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Abstract

We consider the dynamical problem of an antiferromagnetic spin system on a two-dimensional square

lattice εZ2 with nearest-neighbour and next-to-nearest neighbour interactions. The key features of the

model include the interaction between spatial scale ε and time scale τ , and the incorporation of interfacial

boundaries separating regions with microstructures. By employing a discrete-time variational scheme, a

limit continuous-time evolution is obtained for a crystal in R2 which evolves according to some motion

by crystalline curvatures. In the case of anti-phase boundaries between striped patterns, a striking

phenomenon is the appearance of some “non-local” curvature dependence velocity law reflecting the

creation of some defect structure on the interface at the discrete level.

Keywords: antiferromagnetic spin system, anti-phase boundaries, microstructures, defects, interface mo-

tion, crystalline curvature motion

1 Introduction

The modeling of realistic behavior of materials is dictated by the ubiquitous presence of defects. The dynam-

ics of these defects is controlled by both the energetic and kinematic information. The former determines

the structures or more accurately, micro-structures of the defects while the latter is related to the dissipation

mechanism. It can be a challenge to characterize these concepts quantitatively and most important, relate

the microscopic and macroscopic measurable quantities. On the other hand, variational principles play an

important role as materials often try to minimize some underlying energy. Based on such considerations,

many mathematical formulations have been constructed to model the structure and dynamics of defects.

The current paper provides such an example starting from lattice interactions.

A simple model to capture the appearance of microstructures in energy-driven systems involves compet-

ing short-range and long-range energies as in the Ising models considered in [23, 24] (see also the references

therein) where ferromagnetic short range interactions compete with anti-ferromagnetic long-range interac-

tions. We here consider a simple model in which the competition mechanism is achieved in an antiferromag-

netic spin system on a square lattice. In this case, if nearest-neighbour (NN) and next-to-nearest neighbour
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(NNN) interactions are taken into account, the system may exhibit ground states – global energy minimizing

states – consisting of non-trivial patterns which cannot be reduced to a trivial ferromagnetic description via

a change of variables. Contrary to the continuum setting, the lattice framework allows us to describe in a

precise way the interactions between different types of microstructures. The model we consider leads to two

lattice spacings periodic horizontal and vertical stripes as ground states. Taking into account the possibility

of phase boundaries between stripes of different orientations and of anti-phase boundaries between stripes

of the same orientation, the interactions between the ground states can be described through a continuum

approximation by an interfacial energy between regions taking values in the four phases: the horizontal and

vertical stripes and their shifted versions. This discrete-to-continuum approach has been analyzed in [1] by

an appropriate limit procedure using the framework of Γ-convergence. This continuum approximation also

allows to describe the discrete optimal configurations for a class of static problems (see [9] for a more general

result on systems with patterns and modulated phases using the same approach).

The appearance of interfacial energies as an approximation of spin energies suggests the possibility of

a continuum description of dynamical problems in terms of geometric motions of interfaces. In the case

of ferromagnetic energies for which no microstructure arises, the continuum description involves only two

homogeneous phases and a crystalline perimeter energy (see [1, 13] for a variational formulation). For

general perimeter energies, a variational Euler scheme has been introduced by Almgren, Taylor and Wang

[4] and Luckhaus-Sturzenhecker [30] which show how motions by mean-curvature can be obtained as a form

of gradient flow of such perimeters. The work [3] by Almgren and Taylor treats the case of crystalline

mean-curvature flows. This Euler scheme leads to an implicit-time discretization procedure producing a

discrete-time evolution parameterized by a time-step τ . The limit motion is subsequently obtained by

letting τ → 0. This approach to construct gradient-flow type evolutions has been subsequently formalized in

a more abstract setting under the label of minimizing movements by De Giorgi (see [5]): at each time scale

τ , the discrete-time motions {uk} = {uτk} are obtained by successive minimization of a total energy of the

type

Fτ (u) = E(u) +
1

τ
D(u, uk−1), (1.1)

where E is interpreted as an energy and D as a dissipation. The latter can also be viewed as some penalty

term to restrict appropriately the motion from uk−1 to uk. In [4, 30] and [3], the variable u is a set, E(u) is

its euclidean and crystalline perimeter, respectively, and D(u, uk−1) accounts for the distance between the

boundaries of u and uk−1.

If we try to apply the above scheme to spin systems, two issues arise. The first is due to the interaction

between the lattice space scale ε and the time scale τ . The latter is related to the typical velocity at which

the motion takes place. Indeed, at very slow time-scales; i.e., when τ is very small, the energy barriers of

Fτ (or more accurately, now it should be written as Fε,τ ) are at least of order ε and hence they forbid any

transition from one state (local minima) to another. The discrete-time motions are thus constant, giving

rise to a continuum pinned state. Conversely, when ε is very small, local minima can be overcome and then

the motion is asymptotically close to the minimizing movement of the continuum energy obtained by Γ-

convergence. However, this motion is often too coarse to reveal any effects coming from local minimization.

Instead, the most relevant and interesting effective motion seems to be the one in which the two scales

interact; more precisely, when τ ∼ ε. The previous two extreme cases (pinning and motion according to the

Γ-limit) can then be obtained as a by-product. In a paper by Braides, Gelli and Novaga [10], a description is

given for the effective continuum motion of ferromagnetic systems, showing new phenomena such as pinning

only for large sets, non-uniqueness of motions, and quantization of the energy. These results have been

further analyzed in a paper by Braides and Scilla [11] showing that different velocity laws can be obtained
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for systems with the same static behaviour. These works thus highlight the role of local minimization in the

computation of a curvature-dependent homogenized velocity. In both papers [10, 11], the effective motion is

computed by a diagonal argument in the minimizing-movement scheme. The continuous-time limit depends

on the precise τ -ε asymptotics of the discrete-time motions {uk} = {uτ,εk } which live at space scale ε and

time scale τ and are obtained by successive minimization of a total energy of the type

Fε,τ (u) = Eε(u) +
1

τ
Dε(u, uk−1). (1.2)

The general properties of minimizing movements along a sequence of energies at given time scale are studied

in [8]. In [10] and [11] uτ,εk , are subsets of εZ2 considered as a discretization of continuum sets.

As a second issue, we face the problem of giving continuum descriptions when the spin system develops

microstructures, in particular, a spin system with next-to-nearest neighbour interaction (NNN). For the

model we consider, a limit system is in general described by the four phases labelled by ±e1 (the two

modulated phases with vertical stripes) and ±e2 (the two modulated phases with horizontal stripes). In

this case, a minimizing movement should be described by the evolution of a network system representing the

boundaries of multi-phase regions. Unfortunately, even in the continuum case when the interfacial energy is

simply given by the usual euclidean length, the theory of the evolution of such a system is not fully developed

(see [29, 32, 31, 36] for some results). Thus in this work, we consider the particular case of the motion of a

single crystal so that we just need to analyze the geometric motion of a single interface. In Fig. 1 we have

pictured typical crystals between different phases. The figure also highlights how the overall shape of the

crystal and the structure of the interfaces are dictated by the phases both inside and outside of the crystal.

(a)

e

e
1

2

(b)

−e

1
e

1

Figure 1: Wulff-like crystals: (a) between e1 phase (vertical stripes) and e2 phase (horizontal stripes); (b)

between e1 phase and −e1 phase. Note that the −e1 phase is the e1 phase shifted by one lattice spacing.

Our results resemble those obtained by Almgren and Taylor in [3] but incorporate several new features. To

highlight them, we point out here that the most complex and interesting case is that of a crystal evolving in a

matrix of the same pattern, incorporating the presence of anti-phase boundaries. Without loss of generality,

we consider the case of an e1-crystal in a −e1-matrix. In this case, the Wulff shape for the corresponding

continuum energy is an irregular convex hexagon with two horizontal sides and the other four oriented along

the bisectric directions; i.e., with slopes ±1. The corresponding microscopic picture involves defect structures

in addition to the ground states (Fig. 1(b)). We study a minimizing-movement scheme with a dissipation

term Dε analogous to that of [3]. In our scheme, the distance between two discrete crystals accounts for the

number of square cells on which the pattern changes from one configuration to another.

One of the major challenges is to show that during each minimization step we can still recognize an

e1-crystal in a −e1-matrix. To that end, we remark that it is sufficient to consider only initial data which
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are “Wulff-like” as illustrated in Fig. 1(b); i.e., discrete sets corresponding to arbitrary convex hexagons

with sides having the same orientations as those of a Wulff shape. Indeed, the extension to more general

initial shapes is already illustrated in [10]. For such a Wulff-like initial data, all the sets obtained in the

Euler scheme can be shown to be Wulff-like. Thus the description of their dynamical behaviour can be

reduced to a system of ordinary differential equations describing the evolution of the sides. The relevant

regime for the asymptotic analysis turns out to be ε = τ (or more generally, ε/τ → α). A first effect due

to the spatial discreteness is the fact that the symmetries of the dissipation term are different from those

of the Wulff shape, leading to a mobility effect analogous to the one obtained following the approach in [3].

In order to take this effect into account, we have a different scaling in the crystalline curvature κ for the

different sides. (Following the continuum description in [38], crystalline curvature of a side is taken to be

inversely proportional to its length.) With this normalization in mind, the velocity of each horizontal side

of the crystal along the inward normal direction is simply given by

V = V (κ) = bκc, (1.3)

where the integer part is due to the fact that a side can move only by discrete steps analogously as in [10].

A second, more striking effect is in the description of the motion of the bisectic sides, each of which moves

with a velocity function

V = V (κ, κ′), (1.4)

which depend on both κ, the curvature of itself and also κ′, the curvature of its bisectric neighbour. This is

due to a new phenomenon at the discrete level. Indeed, in two successive steps of the Euler scheme, a pair of

(a)

e1

−e1

interfacial
perfect

structure

(b)

−e

e1

1

a defect 
and

its motion

Figure 2: Motion by the creation of defects. A perfect interfacial structure in (a) and the presence of a defect

and its motion in (b).

neighbouring bisectrix sides may move maintaining a ‘perfect’ shape, as that in Fig. 2(a), or create a ‘defect’

at the vertex (see Fig. 2(b)). The optimality of either of the two options depends simultaneously on the

(inverse of the) length of both sides, and hence on the two curvatures. This new effect shows that minimizing

movements of spin energies not only can lead to a complex dependence of the velocity on the crystalline

curvature due to some homogenization phenomena, but may also generate some “non-local” effects due to the

competition between interfacial microstructures. Note that this phenomenon is different from the creation

of bulk microstructure, as in the formation of mushy layers in high-contrast spin systems [12].

It is instructive to compare our results to those interfacial motions obtained from spin systems which are

more related to Statistical Mechanics. Two examples are the Glauber and Kawasaki dynamics. Note that a

key feature of our current problem, due to the spatial and temporal discretization, is the presence of a large
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number of local minima on the underlying energy landscape. A discrete-time variational scheme is employed

to overcome these local minima. This is reminiscent to adding thermal noise or stochastic fluctuations.

As mentioned earlier, the most interesting regime is the critical case, ε = τ in which the size of the noise

and the depth of local minima are compatible. Otherwise, either the discrete nature of the problem will

disappear (if the noise it too big) or the evolution will be completely pinned (if the noise is too small). On

the other hand, the existing works [17, 18, 21, 22, 26, 27, 28] on the connection between interfacial motions

and stochastic Ising models or interactive particle systems mostly involve long range spatial interactions or

fast spin-exchange mechanism so that sufficient sampling and averaging of the energy landscape occurs. Such

a procedure in essence eliminates all the effects coming from local minimization. On the continuum level, a

very important example is the Allen-Cahn or the Modica-Mortola functional [2, 33, 35]. Its gradient flow is

shown to be related to motion by mean curvature [20, 16, 19, 25]. These works again do not incorporate any

underlying discrete and fine-scale structures. In a general setting, the work [34] gives sufficient conditions for

the convergence of dynamics when the energy landscape converges. However, the framework currently also

overlook any fine scale structures. In a stationary setting, the work [6] illustrates the interaction between

interfacial thickness and the underlying spatial microstructures. Overall, it is interesting to formulate and

understand more quantitatively the effects of noise on the effective dynamics when underlying fine scale

structures are present.

Another extension of the current setting is the consideration of multi-phase regions. Recall that the

current antiferromagnetic system have four ground states ±e1 and ±e2. Their co-existence can lead to

triple- or quadruple junctions. The works [14, 15] provides further examples demonstrating the appearances

of junctions and interfaces between spatially modulated patterns. The dynamics of these systems have

not been fully analyzed. See however [39] for the introduction of a general framework, using again some

variational time-discretization scheme.

The outline of this paper is as follows. In Section 2, we describe the setting of the spin system, introduce

the ground states and the discrete-time variational scheme, and then give the statements of our results. In

Section 3, we prove the optimality properties of discrete Wulff shapes or Wulff-like envelopes. In Section 4,

we prove the continuum limit of the motion laws for a Wulff-like (rectangular) e1-crystal inside an e2-matrix.

Section 5, which is the most technical part of this paper, proves the continuum description of the motion of

a Wulff-like (hexagonal) e1-crystal inside an −e1-matrix.

2 Problem Setting

In this section, we introduce the machinery needed for our results. It is divided into stationary and dynamic

considerations.

2.1 Analysis of Patterns - Stationary Case

We consider the energy defined on a two-dimensional spin system on εZ2 studied by Alicandro, Braides and

Cicalese [1] of the following form

Eε(u) = c1
∑
NN

ε2uiuj + c2
∑
NNN

ε2uiuj

=
∑
{i,j,k,l}

c1
2
ε2(uiuj + ujuk + ukul + ului) + c2ε

2(uiuk + ujul) (2.1)
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where the subscripts NN and NNN refer to summation over nearest neighbours (i.e., i, j ∈ εZ2 with |i−j| = ε)

and next-to-nearest neighbours (i.e., i, j ∈ εZ2 with |i − j| = ε
√

2), respectively, and the indices {i, j, k, l}
denote the vertices in εZ2 of a square starting from the lower left vertex and continuing in the counter-

clockwise manner (see Fig. 3(a)). In the formula above, u is a spin function taking values in {−1, 1}. Note

(a)

. .

. .

i j

kl

q (i)

Q (i)
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ε
ε.

ε

(b)
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Figure 3: Grid and patterns. (a) Vertices, cubes, and centers; (b) The patterns e1, e2, . . . , e8; (c) The

two-periodic tessellation e1 and e2. In the figure, � = −1, and � = +1.

that it will be necessary to renormalize the energy so as to avoid the value −∞. This will be done by suitably

rewriting the energy and subtracting the energy of a ground state.

