ANALYSIS OF A DISLOCATION MODEL FOR EARTHQUAKES

JING LIU*, XIN YANG LU, AND NOEL J. WALKINGTON?

Abstract. Approximation of problems in linear elasticity having small shear modulus in a thin region is
considered. Problems of this type arise when modeling ground motion due to earthquakes where rupture
occurs in a thin fault. It is shown that, under appropriate scaling, solutions of these problems can be
approximated by solutions of a limit problem where the fault region is represented by a surface. In a
numerical context this eliminates the need to resolve the large deformations in the fault; a numerical
example is presented to illustrate efficacy of this strategy.
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1. Introduction. Models used to simulate ground motion during an earthquake fre-
quently represent the sub—surface as a union of linearly elastic materials separated by thin
(fault) regions within which large deformations (rupture) occur. Below we analyze limiting
models which circumvent the numerical difficulties encountered with direct simulation of
these models which arise when very fine meshes are required to resolve the large deforma-
tions in the fault region. The fault region in reduced models is represented as a surface and
the rupture is realized as discontinuities in certain components of the solution. Figures 1.1
and 1.2 illustrates these issues; the fine mesh in Figure 1.1 is unnecessary when the large
shear across the fault is represented as the discontinuity in the horizontal displacement
shown in Figure 1.2. Theorems 2.1 and 3.1 justify this approach for a certain class of these
models by establishing that their solutions converge to the solution of a reduced problem
as the width tends to zero.

In the Appendix we show that a solution of the three dimensional rupture model proposed
in [7] can be found by considering a cross section 2 = (—1,1) x (—1,1) of a sub—surface
region containing a horizontal fault S, = (—1,1) x (—¢/2,¢/2) of width € > 0. The balance
of momentum takes the classical form

puy — div(T) = pf on (0,7) x Q, (1.1)

where u(t,z) € R? and p(¢,x) > 0 represent the displacement and density of the medium,
f(t,z) € R? the force per unit mass, and T is the (Cauchy) stress tensor. The sub-surface
strata is taken to be isotropic so that away from the fault the stress takes the form

T =2uD(u) + Adiv(u)l, in Q\ S, (1.2)
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Fic. 1.2, Solution of the limit problem.

where D(u) = (1/2) (Vu+ (Vu)") and p = p(x) and A = A(z) are the shear and bulk
moduli. In the fault the stress is given by

T_ (2p+ Nuig + Augy, (€(U2m + ury) — ’Y)

_ in S, 1.3
iz (€(U2x + ury) — 7) (2 + Mgy + Auiy . (13)

where v = (¢, z) models the permanent deformation due to damage, defects, and healing
in the fault [7] and evolves according to

Ve + 5 (77'7 - T12 - V'Vz:v) = 07 in Se- (14)

This model of rupture was inspired by the plasticity theories developed in [3, 1] where the
coefficients (3, 1 and v are typically nonlinear functions of v and its derivatives. To date
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there is no satisfactory mathematical theory for these models of nonlinear elasticity [2]
so for the analysis below we assume that the coefficients in (1.4) are specified which, for
example, would be the case for one step of a linearly implicit time stepping scheme for the
fully nonlinear problem. In this context we address the following problems.

Strain Energy: If v(x) is specified (or more generally . — ~ sufficiently strongly) we verify
that the strain energies for the stationary problem (1.1)—(1.3) converge to the limiting
energy
M) = [ 2D+ adivwf + | p(u] =2
Q\So So
where [u;(z)] denotes the jump in the first (horizontal) component of u across the line
So = (—1,1) x {0}. The corresponding Euler Lagrange operator is then

—div(T) on 2\ S, with [Tn] =0 and Th2 = pu([ur] =) on Sp,

where T' = 2uD(u) + Adiv(u)l and [T'n] is the jump of the traction across Sy with n =
(0,1)" and Ty, its component.

This shows that the scaling introduced in (1.3) is the “mathematically interesting” case
for which a non—trivial limit exits. With different scalings the equations for u and ~ either
decouple (the last term in the energy vanishes) or lock, [u;] = 7, in the limit. The limiting
energy for the coupled stationary problem (1.1)—(1.4) is

I = [ 2D Ao + [l =2+ G4 2). 15)

We omit the proof since the proof is a routine extension of the ideas used for the uncoupled
problem. Examples of numerical solutions to both the uncoupled and coupled problems
are presented in Section 4.

Evolutionary Problem: In Section 3 we show that solutions of the coupled system (1.1)-
(1.4) converge to a limit which satisfies the reduced system,

puy — div(T) = pf on 2\ S,
with 7' = 2uD(u) + Adiv(u)I, and
[Tn) =0, Tis=p(lu]—=), and v + 5 (ﬁfy — Ty — y’ym) =0 on Sp.

