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Abstract. This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert

space H
(

u′(t) + ∂`φ(u(t)) 3 f(t) a.e. in (0, T ),

u(0) = u0,

where φ : H → (−∞, +∞] is a proper, lower semicontinuous functional which is not supposed

to be a (smooth perturbation of a) convex functional and ∂`φ is (a suitable limiting version of)

its subdifferential. We will present some new existence results for the solutions of the equation

by exploiting a variational approximation technique, featuring some ideas from the theory of

Minimizing Movements and of Young measures.

Our analysis is also motivated by some models describing phase transitions phenomena, leading

to systems of evolutionary PDEs which have a common underlying gradient flow structure: in

particular, we will focus on quasistationary models, which exhibit highly non convex Lyapunov
functionals.

1. Introduction and main results

The aim of this paper is to study the existence and the approximation of strong solutions of
the gradient flow equation

(GF)

{
u′(t) + ∂`φ(u(t)) 3 f(t) a.e. in (0, T ),

u(0) = u0,

associated with the limiting subdifferential ∂`φ : H → 2H of a proper and lower semicontinuous
functional φ : H → (−∞,+∞] defined in a (separable) Hilbert space H with scalar product 〈·, ·〉
and norm | · |; D(φ) :=

{
v ∈ H : φ(v) < +∞

}
will denote the proper domain of φ.

The limiting subdifferential ∂`φ is obtained by taking a sequential strong-weak closure in H ×H

of the graph of the Fréchet subdifferential ∂φ, which is the (possibly multivalued) operator defined
for every v ∈ D(φ) by

(1.1) ∂φ(v) :=
{
ξ ∈ H : φ(w) − φ(v) − 〈ξ, w − v〉 ≥ o(|w − v|) as w → v

}
,

where the above Landau’s notation should be understood as

(1.2) lim inf
w→v

φ(w) − φ(v) − 〈ξ, w − v〉
|w − v| ≥ 0.

Thus, a vector ξ belongs to the limiting subdifferential ∂`φ at v ∈ D(φ) if there exist sequences

(1.3) vn, ξn ∈ H such that ξn ∈ ∂φ(vn), vn → v, ξn ⇀ ξ, sup
n∈N

φ(vn) < +∞ as n ↑ +∞.

As usual in multivalued analysis, we will denote by D(∂φ), D(∂`φ) the proper domains

(1.4) D(∂φ) :=
{
v ∈ H : ∂φ(v) 6= ∅

}
, D(∂`φ) :=

{
v ∈ H : ∂`φ(v) 6= ∅

}
.
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Before discussing the motivations for introducing and studying this kind of subdifferential oper-
ators (see [25], [33], and the monograph [37, Chap.VIII], where analogous notions are introduced
for different purposes) and the related evolution equations, let us first recall the well-established
theories that cover some simpler situations.

The convex case: existence and regularity. When φ is convex, the Fréchet (and the lim-
iting) subdifferential coincides with the usual subdifferential of convex analysis, and it can be
characterized by

(1.5) ξ ∈ ∂φ(v) ⇔ v ∈ D(φ), φ(w) − φ(v) −
〈
ξ, w − v

〉
≥ 0 ∀w ∈ H .

Since φ is lower semicontinuous (l.s.c., in the sequel), taking the strong-weak closure of the graph
of ∂φ in H × H does not modify it, since

(1.6) vn → v, ξn ⇀ ξ, ξn ∈ ∂φ(vn) ⇒ ξ ∈ ∂φ(v), so that ∂`φ ≡ ∂φ.

It is well known that ∂φ is a (possibly multivalued) maximal monotone operator ; existence, unique-
ness, and regularity of the solution of (GF) follow from the well-known theory developed by Ko-

mura [24], Crandall-Pazy [18], Brézis [11]: we refer to the monograph [12]. In particular,
if

(data) u0 ∈ D(φ), f ∈ L2(0, T ;H ),

then the solution u belongs to H1(0, T ;H ), for a.e. t ∈ (0, T ) its derivative

u′(t) is the projection of the origin on the affine hull aff
(
f(t) − ∂φ(u(t))

)
,

thus realizes the minimal section principle: u′(t) =
(
f(t) − ∂φ(u(t))

)◦
,

(1.7)

where for every subset A ⊂ H we set

aff A :=
{ ∑

i

tiai : ai ∈ A, ti ∈ R,
∑

i

ti = 1
}
,(1.8)

|A◦| := inf
ξ∈A

|ξ|, A◦ :=
{
ξ ∈ A : |ξ| = |A◦|

}
;(1.9)

moreover, u satisfies the energy identity

(1.10) φ(u(T )) +

∫ T

0

|u′(t)|2 dt = φ(u0) +

∫ T

0

〈f(t), u′(t)〉 dt,

which is an immediate consequence of the Chain Rule

(1.11)
if u ∈ H1(0, T ;H ), ξ ∈ L2(0, T ;H ), ξ(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T )

then φ ◦ u ∈ AC(0, T ), d
dtφ(u(t)) =

〈
ξ(t), u′(t)

〉
for a.e. t ∈ (0, T ).

The convex case: approximation. Approximating (GF) by the implicit Euler scheme

(1.12) U0
τ := u0,

Unτ − Un−1
τ

τ
+ ∂φ(Unτ ) 3 Fnτ n = 1, . . . , N,

is one of the possible ways of proving the above results, and provides a useful constructive method
which is interesting by itself: here τ > 0 is the time step with Nτ = T , F nτ are suitable approxi-
mations of the values of f in the interval ((n− 1)τ, nτ ], e.g.,

(1.13) Fnτ :=
1

τ

∫ nτ

(n−1)τ

f(t) dt,

and the sequence {Unτ }Nn=1 is uniquely determined by solving (1.12) recursively, starting from the
assigned value of U0

τ .
If we denote by Uτ (t) the piecewise linear interpolant taking the value Unτ at tn, several kinds

of more and more refined estimates of the error |u(t) − Uτ (t)| could be derived, starting from
the pioneering ones of Crandall-Liggett [17]: we mention [12, Cor. 4.4], the optimal a priori
estimates of [4, 40, 41], and the optimal a posteriori estimates of [34] for even non uniform meshes.



GRADIENT FLOWS OF NON CONVEX FUNCTIONALS IN HILBERT SPACES AND APPLICATIONS 3

In our case, assuming for simplicity φ ≥ 0, it is possible to prove the uniform Cauchy estimates
(see [34])

(1.14) max
t∈[0,T ]

|Uη(t) − Uτ (t)|2 ≤ 3(τ + η)
(
φ(u0) +

∫ T

0

|f(t)|2 dt
)
,

thus showing that the family of functions Uτ is uniformly convergent to a continuous function u
as τ ↓ 0. Note that (1.14), the discrete energy estimate analogous to (1.10)

(1.15) φ(Unτ ) + τ

N∑

k=1

∣∣∣∣
Ukτ − Uk−1

τ

τ

∣∣∣∣
2

≤ φ(u0) + τ

N∑

k=1

〈F kτ ,
Ukτ − Uk−1

τ

τ
〉,

and the strong-weak closure of the graph of ∂φ (1.6) are the main ingredients to show that the
uniform limit u of Uτ as τ ↓ 0 belongs to H1(0, T ;H ) and is the (unique) solution of (GF).

Quadratic perturbations of convex functions. The previous results extend (up to an ex-
ponential factor, which modifies the constant in (1.14)) to λ-convex functionals, i.e., quadratic
perturbations of convex functions satisfying

(1.16) ∃λ ≥ 0 : v 7→ φ(v) +
λ

2
|v|2 is convex.

Of course, in this case the characterization (1.5) of the Fréchet subdifferential is affected by λ,
namely

ξ ∈ ∂φ(v) ⇔ v ∈ D(φ), φ(w) − φ(v) −
〈
ξ, w − v

〉
≥ −λ

2
|w − v|2 ∀w ∈ H ,

which shows that in the λ-convex case we can always choose the infinitesimal term o(r) := − λ
2 r

2

in (1.1); of course, this characterization degenerates as λ ↑ +∞.
It is not hard to check that any function φ which admits the representation

(1.17) φ(v) = ψ1(v) − ψ2(v), with ψ1 convex, ψ2 ∈ C1,1(H ),

satisfies (1.16), simply by taking as λ the Lipschitz constant of the (Fréchet) differential Dψ2;
further, (1.17) yields the decomposition

(1.18) ∂φ(v) = ∂ψ1(v) −Dψ2(v) ∀v ∈ D(∂φ).

C1 perturbation of convex functions. When φ is not a quadratic perturbation of a convex
function any more, things become remarkably more difficult. It was one of the main achievements
of the theory of Curves of Maximal Slope, developed in a series of papers originating from [20]
and culminating in [29] (but see also the more recent [15] and the presentations [1, 3]), to partially
extend the previous existence results to the case in which φ admits the decomposition (1.17),
where ψ2 is now simply of class C1(H ), provided f ≡ 0 and φ satisfies the coercivity/compactness
property

(comp) ∃ τ∗ > 0 : v 7→ φ(v) +
1

2τ∗
|v|2 has compact sublevels.

In this case, the approximation algorithm (1.12) has to be rewritten in a variational formu, ob-
serving that (1.12) is in fact the Euler equation associated with the functional

(1.19) Φ(τ, Fnτ , U
n−1
τ ;V ) :=

1

2τ

∣∣V − Un−1
τ

∣∣2 + φ(V ) − 〈Fnτ , V 〉.

Then, (1.12) is replaced by the variational iterative scheme

(1.20)





U0
τ := u0 is given; whenever U1

τ , . . . , U
n−1
τ are known,

find Unτ ∈ H : Φ(τ, Fnτ , U
n−1
τ ;Unτ ) ≤ Φ(τ, Fnτ , U

n−1
τ ;V ) ∀V ∈ H ,
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which a fortiori also yields a solution Unτ of (1.12), since for every functional ψ in C1(H ), the
Fréchet subdifferential obeys the usual calculus rules

(1.21)
∂(φ+ ψ)(v) = ∂φ(v) +Dψ(v) ∀ v ∈ H ,

v0 minimizes φ+ ψ in H ⇒ v0 ∈ D(∂φ), ∂φ(v0) +Dψ(v0) 3 0.

This variational approach has been independently applied to different kinds of problems (see e.g.
[26], [22], [30]), and has been proposed (in an even more general formulation) as a possible general
method to study Gradient Flows in [19] (see also the lecture notes [1] and [3]).

Unlike the convex framework, solutions to (1.20) are not unique, in general: in any case, we
call discrete solution any piecewise constant interpolant Uτ of a sequence of discrete values solving
(1.20), i.e., Uτ (t) := Unτ if t ∈ ((n− 1)τ, nτ ]. Following [19], we say that

u is a generalized Minimizing Movement associated with the scheme (1.20) if there
exist a subsequence τk ↓ 0 and a corresponding family of discrete solutions Uτk

such that

(1.22) lim
k↑+∞

Uτk
(t) = u(t) in H , ∀ t ∈ [0, T ].

We denote by GMM(Φ;u0, f) the collection of the generalized Minimizing Move-
ments starting from u0 and with forcing term f .

In order to recover information on the time derivative of the limit functions, we will also often
consider the piecewise linear interpolant Uτ of the values Unτ .

Although it is not easy to present a short overview of the wide and complex set of assumptions
considered in [29], following [1] we observe that the crucial assumption of their approach is the
strong-weak closure of the graph of (∂φ, φ) in H × H × R, i.e.,

(1.23)
ξn ∈ ∂φ(vn), rn = φ(vn)

vn → v, ξn ⇀ ξ, rn → r

}
⇒ ξ ∈ ∂φ(v), r = φ(v),

which in particular yields ∂`φ ≡ ∂φ. Under (1.23), they prove that for each choice of u0 ∈ D(φ)
satisfying (data), GMM(Φ;u0, 0) is not empty and that its elements are solutions of (GF).

Note that (1.23) yields three crucial properties for ∂`φ, which are somehow hidden in the proof
of the existence result in [29]:

∂`φ is convex-valued:

(conv) ∂`φ(v) is a closed convex subset of H , ∀ v ∈ D(∂`φ).

Chain rule: If v ∈ H1(0, T ;H ), ξ ∈ L2(0, T ;H ) with ξ(t) ∈ ∂`φ(v(t)) for a.e. t ∈ (0, T ),
and φ ◦ v is a.e. equal to a function ϕ of bounded variation, then

(chain1)
d

dt
ϕ(t) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ).

Continuity of φ along sequences with equibounded slope:

(cont) vn → v, sup
n

(
|∂◦φ(vn)|, φ(vn)

)
< +∞ ⇒ φ(vn) → φ(v) as n ↑ +∞.

Remark 1.1. We stress once again that if φ is λ-convex, i.e., it fulfills (1.16), then it also
satisfies (1.23) and therefore (conv,chain1,cont); moreover, the chain rule holds in the stronger
formulation (1.11).

A more general situation. In this paper, we will show that general existence results can be
proved even when only one of the two assumptions (conv) and (chain1) is supposed to hold;
(cont) will play a complementary role, which will be discussed in each situation. In particular, we
can consider functionals whose Fréchet subdifferential is not strongly-weakly closed in the sense
of (1.23). Actually, the (strong-weak) closedness of ∂φ may fail even for simple one-dimensional
functionals, as in the case of (cf. also (2.14, 2.17) later on)

(1.24) H := R, φ(x) :=

{
1
3 (x+ 1)2 x ≤ 0,
1
3 (x− 1)2 x > 0,

= min

{
1

3
(x+ 1)2,

1

3
(x− 1)2

}
.
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It is easy to check that ∂φ(x) is reduced to a singleton for x 6= 0, while ∂φ(0) is empty, so that

PSfrag replacements

V
V ′

φ

h
h̃
g

Figure 1. The potential φ of (1.24) is not subdifferentiable at x = 0.

obviously ∂φ differs from its closure ∂`φ at x = 0, which turns out to be non convex. In turn, note
PSfrag replacements
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Figure 2. Fréchet, limiting, and convexified subdifferential of φ

that φ cannot be decomposed as in (1.17), even if ψ2 is required to be only of class C1(H ).
As we will see in Example 2, this real function provides the simplest one-dimensional caricature

of infinite-dimensional Lyapunov functionals arising in quasistationary models for phase transi-
tions. In spite of its triviality, it captures two main features, which are typical in those evolution
models: the presence of anti-monotone jumps and non convex sections in the graph of ∂`φ. This
lack of convexity is a serious difficulty, since in such a general setting only weak convergence
properties are available for the time derivatives of any family of approximating solutions to (GF).

We will see in Example 2 that even in the finite dimensional situation, the convexification of
∂`φ (e.g., in the present case, at x = 0) is often not acceptable, since solutions of the easier relaxed
formulation do not solve, in general, the original one.

We postpone a detailed presentation of some other significant examples to the next section,
while here we are going to present our main abstract results. First of all, we state some natural
and general compactness conditions which guarantee that GMM(Φ;u0, f) is not empty. Recall
that Uτ will denote the piecewise linear interpolant of the discrete values {Unτ }Nn=0.

Lemma 1.2 (Compactness). Let us assume that

(comp)

φ : H → (−∞,+∞] is proper, lower semicontinuous, and

∃ τ∗ > 0 : v 7→ φ(v) +
1

2τ∗
|v|2 has compact sublevels,

and the data satisfy

(data) u0 ∈ D(φ), f ∈ L2(0, T ;H ).

Then, there exists a constant C > 0 (independent of τ) such that

‖Uτ‖L∞(0,T ;H ) + ‖Uτ‖L∞(0,T ;H ) ≤ C,(1.25)

sup
[0,T ]

φ(Uτ ) ≤ C,(1.26)

‖U ′
τ‖L2(0,T ;H ) ≤ C, ‖Uτ − Uτ‖L∞(0,T ;H ) ≤ C

√
τ ,(1.27)

for every 0 < τ ≤ τ∗/10. In particular, GMM(Φ;u0, f) is not empty and every u ∈ GMM(Φ;u0, f)
belongs to H1(0, T ;H ).
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The case of a convex-valued limiting subdifferential. Here the main assumption on φ, be-
sides the compactness one (comp), is the convexity of the values of ∂`φ (conv): indeed, conditions
(comp) (conv) are sufficient in order to prove that every u ∈ GMM(Φ;u0, f) is a solution of (GF)
and satisfies a natural Lyapunov-like inequality, which holds in a stronger form when also (cont)
is verified.

Theorem 1 (Lyapunov solutions). Let us suppose that φ : H → (−∞,+∞], u0, and f satisfy
the assumptions (comp) and (data) of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is
not empty. If

(conv) ∂`φ(v) is a convex closed subset of H for every v ∈ D(∂`φ),

then any u ∈ GMM(Φ;u0, f) is a solution to (GF) satisfying the Lyapunov inequality
(1.28)∫ t

0

(
1

2
|u′(σ)|2 +

1

2
|(∂`φ(u(σ)) − f(σ))0|2

)
dσ+φ(u(t)) ≤ φ(u0)+

∫ t

0

〈f(σ), u′(σ)〉 dσ ∀t ∈ (0, T ).

Moreover, if φ complies with the additional continuity assumption (cont), then there exists a
negligible set N ⊂ (0, T ) such that

∫ t

s

(
1

2
|u′(σ)|2 +

1

2
|(∂`φ(u(σ)) − f(σ))0|2

)
dσ + φ(u(t))(1.29)

≤ φ(u(s)) +

∫ t

s

〈f(σ), u′(σ)〉 dσ ∀ t ∈ (0, T ), s ∈ (0, t) \ N .

Remark 1.3 (Lyapunov inequality). By (1.29), φ ◦ u satisfies the Lyapunov inequality in the
distributional differential form

(1.30)
d

dt
φ(u(t)) ≤ −1

2

∣∣u(t)
∣∣2 − 1

2

∣∣(∂`φ(u(t)) − f(t))◦
∣∣2 + 〈f(t), u′(t)〉 in D

′(0, T ),

and there exists a real function of bounded variation ϕ ≥ φ ◦ u, which coincides with φ ◦ u a.e. in
(0, T ), satisfying (1.30) a.e. in (0, T ). When f ≡ 0, (1.30) reduces to

d

dt
φ(u(t)) ≤ −1

2
|u′(t)|2 − 1

2
|∂◦` φ(u(t))|2 ≤ −|u′(t)| · |∂◦` φ(u(t))| in D

′(0, T ),

which is the key point of the metric approach to gradient flows proposed by E. De Giorgi (see
the discussion in [3, Chap. 2]). In particular, the map t 7→ ϕ(t) is non-increasing on (0, T ). This
fact justifies the name of Lyapunov solutions, introduced by S. Luckhaus [26] for a particular
model which can be considered in this more general framework, see Example 5 later on.