For convenience, we introduce the following notation:

Sε =
{
u : εZ2 −→ {−1, 1}

}
(2.2)

A = (xA, yA), for A ∈ εZ2 (2.3)

Qε(i) = i+ ε[0, 1]2, for i ∈ εZ2 (2.4)

qε(Qε(i)) = i+ ε

(
1

2
,

1

2

)
(= center of Qε(i)) (2.5)

Qε =
{
Qε(i) : i ∈ εZ2

}
. (2.6)

If no confusion arises, we will use the simplified notation:

Qε = Qε(qε) := Qε(i), and qε = qε(i) := qε(Qε).

We further define the cell patterns as follows.

Definition 2.1 (Cell Patterns). Let P = {±e1,±e2, . . . ,±e8} where

e1 = (−1, 1, 1,−1), e2 = (−1,−1, 1, 1),

e3 = (1,−1, 1,−1), e4 = (−1, 1,−1,−1),

e5 = (−1,−1, 1,−1), e6 = (−1,−1,−1, 1),

e7 = (1,−1,−1,−1), e8 = (1, 1, 1, 1).

(2.7)

(See Fig. 3(b).) For simplicity, in the following, we will use e3 to refer to any element in {±e4,±e5,±e6,±e7}
which are patterns consisting of “three of a kind”; i.e.,

w = e3 ⇐⇒ w ∈ {±e4,±e5,±e6,±e7} . (2.8)
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In addition, unless the sign is explicitly needed, we employ the following convention:

w = e3 ⇐⇒ w ∈ {±e3} , w = e8 ⇐⇒ w ∈ {±e8} . (2.9)

The above notation is used since our subsequent analysis treats +e3 and +e8 the same as −e3 and −e8.

For any u ∈ Sε, w = w(u) denotes the P-valued function:

w = w(u) : Qε −→ P, w(u)(Qε(i)) = (ui, uj , uk, ul). (2.10)

In addition, we introduce

W̃ε = {w : Qε −→ P} , (2.11)

Wε =
{
w ∈ W̃ε : w(Qε(i)) = (ui, uj , uk, ul) for some u ∈ Sε and all i ∈ εZ2

}
(2.12)

to denote the collection of arbitrary pattern-valued functions and those which can be actually achieved by a

spin function. Since we will use these spaces with fixed ε > 0, we will drop the subscript ε in the notation;

i.e., we will write W̃ and W in the place of W̃ε and Wε.

For simplicity, we often write w(Qε(i)) as w(i) or w(u)i. Note that W $ W̃. In the intermediate steps

of our proof, we often find it easier to manipulate P-valued functions w̃ ∈ W̃. In the very last step, we will

then show that in fact w̃ = w(u) for some u ∈ Sε.
In principle, (ui, uj , uk, ul) can take arbitrary values. However we are actually interested in spatially

periodic patterns, or tessellation, in particular those formed by ±e1 and ±e2. Note that in order to form a

striped pattern as in Fig. 3(c), both e1 and −e1 are needed to form a tessellation which is a two-periodic

pattern. The same is true for e2 and −e2. We hereby give the following definition.

Definition 2.2. Let Qε(i) be a square with i = (xi, yi) ∈ εZ2 and w(i) ∈ P. We say,

w(i) ∈ [e1] (resp., ∈ [−e1]) if w(i) =

{
e1 if xi

ε is even (resp., odd)

−e1 if xi
ε is odd (resp., even),

(2.13)

w(i) ∈ [e2] (resp., ∈ [−e2]) if w(i) =

{
e2 if yi

ε is even (resp., odd)

−e2 if yi
ε is odd (resp., even);

(2.14)

i.e., we identify a 2ε-periodic pattern with its trace on Qε(0).

For simplicity, for p = 1, 2, we use “w = ±ep” to indicate “w ∈ [±ep]”.

Complementary to the one above, we give the following definition which will be used in several places of

our proofs.

Definition 2.3. An ordered pair (m,n) ∈ Z2 is said to have even or odd parity if m+ n is an even or odd

integer. This is denoted by Par(m+ n) = 0 or 1.

A point A = (xA, yA) ∈ εZ2 is said to have even or odd parity if (XA, YA) := (
xA
ε
,
yA
ε

) ∈ Z2 has even or

odd parity. For simplicity, we will also use the convention Par(xA + yA) = 0 or 1.

In this paper, we will always assume

c1 > 0, c2 > 0, and 2c2 > c1 (H1)

in which case the ground states, or the energy minimizing patterns, are the two-periodic patterns ±e1 and

±e2. The case 2c2 < c1 can in fact be transformed to the ferromagnetic case. In addition, we will impose
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the condition (H2) in Section 2.3. See [1, Section 5] and Section 2.4 for more discussion concerning these

conditions.

In order to analyze the interfacial energy between the ground states, we consider the following functional,

E(1)
ε (u) =

∑
{i,j,k,l}

ε
c1
2

(uiuj + ujuk + ukul + ului) + εc2(uiuk + ujul + 2). (2.15)

Compared with (2.1), the energy written in this way is always positive, thus avoiding the −∞ and +∞
indeterminacies, and it is normalized so that ground states have zero energy. Moreover it is scaled by ε so

that it behaves as a surface energy.

Using the notation of w and ei’s, E
(1)
ε can be conveniently written as

E(1)
ε (u) = ε

∑
i∈εZ2

f(w(u)i) (2.16)

where f : P −→ R is defined as:

f(w) =


0 if w ∈ {±e1,±e2}
4c2 − 2c1 if w ∈ {±e3} ,
2c2 if w = e3; i.e., w ∈ {±e4,±e5,±e6,±e7} ,
4c2 + 2c1 if w ∈ {±e8}.

(2.17)

Note that f(w) ≥ 0, and f(w) = 0 only if w ∈ {±e1,±e2}.
A central information is the minimum energy and the minimizing interfacial structure connecting two

ground states, for which the following simple lemma contains the essential ingredients. We omit the proof

due to its simplicity.

Lemma 2.4 (Slicing estimates in the vertical and horizontal directions ([1] Section 5)). Let A,B,C,D ∈ εZ2

be such that AB and CD are two horizontal segments of length ε and ABDC encloses a rectangle Ω. In

other words,

xB = xA + ε, yB = yA, xD = xC + ε, yD = yC , xC = xA, and yC − yA ≥ ε.

For any u ∈ Sε, denote

E(1)
ε (u,Ω) = ε

∑
{i∈εZ2:Qε(i)⊆Ω}

f(w(u)i).

Then the following statements hold.

1. Suppose u(A) = u(B) and u(C) = u(D). If u(A) = u(C) and yC − yA is an odd multiple of ε or if

u(A) 6= u(C) and yC − yA is an even multiple of ε, then

E(1)
ε (u,Ω) ≥ 2f(e3)ε = 4c2ε. (2.18)

2. Suppose u(A) = u(B) and u(C) 6= u(D) or u(A) 6= u(B) and u(C) = u(D). Then

E(1)
ε (u,Ω) ≥ f(e3)ε = 2c2ε. (2.19)

3. Suppose u(A) 6= u(B), u(C) 6= u(D), and u(A) 6= u(C). Then

E(1)
ε (u,Ω) ≥ f(e3)ε = (4c2 − 2c1)ε. (2.20)

The above are called slicing estimates in the vertical direction. Similar conclusions hold when AB and

CD form vertical segments. Then the statements are called slicing estimates in the horizontal direction.
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Figure 4: Slicing estimates and minimizing structures in the vertical directions: (a) for (2.18); (b) for (2.19);

(c) for (2.20). The illustration for horizontal slicing estimates are similar.

(a)

e

e1

2

ν

e

e1

2

= e3

ν

(b)
e
1

1−e

ν

= e

= e3

3

e
1

−e
1

ν

Figure 5: Minimizing interfacial patterns between: (a) e1 and e2, and (b) e1 and −e1 in different directions.

The interfaces (dotted lines) and their normal vectors (ν) are also indicated in the figures.

We illustrate the lemma above in Fig. 4 in which the patterns attaining the minimum energy values are

also shown.

Using the lemma, it was deduced in [1] that the minimizing interfacial structures between ±e1 and ±e2

is that illustrated in Figure 5(a) while that between e1 and −e1 is that illustrated in Figure 5(b). Note that

the structure of the interface depends not only on the normal direction but also on the patterns across the

interface: the one in (a) consists of only e3 while the one in (b) consists of both e3 and ±e3.

In the continuum description, it is proved in [1] that E
(1)
ε Γ-converges with respect to the L1

loc-topology
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to the functional F : L1
loc(R2;P)→ R ∪ {+∞} defined as

F (w) =


∫
S(w)

ϕ(w+, w−, νw)dH1, w ∈ BVloc(R2; {±e1,±e2}),

+∞, otherwise,

where S(w) denotes the jump set of w and ϕ : {±e1,±e2} × S1 → R+ is defined as follows:

ϕ(±e1,±e2, ν) = 2c2(|ν1| ∨ |ν2|),
ϕ(±e1,∓e1, ν) = 4c2|ν1|+ (4c2 − 2c1)(|ν2| − |ν1|)+,

ϕ(±e2,∓e2, ν) = 4c2|ν2|+ (4c2 − 2c1)(|ν1| − |ν2|)+.

(a)

e

e
1

2

(b)

−e

1
e

1

Figure 6: Wulff shapes for (a) ψ1(ν) and (b) ψ2(ν)

For the remaining part of this paper, we will use ψ1(·) to denote ϕ(e1, e2, ·), the interfacial density

between e1 and e2, and ψ2(·) to denote ϕ(e1,−e1, ·), the interfacial density between e1 and −e1. Then at

the continuum level, the Wulff shape; i.e., the shape with the smallest interfacial energy for given area is a

square with the sides pointing along the bisectrix direction1 for ψ1, (Figure 6(a)) while it is a hexagon-like

polygon formed by two horizontal and four bisectrix segments for ψ2 (Figure 6(b)). For convenience, we call

the former a bisectic-square and the latter a bisectrix-hexagon. However, at the discrete level, this description

is not complete. This will be elaborated in Section 3.

2.2 Discrete-Time Variational Scheme - An Approach to Dynamics

In the spirit of [10] we will consider the continuous motion derived from applying to the energy E
(1)
ε the

“minimizing movement” scheme introduced by Almgren, Taylor and Wang [4] and Luckhaus and Sturzen-

hecker [30]: given any u0 ∈ Sε, we will construct
{
uk ∈ Sε

}∞
k=1

obtained from a miminization process. Each

step approximates some crystalline motion by mean curvature. Then we will investigate the limit(s) as

ε, τ −→ 0.

For concreteness, we consider the motion of a single crystal consisting of e1. For this, we give the following

definitions.

1A bisectrix direction has slope ±1. A bisectrix segment is a segment along the bisectrix direction.
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Definition 2.5. Let w∞ ∈ {e2,−e1} denote the exterior phase (or far-field condition). We define

S∞ε =
{
u ∈ Sε, w(u)i = w∞ for i outside some bounded subset of εZ2.

}
(2.21)

Ku =
⋃
{Qε(i) : w(u)i = e1} (e1-crystal). (2.22)

∂εKu =
⋃{

Qε(i) : w(u)i 6∈ {e1, w
∞}
}

(interfacial region). (2.23)

Definition 2.6. Let ‖z‖1 = |z1|+ |z2| for z = (z1, z2) ∈ R2. Define:

1. for i, j ∈ εZ2, Dist1
ε(Qε(i), Qε(j)) = ‖qε(i)− qε(j)‖1;

2. for A,B ⊆ Qε, Dist1
ε(A,B) = inf {‖qε(i)− qε(j)‖1 , qε(i) ∈ A, qε(j) ∈ B}.

Our time-discrete variational scheme is defined using the functional Fε,τ : S∞ε × S∞ε −→ R+:

Fε,τ (u, v) = E(1)
ε (v) +

ε2

τ

∑
{i∈εZ2: w(v)i 6=w(u)i}

Dist1
ε(Qε(i), ∂εKu). (2.24)

The functional above can also be written in the equivalent form

Fε,τ (u, v) = E(1)
ε (v) +

1

τ

∫
{
⋃
Qε(i): w(v)i 6=w(u)i}

Dist1
ε(x, ∂εKu) dx (2.25)

reminiscent to the functional used in [4], where

Dist1
ε(x, ∂εKu) = inf {‖qε(i)− qε(j)‖1 , x ∈ qε(i), qε(j) ⊂ ∂εKu} .

The first part of Fε,τ is the interfacial energy E
(1)
ε while the second is called the incremental bulk term Bε,τ or

dissipation. The intuition behind Fε,τ is that given u, minimizing Fε,τ (u, ·) is to reduce E
(1)
ε as much as pos-

sible but with the movement limited by Bε,τ . Our time variational scheme produces
{
ukτ ,K

k
τ : k = 1, 2, . . .

}
obtained by successive minimizations:

uk+1
τ ∈ argmin

{
Fε,τ (ukτ , v)

}
and Kk

τ = Kukτ
. (2.26)

Each minimization step can be shown to approximate some kind of curvature motion. We remark that the

mobility of the interface is directly linked to the choice of the distance function. The L1-distance function

defined above simplifies many of the computation in this paper but in principle other distance functions,

such as the L∞-distance, can also be used.

From general compactness arguments, it is possible to show that upon taking the limit ε → 0 and

τ = τ(ε) → 0, then up to subsequence, the piecewise-constant scaled interpolations uτ (t) = u
bt/τc
τ defined

for t ≥ 0 converge uniformly to a function u : [0,+∞)→ BVloc(R2; {±e1,±e2}) which is called a minimizing

movement along E
(1)
ε at scale τ [8].