For definiteness we consider displacement boundary conditions u(.,+1) = 0 on the top and
bottom of 2 and traction free boundary data on the sides; T'(£1,.)n = 0, and v, (£1,.) =
0. We omit analogous results for other boundary conditions which are routine technical
extensions of the proof techniques presented below. The same energy and limiting problem
are obtained with the “engineering approximation” utilized in [7] where the shear stress
Tio(x,y) in the equation (1.4) is approximated by its average Tio(x) across S, so that v
depends only upon =,

. -~ B 1 €/2
Y + B (777 — T — Vym) =0, where Ti(t,x)= E/ Tio(t, z,y) dy.
—c/2

The ideas presented below extend directly to the analysis of this variation of the problem.
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1.1. Notation & Function Spaces. Standard notation is adopted for the Lebesgue
spaces, LP(€)), and the Sobolev space H'(2). Solutions of evolution equations will be
viewed as functions from [0, 7] into these spaces, and we adopt the usual notion, L?[0, T; H'(Q)],
C[0,T; H*(Q)], etc. to indicate the temporal regularity. Strong and weak convergence in
these spaces is denoted as u¢ — u and u® — wu respectively.

Divergences of vector and matrix valued functions are denoted div(u) = u;; and div(7T"); =
T;; ; respectively. Here indices after the comma represent partial derivatives and the sum-
mation convention is used. Gradients of vector valued quantities are interpreted as ma-
trices, (Vu);; = u;;, and the symmetric part of the gradient is written as D(u). Inner
products are typically denoted as pairings (.,.) or, for clarity, the dot product of two vec-
tors v, w € R? may be written as v.w = v;w; and the Frobenious inner product of two
matrices A, B € R*? as A: B = A Bj.

The following notation is used to characterize the dependence upon € of the elastic and
fault regions.
NOTATION 1.1. Let Q = (—1,1)? and 0 < e < 1/2.

1. The fault regions are denoted by S = (—1,1) x (—€/2,¢/2) and Sy = (—1,1) x {0}
and their complements, the elastic regions, denoted as Q. = Q\ S, and Qp = Q \ So-

2. The sub—spaces of functions on the elastic region which vanish on the top and bottom
boundaries are

U={uec H(Q) | u(z,£1) =0, -1 <z <1},
Uo={uec H Q) | ulx,£1) =0, -1 <z < 1},
Up={ue H(Q) | u(z,£1) =0, -1 <z < 1}.

3. The restriction u > ulg, is identified as an embedding of the spaces H'(Q) —
HY(Q.) and U — U,; similarly H*(2) — H(Qp) and U — U.

4. Below x4 denotes the characteristic function of A C Q; xa(z) =1 ifz € A and
xa(z) =0 otherwise.

The following lemma quantifies the dependence upon € of embedding constants and prop-
erties of the function spaces for which the energy is continuous and coercive. Here and
below C' and ¢ denote constants which may vary from instance to instance but will always
be independent of e.

LEMMA 1.2. Denote the domains and spaces as in Notation 1.1, and if u¢ € H'(Q.) and
u € HY(Qy) denote by [u] and [u] the jump in their traces across the fault regions;

[u] = u(.,€¢/2) —u(., —€/2) and [u] = u(.,0") —u(.,07).

1. The constant in Korn’s inequality on U, is independent of €.
2. The following Poincare inequality holds for functions in U,

1/2
(/2 lullzzs < (gl + (€2l
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F1G. 1.3. Approzimation of horizontal displacement u € Uy by a function u¢ € U C H()

3. If u¢ € HY(Q) and

ut — u, X Us — go Uy — g1, in L*(Q),
then v € HY(Q) and Vu = (go,g1)" .
4. Ifuc € HY(Q) and
uc — u, us — go, Xa Uy — g1 in L*(Q),
then u € H*(Q) and Vu = (go, 1) ". In addition [uf] — [u] in L*(—1,1).
5. Let ¢ : Qe — Qg be the mapping

bey) = (0 55), e2<y<l, and odwy) = (v 1), ~1<y<—¢2

Then the linear functions E. : H*(Q.) — HY(Qo) given by E.(uf) = u¢o ¢_ 1 are
isomorphisms and their norms and the norms of their inverses converge to one as
€ — 0. The restriction of E. to U, is an isomorphism onto U,.

6. If ue H'(Qq) then there exists u¢ € H'(Q) such that
(a) || Ee(u) = ullr(aq) — 0.
(b) llugllL2(sy) — 0.
(¢) us,(z,.) is independent of y in Se and fi% ug, (., y) dy = [u] = [u] in L*(—1,1).
In addition, if uw € Uy then u® € U.