The case of a limiting subdifferential satisfying the Chain Rule. Let us now assume that
φ satisfies the Chain Rule condition (chain1), namely

(chain1)

if v ∈ H1(0, T ;H ), ξ ∈ L2(0, T ;H ), ξ ∈ ∂`φ(v) a.e. in (0, T ),

and φ ◦ v is a.e. equal to a function ϕ of bounded variation, then

d

dt
ϕ(t) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ).

Theorem 2. Let us suppose that φ : H → (−∞,+∞], u0, f satisfy the assumptions (comp) and
(data) of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is not empty. If the Chain Rule con-
dition (chain1) and the continuity condition (cont) are satisfied, then every u ∈ GMM(Φ;u0, f)
is a solution in H1(0, T ;H ) of (GF), it satisfies for almost every t ∈ (0, T )

u′(t) is the projection of the origin on the affine hull aff
(
f(t) − ∂`φ(u(t))

)
(1.31)

and fulfills the minimal section principle u′(t) = (f(t) − ∂`φ(u(t)))◦,(1.32)

as well as

(1.33) f(t) − u′(t) belongs to the strong closure of ∂φ(u(t)) in H × H .
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Finally, the energy inequality

(1.34)

∫ t

s

|u′(σ)|2 dσ + φ(u(t)) ≤ φ(u(s)) +

∫ t

s

〈f(σ), u′(σ)〉 dσ

holds ∀ t ∈ (0, T ), s ∈ (0, t) \ N , N being a negligible subset of (0, T ), and φ ◦ u coincides a.e. in
(0, T ) with a function ϕ ≥ φ ◦ u of bounded variation satisfying

(1.35)
d

dt
ϕ(t) = −

∣∣u′(t)
∣∣2 + 〈f(t), u′(t)〉 a.e. in (0, T ).

Remark 1.4 (Affine projection and minimal section). Notice that we have retrieved the
minimal section principle (1.32) (in the even stronger formulation (1.31)) in this non convex case
as well: even if f(t) − ∂`φ(u(t)) in general is not convex, u′(t) is its unique element of minimal
norm for a.e. t ∈ (0, T ).

In both the previous Theorems, the Lyapunov/energy inequalities (1.29) and (1.34) hold almost
everywhere, and even though the pointwise differential identity (1.35) holds, we cannot exclude
that the distributional derivative of t 7→ φ(u(t)) is not absolutely continuous with respect to the
Lebesgue measure. Thus, the functional φ can have essential negative jumps along the solution
u. This phenomenon can be circumvented, if we reinforce our Chain Rule condition (chain1) a
little bit, mimicking the statement (1.11) for convex functionals. In this way, we can also avoid to
assume the continuity condition (cont).

Theorem 3 (Energy solutions). Let us suppose that φ : H → (−∞,+∞], u0, f satisfy the
assumptions (comp) and (data) of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is not
empty.
If φ satisfies the following stronger Chain rule condition

(chain2)

if v ∈ H1(0, T ;H ), ξ ∈ L2(0, T ;H ), ξ ∈ ∂`φ(v) a.e. in (0, T ),

and φ ◦ v is bounded, then φ ◦ v ∈ AC(0, T ) and

d

dt
φ(v(t)) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ),

then, every u ∈ GMM(Φ;u0, f) is a solution in H1(0, T ;H ) to (GF), fulfilling the affine projection
property (1.31), the minimal selection (1.32), the strong closure property (1.33), and the energy
identity

(1.36)

∫ t

s

|u′(σ)|2 dσ + φ(u(t)) = φ(u(s)) +

∫ t

s

〈f(σ), u′(σ)〉 ds ∀ s, t : 0 ≤ s ≤ t ≤ T.

Finally, if {τk} is a decreasing sequence as in (1.22), we also have

(1.37) U ′
τk

→ u′ in L2(0, T ;H ), φ(Uτk
(t)) = φ(u(t)) ∀ t ∈ [0, T ], as k ↑ ∞.

Remark 1.5 (W 1,1(0, T ) versus AC(0, T )). If φ complies with a slightly weaker form of (chain2),
ensuring that φ◦v ∈W 1,1(0, T ) instead of φ◦v ∈ AC(0, T ), then the previous Theorem 3 still holds,
but the energy identity (1.36) and the convergence (1.37) of φ(Uτk

(t)) hold for every s, t ∈ [0, T ]\N ,
N being a negligible subset of (0, T ].

Remark 1.6 (The metric theory). In a purely metric setting, the role of a suitable chain rule
has also been discussed in [3]: actually, the theory developed therein could also be applied to our
situation in the case of a constant source term f . On the other hand, here we take advantage
of the linear structure of H and we combine some ideas of the Minimizing Movements approach
with the flexibility of Young measures, obtaining more precise information in the limit.

(Dominated) concave perturbations of convex functionals. We conclude this introductory
section with a direct application of Theorems 2 and 3, which shows that even in the cases of
(dominated) concave perturbations of a convex functional we can still prove an existence result
for the associated Gradient Flow equation. This result extends the range of application of the
theory of curves of maximal slope and, as it will be clear from the following Examples 4 and 5,
this class of functionals allows for several interesting applications to phase transition problems.
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In fact, we will prove that the class of functionals to which Theorems 2 and 3 apply is closed
by dominated concave perturbations. Thus, we will focus on functionals φ admitting the decom-
position

(1.38)

φ = ψ1 − ψ2 in D(φ), with

ψ1 : D(φ) → R l.s.c. and satisfying (chain1,2),

ψ2 : co
(
Dφ

)
→ R convex and l.s.c. in D(φ), D(∂`ψ1) ⊂ D(∂ψ2),

where co
(
Dφ

)
denotes the convex hull of D(φ); we shall see that the (corresponding) chain rule

(chain1,2) holds in this case as well, provided that the concave contribution of the term −ψ2 is
somehow controlled.

Theorem 4. Let φ : H → (−∞,+∞] be a functional admitting the decomposition (1.38) and
satisfying the compactness assumption (comp) of Lemma 1.2. If

(1.39)
∀M ≥ 0 ∃ ρ < 1, γ ≥ 0 such that sup

ξ2∈∂ψ2(u)

|ξ2| ≤ ρ|∂◦`ψ1(u)| + γ

for every u ∈ D(∂`ψ1) with max(φ(u), |u|) ≤M ,

then φ satisfies the (corresponding) Chain Rule property (chain1,2).

We postpone the proof of the above results to Section 4.

Remark 1.7 (Kato’s condition). Let us point out that condition (1.39) is analogous to a
condition, proposed in [12, Chap. II], which ensures that the sum of two maximal monotone
operators is still maximal. In the linear framework, this corresponds to the well known Kato’s
condition ensuring the closedness of a perturbation of a closed operator [23, IV,Thm. 1.1].

Remark 1.8 (Equivalent norms). The choice of the norm | · |H in (1.39) is not essential:
Theorem 4 still holds if we consider another equivalent (even non hilbertian) norm in H .

Remark 1.9 (ψ1, ψ2 convex). (1.38) and (1.39) are slightly simpler when ψ1, ψ2 are convex: in
fact, (1.38) reads as

(1.38’)
φ = ψ1 − ψ2 in D(φ) with

ψ1, ψ2 : D(φ) → R l.s.c. and convex, D(∂ψ1) ⊂ D(∂ψ2),

whereas in (1.39) the limiting subdifferential of ψ1 coincides with the Fréchet subdifferential ∂ψ1.
In this case, φ satisfies the chain rule (chain2) in the stronger formulation of Remark 1.5.

Plan of the paper. In the next section, we discuss some examples of ordinary differential in-
clusions and PDE’s systems, which motivate our interest for the gradient flow equation (GF). In
particular, Example 2, though finite dimensional, will clearly illustrate the difficulties arising from
the lack of convexity and, hence, the role of our variational approach.
The classical variational formulation of the Stefan problem (Example 3) is then briefly recalled,
mainly to point out the role of the dual Sobolev space H−1(Ω) and to introduce the basic struc-
ture of the functional φ which is common to the other more complicated models, discussed in the
last two examples. The fourth one presents new general results for quasistationary phase field
models, extending previous contributions of [35] and [43]; the last example deals with the Stefan-
Gibbs-Thomson problem and shows how to retrieve S. Luckhaus’ theorem as a consequence of
the abstract theory. One of the most interesting point, here, is the unifying approach which is
provided by the gradient flow point of view (see also [Rossi-Savare-Rendiconti-Lincei]).

The third Section collects two technical tools, which will be essential in the proofs of the main
theorems: the fundamental theorem for Young measures in Hilbert space with respect to weak
topologies, and their interplay with more refined forms of the Chain Rule properties (chain1,2).

Section 4 is devoted to the proof of our main abstract results. It is divided in some parts,
each one focusing on a particular aspect which is of independent interest. Refined estimates for
the stationary problems (1.20) and for their evolutionary counterparts, the introduction of a new
“variational interpolant” of the discrete values, the asymptotic description of the limits and their
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energy inequalities in terms of Young measures, and the Chain Rule are the main points of the
argument.

Finally, in Section 5 we present new general results for diffusion problems with quasi-stationary
non monotone relations, which cover all the examples discussed in Section 2 and can be applied
to many different situations.

2. Examples

2.1. Finite dimensional examples.

Example 1 (Anti monotone differential inclusions). Let us consider the following Cauchy
problem for an anti-monotone differential inclusion in H := R

d

(2.1)

{
x′(t) −A(x(t)) 3 0 t > 0,

x(0) = x0,

where A : R
d → 2R

d

is a cyclically monotone (multivalued) operator such that

A(x) is non empty and compact for every x ∈ R
d, and(2.2)

ξn ∈ A(xn), xn → x, ξn → ξ ⇒ ξ ∈ A(x),(2.3)

i.e., A has closed graph in R
d × R

d. This problem was addressed in [10] where the local existence
of a solution to (2.1) is obtained by means of an explicit discretization technique; if A is linearly
growing at infinity, the solution is also global. Similar ideas have also been applied in a much
more general context in [15].
A gradient flow approach. Let us assume this linear growth condition, and let us introduce a
proper, l.s.c., and convex function ψ : R

d → R such that [36, Thm. V.24.8]

(2.4) ∅ 6= A(x) ⊂ ∂ψ(x) ∀x ∈ R
d.

In particular, D(ψ) = R
d, ψ is locally Lipschitz, and it grows at most quadratically as |x| ↑ +∞:

thus, Theorems 3 and 4 (applied to the functional φ := −ψ: note that the chain rule (chain2) holds
trivially for −ψ, since ψ is convex and ∂`(−ψ) ⊂ −∂ψ), yield the existence of a global solution to
the gradient flow equation (GF), which is also a solution to (2.1), since it is not difficult to check
that

(2.5) ∂`(−ψ)(x) ⊂ −A(x) ∀x ∈ R
d.

Indeed, since A is closed in R
d × R

d, (2.5) is a consequence of

(2.6) ∂(−ψ)(x) ⊂ −A(x) ∀x ∈ R
d.

To this aim, we note that a vector ξ belongs to ∂(−ψ)(x) iff ψ is differentiable at x and

−∂ψ(x) = {−Dψ(x)} = {ξ}.
Now, (2.4) yields A(x) = {Dψ(x)} for every x ∈ D(∂(−ψ)), and thus (2.6) is trivially satisfied.

Remark 2.1. The previous argument also shows that −∂`(−ψ) provides the minimal closed
multivalued map among those satisfying

(2.7) A(v) ⊂ ∂ψ(v) ∀ v ∈ H ; D(A) ⊃ {v : ψ is differentiable at v}.
Example 2 (Differential equations and non monotone couplings). Let F,G ∈ C1(Rd) be
two given functions satisfying

lim inf
|u|↑+∞

F (u)

|u|2 > −∞, lim inf
|χ|↑+∞

G(χ)

|χ| = +∞.

We consider the following system in the unknowns u, χ : [0,+∞) → R
d, where an ODE is coupled

with a (possibly) non monotone relation

(2.8)

{
u′(t) + ∇F (u(t)) = χ(t) + f(t),

∇G(χ(t)) = u(t).
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It is interesting to note that (2.8) can be interpreted as the gradient flow equation associated with
the functional

(2.9) φ(u) := min
σ∈Rd

(F (u) +G(σ) − 〈u, σ〉) = F (u) −G∗(u),

where G∗(u) := supσ∈Rd〈u, σ〉 −G(σ) is the (convex) Legendre-Fenchel-Moreau transform of G.
In order to show this fact, we first observe that the nonlinear relation ∇G(χ) = u is the Euler

equation associated with the minimization problem

(2.10) given u ∈ R
d, find χ which minimizes σ 7→ G(σ) − 〈σ, u〉;

since G has a superlinear growth, the set M(u) of the solutions of (2.10) is not empty, and we can
rewrite (2.8) in the more restrictive formulation

(2.11) u′(t) + ∇F (u(t)) ∈M(u(t)) + f(t),

which is the differential inclusion associated with the operator u 7→ ∇F (u)−M(u). It is immediate
to check that the Fréchet subdifferential ∂φ(u) is single-valued in its domain and

∂φ(u) = ∇F (u) −M(u) ∀u ∈ D(∂φ).

Suppose in fact that ξ ∈ ∂φ(u): if χ ∈M(u) and v ∈ R
d we have that

〈∇F (u) − χ, v − u〉 ≥ F (v) − F (u) + o(|v − u|) − 〈χ, v − u〉

= F (v) +G(χ) − 〈χ, v〉 −
(
F (u) +G(χ) − 〈χ, u〉

)
+ o(|v − u|)

≥ φ(v) − φ(u) + o(|v − u|) ≥ 〈ξ, v − u〉 + o(|v − u|)

as v → u, and therefore ξ = ∇F (u)−χ. Since the graph of M in R
d×R

d is closed, it is immediate
to check that a weaker form of this relation extends to the limiting subdifferential of φ, i.e.

(2.12) ξ ∈ ∂`φ(u) ⇒ ξ = ∇F (u) − χ for some χ ∈M(u),

so that a solution of the gradient flow (GF) for the functional φ defined by (2.9) also solves (2.11)
and (2.8).

Since ∂G∗(u) is the closed convex hull co
(
M(u)

)
of M(u), we have

(2.13) ∂`φ(u) ⊂ ∇F (u) −M(u) ⊂ co(∇F (u) −M(u)) = ∇F (u) − ∂G∗(u),

which shows that ∂`φ(u) contains all the extremal points of the convex set ∇F (u) − ∂G∗(u). On
the other hand, since φ is given by the difference of the C1 function F and the convex function
G∗, with

χ ∈M(u) ⇒ χ ∈ ∂G∗(u),

it is easy to check that φ satisfies the chain rule condition (chain2): therefore an application
of Theorem 3 provides the existence of an energy solution of (2.11) and there is no need to
convexifying the evolution operator.

We can check directly in the following particularly simple one-dimensional case that (2.8) cor-
responds to a non monotone differential inclusion, whose convexification would introduce spurious
solutions which do not solve the original problem (2.8). For, let F (u) := 1

2u
2, u ∈ R and

G(χ) := 1
2
χ2 + V(χ), where V : R → R is the (piecewise quadratic) double well potential

(2.14) V(χ) :=





(χ+ 1)2 χ < − 1
2 ,

−χ2 + 1
2 |χ| ≤ 1

2 ,

(χ− 1)2 χ > 1
2 ,

with derivative V ′(χ) =





2(χ+ 1) χ < − 1
2 ,

−2χ |χ| < 1
2 ,

2(χ− 1) χ > 1
2 .

In this setting, (2.8) reads

(2.15)

{
u′(t) + u(t) = χ(t) + f(t),

V ′(χ(t)) + χ(t) = u(t),
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Figure 3. The potential V and its derivative

which is a drastic one-dimensional caricature of the PDE model of Example 4 later on. Notice
that the map χ 7→ G′(χ) = V ′(χ) + χ is not monotone. Thus, the inverse g := (V ′ + I)−1 is a
multivalued function, and (2.15) is equivalent to the differential inclusion

(2.16) u′(t) + u(t) − g(u(t)) 3 f(t),

associated with the non monotone multivalued map u 7→ h(u) := u− g(u).
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Figure 4. The graphs of the (multivalued) maps g = (V ′ + I)−1 and h = I − g

In this case, the functional φ is given by

(2.17) φ(u) = min
σ∈R

(
1

2
u2 +

1

2
σ2 + V(σ) − σu

)
= min

σ∈R

(
1

2
|u− σ|2 + V(σ)

)
,

which has the analytical expression of (1.24) and provides a variational selection M(u) of χ in
g(u), given by the minimization problem

(2.18) find χ ∈ R which attains the minimum in (2.17)

where u is considered as a given parameter.
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Figure 5. The graphs of M(u) and h̃(u) = u−M(u)

Therefore, coupling (2.15) with (2.18) yields the differential inclusion

(2.19) u′(t) + u(t) −M(u(t)) = u′(t) − h̃(u) 3 f(t),

whose solutions also solve the previous (2.16), since the variational principle (2.18) has in fact

selected suitable branches of g and h. Instead, the convexification of the values of h̃ (by adding
the vertical segment [−2/3, 2/3] at u = 0), would destroy this property.
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Remark 2.2. Systems like (2.8) arise naturally from the formal limit as ε ↓ 0 of a time relaxation
in the second equation, e.g. εχ′(t)+∇G(χ(t)) = u(t). In the non monotone case, one should expect
that hysteresis occurs in the limit (see e.g. the discussion of [46, Chap. X] and the approaches
proposed in [48] and [30]). Here, we are neglecting these non local effects: our variational selection
principle (2.10) always forces χ to jump towards an absolute minimum of the map v 7→ G(v)−〈u, v〉.

The next examples, arising from some models for phase transitions, exhibit a similar structure
in infinite dimensional spaces.

2.2. The gradient flow structure of some quasistationary models for phase transitions.
Before developing the main applications of our results to quasistationary phase field models, let
us first examine the well-known example of the H−1 formulation of the classical Stefan problem,
see [14, 11].

Example 3 (The Stefan Problem). We consider the boundary value problem for the evolution
PDE

(2.20)





∂tu− ∆β(u) = f in Ω × (0, T ),

β(u) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

where Ω is an open bounded and connected subset of R
m, f : Ω × (0, T ) → R, and

β(u) := (u− 1)+ − (u+ 1)−, u ∈ R.