Our main results concern the characterization of such u. The statements depend on the relative rate of

ε, τ going to zero and also on whether the interface is between e1 and e2, or e1 and −e1. We will show that

in fact u ∈ BVloc(R2; {e1, w
∞}) and the minimizing movement is described as a crystalline-type motion of

the set D(t) obtained as limit of the time-discrete interpolations K
u
bt/τc
τ

In the continuous space setting, the above scheme has been implemented to produce an existence theorem

for mean-curvature flow. Specifically, with a suitably chosen distance function (which is simply the usual

euclidean distance function), if the interfacial energy E
(1)
ε is given by some euclidean or crystalline perimeter

functional independent of ε, the scheme has been shown rigorously to produce anisotropic [4, 30] or crystalline

curvature motions [3], respectively. For an overview of crystalline motion, we refer to [37, 38], in particular

for a discussion of the concepts surface energy, Wulff shape, distance and mobility functions. For an analysis

of results in the case of general ε-dependence energies E
(1)
ε , we refer to [8].
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2.3 Statement of Main Results

As explained in [10], the most interesting case is when τ = O(ε). For ε � τ , the limit can be obtained by

first letting ε → 0 and then τ → 0, giving the same result as in the continuous case described in [3]. For

τ � ε, the set will be pinned; i.e., the limit D(t) is constant, reflecting the fact that there are a lot of local

minima at the discrete level. Hence, in the following we will set τ = αε for 0 < α < ∞. It turns out that

the main features are already captured by the motion of sets resembling the Wulff shapes. General shapes

can be approximated by Wulff-like sets as done in [10] and a limit motion computed accordingly. Hence, in

order to concentrate on the key issues, we will only consider bisectrix-square or bisectrix-hexagon like sets.

For the benefit of presenting the proofs, we first define these objects carefully (see Fig. 7).

(a)

4

K

R

R

R

R

1

2

3

4

W (K)

(b)

6

H1 H

H

HH

2

3

45

H
6

K

W (K)

Figure 7: (a) Wulff-like rectangle and Wulff-like envelope W4(K) for ψ1; (b) Wulff-like hexagon and Wulff-like

envelope W6(K) for ψ2.

Definition 2.7 (Wulff-like sets). 1. Let w∞ = e2. A rectangle R = R1R2R3R4 (labelled clockwise) is called

a Wulff-like rectangle if the vertices Ri ∈ εZ2 (for i = 1, 2, 3, 4) and the sides R1R2, R2R3, R3R4, R4R1 are

bisectrix segments.

2. Let w∞ = −e1. A hexagon H = H1H2H3H4H5H6 (labelled clockwise) is called a Wulff-like hexagon

if Hi ∈ εZ2 (for i = 1, 2, 4, 5), and the segments H1H2 and H4H5 are horizontal and H2H3, H3H4, H5H6,

H6H1 are bisectrix segments.

We further let

Rε =
⋃
{Qε ∈ Qε : Qε ⊂ R} , and Hε =

⋃
{Qε ∈ Qε : Qε ⊂ H} , (2.27)

to be the union of all the squares inside R and H. For convenience, we also call Rε and Hε a Wulff-like

rectangle and hexagon, respectively.

For each K =
⋃
i∈I⊂εZ2 {Qε(i)}, a union of some collection of squares, we define the Wulff-like envelope

W (K) to be the smallest Wulff-like rectangle and hexagon enclosing K. To be more specific, we use the

notation W4(K) for the case w∞ = e2 and W6(K) for the case w∞ = −e1. See Fig. 7 for an illustration of

the above definitions.

We remark that for the definition of R, all the vertices are required to be lattice points. In this case,

there exists a unique u ∈ S∞ε such that Ku = Rε and all the minimizing conditions are satisfied for the

slicing estimates in the vertical and horizontal directions (Lemma 2.4). However, for the definition of H, the

vertices H3 and H6 can be lattice points or centers of a square. We call the former as Type I vertex and the

latter as Type II vertex. In either case, there is a unique u ∈ S∞ε such that Ku = Hε with the interfacial

12



energy E
(1)
ε (∂εKu) as small as possible. The structure of the Type I and Type II vertices at the discrete

level will be discussed in detail in Section 3.

From now on, we will strengthen condition (H1) to the following:

c2 > c1 (H2)

which is to ensure that f (e3) > f(e3). For otherwise, new phases of e3 might appear. See Section 2.4 for a

more detailed explanation. With this condition, the following are our main results.

We first consider the case of crystalline motion of Wulff rectangles between e1 and e2 interfaces. In this

case the limit motion is a motion by crystalline curvature of the e1-set depending on a discontinuous right-

hand side which is in complete analogy with the case studied in [10]. We define the crystalline curvature of

a side of a Wulff-like rectangle with length L as

κ =
2c2
L
. (2.28)

This is the crystalline curvature corresponding to the continuous perimeter functional∫
∂A

ψ1(νA)dH1,

where νA denotes the exterior normal to A, normalized by the mobility factor 1/
√

2.

The metric of convergence of the Kk
τ is given by the Hausdorff distance which is defined in the following:

for any A,B ⊂ R2,

dH(A,B) = max

{
sup

y∈B\A
Dist(y,A), sup

x∈A\B
Dist(x,B)

}
(2.29)

where Dist(y,A) = infx∈A |y − x| and likewise, Dist(x,B) = infy∈B |x− y|.

Theorem 2.8 (Crystalline motion of interfaces between e1 and e2 for Wulff-like rectangles). Let D0 ⊂ R2

and K0
τ = Ku0

τ
be Wulff-like rectangles such that limτ→0 dH(K

(0)
τ , D0) = 0. Let further

{
Kk
τ

}
k=1,2,...

be the

sequence of sets obtained from the Euler scheme in (2.26).

Then, up to subsequence, the time-dependent set
{
K
b tτ c
τ

}
t≥0

converges in dH to {D(t)}t≥0 with D(0) =

D0, and each D(t) is a Wulff-like rectangle with side lengths {Li(t), i = 1, . . . , 4}. Each side moves with

inward normal velocity Vi(t) given by:

Vi(t)



=

√
2

α

⌊
α√
2
κi(t) +

1

4

⌋
, if α√

2
κi(t) + 1

4 6∈ N,

∈

[
κi(t)−

3
√

2

4α
, κi(t) +

√
2

4α

]
, if α√

2
κi(t) + 1

4 ∈ N,

where κi =
2c2
Li(t)

. (2.30)

See Fig. 19 for an illustration. Note that the case α√
2
κi(t) + 1

4 ∈ N is exceptional in the sense that the

set of κi satisfying the condition has measure zero. As a consequence this condition is relevant only in the

case when it holds for a set of non-zero measure of t. This may happen only if one of the side is pinned, and

is discussed in detail in [10].

The proof of the above theorem is outlined in Section 4. An explanation of the result and the underlying

velocity law is also provided at the end of Section 4. Note in particular that if we let α → +∞ the law of

motion tends to Vi = κi; i.e., motion by crystalline curvature (upon a constant mobility factor).
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The formulation for the limit motion of crystalline interfaces between e1 and −e1 patterns is more

complicated. We have an interesting phenomenon: that the velocity of a bisectrix side is given by a function

of both its own curvatures and its bisectrix neighbour’s. Hence, it is in some sense “non-local”. This is due

to the fact that at the level of space-time discretization, the motion can either involve only Type I or Type

II vertices, or toggle between them. This is a new type of microscopic effect affecting the homogenized

macroscopic velocity.

In order to describe the dynamics of the sides of D(t), we first give the definition of the crystalline

curvature of each side. The curvature κ of a horizontal side of side-length L is given by

κ =
8c2
L
, (2.31)

and that of a bisectrix side of side-length L is given by

κ =
8(4c2 − 2c1)

L
. (2.32)

Again, this definition is related to the crystalline perimeter given by ψ2, but takes into account mobility

factors due to the anisotropy of the dissipation or mobility function.

0

1 2 3 4 5

1

2

3

4

0 x

y

y=v (x)

y=v (x)

y=v (x)
4

3

y=v (x)

y=v (x)
2

1

Figure 8: The curves y = vn(x) defined in (2.33) and (2.34).

Definition 2.9 (non-local law of motion). We define the function V : [0,+∞)× [0,+∞)→ N as follows.

1. Let n ≥ 1 be odd. For m ≥ 0,

vn(x) =


min

{
nx

m
, n

(
1 +

c1
2(c2 − c1)

)
,

nx

2x− (m+ 1)

}
, if m ≤ x ≤ m+ 1, m even,

max

{
nx

2x−m
,n

(
1− c1

2c2

)
,
nx

m+ 1

}
, if m ≤ x ≤ m+ 1, m odd.

(2.33)

2. v0(x) ≡ 0 and for m ≥ 0, n even and positive,

vn(x) =


max

{
nx

2x−m
,n

(
1− c1

2c2

)
,
nx

m+ 1

}
, if m ≤ x ≤ m+ 1, m even,

min

{
nx

m
, n

(
1 +

c1
2(c2 − c1)

)
,

nx

2x− (m+ 1)

}
, if m ≤ x ≤ m+ 1, m odd.

(2.34)

3. For n ∈ N, let V (x, y) = n for vn(x) < y ≤ vn+1(x).

See Fig. 8 for an illustration of (2.33) and (2.34).
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Theorem 2.10 (Crystalline motion of interfaces between e1 and −e1 for Wulff-like hexagons). Let D0 ⊂ R2

and K0
τ = Ku0

τ
be Wulff-like hexagons such that limτ→0 dH(K

(0)
τ , D0) = 0.

Then, up to subsequence, the time-dependent set {Kb
t
τ c

τ }t≥0 converges in dH to {D(t)}t≥0 with D(0) =

D0, and each D(t) is a Wulff-like hexagon with side lengths {Li(t), i = 1, . . . 6}.
Let κi denote the crystalline curvature of the side Li. Then the horizontal sides i = 1, 4 move with inward

normal velocities Vi given by:

Vi


=

1

α
bακic , if ακi 6∈ N

∈
[

1

α
(ακi − 1) , κi

]
, if ακi ∈ N.

(2.35)

The bisectrix sides i = 2, 3, 5, 6 move inwards with velocity

V2(κ2, κ3) =
1

α
√

2
V (ακ3, ακ2), V3(κ2, κ3) =

1

α
√

2
V (ακ2, ακ3), (2.36)

V5(κ5, κ6) =
1

α
√

2
V (ακ5, ακ6), V6(κ5, κ6) =

1

α
√

2
V (ακ6, ακ5) (2.37)

at all times such that (ακ2, ακ3), (ακ5, ακ6) 6∈ X, where

X = {(x, y) ∈ [0,+∞)× [0,+∞) : x = vn(y) or y = vn(x), n ∈ N}.

As mentioned above, the form of the velocities Vi for the bisectrix sides is due to the possibility of Type

I and Type II vertices. The curves y = vn(x) and x = vn(y) partition the plane into regions such that if the

ordered pairs of scaled curvatures (ακ2, ακ3) and (ακ5, ακ6) fall into one of this regions, then during the

evolution, the vertices H3 and H6, which are the intersection between the two consecutive bisectrix sides,

will either maintain the same type, or alternate between them. In Section 5.2, we describe those regions

and derive the velocity law. In that perspective, we also find it instructive to express the motion laws V2, V3

(2.36) (and similarly for V5, V6 (2.37)) in the following fashion:

V2 =
1

α
√

2
(bακ2c+ p) , and V3 =

1

α
√

2
(bακ3c+ q) , for ακ2, ακ3 6∈ N. (2.38)

where p = p(ακ2, ακ3), q = q(ακ2, ακ3) ∈ {−1, 0, 1} are functions of both κ2 and κ3. The precise forms

of p and q are given in terms of the sets V(m,n) and D(m,n) which are defined in (5.38) and (5.52) and

illustrated in Fig. 26 and 27 for m,n ∈ N. The explicit expressions for p and q are given in (5.46)–(5.51).

As a further illustration, the inverse image of the velocity functions V2 and V3 are depicted in Fig. 9, which

are a consequence of Fig. 28 and 29.

The above theorem will be proved in Section 5, in particular Section 5.2.

Remark 2.11.

1. The different cases in the above formulation are described by open sets ακi 6∈ N for horizontal sides,

or (ακi, ακi+1) 6∈ X for pairs of bisectrix sides. For simplicity, we do not dwell into the details about the

boundary cases, which seem more complex than those in [10], but we refer to the end of Section 4 for some

discussion.

2. In the case α → +∞ we recover the limit laws of motion Vi = κi for horizontal sides and Vi = 1√
2
κi

for bisectrix sides, which coincide with the ones obtained in [3]. Note that the limit motions of all Vi are

decoupled.
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Figure 9: Partitioning of the κ2κ3-plane into: (a)
{
V −1

2 {m}
}
m≥0

, and (b)
{
V −1

3 {n}
}
n≥0

.

2.4 Remarks about the conditions on c1, c2

Hypothesis (H1): 2c2 > c1. This condition ensures that the ground state patterns are ±e1 and ±e2.

Otherwise, it can be shown as in [1] that upon suitable affine change of variable, the ground state is given

by e3 and the analysis is equivalent to that of the ferromagnetic case. Hence, the Wulff shape is a square

and after a change of parameters, the analysis of [10] applies.

Hypothesis (H2): c2 > c1. This is a technical simplification to prevent the appearance of new phase such

as e3. Under this assumption, the energy of any non-ground state patterns (e3,±e3,±e8) is at least 2c2.

Hence, we can reduce the computation of the energy of the interfacial region to appropriate bond counting

strategy. Otherwise, we need to make use of some isoperimetric inequality to investigate the competition

between interfacial and bulk energy terms.

(a)

e2

e1

e1

e2

e3

(b)

e2 e2

e1

e1

Figure 10: With the introduction of some e3-phase inside e1- and e2-phases (in (a)), the interfacial energy

can be lower than without the e3-phase (in (b)) as the energy of e3 can be very low.

As an illustration of the possibility of the appearance of e3 if this hypothesis is not satisfied, suppose we

have otherwise that

c1 > c2 ≈
1

2
c1.

In this case the energy of e3, given by 4c2− 2c1, is very low, or close to zero. So in principle, the appearance

of e3 will not cause any extra interfacial energy. In essence e3 can actually be a “new ground sate”. In
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fact, the interfacial energy of the overall pattern might actually decrease. For example, consider the case

of e1-crystal embedded in e2 as in Figure 10. Note that there is no extra interfacial energy between e1, e3,

and e2, e3. The actual advantage for the introduction of the extra e3 phase will depend on the competition

between the interfacial and bulk energies which in turn depends on some isoperimetric inequality. Hence, to

keep our analysis within reasonable complexity, we will eliminate such a complication by means of condition

(H2).

2.5 Some Additional Notation

Here we introduce some notation to facilitate our proof.