The proof of this lemma involves standard arguments [5] so is omitted. The only subtlety
appears in the construction of the function u¢ in item 6. The idea is illustrated in Figure
1.3; given u € Uy extend u o ¢! to S, by linear interpolation. However, to control the
z-derivative in S, we first mollify u on each subdomain Q* with parameter /e.

2. Gamma Convergence of the Stationary Operator. Letting C : R*** — R2x2
denote the classical isotropic elasticity tensor with shear and bulk moduli x and A, the

associated strain energy function will be denoted as

W(A) = C(A) : A=2u(A% + A3,) + MAn + Ax)® + p(Arz + Ax).
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Define I, : H'(2)* = R to be energy,

A (S IR R (VR )

In this section we establish the following theorem which establishes convergence of the
energies in the following sense [4].

e (lim—inf inequality) If {uc}eso C U x U with {I(u.)}eso € R bounded then there
exists u € Uy x U and a sub-sequence for which u¢ — u in H} () x H'(Q2) and
I(u) < liminf.,q 1. (uf).

e (lim-sup inequality) For each u € Uy x U there exists a sequence {u }eso C U X U
such that u® — w in H} (o) x H' () and I(u) > limsup,_,q I (u).

THEOREM 2.1. Denote the domains and spaces as in Notation 1.1 and let I, : U xU — R
be as in equation (2.1) with v € L*(—1,1) fized. Assume that the shear and bulk moduli
are bounded above, there exists cg > 0 such that p > co and p+ A > co, and that there
exists €9 > 0 such that the shear modulus p is independent of y on S for € < €. Then

I€£>IwhereI:onU%Risgivenby

1

)= [ W(vu)+ / ) — 7).

Qo -1

for which the strong form of the Euler Lagrange operator is
—div(C(Vu)) on Qy,  with  [C(Vu)].n =0 and C(Vu)i1a = pu([ui] — ) on Sp.

Here [.] denotes the jump across the fault line y = 0.

The following lemma quantifies the coercivity properties of the energies I. and the cor-
responding bounds required for the proof of Theorem 2.1. In this lemma we use the
property that in two dimensions the assumptions on the Lame parameters guarantee
W(A) > 2¢o|Asym|* where Ag,,, denotes the symmetric part of A € R?*2,

LEMMA 2.2. Denote the domains and spaces as in Notation 1.1 and let I, : U x U — R
be as in equation (2.1) with v € L*(—1,1) fized. Assume that the shear and bulk moduli
bounded above, > co >0 and 4+ A > cy > 0. Then

Hulw||%2(9) + ||u1y||%2(96) + Hu2x||%2(96) + ||U2y||i2(9) < Cle(u),
and
IVeus 320y + Ve sy < € (Fw) + 131
In particular,

et 220 + a2y < € (L) + 11321 -
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Proof. Tt is immediate that

el 0) + g + uaellZ2,) + lu2yllizi) + V(2 +ury) = 7/ VellLzs,) < ClLe(w),

and Korn’s inequality on 2. shows
||U2a:||%2(95) + ||U1y||%2(95) <C <||U1y + U2:c||%2(9€) + ||U1z||i2(ge) + ||U2y||%2(§z€)> :

Next, use the triangle inequality and the identity ||v/v/€||r2¢s.) = ||Vl z2(-1,1) to obtain

[Ve(ua 4+ ury)l 2(s) < IVe(uze + ury) — v/ Vel 2o + 721,15

Korn’s inequality for the vector field @ = \/e(u1, us) on Qg shows

||\/Eu2m||%2(szo) + ||\/Eu1y||%2(90)
<C <||\/E(U2a: + Uly)”%?(no) + €(||U1z||%2(90) + ||U2y||%2(90))> :

O

Proof. (of Theorem 2.1) Lim~Inf Inequality: Let {u}eso C HY()” and suppose I (u) is
bounded. Lemma 2.2 then shows that the functions

€ € € € € €
Uy, Upgy Uiy XQes and Ug; U XQesr Ugy;

are all bounded in L?(©). Upon passing to a subsequence we may then assume each of
them converges weakly in L2(Q) to a limit v = (u1,us) € L2(Q)” and from Lemma 1.2
conclude u € Uy x U; in particular,

[ ug, ’U,inQE:| N [ulx uly] w LQ(Q)Qw

€ €
U2 X Q. u2y U2 U2y

Since W is convex and continuous it is weakly lower semi—continuous; in particular, the
limit of the first term in equation (2.1) is bounded as

W (Vu) < lim inf/ W ({ E“l:v uly?(Qs‘|) ‘
Qo € Q U X Qe u2y

To compute the limit of the second term in equation (2.1), use Jensen’s inequality and the
quadratic homogeneity of W (.) to obtain

[ o [ (L )