By adopting the usual convention of identifying a real function (x, t) 7→ v(x, t) defined in Ω×(0, T )
with the time dependent function t 7→ vt = v(·, t) with values in some function space defined on Ω,
(2.20) can be interpreted as the gradient flow in the space H := H−1(Ω) of the convex functional

(2.21) φ(u) :=

{∫
Ω
j(u(x))dx if u ∈ L2(Ω),

+∞ if u ∈ H−1(Ω) \ L2(Ω),

where j is the primitive of β, i.e.,

j(u) :=
1

2
((|u| − 1)+)2, u ∈ R.
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In order to understand the role of the space H−1(Ω) and to highlight the gradient flow structure
of (2.20), we first consider the realization of −∆ with homogeneous Dirichlet boundary conditions
as unbounded operator in L2(Ω) and, by inverting it, we rewrite the Stefan equation as

(−∆)−1∂tu+
δφ

δu
= 0 in Ω × (0, T ),
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where δφ
δu = β(u) is the first variation of the integral functional φ. It is then natural to introduce

the scalar product

(2.22)
〈u, v〉 :=

(
(−∆)−1u, v

)
L2(Ω)

=
(
u, (−∆)−1v

)
L2(Ω)

,

with the induced norm |u|2 :=
(
(−∆)−1u, u

)
L2(Ω)

;

it is well known that we can identify the completion of L2(Ω) w.r.t. this norm with the space
H = H−1(Ω), and the operator −∆ can be extended by continuity to an unbounded operator
A : D(A) ⊂ H → H with D(A) := H1

0 (Ω).
It is useful to rephrase (2.20) by introducing the function

χ := u− β(u);

in the applications, u is the internal energy of a physical system (occupying the region Ω), un-
dergoing a solid-liquid phase transition in the time interval (0, T ), while χ is an order parameter,
yielding the local proportion of the two phases (here we are normalizing all the relevant physical
constants) to 1.

By inverting the Laplace operator in this setting, (2.20) becomes

A−1∂tu+ u = χ+A−1f in Ω × (0, T ),(2.23)

χ+ sign−1(χ) 3 u in Ω × (0, T ),(2.24)

whose formal structure looks like (2.8); here, the (multivalued) map sign−1 is defined as

sign−1(x) :=





(−∞, 0] if x = −1,

0 if −1 < x < 1,

[0,+∞) if x = 1,

x ∈ [−1, 1],

and it is the (convex) subdifferential of the indicator function I[−1,1],

I[−1,1](x) :=

{
0 if −1 ≤ x ≤ 1,

+∞ otherwise.

We may easily check that the functional φ (2.21) admits the variational representation

(2.25) φ(u) := min
σ∈L2(Ω)

F (u, σ), F (u, σ) :=

∫

Ω

(
1

2
|u− σ|2 + I[−1,1](σ)

)
dx.

In this case, the map χ 7→ χ + sign−1(χ) is monotone and the minimization problem (2.25) is
convex in σ, so that there is no difference between (2.24) and χ ∈ argminL2(Ω) F (u, ·). From the

mathematical point of view, the interest of the less direct representation (2.23)-(2.24) of (2.20)
is that several quasistationary phase field models are obtained simply by replacing the indicator
function I[−1,1] in (2.25) by more complex non convex functionals, which in some sense force χ to
stay near the extreme points −1 and 1 of the interval.

Example 4 (The quasistationary phase field model). An alternative model for solid-liquid
transitions is the quasistationary phase field system:

∂tu− ∆(u− χ) = f in Ω × (0, T ),(2.26)

−ε∆χ+
1

ε
(χ3 − χ) = u− χ in Ω × (0, T ).(2.27)

(2.27) is the Euler-Lagrange equation for the minima of the Landau-Ginzburg free energy potential

(2.28) Fε(u, χ) :=

∫

Ω

(ε
2
|∇χ|2 +

1

4ε
(χ2 − 1)2 +

1

2
|χ− u|2

)
dx

at constant u.
The existence of solutions for the system (2.26)-(2.27), supplemented with the initial and Dirich-

let/Neumann boundary conditions (n denotes the outer unit normal to ∂Ω)

(2.29) u(x, 0) = u0(x) in Ω; u− χ = 0, ∂n
χ = 0 on ∂Ω × (0, T ),
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was proved in [35] for the space dimensions m ≤ 3, by means of a compactness method and
a unique continuation result, thus heavily relying on the precise form of the equation (2.27), in
particular on the presence of the Laplacian and of the analytic potential

W (χ) :=
1

4ε

(
χ2 − 1

)2
, W ′(χ) =

1

ε

(
χ3 − χ).

In [43], R. Schätzle proved an existence result for the initial-boundary value problem obtained
by supplementing (2.26)-(2.27) with the initial and homogeneous Neumann conditions

(2.30) u(x, 0) = u0(x) in Ω, ∂n(u− χ) = ∂n
χ = 0 on ∂Ω × (0, T ).

Here the approach of [35] is no more possible and it is replaced by refined spectral analysis
arguments, still based on the specific form of W (the proof involves its analyticity), of the elliptic
operator in (2.27), and on the dimension m ≤ 3.

In analogy with the discussion developed in Example 3 for the Stefan Problem, we will adopt a
gradient flow approach to (2.26,2.27), also obtaining an existence result for more general differential
problems, both with Dirichlet (2.29) or Neumann (2.30) boundary conditions in arbitrary space
dimension m.
The gradient flow approach. We consider the system

∂tu− div A1∇(u− χ) = f in Ω × (0, T ),(2.31)

−εdiv A2∇χ+
1

ε
W ′(χ) = u− χ in Ω × (0, T ),(2.32)

where A1,A2 : Ω → M
m×m are symmetric matrices, with measurable coefficients, satisfying the

usual uniform ellipticity condition

(2.33) a
−1 ≥ A1,2(x)η · η ≥ a > 0 ∀ x ∈ Ω, η ∈ R

m, |η| = 1,

and W is an arbitrary C1 real function with superlinear growth; extended real valued semiconvex
functions could also be considered (thus allowing convex constraints on χ), simply replacing the
equation (2.32) by the corresponding differential inclusion involving ∂W instead of W ′.

In accordance with the analysis developed in Examples 2 and 3, in the case of Dirichlet boundary
conditions (2.29) we will endow the Hilbert space H := H−1(Ω) with the scalar product induced
by the differential operator A1 := −div

(
A1∇ ·

)
as in (2.22), and we will consider the functionals

Fε(u, χ) :=

∫

Ω

(1

2
|u− χ|2 +

ε

2
A2(x)∇χ · ∇χ+

1

ε
W (χ)

)
dx,(2.34)

φε(u) := min
σ∈H1(Ω)

Fε(u, σ), Mε(u) :=
{
χ ∈ H1(Ω) : Fε(u, χ) = φε(u)

}
.(2.35)

We will investigate the gradient flow equation (GF) for the functional φε, with the source term f .
The following result is a particular case of a general existence and convergence result (Thm. 5.8
in Section 5) for quasistationary phase field models.

Theorem 2.3. Given u0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)), there exist

(2.36)
u ∈ H1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)), χ ∈ L∞(0, T ;H1(Ω)),

ϑ := u− χ ∈ L2(0, T ;H1
0 (Ω)),

such that the pair (u, χ) fulfills (2.31), coupled with

(2.37) χt ∈Mε(ut) = argmin
σ∈H1(Ω)

Fε(ut, σ) a.e. in (0, T ),

(yielding in particular (2.32)), and the initial and boundary conditions (2.29).
In fact, any generalized Minimizing Movement in H−1(Ω) is an Energy solution of the gradient
flow (GF) generated by φε, u0, f (cf. Theorem 3) and solves (2.31), (2.37),(2.29).
Finally, a completely analogous existence result holds in the case of Neumann boundary conditions

and f ∈ L2(0, T ;L2(Ω)), by simply replacing H−1(Ω) and H1
0 (Ω) with

(
H1(Ω)

)′
and H1(Ω) in

(2.36).
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Remark 2.4. [43] adopts a discretization scheme which is different from the Minimizing Movement

one (1.19,1.20) induced by the functional (2.35) in
(
H1(Ω)

)′
. Correspondingly, the solutions χt of

[43] are only µ-minimizers of (2.37) for an (arbitrarily small) constant µ > 0 and they satisfy the
weak Lyapunov-type condition

φε(us) +

∫ s

0

∫

Ω

|∇ϑ|2 dx dt ≤ φε(u0) +

∫ s

0

∫

Ω

fϑ dx dt, for a.e. s ∈ (0, T ).

Besides (2.37), Theorem 2.3 (cf. (5.46)) shows that every Minimizing Movement solution u is in
fact an energy solution and therefore satisfies the stronger energy identity

(2.38) φε(us) +

∫ s

0

∫

Ω

|∇ϑ|2 dx dt = φε(u0) +

∫ s

0

∫

Ω

fϑ dx dt, ∀ s ∈ [0, T ].

In the particular case f ≡ 0, (2.38) shows that the potential φε is non increasing along the solution
u.

Example 5 (The Stefan-Gibbs-Thomson Problem). If we formally pass to the limit as ε ↓ 0
in (2.26,2.37), we get a system where equation (2.26)

(2.39) ∂tu− ∆(u− χ) = f in Ω × (0, T ),

is coupled with the minimum condition for χt := χ(·, t)
(2.40) χt ∈ argmin

σ
F0(u(t), σ) = M0(u(t)) in (0, T ),

for the functional

F0(u, χ) :=

∫

Ω

(1

2
|u− χ|2 + I{−1,1}(χ)

)
dx+ α

∫

Ω

|Dχ|,

where α =
∫ 1

−1

√
2εW (ρ) dρ = 2

√
2

3 , I{−1,1} is the indicator function of the non convex set {−1, 1},
and Dχ is the distributional gradient of χ: it is a Borel vector measure, whose total variation |Dχ|
is defined on every open set A ⊂ Ω by

(2.41) |Dχ|(A) =

∫

A

|Dχ| := sup
{ ∫

A

χdiv ζ dx : ζ ∈ C1
0 (A; Rm), sup

Ω
|ζ| ≤ 1

}
.

F0(u, χ) is the functional obtained by taking the Γ-limit of Fε, for u fixed in L2(Ω) [32, 31] (see
also [9] in the case (2.34) of space-dependent coefficients). Denoting by BV (Ω; {−1, 1}) the subset
of all the functions of bounded variation taking their values in the set {−1, 1}, (2.40) may be also
rephrased for every time t ∈ (0, T ) as

(2.42)

χt ∈ BV (Ω; {−1, 1}), and
∫

Ω

|Dχt| −
∫

Ω

utχt dx ≤
∫

Ω

|Dσ| −
∫

Ω

utσ dx ∀σ ∈ BV (Ω; {−1, 1}).

At each time t ∈ (0, T ) we can associate with the characteristic function χt the phases E±
t and

their common essential boundary St [2, Def. 3.60]

(2.43) E±
t :=

{
x ∈ Ω : χ(x, t) = ±1

}
, St = ∂∗E+

t = ∂∗E−
t ;

De Giorgi-Federer Theorems [2, Thm. 3.59, 3.61] show that St is countably (m−1)-rectifiable
and

(2.44)
1

2
|Dχt| = Hm−1bSt, Dχt = νt · |Dχt| = νtDχt = 2νt · Hm−1bSt,

where the (Borel) vector field νt : St → Sm−1 is the inner measure theoretic normal to E+
t .

As showed by [35, 43] following the argument of [28], the limit of (2.27) yields the Gibbs-
Thomson condition

H = ϑt νt on St
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for the mean curvature vector H at the evolving phase interface St: its weak formulation reads
[27, 43]

(2.45)
α

∫

Ω

(
div ζ − νTt Dζ νt

)
d|Dχt| =

∫

Ω

div(ϑtζ)χt dx, ϑt := ut − χt,

∀ ζ ∈ C2(Ω; Rm), ζ · n = 0 on ∂Ω.

We refer to (2.39,2.40,2.45) as the Stefan-Gibbs-Thomson problem; its formulation as a gradient
flow was suggested by A. Visintin and existence of (Lyapunov) solutions has been first proved by
S. Luckhaus in the pioneering paper [26] (see also [27]) and then further investigated in [47, VIII].
The proof is based on a time discretization technique (whose link with the present Minimizing
Movement scheme (1.19,1.20) will be discussed in the next Remark 2.7) and a clever passage
to the limit, which relies on careful capacity type estimates for Sobolev functions defined on Ω;
abstract versions of this argument have been further proposed and investigated in [35, 42, 38].
The convergence of quasistationary phase field model (2.26,2.27) to the Stefan-Gibbs-Thomson
problem has been proved by [35, 43].

As in the previous example, we will obtain a solution of the system (2.26, 2.40) supplemented
with the conditions

(2.46) u(x, 0) = u0(x) in Ω, u− χ = 0 on ∂Ω × (0, T ),

by solving the gradient flow equation (GF) in the Hilbert space H := H−1(Ω) for the functional

(2.47) φ0(u) := inf
σ∈BV (Ω)

F0(u, σ)

with domain D(φ0) = L2(Ω) ⊂ H . By adopting this gradient flow approach, we are able to
retrieve Luckhaus’s existence result [26], and we get some insight into the Lyapunov inequality
satisfied by u.

Theorem 2.5. Let Ω be a C1 connected open set. For every u0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω))
the gradient flow equation (GF) for the functional (2.47) in H := H−1(Ω) has a (Lyapunov,
according to Theorem 1) solution u ∈ H1(0, T ;H−1(Ω)) which solves the Stefan-Gibbs-Thomson
problem, i.e., there exists (a measurable selection) χt = χ(·, t) ∈M0(ut), t ∈ (0, T ), such that

(2.48) ϑ = u− χ ∈ L2(0, T ;H1
0 (Ω) ∩ L∞(0, T ;L2(Ω)),

and the pair (u, χ) solves the initial-boundary value problem (2.39, 2.40, 2.45, 2.46).
Moreover, u and χ fulfill for a.e. s, t ∈ (0, T ), s ≤ t, the Lyapunov inequality

(2.49)

∫ t

s

∫

Ω

|∇ϑ(x, r)|2 dx dr+F (ut, χt) ≤ F (us, χs) +

∫ t

s

〈fr, ϑr〉 dr.

We postpone the proof of this result to Section 5: here we only recall the crucial link with the
abstract theory of the previous section: if u ∈ D(∂`φ0) ⊂ L2(Ω) then the limiting subdifferential
∂`φ(u) contains a unique element ξ and it satisfies

(2.50) ξ = −∆ϑ, ϑ = u− χ ∈ H1
0 (Ω), χ ∈M0(u), (2.45) holds.

Remark 2.6. As detailed in [26, Page 106], since for m ≤ 3 the Sobolev imbedding theorem
yields ut = ϑt+χt ∈ Lp(Ω) for a.e. t ∈ (0, T ) with p = 2m/(m−2) > m, the minimality condition
satisfied by χt (2.42) and the regularity results for minimal surfaces yield that the interface St
can be locally represented as the graph of a C1,1/4 function g, i.e. after a change of coordinates
at each point x ∈ Ω there exists an open ball Bρ(x) such that

(2.51) E−
t ∩Bρ(x) =

{
(x′, xm) ∈ R

m−1 × R : xm > g(x′)
}
∩Bρ(x).

In this new reference system, (2.45) becomes (see [2, 7.33], [27, Page 4])

(2.52) −α div
( ∇g(x′)√

1 + |∇g(x′)|2
)

= θ(x′, g(x′)),

which is the original condition of [26, page 102].
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Remark 2.7. According to the Minimizing Movement approach (1.19,1.20), the solution u of
the Stefan-Gibbs-Thomson problem is approximated by the sequence {Unτ }Nn=0, τ = T/N , whose
elements recursively minimize

(2.53) Φnτ (U) :=
1

2τ
‖U − Un−1

τ ‖2
H−1(Ω) + φ0(U)

(for the sake of simplicity, here we consider the case f ≡ 0 and we omit to indicate the explicit
dependence on τ, Un−1

τ , Xn−1
τ in the various functionals). Taking into account (2.47), this problem

is equivalent to find the couple (Unτ , X
n
τ ) which minimizes

(2.54) Φ̃nτ (U,X) :=
1

2τ
‖U − Un−1

τ ‖2
H−1(Ω) + F0(U,X).

The discretization algorithm introduced by Luckhaus in [27] is equivalent to (2.54), but it gives a
distinguished role to the variable X instead of U . More precisely, by introducing the new variable
Θ := U −X and writing Φ̃nτ in terms of the couple (Θ, X) as

Ψn
τ (Θ, X) :=

‖Θ − Θn−1
τ +X −Xn−1

τ ‖2
H−1(Ω)

2τ
+ α

∫

Ω

|DX| +
∫

Ω

(1

2
|Θ|2 + I{−1,1}(X)

)
dx,

the minimum problem for Ψn
τ can be split two iterated minima

min
(Θ,X)

Ψn
τ (Θ, X) = min

X
ψnτ (X), where ψnτ (X) := min

Θ
Ψn
τ (Θ, X).

It is easy to check that for a fixed X the minimum ψnτ (X) of Ψn
τ (X, ·) is attained at a unique

Θ = Θ(X) ∈ H1
0 (Ω), which is determined by the Euler equation

(2.55) Θ − τ∆Θ = Θn−1
τ +Xn−1

τ −X, Θ(X) = Kτ (Θ
n−1
τ +Xn−1

τ −X),

where Kτ := (I − τ∆)−1. We thus find

‖Θ − Θn−1
τ +X −Xn−1

τ ‖2
H−1(Ω)

2τ
+

1

2

∫

Ω

|Θ|2 dx =
1

2

(
τ‖∆Θ‖2

H−1(Ω) + ‖Θ‖2
L2(Ω)

)

=
1

2

(
τ‖Θ‖2

H1

0
(Ω) + ‖Θ‖2

L2(Ω)

)
=

1

2H
−1(Ω)

〈
Θ − τ∆Θ,Θ

〉
H1

0
(Ω)

=
1

2

∫

Ω

(
Θn−1
τ +Xn−1

τ −X
)
Kτ

(
Θn−1
τ +Xn−1

τ −X
)
dx

=
1

2

∫

Ω

(
X −Xn−1

τ

)
Kτ

(
X −Xn−1

τ

)
dx−

∫

Ω

XKτ

(
Θn−1
τ

)
dx+ Cn−1

τ

where Cn−1
τ = C(Θn−1

τ , Xn−1
τ ) is independent of X. It follows that

ψnτ (X) = α

∫

Ω

|Dχ|+
∫

Ω

I{−1,1}(X)dx+
1

2

∫

Ω

(
X−Xn−1

τ

)
Kτ

(
X−Xn−1

τ

)
dx−

∫

Ω

XKτ

(
Θn−1
τ

)
dx+Cn−1

τ

and the algorithm

given (Θn−1
τ , Xn−1

τ ) find Xn
τ which minimizes ψnτ , Θn

τ := Kτ (X
n−1
τ + Θn−1

τ −Xn
τ ),

coincides with the algorithm (2h) introduced by [27, page 12].

