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Abstract

In this paper we propose a variational approach to the Steiner tree problem, which is based
on calibrations in a suitable algebraic environment for polyhedral chains which represent our
candidates. This approach turns out to be very efficient from numerical point of view and
allows to establish whether a given Steiner tree is optimal. Several examples are provided.
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1 Introduction

In the present paper we consider variational problems related to one dimensional models arising
in several fields among which graph theory, shape optimization, optimal transport and elasto-
plasticity. More specifically, we address the question to certify the optimality of a given one
dimensionnal structure for some specific costs. Whereas the identification of an optimal structure
may be an NP-hard problem like in the case of the optimal Steiner tree problem for instance, we
introduce in this article a new algorithm based on the so called notion of calibration which, on
cases under study, has been able to establish optimality from both a numerical and a theoretical
point of view.

Our approach is rather flexible and applies to models with some common features: the
objects under investigation can be represented by means of 1-dimensional rectifiable sets with
suitable “labels” and the cost to be optimized, depending both on the support of the object and
its labels, has a “subadditive” behavior. Among these problems, we can list k-means clustering,
image processing, irrigation and the Steiner tree problem. Here below we discuss the statement
of the problem in some of them, the original motivation for the paper being the latter. The
reason for such a treatment of the aforementioned problems is the availability of well-established
results and tools which are typical of Calculus of Variations and Geometric Measure Theory.

The celebrated Steiner tree problem can be summarized as follows: in the Euclidean space
Rd we are given n points {x1, . . . , xn} and we have to find the shortest connected set containing
these points. More precisely, one would like to solve the following variational problem

inf
{
H1(Σ) : Σ ⊂ Rd is a connected set and {x1, . . . , xn} ⊂ Σ

}
. (1.1)

From an exquisitely theoretical point of view, the Steiner tree problem is well understood : a
solution always exists, though it may not be unique, in general. Moreover, the graph which
minimizes the problem (1.1) is a union of segments, meeting either at the boundary points
{x1, . . . , xn} or in the so-called “Steiner points”. In R2, the segments meeting at a Steiner point
are always three, forming angles of 2π/3 radiants, and Steiner points are at most n− 2 (see, for
instance, [3] and [4]).

The situation may seem complete: indeed, in R2 there are very efficient algorithms which
allow to explicitly construct the solution of (1.1) (see for instance [8]). Nonetheless, the com-
putability of the Steiner tree problem is a very difficult task. In fact, the problem is NP-complete,
as one can see in [5].
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We propose to attack the Steiner tree problem borrowing some tools from Geometric Measure
Theory. More precisely, we show that the Steiner tree problem is equivalent to the classical mass-
minimization problem with prescribed boundary (see Section 2.3 or [6], too), provided that the
object of our study is 1-dimensional polyhedral chains (that is, finite collections of segments)
with “weights” chosen in a suitable normed group G. The key-point is the meaning we assign
to the concepts of mass and boundary for such a class of objects. In particular, the mass of a
1-dimensional polyhedral G-chain is the weighted length of its support.
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Figure 1: A polyhedral chain with its boundary and mass

Our ideal reference is the classical variational problem of mass-minimization among currents
with prescribed boundary, also known as Plateau problem. Nonetheless, these kind of problems
are significantly simpler when the dimension of the current is 1: in particular, we can forget
about currents and simply deal with polyhedral chains.

Moreover, it turns out that sometimes the mass-minimization problem has good computabil-
ity properties in the (relatively) easy case of dimension 1. The reason is the calibration technique,
that is, a sufficient (but, unfortunately, not necessary) condition for the minimality of a poly-
hedral chain. Indeed, the existence of a calibration associated with a certain polyhedral chain
guarantees that the latter is a mass-minimizer for its boundary. Roughly speaking, having a
“robust” candidate for the mass-minimization problem, one may try to explicitly build a cali-
bration associated with this candidate: if we succeed, then the candidate is a genuine solution
to the mass-minimization problem.

The constructions of the group and the equivalent objects are completely explicit, and the
construction of a possible calibration is explicit, too. Thus we can pass to a numerical imple-
mentation of an algorithm which looks for calibrations of a candidate minimizer (in many cases,
it is well-known that we are looking for calibration of true minimizers).

