ZN , let f ξ : ZN × Rd → [0,+∞) be such that f ξ((·, αN ), z) is
Rk-periodic for any αN ∈ Z and z ∈ Rd. Then we consider f ξε of the following
form

fξε (α, z) := f ξ
(α
ε
, z
)
. (3.1)

In this case, the growth conditions (2.2) and (2.3) and hypotheses (H1) and (H2)
can be rewritten as follows:

fei(α, z) ≥ c1(|z|p − 1), ∀i ∈ {1, . . . , N}, (3.2)
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fξ(α, z) ≤ Cξ(|z|p + 1), (3.3)

where

∑

ξ∈ZN

Cξ < +∞. (H3)

In the sequel we will use the following notation: for any x = (x1, . . . , xN−1) ∈
RN−1 define

[x]k :=

([
x1
k1

]
k1, . . . ,

[
xN−1
kN−1

]
kN−1

)
.

Moreover, for any A ∈ A(ω), ε > 0, l ∈ N and S ∈Md×N−1 we denote by Al
ε,S(A)

the set defined in formula (2.17) with ϕ(x) = Sx. By simplicity of notation, we
set A1ε,S(A) := Aε,S(A). Finally for every r > 0 we set Qr := (0, r)N−1. The
following homogenization theorem is the main result of this section. Since, up to
minor changes, it can be proved as Theorem 4.1 in [1], we only sketch the proof
for reader’s convenience.

Theorem 3.1 Let {f ξε }ε,ξ satisfy (3.1)-(3.3) and let (H3) hold. Then, (Fε)
Γ-converges with respect to the [Lp(ω;Rd)]M -topology to the functional
F : [Lp(ω;Rd)]M → [0,+∞] defined as

F (u) =





∫

Ω

fhom(∇u) dx if u ∈W 1,p(ω;Rd)

+∞ otherwise,

(3.4)

where fhom : Md×N−1 → [0,+∞) is given by the following homogenization for-
mula

fhom(S) := lim
h→+∞

1

hN−1
inf
{ ∑

ξ∈ZN

∑

β, β+ξ∈(Qh)1∩ZN

fξ(β,Dξ
1v(β)), v ∈ A1,S (Qh)

}
(3.5)

Proof. Let (εn) be a sequence of positive numbers converging to 0. Then, by Theo-
rem 2.1, we can extract a subsequence (not relabelled) such that (Fεn) Γ-converges
to a functional F defined as in (2.8) and such that, for any u ∈ W 1,p(ω;Rd),
A ∈ A(ω)

Γ- lim
n
Fεn(u,A) =

∫

A

f(x,∇u) dx.

The theorem is proved if we show that

(1) f does not depend on the space variable x,

(2) f ≡ fhom.
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By the periodicity assumptions one shows that

F (Sx,B(y, ρ)) = F (Sx,B(z, ρ))

for all S ∈Md×N−1, y, z ∈ ω and ρ > 0 such that B(y, ρ) ∪B(z, ρ) ⊂ ω and then
(1) follows. Let x0 ∈ ω and r > 0 be such that Qr(x0) = (x0, x0 + r)N−1 ⊆ ω.

By the quasiconvexity of f and by Corollary 2.7, one has

f(S) =
1

rN−1
min

{∫

Qr(x0)

f(∇u) dx : u− Sx ∈W 1,p
0 (Qr(x0);R

d)

}

=
1

rN−1
min

{
F (u,Qr(x0)) : u− Sx ∈W 1,p

0 (Qr(x0);R
d)
}

=
1

rN−1
lim
n

inf {Fεn(u,Qr(x0)) : u ∈ Aεn,S(Qr(x0))} .

Eventually, through the change of variable

β =
α

ε
, v(β) =

1

ε
u(εβ) (3.6)

and setting

Tn :=

[
r

εn

]
+ 1,

one can show that

f(S) = lim
n

1

TN−1n

inf




∑

ξ∈ZN

∑

β, β+ξ∈(QTn )1∩ZN

fξ(β,Dξ
1v(β)), v ∈ A1,S (QTn)



 .

Then (2) follows by showing that there exists the limit in (3.5). The proof of this
fact is analogous to that of Proposition 4.2 in [1].

Remark 3.2 In formula (3.5) we can replace A1,S(Qh) by Al
1,S(Qh) for any fixed

l ∈ N, the proof being exactly the same.

Remark 3.3 The function fhom in Theorem 3.1 also satisfies

fhom(S) = lim
h→+∞

1

hN−1
inf
{ ∑

ξ∈ZN

∑

β, β+ξ∈(Qh)1∩ZN

fξ
(
β, S

ξ

|ξ| +Dξ
1v(β)

)
,

v ∈ A#1 (Qh)
}
, (3.7)

where A#1 (Q) is given by (2.20) with ε = 1 and ϕ = 0. The proof of this charac-
terization is analogous to that of Theorem 3.1, taking into account Corollary 2.9
and the following alternative formula for a quasiconvex function f

f(S) =
1

rN−1
min

{∫

Qr

f(S +∇ψ) dx : ψ ∈W 1,p
# (Qr;R

d)

}
.
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As a consequence of Theorem 2.6, Corollary 2.7 and Theorem 3.1 we immedi-
ately derive the following result about Γ-convergence and convergence of minimum
problems for homogeneous functionals subject to Dirichlet boundary conditions.

Theorem 3.4 For any ϕ ∈ Lip (RN−1) and l ∈ N let Fϕ,l
ε be defined by (2.18)

and let Fϕ : [Lp(ω;Rd)]M ×A(ω)→ [0,+∞] be defined as

Fϕ(u,A) =





∫

A

fhom(∇u) dx if u− ϕ ∈W 1,p
0 (A;Rd)

+∞ otherwise.

