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Abstract. Approximation of problems in linear elasticity having small shear modulus in a thin region is
considered. Problems of this type arise when modeling ground motion due to earthquakes where rupture
occurs in a thin fault. It is shown that, under appropriate scaling, solutions of these problems can be
approximated by solutions of a limit problem where the fault region is represented by a surface. In a
numerical context this eliminates the need to resolve the large deformations in the fault; a numerical
example is presented to illustrate efficacy of this strategy.
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1. Introduction. Models used to simulate ground motion during an earthquake fre-
quently represent the sub–surface as a union of linearly elastic materials separated by thin
(fault) regions within which large deformations (rupture) occur. Below we analyze limiting
models which circumvent the numerical difficulties encountered with direct simulation of
these models which arise when very fine meshes are required to resolve the large deforma-
tions in the fault region. The fault region in reduced models is represented as a surface and
the rupture is realized as discontinuities in certain components of the solution. Figures 1.1
and 1.2 illustrates these issues; the fine mesh in Figure 1.1 is unnecessary when the large
shear across the fault is represented as the discontinuity in the horizontal displacement
shown in Figure 1.2. Theorems 2.1 and 3.1 justify this approach for a certain class of these
models by establishing that their solutions converge to the solution of a reduced problem
as the width tends to zero.

In the Appendix we show that a solution of the three dimensional rupture model proposed
in [7] can be found by considering a cross section Ω = (−1, 1) × (−1, 1) of a sub–surface
region containing a horizontal fault Sε = (−1, 1)× (−ε/2, ε/2) of width ε > 0. The balance
of momentum takes the classical form

ρutt − div(T ) = ρf on (0, T )× Ω, (1.1)

where u(t, x) ∈ R2 and ρ(t, x) > 0 represent the displacement and density of the medium,
f(t, x) ∈ R2 the force per unit mass, and T is the (Cauchy) stress tensor. The sub–surface
strata is taken to be isotropic so that away from the fault the stress takes the form

T = 2µD(u) + λ div(u)I, in Ω \ S̄ε, (1.2)
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Fig. 1.1. Solution with deformation resolved.

Fig. 1.2. Solution of the limit problem.

where D(u) = (1/2)
(
∇u+ (∇u)>

)
and µ = µ(x) and λ = λ(x) are the shear and bulk

moduli. In the fault the stress is given by

T =

[
(2µ+ λ)u1x + λu2y µ

(
ε(u2x + u1y)− γ

)
µ
(
ε(u2x + u1y)− γ

)
(2µ+ λ)u2y + λu1x

]
in Sε, (1.3)

where γ = γ(t, x) models the permanent deformation due to damage, defects, and healing
in the fault [7] and evolves according to

γt + β
(
η̂γ − T12 − νγxx

)
= 0, in Sε. (1.4)

This model of rupture was inspired by the plasticity theories developed in [3, 1] where the
coefficients β, η̂ and ν are typically nonlinear functions of γ and its derivatives. To date
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there is no satisfactory mathematical theory for these models of nonlinear elasticity [2]
so for the analysis below we assume that the coefficients in (1.4) are specified which, for
example, would be the case for one step of a linearly implicit time stepping scheme for the
fully nonlinear problem. In this context we address the following problems.

Strain Energy: If γ(x) is specified (or more generally γε → γ sufficiently strongly) we verify
that the strain energies for the stationary problem (1.1)–(1.3) converge to the limiting
energy

I(u) =

∫
Ω\S0

2µ|D(u)|2 + λ div(u)2 +

∫
S0

µ([u1]− γ)2,

where [u1(x)] denotes the jump in the first (horizontal) component of u across the line
S0 = (−1, 1)× {0}. The corresponding Euler Lagrange operator is then

−div(T ) on Ω \ S0 with [Tn] = 0 and T12 = µ([u1]− γ) on S0,

where T = 2µD(u) + λ div(u)I and [Tn] is the jump of the traction across S0 with n =
(0, 1)> and T12 its component.

This shows that the scaling introduced in (1.3) is the “mathematically interesting” case
for which a non–trivial limit exits. With different scalings the equations for u and γ either
decouple (the last term in the energy vanishes) or lock, [u1] = γ, in the limit. The limiting
energy for the coupled stationary problem (1.1)–(1.4) is

I(u, γ) =

∫
Ω\S0

2µ|D(u)|2 + λ div(u)2 +

∫
S0

µ([u1]− γ)2 +
(
η̂γ2 + νγ2

x

)
. (1.5)

We omit the proof since the proof is a routine extension of the ideas used for the uncoupled
problem. Examples of numerical solutions to both the uncoupled and coupled problems
are presented in Section 4.

Evolutionary Problem: In Section 3 we show that solutions of the coupled system (1.1)–
(1.4) converge to a limit which satisfies the reduced system,

ρutt − div(T ) = ρf on Ω \ S0,

with T = 2µD(u) + λ div(u)I, and

[Tn] = 0, T12 = µ([u1]− γ), and γt + β
(
η̂γ − T12 − νγxx

)
= 0 on S0.

For definiteness we consider displacement boundary conditions u(.,±1) = 0 on the top and
bottom of Ω and traction free boundary data on the sides; T (±1, .)n = 0, and νγx(±1, .) =
0. We omit analogous results for other boundary conditions which are routine technical
extensions of the proof techniques presented below. The same energy and limiting problem
are obtained with the “engineering approximation” utilized in [7] where the shear stress
T12(x, y) in the equation (1.4) is approximated by its average T̄12(x) across Sε so that γ
depends only upon x,

γt + β
(
η̂γ − T̄12 − νγxx

)
= 0, where T̄12(t, x) =

1

ε

∫ ε/2

−ε/2
T12(t, x, y) dy.