: 0 fuf -~
= 1% . de,
/_1 ([f_ﬁ‘; usdy 0 !
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where [u§](z) = ui(z,€/2) — uy(x, —€/2). Lemma 1.2 shows [uf] — [u] in L?*(—1,1), so
the lim-inf inequality will follow upon showing that fi ?2 us, dy — 0 in L*(—1,1). To
verify this, first use the Cauchy Schwarz inequality and Lemma 2.2 to bound this term in
L2(_17 1)7

2
1 /2 1/2
/ (/ u;xdy> dr < Ve las, < O (1) + a1y -

1 €/2

To show that this term converges weakly to zero let ¢ € C3°(—1,1) and compute

1 pe/2 1 re/2
/ / us, dy ¢ dx| = / / us ¢’ dy dx
—1J—¢/2 —-1J—¢/2

The sharp Poincare inequality in Lemma 1.2 shows ||u$]|z2(s,) < C'/€ so the right hand
side of the above vanishes from which it follows that ffi ?2 us, dy — 0in L*(—1,1).

< sl oo Velldllz-1)-

Lim-Sup Inequality: To construct a recovery sequence for u € H'(Qq) x HY(Q) select
u = (u§, uy) where uf is the lifting of u; to H'(Q) guaranteed by item 6 of Lemma 1.2.

Lemma 1.2 shows u¢ o ¢;! — u in H'(Qy) where ¢, : Q. — Qq is the piecewise affine
diffeomorphism in the Lemma. Since the mapping u +— W (Vu) is continuous on H'(§)?
it follows that the energy in the bulk converges,

/Q W(Vu) = /Q W (V(uop ")) (1—€/2) = [ W(Vu).

Qo

The energy in the fault regions S, takes the form

Lol )= L (L, “02")

Since ug,, ugy € L*(Q) are independent of € and |S¢| — 0 it is immediate that |lusg||z2(s,)
and ||ugy|/2(s.) both converge to zero, and from Lemma 1.2 it follows that ||u{,|/12(s.) also
converges to zero. Also, [u§] — v is independent of y and [u$] — [uy] in L?*(—1,1) so

1 € €
ﬁ“[%] = ez = il = Az = ud] = Yllz2n.-
Since W : R?*? — R is continuous, non-—negative, and has quadratic growth it follows that

for (e )= L ™07)).

and {u}eso C Hl(Q)2 is a recovery sequence. [
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3. Evolution Equation. In this section we show that solutions of equations (1.1)-
(1.4) converge as € — 0 to the solution of a limiting problem with the spatial Euler Lagrange
operator corresponding to the gamma limit obtained in the previous section.

Solutions of equations (1.1)—(1.4) satisfy (u(t),v(t)) € U? x G, and

[ s+ €D@), D) + [

Se
+ [ WG + 0613 = (el + 1) = 7.5) =0, (32

ol (6(“21- + Uly) -7 '&235 + aly) = /S;<pf7 ﬂ), (31)

for all (4,%) € U? x G. where
U={uec H(Q) | u(.,,£1) =0} and Ge={v e L*S) | 7. € L*(S.)}.

In this weak statement D(u) = (1/2)(Vu + (Vu)") is the symmetric part of the displace-
ment gradient and

D11 Diaxa . A
(C6 D)=C ¢ s 14 ) = Yz + )
(D) ({Dmm Doy D (7:7) = vide + 7Y

where C(D) = 2uD + Atr(D)I is the isotropic elasticity tensor.
Solutions of the sharp interface problem satisfy (u(t),v(t)) € (Uy x U) x G and

/Q (pue, @) + (C(D(w)), D(2)) + / i (] — 7, [in]) = / (of.a).,  (33)

-1

/ (1/8)(4) + £ (1,3) — 1 (fu] — 7,3) = 0, (3.4)

1

for all (4,%) € (Uy x U) x G where
Up = {uec H(Q) | u(.,£1) =0}
U={uec H(Q) | u(.,£1) =0} and G=H'(-1,1).

In this section we prove the following theorem which establishes convergence of solutions
of equations (3.1)—(3.2) to solutions of (3.3)—(3.4).

THEOREM 3.1. Denote the domains and spaces as in Notation 1.1 and assume that the
coefficients in equations (3.1)-(3.2) are independent of time and there exist constants C,
¢ such that

0 <c<plx), pl), B(z), v(z), ulx) + A(z) < C, and 0<n(x)<C,

and that there exists eg > 0 such that the shear modulus p is independent of y on S, for
€ < €.
9



Fiz f € L'[0,T; L*(Q)] and initial data us(0) € L*(Q), v(0) € H'(—=1,1) and u(0) € Uy x U
for the sharp interface problem and let the initial values for equations (3.1)-(3.2) be
u;(0) = w(0),  u5(0) =uz(0),  ¥(0) =~(0),

and u$(0) = uy if uy(0) € U; otherwise, select {u$(0)}eso C U such that
[u3(0) = ur (0l = 0 and  [lui,(0)llz2(s,) + Velluiy (0)llz2s,) < Cllua(0) |l (en)-