1. Even though we are only concerned with functions w from W, we find it convenient to also consider

functions from W̃ which are not necessarily realized by a spin function u ∈ Sε. The following notation and

definitions still make sense: for w̃ ∈ W̃, u ∈ S∞ε ,

E(1)
ε (w̃) = ε

∑
i∈εZ2

f(w̃i), (2.39)

Fε,τ (w̃, u) = E(1)
ε (w̃) +

ε2

τ

∑
{i∈εZ2: w̃i 6=w(u)i}

Dist1
ε(Qε(i), ∂εKu). (2.40)

2. For all u ∈ Sε, w̃ ∈ W̃ and A =
⋃
{Qε} the union of a collection of squares from Qε,

E(1)
ε (u,A) = ε

∑
Qε(i)⊆A

f(w(u)i), (2.41)

E(1)
ε (w̃, A) = ε

∑
Qε(i)⊆A

f(w̃(i)). (2.42)

3. Let A =
⋃
{Qε(i) : i ∈ I} be the union of a collection of some squares from Qε:

(a) ∂A denotes the topological boundary of A. Note that ∂A is a union of horizontal and vertical segments.

(b) ∂1
εA denotes those squares Qε(i) * A but whose center qε(i) is at an L1-distance ε from the set of

centers of A, {qε(i) : i ∈ I}.
4. For any set A, # {A} denotes the number of elements in A. For the sake of simplicity, if A =

⋃
{Qε}

is the union of a collection of squares, #{A} means the number of squares inside A.

3 Discrete Wulff Shapes

Here we investigate at the discrete level the Wulff shapes for ψ1 and ψ2. In order to formulate statements

that are useful for our analysis, we will characterize the Wulff-like envelopes of a given e1-crystal as the shape

of a set containing the given crystal with the smallest interfacial energy while enclosing as many squares as

possible. Precise statements will be given in Propositions 3.1 and 3.2.

For e1 inside e2, the structure of the Wulff shape is simple, as indicated in Figure 6(a).

For e1 inside −e1, Figure 6(b) shows a perfect (Type I) hexagonal Wulff shape. We call it ‘perfect’ as

everywhere it locally achieves the minimum energy in the slicing estimates (recall Lemma 2.4). Note that in

this case the bisectrix sides intersect at a lattice point. However, a different energy minimizing pattern (Type

II) can arise if the bisectrix sides intersect at the center of a square. We illustrate this with the example

shown in Figure 11.
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Figure 11: Comparison of the interfacial energies for discrete hexagonal-like Wulff shapes for ψ2 with different

type of vertices. (Only the energies to the left of the dotted vertical lines are compared.) The result is that

even with the presence of the high energy pattern e8 (Type II vertex), the interfacial structure in (a) has a

smaller energy than the structure in (b) (with a Type I vertex).

For the pattern in Figure 11(a), the energy of the interfacial region (to the left of the vertical dotted line)

is:

2× f(e3) + 6× 2f(e3) + f(e8). (3.1)

Note the appearance of one e8 defect that seemingly costs a lot of energy.

On the other hand, if we move the lower bisectrix side outward by one square, the e8 defect can be

eliminated (see Fig. 11(b)). In this case, the energy of the interfacial region is:

2× f(e3) + 7× 2f(e3) + f(e3). (3.2)

Note the appearance of an additional e3. Now we compare the energy of both patterns:

Energy(Figure 11(b))− Energy(Figure 11(a))

= ε
[
2f(e3) + 14f(e3) + f(e3)

]
− ε
[
2f(e3) + 12f(e3) + f(e8)

]
= ε

[
2f(e3) + f(e3)− f(e8)

]
= ε

[
2(2c2) + (4c2 − 2c1)− (4c2 + 2c1)

]
= ε

[
4c2 − 4c1

]
> 0 (as c2 > c1 by (H2)).

Hence, moving outward can cost more energy, leading to a competition between the interfacial energy and

the incremental bulk term in Fε,τ . The effect of this competition on the dynamical equation will be analyzed

carefully in Section 5.2.

We will formulate and summarize the above considerations about Wulff shapes in the next two sections.

The results are interesting in their own right and will also be useful for later analysis.

Before presenting the proofs, we first recall the Definition 2.7 of Wulff-like sets (rectangle, hexagon) R,

Rε, H, Hε, and the Wulff-like envelopes W4(Ω), W6(Ω) for a subset Ω of R2. For each R, there is a unique

v ∈ S∞ε such that Kv = Rε and ∂εKv everywhere satisfies the minimizing slicing estimates described in

Lemma 2.4. See Fig. 6(a). For each H, if H3 and H6 are lattice points; i.e., they are Type I vertices, there

is again a unique v ∈ S∞ε such that Kv = Hε and ∂εKv everywhere satisfies the minimizing slicing estimates

described in Lemma 2.4. See Fig. 6(b). However, if H3 or H6 is the center of some square; i.e., they are Type
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II vertices, then we will choose the v as illustrated in Figure 11(a) so that there is a defect of e8 appearing

at the vertex. In all of the above, for simplicity, the corresponding ∂εKv will be denoted by ∂εRε and ∂εHε.

3.1 Discrete Wulff Shape for e1-Phase Inside e2-Phase

In this section, we identify the shape enclosing a given e1-crystal which has the smallest energy value for

ψ1 and yet contains as many squares as possible. The answer is given by the smallest Wulff-like rectangle

containing the crystal.

(a)

u

Ku

R

R

R

B

C
D

R

1

2

3

4

A

4W (K  )

(b)

Ku
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C
D

R

[B,C]
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4

A

[A,B]

[D,A]
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Figure 12: (a) Wulff-like rectangular envelope W4(Ku) enclosing Ku. (b) Computing the lower bound of

E
(1)
ε (Ku) by means of projection and slicing estimates.

Proposition 3.1. Let w∞ = e2, u ∈ S∞ε . Suppose Ku =
⋃
{Qε(i) : w(u)i = e1} be connected. Then

E(1)
ε (u) ≥ min

{
E(1)
ε (v) : Ku ⊆ Kv and Kv is a Wulff-like rectangle.

}
(3.3)

The minimum of the above right-hand side is uniquely attained at the Wulff-like envelope of Ku: W4(Ku).

(See Fig. 12.)

Proof. Let R = R1R2R3R4 ⊆ R2 be the smallest bisectrix-rectangle containing Ku. Then ∂Ku touches ∂R
at some points A,B,C, and D ∈ εZ2 on R4R1, R1R2, R2R3 and R3R4 (see Fig. 12). (Note that there might

be multiple such points. Any one suffices for our argument.)

Next we partition R2\Ku into four regions so that we can employ vertical and horizontal slicings. More

precisely, we first divide the boundary curve ∂Ku (traced clockwise) into four sets: ∂Ku

∣∣
[A,B]

, ∂Ku

∣∣
[B,C]

,

∂Ku

∣∣
[C,D]

, and ∂Ku

∣∣
[D,A]

. Then let:

[A,B]↑ be the region bounded by {(xA, y) : y > yA} ∪ ∂Ku

∣∣
[A,B]

∪ {(xB , y) : y > yB} ; (3.4)

[B,C]→ be the region bounded by {(x, yB) : xB < x} ∪ ∂Ku

∣∣
[B,C]

∪ {(x, yC) : xC < x} ; (3.5)

[C,D]↓ be the region bounded by {(xC , y) : y < yC} ∪ ∂Ku

∣∣
[C,D]

∪ {(xD, y) : y < yD} ; (3.6)
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[D,A]← be the region bounded by {(x, yD) : x < xD} ∪ ∂Ku

∣∣
[D,A]

∪ {(x, yA) : x < xA} . (3.7)

The above are essentially the projections of ∂Ku toward the upwards, right, downwards and left directions.

By the slicing estimates in Lemma 2.4 we have

E(1)
ε

(
∂εKu, [A,B]↑

)
≥ f(e3)(xB − xA) = (2c2)(xB − xA),

E(1)
ε

(
∂εKu, [B,C]→

)
≥ f(e3)(yB − yC) = (2c2)(yB − yC),

E(1)
ε

(
∂εKu, [C,D]↓

)
≥ f(e3)(xC − xD) = (2c2)(xC − xD),

E(1)
ε

(
∂εKu, [D,A]←

)
≥ f(e3)(yA − yD) = (2c2)(yA − yD).

Now suppose all the vertices of R are lattice points. Then R is a Wulff-like rectangle. We claim that

E(1)
ε (∂εKu) ≥ E(1)

ε (∂εRε). (3.8)

This is simply due to the fact that (see Fig. 12(b))

E(1)
ε

(
∂εRε, [A,B]↑

)
= (2c2)(xB − xA),

E(1)
ε

(
∂εRε, [B,C]→

)
= (2c2)(yB − yC),

E(1)
ε

(
∂εRε, [C,D]↓

)
= (2c2)(xC − xD),

E(1)
ε

(
∂εRε, [D,A]←

)
= (2c2)(yA − yD).

Next suppose some of the vertices of R are at the center of a square, then we can find an enlarged

Wulff-like rectangle R̃ which contains R and the following lower bound is satisfied:

E(1)
ε (∂εKu) ≥ E(1)

ε (∂εR̃ε). (3.9)

To prove the above, we consider the parity of the points A,B,C and D in relation to the pattern e2 (recall

Definitions 2.2 and 2.3). If any of the points A,B,C and D has odd parity, then we will shift the point

outward horizontal by one lattice point. For concreteness, if A (B, C or D) has odd parity, then we shift it

to Ã = (xA− ε, yA) (B̃ = (xB + ε, yC), C̃ = (xC + ε, yC), or D̃ = (xD− ε, yD)). Then the bisectrix-rectangle

R̃ constructed by the new points Ã, B̃, C̃, D̃ will contain R and its vertices will all lie on lattice points.

Hence, R̃ε is a Wulff-like rectangle. As before we can construct a spin function v2 ∈ Sε such that R̃ε = Kv2 .

The reason for (3.9) is that whenever a touching point has odd parity, there must be an extra defect

appearing in ∂εKu. For example, if A has odd parity, then w(Qε(Ã)) 6= ±e1,±e2; i.e., it must be a defect

(recall Definition 2.2 of the tessellations [±e1], [±e2]). By our assumption c2 > c1, its energy is at least that

of e3 so that (3.9) holds. (See Fig. 13.)

3.2 Discrete Wulff Shape for e1 Inside −e1

Here we similarly identify the set enclosing a given e1-crystal with the property that it has the minimum

interfacial energy ψ2 and yet contains as many squares as possible. The answer is again given by the Wulff-like

envelope (hexagon) containing the crystal. However, this case is complicated by the following two facts:

(i) for interfaces along the horizontal direction, the minimum energy cost is f(e3) = 4c2 − 2c1 while for

interfaces along the bisectic direction, the minimum energy cost is 2× f(e3) = 2(2c2) = 4c2;
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Figure 13: Wulff-like rectangle envelope enclosing Ku with: (a) all touching points having the right parity;

(b) one touching point having the wrong parity; (c) two touching points having the wrong parity; (d) three

touching points having the wrong parity; (e) all four touching points having the wrong parity.

(ii) for a Wulff-like hexagon H = H1H2H3H4H5H6, each of the vertices H3 and H6 can be of Type I if

it is at a lattice point, or Type II if it is at the center of a lattice point (see Fig. 11).
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Figure 14: (a) Wulff-like hexagonal envelope W6(Ku) enclosing Ku; (b) Partitioning of R2\Ku into [A,B]↖,

[B,C]↑, [C,D]↗, [D,E]→, [E,F ]↘, [F,G]↓, [G,H]↙, and [H,A]←.

Now we present the following result.

Proposition 3.2. Let w∞ = −e1, u ∈ S∞ε . Suppose Ku =
⋃
{Qε(i) : w(u)i = e1} be connected. Then

E(1)
ε (u) ≥ min

{
E(1)
ε (v) : Ku ⊆ Kv and Kv is a Wulff-like hexagon.

}
(3.10)
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The minimum of the above right-hand side is uniquely attained at the Wulff-like envelope of Ku: W6(Ku).

The minimizer can have both Type I or Type II vertices (see Fig. 14(a)).

Proof. Let H = H1H2H3H4H5H6 be the Wulff-like envelope W6(Ku) such that ∂H and ∂Ku touch at points

A,B,C,D,E, F,G,H on H6H1, H1H2, H2H3, H3H4, H4H5 and H5H6, respectively (see Fig. 14(b)). We

claim that

E(1)
ε (∂εKu) ≥ E(1)

ε (∂εHε). (3.11)

The above holds regardless whether H3 or H6 are Type I or Type II vertices.

First, similarly to (3.4)–(3.7), we define [B,C]↑, [G,F ]↓, [D,E]→, [A,H]← which are the upwards, down-

wards, right and left projections of ∂Ku. By one-dimensional slicing argument (Lemma 2.4), we conclude

that:

E(1)
ε

(
∂εKu, [B,C]↑

)
≥ f(e3)(xC − xB) = (4c2 − 2c1)(xC − xB); (3.12)

E(1)
ε

(
∂εKu, [G,F ]↓

)
≥ f(e3)(xF − xG) = (4c2 − 2c1)(xF − xG); (3.13)

E(1)
ε (∂εKu, [D,E]→) ≥ 2f(e3)(yD − yE) = 4c2(yD − yE); (3.14)

E(1)
ε (∂εKu, [A,H]←) ≥ 2f(e3)(yA − yH) = 4c2(yA − yH). (3.15)

Second, in order to analyze the squares in ∂εKu between [A,B], we define [A,B]↖ to be the region

bounded by the the following curves:

{(x, yA) : x ≤ xA} ∪ ∂Ku

∣∣
[A,B]

∪ {(xB , y) : y ≥ yB} .

where ∂Ku

∣∣
[A,B]

is the portion of ∂Ku traced from A to B in the clockwise manner. We claim that:

E(1)
ε (∂εKu, [A,B]↖) ≥ f(e3)(xB − xH1) + 2f(e3)(yH1 − yA) + εf(e3). (3.16)

The formula above comes from the pattern for the Wulff interface joining A and B. Analogous claims hold

for the remaining portions of ∂εKu: (∂εKu, [C,D]↗), (∂εKu, [E,F ]↘), and (∂εKu, [G,H]↙).

To prepare for the proof of (3.16), we first define the exterior phase Lu of the crystal Ku. Let Ou =⋃
{Q(i) : w(u)i = −e1}. Since u ∈ S∞ε , we have w(u)i = w∞ (= −e1) outside some bounded subset of

R2. Hence, we can define Lu to be the (unique) unbounded connected component of Ou. Without loss of

generality, we can assume that R2\Lu is connected which automatically contains Ku. Suppose otherwise, on

those “islands” (i.e., connected components of R2\Lu) disjoint from Ku, we can simply replace the pattern

by −e1. This procedure will not increase the surface energy E
(1)
ε (u). Next, we set α = ∂1

εKu and β = ∂1
εLu.