The ideas presented below extend directly to the analysis of this variation of the problem.
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1.1. Notation & Function Spaces. Standard notation is adopted for the Lebesgue
spaces, Lp(Ω), and the Sobolev space H1(Ω). Solutions of evolution equations will be
viewed as functions from [0, T ] into these spaces, and we adopt the usual notion, L2[0, T ;H1(Ω)],
C[0, T ;H1(Ω)], etc. to indicate the temporal regularity. Strong and weak convergence in
these spaces is denoted as uε → u and uε ⇀ u respectively.

Divergences of vector and matrix valued functions are denoted div(u) = ui,i and div(T )j =
Tij,j respectively. Here indices after the comma represent partial derivatives and the sum-
mation convention is used. Gradients of vector valued quantities are interpreted as ma-
trices, (∇u)ij = ui,j, and the symmetric part of the gradient is written as D(u). Inner
products are typically denoted as pairings (., .) or, for clarity, the dot product of two vec-
tors v, w ∈ Rd may be written as v.w = viwi and the Frobenious inner product of two
matrices A, B ∈ Rd×d as A : B = AijBij.

The following notation is used to characterize the dependence upon ε of the elastic and
fault regions.

Notation 1.1. Let Ω = (−1, 1)2 and 0 < ε < 1/2.

1. The fault regions are denoted by Sε = (−1, 1)× (−ε/2, ε/2) and S0 = (−1, 1)× {0}
and their complements, the elastic regions, denoted as Ωε = Ω \ S̄ε and Ω0 = Ω \S0.

2. The sub–spaces of functions on the elastic region which vanish on the top and bottom
boundaries are

U = {u ∈ H1(Ω) | u(x,±1) = 0, −1 < x < 1},
Uε = {u ∈ H1(Ωε) | u(x,±1) = 0, −1 < x < 1},
U0 = {u ∈ H1(Ω0) | u(x,±1) = 0, −1 < x < 1}.

3. The restriction u 7→ u|Ωε is identified as an embedding of the spaces H1(Ω) ↪→
H1(Ωε) and U ↪→ Uε; similarly H1(Ω) ↪→ H1(Ω0) and U ↪→ U0.

4. Below χA denotes the characteristic function of A ⊂ Ω; χA(x) = 1 if x ∈ A and
χA(x) = 0 otherwise.

The following lemma quantifies the dependence upon ε of embedding constants and prop-
erties of the function spaces for which the energy is continuous and coercive. Here and
below C and c denote constants which may vary from instance to instance but will always
be independent of ε.

Lemma 1.2. Denote the domains and spaces as in Notation 1.1, and if uε ∈ H1(Ωε) and
u ∈ H1(Ω0) denote by [uε] and [u] the jump in their traces across the fault regions;

[uε] = uε(., ε/2)− uε(.,−ε/2) and [u] = u(., 0+)− u(., 0−).

1. The constant in Korn’s inequality on Uε is independent of ε.
2. The following Poincare inequality holds for functions in U ,

(1/2)‖u‖L2(Sε) ≤
(
ε2‖uy‖2

L2(Sε)
+ (ε/2)‖u‖2

H1(Ωε)

)1/2

.
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Fig. 1.3. Approximation of horizontal displacement u ∈ U0 by a function uε ∈ U ⊂ H1(Ω)

3. If uε ∈ H1(Ω) and

uε ⇀ u, χΩεu
ε
x ⇀ g0 uεy ⇀ g1, in L2(Ω),

then u ∈ H1(Ω) and ∇u = (g0, g1)>.
4. If uε ∈ H1(Ω) and

uε ⇀ u, uεx ⇀ g0, χΩεu
ε
y ⇀ g1 in L2(Ω),

then u ∈ H1(Ω0) and ∇u = (g0, g1)>. In addition [uε]→ [u] in L2(−1, 1).
5. Let φε : Ωε → Ω0 be the mapping

φε(x, y) =
(
x, y−ε/2

1−ε/2

)
, ε/2 < y < 1, and φε(x, y) =

(
x, y+ε/2

1−ε/2

)
, −1 < y < −ε/2.

Then the linear functions Eε : H1(Ωε) → H1(Ω0) given by Eε(u
ε) = uε ◦ φ−1

ε are
isomorphisms and their norms and the norms of their inverses converge to one as
ε→ 0. The restriction of Eε to Uε is an isomorphism onto U0.

6. If u ∈ H1(Ω0) then there exists uε ∈ H1(Ω) such that
(a) ‖Eε(uε)− u‖H1(Ω0) → 0.
(b) ‖uεx‖L2(Sε) → 0.

(c) uε1y(x, .) is independent of y in Sε and
∫ ε/2
−ε/2 u

ε
1y(., y) dy = [uε]→ [uε] in L2(−1, 1).

In addition, if u ∈ U0 then uε ∈ U .

The proof of this lemma involves standard arguments [5] so is omitted. The only subtlety
appears in the construction of the function uε in item 6. The idea is illustrated in Figure
1.3; given u ∈ U0 extend u ◦ φ−1

ε to Sε by linear interpolation. However, to control the
x-derivative in Sε we first mollify u on each subdomain Ω± with parameter

√
ε.

2. Gamma Convergence of the Stationary Operator. Letting C : R2×2 → R2×2
sym

denote the classical isotropic elasticity tensor with shear and bulk moduli µ and λ, the
associated strain energy function will be denoted as

W (A) ≡ C(A) : A = 2µ(A2
11 + A2

22) + λ(A11 + A22)2 + µ(A12 + A21)2.
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Define Iε : H1(Ω)
2 → R to be energy,

Iε(u) =

∫
Ωε

W
(
∇u
)

+

∫
Sε

W

([
u1x

√
εu1y − γ/

√
ε√

εu2x u2y

])
(2.1)

=

∫
Ω

W

([
u1x u1yχΩε

u2xχΩε u2y

])
+

∫
Sε

W

([
0

√
εu1y − γ/

√
ε√

εu2x 0

])
In this section we establish the following theorem which establishes convergence of the
energies in the following sense [4].