3. Hilbert space valued Young Measures and chain rule

In this section we mainly discuss two technical tools, which we will extensively use in the sequel.
The first one is concerned with parametrized measures with values in a Hilbert space: we shall

deduce from this well-established theory a version of the fundamental theorem [5, Thm.1] (see also
[8]), in the context of weak topologies.

Then, by means of a measurable selection result, we will study the relations between parametrized
measures and the Chain Rule conditions we have presented in the Introduction.

3.1. Parametrized Young measures. First of all, we fix some notation and we recall the notion
of (time dependent) parametrized measures.
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Notation. Let E be a separable metric space: we denote by B(E) its Borel σ-algebra, while L is
the σ-algebra of the Lebesgue measurable subsets of (0, T ), and L⊗B(E) is the product σ-algebra
on (0, T )×E. A L⊗B(E)-measurable function h : (0, T )×E → (−∞,+∞] is a normal integrand
if

(3.1) v 7→ ht(v) := h(t, v) is l.s.c. on E for a.e. t ∈ (0, T ).

When E = H is a Hilbert space, we say that a L⊗B(H )-measurable functional h : (0, T )×H →
(−∞,+∞] is a weakly normal integrand if

(3.2) v 7→ ht(v) = h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ).

Definition 3.1 ((Time dependent) parametrized measures). A parametrized measure in
the separable metric space E is a family ν := {νt}t∈(0,T ) of Borel probability measures on E such
that

(3.3) t ∈ (0, T ) 7→ νt(B) is L-measurable ∀B ∈ B(E).

We denote by Y(0, T ;E) the set of all parametrized measures.

A version of Fubini’s Theorem [21, p. 20-II] states that for every parametrized measure ν =
{νt}t∈(0,T ), there exists a unique measure ν on L ⊗ B(E) defined by

ν(I ×A) =

∫

I

νt(A) dt ∀ I ∈ L, A ∈ B(E).

Moreover, for every L ⊗ B(E)-measurable function h : (0, T ) × E → [0,+∞], the function

t ∈ (0, T ) 7→
∫

E

h(t, ξ) dνt(ξ) is L-measurable,

and the Fubini’s integral representation formula holds:

(3.4)

∫

(0,T )×E
h(t, ξ) dν(t, ξ) =

∫ T

0

( ∫

E

h(t, ξ)dνt(ξ)
)
dt.

Note that (3.4) holds even for ν-integrable real valued functions.
If ν is concentrated on the graph of a measurable function u : (0, T ) → E, then νt = δu(t) for

a.e. t ∈ (0, T ), where δu(t) denotes the Dirac’s measure carried by {u(t)}. In this case, by (3.4)
∫

(0,T )×E
h(t, ξ) dν(t, ξ) =

∫ T

0

h(t, u(t)) dt

for every L ⊗ B(E)-measurable and nonnegative function h.
The following theorem is a direct consequence of [5, Thm.1] (see also [6, Thm. 2.2], [7, Thm.

4.2], [45, Thm. 16]).

Theorem 3.2 (The fundamental Theorem for weak topologies). Let {vn}n∈N be a bounded
sequence in Lp(0, T ;H ), for some p > 1. Then there exists a subsequence k 7→ vnk

and a
parametrized measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;H ) such that for a.e. t ∈ (0, T )

(3.5) lim sup
k↑+∞

|vnk
(t)| < +∞, νt is concentrated on the set L(t) :=

⋂∞
p=1

{
vnk

(t) : k ≥ p
}w

of the weak limit points of {vnk
(t)}, and

(3.6) lim inf
k→∞

∫ T

0

h(t, vnk
(t)) dt ≥

∫ T

0

(∫

H

h(t, ξ) dνt(ξ)

)
dt

for every weakly normal integrand h such that h−(·, vnk
(·)) is uniformly integrable. In particular,

(3.7)

∫ T

0

(∫

H

|ξ|p dνt(ξ)
)
dt ≤ lim inf

k→∞

∫ T

0

|vnk
(t)|p dt < +∞,

and, setting

(3.8) v(t) :=

∫

H

ξ dνt(ξ), we have vnk
⇀ v in Lp(0, T ;H ).
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Finally, if νt = δv(t) for a.e. t ∈ (0, T ), then

(3.9) 〈vnk
, w〉 → 〈v, w〉 in L1(0, T ) ∀w ∈ Lq(0, T ;H ),

1

q
+

1

p
= 1.

and, up to an extraction of a further subsequence independent of t (still denoted by vnk
)

(3.10) vnk
(t) ⇀ v(t) for a.e. t ∈ (0, T ).

Proof. We cannot apply directly [5, Thm.1], since H , endowed with its weak topology, is not a
metrizable space: we circumvent this difficulty by introducing an even weaker metric on H , which
induces the usual weak convergence on every bounded set, and by considering the new sequence
vn(t) := (vn(t), |vn(t)|), with values in the metric space

(3.11) E :=
{

v = (v, w) ∈ H × R : |v| ≤ w
}
⊂ H × R.

This construction is well known (see e.g. [13]), and even easier in Hilbert spaces: indeed, we fix
an orthonormal basis {em}m∈N in H , and we define

(3.12) |||v|||2 :=
∞∑

m=0

2−m|〈em, v〉|2 ∀ v ∈ H .

Then, we consider the following distance on E

(3.13) d(v1,v2) := |||v1 − v2||| + |w1 − w2|, if vi = (vi, wi) ∈ E, i = 1, 2,

observing that

(3.14) vn = (vn, wn) ∈ E, vn → v = (v, w) in E ⇔
{
vn ⇀ v weakly in H ,

wn → w in R.

It is immediate to check that E is separable and complete with the distance (3.13); moreover,
bounded weakly closed subsets of E are compact with respect to this new topology. In particular,
any intersection of closed balls of H × R with E is a Borel subset of E. Therefore, for any Borel
subset B of H × R we have

B ∈ B(H × R) ⇒ B ∩ E ∈ B(E);

thus, any Borel (probability) measure µ on E can be trivially extended to a Borel (probability)
measure on H × R.

We can now apply Balder’s Theorem [5, Thm.1] to the sequence vn := (vn, |vn|) in E, and
we thus find a subsequence vnk

and a parametrized measure µ = { µt }t∈(0,T ) ∈ Y(0, T ;E) such
that for a.e. t ∈ (0, T )

(3.15) µt is concentrated on the set L(t) :=
⋂∞
p=1

{
vnk

(t) : k ≥ p
}E
, vnk

(t) is bounded

(i.e., L(t) is the set of the E-limit points of {vnk
(t)}; the boundedness of vnk

(t) follows, e.g., by
[42, Thm. 2]), and

(3.16) lim inf
k→∞

∫ T

0

g(t, vnk
(t), |vnk

(t)|) dt ≥
∫ T

0

(∫

E

g(t, v, w) dµt(v, w)

)
dt

for every E-normal integrand g such that g−(·, vnk
(·), |vnk

(·)|) is uniformly integrable.
Setting

(3.17) νt(A) := µt
(
E ∩ (A× [0,+∞))

)
∀A ∈ B(H ),

we obtain a parametrized measure ν := {νt}t∈(0,T ) which satisfies (3.5) and (3.6). Indeed, by (3.15)
the sequences {vnk

(t)}k∈N are bounded in H for a.e. t ∈ (0, T ), and we note that for a.e. t ∈ (0, T )

L(t) ⊂ L(t) × [0,+∞) and, from (3.15), µt(E \ L(t)) = 0.

Then, taking into account (3.17), we conclude that

νt(H \ L(t)) = µt(E \ (L(t) × [0,+∞))) ≤ µt(E \ L(t)) = 0,
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which yields (3.5). In the end, (3.6) follows from (3.16) simply by choosing g(t, v, w) := h(t, v)
and observing that ∫

E

h(t, v) dµt(v, w) =

∫

H

h(t, v) dνt(v),

whereas we deduce (3.8) from (3.7) by choosing the family of weakly normal integrands

h(t, v) := 〈w(t), v〉 with w ∈ Lq(0, T ;H ).

Finally (3.9) follows by the same argument, by putting

h(t, v) := |〈v − v(t), w(t)〉| with w ∈ Lq(0, T ;H ).

(3.10) follows from the boundedness of vnk
(t) (3.5) and (3.16), by choosing g(t, v, ρ) := −|||v −

v(t)|||. �

3.2. Young measures and the Chain Rule. We have stated the Chain Rule conditions (chain1,2)
in a sort of “global” formulation: roughly speaking, whenever we know that a curve v ∈ H1(0, T ;H )
admits a global selection ξ ∈ L2(0, T ;H ) in the limiting subdifferential ∂`φ ◦ v, then we are able
to evaluate the time derivative of φ ◦ v in terms of v′ and of that particular selection ξ outside a
negligible set N ⊂ (0, T ), which in principle depends on ξ.

We have adopted this point of view, since these kinds of conditions are easier to check in several
concrete cases (we will see an important example in Proposition 5.7 later on); on the other hand,
it would often be useful to know if the following two stronger properties, valid e.g. in the convex
case, hold too:

(1) the chain rule holds outside a negligible set N which does not depend on the particular
selection ξ;

(2) if t ∈ (0, T ) \ N , we can choose an arbitrary element of ∂`φ(v(t)) in order to evaluate the
time derivative of φ ◦ v.

We are going to show now that the Chain Rule conditions (chain1,2) imply the two properties
above, which are also suitable to deal with Young measures.

Before stating this result, we recall that aff A (resp. affA) denotes the affine hull (resp. its
closure) of a subset A ⊂ H (1.8), and we set |∂◦

` φ(v)| := infξ∈∂`φ(v) |ξ| (1.9), with the convention
inf ∅ = +∞.

We will see in Lemma 3.4 below that if v ∈ C0(0, T ;H ) with v(t) ∈ D(∂`φ) for a.e. t ∈ (0, T ),
then the map t 7→ |∂◦` φ(v(t))| is measurable and

(3.18)

∫ T

0

|∂◦` φ(v(t))|2 dt < +∞ ⇔
{

∃ξ ∈ L2(0, T ;H ) :

ξ(t) ∈ ∂`φ(v(t)) for a.e. t ∈ (0, T ).

Theorem 3.3. Let us suppose that φ satisfies the Chain Rule condition (chain1), let v ∈
H1(0, T ;H ) be such that φ◦v is a.e. equal to a function ϕ of bounded variation and v(t) ∈ D(∂`φ)
for a.e. t ∈ (0, T ).

(1) If

(3.19)

∫ T

0

|∂◦` φ(v(t))|2 dt < +∞,

then

(3.20) ϕ′(t) = 〈ξ, v′(t)〉 ∀ξ ∈ aff
(
∂`φ(v(t))

)
for a.e. t ∈ (0, T ).

(2) If µ = {µt}t∈(0,T ) is a Young measure in H satisfying

(3.21)

∫ T

0

∫

H

|ξ|2 dµt(ξ) dt < +∞, µt(H \ ∂`φ(v(t))) = 0 for a.e. t ∈ (0, T ),

then

(3.22) ϕ′(t) =

∫

H

〈ξ, v′(t)〉 dµt(ξ) for a.e. t ∈ (0, T ).
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Proof. (1). The next lemma shows that we can find a sequence (ζn)n∈N ⊂ L2(0, T ;H ) and a
Borel set D ⊂ (0, T ) with full measure, i.e.

∣∣(0, T ) \ D
∣∣ = 0, such that

(3.23) {ζn(t) : n ∈ N} ⊂ ∂`φ(v(t)) ⊂ {ζn(t) : n ∈ N} ∀ t ∈ D.
Applying the Chain Rule (chain1) to each map ζn, we can find negligible sets Nn such that

ϕ′(t) = 〈ζn(t), v′(t)〉 ∀ t ∈ (0, T ) \ Nn.

Therefore, setting D0 := D \ ⋃Nn, we have

ϕ′(t) = 〈ζn(t), v′(t)〉 ∀n ∈ N, ∀ t ∈ D0,

and this relation extends to aff
{
ζn(t) : n ∈ N

}
, which coincides with aff

(
∂`φ(v(t))

)
.

(2). Condition (3.21) yields that ∂`φ(v(t)) 6= ∅ for a.e. t ∈ (0, T ) and (3.19) is satisfied, since

|∂◦` φ(v(t))|2 ≤
∫

H

|ξ|2 dµt(ξ) for a.e. t ∈ (0, T ).

Then, by the previous claim, (3.20) holds: since µt is a.e. concentrated on ∂`φ(v(t)), integrating
(3.20) in H with respect to µt yields (3.22). �

We conclude this section with the following measurable selection result, which is the technical
crucial point of the proof of Proposition 3.3.

Lemma 3.4. Let v : (0, T ) → H be a Borel map and D ⊂ (0, T ) be a Borel set such that

(0, T ) \ D is negligible, ∂`φ(v(t)) 6= ∅ for t ∈ D.
Then, there exists a sequence of (strongly) measurable maps ζn : (0, T ) → H such that

(3.24) {ζn(t) : n ∈ N} ⊂ ∂`φ(v(t)) ⊂ {ζn(t) : n ∈ N} for t ∈ D.
In particular, the map t 7→ |∂◦φ(v(t))| = infn∈N |ζn(t)| is measurable; if (3.19) holds, too, then we
can choose the family {ζn}n∈N so that ζn ∈ L2(0, T ;H ) for every n ∈ N.

Proof. On behalf of [16, Thm. III.22], (3.24) follows once we prove that the graph of the
multivalued function t ∈ D 7→ ∂`φ(v(t)), i.e., the set

G := {(t, ξ) ∈ D × H : ξ ∈ ∂`φ(v(t))},
is a Borel subset of D × H .
To check this, it suffices to note that the set

G := graph(∂`φ) =
{
(v, ξ) ∈ H × H : ξ ∈ ∂`φ(v)

}

admits the representation G =
⋃
m∈N

Gm, where Gm is the set of all (v, ξ) ∈ H × H satisfying

∃ξn ∈ ∂φ(vn) s.t. vn → v, ξn ⇀ ξ, sup
n

{
φ(vn), |ξn|

}
≤ m.

In fact, G is a Borel subset of H × H since Gm is a closed subset of H × H for every m ∈ N:
indeed, let (vk, ξk) ∈ Gm and (v, ξ) ∈ H such that

lim
k↑+∞

(
|vk − v| + |ξk − ξ|

)
= 0.

Recalling (3.12) and (3.14), we thus find points ξkn ∈ ∂φ(vkn), n ∈ N, such that

εkn := |vkn − vk| + |||ξkn − ξk||| → 0 as n ↑ +∞, sup
n,k

{
φ(vkn), |ξkn|

}
≤ m.

Choosing the integer n = nk such that εknk
= k−1, we get vknk

→ v, ξknk
⇀ ξ, since the H -norms

of ξkn are uniformly bounded.
Finally, G may be represented as

G = {(t, ξ) ∈ D × H : (v(t), ξ) ∈ G},
and it is a Borel set, too, being v Borel on (0, T ) and H separable.
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In order to prove the second part of the lemma, let {ζn}n∈N be a family of measurable maps
satisfying (3.24), and let us introduce the measurable sets which are recursively defined by

A0 := ∅, Ak :=
{
t ∈ D : |ζk(t)| < |∂◦` φ(v(t))| + 1

}
\
k−1⋃

j=0

Aj .

By construction, the family {Ak}k∈N is disjoint,
⋃
k∈N

Ak = D, and |ζk(t)| ≤ |∂◦` φ(v(t))| + 1 on
Ak. The map

(3.25) ζ(t) :=

+∞∑

k=1

ζk(t)χAk
(t),

is a measurable selection of ∂`φ(v(t)) and belongs to L2(0, T ;H ) since |ζ(t)| ≤ |∂◦` φ(v(t))|+ 1 for
every t ∈ D.

Finally, we use ζ to construct a new countable family of functions

(3.26) ζn,k(t) :=

{
ζn(t) if |ζn(t)| ≤ k,

ζ(t) otherwise,

which belong to L2(0, T ;H ), and satisfy

ζn,k(t) ∈ ∂`φ(v(t)), {ζn(t) : n ∈ N} ⊂ {ζn,k(t) : n, k ∈ N} if t ∈ D. �

4. Proof of the abstract results

In this section, we collect the proof of the main abstract theorems we have stated in the
Introduction.

We split the presentation in four steps:

(1) in the first preliminary paragraph, we study the “stationary” estimates which concern
each single step of the minimization scheme (1.20) in some detail: here, we adapt to the
presence of the discrete source term F nτ some well known estimates, which are related to
the celebrated Moreau-Yosida approximation of φ. The crucial lemma (4.2) will provide
the basic discrete energy estimate for the so called De Giorgi’s variational interpolant of
the discrete values Unτ .

(2) In the second step, we will introduce this new kind of interpolating families, and we will
briefly derive the discrete equations satisfied by the approximate solutions.

(3) The third step is devoted to the basic a priori estimates, which yield enough compactness
to extract a limit curve u ∈ GMM(Φ;u0, f) from the family of the discrete solutions;
Proposition 4.7 provides a fine description, in terms of Young measures, of the asymptotic
inequalities satisfied by this limit.

(4) Finally, in the fourth step we show that this limit curve is in fact a solution to (GF) if ∂`φ
satisfies the convexity condition (conv) or one of the Chain Rule properties (chain1,2).

The last paragraph discusses the validity of the Chain Rule for dominated concave perturbations
and contains the proof of Theorem 4.

Throughout this section, we will always assume φ to fulfill (comp), which in particular ensures
that there exists some positive constant S such that

(4.1) φ(v) +
1

2τ∗
|v|2 ≥ −S ∀v ∈ H .

In particular, since |w − v|2 ≥ 1
2 |w|2 − |v|2, we get

(4.2)
|w − v|2

τ
+ φ(w) ≥ −S − |v|2

τ∗
∀ τ ≤ τ∗, ∀ v, w ∈ H .
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4.1. Estimates for the Moreau-Yosida approximation. Here we collect some preliminary
results on the minimization problem (1.20): in particular, we introduce the linearly perturbed
functionals

φ(v; g) := φ(v) − 〈g, v〉 ∀v, g ∈ H ,

their Moreau-Yosida approximation

(4.3)





Φ(σ, g, v;w) :=
|w − v|2

2σ
+ φ(w; g),

φσ(v; g) := inf
w∈H

Φ(σ, g, v;w) v, g ∈ H , σ > 0,

and the set Jσ(v; g) where the infimum in (4.3) is attained, i.e.,

(4.4) Jσ(v; g) := argmin
w∈H

Φ(σ, g, v;w), v, g ∈ H ;

Let us point out that Jσ(v; g) is non empty for every σ ∈ (0, τ∗). Denoting by vσ the generic
element of Jσ(v; g), we also set

(4.5) d
+
σ (v; g) := sup

vσ∈Jσ(v;g)

|vσ − v|, d
−
σ (v; g) := inf

vσ∈Jσ(v;g)
|vσ − v|.