Back to a wider class of variational problem, from the point of view of applications this
method is very flexible and its flexibility is based on the choice of the normed group G. The
algebraic relations among the elements of the group, which are also the coefficients for the
polyhedral chains, and the norm, which plays a crucial role in the computation of the mass of
a polyhedral chain, can be chosen in such a way that the candidates in the mass-minimization
problem have specific properties.

2 Steiner’s candidates as polyhedral chains with coefficients in
a group

2.1 Origin of difficulties: why coefficients in a group are needed?

It is easy to imagine how the Steiner tree problem can be rephrased as a mass-minimization
problem for polyhedral chains, but it is less trivial to exhibit a group that preserves the two
main features of the problem: connectedness of the set and the prescribed boundary datum at
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{x1, . . . , xn}. In fact, the first “natural” attempt G = Z gives problems even in the simplest
cases, as one can see in the pictures below.
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Figure 2: The mass-minimization problem with G = Z

With easy heuristic arguments, one can see that the group G should be chosen with the
following properties (see Remark 2.14):

(1) ∃ g1, . . . , gn ∈ G (with gi 6= gj if i 6= j) such that g1 + . . .+ gn = 0 and ‖gi1 + . . .+ gik‖ = 1
for every k ≤ n− 1 and 1 ≤ i1 < . . . < ik ≤ n;

(2) ∀ g ∈ G \ {0} ‖g‖ ≥ 1.

In Section 2.3 we build a normed group with the properties above and we obtain an equiva-
lence result between the Steiner tree problem and the variational problem given by the mass-
minimization among polyhedral G-chains with a suitably chosen boundary.

2.2 Polyhedral chains with coefficients in a group

We will denote by d ∈ N the dimension of the ambient space Rd where the Steiner tree problem
is posed. In this section we consider the following general setting: let ‖ · ‖ be a norm in Rm, for
some m ∈ N, and G < Rm an additive subgroup of Rm that inherits the same norm ‖ · ‖. In our
construction we will set m = n, where n is the number of boundary points, and

Definition 2.1. A 1-dimensional polyhedral G-chain T is a collection of oriented and G-
weighted segments {σi}Nσi=1 in Rd which intersect only at endpoints1. More precisely, we will
denote by T a triple (Σ, τ, θ) where

1. Σ =
⋃Nσ
i=1 σi ⊂ Rd is the support of the chain T and σi = xiyi;

2. τ :
⋃Nσ
i=1 σ̊i → Sd−1 is the orientation of T (thus τ(x) = (yi−xi)/|yi−xi| for every x ∈ σ̊i);

3. θ : Σ→ G is the multiplicity of T . For our convenience, we can assume θ to be constantly
equal to θi ∈ G on each segment σi.

Definition 2.2. Given a 1-dimensional polyhedral G-chain T = (Σ, τ, θ), with Σ =
⋃Nσ
i=1 σi, we

define the mass of T as

M(T ) :=

Nσ∑
i=1

‖θi‖Length(σi) .

1The endpoints of each segment σi will be denoted by xi and yi ∈ Rd (with orientation from xi to yi).
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Definition 2.3. Given a 1-dimensional polyhedral G-chain T = (Σ, τ, θ) in Rd, with Σ =
⋃Nσ
i=1 σi

and σi = xiyi, we define the boundary of T as the pair (B, g) =: ∂T , where

1. B̃ =
⋃Nσ
i=1{xi, yi} ⊂ Rd is the unsuitable support of the boundary of T ;

2. g : B̃ → G is the multiplicity of the boundary of T and maps

x 7→ g(x) := −
∑

{i:xi=x}

θi +
∑

{j: yj=x}

θj ;

3. B = {x ∈ B̃ : g(x) 6= 0} is the support of the boundary of T .

Remark 2.4. Given a finite number of points {x1, . . . , xn} ⊂ Rd with a multiplicity g : {x1, . . . , xn} →
G, the pair ({xi}ni=1, g) is the boundary of some polyhedral G-chain T if and only if

n∑
i=1

gi = 0 . (2.1)

Indeed, if ({xi}ni=1, g) is the boundary of a polyhedral G-chain T , then

n∑
i=1

gi =
∑
x∈B

− ∑
{i:xi=x}

θi +
∑

{j: yj=x}

θj

 =

Nσ∑
i=1

(−θi + θi) = 0 .