These are necessarily defect patterns and hence by (H2) their energy is at least f(e3)ε = 2c2ε for each square.

We have the following two cases:

Case I. α ∩ β = ∅ (Figure 15(a)). Then we have

E(1)
ε (∂εKu, α) + E(1)

ε (∂εKu, β) = εf(e3)#{α}+ εf(e3)#{β}

≥ 2f(e3)(xB − xA) (by vertical slicing)

≥ f(e3)(xB − xH1) + 2f(e3)(yH1 − yA). (3.17)

In the above, we have used the facts that 2f(e3) > f(e3) and

xB − xA = xB − xH1
+ (xH1

− xA), and yB − yA = yH1
− yA = xH1

− xA. (3.18)

Case II. α ∩ β 6= ∅ (Figure 15(b)). Let Qε be a square from α ∩ β. Then either:
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Figure 16: (a) a horizontal square Qε, and (b) a vertical square Qε.

(i) the square Qε is vertical in the sense that its nearest left and right neighbors are e1 and −e1 or −e1

and e1 (see Fig. 16(a)). In this case, we have E
(1)
ε (∂εKu, Qε) = εf(e8).

(ii) the square Qε is horizontal in the sense that its nearest upper and lower neighbors are e1 and −e1 or

−e1 and e1 (see Fig. 16(b)). In this case, we have E
(1)
ε (∂εKu, Qε) = εf(e3).

Now consider the following partitions of α and β into their connected components:

α = α ∪ (α\β) = (γ1 ∪ γ2 · · ·) ∪ (δα1 ∪ δα2 · · ·) (3.19)

β = β ∪ (β\α) = (γ1 ∪ γ2 · · ·) ∪ (δβ1 ∪ δ
β
2 · · ·) (3.20)

where γi ⊆ α ∩ β and γi is either horizontal or vertical in the sense that it consists of only horizontal or

vertical arrays of squares; δαj ⊆ α\β, and δβj ⊆ β\α. Note that δαj ∩ δ
β
j = ∅. Then

E(1)
ε (∂εKu, γi) =

{
εf(e3)#{γi}, if γi is horizontal

εf(e8)#{γi}, if γi is vertical
(3.21)

E(1)
ε (∂εKu, δ

α
j ∪ δ

β
j ) = εf(e3)#{δαj }+ εf(e3)#{δβj } (3.22)
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Setting Ih := {i : γi is horizonthal} and Iv := {i : γi is vertical}, the above leads to

E(1)
ε (∂εKu, [A,B])

≥
∑
i∈Ih

E(1)
ε (∂εKu, γi) +

∑
i∈Iv

E(1)
ε (∂εKu, γi) +

∑
j

E(1)
ε (∂εKu, δ

α
j ∪ δ

β
j )

≥ ε
∑
i∈Ih

f(e3)#{γi}+ ε
∑
i∈Iv

2f(e3)#{γi}+ ε
∑
j

[
f(e3)#{δαj }+ f(e3)#{δβj }

]
(3.23)

≥ ε
∑
i∈Ih

f(e3)#{γi}+ ε
∑
i∈Iv

f(e3)#{γi}+ ε
∑
j

f(e3)#{δβj }

+ε
∑
i∈Ih

(f(e3)− f(e3))#{γi}+ ε
∑
i∈Iv

f(e3)#{γi}+ ε
∑
j

f(e3)#{δαj } (3.24)

= εf(e3)

[∑
i∈Ih

#{γi}+
∑
i∈Iv

#{γi}+
∑
j

#{δβj }

]

+ε(f(e3)− f(e3))

[∑
i∈Ih

#{γi}

]
+ εf(e3)

[∑
i∈Iv

#{γi}+
∑
j

#{δαj }

]
≥ f(e3)(xB − xA) + (f(e3)− f(e3))(xB − xH1) + f(e3)(yH1 − yA) (3.25)

= f(e3)(xB − xH1) + 2f(e3)(yH1 − yA). (3.26)

We pause to explain the above computation. The idea is to split the energy of γi into two portions: (i)

E
(1)
ε (γi) ≥ f(e3) +f(e3) for vertical γi; and (ii) E

(1)
ε (γi) = f(e3) + (f(e3)−f(e3)) for horizontal γi. We then

distribute the first portion to ∂1
εLu and the second portion to ∂1

εKu (from (3.23) to (3.24)). Using (3.18),

they are recombined at the end (from (3.25) to (3.26)).
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Figure 17: Proof of the appearance of an additional e3: (a) α ∩ β = ∅; (b) α ∩ β 6= ∅.

There are two remaining issues.

First, to get the additional f(e3) as in (3.16), we argue as follows. Consider Case I, α ∩ β = ∅. Then

by slicing along the vertical direction for [A,B], there must be at least an additional energy of f(e3) to the

left of A. For Case II, α ∩ β 6= ∅, if there is a horizontal γi, we proceed from A along ∂Ku

∣∣
[A,B]

to the first

point P where such a γi appears. The same conclusion follows again by slicing in the vertical direction for

[A,P ]. (See Fig. 17.) Note that in both cases, it suffices to consider slicing in the vertical direction as the

vector AB or AP are below the bisectrix from A. As the energy of any vertical square from γi is εf(e8)

which is more than ε2f(e3), the presence of any vertical γi can be handled similarly.
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By combining the above with (3.12)–(3.15), if H3 and H6 are of Type I, then the lower bound can be

achieved uniquely by W6(Ku).

Second, we need to consider the more involved case that H3 or H6 are of Type II. Recall that the

minimum energy across the e1 and −e1 interface in the bisectrix direction is achieved by 2f(e3). Note that

2f(e3)N + f(e3) > 2f(e3)(N − 1) + f(e8) (since 3f(e3) = 6c2 > 4c2 + 2c1 = f(e8)). (3.27)

Hence, if there is just one more defect than the necessary 2 × N defects, then the energy is already higher

than that of W6(Ku) with a Type II vertex.

To proceed, suppose that there is no ±e8 in ∂εKu. We will show that there must be at least one more

defect of e3 appearing and hence having an e8 is more advantageous. This is a consequence of the following

statements which demonstrate certain “rigidity” of the patterns appearing in a minimizer. Without loss of

generality, we consider H6 being Type II.

1. (This is a more quantitative statement for Fig. 17.) Let L̃ ∈ εZ2 be the first lattice point on y = yA

to the left of A such that w(Qε(L̃)) = −e1. Then by vertical slicing, we have

E(1)
ε (∂εKu, [A,B]) ≥ f(e3)(xB − xH1

) + 2f(e3)(yH1
− yA) + (xA − xL̃ − ε)f(e3). (3.28)

Hence, if xA − xL̃ ≥ 3ε, we are done.

2. We must have u(xA − ε, yA) = u(A). Otherwise, xA − xL̃ ≥ 3ε and by (1) we are done.

Similarly, we must also have u(xH − ε, yH) = u(H).

3. By using the connectedness property of ∂Ku, we now analyze the values of u along ∂Ku|[A,H]. Let

{ls}s≥1 be the collection of directed segments of ∂Ku|[A,H], each of length ε, starting from A and

moving toward H. Without loss of generality, all the vertical segments are pointing downward. We

have the following scenarios.

(a) Let ls = [R,S] be a vertical segment. Then u(R) = u(S).

If u(xR − ε, yR) = −u(R), then ls+1 must be vertical. Otherwise, w(xR − ε, yR − ε) = e1,

contradicting the fact that ls ⊂ ∂Ku. We further have u(xR − ε, yR − ε) = u(R). If u(xR −
ε, yR) = u(R), then u(xR− ε, yR− ε) = −u(R). Otherwise, an ±e8 will appear, contradicting the

assumption of no ±e8.

(b) Let ls = [R,S] is a horizontal segment, pointing to the left (xS = xR − ε). Then u(R) = −u(S).

Note that there cannot be two consecutive horizontal segments. Otherwise by slicing in the

horizontal direction, there will be one more defect and then we are done. Hence, ls−1 and ls+1

must be both vertical.

Now let ls−1 = [R̃, R], and ls+1 = [S, S̃]. Then u(R̃) = u(R), u(S) = u(S̃), u(xR̃ − ε, yR̃) = u(R̃).

From this, we can deduce that u(xS − ε, yS) = u(S), for otherwise, an additional defect will

appear. This also leads to u(xS̃ − ε, yS̃) = −u(S).

Similar conclusion holds for horizontal segments pointing to the right.

(c) (This follows in fact from the previous two statements but is repeated here for emphasis.) The

following patterns of a connected sequence of segments cannot occur:

vertical–horizontal(pointing left)–vertical–horizontal(pointing right)-vertical

or vertical–horizontal(pointing right)–vertical–horizontal(pointing left)-vertical.

Otherwise, a ±e8 will appear, contradicting the assumption of no e8.
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Figure 18: Cases of propagation of spin values along ∂Ku. (a): ls is a vertical segment; (b): ls is a horizontal

segment; (c): the impossibility of the sequence vertical–horizontal(pointing left)–vertical–horizontal(pointing

right)-vertical and vertical–horizontal(pointing right)–vertical–horizontal(pointing left)-vertical. The last

two scenarios of (c) contradict the fact that the middle vertical segment is from ∂Ku.

See Fig. 18 for an illustration of the above statements. With the above, we can relate the spin values

along the boundary curve ∂Ku. In order to satisfy the above rigidity conditions, starting from A, {ls} can

be partitioned into a disjoint sequence of: (i) even number of vertical segments; (ii) vertical–horizontal(left)

segments; and (iii) horizontal(right)–vertical segments. This dictates that A and H must be of the same

parity, contradicting the initial assumption that the bisectrices at A and H intersect at the center of a square.

Hence, an e8 must appear.

4 Dynamics of e1 Inside e2: w∞ = e2

The argument in this case follows [10] quite closely. Hence, we will only outline the key steps of the proof.

A detailed proof will in fact be given in Section 5 for the more difficult case of interfaces between e1- and

−e1-phases.

First Step. Given an initial spin function u0 such that Ku0 is a Wulff-like rectangle, the minimizer of

the functional (2.24) F(u0, ·) is also a Wulff-like rectangle. The main reason, due to the assumption (H2),

c2 > c1, is that for each e1 connected component, the interfacial energy must be at least the boundary

length (times f(e3)) (this fact in essence is also the main argument used in the proof of Proposition 3.1).

Then, upon moving the individual components toward the center and concatenating them together, both

the interfacial E
(1)
ε and incremental energies Bε,τ in (2.24) must decrease. Hence, we are lead to only one

component of e1-crystal which is a Wulff-like rectangle.

Second Step. With the above characterization of the minimizer, the motion is then completely captured

by the distance each bisectrix side moves (see Fig. 19). The actual value for these distances solve a finite-

dimensional minimization problem which will be described in more detail in the following.

Given K0 = Ku0 , let L1, L2, L3, L4 be the lengths of the sides of K0 . Now let N1, N2, N3, N4 be the
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Figure 19: Motion of sets between e1 and e2. (a) Continuum description. (b) Discrete representation of (a).

The numbers in the squares indicate their L1-distance to ∂εK0.

number of layers the segments move inward measured along the normal (bisectrix) direction (see Fig. 19).

Then we need to minimize:

f(N1, N2, N3, N4) = Fε,τ (u0, v)− E(1)
ε (K0)

= −2

[
ε

4∑
i=1

f(e3)Ni

]
+
ε2

τ

∑
{i∈εZ2:w(v)i 6=w(u0)i}

Dist1
ε (Qε(i), ∂εKu0

)

= −2ε

4∑
i=1

f(e3)Ni +
ε

α

4∑
i=1

(
2Ni∑
k=1

εk

)
Li√
2ε
− ε2

α
eε

= ε

4∑
i=1

[
−2f(e3)Ni +

Ni(2Ni + 1)

α

Li√
2

]
− ε2eε. (4.1)

where we have used the facts that: (i) τ = αε; (ii) the L1-distance between two parallel bisectric sides shifted

along their normal direction by N cubes (or layers) is given by 2N (see Figures 19(b)); (iii) the number

of squares along a bisectrix segment with length L is given by L√
2ε

. Furthermore, the regions around the

vertices lead to an error term ε2eε, where it holds

0 < eε ≤ C max(N1, N2, N3, N4)3.

Hence the error becomes negligible in the limit ε→ 0. The minimizer is characterized by the inequalities

f(· · · , Ni, · · · ) ≤ f(· · · , Ni ± 1, · · · ), for i = 1, 2, 3, 4.

By the evenness of quadratic function with respect to the minimum point, the optimal value N∗i of Ni is the

integer closest to the following value

2f(e3)α
√

2

4Li
− 1

4
=

(
f(e3)α√

2Li
+

1

4

)
− 1

2
. (4.2)

Note the fact that the closest integer to x− 1
2 is given by bxc. Hence, upon setting

κ̃i =
f(e3)α√

2Li
+

1

4
, (4.3)
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we then have

N∗i = bκ̃ic , if Dist (κ̃i,N) ≥ C̄ε; (4.4)

N∗i ∈ {bκ̃ic − 1, bκ̃ic} , if κ̃i − bκ̃ic < C̄ε; (4.5)

N∗i ∈ {bκ̃ic , bκ̃ic+ 1} , if bκ̃ic+ 1− κ̃i < C̄ε, (4.6)

where C̄ = C(L1, . . . , L4) can be bounded as in [10, p. 480]

0 ≤ C(L1, . . . , L4) ≤ Cα3

min(L1, . . . , L4)4
.

As a result each sides will move with inward normal velocity given by:

Vi =

√
2εN∗i
τ

=

√
2N∗i
α

. (4.7)

The continuum limit (2.30) is obtained by letting ε −→ 0.

Note that the definition of κ̃i in (4.3) incorporates the factor α while that of κi in (2.30), in the statement

of Theorem 2.8, does not. The latter is in fact more physical because it coincides with the definition of

crystalline curvature in the continuum limit. The use of κ̃ is for notational simplicity and will turn out to

be particularly convenient in the proof of Theorem 2.10.

We pause here to elaborate formulas (4.4)–(4.6). In the limit ε −→ 0, if κ̃i 6∈ N, then the number of layers

moved for the i-th edge and hence its velocity is uniquely defined by (4.4). But if κ̃ ∈ N, then the velocity

is not uniquely defined. The actual value will depend on the manner, at the ε-level, how κ̃i approaches N
(for example, whether it is from above (4.5) or from below (4.6)). When this happens, by the method of

continuity, we can actually prescribe the limit in some arbitrary way by imposing α = α(ε) appropriately.