• (lim–inf inequality) If {uε}ε>0 ⊂ U × U with {I(uε)}ε>0 ⊂ R bounded then there
exists u ∈ U0 × U and a sub–sequence for which uε ⇀ u in H1

loc(Ω0) ×H1(Ω) and
I(u) ≤ lim infε→0 Iε(u

ε).
• (lim–sup inequality) For each u ∈ U0 × U there exists a sequence {uε}ε>0 ⊂ U × U

such that uε ⇀ u in H1
loc(Ω0)×H1(Ω) and I(u) ≥ lim supε→0 Iε(u

ε).

Theorem 2.1. Denote the domains and spaces as in Notation 1.1 and let Iε : U ×U → R
be as in equation (2.1) with γ ∈ L2(−1, 1) fixed. Assume that the shear and bulk moduli
are bounded above, there exists c0 > 0 such that µ ≥ c0 and µ + λ ≥ c0, and that there
exists ε0 > 0 such that the shear modulus µ is independent of y on Sε for ε < ε0. Then

Iε
Γ→ I where I : U0 × U → R is given by

I(u) =

∫
Ω0

W (∇u) +

∫ 1

−1

µ([u1]− γ)2,

for which the strong form of the Euler Lagrange operator is

−div(C(∇u)) on Ω0, with [C(∇u)].n = 0 and C(∇u)12 = µ([u1]− γ) on S0.

Here [.] denotes the jump across the fault line y = 0.

The following lemma quantifies the coercivity properties of the energies Iε and the cor-
responding bounds required for the proof of Theorem 2.1. In this lemma we use the
property that in two dimensions the assumptions on the Lame parameters guarantee
W (A) ≥ 2c0|Asym|2 where Asym denotes the symmetric part of A ∈ R2×2.

Lemma 2.2. Denote the domains and spaces as in Notation 1.1 and let Iε : U × U → R
be as in equation (2.1) with γ ∈ L2(−1, 1) fixed. Assume that the shear and bulk moduli
bounded above, µ ≥ c0 > 0 and µ+ λ ≥ c0 > 0. Then

‖u1x‖2
L2(Ω) + ‖u1y‖2

L2(Ωε)
+ ‖u2x‖2

L2(Ωε)
+ ‖u2y‖2

L2(Ω) ≤ CIε(u),

and
‖
√
εu2x‖2

L2(Ω0) + ‖
√
εu1y‖2

L2(Ω0) ≤ C
(
Iε(u) + ‖γ‖2

L2(−1,1)

)
.

In particular,

‖u1‖2
L2(Ω) + ‖u2‖2

L2(Ω) ≤ C
(
Iε(u) + ‖γ‖2

L2(−1,1)

)
.
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Proof. It is immediate that

‖u1x‖2
L2(Ω) + ‖u1y + u2x‖2

L2(Ωε)
+ ‖u2y‖2

L2(Ω) + ‖
√
ε(u2x + u1y)− γ/

√
ε‖2
L2(Sε)

≤ CIε(u),

and Korn’s inequality on Ωε shows

‖u2x‖2
L2(Ωε)

+ ‖u1y‖2
L2(Ωε)

≤ C
(
‖u1y + u2x‖2

L2(Ωε)
+ ‖u1x‖2

L2(Ωε)
+ ‖u2y‖2

L2(Ωε)

)
.

Next, use the triangle inequality and the identity ‖γ/
√
ε‖L2(Sε) = ‖γ‖L2(−1,1) to obtain

‖
√
ε(u2x + u1y)‖L2(Sε) ≤ ‖

√
ε(u2x + u1y)− γ/

√
ε‖L2(Sε) + ‖γ‖L2(−1,1),

Korn’s inequality for the vector field ũ =
√
ε(u1, u2) on Ω0 shows

‖
√
εu2x‖2

L2(Ω0) + ‖
√
εu1y‖2

L2(Ω0)

≤ C
(
‖
√
ε(u2x + u1y)‖2

L2(Ω0) + ε
(
‖u1x‖2

L2(Ω0) + ‖u2y‖2
L2(Ω0)

))
.

Proof. (of Theorem 2.1) Lim–Inf Inequality: Let {uε}ε>0 ⊂ H1(Ω)
2

and suppose Iε(u
ε) is

bounded. Lemma 2.2 then shows that the functions

uε1, u
ε
1x, u

ε
1yχΩε , and uε2, u

ε
2xχΩε , u

ε
2y,

are all bounded in L2(Ω). Upon passing to a subsequence we may then assume each of
them converges weakly in L2(Ω) to a limit u = (u1, u2) ∈ L2(Ω)

2
and from Lemma 1.2

conclude u ∈ U0 × U ; in particular,[
uε1x uε1yχΩε

uε2xχΩε uε2y

]
⇀

[
u1x u1y

u2x u2y

]
in L2(Ω)

2×2
,

Since W is convex and continuous it is weakly lower semi–continuous; in particular, the
limit of the first term in equation (2.1) is bounded as∫

Ω0

W (∇u) ≤ lim inf
ε

∫
Ω

W

([
uε1x uε1yχΩε

uε2xχΩε uε2y

])
.

To compute the limit of the second term in equation (2.1), use Jensen’s inequality and the
quadratic homogeneity of W (.) to obtain∫

Sε

W

([
0

√
εuε1y − γ/

√
ε√

εuε2x 0

])
≥
∫ 1

−1

εW

(
1

ε

∫ ε/2

−ε/2

[
0

√
εuε1y − γ/

√
ε√

εuε2x 0

]
dy

)
dx

=

∫ 1

−1

W

([
0 [uε1]− γ∫ ε/2

−ε/2 u
ε
2x dy 0

])
dx,
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where [uε1](x) = u1(x, ε/2) − u1(x,−ε/2). Lemma 1.2 shows [uε1] → [u] in L2(−1, 1), so

the lim–inf inequality will follow upon showing that
∫ ε/2
−ε/2 u

ε
2x dy ⇀ 0 in L2(−1, 1). To

verify this, first use the Cauchy Schwarz inequality and Lemma 2.2 to bound this term in
L2(−1, 1),

∫ 1

−1

(∫ ε/2

−ε/2
uε2x dy

)2

dx ≤ ‖
√
εuε2x‖2

L2(Sε)
≤ C

(
Iε(u

ε
1) + ‖γ‖2

L2(−1,1)

)1/2

.