On the other hand, if (2.1) holds (that is, gn = −
∑n−1

i=1 gi) then we can build a polyhedral
G-chain with Σ =

⋃n−1
i=1 xixn and multiplicity θi = −gi in every segment xixn. Condition (2.1)

will be called the admissibility condition. In this context, a quite natural variational problem
arises: namely, given a pair ({xi}ni=1, g) satisfying (2.1), find a mass-minimizing 1-dimensional
G-chain with boundary ({xi}ni=1, g).

Given a bounded matrix-valued function M : Rd → Rm×d, we can define the action of a
G-chain T on M as

T (M) :=

∫
Σ

(Mxτ(x)) · θ(x) dH1(x) , (2.2)

where · is the standard scalar product in Rm. In this sense, T is a current with coefficients in
G, i.e., a continuous, linear functional on the space of smooth Rm-valued 1-forms. Moreover,
as a current T has finite mass, rectifiable support and multiplicity in G, and its boundary ∂T
have the same properties, too, thus T is a rectifiable current with coefficients in G. This is the
(more abstract) approach followed in [6]. Let us briefly recall what is important for us of that
approach:

Definition 2.5. Given a map M ∈ C1(Rd;Rm×d), we denote by M(j) ∈ C1(Rd;Rd) the jth

row of the matrix M , for j = 1, . . . ,m. M is said to be curl free if curlM(j) = 02 for every
j = 1, . . . ,m.

Definition 2.6. Assume d = 2 and consider a locally finite partition {Cr}r≥1 of R2, where the
cells Cr are pairwise disjoint, connected open sets with Lipschitz boundary. Given a piecewise
constant map M : R2 → Rm×2 associated with {Cr}r≥1 (i.e., M|Cr ≡ Mr ∈ Rm×2), we say that
M fulfills the compatibility condition if

(Mr −Ml)t(x) = 0 ∀x ∈ ∂Cr ∩ ∂Cl , (2.3)

where t ∈ R2 is the tangent vector to ∂Cr.

2When d > 3, the curl above stands for the exterior derivative of the 1-form associated with M(j).
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Proposition 2.7. If S is a polyhedral G-chain without boundary and M : Rd → Rm×d is either

• curl free or

• piecewise constant and compatible in the sense of (2.3) for some partition {Cr}r≥1 of R2,

then S(M) = 0.

Proof. Observe that this fact is nothing but a generalized version of Stokes’ Theorem. We give
here a short proof when d = 2 and M is curl free, for the complete proof of this fact (which
requires to handle higher dimensional currents) we refer to [6].

Since ∂S = 0, we can decompose3 S = (Σ, τ, θ) in a finite sum of 1-dimensional polyhedral

G-cycles Sk = (Σk, τk, θk) with constant multiplicity θk = (θ
(1)
k , . . . , θ

(m)
k ) ∈ G. Thus, using the

definition in (2.2), we obtain

S(M) =

∫
Σ
Mxτ(x) · θ(x) dH1(x) =

Nc∑
k=1

∫
Σk

Mxτk(x) · θk dH1(x)

=

Nc∑
k=1

m∑
j=1

θ
(j)
k

∫
Σk

M(j)τk(x) dH1(x)

Nonetheless, each Σk is a closed Lipschitz curve, so it is the (topological) boundary of a polygon
Pk. The Stokes’ Theorem allows to conclude that

S(M) =

Nc∑
k=1

m∑
j=1

θ
(j)
k

∫
Pk

curlM(j) dL2 = 0 .

Definition 2.8. A bounded, matrix-valued map ω : Rd → Rm×d is a calibration associated with
a polyhedral G-chain T = (Σ, τ, θ) if the following conditions hold:

(i) either ω is curl free

(i’) or d = 2 and ω satisfies the compatibility condition (2.3) for some partition {Cr}r≥1 ;

(ii) for H1-a.e. x ∈ Σ we have that

ω(x)τ(x) · θ(x) = ‖θ(x)‖; (2.4)

(iii) finally

sup
x∈Rd

(
sup
t∈Sd−1

g∈G,‖g‖=1

ω(x)t · g

)
≤ 1 .