(3.8)

Under the hypotheses of Theorem 3.1, Fϕ
ε (·, A) Γ-converges with respect to the

[Lp(ω;Rd)]M -topology to Fϕ(·, A) for any A ∈ A.

Corollary 3.5 Under the hypotheses of Theorem 3.4, for any ϕ ∈ Lip (RN−1), l ∈
N and A ∈ A(ω)

lim
ε→0

inf{Fε(u,A) : u ∈ Al
ε,ϕ} = min{F (u,A) : u− ϕ ∈W 1,p

0 (A;Rd)}.

Moreover, for any (εj) converging to zero as j tends to infinity, if (uj) is a con-
verging sequence such that

lim
j
Fεj (uj , A) = lim

j
inf{Fεj (u,A) : u ∈ Al

εj ,ϕ},

then its limit is a minimizer for min{F (u,A) : u− ϕ ∈W 1,p
0 (A;Rd)}.

An analogous result about the convergence of minimum problems with periodic
conditions follows by Theorem 2.8 and Corollary 2.9.

3.1 The convex case: a cell problem formula

In this section we will see that in the convex case the function fhom can be rewritten
by a single periodic minimization problem on Rk × {0, 1, . . . ,M − 1}. Set

k̂ :=
N−1∏

i=1

ki,

Ik :=

N−1∏

i=1

{0, . . . , ki − 1}

and

A1,#(Rk) := {u ∈ A1(RN−1) : uj is Rk − periodic, j ∈ {0, . . . ,M − 1}}.

We remark that the following result is analogous to Theorem 5.1 in [1].
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Theorem 3.6 Let (f ξε )ε,ξ satisfies all the assumptions of Theorem 3.1 and in
addition let f ξε (α, ·) be convex for all α ∈ εZN , ε > 0 and ξ ∈ ZN . Then the
conclusion of Theorem 3.1 holds with fhom satisfying

fhom(S) =
1

k̂
inf
{ ∑

ξ∈ZN

∑

β∈Ik×I
ξ

M

fξ
(
β, S

ξπ
|ξ| +Dξ

1v(β)

)
, v ∈ A#1 (Rk)

}
,

for all S ∈Md×N−1, where IξM := {−ξN ∨ 0, . . . ,M − 1 + (−ξN ∧ 0)}.

Proof. Set

f(S) :=
1

k̂
inf
{ ∑

ξ∈ZN

∑

β∈Ik×I
ξ

M

fξ
(
β, S

ξπ
|ξ| +Dξ

1v(β)

)
, v ∈ A#1 (Rk)

}
.

By the characterization of fhom given by (3.7) and noting thatA#1 (Rk) ⊂ A#1 (Qnk̂)
for all n ∈ N, one can show that

fhom(S) ≤ f(S).

To prove the opposite inequality for simplicity we will suppose that there exists

R > 0 such that f ξε = 0 if |ξ| > R and that we can replace A1,S(Qh) by A[R]1,S(Qh)
in the definition of fhom. For the general case we refer to the proof of Theorem

5.1 in [1]. For n ∈ N, let u ∈ A[R]1,S(Qnk̂) and let v ∈ A#1 (Qnk̂) be such that

v(α) = u(α)− Sαπ, ∀α ∈ Qnk̂ × {0, 1, . . .M − 1}.

Moreover we set

In
k
:=

N−1∏

i=1

{0, . . . , n
∏

j 6=i

kj − 1}.

Then, we get

1

(nk̂)N−1

∑

|ξ|≤R

∑

β, β+ξ∈(Q
nk̂
)1

fξ
(
β, S

ξ

|ξ| +Dξ
1v(β)

)

=
1

(nk̂)N−1

∑

|ξ|≤R

∑

β∈{0,...,nk̂}N−1×Iξ
M

fξ
(
β, S

ξ

|ξ| +Dξ
1v(β)

)
−O(

1

n
)

=
1

k̂

∑

|ξ|≤R

∑

β∈Ik×I
ξ

M

1

k̂N−2nN−1

∑

γ∈In
k

fξ

(
β,M

ξ

|ξ| +Dξ
1v(β +

N−1∑

i=1

γikiei)

)
−O(

1

n
)

≥ 1

k̂

∑

|ξ|≤R

∑

β∈Ik×I
ξ

M

fξ


β,M ξ

|ξ| +
1

k̂N−2nN−1

∑

γ∈In
k

Dξ
1v(β +

N−1∑

i=1

γikiei)


−O(

1

n
),
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where in the last inequality we have used the convexity hypothesis on f ξ. Eventu-
ally, set

vn(β) :=
1

k̂N−2nN−1

∑

γ∈In
k

v(β +

N−1∑

i=1

γikiei).

It is easy to show that vn ∈ A#1 (Rk) and so, by the previous inequality, we get

1

(nk̂)N−1

∑

|ξ|≤R

∑

β, β+ξ∈(Q
nk̂
)1

fξ
(
β, S

ξ

|ξ| +Dξ
1v(β)

)

≥ 1

k̂

∑

|ξ|≤R

∑

β∈Ik×I
ξ

M

fξ
(
β, S

ξ

|ξ| +Dξ
1vn(β)

)
−O(

1

n
)

≥ f(S)−O(
1

n
).

Passing to the inf with respect to u ∈ A[R]1,S(Qnk̂) and then, letting n tend to +∞,
we obtain that

fhom(S) ≥ f(S).