To show that this term converges weakly to zero let φ ∈ C∞0 (−1, 1) and compute∣∣∣∣∣
∫ 1

−1

∫ ε/2

−ε/2
uε2x dy φ dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

−1

∫ ε/2

−ε/2
uε2 φ

′ dy dx

∣∣∣∣∣ ≤ ‖uε2‖L2(Sε)

√
ε‖φ′‖L2(−1,1).

The sharp Poincare inequality in Lemma 1.2 shows ‖uε2‖L2(Sε) ≤ C
√
ε so the right hand

side of the above vanishes from which it follows that
∫ ε/2
−ε/2 u

ε
2x dy ⇀ 0 in L2(−1, 1).

Lim–Sup Inequality: To construct a recovery sequence for u ∈ H1(Ω0) × H1(Ω) select
uε = (uε1, u2) where uε1 is the lifting of u1 to H1(Ω) guaranteed by item 6 of Lemma 1.2.

Lemma 1.2 shows uε ◦ φ−1
ε → u in H1(Ω0) where φε : Ωε → Ω0 is the piecewise affine

diffeomorphism in the Lemma. Since the mapping u 7→ W (∇u) is continuous on H1(Ω0)2

it follows that the energy in the bulk converges,∫
Ωε

W (∇uε) =

∫
Ω0

W
(
∇(uε ◦ φ−1

ε )
)

(1− ε/2)→
∫

Ω0

W (∇u).

The energy in the fault regions Sε takes the form∫
Sε

W

([
uε1x

√
εuε1y − γ/

√
ε√

εu2x u2y

])
=

∫
Sε

W

([
uε1x ([uε1]− γ)/

√
ε√

εu2x u2y

])
Since u2x, u2y ∈ L2(Ω) are independent of ε and |Sε| → 0 it is immediate that ‖u2x‖L2(Sε)

and ‖u2y‖L2(Sε) both converge to zero, and from Lemma 1.2 it follows that ‖uε1x‖L2(Sε) also
converges to zero. Also, [uε1]− γ is independent of y and [uε1]→ [u1] in L2(−1, 1) so

1√
ε
‖[uε1]− γ‖L2(Sε) = ‖[uε1]− γ‖L2(−1,1) → ‖[u1]− γ‖L2(−1,1).

Since W : R2×2 → R is continuous, non–negative, and has quadratic growth it follows that∫
Sε

W

([
uε1x

√
εuε1y − γ/

√
ε√

εu2x u2y

])
→
∫
S0

W

([
0 ([u1]− γ)
0 0

])
,

and {uε}ε>0 ⊂ H1(Ω)
2

is a recovery sequence.
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3. Evolution Equation. In this section we show that solutions of equations (1.1)–
(1.4) converge as ε→ 0 to the solution of a limiting problem with the spatial Euler Lagrange
operator corresponding to the gamma limit obtained in the previous section.

Solutions of equations (1.1)–(1.4) satisfy (u(t), γ(t)) ∈ U2 ×Gε and∫
Ω

(ρutt, û) + (Cε(D(u)), D(û)) +

∫
Sε

µ
(
ε(u2x + u1y)− γ, û2x + û1y

)
=

∫
Ω

(ρf, û), (3.1)

1

ε

∫
Sε

(1/β)(γt, γ̂) + ` (γ, γ̂)− µ (ε(u2x + u1y)− γ, γ̂) = 0, (3.2)

for all (û, γ̂) ∈ U2 ×Gε where

U = {u ∈ H1(Ω) | u(.,±1) = 0} and Gε = {γ ∈ L2(Sε) | γx ∈ L2(Sε)}.

In this weak statement D(u) = (1/2)(∇u+ (∇u)>) is the symmetric part of the displace-
ment gradient and

Cε(D) = C
([

D11 D12χΩε

D21χΩε D22

])
, `(γ, γ̂) = νγxγ̂x + η̂γγ̂,

where C(D) = 2µD + λ tr(D)I is the isotropic elasticity tensor.

Solutions of the sharp interface problem satisfy (u(t), γ(t)) ∈ (U0 × U)×G and∫
Ω0

(ρutt, û) + (C(D(u)), D(û)) +

∫ 1

−1

µ
(
[u1]− γ, [û1]

)
=

∫
Ω

(ρf, û), (3.3)∫ 1

−1

(1/β)(γt, γ̂) + ` (γ, γ̂)− µ ([u1]− γ, γ̂) = 0, (3.4)

for all (û, γ̂) ∈ (U0 × U)×G where

U0 = {u ∈ H1(Ω0) | u(.,±1) = 0}

U = {u ∈ H1(Ω) | u(.,±1) = 0} and G = H1(−1, 1).

In this section we prove the following theorem which establishes convergence of solutions
of equations (3.1)–(3.2) to solutions of (3.3)–(3.4).

Theorem 3.1. Denote the domains and spaces as in Notation 1.1 and assume that the
coefficients in equations (3.1)–(3.2) are independent of time and there exist constants C,
c such that

0 < c ≤ ρ(x), µ(x), β(x), ν(x), µ(x) + λ(x) ≤ C, and 0 < η̂(x) < C,

and that there exists ε0 > 0 such that the shear modulus µ is independent of y on Sε for
ε < ε0.
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Fix f ∈ L1[0, T ;L2(Ω)] and initial data ut(0) ∈ L2(Ω), γ(0) ∈ H1(−1, 1) and u(0) ∈ U0×U
for the sharp interface problem and let the initial values for equations (3.1)–(3.2) be

uεt(0) = ut(0), uε2(0) = u2(0), γε(0) = γ(0),

and uε1(0) = u1 if u1(0) ∈ U ; otherwise, select {uε1(0)}ε>0 ⊂ U such that

‖uε1(0)− u1(0)‖H1(Ωε) → 0 and ‖uε1x(0)‖L2(Sε) +
√
ε‖uε1y(0)‖L2(Sε) ≤ C‖u1(0)‖H1(Ω0).