Definition 2.9. Given ε > 0, a bounded, matrix-valued map ω : Rd → Rm×d is an ε-quasi
calibration associated with a polyhedral G-chain T = (Σ, τ, θ) if conditions (i) (or (i’)) and (ii)
in Definition 2.8 are fulfilled and

(iii’)

sup
x∈Rd

(
sup
t∈Sd−1

g∈G,‖g‖=1

ω(x)t · g

)
≤ 1 + ε .

3The existence of such a decomposition is known for 1-dimensional currents (see [2]) and consequently for
1-dimensional polyhedral G-chains (see [6]). Heuristically, for a finite number of segments (as in the case of
polyhedral G-chains), one may explicitly perform the decomposition following the path of a fixed coefficient. This
path has to close up to prevent the formation of boundary.
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Theorem 2.10. Consider a 1-dimensional polyhedral G-chain T = (Σ, τ, θ) with boundary ∂T .
If there exists a calibration ω associated with T in the sense of Definition 2.8, then T minimizes
the mass among 1-dimensional polyhedral G-chain with boundary ∂T .

Proof. Consider a polyhedral G-chain T ′ = (Σ′, τ ′, θ′) with ∂T ′ = ∂T as a competitor. Then
the sum S := T − T ′ has no boundary and we can apply Proposition 2.7, obtaining

T (ω) = T ′(ω) . (2.5)

Therefore

M(T ) =

Nσ∑
i=1

‖θi‖Length(σi)
(ii)
=

∫
Σ
ω(x)τ(x) · θ(x) dH1(x) = T (ω)

(2.5)
= T ′(ω) =

∫
Σ′
ω(x)τ ′(x) · θ′(x) dH1(x)

(iii)

≤
Nσ∑
i=1

‖θ′i‖Length(σ′i) = M(T ′) .

Proposition 2.11. If ω is an ε-quasi calibration for some polyhedral G-chain T and some ε > 0,
then

M(T )−M(T0) ≤ εM(T0) ,

where T0 is the mass-minimizing polyhedral G-chain with boundary ∂T .

Proof. As in the proof of Theorem 2.10:

M(T )
(ii)
= T (ω)

(i)
= T0(ω)

(iii′)
≤ (1 + ε)M(T0) .

Remark 2.12. Theorem 2.10 gives a powerful sufficient condition for the mass-minimization:
the existence of a calibration. Whether this condition is also necessary is a delicate issue. In
fact, with purely functional analytical arguments, one can prove the following: given a mass-
minimizing normal current N with coefficients in Rm, there exists a generalized calibration Ω
associated to N . A normal current N with coefficients in Rm is a continuous, linear functional
on the space of smooth Rm-valued forms (see (2.2)) which can be represented as

N(M) =

∫
Mxτ(x) ·m(x) dµ(x) ,

where τ is a vectorfield in Rd, m ∈ L1(Rd;Rm) and µ is a Radon measure on Rd. A generalized
calibration for N is a continuous functional on the space of normal currents with the following
properties:

(i) Ω(S) = 0 for every normal current S with coefficients in Rm with ∂S = 0;

(ii) Ω(N) = M(N);

(iii) Ω(N ′) ≤M(N ′) for every normal current N ′ with coefficients in Rm.

This result has major drawbacks:

1. First of all, the construction of such a Ω is completely abstract (it relies on Hahn-Banch
Theorem) and gives very little information on N (notice that Ω(N) = M(N) is far from
being as significant as (2.4)).

2. The mass-minimization problem among normal currents is different from the mass-minimization
problem among rectifiable currents with coefficients in G (or even polyhedral G-chains),
the latter being a smaller class of the class of normal currents.
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2.3 Calibration in Steiner’s context

In Section 2 we have introduced a variational problem for 1-dimensional polyhedral G-chains:
namely, the minimization of the mass among G-chains with a prescribed boundary. Moreover, a
powerful sufficient condition for minimality has been introduced: the calibration (see Definition
2.8 and Theorem 2.10). These tools can be brought back to the framework of the Steiner tree
problem, provided we have a result of equivalence between the Steiner tree problem and the
mass-minimization problem for 1-dimensional polyhedral G-chains (see Theorem 2.15): roughly
speaking, we describe a way to convert a candidate for the Steiner tree problem in a 1-dimensional
polyhedral G-chain and viceversa. This construction depends on a suitable choice of the group
G.