Let (u€,~¢) denote the solution of (3.1)-(3.2) with this data and let ¥(t, z) = (1/€) fi% y(t, x,y) dy.
Then {(u,5) }eso converges weakly in H'[0,T; L2(Q)*x L2(—1,1)] and strongly in L2[0, T; L*(Q)*x
L?(—=1,1)] to a limit

(u,y) €U = H'[0,T; L*(Q)* x L*(=1,1)] N L2[0,T; (Up x U) x H'(—1,1)]

with initial data (u(0),~v(0)) which satisfies

/OT/QO—(put,at)+(C(D(u)),D(a»+/OT/_11/J([u1]—7, [al]):/Q(put(om(o»+/0T/Q<pf,a),

/0 /_1(1/@(%’% +4(7,%) = p(fur] =v,4) =0,

for all (4,%) € U with u(T) = 0.

3.1. Existence of Solutions and Bounds. Equations (3.1)-(3.2) and (3.3)—(3.4)
both have the structure of a degenerate wave equation on a product spaces taking the form
(u(t),~(t)) € UX G,

C(u, v)u + Bu,7): + A(u, ) = (pf,0), (3.5)
with
C(u,v) = (pu,0), and  B(u,7) = (0,7/8), (3.6)
(the later scaled by 1/¢ for the € equation) and A: U x G — U’ x G’ is the Riesz map for
the space U x G. For the limit problem

C(D(u)) : D(u) + / ¢ (37 + pller] = 7)°,

-1

Qo

and for the € equation A(u,v)(u,~y) = ||(u,7)||* with

| (u, 7|12 = /QCG(D(U)) : D(u) +/S (1/€)0(v,7) + 1 (Ve(uss + wry) — 7/\/5)2.

The hypotheses on the initial data in Theorem 3.1 guarantee || (u(0),v)(0)||e = [|(«(0),7(0))]|o-

The following theorem from [5, Corollary VI.4.2] establishes existence of (strong) solutions
to equations which take the form shown in (3.5). In the statement of this theorem L(V, V")
10



denotes the continuous linear operators and B € L(V, V") is monotone if Bv(v) > 0 for all
velV.

THEOREM 3.2. Let A be the Riesz map of the Hilbert space V and let W be the semi—
normed space obtained from the symmetric and monotone C' € L(V,V"). Let D(B) C V be
the domain of a linear monotone operator B : D(B) — V'. Assume that B + C' is strictly
monotone and A+ B+ C : D(B) — V' is surjective. Then for every f € C*[0,00, W') and
every pair vg € V' and vy € D(B) with Avy + Bvy € W, there exists a unique

v e C[0,00,V)NCH0, 00, V)N CHO, 00, W) N C?%(0, 00, W),
with v(0) = vy, CV'(0) = Cvy and for each t > 0, v' € D(B), Av(t) + BV'(t) € W’ and

(CV' (1)) + Bu'(t) + Auv(t) = f(t). (3.7)

When V = U? x G, or (Uy x U) x G with operators as in equation (3.6) the state space
is W = L*(Q) with weight p and D(B) = V is the whole space. Then (B + C)(u,v) =
(pu,~y/pB) is strictly monotone, and C'+ B+ A : V — V' is the sum of the Riesz map with
a monotone map, so is surjective.

The existence of strong solutions guaranteed by Theorem 3.2 was obtained upon writing
equation (3.7) as a first order system, B(v,v") + A(v,v") = f with

A 0 0 —A < 0
B_{O C’} A_[A B} and f_<f>.
Classical semi—group theory then provides necessary and sufficient conditions upon the
data for the existence of strong solutions. An alternative to the semi-group approach is
to use [6, Proposition I11.3.3] which establishes existence of weaker solutions for a broader

class of data and problems with time dependent coefficients. Weak solutions exist when
f € LY0,T; W] and satisfy

T
B epozn + lolrar + [ BYW) < (WOR + O + 1) -
0

The following corollary summarizes bounds available for solutions of (3.1)—(3.2) that results
from this theory and the Korn and sharp Poincare inequalities stated in Lemma 1.2.

COROLLARY 3.3. Under the hypotheses of Theorem 3.1 there exists a constant C' > 0
independent of € for which solutions (u¢,~v¢) of (3.1)-(3.2) satisfy

il oo,z + [ul Lo po,rsm )
+ (1/Valillzzoresy + (VI IlLeprizzsa + 1/ Vel lieorc2 (s
+ lwrel oo izzs) + luayll Lo e (s + IVe(us, +ui,) — 7/ Vel Lo r2(s.)
< C ([l (0) | 2y + N1w(O) |1 (o) + VO 210y + [ Fll o) -
11



In particular, |[Ce(Vu)|| o rr2@)2<2 and [ llz20,mz2(-1,0) and ||| Lo rmi -1y are

bounded where ¥<(t,x) = (1/€) fEZQ “(t,z,y) dy is the average of ¥¢ over the fault region,

and the Korn and sharp Poincare inequality in Lemma 1.2 imply

[ufy | oo o,r522(50) + 1Use oot rir2s) < C/Ve  and  |[u||poeporco(sy) < CVe.