Let (uε, γε) denote the solution of (3.1)–(3.2) with this data and let γ̄ε(t, x) = (1/ε)
∫ ε/2
−ε/2 γ

ε(t, x, y) dy.

Then {(uε, γ̄ε)}ε>0 converges weakly in H1[0, T ;L2(Ω)
2×L2(−1, 1)] and strongly in L2[0, T ;L2(Ω)

2×
L2(−1, 1)] to a limit

(u, γ) ∈ U ≡ H1[0, T ;L2(Ω)
2 × L2(−1, 1)] ∩ L2[0, T ; (U0 × U)×H1(−1, 1)]

with initial data (u(0), γ(0)) which satisfies∫ T

0

∫
Ω0

−(ρut, ût) + (C(D(u)), D(û)) +

∫ T

0

∫ 1

−1

µ ([u1]− γ̄, [û1]) =

∫
Ω

(ρut(0), û(0)) +

∫ T

0

∫
Ω

(ρf, û),∫ T

0

∫ 1

−1

(1/β)(γt, γ̂) + ` (γ, γ̂)− µ ([u1]− γ, γ̂) = 0,

for all (û, γ̂) ∈ U with û(T ) = 0.

3.1. Existence of Solutions and Bounds. Equations (3.1)–(3.2) and (3.3)–(3.4)
both have the structure of a degenerate wave equation on a product spaces taking the form
(u(t), γ(t)) ∈ U×G,

C(u, γ)tt +B(u, γ)t + A(u, γ) = (ρf, 0), (3.5)

with
C(u, γ) = (ρu, 0), and B(u, γ) = (0, γ/β), (3.6)

(the later scaled by 1/ε for the ε equation) and A : U×G→ U′ ×G′ is the Riesz map for
the space U×G. For the limit problem

A(u, γ)(u, γ) = ‖(u, γ)‖2
0 =

∫
Ω0

C(D(u)) : D(u) +

∫ 1

−1

`
(
γ, γ) + µ([u1]− γ

)2
,

and for the ε equation A(u, γ)(u, γ) = ‖(u, γ)‖2
ε with

‖(u, γ)‖2
ε =

∫
Ω

Cε(D(u)) : D(u) +

∫
Sε

(1/ε)`(γ, γ) + µ
(√

ε(u2x + u1y)− γ/
√
ε
)2
.

The hypotheses on the initial data in Theorem 3.1 guarantee ‖(uε(0), γε)(0)‖ε → ‖(u(0), γ(0))‖0.

The following theorem from [5, Corollary VI.4.2] establishes existence of (strong) solutions
to equations which take the form shown in (3.5). In the statement of this theorem L(V, V ′)
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denotes the continuous linear operators and B ∈ L(V, V ′) is monotone if Bv(v) ≥ 0 for all
v ∈ V .

Theorem 3.2. Let A be the Riesz map of the Hilbert space V and let W be the semi–
normed space obtained from the symmetric and monotone C ∈ L(V, V ′). Let D(B) ⊂ V be
the domain of a linear monotone operator B : D(B)→ V ′. Assume that B + C is strictly
monotone and A+B+C : D(B)→ V ′ is surjective. Then for every f ∈ C1[0,∞,W ′) and
every pair v0 ∈ V and v1 ∈ D(B) with Av0 +Bv1 ∈ W ′, there exists a unique

v ∈ C[0,∞, V ) ∩ C1(0,∞, V ) ∩ C1[0,∞,W ) ∩ C2(0,∞,W ),

with v(0) = v0, Cv′(0) = Cv1 and for each t > 0, v′ ∈ D(B), Av(t) +Bv′(t) ∈ W ′ and

(Cv′(t))′ +Bv′(t) + Av(t) = f(t). (3.7)

When V = U2 × Gε or (U0 × U) × G with operators as in equation (3.6) the state space
is W = L2(Ω) with weight ρ and D(B) = V is the whole space. Then (B + C)(u, γ) =
(ρu, γ/β) is strictly monotone, and C +B +A : V → V ′ is the sum of the Riesz map with
a monotone map, so is surjective.

The existence of strong solutions guaranteed by Theorem 3.2 was obtained upon writing
equation (3.7) as a first order system, B(v, v′)′ +A(v, v′) = f̃ with

B =

[
A 0
0 C

]
A =

[
0 −A
A B

]
and f̃ =

(
0
f

)
.

Classical semi–group theory then provides necessary and sufficient conditions upon the
data for the existence of strong solutions. An alternative to the semi–group approach is
to use [6, Proposition III.3.3] which establishes existence of weaker solutions for a broader
class of data and problems with time dependent coefficients. Weak solutions exist when
f ∈ L1[0, T ;W ′] and satisfy

|v′|2L∞[0,T ;W ] + ‖v‖2
L∞[0,T ;V ] +

∫ T

0

Bv′(v′) ≤ C
(
|v′(0)|2W + ‖v(0)‖2

V + ‖f‖2
L1[0,T ;W ′]

)
.

The following corollary summarizes bounds available for solutions of (3.1)–(3.2) that results
from this theory and the Korn and sharp Poincare inequalities stated in Lemma 1.2.