Remark 3.7 Note that if Rk = (0, 1)N−1, that is

fξ(α, z) = f ξ(αN , z),

in Theorem 3.6 we obtain

fhom(S) =

M−1∑

j=0

∑

{ξN=0}

fξ
(
j,
Sξπ
|ξ|

)

+ inf{
∑

{ξN 6=0}

M−1+(−ξN∧0)∑

j=−ξN∨0

fξ
(
j,
Sξπ
|ξ| +

v(j + ξN )− v(j)
|ξ|

)
: v : {0, . . . ,M − 1} → Rd}.

3.2 Interactions along independent directions

In the section we will see how the formula defining fhom can be simplified in some
particular case.

On f ξ we will consider the following additional hypotheses:

(I1) f ξ(α, z) 6≡ 0 if and only if ξN = 0 or ξπ = 0;

(I2) f ξ(α, z) = f ξ(απ, z) if ξN = 0;

(I3) f ξ(α, z) = f ξ((αN , z) if ξπ = 0.
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Assumption (I1) asserts that only planar or vertical interactions are allowed, while
assumptions (I2) and (I3) state that the potentials accounting for planar interac-
tions do not depend on the vertical space variable and the potentials accounting
for vertical interactions do not depend on the planar space variables.

Theorem 3.8 Let f ξ satisfy the hypotheses of Theorem 3.1 and (I1)–(I3). Then
the conclusion of Theorem 3.1 holds with fhom given by

fhom(S) =Mfπhom(S) (3.9)

+ inf{
M−1∑

k=1

M−1−k∑

j=0

fkeN (j,
u(j + k)− u(j)

k
: u : {0, . . . ,M − 1} → Rd},

where fπhom is given by (4.4) by replacing N with N − 1.

Proof. It suffices to observe that, thanks to (I1)-(I3), in the definition of fhom(S)
one can reduce to consider test functions of the type

u(α) = v(απ) + w(αN ),

with v ∈ A1(RN−1) such that v(απ) = Sαπ if απ ∈ ∂Qh + [−1, 1]N−1 and with
w : {0, . . . ,M − 1} → Rd. Moreover, for such u one has
∑

ξ∈ZN

∑

α,α+ξ∈(Qh)1

fξ(α,Dξ
1u(α)) = M

∑

ξ∈ZN−1

∑

απ,απ+ξ∈Qh

fξ(απ, D
ξ
1v(απ))

+

M−1∑

k=1

M−1−k∑

j=0

fkeN (j,
w(j + k)− w(j)

k
.

Then one can easily get the conclusion taking into account (4.1).

Remark 3.9 If fken(j, z) = fken(z) and fken ≡ 0 for all k 6= 1, that is only
homogeneous nearest neighbours interactions along the vertical direction are taken
into account, then

fhom(S) =Mfπhom(S) + inf
z∈Rd

feN (z).

4 Layer dependence: asymptotic formulas

In this section we are interested in analyzing the asymptotic behavior of the func-
tion fhom given by formula (3.5) when the number of layers M tends to infinity.
To this aim, we will assume that the energy densities f ξε satisfy the hypotheses of
Theorem 3.1 and, given kN ∈ N, the additional condition

fξ((απ, ·), z) is (0, kN )-periodic ∀z ∈ Rd, (4.1)

that is f ξε fulfill all the hypotheses of Theorem 4.1 in [1] whose statement is written
in the following subsection to fix some notation.
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4.1 Homogenization result for thick domains

Let k = (k1, . . . , kN ) ∈ ZN be given and set

Pk := (0, k1)× · · · × (0, kN ).

For any ξ ∈ ZN , let f ξ : ZN×Rd → [0,+∞) be such that f ξ(·, z) is Pk-periodic for
any z ∈ Rd and satisfies hypotheses (3.2), (3.3) and (H3) of the previous section.
Given a convex bounded open set Ω ⊂ RN , consider the family of functionals
Fε : L

p(Ω;Rd)→ [0,+∞] defined as

F b
ε (u) =





∑
ξ∈ZN

∑
α,α+εξ∈Ω

εNfξ
(
α
ε , D

ξ
εu(α)

)
if u ∈ Aε(Ω)

+∞ otherwise.

(4.2)

The following Theorem has been proved in [1].

Theorem 4.1 (F b
ε ) Γ-converges with respect to the Lp(Ω;Rd)-topology to the

functional F b : Lp(Ω;Rd)→ [0,+∞] defined as

F b(u) =





∫

Ω

f bhom(∇u) dx if u ∈W 1,p(Ω;Rd)

+∞ otherwise,

(4.3)

where f bhom :Md×N → [0,+∞) is given by the following homogenization formula

f bhom(S) := lim
h→+∞

1

hN
min

{ ∑

ξ∈ZN

∑

β,β+ξ∈Qh

fξ(β,Dξ
1v(β)), v ∈ AS (Qh)

}
, (4.4)

with h ∈ N, Qh = (0, h)N and

AS (Qh) := {u ∈ A1(RN ) : u(α) = Sα if α ∈ ∂Qh + [−1, 1]N}.

In the following, given A ∈ A(RN ), we will use the notation F b
ε (u,A) to denote

the energy in (2.1) with Ω replaced by A.

4.2 Discrete and continuous models for dimension reduction

From now on we will denote Fε by FM
ε and fhom by fMhom thus highlighting the

dependence on M in all the formulas we obtained in the previous sections for the
energy densities.

Given δ > 0, suppose that in the definition (2.1) we replace M by Mε = δ
ε .