Definition 2.13. Fix n ∈ N \ {0} and consider the following seminorm in Rn:

‖u‖? := max
i=1,...,n

ui − min
i=1,...,n

ui ∀u = (u1, . . . , un) ∈ Rn .

Now consider the map π : Rn → Rn−1 associating (u1, . . . , un) 7→ (u1 − un, . . . , un−1 − un). The
seminorm ‖ · ‖? induces a norm ‖ · ‖ in Rn−1 via π. If {e1, . . . , en} is a standard orthonormal
basis of Rn, we take gi := π(ei) for i = 1, . . . , n−1 and we define the suitable group for a Steiner
tree problem of n points as

G = span(g1, . . . , gn−1) .

The group G is naturally endowed with the norm ‖ · ‖.

Remark 2.14. By construction, the following properties hold:

(P1) for every k ≤ n− 1 and 1 ≤ i1 < . . . < ik ≤ n− 1 we have that

‖gi1 + . . .+ gik‖ = 1 .

In particular, ‖gi‖ = 1 for every i = 1, . . . , n;

(P2) ‖g‖ ≥ 1 for every g ∈ G.

The basic construction for the equivalence theorem 2.15 describes how to pass from a con-
nected set Σ ⊂ Rd to a 1-dimensional polyhedral G-chain: we put it here for the convenience of
the reader. In fact, it is very useful to know this construction for the numerical implementation
of the problem. It is not restrictive to assume that Σ is a finite union of segments {σi}Nσi=1 and has
no loops, its endpoints are exactly {x1, . . . , xn}. Then we define the 1-dimensional polyhedral
G-chain TΣ = (Σ, τ, θ) associated with Σ in the following way: for every i = 1, . . . , n−1 take the
(injective) path Πi in Σ connecting xi with xn and define the auxiliary G-chain Pi := (Πi, τi, gi)
with orientation τi going from xi to xn and constant multiplicity gi. Now set TΣ :=

∑n=1
i=1 Pi

and notice that

• the support of T is the original set Σ;

• the multiplicity of TΣ has always unit norm thanks to property (P1) in Remark 2.14.

Theorem 2.15. Consider n points x1, . . . , xn ∈ Rd and the normed group (G, ‖·‖) in Definition
2.13, which depends4 only on n. Set gn := −(g1+. . .+gn−1) and consider the admissible boundary
(B, g) = {(xi, gi)}ni=1. A connected set Σ ⊃ {x1, . . . , xn} solves the Steiner tree problem with
datum {x1 . . . , xn} if and only if the 1-dimensional G-chain TΣ described above solves the mass-
minimization problem with boundary (B, g).

This theorem is proved in [6], we provide here only the main ideas of the relevant implication,
that is, if TΣ is a mass-minimizer then Σ solves the Steiner tree problem.

4Notice that the group G is independent from the position of the points x1, . . . , xn ∈ Rd.
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Proof. Consider a connected competitor Σ′ ⊂ Rd: as before, it is not restrictive to assume
that Σ′ is a finite union of segments, has no loops and its endpoints are exactly {x1, . . . , xn}.
Therefore we can construct the associated polyhedral G-chain TΣ′ ; since the multiplicity has
always unit norm, then H1(Σ′) = M(TΣ′). On the other hand, property (P2) from Remark
2.14 guarantees that M(TΣ) ≥ H1(Σ). Finally, by construction ∂TΣ = ∂TΣ′ and since TΣ is a
mass-minimizer among polyhedral G-chains with the same boundary we conclude that

H1(Σ′) = M(TΣ′) ≥M(TΣ) ≥ H1(Σ) .

Once we established this equivalence, we can try to solve the Steiner tree problem via cali-
brations. In fact, given a “candidate minimizer” Σ for a set a points {x1, . . . , xn} ⊂ Rd and the
corresponding 1-dimensional polyhedral G-chain TΣ, it is sufficient to check the existence of a
calibration associated with TΣ. To this aim, it is useful to rephrase condition (iii) in Definition
2.8 as

sup
x∈Rd

sup
t∈Sd−1

‖ω(x)t‖∗ ≤ 1 , (2.6)

where ‖ · ‖∗ is the dual norm in (Rn−1, ‖ · ‖).