Let us collect some basic properties of φσ.

Lemma 4.1. For every v, g ∈ H and for every 0 < σ1 < σ2 there holds

(4.6)
φσ2

(v; g) ≤ φσ1
(v; g) ≤ φ(v; g), |vσ1

− v| ≤ |vσ2
− v|,

d
+
σ1

(v; g) ≤ d
−
σ2

(v; g) ≤ d
+
σ2

(v; g).

In particular, for every v, g ∈ H there exists an (at most) countable set Nv,g ⊂ (0, τ∗) such that

(4.7) d
+
σ (v; g) = d

−
σ (v; g) ∀σ ∈ (0, τ∗) \ Nv,g.

Finally, for every v ∈ D(φ) we have

(4.8)

lim
σ↓0

d
+
σ (v; g) = 0, lim

σ↓0
φσ(v; g) = lim

σ↓0
inf

vσ∈Jσ(v;g)
φ(vσ) = φ(v; g),

g ∈ ∂φ(v) ⇒ lim
σ↓0

d+
σ (v; g)

σ
= 0.

Proof. It is straightforward to check the first chain of inequalities in (4.6), yielding that the map
σ 7→ φσ(v; g) is non-increasing. As for the second inequality, we notice that

1

2σ1
|vσ1

− v|2 + φ(vσ1
) − 〈g, vσ1

〉 ≤ 1

2σ1
|vσ2

− v|2 + φ(vσ2
) − 〈g, vσ2

〉

=

(
1

2σ1
− 1

2σ2

)
|vσ2

− v|2 +
1

2σ2
|vσ2

− v|2 + φ(vσ2
) − 〈g, vσ2

〉

≤
(

1

2σ1
− 1

2σ2

)
|vσ2

− v|2 +
1

2σ2
|vσ1

− v|2 + φ(vσ1
) − 〈g, vσ1

〉,

whence (
1

2σ1
− 1

2σ2

)
|vσ1

− v|2 ≤
(

1

2σ1
− 1

2σ2

)
|vσ2

− v|2,

and the third chain of inequalities in (4.6) follows. Therefore, for every v, g ∈ H the functions
σ 7→ d+

σ (v; g), v 7→ d−σ (v; g) are non decreasing. Let Nv,g ⊂ (0, τ∗) be the (at most countable) set
of the discontinuity points of σ 7→ d±

σ (v; g): then, for every σ ∈ (0, τ∗) \Nv,g we have by (4.6) and
continuity (here we omitting the dependence on g)

(4.9)

lim inf
s↑σ

d
−
s (v) ≤ lim sup

s↑σ
d
+
s (v) ≤ d

−
σ (v) ≤ d

+
σ (v) ≤ lim inf

t↓σ
d
−
t (v) ≤ lim sup

t↓σ
d
+
t (v),

d
−
σ (v) = lim

s↑σ
d
−
s (v) = lim

t↓σ
d
−
t (v), d

+
σ (v) = lim

s↑σ
d
+
s (v) = lim

t↓σ
d
+
t (v),

whence (4.7).
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As for (4.8), recalling (4.2) let us preliminarily note that for every w ∈ H and σ < τ∗/2

φ(w) +
|w − v|2

2σ
= φ(w) +

τ∗ − 2σ

2σ(τ∗ + 2σ)
|w − v|2 +

2

τ∗ + 2σ
|w − v|2 ≥ τ∗ − 2σ

4στ∗
|w − v|2 − S − τ−1

∗ |v|2

In particular, choosing w = vσ ∈ Jσ(v; g) we obtain

(4.10)
τ∗ − 2σ

4τ∗

|vσ − v|2
σ

≤ |vσ − v|2
2σ

+ φ(vσ) + τ∗|v|2 + S.

On the other hand, the minimization scheme defining φσ yields

(4.11)
|vσ − v|2

2σ
+ φ(vσ) ≤ φ(v) − 〈g, v − vσ〉 ≤ φ(v) + 2

στ∗
τ∗ − 2σ

|g|2 +
τ∗ − 2σ

8στ∗
|vσ − v|2.

Combining (4.10) and (4.11), we infer the existence of a constant C depending only on S and τ∗
such that

(4.12) |vσ − v|2 ≤ 8σ
τ∗

τ∗ − 2σ

(
S + τ−1

∗ |v|2 + φ(v) + 2
στ∗
τ∗ − σ

|g|2
)

≤ Cσ(1 + |v|2 + φ(v) + σ|g|2),

supposing that, e.g., τ∗/(τ∗ − 2σ) < 2. Hence, since vσ is arbitrary in Jσ(v; g), we have proved the
first assertion in (4.8).

To check the second one, it suffices to remark that

φ(v; g) ≥ lim sup
σ↓0

φσ(v; g) ≥ lim inf
σ↓0

φσ(v; g) ≥ lim inf
σ↓0

inf
vσ∈Jσ(v;g)

φ(vσ; g) ≥ φ(v; g),

where we have used (4.6) and the lower semicontinuity of the functional v 7→ φ(v; g).
Finally, the last limit of (4.8) follows from the first inequality of (4.11), since by (1.1)

|vσ − v|2
2σ

≤ φ(v) − φ(vσ) − 〈g, v − vσ〉 ≤ |vσ − v| · o(1) as σ → 0. �

We point out that (4.6) yields that for every 0 < σ1 < σ2 < τ∗ the maps σ 7→ σ−1d±σ have finite
pointwise variation on (σ1, σ2).

The next lemma, though simple, contains the crucial estimate for the De Giorgi variational
interpolants we will introduce in the next paragraph (see e.g. [3, Lemma 4.1.2, Thm. 4.1.4] and
[1, Lemma 2.5]).

Lemma 4.2. Under the present assumptions, we have that for every v ∈ D(φ) and g ∈ H the
map σ 7→ φσ(v; g) is locally Lipschitz on (0, τ∗) and

(4.13)
d

dσ
φσ(v; g) = − (d+

σ (v; g))2

2σ2
= − (d−σ (v; g))2

2σ2
∀σ ∈ (0, τ∗) \ Nv,g,

(Nv,g being as in 4.7).
In particular, we have

(4.14)
|vσ0

− v|2
2σ0

+
1

2

∫ σ0

0

(d±σ (v; g))2

σ2
dσ = φ(v) − φ(vσ0

) − 〈g, v − vσ0
〉

for every 0 < σ0 < τ∗ and vσ0
∈ Jσ0

(v; g).

Proof. A simple computation yields

(4.15) φσ1
(v; g)−φσ2

(v; g) ≤ φ(vσ2
; g)+

|vσ2
− v|2

2σ1
−φ(vσ2

; g)− |vσ2
− v|2

2σ2
=

(σ2 − σ1)|vσ2
− v|2

2σ1σ2

for every σ1, σ2 ∈ (0, τ∗) and vσi
∈ Jσi

(v; g), i = 1, 2. Changing sign to the inequality and
interchanging σ1 and σ2, we obtain

φσ1
(v; g) − φσ2

(v; g) ≥ (σ2 − σ1)|vσ1
− v|2

2σ1σ2

Then, since the real map σ 7→ φσ(v; g) is non increasing, we deduce

(4.16) 0 ≤ (d+
σ1

(v; g))2

2σ1σ2
≤ φσ1

(v; g) − φσ2
(v; g)

σ2 − σ1
≤ (d−σ2

(v; g))2

2σ1σ2
∀ 0 < σ1 < σ2,
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so that σ 7→ φσ(v; g) is locally Lipschitz on (0, τ∗). Passing to the limit in (4.16) as σ1 ↑ σ and
σ2 ↓ σ and recalling (4.9), we conclude that (4.13) holds at every σ ∈ (0, τ∗) \ Nv,g.

Integrating (4.13) on (0, σ0) and using (4.8), we deduce that

|vσ0
− v|2

2σ0
+φ(vσ0

; g)−φ(v; g) = φσ0
(v; g)−lim

σ↓0
φσ(v; g) =

∫ σ0

0

d

dσ
φσ(v; g) dσ = −

∫ σ0

0

(d±σ (v; g))2

2σ2
dσ,

i.e., (4.14). �

4.2. Discrete equations and variational interpolants. Let us first briefly recall the approx-
imation algorithm for (GF) we sketched in Section 1 (cf. (1.19) - (1.20)).
At each time step τ > 0 there corresponds a partition of the interval (0, T )

Pτ := {t0 = 0 < t1 < · · · < tn < · · · < tN−1 < T ≤ tN}, tn := nτ, N ∈ N.

For f ∈ L2(0, T ;H ) (which we trivially extend to 0 outside the time interval (0, T )), we denote
by Fτ the (left-continuous) piecewise constant interpolant taking the value F nτ on (tn−1, tn]:

(4.17) Fτ (t) := Fnτ =
1

τ

∫ tn

tn−1

f(s) ds for t ∈ (tn−1, tn], n = 1, . . . , N.

Note that

τ |Fτ (t)|2 ≤ ‖f‖2
L2(tn−1,tn;H ) ∀t ∈ (tn−1, tn],(4.18)

‖Fτ‖2
L2(tm,tn;H ) ≤ ‖f‖2

L2(tm,tn;H ) ∀1 ≤ m < n ≤ N.(4.19)

Fτ → f as τ ↓ 0 strongly in L2(0, T ;H ).(4.20)

We consider an approximate solution {Unτ }Nn=0 of the iterative scheme (1.20), which, taking into
account (1.19) and the notation (4.4), may also be rephrased as

(4.21)

{
U0
τ := u0,

Unτ ∈ Jτ (U
n−1
τ ;Fnτ ) = argminV ∈H Φ(τ, Fnτ , U

n−1
τ ;V ),

for n = 1, . . . , N. For τ < τ∗ (comp) guarantees that this minimization scheme always admits a
solution. We have already denoted by Uτ the piecewise constant interpolant of the values {Unτ }nn=0,
and by Uτ the corresponding piecewise linear interpolant, defined by

(4.22) Uτ (t) := Unτ , Uτ (t) :=
tn − t

τ
Un−1
τ +

t− tn−1

τ
Unτ , t ∈ (tn−1, tn].

We also introduce the following variational interpolant, due to E. De Giorgi, for which the local
energy inequality (4.14) plays a key role.

Definition 4.3 (De Giorgi variational interpolants). We denote by Ũτ any interpolant of
the discrete values {Unτ }Nn=0 given by

(4.23)





Ũτ (0) = u0, and, for t = tn−1 + σ ∈ (tn−1, tn],

Ũτ (t) ∈ Jσ(U
n−1
τ ;Fnτ ) = argminV ∈H Φ(σ, Fnτ , U

n−1
τ ;V ),

such that the map t 7→ Ũτ (t) is Lebesgue measurable in (0, T ).

Remark 4.4 (Measurability of Ũτ ). Since the map σ 7→ Jσ(U
n−1
τ ;Fnτ ) is compact valued

and upper semicontinuous, the existence of a measurable selection Ũτ (tn−1 + σ) ∈ Jσ(U
n−1
τ ;Fnτ ),

σ ∈ (tn−1, tn], is ensured by [16, Corollary III.3, Thm. III.6].

Note that when t = tn, the minimization scheme in (4.23) coincides with the one in (4.21), so
that we can always assume that

(4.24) Ũτ (tn) = Uτ (tn) = Uτ (tn) = Unτ , for every n = 1, . . . , N.
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Further, (4.23) and the standard calculus properties (1.21) of the Fréchet subdifferential yield the
discrete inclusion

(4.25)
Ũτ (t) − Un−1

τ

t− tn−1
+ ∂φ(Ũτ (t)) 3 Fnτ ∀ t ∈ (tn−1, tn], n = 1, . . . , N,

which we also write as

(4.26) Θ̃τ (t) + ∂φ(Ũτ (t)) 3 Fτ (t) ∀ t ∈ (0, T ),

where

(4.27) Θ̃τ (t) :=
Ũτ (t) − Un−1

τ

t− tn−1
for t ∈ (tn−1, tn].

Note that (4.25) reduces to

(4.28)
Unτ − Un−1

τ

τ
+ ∂φ(Unτ ) 3 Fnτ ,

at the nodes tn of the partition, which can be equivalently rephrased as

(4.29) U ′
τ (t) + ∂φ(Uτ (t)) 3 Fτ (t) for a.e. t ∈ (0, T ).

Finally, recalling (4.5), we introduce the real function Gτ by

Gτ (t) :=
d+
σ (Un−1

τ ;Fnτ )

σ
, for t = tn−1 + σ ∈ (tn−1, tn].

Note that

(4.30) Gτ (t) ≥
|Ũτ (t) − Un−1

τ |
t− tn−1

= |Θ̃τ (t)| for t = tn−1 + σ ∈ (tn−1, tn].

4.3. A priori estimates and compactness of the approximate solutions. Preliminarily, we
recall the following well known Discrete Gronwall Lemma:

Lemma 4.5. Let B, b, and κ be positive constants fulfilling 1− b ≥ 1
κ > 0 and let {an} ⊂ [0,+∞)

be a sequence satisfying

an ≤ B + b

n∑

k=1

ak ∀n ∈ N.

Then, {an} can be bounded by

(4.31) an ≤ κBeκ bn ∀n ∈ N.

Proof. (4.31) can be easily checked by induction: for n = 1 we have

a1 ≤ B + ba1 ⇒ a1 ≤ κB ≤ κBeκb;

assuming (4.31) for all n < n̄, we get

κ−1an̄ ≤ (1 − b)an̄ ≤ B + b

n̄−1∑

n=1

an ≤ B + bκB

n̄−1∑

n=1

eκb n = B + bκB
eκbn̄ − 1

eκb − 1

≤ B + bκB
eκbn̄ − 1

κb
≤ B +Beκbn̄ −B ≤ Beκbn̄ �

Proposition 4.6 (A priori estimates). For 0 < τ < τ∗ let Uτ , Uτ , and Ũτ be families of inter-
polant defined by (4.22) and (4.23), respectively, in terms of discrete solutions of the minimization
scheme (4.21). Then, the discrete energy equality

(4.32)
1

2

∫ t

s

(
|U ′
τ (σ)|2 + |Gτ (σ)|2

)
dσ + φ(Uτ (t)) = φ(Uτ (s)) +

∫ t

s

〈Fτ (σ), U ′
τ (σ)〉 dσ
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holds for every pair of nodes s < t ∈ Pτ .
Moreover, there exists a positive constant C, only depending on the data u0, f, and on the param-
eters τ∗, S, such that

‖Uτ‖L∞(0,T ;H ) + ‖Uτ‖L∞(0,T ;H ) + ‖Ũτ‖L∞(0,T ;H ) ≤ C,(4.33)

sup
[0,T ]

(
φ(Uτ ), φ(Ũτ )

)
≤ C,(4.34)

‖U ′
τ‖L2(0,T ;H ) + ‖Θ̃τ‖L2(0,T ;H ) ≤ C,(4.35)

‖Uτ − Uτ‖L∞(0,T ;H ) = Cτ1/2, ‖Ũτ − Uτ‖L∞(0,T ;H ) = Cτ1/2,(4.36)

for every 0 < τ ≤ τ∗/10.

Proof. First of all, starting from (4.14) and recalling (4.23), and (4.27), if we choose t ∈ (tj−1, tj ],

σ0 := tj − tj−1 = τ, g = F jτ , v = U j−1
τ , vσ := Ũτ (tj−1 + σ), 0 < σ < τ, and uσ0

= U jτ , we get

(4.37)
|U jτ − U j−1

τ |2
2τ

+
1

2

∫ tj

tj−1

|Gτ (s)|2 ds+ φ(U jτ ) = φ(U j−1
τ ) + 〈F jτ , U jτ − U j−1

τ 〉.

In particular, (4.37) yields (4.32) for s = tj−1, t = tj ; the general case of (4.32) trivially follows
by adding up the contributions (4.37) of each subinterval of the partition.

Also, (4.37) implies

(4.38)
|U jτ − U j−1

τ |2
4τ

≤ φ(U j−1
τ ) − φ(U jτ ) + τ |F jτ |2.

Turning to the proof of (4.33), we may first of all note that, for every 0 < τ < τ∗ and every
n = 1, . . . , N , we have

1

2
|Unτ |2 −

1

2
|u0|2 =

n∑

k=1

(
1

2
|Ukτ |2 −

1

2
|Uk−1
τ |2

)
≤

n∑

k=1

(
|Ukτ |2 − |Ukτ ||Uk−1

τ |
)
≤

n∑

k=1

|Ukτ ||Ukτ − Uk−1
τ |

≤ η

n∑

k=1

|Ukτ − Uk−1
τ |2

2τ
+

1

2η

n∑

k=1

τ |Ukτ |2 ≤
n∑

k=1

2η
(
φ(Uk−1

τ ) − φ(Ukτ ) + τ |F kτ |2
)

+
1

2η
τ |Ukτ |2

≤ 2η
(
φ(u0) − φ(Unτ ) + ‖f‖2

L2(0,tn;H )

)
+

τ

2η

n∑

k=1

|Ukτ |2

≤ η

τ∗
|Unτ |2 + 2η

(
φ(u0) + S + ‖f‖2

L2(0,tn;H )

)
+

τ

2η

n∑

k=1

|Ukτ |2,

where we have used Young’s inequality for some η > 0, the estimate (4.18), and also (4.1) in the
last inequality. Then, multiplying the previous inequality by 4 and choosing η := τ∗/4, we get

(4.39) |Unτ |2 ≤ 2|u0|2 + 2τ∗
(
φ(u0) + S + ‖f‖2

L2(0,tn;H )

)
+

8τ

τ∗

n∑

k=1

|Ukτ |2.

We can apply Lemma 4.5 with κ := 5, corresponding to τ ≤ τ∗/10, and we easily conclude the
L∞ bounds for Uτ and Uτ in (4.33).

As for (4.35), using Young’s inequality and the estimate (4.19) we deduce from (4.32)

1

4

∫ tn

0

|U ′
τ (s)|2 ds+

1

2

∫ tn

0

|Gτ (s)|2 ds+ φ(Uτ (tn)) ≤ φ(u0) + ‖f‖2
L2(0,T,H ).(4.40)

Taking into account (4.1) and the estimate (4.33) for Uτ as well, we easily infer from (4.40) the

L∞ bound for φ(Uτ ), and the L2 estimates for U ′
τ and Θ̃τ , also in view of (4.30).