Then 1
Mε
FMε
ε (u) = F b

ε (u) where F b
ε is given by (4.2) with Ω = ω × (0, δ). By

Theorem 4.1 we have that, for all u ∈W 1,p(ω × (0, δ);Rd),

Γ- lim
ε→0

1

Mε
FMε
ε (u) =

1

δ

∫

ω×(0,δ)

f bhom(∇u(x)) dx =: Fδ(u).
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In the pioneering paper by Le Dret and Raoult [22] it has been proved that Fδ
Γ-converges, as δ tends to zero, to the functional

∫

ω

Qfhom(∇u(x)) dx u ∈ W 1,p(ω;Rd),

where

fhom(S) := inf{f bhom(S|z), z ∈ Rd} (4.5)

and Qfhom denotes the quasi-convex envelope of fhom. This considerations lead
us to ask ourselves if

lim
M→+∞

1

M
fMhom(S) = Qfhom(S). (4.6)

Here we provide a partial answer to this problem by showing that (4.6) holds under
some additional assumptions on the energy densities f ξε , while in the general case
we are only able to prove the following inequality.

Proposition 4.2 Under the hypotheses of Theorem 4.1, for all S ∈ Rd×(N−1)

there holds

lim
M→+∞

1

M
fMhom(S) ≤ Qfhom(S),

where fhom is given by (4.5).

Proof. One can write Qfhom as (see [9])

Qfhom(S) = inf
t>0

inf
{
t

∫

Q′×(0, 1
t
)

f bhom(∇u(x)) dx, u ∈W 1,p(Q′ × (0,
1

t
);Rd), (4.7)

u(xπ, xN ) = Sxπ ifxπ ∈ ∂Q′
}
,

where Q′ = (0, 1)N−1. Thus, by Theorem 4.1 and by the convergence of minimum
problems proved in [1], we get

Qfhom(S) = inf
t>0

lim
ε→0

inf
{
tF b

ε (u,Q
′ × (0,

1

t
)), u ∈ Aε,S(Q

′)
}
.

On the other hand, by Corollary 2.7,

fMhom(S) = lim
ε→0

inf
{
FM
ε (u,Q′), u ∈ Aε,S(Q

′)
}
.

With fixed t > 0 andM ∈ N, given uε ∈ Aε,S(Q
′) we set viε(α) = uε(απ, αN+iMε)

for i ∈ {0, 1, . . . , [ 1
tMε ]− 1}. Since viε ∈ Aε,S(Q

′), it holds

tF b
ε (uε, Q

′ × (0,
1

t
)) ≥ tε

[ 1
tMε

]−1∑

i=0

FM
ε (viε, Q

′)

≥ εt([
1

tMε
]− 1) inf

{
FM
ε (u,Q′), u ∈ Aε,S(Q

′)
}
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Then

lim
ε→0

inf{tF b
ε (uε, Q

′ × (0,
1

t
)) u ∈ Aε,S(Q

′)} ≥ 1

M
fhom(S)

and the conclusion holds by letting M go to infinity and passing to the infimum
on t.

In the following two propositions we provide two particular cases in which
(4.6) holds.

Proposition 4.3 Under the hypotheses of Theorem 3.8, if f ken(j, z) = fken(z),
then

lim
M→+∞

1

M
fMhom(S) = fπhom(S) + inf

z∈Rd
f̃(z),

where f̃ is given by formula (4.4) when N = 1 that is

f̃(z) := lim
M→∞

1

M
inf
{M−1∑

k=1

M−1−k∑

i=0

fkeN
(u(i+ k)− u(i)

k

)
, u(0) = 0 u(M−1) = (M−1)z

}

Remark 4.4 Note that, under the hypotheses of Proposition 4.3,

f bhom(S|z) = fπhom(S) + f̃(z).

Since fπhom is quasiconvex, we get that

Qfhom(S) = fπhom(S) + inf
z∈Rd

f̃(z),

where fhom is given by (4.5).

Proof of Proposition 4.3. Set

FM (u) :=
M−1∑

k=1

M−1−k∑

i=0

fkeN
(u(i+ k)− u(i)

k

)

and cM := inf{FM (u) : u : {0, . . . ,M − 1} → Rd}. By (3.9)

fMhom(S)

M
= fπhom(S) +

cM
M

.

By Proposition 4.2 and Remark 4.4 it suffices to prove that

lim
M→+∞

cM
M

≥ inf
z
f̃(z).

Set

FM (u) =
1

M − 1

M−1∑

k=1

M−1−k∑

i=0

fkeN
(u( 1

M−1 (i+ k))− u( i
M−1 )

k
M−1

)
.
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By Theorem 4.1 with N = 1 we have

FM (u)
Γ(Lp)−→

∫ 1

0

f̃(u′(t)) dt. (4.8)

By a change of variables it holds that

cM
M − 1

= inf{FM (u) : u(0) = 0 u :
1

M − 1
Z ∩ [0, 1]→ Rd},

then there exist C > 0 such that

cM
M − 1

≤ FM (0) ≤ C. (4.9)

For δ > 0, let uM be such that uM (0) = 0 and

cM
M − 1

+ δ ≥ FM (uM ) (4.10)

Note that, thanks to growth conditions f ξ and by convexity, it holds

FM (uM ) ≥ 1

M − 1

M−1− 1
M−1∑

i=0

∣∣∣u
i+ 1

M−1

M − uiM
1

M−1

∣∣∣
p

− C

M − 1

≥ C|uM (1)− uM (0)|p − C

M − 1
.

Set zM = |uM (1)−uM (0)|, by (4.9) and the previous chain of inequalities, we have
that, up to subsequences, zM → z and uM → u with u ∈ W 1,p((0, 1);Rd) and
u(0) = 0, u(1) = z. Then, by (4.8) and the convexity of f̃ we get

lim inf
M

FM (uM ) ≥
∫ 1

0

f̃(u′(t)) dt ≥ f̃(z) ≥ inf
z
f̃(z).