3.2. Proof of Theorem 3.1. Fix test functions
o€ {t e H'0,T; H*(Q) x H*(Q)] | a(.,.,£1) =0 and 4(T,.,.) = 0}

and 4 € L?[0,T; H'(—1,1)], and note that test functions @ with this regularity are dense
in {a € H[0,T;Uy x U] | 4(T) = 0}. Let a5 € H'(Q2) be the function (see Figure 1.3)

up (t,x, 1_33 €2 <y<1,
it z,y) =4 (G+YH a2 0M)+ (3 —Y)at,z,07) —e/2<y<e/2
i (t,x, aﬁzg —1l<y<—e/2,

and set the test functions in equations (3.1)-(3.2) to be 4¢ = (u{, 42) € U, and (¢, x,y) =
4(t, ) and integrate the equation for u¢ by parts in time to get

/ | o) + (€D D)) + / / 1/~L([Ui]—72[ﬂl]) (3.8)
" / [ et 08) =) + i) = [ o0 / [

and // A ) u([ui]—’T,‘y)—/OT/Se“(“;M):0’ (3.9)

where Y¢(t, z) = (1/¢) f652 “(t,z,y) dy is the average shear in the fault region. The last
terms on the left of these two equations represent the “consistency error” corresponding to
approximating a fault region of finite width with a sharp interface. We verify that these
terms vanish as € — 0, and upon passing to a sub—sequence the remaining terms consist
of weakly converging terms paired with a strongly converging test function, so the limits

of these pairings are the pairings of their limits from which the theorem follows.

Using the bounds in Corollary 3.3 and Lemma 1.2 we may pass to a subsequence for which

u —* g, in  L®[0,T; L*(Q)"]
C(Duf) —* C(Du) in L0, T; L2(9)**7
[ug] = [w], in  L®[0,T;L*(—1,1)]
7=, in  L*[0,T; L*(—1,1)]
Vi = Yo in L*[0,T; L*(—1,1)]
Ve =" Yo in  L>[0,T; L*(— 1,1)]
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The first two terms in equations (3.8) and (3.9) are paired with the test functions

@ — Gy, in L0, T; L3 ()]
{A i uly’m} — Vi in L®[0,T; L*(0)),
U2z X Qe ugy

and the terms involving [u§] — 7¢ are paired with test functions independent of ¢, from
which it follows that the first three terms on the left hand sides of equations (3.8) and
(3.9) converge as claimed.

The Cauchy Schwarz inequality and the smoothness of the test function ,(t) € H*(Q) —
W4(Q) are used to estimate the first consistency error term in equation (3.8),

/ / u?x + uly) :}/67 ﬁ2x) S CH\/E(USQC + uiy) — 76/\/EHL°°[O,T;L2(SE)]

< ClWe(us, +us,) =7 /VelLepri2so)
— 0.

(Se)]

The final terms on the left hand side of equations (3.8) and (3.9) involve u§, paired with test
functions which are independent of y. It then suffices to show that u5, = fi 32 us, (.., y)dy

converges weakly star to zero in L*[0,T; L*(—1,1)]. To do this the Cauchy Schwarz
inequality and Corollary 3.3 are used to first show that it is bounded,

1 €/2 2 1 €/2
/ // us, (2, y) dy | dx S/ e// Uy (t, 2,y)* dy da = eljug, () ||72(s,) < C-
-1 —€/2 -1 J—¢/2

To establish weak star convergence to zero it then suffices to test against smooth functions
gb with compact support in (0,7) x € since they are dense in L'[0,T; L*(—1,1)],

L i [ [ 00 < o
—e/2 —€/2

It follows that the limit (u, ) is a solution of the sharp interface problem, and the theorem
follows provided it takes the specified initial values. However, this is direct since (u€,~¢)
converges weakly in H'[0,T'; L2(€2)* x L2(—1,1)] from which it follows that the initial values
of the limit (u,) are the limit of the initial values.

01250 < CVe.