Further, the first of (4.36) ensues from

(4.41) |Unτ − Uτ (t)|2 ≤ τ

∫ tn

tn−1

|U ′
τ (s)|2 ds ≤ Cτ,

on account of (4.35).
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On the other hand, (4.12) yields

|Ũτ (t) − Un−1
τ |2 ≤ Cτ

(
1 + φ(Un−1

τ ) + τ |Fnτ |2
)
≤ Cτ,

where the last inequality follows from (4.18), as well as the estimate (4.33) for Uτ and (4.34) for

φ(Uτ ); we thus get the L∞ bound for Ũτ of (4.33) and the second estimate of (4.36). Finally, we

have by the definition of Ũτ

φ(Ũτ (t)) ≤ φ(Un−1
τ ) + 〈Fnτ , Ũτ (t) − Un−1

τ 〉 if t ∈ (tn−1, tn],

which yields the uniform bound for φ(Ũτ ) in (4.34). �

Lemma 1.2 is a consequence of the following more refined result.

Proposition 4.7 (Compactness of the approximate solutions). Suppose that φ satisfies
(comp). Then, given any vanishing sequence k 7→ τk ↓ 0 of time steps, we can find a further
subsequence (still labelled τk), a limit generalized Minimizing Movement u ∈ H1(0, T ;H ), a non-
increasing function ϕ : [0, T ] → R, and two parametrized Young measures µ = {µt}t∈(0,T ), ν =
{νt}t∈(0,T ), such that as k ↑ +∞

Uτk
, Uτk

, Ũτk
→ u in L∞(0, T ;H ),

(4.42)

U ′
τk
⇀ u′ weakly in L2(0, T ;H ),

(4.43)

{
φ(Uτk

(t)) → ϕ(t) ≥ φ(u(t)) ∀ t ∈ [0, T ],

ϕ(0) = φ(u0),

(4.44)

µ (resp. ν) is the limit Young measure associated with U ′
τk

(resp. Θ̃τk
),

and µt, νt are concentrated on f(t) − ∂`φ(u(t)) for a.e. t ∈ (0, T ),

(4.45)

1

2

∫ t

s

(∫

H

|ξ|2 dµr(ξ) +

∫

H

|ξ|2 dνr(ξ)
)
dr + ϕ(t) ≤ ϕ(s) +

∫ t

s

〈f(r), u′(r)〉 dr, ∀ 0 ≤ s < t ≤ T,

(4.46)

1

2

∫ t

s

(
lim inf
k↑+∞

|U ′
τk

(r)|2 +

∫

H

|ξ|2 dνr(ξ)
)
dr + ϕ(t) ≤ ϕ(s) +

∫ t

s

〈f(r), u′(r)〉 dr, ∀ 0 ≤ s < t ≤ T.

(4.47)

Finally, if φ also satisfies the continuity assumption (cont), then we have φ(u(t)) = ϕ(t) for a.e.
t ∈ (0, T ).

Proof. It is easy to infer from (4.35) and from the elementary inequality

|Uτ (t) − Uτ (s)| ≤ (t− s)
1

2 ‖U ′
τ‖L2(0,T ;H ),

that {Uτ} is equicontinuous on H , for 0 < τ ≤ τ∗/10. Further, (4.33) and (4.34) yield that
{Uτ (t)}τ is contained in some sublevel of the function u 7→ φ(u)+ 1

2τ∗
|u|2: recalling (comp), we con-

clude that {Uτ (t)}τ is relatively compact in H for every t ∈ [0, T ]. Thanks to the equicontinuity
property, the Ascoli compactness Theorem yields that {Uτ}τ is relatively compact in C0([0, T ];H ).

Furthermore, always in view of (4.33,· · · ,4.36) and of well-known weak compactness results,
we deduce that there exists a function u ∈ H1(0, T ;H ) for which the convergences (4.42, 4.43)

hold (note that Uτk
, Uτk

, and Ũτk
converge to the same limit thanks to (4.36)). In particular,

u ∈ GMM(Φ;u0, f).
Then, (4.44) is a consequence of Helly’s Theorem: indeed, let us introduce the piecewise constant

functions

(4.48) tτ (t) := min
{
nτ : t ≤ nτ

}
, so that tτ (t) − τ < t ≤ tτ (t),
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and let

ψτ (t) :=

∫ tτ (t)

0

〈Fτ (s), U ′
τ (s)〉 ds.

Let us observe that the map t 7→ ζτ (t) := φ(Uτ (t)) − ψτ (t) is nonincreasing; therefore, by Helly’s
Theorem we can suppose that, up to the extraction of a suitable subsequence,

ζ(t) := lim
k↑+∞

ζτk
(t) exists for every t ∈ [0, T ],

and defines a non increasing function ζ. On the other hand, since limτ↓0 tτ (t) = t, (4.43) and
(4.20) yield

ψτk
(t) → ψ(t) :=

∫ t

0

〈f(s), u′(s)〉 ds ∀ t ∈ [0, T ];

it follows that

ϕ(t) := lim
k↑+∞

φ(Uτk
(t)) = lim

k↑+∞
ζτk

(t) − ψτk
(t) = ζ(t) − ψ(t) exists for all t ∈ [0, T ],

and defines a function of bounded variation, which satisfies ϕ(t) ≥ φ(u(t)) in [0, T ] thanks to the
lower semicontinuity of φ.

As for the last assertion in the statement, (4.35) and Fatou’s Lemma yield

lim inf
k↑+∞

|U ′
τk

(t) − Fτk
(t)| < +∞ for a.e. t ∈ (0, T );

if (cont) holds, this bound and the inclusion (4.29) entail that lim infk↑+∞ φ(Uτk
(t)) = φ(u(t))

for a.e. t ∈ (0, T ); since φ(Uτk
(t)) → ϕ(t), we get ϕ(t) = φ(u(t)) for a.e. t ∈ (0, T ).

Since we can assume that Fτk
converges to f pointwise a.e., the a priori estimates (4.34), (4.35),

as well as the inclusions (4.26) and (4.29), yield (4.45), via the fundamental theorem for Young
measures 3.2.

Finally, (4.32) yields

1

2

∫ t

tτ (s)

(
|U ′
τ (σ)|2 + |Θ̃τ (σ)|2

)
dσ + φ(Uτ (t)) ≤ φ(Uτ (s)) +

∫ tτ (t)

tτ (s)

〈Fτ (σ), U ′
τ (σ)〉 dσ

for every choice 0 ≤ s < t ≤ T .
Since tτ (s) ↓ s as τ ↓ 0, we can pass to the limit in the previous inequality thanks to (3.7), thus

obtaining for every 0 ≤ s < s′ < t ≤ T

1

2

∫ t

s′

( ∫

H

|ξ|2 dµr(ξ) +

∫

H

|ξ|2 dνr(ξ)
)
dr + ϕ(t) ≤ ϕ(s) +

∫ t

s

〈f(r), u′(r)〉 dr.

Since s′ is arbitrary, letting s′ ↓ s we obtain (4.46). Finally, (4.47) follows by the same argument
and Fatou’s Lemma. �

4.4. Convergence results.
Proof of Theorem 1. Now, we are going to show that the limit function u ∈ GMM(Φ;u0, f) of
Proposition 4.7 is a solution to (GF), if φ satisfies (conv). It is immediate to check that u is a
solution of (GF): (3.8) of the Fundamental Theorem for Young Measures shows that

(4.49) u′(t) =

∫

H

ξ dµt(ξ) for a.e. t ∈ (0, T ),

and (4.45) ensures that for a.e. t ∈ (0, T ) µt is concentrated on f(t)− ∂`φ(u(t)); since ∂`φ(u(t)) is
a closed convex set of H , (4.49) yields that u′(t) ∈ f(t) − ∂`φ(u(t)).

Moreover, (1.28) is a direct consequence of (4.46) (for s = 0) and (4.44), since

|u′(t)|2 ≤
∫

H

|ξ|2 dµt(ξ),
∣∣(∂`φ(u(t)) − f(t)

)◦∣∣2 ≤
∫

H

|ξ|2 dνt(ξ), ϕ(0) = φ(u0).

Finally, if (cont) holds, we have φ(u(s)) = ϕ(s) for a.e. s ∈ (0, T ), and (1.29) still follows from
(4.46) and the previous inequality.
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Proof of Theorem 2. Inequality (4.46) and the Lebesgue differentiation theorem yield for a.e.
s ∈ (0, T )

(4.50)
1

2

∫

H

|η|2 dµs(η) +
1

2

∫

H

|ξ|2 dνs(ξ) ≤ −ϕ′(s) + 〈f(s), u′(s)〉.

If (chain1) holds, since we know that φ ◦ u = ϕ a.e. in (0, T ) by (cont), then Theorem 3.3 and
(4.45) ensure that

(4.51) ϕ′(s) =

∫

H

〈f(s) − ξ, u′(s)〉 dνs(ξ) = 〈f(s) − θ(s), u′(s)〉 for a.e. s ∈ (0, T ),

where we have denoted by θ(s) the barycenter of νs, i.e. θ(s) :=
∫

H
ξ dνs(ξ). Combining (4.50)

and (4.51), we get

(4.52)
1

2

∫

H

|η|2 dµs(η) +
1

2

∫

H

|ξ|2 dνs(ξ) ≤ 〈θ(s), u′(s)〉 for a.e. s ∈ (0, T ).

Since u′(s) =
∫

H
η dµs(η), and

∫

H

|ξ−θ(s)|2 dνs(ξ) =

∫

H

|ξ|2 dνs(ξ)−|θ(s)|2,
∫

H

|η−u′(s)|2 dµs(η) =

∫

H

|η|2 dµs(η)−|u′(s)|2,

from (4.52) we obtain

(4.53)
1

2

∫

H

|η − u′(s)|2 dµs(η) +
1

2

∫

H

|ξ − θ|2 dνs(ξ) +
1

2
|u′(s) − θ(s)|2 ≤ 0,

i.e.,

(4.54) u′(s) = θ(s) ∈ f(s) − ∂`φ(u(s)), µs = νs = δu′(s) for a.e. s ∈ (0, T ),

since µs, νs are concentrated on f(s) − ∂`φ(u(s)) for a.e. s ∈ (0, T ). In particular, u is a strong
solution of (GF) and (1.34) holds.

Applying (3.20), we get

ϕ′(s) = −〈f(s) − u′(s), u′(s)〉 = 〈ξ, u′(s)〉 ∀ ξ ∈ aff
(
∂`φ(u(s))

)
for a.e. s ∈ (0, T ),

i.e., denoting by Ks the closed affine hull aff
(
f(s) − ∂`φ(u(s))

)
, u′(s) satisfies the system

(4.55) u′(s) ∈ Ks, 〈u′(s), u′(s) − η〉 = 0 ∀ η ∈ Ks,

which yields (1.31).
Finally, observe that (1.33) follows from (4.29) if we show that

(4.56) lim inf
k↑+∞

|U ′
τk

(s) − u′(s)|2 = 0 for a.e. s ∈ (0, T ).

Choosing w := u′ in (3.9) and possibly extracting a further subsequence (still denoted by τk), we
get

(4.57) lim
k↑+∞

〈U ′
τk

(s) − u′(s), u′(s)〉 = 0 for a.e. s ∈ (0, T ).

Inequality (4.47), the Lebesgue differentiation Theorem and the previous computations yield

1

2
lim inf
k↑+∞

|U ′
τk

(s)|2 +
1

2
|u′(s)|2 ≤ 〈θ(s), u′(s)〉 = |u′(s)|2,

i.e.,

lim inf
k↑+∞

|U ′
τk

(s)|2 ≤ |u′(s)|2 for a.e. s ∈ (0, T ).

Combining this relation with (4.57), we end up with

lim inf
k↑+∞

|U ′
τk

(s) − u′(s)|2 = lim inf
k↑+∞

(
|U ′
τk

(s)|2 − |u′(s)|2 + 2〈u′(s) − U ′
τk

(s), u′(s)〉
)

≤ lim inf
k↑+∞

(
|U ′
τk

(s)| − |u′(s)|2
)
≤ 0. �
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Proof of Theorem 3. We first consider the “W 1,1(0, T )” case discussed in Remark 1.5. By
(chain2), the map φ ◦ u belongs to the Sobolev space W 1,1(0, T ), and it coincides almost ev-
erywhere with its continuous representative; moreover, (4.46) with s = 0, (4.44), and the lower
semicontinuity of φ yield

lim
t↓0

φ(u(t)) = φ(u0),

so that 0 is a continuity point for φ◦u. Let T ⊂ [0, T ] be the Lebesgue set of φ◦u, thus satisfying
|(0, T ) \ T | = 0; by (3.22) we have

(4.58) φ(u(t)) = φ(u0) +

∫ t

0

∫

H

〈f(r) − ξ, u′(r)〉 dνr(ξ) dr ∀ t ∈ T .

Inserting this identity in (4.46) for s := 0, t ∈ T and arguing as in the proof of Theorem 2, we
obtain the integrated form of (4.53)

(4.59)

∫ t

0

( ∫

H

|η − u′(r)|2 dµr(η) +

∫

H

|ξ − θ(r)|2 dνr(ξ) + |u′(r) − θ(r)|2
)
dr ≤ 0,

which yields (4.54) and the energy identity (1.36).
Then, (1.31) can be proved in the same way as in the previous proof; passing to the limit in

(4.32) for s = 0 and taking into account (4.58), we get for t ∈ T

lim sup
k↑∞

∫ tτk
(t)

0

(1

2
|U ′
τk

(s)|2 +
1

2
|Θ̃τk

(s)|2
)
ds+φ(Uτk

(t)) ≤ φ(u0)+

∫ t

0

〈f(s), u′(s)〉 ds =

∫ t

0

|u′(s)|2 ds+φ(u(t)).

Since each term is lower semicontinuous, i.e.,

lim inf
k↑+∞

∫ tτk
(t)

0

|U ′
τk
|2 ds ≥

∫ t

0

|u′|2 ds, lim inf
k↑+∞

∫ tτk
(t)

0

|Θ̃τk
|2 ds ≥

∫ t

0

|u′|2 ds,

and lim infk↑+∞ φ(Uτk
(t)) ≥ φ(u(t)), by comparison we infer for every t ∈ T

(4.60) lim
k↑∞

φ(Uτk
(tk)) = φ(u(t)), lim sup

k↑∞

∫ t

0

|U ′
τk

(s)|2ds ≤
∫ t

0

|u′(s)|2 ds,

which entails the strong convergence (1.37) and thus that (up to the extraction of a further
subsequence) U ′

τk
(t) → u′(t) for a.e. t ∈ (0, T ). Finally, (1.33) follows by passing to the limit in

(4.29), also recalling (4.20). When φ ◦ u is avsolutely continuous, too, then the set T coincides
with [0, T ], and we recover the complete statement of Theorem 3.

4.5. The chain rule and concave perturbations: proof of Theorem 4. We split the proof
in two lemmata; observe that the following assumption (4.61) is slightly weaker than (1.39).

Lemma 4.8 (Subdifferential decomposition). Let φ : H → (−∞,+∞] be a function satisfy-
ing (comp), let ψ1 : D(φ) → R be l.s.c., and let ψ2 : co

(
D(φ)

)
→ R be convex and l.s.c. in D(φ).

If φ admits the decomposition φ = ψ1 − ψ2 in D(φ), and

(4.61)
∀M ≥ 0 ∃ ρ < 1, γ ≥ 0 such that |∂◦ψ2(u)| ≤ ρ|∂◦ψ1(u)| + γ

for every u ∈ D(∂ψ1) with max(φ(u), |u|) ≤M ,

then every g ∈ ∂φ(u) with max(φ(u), |u|) < M can be decomposed as

(4.62) g = λ1 − λ2, λi ∈ ∂ψi(u), |λi| ≤ (1 − ρ)−1
(
|g| + γ

)
, i = 1, 2,

where ρ, γ are given in terms of M by (4.61).

Proof. Let us formally extend ψ1, ψ2 to +∞ outsideD(φ) and co
(
D(φ)

)
respectively; we introduce

the Moreau-Yosida approximation of the convex function ψ2:

(4.63) ψ2,ε(v) := inf
z∈co(D(φ))

( |z − v|2
2ε

+ ψ(z)

)
∀ v ∈ H ,
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and its l.s.c. envelope

(4.64) ψ̄2(v) := sup
ε>0

ψ2,ε(v) = lim
ε↓0

ψ2,ε(v), with ψ̄2(v) = ψ2(v) if v ∈ D(φ).

In particular, (4.64) yields that

(4.65) ∂ψ2(v) = ∂ψ̄2(v) ∀ v ∈ D(φ).

Let us denote by Jε the related resolvent operator associated with ∂ψ̄2, i.e. Jε := (I + ε∂ψ̄2)
−1,

which is a contraction in H . Since ψ2 is convex, it is well known [12, Prop. 2.6, 2.11] that ψ2,ε is
a C1,1 convex function whose Fréchet differential Dψ2,ε satisfies

(4.66) Dψ2,ε(u) =
u− Jε(u)

ε
, Dψ2,ε(u) ⊂ ∂ψ̄2(Jε(u)), |Dψ2,ε(u)| ≤ |∂◦ψ̄2(u)|.

For a given u ∈ D(∂φ) with max{φ(u), |u|} < M, and for every 0 < τ < τ∗/8 and 0 < ε < ε∗, we
consider the minimization problem

(4.67) find w ∈ H such that w ∈ argmin
z∈H

{ |z − u|2
2τ

+ ψ1(z; g) − ψ2,ε(z)

}
;

since ψ1(·; g) − ψ2,ε∗ ≥ ψ1(·; g) − ψ2,ε ≥ φ(·; g), assumption (comp) ensures that the minimum
problem (4.67) admits at least a solution wε,τ , which fulfills by construction

|wε,τ − u|2
2τ

+ φ(wε,τ ; g) ≤
|wε,τ − u|2

2τ
+ ψ1(wε,τ ; g) − ψ2,ε(wε,τ )

≤ ψ1(u; g) − ψ2,ε∗(u).

Applying the estimate (4.12) of Lemma 4.1 to the functional ψ1(·; g) − ψ2,ε, we deduce that for
ε, τ sufficiently small we have

(4.68) max {φ(wε,τ ), |wε,τ |} ≤M,
|wε,τ − u|√

τ
≤M,

where M ′ = C(1 +M + |g|2). In particular, the sequence {wε,τ}ε,τ is relatively compact in H by
(comp). Moreover, since wε,τ complies with (4.67), there exists λ1

ε,τ ∈ ∂ψ1(wε,τ ) fulfilling

(4.69)
wε,τ − u

τ
+ λ1

ε,τ −Dψ2,ε(wε,τ ) = g,

whence ∂ψ1(wε,τ ) is non empty. Then, we deduce from (4.61) that ∂ψ2(wε,τ ) = ∂ψ̄2(wε,τ ) 6= ∅;
setting

λ2
ε,τ := Dψ2,ε(wε,τ ) ∈ ∂ψ̄2(Jε(wε,τ )),

we get by (4.66) and (4.61)

(4.70) |λ2
ε,τ | = |Dψ2,ε(wε,τ )| ≤ |∂◦ψ2(wε,τ )| ≤ ρ|λ1

ε,τ | + γ.