By the previous inequality and (4.10) we have that

lim
M

cM
M

≥ lim inf
M

FM (uM )− δ ≥ inf
z
f̃(z)− δ.

This estimate proves the claim by the arbitrariness of δ.

Remark 4.5 By [14] we have that, if fken ≡ 0 for all k 6= 1, 2, then the homoge-
nization formula defining f̃ reduces to a finite formula

f̃(z) := f2eN (z) +
1

2
inf{feN (z1) + feN (z2) : z1 + z2 = 2z}.
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Proposition 4.6 (Convex case) Under the hypotheses of Theorem 4.1 and The-
orem 3.6,

lim
M→+∞

1

M
fMhom(S) = fhom(S),

where fhom is given by (4.5).

Remark 4.7 Note that, under the hypotheses of Proposition 4.6, since f bhom is
convex, one can easily show that also fhom is convex and then

Qfhom(S) = fhom(S).

Proof of Proposition 4.6. Given δ > 0, let vM ∈ A1,#(Rk) be such that

1

k̂

∑

ξ∈ZN

∑

β∈Ik×I
ξ

M

fξ
(
β, S

ξπ
|ξ| +Dξ

1vM (β)

)
≤ fMhom(S) + δ

Let uM (α) = 1
M−1vM ((M − 1)α). Then uM ∈ A 1

M−1
,#(R k

M−1

) and

fMhom(S) ≥ 1

k̂

∑

ξ∈ZN

∑

β∈ 1
M−1 (Ik×I

ξ

M)

fξ
(
β, S

ξπ
|ξ| +Dξ

1vM (β)

)
− δ

Let us denote by u#M the periodic extension of uM on Q′, then

1

M − 1
fMhom(S) ≥ F b

1
M−1

(uM (α) + (S|0)α,Q′ × (0, 1))− δ. (4.11)

By the coerciveness assumption, up to additive constants and subsequences, uM →
u with u ∈W 1,p

# (Q′;Rd). By Γ-convergence and convexity it holds

lim inf
M

F b
1

M−1

(uM (α) + (S|0)α,Q′ × (0, 1)) ≥
∫

Q′×(0,1)

f bhom((∇πu|∂Nu) + (S|0)) dx

≥
∫ 1

0

dxN

∫

Q′
fhom(∇πu+ S) dxπ

≥ fhom(S).

By (4.11) and the previous inequality, thanks to the arbitrariness of δ we get that

lim
M

1

M
fMhom(S) ≥ fhom(S).

Remark 4.8 The proof of Theorem 4.6 is based on the fact that, in the convex
case, fMhom has a non-asymptotic formula. Then the conclusion of Theorem 4.6
holds whenever fMhom enjoys this property.
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Proposition 4.9 (Symmetric case) Let f ξε satisfy the hypotheses of Theorem
4.1 and

fξ(α, z) = f ξ(απ, z), ∀ξ ∈ ZN

f (ξπ,ξN ) ≡ f (ξπ,−ξN ). (4.12)

Then

lim
M→+∞

1

M
fMhom(S) = fhom(S),

where fhom is given by (4.5).

Remark 4.10 Note that if (4.12) holds, then, for all S ∈ Rd×(N−1), f bhom(S|y) =
f bhom(S| − y) and, since f bhom is quasi-convex, then Qfhom(S) = f bhom(S|0).

Proof. We suppose that there exists R ∈ N such that

fξ ≡ 0, if |ξN | > R,

the general case being dealt with similarly up to minor changes. Let S ∈ Rd×(N−1).
By Corollary 3.5, there exists uε ∈ Aε,S(Q

′) such that

lim
ε
FM
ε (uε, Q

′) = fMhom(S).

Moreover, by the growth assumptions on f ξ we get

FM
ε (uε, Q

′) ≤ C(1 + ‖S‖p)M.

Set
Gε(u, [i, j]) :=

∑

ξ∈ZN

Cξ
∑

α,α+εξ∈Q′×[iε,jε]

εN−1|Dξ
εu(α)|p.

By the growth hypotheses on f ξ and by Lemma 2.2, we have

sup
ε
Gε(uε, [0,M − 1]) ≤ C‖S‖pM.

With fixed L ∈ N, there exist i1ε, i
2
ε ∈ {0, . . . , L− 1} such that

Gε(uε, [i
1
εR, (i

1
ε + 1)R]) ≤ 1

L

L−1∑

i=0

Gε(uε, [iR, (i+ 1)R]) ≤ C

L
‖S‖pM,

Gε(uε, [M − 1− (i2ε + 1)R,M − 1− i2εR])

≤ 1

L

L−1∑

i=0

Gε(uε, [M − 1− (i+ 1)R,M − 1− iR]) ≤ C

L
‖S‖pM.
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Set
Mε =M − 1− (i2ε + i1ε)R

and
vε(απ, αN ) = uε(απ, αN + i1εRε) 0 ≤ αN ≤Mεε.

Since
M − 1− 2(L− 1)R ≤Mε ≤M − 1,

up to subsequences, we may suppose that Mε → M̃ with M − 1 − 2(L − 1)R ≤
M̃ ≤M − 1,

FMε
ε (vε, Q

′) ≤ FM
ε (uε, Q

′),

Gε(vε, [0, R] ∨Gε(vε, [Mε −R,Mε] ≤
C

L
‖S‖pM.

Set
ṽε(απ, αN ) = vε(απ, εMε − αN ),

we note that by (4.12), we get

FMε
ε (ṽε, Q

′) = FMε
ε (vε, Q

′).