Corollary 3.3. Under the hypotheses of Theorem 3.1 there exists a constant C > 0
independent of ε for which solutions (uε, γε) of (3.1)–(3.2) satisfy

‖uεt‖L∞[0,T ;L2(Ω)] + ‖uε‖L∞[0,T ;H1(Ωε)]

+ (1/
√
ε)‖γεt‖L2[0,T ;L2(Sε)] + (1/

√
ε)‖γε‖L∞[0,T ;L2(Sε)] + (1/

√
ε)‖γεx‖L∞[0,T ;L2(Sε)]

+ ‖u1x‖L∞[0,T ;L2(Sε)] + ‖u2y‖L∞[0,T ;L2(Sε)] + ‖
√
ε(uε2x + uε1y)− γε/

√
ε‖L∞[0,T ;L2(Sε)]

≤ C
(
‖ut(0)‖L2(Ω) + ‖u(0)‖H1(Ω0) + ‖γ(0)‖L2(−1,1) + ‖f‖L1[0,T ;L2(Ω)]

)
.
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In particular, ‖Cε(∇uε)‖L∞[0,T ;L2(Ω)2×2] and ‖γ̄εt‖L2[0,T ;L2(−1,1)] and ‖γ̄ε‖L∞[0,T ;H1(−1,1)] are

bounded where γ̄ε(t, x) = (1/ε)
∫ ε/2
−ε/2 γ

ε(t, x, y) dy is the average of γε over the fault region,

and the Korn and sharp Poincare inequality in Lemma 1.2 imply

‖uε1y‖L∞[0,T ;L2(Sε)] + ‖uε2x‖L∞[0,T ;L2(Sε)] ≤ C/
√
ε and ‖uε‖L∞[0,T ;L2(Sε)] ≤ C

√
ε.

3.2. Proof of Theorem 3.1. Fix test functions

û ∈ {û ∈ H1[0, T ;H2(Ω0)×H2(Ω)] | û(., .,±1) = 0 and û(T, ., .) = 0}

and γ̂ ∈ L2[0, T ;H1(−1, 1)], and note that test functions û with this regularity are dense
in {û ∈ H1[0, T ;U0 × U ] | û(T ) = 0}. Let ûε1 ∈ H1(Ω) be the function (see Figure 1.3)

ûε1(t, x, y) =


û1

(
t, x, y−ε/2

1−ε/2

)
ε/2 < y < 1,(

1
2

+ y
ε

)
û1(t, x, 0+) +

(
1
2
− y

ε

)
û(t, x, 0−) −ε/2 ≤ y ≤ ε/2,

û1

(
t, x, y+ε/2

1−ε/2

)
−1 < y < −ε/2,

and set the test functions in equations (3.1)–(3.2) to be ûε = (ûε1, û2) ∈ Uε and γ̂(t, x, y) =
γ̂(t, x) and integrate the equation for uε by parts in time to get∫ T

0

∫
Ω

−(ρuεt, û
ε
t) + (Cε(D(uε)), D(ûε)) +

∫ T

0

∫ 1

−1

µ ([uε1]− γ̄ε, [û1]) (3.8)

+

∫ T

0

∫
Sε

µ
(
ε(uε2x + uε1y)− γε, û2x

)
+ µ(uε2x, [û1]) =

∫
Ω

(ρuεt(0), ûε(0)) +

∫ T

0

∫
Ω

(f, ûε),

and ∫ T

0

∫ 1

−1

(1/β)(γ̄εt , γ̂) + ` (γ̄ε, γ̂)− µ ([uε1]− γ̄ε, γ̂)−
∫ T

0

∫
Sε

µ(uε2x, γ̂) = 0, (3.9)

where γ̄ε(t, x) = (1/ε)
∫ ε/2
−ε/2 γ

ε(t, x, y) dy is the average shear in the fault region. The last

terms on the left of these two equations represent the “consistency error” corresponding to
approximating a fault region of finite width with a sharp interface. We verify that these
terms vanish as ε → 0, and upon passing to a sub–sequence the remaining terms consist
of weakly converging terms paired with a strongly converging test function, so the limits
of these pairings are the pairings of their limits from which the theorem follows.

Using the bounds in Corollary 3.3 and Lemma 1.2 we may pass to a subsequence for which

uεt ⇀
∗ ut, in L∞[0, T ;L2(Ω)

2
]

Cε(Du
ε) ⇀∗ C(Du) in L∞[0, T ;L2(Ω)

2×2
]

[uε1] ⇀∗ [u1], in L∞[0, T ;L2(−1, 1)]

γ̄ε ⇀∗ γ, in L∞[0, T ;L2(−1, 1)]

γ̄εt ⇀ γt, in L2[0, T ;L2(−1, 1)]

γ̄εx ⇀
∗ γx, in L∞[0, T ;L2(−1, 1)]
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The first two terms in equations (3.8) and (3.9) are paired with the test functions

ûεt → ût, in L1[0, T ;L2(Ω)
2
][

ûε1x ûε1yχΩε

û2xχΩε ûε2y

]
→ ∇û in L∞[0, T ;L2(Ω0)2×2],

and the terms involving [uε1] − γ̄ε are paired with test functions independent of ε, from
which it follows that the first three terms on the left hand sides of equations (3.8) and
(3.9) converge as claimed.

The Cauchy Schwarz inequality and the smoothness of the test function û2(t) ∈ H2(Ω) ↪→
W 1,4(Ω) are used to estimate the first consistency error term in equation (3.8),∫ T

0

∫
Sε

µ
(
ε(uε2x + uε1y)− γ̄ε, û2x

)
≤ C‖

√
ε(uε2x + uε1y)− γε/

√
ε‖L∞[0,T ;L2(Sε)]‖û2x‖L1[0,T ;L2(Sε)]

≤ C‖
√
ε(uε2x + uε1y)− γε/

√
ε‖L∞[0,T ;L2(Sε)]‖û2x‖L1[0,T ;L4(Sε)]ε

1/4

→ 0.