Combining (4.69) and (4.70), we obtain

|λ1
ε,τ | ≤

|wε,τ − u|
τ

+ |Dψ2,ε(wε,τ )| + |g| ≤ |wε,τ − u|
τ

+ |g| + ρ|λ1
ε,τ | + γ,

i.e.,

(4.71) |λ1
ε,τ | ≤ (1 − ρ)−1

( |wε,τ − u|
τ

+ |g| + γ
)
.

Taking into account (4.68), (4.70), and (4.71), we deduce that, for every 0 < τ < τ∗/8, there exist
wτ , λ

1
τ , and λ2

τ ∈ H and a suitable subsequence k 7→ εk ↓ 0 such that

wεk,τ → wτ , λ1
εk,τ

⇀ λ1
τ , λ2

εk,τ
⇀ λ2

τ as k ↑ +∞.

We notice that λ2
τ ∈ ∂ψ̄2(wτ ) = ∂ψ2(wτ ) by the strong-weak closedness of ∂ψ̄2 and by (4.65), that

ψ̄2(wτ ) = ψ2(wτ ), and therefore wτ is a minimizer of

(4.72) v 7→ 1

2τ
|v − u|2 + φ(v; g) v ∈ D(φ),
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so that

g − τ−1(wτ − u) ∈ ∂φ(wτ ).

Passing to the limit in (4.69) as ε ↓ 0, we find

(4.73)
wτ − u

τ
+ λ1

τ − λ2
τ = g,

so that λ1
τ is the sum of a vector in ∂φ(wτ ) and a vector in ∂ψ2(wτ ); since ψ1 = φ+ ψ2 in D(φ),

we deduce that λ1
τ ∈ ∂ψ1(wτ ), too. The estimates (4.71) and (4.73) yield

(4.74)





|λ1
τ | ≤ (1 − ρ)−1

( |wτ − u|
τ

+ |g| + γ
)
,

|λ2
τ | ≤ ρ(1 − ρ)−1

( |wτ − u|
τ

+ |g| + γ
)

+ γ.

Recalling (4.8), as g ∈ ∂φ(u) we have limτ↓0
wτ−u
τ = 0; therefore (4.74) yield, up to some subse-

quence,

(4.75) λ1
τ ⇀ λ1, λ2

τ ⇀ λ2 ∈ ∂ψ̄2(u) = ∂ψ2(u), as τ ↓ 0, λ1 − λ2 = g ∈ ∂φ(u)

with

(4.76) |λ1| ≤ (1 − ρ)−1
(
|g| + γ

)
, |λ2| ≤ ρ(1 − ρ)−1

(
|g| + γ

)
+ γ ≤ (1 − ρ)−1

(
|g| + γ

)

Arguing as in the previous lines, (4.75) yields λ1 ∈ ∂ψ1(u), and (4.62) follows. �

Lemma 4.9. Let us assume that φ : H → (−∞,+∞] admits the decomposition φ = ψ1 − ψ2 as
in Lemma 4.8, and let us suppose that (1.39) holds. Then for every M ≥ 0 there exists a constant
C > 0 such that every g ∈ ∂`φ(u) with max(φ(u), |u|) ≤M can be decomposed as

(4.77) g = λ1 − λ2, λ1 ∈ ∂`ψ1(u), λ
2 ∈ ∂ψ2(u), |λi| ≤ C

(
1 + |g|

)
, i = 1, 2.

In particular, if ψ1 satisfies one of the Chain Rule conditions (chain1,2), then φ satisfies the same
chain rule property, too.

Proof. By the previous lemma and the definition of limiting subdifferential, if g ∈ ∂`φ(u), then we
can find sequences uk ∈ D(∂φ), gk = λ1

k − λ2
k ∈ ∂φ(uk), λ

i
k ∈ ∂ψi(uk), i = 1, 2, k ∈ N, such that

(4.78)
uk → u, gk = λ1

k − λ2
k ⇀ g,

M ′ = sup
k

(φ(uk), |uk|) < +∞, |λik| < C(M ′)(1 + |gk|).

Possibly extracting a subsequence, we thus have

(4.79) λik ⇀ λi, i = 1, 2, λ2 ∈ ∂ψ2(u), g = λ1 − λ2.

Moreover,

lim sup
k↑+∞

ψ2(uk) ≤ lim sup
k↑+∞

〈λ2
k, uk − u〉 + ψ2(u) = ψ2(u) < +∞

and therefore

lim sup
k↑+∞

ψ1(uk) = lim sup
k↑+∞

(
φ(uk) + ψ2(uk)

)
≤M ′ + ψ2(u) < +∞

It follows that λ1 ∈ ∂`ψ1(u) and (1.39) yields

(4.80) |λ1| ≤ |g| + |λ2| ≤ |g| + ρ|λ1| + γ, i.e. |λ1| ≤ (1 − ρ)−1
(
|g| + γ

)
,

which proves (4.77).
Let us now suppose that ψ1 satisfies (chain1); in order to check that φ satisfies the same

property, let us consider a curve v ∈ H1(0, T ;H ) such that φ(v(t)) = ϕ(t) for a.e. t ∈ (0, T ),
ϕ being of bounded variation, and a selection ξ ∈ L2(0, T ;H ) with ξ(t) ∈ ∂`φ(v(t)) for a.e.
t ∈ (0, T ). By (4.77), we get

(4.81)

∫ T

0

|∂◦`ψ1(v(t))|2 dt+

∫ T

0

|∂◦ψ2(v(t))|2 dt < +∞.
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Being ψ2 convex, (4.81) shows that ψ2 ◦ v is absolutely continuous with

(4.82)
d

dt
ψ2(v(t)) = 〈λ2, v′(t)〉 ∀λ2 ∈ ∂ψ2(v(t)) for a.e. t ∈ (0, T ).

Thus, ϕ+ψ2 ◦v is of bounded variation, and ψ1(v(t)) = ϕ(t)+ψ2(v(t)) for a.e. t ∈ (0, T ); applying
Theorem 3.3 we get

(4.83)
d

dt

(
ϕ(t) + ψ2(v(t))

)
= 〈λ1, v′(t)〉 ∀λ1 ∈ ∂`ψ1(v(t)) for a.e. t ∈ (0, T ),

and therefore

d

dt
ϕ(t) = 〈λ1 − λ2, v′(t)〉 ∀λ1 ∈ ∂`ψ1(v(t)), λ

2 ∈ ∂ψ2(v(t)) for a.e. t ∈ (0, T ).

Applying (4.77) again we conclude; when ψ1 satisfies (chain2), too, it is immediate to check that
φ ◦ u belongs to AC(0, T ). �

5. Coupling diffusion equations with quasistationary conditions

5.1. An abstract setting. Let us consider a standard Hilbert triplet

(5.1) V ⊂ H ≡ H ′ ⊂ V ′, the inclusions being dense and compact.

Since we have adopted the usual convention of identifying H with its dual, the duality pairing
between V and V ′ is the (unique) extension by continuity of the H-scalar product (·, ·)H , i.e.

(5.2) V ′〈u, v〉V = (u, v)H ∀u ∈ H, v ∈ V.

We are given a nonnegative, symmetric, and continuous bilinear form a : V × V → R, thus
satisfying for some γ > 0

(5.3) 0 ≤ a(u) := a(u, u) ≤ γ‖u‖2
V ∀u ∈ V,

and a proper functional F : H → [0,+∞] whose sublevels

(5.4)
{
χ ∈ H : F (χ) ≤ s

}
are strongly compact in H.

We denote by A : V → V ′ the continuous linear operator associated with a

(5.5) V ′〈Au, v〉V = a(u, v) ∀u, v,∈ V,

and by Λ : H → 2H the H-subdifferential of F , i.e.

(5.6) ϑ ∈ Λχ ⇔ χ ∈ D(F ) ⊂ H, lim inf
‖η−χ‖H→0

F (η) − F (χ) − (ϑ, η − χ)H
‖η − χ‖H

≥ 0.

In this section, we aim at studying evolution problems of the following type

Problem 5.1 (Quasi-stationary evolution systems). Given u0 ∈ H and f : (0, T ) → V ′, find
a pair u, χ : (0, T ) → H, with u− χ ∈ V , which satisfies at a.e. t ∈ (0, T ) the system

(5.7)





u′(t) +A(u(t) − χ(t)) = f(t) in V ′,

χ(t) + Λχ(t) 3 u(t) in H,

u(0) = u0.

We will distinguish two cases:

1) The form a is coercive, i.e., there exists a > 0 s.t.

(5.8) a(u) ≥ a‖u‖2
V ∀u ∈ V ;

2) The form a is only weakly coercive, i.e., there exists λ, a > 0 such that

(5.9) a(u) + λ‖u‖2
H ≥ a‖u‖2

V ∀u ∈ V.

In fact, since the quadratic form a(·) is nonnegative, for every λ > 0 we can find a > 0 such
that (5.9) holds.
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1) The coercive case . If (5.8) holds, we will denote by H the dual space

(5.10)
H := V ′, endowed with the scalar product

〈u, v〉H := a(A−1u,A−1v) = V ′〈u,A−1v〉V = V ′〈v,A−1u〉V ,

and we want to show that the system (5.7) is associated with the Gradient Flow in H of the
functional φ defined by

φ(u) := inf
χ∈H

F (u, χ), F (u, χ) :=

{
1
2‖u− χ‖2

H + F (χ) if u, χ ∈ H,

+∞ otherwise.
(5.11)

Remark 5.2 (H or V ′?). The spaces H and V ′ are linearly and topologically isomorphic, the
sole possible difference being the choice of their scalar products. On the other hand, the notion
of Gradient Flow is intrinsically related to this choice, and in the applications the scalar product
(5.10) could be different from the one usually adopted in V ′. Therefore, we will use the letter H

when we want to stress the role of the particular scalar product and highlight the link with the
general theory of Gradient Flows.

The connection with the previous theory is provided by the following preliminary result:

Proposition 5.3 (The subdifferential of the marginal function φ). The functional φ : H →
[0,+∞] (5.11) defined by has domain D(φ) = H and satisfies (comp) and (cont). For every
u ∈ H, the infimum in (5.11) is attained, and therefore for every u ∈ H the set

(5.12) M(u) :=
{
χ ∈ H : F (u, χ) = φ(u)

}
is not empty,

and satisfies

(5.13) χ ∈M(u) ⇒ χ+ Λχ 3 u.

If u ∈ D(∂φ) (the Fréchet subdifferential of φ in H ), ∂φ(u) is single-valued, and the set M(u)
contains a unique element χ, which fulfils

(5.14) u− χ ∈ V, ∂φ(u) = A(u− χ) ∈ H = V ′.

For every u ∈ D(∂`φ) (the domain of the limiting subdifferential of φ in H )

(5.15) ξ ∈ ∂`φ(u) ⇒ ∃χ ∈M(u) : u− χ ∈ V, ξ = A(u− χ)

Proof. Let us point out that for every positive constant C the sublevels

{(u, χ) ∈ H ×H : F (u, χ) ≤ C}

are compact H × H, whence we easily get the existence of a minimizer χ ∈ M(u) of (5.11) for
every u ∈ H. Since φ(u) = F (u, χ) for every χ ∈M(u), it is immediate to check that the sublevels
of φ are closed and bounded in H, hence compact in H , so that φ satisfies (comp). Then, (5.13)
is simply the Euler equation satisfied by the minimizer of (5.11).

Let us now suppose that u ∈ H, ξ ∈ ∂φ(u), and let χ be any element in M(u): observe that
the minimality of χ yields

φ(w) = min
η∈H

1

2
‖η − w‖2

H + F (η) ≤ 1

2
‖χ− w‖2

H + F (χ) =
1

2
‖χ− w‖2

H − 1

2
‖χ− u‖2

H + φ(u),

so that for every w ∈ H we have, by the very definition of subdifferential,

0 ≤ lim inf
w→u

φ(w) − φ(u) − 〈ξ, w − u〉H
|w − u|H

≤ lim inf
w→u

1
2‖w − χ‖2

H − 1
2‖u− χ‖2

H − 〈ξ, w − u〉H
|w − u|H
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Choosing w := u+ hz, h ∈ R, 0 6= z ∈ H, we get

0 ≤ lim inf
h→0

1
2h

2‖z‖2
H + h(u− χ, z)H + 1

2‖u− χ‖2
H − 1

2‖u− χ‖2
H − h〈ξ, z〉H

|h| |z|H
= |z|−1

H
lim inf
h→0

(1

2
|h| ‖z‖2

H +
h

|h|
(
(u− χ, z)H − 〈ξ, z〉H

)

= −|z|−1
H

∣∣∣(u− χ, z)H − 〈ξ, z〉H
∣∣∣.

Being z ∈ H and χ ∈M(u) arbitrary, recalling (5.2) and (5.10), we get (5.14).
Finally, if ξ ∈ ∂`φ(u), then the definition of limiting subdifferential and (5.14) show that there

exist a constant C and sequences uk, χk ∈ H, uk − χk ∈ V, ξk ∈ H such that

(5.16)
χk ∈M(uk), ξk = A(uk − χk) = ∂φ(uk),

uk → u, ξk ⇀ ξ in H , φ(uk) = F (uk, χk) ≤ C.

It follows that uk−χk converges to A−1ξ weakly in V and strongly in H; being the sequence {χk}
relatively compact in H, we get that uk → u and χk → χ := u − A−1ξ strongly in H. Then, we
can pass to the limit in the family of inequalities

F (uk, χk) ≤ F (uk, η) ∀ η ∈ H,

obtaining

F (u, χ) ≤ F (u, η) ∀ η ∈ H, i.e., χ ∈M(u).

Finally, the above inequalities yield

(5.17) lim sup
k→+∞

φ(uk) = lim sup
k→+∞

F (uk, χk) ≤ lim sup
k→+∞

F (uk, χ) = F (u, χ) = φ(u),

which shows that φ satisfies (cont) and the approximating family χk satisfies

(5.18) lim
k→+∞

F (χk) = F (χ).

�

Corollary 5.4 (Gradient flows solve the system). If u ∈ H1(0, T ;H ) is a solution of the
Gradient Flow equation (GF) in H for the functional φ defined by (5.11) and the data u0 ∈ H, f ∈
L2(0, T ;H ), then u ∈ L∞(0, T ;H) and there exists χ ∈ L∞(0, T ;H) with

(5.19) u− χ ∈ L2(0, T ;V ), χ(t) ∈M(u(t)) for a.e. t ∈ (0, T ),

such that the pair (u, χ) solves the system (5.7).

Applying Theorem 1, we readily get the following existence result:

Theorem 5.5. Under the previous assumptions, let us suppose that for every u ∈ H the set

(5.20)
{
χ ∈ H : χ ∈M(u), u− χ ∈ V

}
is convex.

Then, Theorem 1 can be applied, and every generalized Minimizing Movement u ∈ GMM(Φ;u0, f)
with u0 ∈ H, f ∈ L2(0, T ;H ) is a H1(0, T ;H )-solution of Problem 5.1, fulfilling the properties
stated in Corollary 5.4.

Now, we investigate the possibility to prove a chain rule for the functional φ. Let us denote by
G the functional

(5.21) G(χ) :=
1

2
‖χ‖2

H + F (χ), χ ∈ H,

and by G∗ its Legendre-Fenchel-Moreau conjugate (in H), i.e.,

(5.22) G∗(u) := sup
χ∈H

(u, χ)H −G(χ) = sup
χ∈H

(u, χ)H −
(1

2
‖χ‖2

H + F (χ)
)
.
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Of course, G∗ is a convex functional defined in D(φ) = H, and

(5.23)
G∗(u) ≥ (u, χ)H −G(χ) ∀χ ∈ H,

G∗(u) = (u, χ)H −G(χ) iff χ ∈M(u).

Since φ admits the decomposition (cf. Remark 1.9)

(5.24) φ(u) =
1

2
‖u‖2

H −G∗(u),

it is natural to check if Theorem 4 can be applied. The easiest case is provided by the following
result:

Proposition 5.6. Suppose that for every M ≥ 0 there exist constants ρ < 1, γ ≥ 0 such that the
following a priori estimate holds:

(5.25)
u ∈ V, χ ∈M(u),

max(‖u‖H , F (χ)) ≤M

}
⇒ χ ∈ V, ‖Aχ‖V ′ ≤ ρ‖Au‖V ′ + γ.

Then, the decomposition (5.25) provides a dominated perturbation of ψ1 := 1
2‖ · ‖2

H . Thus, φ
satisfies the Chain rule condition (chain2), which in this case yields that t 7→ F (u(t), χ(t)) is
absolutely continuous with

(5.26)
d

dt
(φ ◦ u) =

d

dt
F (u, χ) = V ′〈u′, u− χ〉V a.e. in (0, T ),

whenever

(5.27) u ∈ H1(0, T ;V ′), χ ∈M(u), sup
t∈[0,T ]

F(u, χ) < +∞, u− χ ∈ L2(0, T ;V ).

Proof. Let us first observe that

(5.28) λ1 ∈ ∂ψ1(u) ⇔ u ∈ V, λ1 = Au.

Thus, if u ∈ D(∂ψ1), then also u ∈ D(∂ψ2), since it is easy to check by (5.25) that

(5.29) χ ∈M(u) ∩ V ⇒ Aχ ∈ ∂G∗(u).

To check this, it is sufficient to notice that by (5.23) we have

(5.30)
G∗(v) −G∗(u) ≥ (v, χ)H −G(χ) −

(
(u, χ)H −G(χ)

)

= (v − u, χ)H = 〈v − u,Aχ〉H ∀ v ∈ H.

We want to show now that if u ∈ V , then

(5.31) λ2 ∈ ∂G∗(u) ⇒ ξ := A−1λ2 ∈ co
(
M(u)

)
.

Indeed, recall that if λ2 ∈ ∂G∗(u), then

G∗(v) −G∗(u) ≥ 〈λ2, v − u〉H = (ξ, v − u)H ∀ v ∈ H,

whence, denoting by G∗∗ the lower semicontinuous and convex envelope of G in H, we get

(5.32) (ξ, u)H −G∗(u) ≥ sup
v

(ξ, v)H −G∗(v) = G∗∗(ξ).

Since G has compact sublevels in H and it has superlinear growth, there exists a Borel probability
measure µ in H such that

(5.33)

∫

H

λ dµ(λ) = ξ, G∗∗(ξ) =

∫

H

G(λ) dµ(λ) ≤ G(ξ)

cf. [38, Thm. 3.6 and (3.38), p.419]. Integrating (5.32), we obtain

(5.34) G∗(u) ≤ (ξ, u)H −G∗∗(ξ) =

∫

H

((λ, u)H −G(λ)) dµ(λ).