Let us define wε ∈ Aε(Q
′ ×R) as

we(α) =

{
vε(απ, αN − jMεε) if jMεε ≤ αN ≤ (j + 1)Mεε, j even
ṽε(απ, αN − jMεε) if jMεε ≤ αN ≤ (j + 1)Mεε, j odd,

then, by (4.12)

F b
ε (wε, Q

′ × (0, 1)) ≤ ε

([
1

Mεε

]
+ 1

)
FMε
ε (vε, Q

′) + ε

[ 1
Mεε

]∑

j=1

Bj
ε(wε),

where
Bj
ε(wε) =

∑

|ξN |>1

∑

α∈Bj,ξε

εN−1fξ(
απ
ε
,Dξ

εwε(α)),

with

Bj,ξε = {α ∈ εZN : απ, απ + εξ ∈ Q′, jMε − ε(ξN ∨ 0) < αN < jMε − ε(ξN ∧ 0)}.

Note that for α ∈ Bj,ξε , we have that

Dξ
εwε(α) =

‖ξ̂‖
‖ξ‖D

ξ̂
εvε(απ, αN − (j − 1)Mεε),

where ξ̂ = (ξπ, 2(jMε − αN
ε )− ξN ). Since ‖ξ̂‖ ≤ ‖ξ‖ we get

|Dξ
εwε(α)|p ≤ |Dξ̂

εvε(απ, αN − (j − 1)Mεε)|p
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and thus, by the growth hypotheses on f ξ,

Bj
ε(wε) ≤ C(1 +Gε(vε, [0, R] ∨Gε(vε, [Mε −R,Mε]) ≤ C(1 +

1

L
‖S‖pM).

Hence

F b
ε (wε, Q

′ × (0, 1)) ≤ ε

([
1

Mεε

]
+ 1

)
FMε
ε (vε, Q

′) + ε

[
1

Mεε

]
C(1 +

1

L
‖S‖pM).

By the construction of wε one can easily show that, up to subsequences (not
relabelled), there exists w ∈ W 1,p(Q′;Rd) with w(x) = Sx on ∂Q′ such that
wε → w in Lp(Q′× (0, 1);Rd). Then, by Theorem 4.1, from the previous estimate
we get that

Qfhom(S) ≤
∫

Q′×(0,1)

f bhom(∇w|0) dx ≤ lim inf
ε

F b
ε (wε, Q

′ × (0, 1))

≤ M

M̃
(
1

M
fMhom(S) +

C

L
‖S‖p).

Letting first M and then L tend to infinity, we get

Qfhom(S) ≤ lim
M

fMhom(S)

M
.

Then the thesis follows by Proposition 4.2.

5 Examples

In this section we will consider two special cases of nearest and next to nearest
neighbours interactions in a 2D − 1D dimension reduction problem in which we

show that
fMhom
M has a non-asymptotic formula for M = 2 and for M → +∞. As

highlighted in Figure 3, were the geometry of these discrete systems is shown, both
the examples can be seen as particular cases of the most simple geometry in 2D
which takes into account nearest and next to nearest interactions and which, at
the same time, is invariant under discrete rotations compatible with the lattice
structure (see [21]).

Example 5.1 In the following example we will consider energies defined for u ∈
Aε((0, 1)× [0, ε(M − 1)]) as

FM
ε (u) =

∑

α,α+εe1∈(0,1)ε

εf1(D
e1
ε u(α)) +

∑

α,α+ε(e1+e2)∈(0,1)ε

εf2(D
e1+e2
ε u(α))

+
∑

α,α+ε(e1−e2)∈(0,1)ε

εf3(D
e1−e2
ε u(α)), (5.1)
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a) b)

Figure 3: Reference configurations of the discrete system in Example 5.1 and 5.5
(the dashed lines represent negligible interactions).

with fi : R
d → [0,+∞) satisfying

c(|z|p − 1) ≤ fi(z) ≤ C(|z|p + 1), i = 1, 2, f3(z) ≤ C(|z|p + 1).

Note that in this example interaction along direction e2 are not taken into account
(see Figure 3 a)). Thus, hypotheses of Section 3 are not satisfied. Anyway, thanks
to the additional coerciveness condition on f2, it is easy to see that again finite
difference quotients along e2 can be controlled and so the conclusion of Theorem
(3.1) still holds true.

Proposition 5.2 Let FM
ε be defined by (5.1) and let fMhom be the density energy

of its Γ-limit. Then it holds

2
(
(M − 2)(f̃ )∗∗(z) + (f̂ )∗∗(z)

)
≤ fMhom(z) ≤ 2

(
(M − 2)f̃ + f̂

)∗∗
(z) (5.2)

for any z ∈ Rd, where f̃ : Rd → [0,+∞) and f̂ : Rd → [0,+∞) are defined by the
following formulas

f̃(z) :=
1

4
inf {f1(z1) + f1(z2) : z1 + z2 = 2z}+ 1

2
inf

{
f2

( z1√
2

)
+ f3

( z2√
2

)
: z1 + z2 = 2z

}
,

f̂(z) :=
1

2
inf {f1(z1) + f1(z2) : z1 + z2 = 2z}+ 1

2
inf

{
f2

( z1√
2

)
+ f3

( z2√
2

)
: z1 + z2 = 2z

}
.(5.3)

Proof. We first prove the lower bound estimate. For β ∈ (0, 1) ∩ εZ set

D1εu
j(β) = De1

ε u(β, εj), D2εu
j(β) = De1+e2

ε u(β, εj), D3εu
j(β) = De1−e2

ε u(β, εj).