The final terms on the left hand side of equations (3.8) and (3.9) involve uε2x paired with test

functions which are independent of y. It then suffices to show that ūε2x ≡
∫ ε/2
−ε/2 u

ε
2x(., ., y) dy

converges weakly star to zero in L∞[0, T ;L2(−1, 1)]. To do this the Cauchy Schwarz
inequality and Corollary 3.3 are used to first show that it is bounded,∫ 1

−1

(∫ ε/2

−ε/2
uε2x(t, x, y) dy

)2

dx ≤
∫ 1

−1

ε

∫ ε/2

−ε/2
uε2x(t, x, y)2 dy dx = ε‖uε2x(t)‖2

L2(Sε)
≤ C.

To establish weak star convergence to zero it then suffices to test against smooth functions
φ̂ with compact support in (0, T )× Ω since they are dense in L1[0, T ;L2(−1, 1)],∫ T

0

∫ 1

−1

∫ ε/2

−ε/2
(ûε2x, φ̂) =

∫ T

0

∫ 1

−1

∫ ε/2

−ε/2
−(ûε2, φx) ≤ ‖ûε2‖L∞[0,T ;L2(Sε)]‖φ̂‖L1[0,T ;L2(Sε)] ≤ C

√
ε.

It follows that the limit (u, γ) is a solution of the sharp interface problem, and the theorem
follows provided it takes the specified initial values. However, this is direct since (uε, γ̄ε)
converges weakly in H1[0, T ;L2(Ω)

2×L2(−1, 1)] from which it follows that the initial values
of the limit (u, γ) are the limit of the initial values.

4. Numerical Examples. This section presents a numerical example to exhibit the
contrast between direct numerical simulation of the stationary form of equations (1.1)–
(1.4) and the limit problem for the considered in Section 2. A solution of the limit problem
with constant Lame parameters is constructed by setting

u(x, y) =


1
2

(
ea(x−y)

ea(x−κy)

)
+

(
φy(x, y)
−φx(x, y)

)
y > 0,

1
2

(
−ea(x+y)

ea(x+κy)

)
+

(
φy(x, y)
−φx(x, y)

)
y < 0,

(4.1)
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where κ = λ/(2µ+ λ) and φ(x, y) = e−`y cos(`x). Then

[u1(x)] = eax, γ(x) ≡ [u1]− (1/µ)C(∇u)12 = eax − 2`2 cos(`x), (4.2)

and right hand sides for the stationary problem are manufactured so that the equations
are satisfied,

f = −div(C(∇u)) and f0 = η̂γ − C(∇u)12 − νγxx.

In the numerical examples below the parameters are set to

µ = 1, λ = 2, a = 1/2, ` = 1/4, η̂ = 2, ν = 0, ε = 1/10.

and for the limit problem uniform rectangular elements of size h = 1/n with n ∈ N are
utilized. When ε > 0 the fault region is meshed with rectangular elements of size 1/n×ε/n;
the mesh with n = 4 is illustrated in Figure 1.1. Galerkin approximations of the solution
to the elasticity problems are computed using the piecewise quadratic finite element spaces
on these meshes.

To exhibit the differences between direct numerical approximation of (1.1)–(1.4) and nu-
merical approximation of the limiting problem we first tabulate the errors, u0 − u0

h, of
the numerical approximation of the solution (4.1). Numerical approximations uεh of the
stationary equations (1.1)–(1.4) are then computed using the same boundary data and
body force f . While the exact solution, uε, of the problem with this data is not known,
we tabulate (norms of) the differences u0 − uεh for ε fixed. As h → 0 this difference con-
verges to the “modeling” error u0 − uε associated with approximating the fault region by
a surface. An estimate of the mesh size required to resolve the deformation in the fault
region is obtained by observing when difference u0 − uεh stabilizes. Note that in general
limε→ ‖u0 − uε‖L2(Ω) → 0 but limε→ ‖u0 − uε‖H1(Ω0) 6→ 0.

h ‖u0 − u0
h‖L2(Ω) ‖u0 − u0

h‖H1(Ω0) # unknowns
1/8 1.684735e-05 4.402589e-04 629
1/16 2.098734e-06 1.091350e-04 2277
1/32 2.617986e-07 2.718018e-05 8645
1/64 3.268957e-08 6.783206e-06 33669
1/128 4.084190e-09 1.694404e-06 132869
1/256 5.154866e-10 4.234319e-07 527877
Norms 1.435134 1.662724

Table 4.1
Errors for the uncoupled limit problem (ε = 0).
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h ‖u0 − uεh‖L2(Ω) ‖u0 − uεh‖H1(Ω0) # unknowns
1/8 2.148338e-01 4.553696e+00 1666
1/16 3.029500e-01 5.114175e+00 6402
1/32 3.183221e-01 5.119497e+00 25090
1/64 3.358588e-01 5.177173e+00 99330
1/128 3.459277e-01 5.223399e+00 395266
1/256 3.433117e-01 5.218226e+00 1576962

Table 4.2
Differences between the uncoupled ε-problem and limit problem with ε = 0.1.

4.1. Uncoupled Problem. Table 4.1 exhibits the errors in the numerical approxima-
tion of the solution (4.1) of the limit problem considered in Section 2 with γ the function
specified in (4.2). The optimal third order rate in L2(Ω) and second order rate for the
derivatives is clear. Norms of the differences u0 − uεh are presented in Table 4.2. For this
example it is clear that very accurate solutions of the limit problem can be computed on
very modest meshes while resolution of the deformation in the fault region requires signif-
icantly finer meshes. The norms computed on the finest meshes give an estimate of the
modeling error ‖u0 − uε‖L2(Ω) ' 0.35. Representative solutions for each of the problems
are illustrated in Figures 4.1 and 4.2.