Since (λ, u)H−G(λ) ≤ G∗(u) for every λ ∈ H, the previous inequality shows that µ is concentrated
on the set M(u), which yields (5.31) in view of (5.33).
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Further, (5.25) shows that

‖λ2‖V ′ = ‖Aξ‖V ′ ≤
∫

M(u)

|Aχ|V ′ dµ(χ) ≤ ρ‖Au‖V ′ + γ,

i.e., φ satisfies the assumptions of Theorem 4, and therefore the Chain Rule condition (chain2)
(see Remarks 1.8 and 1.9). �

The crucial assumption (5.25) in the previous proposition allows to obtain a separate control
on u and χ in V from the estimate of u− χ in the same space. The simplest case in which this is
possible is when F (χ) controls the norm of χ in V .

In some circumstances this does not occur: the next proposition show that it is sufficient to
control the norm of u and χ in a bigger space W ⊃ V , such that H lies “in the middle” between W
and V ′. This can be formalized in terms of Interpolation Theory, by asking that (W,V ′)1/2,2 ⊂ H
as in (5.37) (since (V, V ′)1/2,2 = H (5.37) is in fact an identity, up to equivalent norms). In fact,

the next result shows that for the “W 1,1(0, T )” chain rule the weaker assumption (W,V ′)1/2,1 ⊂ H
is sufficient.

Proposition 5.7. Let us suppose that W is an intermediate Banach space between V and H (i.e.
V ⊂W ⊂ H, the inclusions being continuous), which satisfies

(5.35)

(W,V ′)1/2,1 ⊂ H, e.g., for a suitable constant K > 0 ‖v‖H ≤ K ‖v‖1/2
W ‖v‖1/2

V ′ ∀ v ∈W.

If for every constant M ≥ 0 there exists a constant C > 0 such that the following a priori estimate
holds

(5.36)
u− χ ∈ V, χ ∈M(u)

max(‖u‖H , F (χ)) ≤M

}
⇒ ‖χ‖W ≤ C (1 + ‖A(u− χ)‖V ′) ,

then φ satisfies the Chain rule condition (5.26), (5.27), which corresponds to the “W 1,1(0, T )”
case of Remark 1.5. If, moreover, H satisfies the stronger interpolation property

(5.37) (W,V ′)1/2,2 ⊂ H

then φ satisfies the Chain rule condition (chain2) in its stronger “AC(0, T )” form

Proof. Let us suppose that u ∈ H1(0, T ;V ′), ξ ∈ L2(0, T ;V ′) with ξ(t) ∈ ∂`φ(v(t)) for a.e. t ∈
(0, T ) and supt∈[0,T ] φ(u(t)) < +∞; it follows from (5.15) that there exists χ ∈ L∞(0, T ;H) with
χ(t) ∈M(u(t)) and ξ(t) = A(u(t) − χ(t)) for a.e. t ∈ (0, T ); let us first show that

(5.38) φ ◦ u ∈W 1,1(0, T ),
d

dt
(φ ◦ u) = 〈A(u− χ), u′〉H a.e. in (0, T ).

For h ∈ R, t+ h ∈ (0, T ), let uh := u(· + h), χh := χ(· + h): a simple computation shows that
(5.39)

φ(uh) − φ(u) = F (uh, χh) − F (u, χ) ≤ F (uh, χ) − F (u, χ) =
1

2
‖uh − χ‖2

H − 1

2
‖u− χ‖2

H

=
1

2
(uh − u, u+ uh − 2χ)H = (uh − u, u− χ)H +

1

2
‖uh − u‖2

H ,

and, writing the same formula at the time t− h, we get

φ(u) − φ(u−h) ≤ (u− u−h, u−h − χ−h)H +
1

2
‖u− u−h‖2

H ;

replacing −h with h and inverting the sign, we end up with

φ(uh) − φ(u) ≥ (uh − u, uh − χh)H − 1

2
‖uh − u‖2

H .
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If we subtract the term h〈A(u − χ), u′〉H from both the previous inequalities and recall that
u− χ, uh − χh ∈ V , we obtain

(5.40)

〈uh − u,A(uh − χh)〉H − h〈u′, A(u− χ)〉H − 1

2
‖uh − u‖2

H

≤ φ(uh) − φ(u) − h〈u′, A(u− χ)〉H

≤ 〈uh − u,A(u− χ)〉H − h〈u′, A(u− χ)〉H +
1

2
‖uh − u‖2

H ,

hence

(5.41)

∣∣∣φ(uh) − φ(u) − h〈u′, A(u− χ)〉H
∣∣∣

≤
∣∣∣〈uh − u,A(uh − χh)〉H − h〈u′, A(u− χ)〉H

∣∣∣

+
∣∣∣〈uh − u,A(u− χ)〉H − h〈u′, A(u− χ)〉H

∣∣∣ + ‖uh − u‖2
H .

Now we choose h > 0, we divide by h, and we integrate on an interval (0, T − δ), δ > h. Recalling
that as h ↓ 0

uh − u

h
→ u′, uh − χh → u− χ strongly in L2(0, T − δ;H ),

we get

(5.42) lim sup
h↓0

∫ T−δ

0

∣∣∣
φ(uh) − φ(u)

h
− 〈u′, A(u− χ)〉H

∣∣∣ dt ≤ lim sup
h↓0

1

h

∫ T−δ

0

‖uh − u‖2
H dt.

Since u − χ ∈ V, χ ∈ M(u) a.e. in (0, T ) and ‖u‖H , F (χ) are uniformly bounded on (0, T ),
from (5.36) we get χ ∈ L2(0, T ;W ), and therefore u ∈ L2(0, T ;W ) as well, being V continuously
imbedded in W .

The interpolation inequality (5.35) thus yields

(5.43)

1

h

∫ T−δ

0

‖u− uh‖2
H dt ≤ K2

∫ T−δ

0

∥∥∥∥
u− uh
h

∥∥∥∥
V ′

‖u− uh‖W dt

≤ C‖u′‖L2(0,T ;V ′) ‖u− uh‖L2(0,T ;W ),

which goes to 0 as h ↓ 0. Then, (5.38) readily follows from (5.42) and (5.43). Finally, if (5.37)
holds, then from u ∈ L2(0, T ;W ) with u′ ∈ L2(0, T ;V ′) we deduce u ∈ C0(0, T ;H); it is easy to
check from (5.39) and the lower semicontinuity of φ that the map φ◦u is continuous and therefore
it belongs to AC(0, T ). �

Theorem 5.8 (An existence result). If either assumption (5.25) or assumptions (5.36), (5.37)
of the above propositions are verified, then for every u0 ∈ H, f ∈ L2(0, T ;V ′) Problem 5.1
admits an “energy solution” u ∈ H1(0, T ;V ′) ∩ C0([0, T ];H), χ ∈ L∞(0, T ;H) with ϑ = u− χ ∈
L2(0, T ;V ), which satisfies a.e. in (0, T ) (here a(v) := a(v, v))

χ ∈M(u), which yields χ+ Λχ 3 u,(5.44)

a(u− χ−A−1f) = min
σ∈M(u)

a(u− σ −A−1f),(5.45)

and the energy identity

(5.46)

∫ t

s

a(ϑ(r)) dr + F (u(t), χ(t)) = F (u(s), χ(s)) +

∫ t

s
V ′〈f(r), ϑ(r)〉V dr ∀ s, t ∈ [0, T ].

Moreover, u ∈ C0([0, T ];H).

The proof follows directly from Theorem 3 by elementary computations.
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2) The weakly coercive case . When the operator A is no more injective and only (5.9) holds
true, we can argue by approximation and recover exactly the same result as before.

Theorem 5.9. Theorem 5.8 also holds (except for (5.45)) in the weakly coercive case.

Proof. Let us consider the bilinear forms

aλ(u, v) := a(u, v) + λ(u, v)H ∀u, v ∈ V

which are coercive for every λ > 0; Theorem 5.8 yields the existence of an energy solution (uλ, χλ)
to Problem 5.1; since

F (uλ, χλ) ≥
1

2
‖uλ − χλ‖2

H ,

we obtain the a priori bounds

‖uλ − χλ‖L2(0,T ;V ) + ‖u′λ‖L2(0,T ;V ′) + sup
[0,T ]

F (uλ, χλ) ≤ C

with C independent of λ > 0. Thus we can pass to the limit (up to extracting a suitable vanishing
subsequence λk) as λk ↓ 0, obtaining

uλk
⇀ u in H1(0, T ;V ′), uλk

− χλk
⇀ u− χ̄ in L2(0, T ;V )

χλk
⇀∗ χ̄ in L∞(0, T ;H), uλk

(t) ⇀ u(t) in H ∀ t ∈ [0, T ],

u′ +A(u− χ̄) = f a.e. in (0, T );

In order to show the strong convergence of {A(uλk
−χλk

)} in L2(0, T ;V ′), we argue as in the proof
of Theorem 3, trying to get more information from the energy inequality. In fact, (5.46) yields

(5.47)

∫ t

0

a(u(r) − χ̄(r)) dr + φ(u(t)) ≤ lim sup
k↑+∞

∫ t

0

aλ(uλk
(r) − χλk

(r)) dr + φ(uλk
(t))

≤ φ(u0) +

∫ t

0
V ′〈f(r), u(r) − χ̄(r)〉V dr.

On the other hand, arguing as in Theorem 3.3, the Chain rule (5.26) shows that t 7→ φ(u(t)) is in
AC(0, T ) and

d

dt
(φ ◦ u) = V ′〈u′, u− χ̄〉V = V ′〈f −A(u− χ̄), u− χ̄〉V ,

so that

φ(u0) = φ(u(t)) −
∫ t

0
V ′〈f(r) −A(u(r) − χ̄(r)), u(r) − χ̄(r)〉V dr

at each point t ∈ [0, T ]. Substituting the identity in (5.47) and using the lower semicontinuity of
each term of the sum, we obtain

(5.48) A(uλk
−χλk

) → A(u−χ̄) strongly in L2(0, T ;V ′), φ(uλk
(t)) → φ(u(t)) ∀ t ∈ [0, T ].

Therefore, up to the further extraction of a subsequence (still denoted by λk), there exists a Borel
negligible set N ⊂ (0, T ) such that A(uλ − χλ) converges to A(u− χ̄) in V ′ in (0, T ) \ N .

Let now L(t) be the (not empty) set of all (strong) limit points of χλk
in H

(5.49) L(t) :=

∞⋂

p=1

{
χλk

(t) : k ≥ p
}H

,

and let us choose t ∈ (0, T ) \ N and χ ∈ L(t); there exists a vanishing subsequence λk′ ↓ 0
(possibily depending on t) such that χλk′

(t) → χ in H. From the convergence of the energies
(5.48) it is immediate to check that uλk′

(t) − χλk′
(t) → u(t) − χ in H and χ ∈M(u(t)). Further,

as A(uλk′
(t)− χλk′

(t)) converges on V ′, the weak coercivity yields uλk′
(t)− χλk′

(t) → u(t)− χ in
V . We deduce that A(u(t) − χ̄(t)) = A(u(t) − χ). Operating a measurable selection χ(t) ∈ L(t)
we conclude. �

5.2. Applications. We conclude this paper by briefly showing that the PDE Examples discussed
in Section 2 are particular cases of Problem 5.1: in each situation, the application fits in the
framework we have proposed in the first part of this section.
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The Stefan-Gibbs-Thomson Problem. Let us first consider Example 5. We have already
discussed the functional setting: V ′ = H−1(Ω), A := −∆, V := H1

0 (Ω) and

F0(χ) := α

∫

Ω

|Dχ| +
∫

Ω

I{−1,1}(χ) dx, F0(u, χ) :=
1

2
‖u− χ‖2

L2(Ω) + F0(χ),

φ0(u) := min
χ

F0(u, χ).

We want to show that in this situation we can apply Theorem 5.5.
Here the crucial remark, which is somehow hidden in the original proof by Luckhaus and was

also used in a different form by [35], is that for every u ∈ H the set
{
χ ∈ H : χ ∈M0(u), u− χ ∈ H1

0 (Ω)
}

is a singleton,

so that (5.20) trivially holds.
In fact, if χi ∈M(u) amd u− χi ∈ H1

0 (Ω), i = 1, 2, we have in particular χ1 − χ2 ∈ H1
0 (Ω); on

the other hand, since χi(x) ∈ {−1, 1} for a.e. x ∈ Ω, the range of values of χ2 − χ1 is {0, 2,−2}.
Hence, χ2−χ1 is necessarily constant (an H1-function on a connected domain cannot have jumps),
and null at the boundary, thus χ1 = χ2.

Finally, we have to check that the element in the limiting subdifferential of φ0 satisfy the Gibbs-
Thomson condition in the weak form (2.45): this important property is stated by the following
lemma:

Lemma 5.10 (The Gibbs-Thomson condition induced by ∂`φ0). Let us suppose that

(5.50) ξ = −∆ϑ ∈ ∂`φ0(u) with ϑ = u− χ ∈ H1
0 (Ω), χ ∈M0(u).

Then on the essential boundary S = ∂∗E± separating the two phases E± :=
{
x ∈ Ω : χ(x) = ±1

}

the Gibbs-Thomson condition H = ϑν holds in the weak form

(5.51) α

∫

Ω

(
div ζ−νT Dζ ν

)
d|Dχ| =

∫

Ω

div(ϑζ)χdx, ∀ ζ ∈ C2(Ω; Rm) ζ ·n = 0 on ∂Ω,

where the Radon-Nikodym derivative ν =
d(Dχ)

d|Dχ| is the measure theoretic inner normal to ∂∗E+.

Proof. Let us first suppose that ξ in (5.50) belongs to the Fréchet subdifferential ∂φ0(u). We
introduce the flow Xs : Ω → Ω associated to ζ, i.e. the family of diffeomeomorphisms satisfying
the system of ODE for (s, x) ∈ R × Ω

(5.52)

{
d
dsXs(x) = ζ(Xs(x))

X0(x) = x.

When Ω is sufficiently regular, condition ζ · n = 0 ensures that Ω is an invariant region for X s,
i.e.

(5.53) Xs(Ω) = Ω ∀s ∈ R,

and the map x 7→ Xs(x) is a C2 diffeomeomorphisms with inverse X−s; setting

(5.54) Ds(x) := DxXs(x), Js(x) := det Ds(x)

we have

(5.55)

{
d
dsDs(x) = Dζ(Xs(x))Ds(x),

D0(x) = I,

{
d
dsJs(x) = div ζ(Xs(x))Js(x),

J0(x) = 1.

We consider a perturbation of (u, ϑ, χ) given by

(5.56) χs(x) := χ(X−s(x)), ϑs(x) := ϑ(x), us := ϑ+ χs;

since χs still belongs to BV (Ω; {−1, 1}) and 1
2 |Dχs| coincides with the (m−1)-dimensional Haus-

dorff measure restricted to Ss = Xs(S), the first variation formula for the area functional [44,
Chap. 16], [2, Thm. 7.31] yields

(5.57)
d

ds

( ∫

Ω

|Dχs|
)

s=0
=

∫

Ω

(
div ζ − νT Dζ ν

)
d|Dχ|.
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Moreover,

(5.58)
d

ds

( ∫

Ω

ϑ(x)us(x) dx
)

s=0
=

d

ds

( ∫

Ω

ϑ(x)χs(x) dx
)

s=0
=

∫

Ω

div
(
ϑ ζ

)
χdx

since us − u = χs − χ and the change of variable formula yields
∫

Ω

ϑ(x)χs(x) dx =

∫

Ω

ϑ(Xs(y))Js(y)χ(y) dy.

By the very definition of subdifferential, we have

(5.59)
φ0(us) − φ0(u) −

∫

Ω

ϑ (us − u) dx = φ0(us) − φ0(u) −
〈
ξ, (us − u)

〉
H−1(Ω)

≥ o
(
‖us − u‖H−1(Ω)

)
= o

(
‖χs − χ‖H−1(Ω)

)
= o(s)

where according to Landau’s notation, o(s) denote a function depending on s such that o(s)/s→ 0
as s→ 0.

On the other hand, since us − χs = u− χ = ϑ, we have

α

∫

Ω

|Dχs| − α

∫

Ω

|Dχ| = F0(us, χs) − F0(u, χ) ≥ φ0(us) − φ0(u);

dividing (5.59) by s and passing to the limit first as s ↓ 0+ and then as s ↑ 0− we obtain

d

ds

(
α

∫

Ω

|Dχs|
)

s=0
−

∫

Ω

ϑ(x)χs(x) dx
)

s=0
= 0,

which yields (5.51).
Finally, we have to show that (5.51) holds even if ξ belongs to the limiting subdifferential

of φ0 at u. In this case, by Proposition 5.3 and (5.18), we know that there exists a sequence
(uk, ϑk, χk)k∈N which satisfies (5.50), −∆ϑk = ∂φ0(uk), and (5.51), such that

(5.60) ϑk ⇀ ϑ in H1
0 (Ω), χk → χ in L2(Ω), lim

k→∞
α

∫

Ω

|Dχk| = α

∫

Ω

|Dχ|.

Since Dχk ⇀
∗ Dχ and |Dχk|(Ω) → |Dχ|(Ω) we can pass to the limit in (5.51) as k → +∞ thanks

to Reshetnyak Theorem [2, Thm. 2.39]. �

Quasistationary phase field with Dirichlet/Neumann boundary conditions. Here, we
consider the system (2.31,2.32) introduced in Example 4, coupled with boundary conditions

(5.61) u− χ = 0, A2∇χ · n = 0 in ∂Ω × (0, T ).

Again V := H1
0 (Ω), H := L2(Ω), V ′ := H−1(Ω), A is the elliptic operator −div(A1∇·), and F , φ

are given by (2.34 and 2.35), respectively.
In this case, we can apply Theorem 5.7 with the choice W := H1(Ω). Observe that (5.61)

is a well known interpolation estimate of L2(Ω) between H−1(Ω) and H1(Ω), whereas (5.36) is
immediate since the functional F itself controls the H1(Ω)- norm of χ.
Quasistationary phase field with Neumann boundary conditions. Finally, the existence
of the solutions to the system (2.31, 2.32), coupled with boundary conditions of variational type

A1∇(u− χ) · n = 0, A2∇χ · n = 0 in ∂Ω × (0, T ),(5.62)

for u0 ∈ L2(Ω) and f ∈ L2(Ω × (0, T )), follows directly from Theorem 5.9 with the choice H :=
L2(Ω), V := H1(Ω); the operator A is defined for every u, v ∈ H1(Ω) as

(5.63) (H1(Ω))′〈Au, v〉H1(Ω) :=

∫

Ω

(
A1(x)∇u(x) · ∇v(x)

)
dx.
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[13] H. Brézis, Analyse fonctionnelle - Théorie et applications, Masson, Paris, 1983.
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