FM
ε (u) ≥

M−2∑

j=1

∑

β
ε
even/odd

ε

4

(
f1(D

1
εu

j(β)) + f1(D
1
εu

j(β + ε))
)
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+
ε

2

(
f2(D

2
εu

j(β)) + f3(D
3
εu

j+1(β + ε))
)

+
M−2∑

j=1

∑

β
ε
even/odd

ε

4

(
f1(D

1
εu

j(β)) + f1(D
1
εu

j(β + ε))
)

+
ε

2

(
f2(D

2
εu

j−1(β + ε)) + f3(D
3
εu

j(β)
)

+
M−2∑

j=1

∑

β
ε
even/odd

ε

2

(
f1(D

1
εu
0(β)) + f1(D

1
εu

j(β + ε))
)

+
ε

2

(
f2(D

2
εu
0(β)) + f3(D

3
εu
1(β + ε))

)

+
∑

β
ε
even/odd

ε

2

(
f1(D

1
εu

M−1(β)) + f1(D
1
εu

M−1(β + ε))
)

+
ε

2

(
f2(D

2
εu

M−2(β + ε)) + f3(D
3
εu

M−1(β)
)
.

Then by (5.3) we get

FM
ε (u) ≥ 2

M−2∑

j=1

∑

β
ε
even/odd

εf̃(D12εu
j(β)) +

∑

j=0,M−1

∑

β
ε
even/odd

εf̂(D12εu
j(β))

=

M−2∑

j=1

∑

β
ε
even/odd

2εf̃(D12εu
j(β)) +

1

2

∑

j=0,M−1

∑

β
ε
even/odd

2εf̂(D12εu
j(β)).

This estimate provides a lower bound of our energies FM
ε by one-dimensional

discrete energies involving only nearest neighbours interactions on a lattice of
spacing 2ε. Then by the Γ-convergence result in [14] we get that, if uε → zt in
(Lp(0, 1))M , then

lim inf
ε

FM
ε (uε) ≥ 2((M − 2)f̃(z) + f̂(z)).

We now prove the upper bound estimate. For the sake of simplicity we consider
the case fi are lower semicontinuous functions. Fix z ∈ R such that

2
(
(M − 2)f̃(z) + f̂(z)

)
= 2

(
(M − 2)f̃ + f̂

)∗∗
(z)

and set

z1, z2 ∈ R : inf {f1(z1) + f1(z2) : z1 + z2 = 2z} = f1(z1) + f1(z2)

z′1, z
′
2 ∈ R : inf

{
f2

( z1√
2

)
+ f3

( z2√
2

)
: z1 + z2 = 2z

}
= f2

( z′1√
2

)
+ f3

( z′2√
2

)
.

Let uε ∈ Aε((0, 1)ε)→ Rd be such that

ujε(β) =

{
((β − 1)z + z1 +

j
2 (z

′
1 − z′2))ε if β

ε is odd

(βz + j
2 (z

′
1 − z′2))ε if β

ε is even,
(5.4)
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Figure 4: Reference configuration and optimizing sequences of the discrete system
in Proposition 5.2.

(see Figure 4). Then uε → zt in (Lp(0, 1))M and

FM
ε (uε) = 2(M − 2)

(
1

4
(f1(z1) + f1(z2)) +

1

2
f2

( z′1√
2

)
+ f3

( z′2√
2

))

+ 2

(
1

2
(f1(z1) + f1(z2)) +

1

2
f2

( z′1√
2

)
+ f3

( z′2√
2

))
+O(1)

= 2(M − 2)f̃(z) + 2f̂(z) +O(1).

Hence we get that

fMhom(z) ≤ lim sup
ε

FM
ε (uε) = 2

(
(M − 2)f̃(z) + f̂(z)

)
.

If otherwise z is such that

2
(
(M − 2)f̃(z) + f̂(z)

)
> 2

(
(M − 2)f̃ + f̂

)∗∗
(z)

there exist a, b ∈ R and λ ∈ (0, 1) such that

z = λa+ (1− λ)b

and that

2
(
(M − 2)f̃(a) + f̂(a)

)
= 2

(
(M − 2)f̃ + f̂

)∗∗
(a)

2
(
(M − 2)f̃(b) + f̂(b)

)
= 2

(
(M − 2)f̃ + f̂

)∗∗
(b).
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Let λε ∈ Q ∩ (0, 1) be such that λε → λ and let pε, qε ∈ N be such that

λε =
pε
qε
, lim

ε
εqε = 0.

Let za1 , z
a
2 , z

′a
1 , z

′a
2 , z

b
1, z

b
2, z

′b
1 , z

′b
2 ∈ R be such that

inf {f1(z1) + f1(z2) : z1 + z2 = 2a} = f1(z
a
1 ) + f1(z

a
2 )

inf

{
f2

( z1√
2

)
+ f3

( z2√
2

)
: z1 + z2 = 2a

}
= f2

( z′a1√
2

)
+ f3

( z′a2√
2

)

inf {f1(z1) + f1(z2) : z1 + z2 = 2b} = f1(z
b
1) + f1(z

b
2)

inf

{
f2

( z1√
2

)
+ f3

( z2√
2

)
: z1 + z2 = 2b

}
= f2

( z′b1√
2

)
+ f3

( z′b2√
2

)
.

Let uaε and u
b
ε be defined as in (5.4) with z1, z

′
1, z

′
2 replaced respectively by za1 , z

′a
1 , z

′a
2

and by zb1, z
′b
1 , z

′b
2 . Let uε ∈ Aε(0, 1) be such that

uε(α) =

[
α1
εqε

]
zεqε + uε(α1 −

[
α1
εqε

]
εqε, α2)

uε(α) =

{
uaε(α) if α ∈ [0, pε]ε
ubε(α) if α ∈ [pε, qε]ε

. (5.5)

Then uε → zt in (Lp(0, 1))M and

fMhom(z) ≤ lim sup
ε

FM
ε (uε)

= 2λ
(
(M − 2)f̃(a) + f̂(a)

)
+ 2(1− λ)

(
(M − 2)f̃(b) + f̂(b)

)

= 2
(
(M − 2)f̃(z) + f̂(z)

)∗∗
.