See [1] for detail. A further remark is that since the property κ̃i /∈ N is an open set, once the shape falls into

this region, it will remain so for some time interval which does not depend on ε.

5 Dynamics of e1 Inside −e1: w∞ = −e1

For this case, even with the assumption, c2 > c1, the situation can be very delicate due to the potential

appearance of the ±e2 phase and the existence of Type I and II vertices for H3 and H6.

For the first difficulty, consider the following example that an e2-phase appears in such a manner to

replace part of the original e1, so that the e1-crystal becomes disconnected. Note that the energy between

e1 and −e1 in the vertical direction is f(e3) = 4c2 − 2c1 and that between e2 and −e1 is f(e3) = 2c2. With

the standing assumption c2 > c1, we have f(e3) > f(e3). Hence, the presence of e2-phase might decrease

the interfacial energy (see Figures 20). Some global consideration is needed.

For the second difficulty, it will be demonstrated that both Type I and II vertices can appear during the

successive minimization process. We need to perform a more careful analysis of the actual motion. It is an

interesting type of analysis leading to some further homogenization of the boundary velocity.

5.1 Characterization of Minimizers of Fε,τ

Here we prove that given an initial crystal consisting of a Wulff-like hexagon of e1 inside −e1, the hexagonal

shape is preserved at each minimization step.
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Figure 20: Due to f(e3) > f(e3), the introduction of an e2 phase inside e1 and −e1 phases (as in (a)) can

have an overall smaller interfacial energy than that by direct contact between the e1 and −e1 phases (as in

(b)). Thus some global consideration is needed.

Let the initial condition be given by u0 ∈ S∞ε such that

Ku0
=
⋃
{Qε(i) : w(u0)i = e1}

is a Wulff-like hexagon. As in Definition 2.7, we label the hexagon clockwise, starting from the upper left

vertex as H1H2H3H4H5H6. We recall that the energy functional to be minimized at each step is given for

v ∈ S∞ε by

Fε,τ (v, u0) = E(1)
ε (v) +

ε2

τ

∑
{i∈εZ2: w(v)i 6=w(u0)i}

Dist1
ε(Qε(i), ∂εKu0). (5.1)

We will prove that a minimizer is a Wulff-like hexagon, by showing that otherwise there exists a sequence

of modifications which turn it into a Wullf-like hexagon possibly decreasing its energy. Essentially, starting

from a minimizer w1, we will produce a finite sequence of pattern functions w̃m ∈ W̃ such that Fε,τ (w̃m) ≥
Fε,τ (w̃m+1) and w̃N = w(v∗) for some v∗ ∈ S∞ε such that Kv∗ is a Wulff-like hexagon. It might be the case

that the w̃m (m = 2, 3, . . . N − 1) is not given by a spin function; i.e., w̃m ∈ W̃\W, but this will turn out to

be irrelevant.

5.1.1 Truncation of the patterns: w̃2

First let w1 = w(u1) be the pattern function of a minimizer u1 of (5.1). Suppose Ku1
is not a Wulff-like

hexagon, we will define a new pattern function w̃2 ∈ W̃ by the following truncation procedure by Ku0
:

1. Define w̃2 as w̃2(i) =

{
w1(i) if Qε(i) ⊆ Ku0 ,

−e1 if Qε(i) 6⊆ Ku0
.

2. For each square Qε just below the line segment [H1H2], let QU
ε be its nearest upper neighhour. Then

modify w̃2(QU
ε ) in the following situations:

(i) if w̃2(Qε) = e1, then modify w̃(QU
ε ) to be e3;

(ii) if w̃2(Qε) = ±e2, then modify w̃(QU
ε ) to be e3.

Perform similar modification of w̃2 for squares located just below the segment [H4H5].

3. For each square Qε lying on the bisectrix segments [H2H3]. Let Qε,L and Qε,R be its left and right

neighbours. Then modify w̃2 according to the following rules.
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Suppose H3 is a lattice point:

(i) if w̃2(Qε,L) = e1, then modify w̃2(Qε) and w̃2(Qε,R) to be e3;

(ii) if w̃2(Qε,L) = ±e2, then modify w̃2(Qε) to be e3.

Suppose H3 is the center of a square Q∗ε. Then make the same assignment as above except for Q∗ε:

(i) if w̃2(Q∗ε,L) = e1, then modify w̃2(Q∗ε) to be e8;

(ii) if w̃2(Q∗ε,L) = e2, then modify w̃2(Q∗ε) to be e3.

Perform similar modification of w̃2 for squares lying on the segments [H3H4], [H5H6] and [H6H1].

4. Consider the four pairs of squares (QI
ε,i ⊆ Ku0 , Q

O
ε,i 6⊆ Ku0) for i = 1, 2, 4, 5 which touch the vertices

H1, H2, H4, H5 and are symmetric across the bisectrix direction. If w̃2(QI
ε,i) = e1, then change w̃2(QO

ε )

to be e3.
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Figure 21: Truncation of w1 by Ku0
, leading to w̃2

The procedure above is schematically illustrated in Figure 21. After that, we have

Fε,τ (w1) ≥ Fε,τ (w̃2) (5.2)

as both the incremental bulk term Bε,τ and the interfacial energy term E
(1)
ε are reduced due to the truncation

and replacement of the pattern by the minimizing pattern.

5.1.2 Enlargement of e1-crystal to be Wulff-like hexagon

With the w̃2 constructed above, consider its e1-crystal and its partition into its connected components:

K̃2 =
⋃
{Qε(i) : w̃2(i) = e1} =

⋃
α

K̃α
2 . (5.3)

We will enlarge each K̃α
2 to its Wulff-like envelope, W6(K̃α

2 ). Then we can estimate the interfacial energy

fairly easily. Similar to the definition of Lu in the proof of Proposition 3.2, we define the exterior L̃2 to K̃2 to

be the (unique) unbounded connected component of the set which is the union of the squares with pattern

−e1. We further consider the connected components of its boundaries:

∂L̃2 =
⋃
β

∂L̃β2 , ∂1
ε L̃2 =

⋃
β

∂1
ε L̃

β
2 . (5.4)

Note that each of the K̃α
2 must be enclosed by one of the ∂L̃β2 ’s. Without loss of generality, we can assume

that each ∂L̃β2 encloses some K̃α
2 .
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Next, consider first the case that ∂L̃2 consists of only one component. For simplicity, we will also omit

the subscript 2.

Consider the sets W6(L̃), ∂1
ε L̃, ∂1

εK̃, and W6(K̃α) for each α. We have the following two cases.

Case I: ∂1
ε L̃
⋂
∂1
εK̃ = ∅. Then

E(1)
ε (w̃2, ∂

1
ε L̃) ≥ εf(e3)#

{
∂1
εW6(L̃)

}
(5.5)

E(1)
ε (w̃2, ∂

1
εK̃

α) ≥ εf(e3)#
{
∂1
εW6(K̃α)

}
, for each α. (5.6)

Hence

E(1)
ε

(
w̃2, ∂

1
ε L̃ ∪

⋃
α

∂1
εK̃

α

)
≥ εf(e3)

[
#
{
∂1
εW6(L̃)

}
+
∑
α

#
{
∂1
εW6(K̃α)

}]
. (5.7)

Case II: ∂1
ε L̃
⋂
∂1
εK̃ 6= ∅. Recalling Figure 16, for each Qε ∈ ∂1

ε L̃
⋂
∂1
εK̃, we have the following two

cases:

1. w̃2(Qε) = e8 in which case it connects a −e1 to an e1 horizontally through one square. As f(e8) =

4c2 + 2c1 > 4c2 = 2f(e3), we will decompose the value of f(e8) into two f(e3)’s and associate one f(e3) to

∂1
ε L̃ and one f(e3) to ∂1

εK̃.

2. w̃2(Qε) = e3 in which case it connects a −e1 to an e1 vertically through one square. As f(e3) =

4c2−2c1, we will decompose the value of f(e3) into f(e3) = 2c2 that we associate to ∂1
ε L̃ and f(e3)−f(e3) =

2c2 − 2c1(> 0) that we associate to ∂1
εK̃.

(a)
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(b)

K
~ α

β

2
L
~

2
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Figure 22: (a) Splitting of energy: f(e3) = f(e3) + (2c2 − 2c1); (b) Enlargement of e1-crystals.

Then we have the following lower bound,

E(1)
ε

(
w̃2, ∂

1
ε L̃ ∪

⋃
α

∂1
εK̃

α

)
≥ εf(e3)#

{
∂1
εW6(L̃)

}
+
∑
α

E(1),−
ε

(
∂1
εW6(K̃α)

)
(5.8)

where E
(1),−
ε is the interfacial energy which gives a weight f(e3) to sides with bisectrix normals and f(e3)−

f(e3) to sides with vertical normals. (The above idea of splitting the energy has already appeared once in

the derivation of (3.26). See also the explanation right below (3.26).) See Fig. 22(a,b) for an illustration

of this step. Combining (5.7) and (5.8), and extending to the case with multiple components of ∂L̃β ’s, we

conclude that

E(1)
ε (w̃2) ≥ E(1)

ε

(
w̃2, ∂

1
ε L̃ ∪

⋃
∂1
εK̃
)

(5.9)

≥ εf(e3)
∑
β

#
{
∂1
εW6(L̃β)

}
+
∑
α

E(1),−
ε

(
∂1
εW6(K̃α)

)
. (5.10)
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In summary, the interfacial energy of w̃2 is bounded below by the sum of two contributions:

(i) the first comes from the boundary of Wulff-like hexagons W6(∂1
ε L̃

β)) – their energy is the number of

squares weighted by εf(e3); and

(ii) the second comes from the boundary of Wulff-like hexagons ∂1
εK̃

α – their energy is the number of

squares weighted by εf(e3) for the bisectrix normal direction and ε(f(e3) − f(e3)) (> 0) for the vertical

normal direction.

5.1.3 Movement and concatenation of components of e1: w̃3

Now consider the incremental bulk term:

Bε,τ (K̃2) =

∫
{
⋃
Qε(i): w̃2,i 6=w(u)i}

Dist1
ε(x, ∂Ku0

) dx =

∫
Ku0\K̃2

Dist1
ε(x, ∂Ku0

) dx

=

∫
Ku0

Dist1
ε(x, ∂Ku0) dx−

∫
K̃2

Dist1
ε(x, ∂Ku0) dx

=

∫
Ku0

Dist1
ε(x, ∂Ku0) dx−

∫
⋃
α K̃

α
2

Dist1
ε(x, ∂Ku0) dx

≥
∫
Ku0

Dist1
ε(x, ∂Ku0

) dx−
∫
⋃
αW6(K̃α

2 )

Dist1
ε(x, ∂Ku0

) dx

(where we have used the formulation (2.25)). Note that the first integral of the two last integrals is a fixed

quantity independent of K̃2 while the second is more negative if the component is nearer to the center of

Ku0
. Hence, it is more advantageous to move each e1-component of K̃2 toward the center.

We now modify w̃2 according to the reasoning above.

1. Inside each ∂1
εW6(L̃β), we can move each component K̃α toward the center. When they touch, we

can replace the new connected component by its Wulff-like envelope. This step can reduce both the

interfacial energy E
(1)
ε and the incremental bulk term B as:⋃

α

W6(K̃α) ⊆ W6

(⋃
α

K̃α
)
,

and E(1),−
ε

(⋃
α

∂1
εW6(K̃α)

)
≥ E(1),−

ε

(
∂1
εW6

(⋃
α

K̃α

))
.

The above combined movement, concatenation and enlargement procedures lead to one single e1-crystal

W̃6(β) which is a Wulff-like hexagon. At the same time, we will shrink the size of W̃6

(
∂1
ε L̃

β
)

until it

is equal to W̃6(β).

2. Now we define w̃3:

w̃3(Qε) =

{
e1, if Qε ⊆ W̃6(β),

−e1, if Qε 6⊆ W̃6(β)
. (5.11)

Then we modify w̃3 on the boundary of W6(β) to be the minimum pattern dictated by Lemma 2.4 and

taking into consideration of the necessary modification for Type II vertices. As f(e3) = 4c2 − 2c1 =

f(e3) + 2c2 − 2c1, the splitting of the energy of e3 can be recombined. Hence, we have

E(1)
ε (w̃2) ≥ E(1)

ε

(
w̃3, ∂εW̃6(β)

)
(5.12)

32



(a)

W (L  )
6 2

β~

W (K  )
~α

26

the center
move toward 

(b)

2

β~

~ α

2
(after movement)

W (K  )6

W (L  )6
(after shrinking)

Figure 23: (a) Movement toward the center and (b) concatenation of the e1-crystal components in w̃2, leading

to w̃3

3. Perform the same procedure for each ∂1
εW6(L̃β). Ultimately, we are led to only one component of the

e1-crystal which is a Wulff-like hexagon (see Fig. 23(a,b)).

The above procedures lead to the conclusion: Given an initial Ku0
which is a Wulff-like hexagon, then

the minimizer v∗ of the functional Fε,τ (·, u0) is also given by a Wulff-like hexagon contained in Ku0 .