Fig. 4.1. Solution of the uncoupled limit problem mesh size h = 1/256.
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Fig. 4.2. Solution of the uncoupled problem with ε = 0.1, h = 1/256.

h ‖u0 − u0
h‖L2(Ω) ‖u0 − u0

h‖H1(Ω0) ‖γ − γh‖L2(−1,1) # unknowns
1/8 1.687157e-05 4.401747e-04 1.658411e-05 646
1/16 2.099899e-06 1.091296e-04 2.142555e-06 2310
1/32 2.618490e-07 2.717989e-05 2.717502e-07 8710
1/64 3.269160e-08 6.783192e-06 3.416512e-08 33798
1/128 4.084230e-09 1.694403e-06 4.278860e-09 133126
1/256 5.146679e-10 4.234318e-07 5.362224e-10 528390
Norms 1.435134 1.662724 1.365834

Table 4.3
Errors for the coupled limit problem (ε = 0).

h ‖u0 − uεh‖L2(Ω) ‖u0 − uεh‖H1(Ω0) ‖γ − γεh‖L2(Sε) # unknowns
1/8 1.548447e-01 4.788309e+00 7.311100e-02 1955
1/16 1.566552e-01 4.809018e+00 8.774972e-02 7491
1/32 1.570841e-01 4.820766e+00 1.043616e-01 29315
1/64 1.582205e-01 4.825760e+00 1.109939e-01 115971
1/128 1.584977e-01 4.826950e+00 1.114208e-01 461315
1/256 1.582490e-01 4.826843e+00 1.107407e-01 1840131

Table 4.4
Differences between coupled ε-problem and limit problem with ε = 0.1.

4.2. Coupled Problems. Table 4.3 exhibits the errors for the coupled problem when
numerical approximations of both u and γ are computed using the limit energy given
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in equation (1.5). Again the optimal third order rate in the L2 norms for both u and
γ and second order rate for the derivatives of u is obtained. Norms of the differences
u0 − uεh and γ − γεh are presented in Table 4.4. As for the uncoupled case, very accurate
solutions of the limit problem can be computed on modest meshes while resolution of the
deformation in the fault region requires finer meshes. The modeling errors for this problem
are ‖u0 − uε‖L2(Ω) ' 0.16 and ‖γ − γε‖ ' 0.11. Representative deformations are illustrated
in Figures 4.3 and 4.4.

Fig. 4.3. Displacement of coupled limit problem with h = 1/256.

Fig. 4.4. Displacement for coupled problem with ε = 0.1 and h = 1/256.
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Fig. 4.5. Displacement field with dislocation at the origin

4.3. Dislocation. An explicit solution for the solution of the linear elastisity problem
with an edge dislocation along the z–axis is [?]

u(x, y) =
1

2π

(
arctan(y/x) + xy

2(1−ν̂)(x2+y2)

−1
4(1−ν̂)

(
(1− 2ν̂) ln(x2 + y2) + x2−y2

x2+y2

)) , with Poisson ratio ν̂ =
λ

2(µ+ λ)
.

This solution, illustrated in Figure 4.5, represents the displacement that results when
a dislocation, currently at the origin, has propogated along the negative x–axis so that
[u1(x)] = 1 for x < 0 and [u1(x)] = 0 for x > 0. The stress has a singularity of order O(1/r)
at the origin and is otherwise continuous. We manufacture a solution of the stationary
limit problem by setting γ = [u1] − (1/µ)T12, so that the jump condtion is satisfied, and
non–homogeneous right right hand side for the equation for γ

f0(x) = η̂γ(x)− T12(x, 0) = η̂ [u1(x)] +
(λ+ µ)(η̂ + µ)

π(2µ+ λ)x
.

(Since γxx does not exist we set the coefficient of this term to be zero.) While the results
of the prior sections are not applicable to singular solutions, almost singular solutions arise
in engineering practice so it is important for the numerical schemes to be robust in this
context.

Appendix A. Derivation from a Plasticity Model. Displacements and gradients are
assumed to be small in the region Ωε = Ω \ S̄ε outside the fault so that the motion is
governed by the equations of linear elasticity,

ρutt − div(C(∇u)) = ρf, in Ωε.

Small displacement plasticity theory models the motion in the fault region Sε. In this
theory the elastic deformation tensor, U , deviates from ∇u due to slips and motion of
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defects. The balance of linear momentum becomes

ρutt − div(C(U)) = ρf, in Sε,

and evolution of U is governed by an equation of the form

U̇ −∇u̇+ Curl(U)× vd = 0, (A.1)

where vd is a constitutively specified defect velocity. In this equation the Curl(.) and cross
product of a matrix act row–wise;

Curl(U)mn = εijnUmj,i, and (A× v)mn = εijnAmivj.

The defect velocity vd is chosen to model the (typically large) dissipation due to defect
motion, and local energy changes due to distortion in the material during passage of a
defect. In the following lemma the axial vector of the skew part of a matrix A is denoted
by X(A); that is

X(A)i = εijkAjk.

Lemma A.1. Let η : R→ R and β, γ, T12 : (0, T )×Sε → R be smooth, ν ∈ R, and suppose
that

γt + βγ2
x

(
η′(γ)− νγxx − T12

)
= 0, on (0, T )× Sε.

Let

u : (0, T )× Sε → R2 ↪→ R3, and T : (0, T )× Sε → R2×2
sym ↪→ R3×3

sym,

be smooth with T12 as above, and let

U = ∇u−

0 γ 0
0 0 0
0 0 0

 and vd =

(
I − ω

|ω|
⊗ ω

|ω|

)
X
(
S Curl(U)

)
,

where

S =

T −
0 2η′(γ) 0

0 0 0
0 0 0

+ 2νCurl(Curl(U))


sym

and ω = X(Curl(U)).

Then the triple (U, u, vd) satisfies equation (A.1).

Under the ansatz of the lemma the matrices Curl(U) and Curl(Curl(U)) become

Curl(U) =

0 0 −γx
0 0 0
0 0 0

 , Curl(Curl(U)) =

0 −γxy γxx
0 0 0
0 0 0


and vectors X(Curl(U)) and vd are

X(Curl(U)) =

 0
−γx

0

 , vd =

βγx (η′(γ)− νγxx − T12

)
0
0

 .
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