4. Numerical Examples. This section presents a numerical example to exhibit the
contrast between direct numerical simulation of the stationary form of equations (1.1)-
(1.4) and the limit problem for the considered in Section 2. A solution of the limit problem
with constant Lame parameters is constructed by setting

ey ¢y(2,Y)
(,9) %(6““” ) : ( —asx(x,y)) e (41)
u(x,y) = .
—ea(zty)
H i )+ (omm) <o

13
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where k = \/(2u + \) and ¢(x,y) = e cos(fz). Then

[uy ()] = e**, v(z) =[] — (1/p)C(Vu) 1 = €™ — 202 cos({x), (4.2)

and right hand sides for the stationary problem are manufactured so that the equations
are satisfied,

f = —div(C(Vu)) and Jo =17 —C(Vu)ia — v7se.

In the numerical examples below the parameters are set to

=1 AX=2 a=1/2, (=1/4, n=2, v=0, e=1/10.

and for the limit problem uniform rectangular elements of size h = 1/n with n € N are
utilized. When € > 0 the fault region is meshed with rectangular elements of size 1/n x€/n;
the mesh with n = 4 is illustrated in Figure 1.1. Galerkin approximations of the solution
to the elasticity problems are computed using the piecewise quadratic finite element spaces

on these meshes.

To exhibit the differences between direct numerical approximation of (1.1)—(1.4) and nu-
merical approximation of the limiting problem we first tabulate the errors, u® — u), of
the numerical approximation of the solution (4.1). Numerical approximations uj, of the
stationary equations (1.1)—(1.4) are then computed using the same boundary data and
body force f. While the exact solution, u€, of the problem with this data is not known,
we tabulate (norms of) the differences u® — u§, for € fixed. As h — 0 this difference con-
verges to the “modeling” error u’ — u¢ associated with approximating the fault region by
a surface. An estimate of the mesh size required to resolve the deformation in the fault
region is obtained by observing when difference u® — u§ stabilizes. Note that in general
lime, [Ju® — u|| 12¢q) — 0 but lime, [[u® — u|| g1, # 0.

h [u” — upllr2o) | lu® — uhlli oy | # unknowns
1/8 1.684735e-05 4.402589e-04 629
1/16 2.098734e-06 1.091350e-04 2277
1/32 2.617986e-07 2.718018e-05 8645
1/64 3.268957e-08 6.783206e-06 33669

1/128 | 4.084190e-09 1.694404e-06 132869
1/256 | 5.154866e-10 4.234319e-07 D278T7
Norms 1.435134 1.662724

TABLE 4.1

Errors for the uncoupled limit problem (e =0).
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he |l —wglleeg) | luw” — uj )l o) | # unknowns
1/8 2.148338e-01 4.553696e+00 1666
1/16 | 3.029500e-01 5.114175e+00 6402
1/32 | 3.183221e-01 5.119497e+00 25090
1/64 | 3.358588e-01 5.177173e+00 99330
1/128 | 3.459277e-01 5.223399e-+00 395266
1/256 | 3.433117e-01 5.218226e+00 1576962

TABLE 4.2
Differences between the uncoupled e-problem and limit problem with e = 0.1.

4.1. Uncoupled Problem. Table 4.1 exhibits the errors in the numerical approxima-
tion of the solution (4.1) of the limit problem considered in Section 2 with ~ the function
specified in (4.2). The optimal third order rate in L?(Q2) and second order rate for the
derivatives is clear. Norms of the differences u® — u§, are presented in Table 4.2. For this
example it is clear that very accurate solutions of the limit problem can be computed on
very modest meshes while resolution of the deformation in the fault region requires signif-
icantly finer meshes. The norms computed on the finest meshes give an estimate of the
modeling error ||u® — uf||;2(q) =~ 0.35. Representative solutions for each of the problems
are illustrated in Figures 4.1 and 4.2.

u Magnitude
1.39
§1.25

1

0.75

F1a. 4.1. Solution of the uncoupled limit problem mesh size h = 1/256.
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u Magnitude
1.6 1.6

2

0.8

o
~

[RARRRRR

Fi1a. 4.2. Solution of the uncoupled problem with e = 0.1, h = 1/256.

h [u’ —upllzz) | 1u° — upllai@y | 1Y = Ynllzzc1) | # unknowns
1/8 1.687157e-05 4.401747e-04 1.658411e-05 646
1/16 2.099899¢-06 1.091296e-04 2.142555e-06 2310
1/32 2.618490e-07 2.717989e-05 2.717502e-07 8710
1/64 3.269160e-08 6.783192e-06 3.416512e-08 33798
1/128 | 4.084230e-09 1.694403e-06 4.278860e-09 133126
1/256 | 5.146679e-10 4.234318e-07 5.362224e-10 528390
Norms 1.435134 1.662724 1.365834
TABLE 4.3
Errors for the coupled limit problem (e =0).
he |’ =g llze | [1v® —ugllmqo | 17 = villzecsy | # unknowns
1/8 1.548447e-01 4.788309e+00 | 7.311100e-02 1955
1/16 | 1.566552e-01 4.809018e+4-00 | 8.774972e-02 7491
1/32 | 1.570841e-01 4.820766e+00 | 1.043616e-01 29315
1/64 | 1.582205e-01 4.825760e4-00 | 1.109939¢-01 115971
1/128 | 1.584977e-01 4.826950e+00 | 1.114208e-01 461315
1/256 | 1.582490e-01 4.826843e+00 | 1.107407e-01 1840131

TABLE 4.4

Differences between coupled e-problem and limit problem with e = 0.1.