5.2 Motion of Wulff Like Hexagonal - with Type I and II Hexagons

Here we give the motion law for the interface between e1 and −e1. As to be seen, the continuum description

of the motion of the (bisectrix) segments depends on the transition between the Type I and Type II vertices

in Wulff-like hexagon.
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(b)
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−e
1

(c)

  N=4 −e
1

  e
1

(d)

N=5 −e
1

  e1

Figure 24: Motion of sides for Wulff-like Hexagons

Let K0 = Ku0
be a Wulff-like hexagon (which can contain both Types I and II vertices). We use the same

notation as in Definition 2.7. Let L1, L2, . . . L6 be the lengths of the sides of the hexagon, with Li = |HiHi+1|
(H7 = H1). Let further N1, N4 be the number of layers the horizontal segments L1 and L4 move inward

measured along the normal (vertical) direction, and N2, N3, N5, N6 be the number of layers the bisectrix
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segments L2, L3, L5, and L6 move inwards measured along the horizontal directions (see Fig. 24)2. The

actual functional to be minimized depends on whether the vertices H3 and H6 are of Type I or Type II. It

can be derived as:

f(N1, N2, . . . , N6) =
1

ε

[
Fε,τ (v, u0)− E(1)

ε (u0)
]

=
1

ε

[
E(1)
ε (v)− E(1)

ε (u0) +
ε2

τ

∑
{i∈Z2:w(v)i 6=w(u0)i}

Dist1
ε (Qε(i), ∂εK0)

]

=
1

ε

E(1)
ε (v)− E(1)

ε (u0) +
ε2

τ

∑
i=1,4

(
Ni∑
k=1

εk

)
Li
ε

+
ε2

τ

∑
i=2,3,5,6

(
Ni∑
k=1

εk

)
Li

ε
√

2
+ ε2eε


=

1

ε

[
E(1)
ε (v)− E(1)

ε (u0)
]

+
1

α

∑
i=1,4

Ni(Ni + 1)

2
Li +

1

α

∑
i=2,3,5,6

Ni(Ni + 1)

2

Li√
2

+ εeε

=

6∑
i=1

gi(Ni) + s(H3)2c1Par(N2 +N3) + s(H6)2c1Par(N5 +N6) + εeε, (5.13)

where

gi(Ni) = −2β1Ni +
m1

α
Ni(Ni + 1)Li, β1 = 2f(e3), m1 =

1

2
, i = 1, 4;

gi(Ni) = −β2Ni +
m2

α
Ni(Ni + 1)Li, β2 = f(e3), m2 =

1

2
√

2
i = 2, 3, 5, 6;

Par(M) = 1 if M is a odd and 0 if M is even;

s(H) = 1 if H is Type I and −1 if H is Type II;

|eε| ≤ C (N1 + · · ·+N6)
3
.

The appearance of Par(·) and s(H) is explained as follows. Consider the vertex H3. (The explanation is the

same for H6.) Suppose initially H3 is Type I; i.e., it is a lattice point. If N2 + N3 is even, then the new

vertex H ′3 will still be a Type I vertex. On the other hand, if N2 +N3 is odd, then the new vertex H ′3 is of

Type II. The defect e8 leads to an extra energy of f(e8)− 2f(e3) = 2c1, leading to s(H3) = 1. Similarly, if

initially H3 is Type II; i.e., it is the center of a square. Now if N2 + N3 is odd, then H ′3 becomes a Type I

vertex. The defect e8 disappears and hence a reduction of f(e8)− 2f(e3) = 2c1 leading to s(H3) = −1.

Note that in the above functional, N1 and N4 are decoupled from N2, N3, N5 and N6. Hence, upon

minimization, similar to the reasoning going from (4.1) to (4.4), we obtain the following optimal values for

N1 and N4 for f :

N∗1 =

⌊
αβ1

m1L1

⌋
and N∗4 =

⌊
αβ1

m1L4

⌋
. (5.14)

Next, we find the optimal values of N2 and N3. (The consideration is the same for N5 and N6.) Note

that in the functional f above, N2 and N3 are coupled together but decoupled from the rest. Now let N∗2
and N∗3 be the minimum points of g2 and g3:

N∗2 =

⌊
αβ2

2m2L2

⌋
, and N∗3 =

⌊
αβ2

2m2L3

⌋
. (5.15)

2Note that there is a difference in the definition of the number of layers moving in for the bisectrix segments between the

e1-e2-interface in Section 4 and the current e1-−e1-interface. In the former case, the number is measured along the normal

bisectrix direction while here it is measured along the horizontal direction. This is simply for arithmetic convenience.
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We will incorporate the presence of s(H3)Par(N2 +N3) by considering the following variation:

h(p, q) = g2(N∗2 + p) + g3(N∗3 + q) + s(H3)2c1Par(N∗2 + p+N∗3 + q)

− [g2(N∗2 ) + g3(N∗3 ) + s(H3)2c1Par(N∗2 +N∗3 )]

= [g2(N∗2 + p) + g3(N∗3 + q)− g2(N∗2 )− g3(N∗3 )] (5.16)

+s(H3)2c1 [Par(N∗2 +N∗3 + p+ q)− Par(N∗2 +N∗3 )] (5.17)

for p, q ∈ {−1, 0, 1}.
Now we separately consider the following two cases.

5.2.1 Case I: H3 is a Type I vertex; i.e., s(H3) = 1.

First note that since N∗2 and N∗3 are the unique minimum points of g2 and g3, the term (5.16) is always

non-negative.

If N∗2 +N∗3 is even, then (5.17) is also non-negative. Hence, N∗2 and N∗3 are the true minima of f .

If N∗2 +N∗3 is odd, then we have

h(N∗2 + p,N∗3 + q)

= [g2(N∗2 + p) + g3(N∗3 + q)− g2(N∗2 )− g3(N∗3 )] + 2c1 [Par(N∗2 +N∗3 + p+ q)− 1]

= −β2p− β2q +
m2L2

α
(2pN∗2 + p(p+ 1)) +

m2L3

α
(2qN∗3 + q(q + 1))− 2c1Par(p+ q). (5.18)

It suffices to just compare (p, q) = (0, 0) with (p, q) = (±1, 0) or (0,±1) so that −2c1Par(p + q) is strictly

negative. We then have

h(0, 0) = 0, (5.19)

h(−1, 0) = β2 +
m2L2

α
(−2N∗2 )− 2c1, (5.20)

h(1, 0) = −β2 +
m2L2

α
(2N∗2 + 2)− 2c1, (5.21)

h(0,−1) = β2 +
m2L3

α
(−2N∗3 )− 2c1, (5.22)

h(0, 1) = −β2 +
m2L3

α
(2N∗3 + 2)− 2c1. (5.23)

For the following, we denote:

κ̃2 =
αβ2

2m2L2
, κ̃2 = m+ s where bκ̃2c = m, and 0 ≤ s < 1, (5.24)

κ̃3 =
αβ2

2m2L3
, κ̃3 = n+ t where bκ̃3c = n, and 0 ≤ t < 1, (5.25)

C(m,n) = {(κ̃2, κ̃3) : m ≤ κ̃2 < m+ 1, n ≤ κ̃3 < n+ 1} . (5.26)

Note that the α factor is incorporated in the definition of κ̃2 and κ̃3. This is in accord with the convention

explained for the definition of κ̃i in (4.3).

Comparison between h(−1, 0), h(1, 0), h(0,−1) and h(0,−1). Note that

h(−1, 0) < h(1, 0) ⇐⇒ κ̃2 < bκ̃2c+
1

2
, (5.27)

h(0,−1) < h(0, 1) ⇐⇒ κ̃3 < bκ̃3c+
1

2
. (5.28)

We then subdivide the square C(m,n) into the following four regions.
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lower left =

{
0 < s, t <

1

2

}
=

{
(κ̃2, κ̃3) : κ̃2 < bκ̃2c+

1

2
, κ̃3 < bκ̃3c+

1

2

}
:

h(−1, 0) < h(0,−1)⇐⇒ bκ̃3c
κ̃3

<
bκ̃2c
κ̃2
⇐⇒ n

m
s < t; (5.29)

lower right =

{
1

2
< s < 1, 0 < t <

1

2

}
=

{
(κ̃2, κ̃3) : κ̃2 > bκ̃2c+

1

2
, κ̃3 < bκ̃3c+

1

2

}
:

h(1, 0) < h(0,−1)⇐⇒ bκ̃2c+ 1

κ̃2
+
bκ̃3c
κ̃3

< 2,⇐⇒ m+ 1

m+ s
+

n

n+ t
< 2; (5.30)

upper right =

{
1

2
< s, t < 1

}
=

{
(κ̃2, κ̃3) : κ̃2 > bκ̃2c+

1

2
, κ̃3 > bκ̃3c+

1

2

}
:

h(1, 0) < h(0, 1)⇐⇒ bκ̃2c+ 1

κ̃2
<
bκ̃3c+ 1

κ̃3
⇐⇒ t <

n+ 1

m+ 1
s+

m− n
m+ 1

; (5.31)

upper left =

{
0 < s <

1

2
,

1

2
< t < 1

}
=

{
(κ̃2, κ̃3) : κ̃2 < bκ̃2c+

1

2
, κ̃3 > bκ̃3c+

1

2

}
:

h(−1, 0) < h(0, 1)⇐⇒ 2 <
bκ̃2c
κ̃2

+
bκ̃3c+ 1

κ̃3
⇐⇒ 2 <

m

m+ s
+
n+ 1

n+ t
. (5.32)

Comparison of h(±1, 0) and h(0,±1) with h(0, 0). This leads to

h(−1, 0) < h(0, 0) ⇐⇒
(

1− 2c1
β2

)
κ̃2 < bκ̃2c, (5.33)

h(1, 0) < h(0, 0) ⇐⇒ bκ̃2c+ 1 <

(
1 +

2c1
β2

)
κ̃2, (5.34)

h(0,−1) < h(0, 0) ⇐⇒
(

1− 2c1
β2

)
κ̃3 < bκ̃3c, (5.35)

h(0, 1) < h(0, 0) ⇐⇒ bκ̃3c+ 1 <

(
1 +

2c1
β2

)
κ̃3 (5.36)

In order for h(0, 0) < min {h(±1, 0), h(0,±1)}, (κ̃2, κ̃3) must satisfy

bκ̃2c
1− δ

< κ̃2 <
bκ̃2c+ 1

1 + δ
and

bκ̃3c
1− δ

< κ̃3 <
bκ̃3c+ 1

1 + δ

(
where δ =

2c1
β2
∈ (0, 1)

)
(5.37)

For convenience, we define the following set to capture the condition (5.37). For any m,n ∈ N,

V(m,n) =

(
δm

1− δ
,

1−mδ
1 + δ

)
×
(

δn

1− δ
,

1− nδ
1 + δ

)
. (5.38)

Note that V is a rectangle with the horizontal and vertical lengths given by 1−(2m+1)δ
1−δ2 and 1−(2n+1)δ

1−δ2 , both

of which decrease as m and n increase. Furthermore,

V(m,n) 6= ∅ if and only if m,n <
1− δ

2δ
, (5.39)

in particular, V(m,n) = ∅ for m,n are large enough.

If for simplicity, we use (5.29)–(5.32) to also refer to the equations of the boundary of the regions; i.e., the

equations when equalities hold in the conditions, then they satisfy the following more “refined” properties.

(We assume m ≥ n and use s and t as our variables.)
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1. Equation (5.29), (5.30), (5.31) and (5.32) pass through the points (0, 0), (1, 0), (1, 1) and (0, 1) respec-

tively.

2. Equation (5.29) and (5.30) intersect at s = 1
2 and t1 = n

2m while equation (5.31) and (5.32) intersect

at s = 1
2 and t2 =

m−n2 + 1
2

m+1 . (Note t1 ≤ t2 for m ≥ n and equality holds if and only if m = n.)

3. The curves described by (5.29)–(5.32) continue across C(m,n) in the following sense:

(5.29) for C(m,n) = (5.31) for C(m− 1, n− 1), (5.40)

(5.30) for C(m,n) = (5.32) for C(m+ 1, n− 1), (5.41)

(5.31) for C(m,n) = (5.29) for C(m+ 1, n+ 1), (5.42)

(5.32) for C(m,n) = (5.30) for C(m− 1, n+ 1). (5.43)

4. Suppose V(m,n) 6= ∅, then its four vertices:

A =
(
δm
1−δ ,

δn
1−δ

)
, B =

(
1−δm
1+δ ,

δn
1−δ

)
, C =

(
1−δm
1+δ ,

1−δn
1+δ

)
, D =

(
δm
1−δ ,

1−δn
1+δ

)
(5.44)

lie on (5.29), (5.30), (5.31) and (5.32) respectively.

The above properties are illustrated in Figures 25 and 26.

(a) P=(m,n) Q=(m+1,n)

R=(m+1,n+1)S=(m,n+1)

U

T

(b) m−1 m m+1 m+2
n−1

n

n+1

n+2

C(m,n)

C(m−1,n+1) C(m+1,n+1)

C(m−1,n−1) C(m+1,n−1)

Figure 25: Partitioning of C(m,n). In (a), the curves (5.29) (PU), (5.30) (QU), (5.31) (RT ), (5.32) (ST ),

and their intersections are shown. The points T and U are equal to
(

1
2 ,

m−n2 + 1
2

m+1

)
and

(
1
2 ,

n
2m

)
. In (b), the

continuation of the curves (5.29)–(5.32) from C(m,n) to C(m− 1, n− 1), C(m+ 1, n− 1), C(m+ 1, n+ 1),

C(m− 1, n+ 1) are illustrated.

5.2.2 Case II: H3 is a Type II vertex; i.e., s(H3) = −1.

This case is basically the same as the previous one except that the cases for N∗2 +N∗3 are even and odd are

switched. To be precise, we re-write (5.16)-(5.17) here:

h(p, q) = [g2(N∗2 + p) + g3(N∗3 + q)− g2(N∗2 )− g3(N∗3 )]

−2c1 [Par(N∗2 +N∗3 + p+ q)− Par(N∗2 +N∗3 )] .
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(a) κ

κ +1

(1+δ)κ

κ

length for region V
regions of positive

1 2 3 4 5 6

4

5

3

2

1

0

~

~
~

(1−δ)κ

~

~
(b) P=(m,n) Q=(m+1,n)

R=(m+1,n+1)S=(m,n+1)

U

T

A B

CD

Figure 26: The computation leading to region V(m,n). In (a), (5.37) is illustrated. The shaded intervals

are those values of κ̃ such that h(0, 0) < min {h(±1, 0), h(0,±1)}. In (b), the rectangle V(m,n) (5.38) and

its four vertices A,B,C, and D (5.44) are shown.

If N∗2 +N∗3 is odd, then N∗2 and N∗3 give the true minimum of f .

If N∗2 +N∗3 is even, then h(p, q) becomes:

h(p, q) = [g2(N∗2 + p) + g3(N∗3 + q)− g2(N∗2 )− g3(N∗3 )]− 2c1Par(p+ q) (5.45)

which is the same as (5.18). Then all the definitions of Regions I–IV and V are the same as before.

5.2.3 Summary for the Minima of (5.17)

First, for any L2 = |H2H3|, and L3 = |H3H4| > 0, let

κ̃2 =
αβ2

2m2L2
, m = bκ̃2c , s = κ̃2 −m;

κ̃3 =
αβ2

2m2L3
, n = bκ̃3c , t = κ̃3 − n.