Remark 5.3 Note that, by (5.2) we deduce that

f2hom(z) = 2(f̂ )∗∗(z)

and that

lim
M→+∞

fMhom(z)

M
= 2(f̃ )∗∗(z).

with f̂ and f̃ as in (5.3).

Remark 5.4 (Cauchy-Born rule) Let N = 2 and let Fε and fhom be as in
Theorem 3.1 with ω = (0, 1). We say that z ∈ Rd is a strong Cauchy-Born (sCB)
state or a weak Cauchy-Born (wCB) state if respectively, for any

uε(t)→ zt such that Fε(uε)→ fhom(z),

it holds
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(i) #{α ∈ (0, 1) ∩ εZ : uε(α+ ε)− uε(α) 6= εz} = o( 1ε ),

(ii) #{α ∈ (0, 1) ∩ εZ : uε(α+ 2ε)− uε(α) 6= 2εz} = o( 1ε ).

In the previous two cases we simply say that the Cauchy-Born (CB) rule holds at
z or, shortly, that z is a CB state.

From a mechanical point of view, in this two different cases, to a macroscopic
strain z it corresponds a micro-structure of

(i) uniformly displaced material points,

(ii) periodically displaced material points on the microscopic scale 2ε.

Let now uε be as in (5.4) or in (5.5). Since uε → zt and

lim
ε
F 2ε (uε) = f2hom(z),

lim
ε

FM
ε (uε)

M
=

2

M

(
(M − 2)f̃(z) + f̂(z)

)∗∗
=
fM (z)

M
+O(

1

M
),

the validity or failure of the CB rule related to FM
ε given by (5.1), when M = 2

or M → +∞, can be reduced to study whether the cases (i), (ii) hold for such a
uε. Then the set

C(M) := {z ∈ Rd : z is not a CB state},

is given, by all z ∈ Rd such that

(f̂ )∗∗(z) < f̂(z)

if M = 2 or such that
(f̃ )∗∗(z) < f̃(z)

if M → +∞.
We now provide an example giving us some insight in the dependence of the

Cauchy-Born rule to the number of layers M . Let

f1(z) = (z + 1)2 ∧ (z − 1)2 f2(z) = f3(z) = z2.

Then an easy computation gives

C(M) ⊆ C(2) =
(
− 5

6
,−1

6

)
∪
(1
6
,
5

6

)

lim
M→∞

C(M) =
(
− 3

4
,−1

4

)
∪
(1
4
,
3

4

)
⊂ C(2).

This means that a scale transition phenomenon occurs: there exists a macroscopic
state with uniform strain z which is not a CB state for M = 2, corresponding to
an oscillation on a mesoscopic scale δε such that δε → 0, δε

ε → +∞, and which,
asymptotically in M , becomes a CB state, thus corresponding to an oscillation on
the microscopic scale ε.
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Example 5.5 In the following example we will consider energies defined for u ∈
Aε((0, 1)× [0, ε(M − 1)]) as

FM
ε (u) =

∑

α,α+εe1∈(0,1)ε

εf1(D
e1
ε u(α)) +

∑

α,α+εe1∈(0,1)ε

εf2(D
e2
ε u(α))

+
∑

α,α+ε(e1+e2)∈(0,1)ε

εf3(D
e1+e2
ε u(α)), (5.6)

with fi : R
d → [0,+∞) satisfying

c(|z|p − 1) ≤ fi(z) ≤ C(|z|p + 1), i = 1, 2, f3(z) ≤ C(|z|p + 1).

This is a particular homogeneous case of the model considered in Section 3 with
N = 2, ω = (0, 1), f ξ ≡ 0 if ξ 6= e1, e2, e1 + e2 (see Figure 3 b)).

Proposition 5.6 Let FM
ε be defined by (5.6) and let fMhom be the density energy

of its Γ-limit. Then it holds

2
(
(M − 2)(f̃ )∗∗(z) + (f̂ )∗∗(z)

)
≤ fMhom(z) ≤ 2

(
(M − 2)f̃ + f̂

)∗∗
(z) (5.7)

for any z ∈ Rd, where f̃ : Rd → [0,+∞) and f̂ : Rd → [0,+∞) are defined by the
following formulas

f̃(z) :=
f1(z)

2
+

1

2
inf

{
f2(z1) + f3

( z2√
2

)
: z2 − z1 = z

}
,

f̂(z) := f1(z) +
1

2
inf

{
f2(z1) + f3

( z2√
2

)
: z2 − z1 = z

}
. (5.8)

Proof. The proof is analogous to that of Proposition 5.2. In particular, fixed
z ∈ Rd such that

2
(
(M − 2)f̃ + f̂

)
(z) = 2

(
(M − 2)f̃ + f̂

)∗∗
(z),

and given z1, z2 such that

inf

{
f2(z1) + f3

( z2√
2

)
: z2 − z1 = z

}
= f2(z1) + f3

( z2√
2

)
,

the upper bound inequality can be obtained by arguing as before with (5.4) re-
placed by

ujε(β) = zβ + jz1ε.
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Remark 5.7 Note that, by (5.7) we deduce that

f2hom(z) = 2(f̂ )∗∗(z)

and that

lim
M→+∞

fMhom(z)

M
= 2(f̃ )∗∗(z).

with f̂ and f̃ as in (5.8).

Remark 5.8 By Remark 4.8, if fMhom is as in Example 5.1 and 5.5, one can prove
that

lim
M→+∞

1

M
fMhom(z) = fhom(z).
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