4.2. Coupled Problems. Table 4.3 exhibits the errors for the coupled problem when
numerical approximations of both u and v are computed using the limit energy given
16



in equation (1.5). Again the optimal third order rate in the L? norms for both u and
~v and second order rate for the derivatives of w is obtained. Norms of the differences
u’ — uf and v — 75 are presented in Table 4.4. As for the uncoupled case, very accurate
solutions of the limit problem can be computed on modest meshes while resolution of the
deformation in the fault region requires finer meshes. The modeling errors for this problem
are [|u® — u|| 12 =~ 0.16 and ||y — ¥°|| ~ 0.11. Representative deformations are illustrated

in Figures 4.3 and 4.4.

u Magnitude
1.39
§1.25

1

0.75

F1G. 4.3. Displacement of coupled limit problem with h = 1/256.

u Magnitude
1.39 _
-1.25

F1G. 4.4. Displacement for coupled problem with e = 0.1 and h = 1/256.
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FiG. 4.5. Displacement field with dislocation at the origin

4.3. Dislocation. An explicit solution for the solution of the linear elastisity problem
with an edge dislocation along the z—axis is [?]

(z.1) 1 arctan(y/z) + 2(1719)93(3;2+y2) ‘th Poi tio 5 A
u(z,y)=— [ _ . ol , with Poisson ratio o = ————.
Y o 4(1—1ﬁ) <(1 —20) In(2* +y7) + xz+zy/z) 20n+A)

This solution, illustrated in Figure 4.5, represents the displacement that results when
a dislocation, currently at the origin, has propogated along the negative x—axis so that
[u1(x)] = 1 for z < 0 and [ug(x)] = 0 for z > 0. The stress has a singularity of order O(1/r)
at the origin and is otherwise continuous. We manufacture a solution of the stationary
limit problem by setting v = [u1] — (1/u)T}2, so that the jump condtion is satisfied, and
non-homogeneous right right hand side for the equation for ~

(A +p)(7) + p)
(21 + Nz

fol) = iy(x) — Tha(z,0) = 7 [ua ()] +

(Since v, does not exist we set the coefficient of this term to be zero.) While the results
of the prior sections are not applicable to singular solutions, almost singular solutions arise
in engineering practice so it is important for the numerical schemes to be robust in this
context.

Appendix A. Derivation from a Plasticity Model. Displacements and gradients are
assumed to be small in the region Q. = Q \ S, outside the fault so that the motion is
governed by the equations of linear elasticity,

puy — div(C(Vu)) = pf, in €.

Small displacement plasticity theory models the motion in the fault region S.. In this
theory the elastic deformation tensor, U, deviates from Vu due to slips and motion of
18



defects. The balance of linear momentum becomes
puy — div(C(U)) = pf, in S,
and evolution of U is governed by an equation of the form
U — Vi + Curl(U) x vg = 0, (A.1)

where vy is a constitutively specified defect velocity. In this equation the Curl(.) and cross
product of a matrix act row—wise;

Curl(U)mn = €ijnUnmjiis and (A X V)imn = €ijnAmiv;.

The defect velocity vy is chosen to model the (typically large) dissipation due to defect
motion, and local energy changes due to distortion in the material during passage of a
defect. In the following lemma the axial vector of the skew part of a matrix A is denoted
by X (A); that is

X(A)Z = EijkAjk~

LEMMA A.1. Letn:R = R and 8,7,T12: (0,7) x S — R be smooth, v € R, and suppose
that

%+ 87 (0'(7) = vee — Th2) =0, on (0,T) x S..
Let
w:(0,T) x Sc = R* = R?, and T :(0,T)x S — RI> — RS,

be smooth with T as above, and let

0 v O

U=Vu—- ({0 0 0 and vd:(l—i®i>X(SCurl(U)),
00 0 w|  [w]
where
0 27'(7) 0
S=|(T-1({0 0 0f+2vCurl(Curl(V)) and w = X(Curl(V)).
0 0 0
sym

Then the triple (U,u,vy) satisfies equation (A.1).
Under the ansatz of the lemma the matrices Curl(U) and Curl(Curl(U)) become

Cul(U)=10 0 0 |, Curl(Curl(U)) =10 0 0
00 O 0 0 0
and vectors X (Curl(U)) and vy are
0 Bya (1(7) = vYew — Th2)
X(Curl(U)) = | =2 | » Vg = 0
0 0
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