Now for m ≥ n, the minima (N∗∗2 , N∗∗3 ) = (N∗∗2 (κ̃2, κ̃3), N∗∗3 (κ̃2, κ̃3)) of (5.17) are given by:

(m+ p, n+ q), (5.46)

where

(Region V) (p, q) = (0, 0): if

(s, t) ∈ V(m,n) =

(
δm

1− δ
,

1−mδ
1 + δ

)
×
(

δn

1− δ
,

1− nδ
1 + δ

)
,

(
δ =

2c1
β2

)
; (5.47)

(Region I) (p, q) = (0,−1): if

(m,n) 6∈ V(m,n), and t <
1

2
,
n

m
s > t,

m+ 1

m+ s
+

n

n+ t
> 2; (5.48)

(Region II) (p, q) = (1, 0): if

(m,n) 6∈ V(m,n), and s >
1

2
,
m+ 1

m+ s
+

n

n+ t
< 2, t <

n+ 1

m+ 1
s+

m− n
m+ 1

; (5.49)
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(Region III) (p, q) = (0, 1): if

(m,n) 6∈ V(m,n), and t >
1

2
, t >

n+ 1

m+ 1
s+

m− n
m+ 1

, 2 >
m

m+ s
+
n+ 1

n+ t
; (5.50)

(Region IV) (p, q) = (−1, 0): if

(m,n) 6∈ V(m,n), and s <
1

2
, 2 <

m

m+ s
+
n+ 1

n+ t
,
n

m
s < t. (5.51)

The formula for the case m < n is simply obtained by switching m and n.

Note that the conditions above are all given by open sets. We do not exert any concrete conclusion when

L2, L3 fall on the boundary of the above conditions as it seems there is no simple definite answer. See also

the explanation at the end of Section 4 for the case of e1–e2 interfaces.

Second, subdivide the κ̃2κ̃3-plane into unit squares (5.26):

C(m,n) = {(κ̃2, κ̃3) : bκ̃2c = m, bκ̃3c = n} , m, n ∈ N.

and define D(m,n) to be the set formed by enlarging C(m,n) into the region bounded by the curves (5.29)–

(5.32) and the boundaries of the rectangles V from C(m± 1, n) and C(m,n± 1). More precisely,

D(m,n) = C(m,n) ∪ (Region III of C(m,n− 1)) ∪ (Region IV of C(m+ 1, n))

∪ (Region I of C(m,n+ 1)) ∪ (Region II of C(m− 1, n)) (5.52)

(See Fig. 27). Then for all m,n ∈ N, we have

V(m,n) ⊆ C(m,n) ⊆ D(m,n).

(a)

A B

CD

(m,n)

(m,n+1) (m+1,n+1)

(m+1,n)

I

IIIV

III

V

(b) m−1 m m+1 m+2
n−1

n

n+1

n+2

D(m,n)

C(m,n−1)

C(m,n)

C(m,n+1)

C(m+1,n)C(m−1,n)

V(m,n+1)

V(m−1,n) V(m+1,n)

V(m,n−1)

Figure 27: (a) The partitioning of C(m,n) into Regions I – V. (b) The set D(m,n). Note that D(m,n) is

an enlarged version of C(m,n) containing part of C(m± 1, n) and C(m,n± 1).

Now we separate the cases depending on the type of H3.

Suppose H3 initially is a Type I vertex. The κ̃2κ̃3-plane is partitioned into the following sets:

{(κ̃2, κ̃3) : κ̃2, κ̃3 ≥ 0} =[ ⋃
{(m,n):m,n≥0,Par(m+n)=0}

D(m,n)

]
∪

[ ⋃
{(m,n):m,n≥0,Par(m+n)=1}

V(m,n)

]
(5.53)

With the above partition, then we have the following statements about the one step dynamics.
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1. If (κ̃2, κ̃3) ∈ D(m,n) (with Par(m+ n) = 0), the minimum values of N2 and N3 for f are (m,n) and

the new H3 remains Type I.

2. If (κ̃2, κ̃3) ∈ V(m,n) (with Par(m+ n) = 1), the minimum values of N2 and N3 for f are (m,n) and

the new H3 becomes Type II.

This is illustrated in Figure 28.

~

1 2 3 4 5

1

2

3

4

0

D(1,2) D(3,3)

D(2,2)

D(1,1) D(3,1)

D(0,2)

D(0,4) D(2,4) D(4,4)

D(4,2)

D(4,0)D(0,0)

V(0,3)

V(1,4) V(3,4)

V(2,3)

V(1,2)

V(0,1) V(2,1) V(4,1)

V(4,3)

V(1,0) V(3,0)

V(3,2)

B

D(2,0)
HG

E

~
A 

A

2κ
~

κ
3

Figure 28: Starting from Type I vertex. Note that the κ̃2κ̃3-plane is partitioned into unions of D(m,n)

(with Par(m+n) = 0) and V(m,n) (shaded region with Par(m+n) = 1). For (κ̃2, κ̃3) ∈ D(·, ·), H3 remains

Type I; For (κ̃2, κ̃3) ∈ V(·, ·), H3 is changed to Type II. At point A, the vertex H3 will remain Type I; At

point B, the vertex H3 will toggle between Types I and II. Points E,G and H represent an infinitely long

finger with L3 and L6 equal to infinity (see Fig. 30). At E and H, the vertex H3 will remain Type I. At G,

the vertex H3 will toggle between Types I and II.

Suppose H3 initially is a Type II vertex. The description is very similar, except that the parity

conditions for the definition of D and V are switched. Precisely, the κ̃2κ̃3-plane is partitioned as:

{(κ̃2, κ̃3) : κ̃2, κ̃3 ≥ 0} =[ ⋃
{(m,n):m,n≥0,Par(m+n)=1}

D(m,n)

]
∪

[ ⋃
{(m,n):m,n≥0,Par(m+n)=0}

V(m,n)

]
(5.54)

Then the one-step dynamics is given by:

1. if (κ̃2, κ̃3) ∈ D(m,n) (with Par(m+ n) = 1), the new H3 is changed to Type I.

2. if (κ̃2, κ̃3) ∈ V(m,n) (with Par(m+ n) = 0), the new H3 remains Type II.

This is illustrated in Figure 29.

With the above, we have the following scenarios about the transition between Type I and Type II vertices

during dynamics.
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κ
1 2 3 4 5

1

2

3

4

0

D(1,0)

D(1,2)

D(0,1)

D(0,3) D(2,3) D(4,3)

D(3,2)

D(2,1) D(4,1)

D(3,0)

V(0,4)

V(1,3) V(3,3)

V(2,4) V(4,4)

V(0,2) V(2,2) V(4,2)

V(1,1) V(3,1)

V(0,0) V(2,0) V(4,0)

D

F

C

3
κ
~

2

~

Figure 29: Starting from Type II vertex. Note that the κ̃2κ̃3-plane is partitioned into unions of D(m,n)

(with Par(m + n) = 1) and V(m,n) (shaded region with Par(m + n) = 0). For (κ̃2, κ̃3) ∈ D(·, ·), H3 is

changed to Type I; For (κ̃2, κ̃3) ∈ V(·, ·), H3 remains Type II. At point C, the vertex H3 will switch to Type

I and then the situation follows that of Figure 28; At point D, the vertex H3 will remain Type II. Point F

represents an infintely long finger with L3 and L6 equal to infinity (see Fig. 30). The vertex H3 will remain

Type II.

Starting from Type I. We are in the situation of Figure 28. Note that during dynamics, (L2(t), L3(t))

and consequently (κ̃2(t), κ̃3(t)) (defined in (5.24), (5.25)) are continuous functions of time. Hence, if initially

(κ̃2(0), κ̃3(0)) ∈ int(D(m,n)) for Par(m+n) = 0, then for some time interval, (κ̃2(t), κ̃3(t)) will still be inside

the same int(D(m,n)). Then the minimum will be given by (m,n) with Par(m+ n) = 0. Thus, during this

time interval H3 will remain Type I. (See for example point A in Figure 28.)

On the other hand, if (κ̃2(0), κ̃3(0)) ∈ int(V(m,n)) for Par(m + n) = 1, then H3 will switch to Type II

in the first time step and we will be in the situation of Figure 29. In this case, H3 will be switched back to

Type I in the second step. In other words, H3 will toggle between Type I and II for some time interval. See

for example point B in Figure 28.

Starting from Type II. The reasoning is very similar but we are now in the situation of Figure 29. If

initially (κ̃2(0), κ̃3(0)) ∈ int(D(m,n)) for Par(m + n) = 1, then H3 will be switched to Type I within one

time step and then the previous case applies: it will either remain Type I or toggle between Type I and II.

See for example point C in Figure 29.

On the other hand, if initially (κ̃2(0), κ̃3(0)) ∈ int(V(m,n)) for Par(m + n) = 0, then H3 will remain

Type II for some time interval. See for example point D in Figure 29.

Note that it is not possible for a Type I vertex to be changed to Type II and remain Type II as

V(m1, n1)
⋂

V(m2, n2) = ∅ for Par(m1 + n1) = 0 and Par(m2 + n2) = 1.
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5.2.4 Formula for the Limiting Velocity Functions

From the previous section, the one step horizontal displacements N∗∗2 , N∗∗3 for the segments H2H3 and H3H4

are given by:

(N∗∗2 , N∗∗3 ) =


(bκ̃2c , bκ̃3c) if H3 is Type I and Par(bκ̃2c+ bκ̃3c) = 0

(5.47)–(5.51) if H3 is Type I and Par(bκ̃2c+ bκ̃3c) = 1

(bκ̃2c , bκ̃3c) if H3 is Type II and Par(bκ̃2c+ bκ̃3c) = 1

(5.47)–(5.51) if H3 is Type II and Par(bκ̃2c+ bκ̃3c) = 0.

(5.55)

Note that in all the cases, N∗∗2 = N∗2 or N∗2 ± 1 and N∗∗3 = N∗3 or N∗3 ± 1.

The above leads to the following formula for the velocities V2 and V3 in the continuum limit.

Starting from H3 being Type I. If

(i): Par(bκ̃2c+ bκ̃3c) = 0; or (ii): Par(bκ̃2c+ bκ̃3c) = 1 and (κ̃2, κ̃3) ∈ V(bκ̃2c , bκ̃3c), then

V2 =
1

α
√

2
bκ̃2c , V3 =

1

α
√

2
bκ̃3c . (5.56)

In case (i), H3 will remain Type I (see for example, point A in Figure 28), while in case (ii), H3 will toggle

between Type I and Type II (see for example, point B in Figure 28). Note that V2 and V3 are functions of

κ̃2 and κ̃3 only; i.e., they are decoupled.

If (iii): Par(bκ̃2c+ bκ̃3c) = 1 and (κ̃2, κ̃3) 6∈ V(bκ̃2c , bκ̃3c), then

V2 =
1

α
√

2
(bκ̃2c+ p), V3 =

1

α
√

2
(bκ̃3c+ q), (5.57)

where (p, q) ∈ {(0,±1), (±1, 0)} are determined from (5.48)–(5.51). H3 will remain Type I (see for example,

point Ã) in Figure 28). Note that now V2 and V3 are coupled, through the functions p and q.

Starting from H3 being Type II. If

(iv): Par(bκ̃2c+ bκ̃3c) = 1, or (v): Par(bκ̃2c+ bκ̃3c) = 0 and (κ̃2, κ̃3) 6∈ V(bκ̃2c , bκ̃3c),

then within one step, the vertex will become Type I and the previous case applies (see for example point C

in Figure 29). Hence, these two cases will not affect the formula in the continuum limit.

If (vi): Par(bκ̃2c+ bκ̃3c) = 0 and (κ̃2, κ̃3) ∈ V(bκ̃2c , bκ̃3c), then

V2 =
1

α
√

2
bκ̃2c , V3 =

1

α
√

2
bκ̃3c , (5.58)

and H3 will remain Type II (see point D in Figure 29).

We remark that in all of the cases, the velocities in the continuum limit are given by (5.56) (or (5.58))

except when H3 is of Type I and if Par(bκ̃2c+ bκ̃3c) = 1 and (κ̃2, κ̃3) 6∈ V(bκ̃2c , bκ̃3c), then the velocity is

given by (5.57).

Though the above description of the velocity functions involves quite a large number of cases and scenarios,

in fact they can be conveniently stated in terms of the the “inverse velocity functions”
{
V −1

2 (m)
}
m≥0

and{
V −1

3 (n)
}
n≥0

which partition the κ2κ3-plane into vertical and horizontal bands. See the statement of

Theorem 2.10.
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Figure 30: An infinitely long finger with L3 and L6 equal to infinity. Vertex H3 can remain Type I, Type II

or toggle between them.

5.2.5 An Example of an Infinitely Long Finger

Here we consider an example of an infinitely long finger pointing to the bisectrix direction with L3, L6 =∞
(see Fig. 30). Then we have κ̃3, κ̃6 = 0 for all time and hence (κ̃2, κ̃3) will always lie on the κ̃2-axis. Now

the dynamics is completely determined by that of L1 and L2. For each step of discrete time minimization,

the optimal values of N1 and N2 are given by:

N∗1 = bκ̃1c and N∗∗2 = bκ̃2c+ p2 (5.59)

where p2 ∈ {−1, 0, 1} and its value depends on whether (κ̃2, 0) ∈ C(bκ̃2c , 0) or V(bκ̃3c , 0).

Upon choosing L1 and L2 appropriately, it is possible to have a traveling wave in the sense that L1(t) ≡ L1

and L2(t) ≡ L2 for all time. Then we have the following cases.

1. H3 is Type I and κ̃2 ∈ C(m, 0) for some m even in Figure 28. (See for example point E in Figure 28.)

2. H3 is Type I and κ̃2 ∈ C(m, 0)\V(m, 0) for some m odd in Figure 28. (See for example point H in

Figure 28.)

3. H3 toggles between Type I and Type II and κ̃2 ∈ V(m, 0) in Figure 28 for m odd. (See for example

point G in Figures 28.)

4. H3 is Type II and κ̃2(t) ∈ V(m, 0) for m even in Figure 29. (See for example point F in Figure 29.)

The inward normal velocity V1 for L1 is given by

V1 =
1

α
bκ̃1c , (5.60)

while the inward normal velocity V2 for L2 is given by

V2 =
1

α
√

2
bκ̃2c in cases 1, 3, 4 and (5.61)

V2 =
1

α
√

2
(bκ̃2c ± 1) in case 2 (5.62)

where ± equals + if (5.49) is true and − if (5.51) is true.

The traveling wave solution in case 3 in which H3 toggles between Type I and Type II should be more

appropriately called a pulsating wave solution as the pattern changes periodically in time. But this phe-

nomenon is only be revealed during the discrete minimization procedure. Its effect disappears upon taking

the continuum limit.
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