Proposition 2.16. Given n ∈ N\{0} and the norm ‖ ·‖ on Rn−1 introduced in Definition 2.13,
the dual norm ‖ · ‖∗ on Rn−1 is characterized by the formula

‖w‖∗ = wP ∨ wN ,

where w = (w1, . . . , wn−1) and wp :=
∑n−1

i=1 wi ∨ 0 and wN := −
∑n−1

i=1 wi ∧ 0.

The proof is very short and can be found in [6]. Nonetheless, we rewrite the proof here for
the reader’s ease.

Proof. Given w ∈ Rn−1, we have to compute sup‖v‖=1w · v. If wP > wN , then the supremum

is reached for v =
∑n−1

i=1 (wi ∨ 0)/wigi, which implies w · v = wP . If wN > wP instead, the
supremum is reached for v =

∑n−1
i=1 (wi ∧ 0)/wigi, which implies w · v = wN .

3 Discrete parametrization of calibrations

Consider T = (Σ, τ, θ) a polyhedral one dimensional G-chain where G is the normed group
defined in Definition 2.13. In this section, we are interested in the numerical investigation of
the optimality of the Steiner tree defined by the support of T . To this purpose, we consider a
polygonal partition P associated to the support of the polyhedral chain T . More precisely, we
require that the weighted segments {σi}Nσi=1 are all covered by the edges of P. Notice that this
assumption is not mandatory but it could help to describe discontinuous matrix fields. Consider
now the matrix fields ω which are piecewise constant on the NC polygons {Cr}1≤r≤NC of P. If
we are able to identify a matrix field ω which satisfies the divergence constraints (i’) and the
additional conditions (ii) and (iii) of Definition 2.8, Theorem 2.10 ensures that T is globally
optimal. Since we can not expect to satisfy exactly this set of constraints from a numerical
point of view, we relax this constraint satisfaction problem in a convex non smooth optimization
problem which consists in minimizing the real ε with respect to couples (ε, (ωr)1≤r≤NC ) which
satisfy

(i) ωr ∈ Rm×2, ∀ 1 ≤ r ≤ NC ,

(i’) (ωr − ωl).τr,l = 0 ∀x ∈ ∂Cr ∩ ∂Cl, where τr,l is a tangent vector of the common edges of
Cr and Cl,

(ii) ωr(k)τk · θk = ‖θk‖, ∀ 1 ≤ k ≤ Nσ and all Cr(k) cells such that Cr(k) ∩ σk is not empty,
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(iii) sup1≤r≤NC

(
supt∈S1 ||ωrt||

∗

)
≤ 1 + ε.

In this setting, the closeness of 0 of parameter ε can be interpreted as a qualitative indicator
of the optimality of the support of T for our original Steiner tree problem. This interpretation
is supported by our stability Proposition 2.11. Notice that we do not claim that every Steiner
tree admits a calibration. Nevertheless, Theorems 2.10 and 2.11 assert that, if we are able to
exhibit numerically a ε-calibration with ε small enough, then T is close to be optimal in term
of its cost value.

We observe that conditions (i’) and (ii) represent a finite set of linear equality constraints
with respect to the unknown discrete matrix field (ωr)1≤r≤NC . On the other hand, condition
(iii) cannot easily be taken into account numerically due to the mixing of l1 and l2 types norms.
In order to tackle that difficulty, we define a new set of linear constraints which ensures that
condition (iii) is satisfied: let (ti)1≤i≤Nt be the vertices of a convex regular exterior tangent
polygon to S1 which contains the unit disk. We look for a field (ωr)1≤r≤NC which satisfies the
linear equality constraints

sup
1≤r≤NC

(
sup

t1,...,tNt

||ωrti||∗
)
≤ 1 + ε. (3.1)

for ε as small as possible. By convexity of the norm || · ||∗, it is clear that condition (3.1) implies
condition (iii), which makes (ε, (ωr)1≤r≤NC ) be an admissible discrete ε-calibration.

4 A non smooth convex programming framework

From the previous section, we deduce that the identification of an exact discrete calibration
reduces to solve a large scale finite dimensional convex minimization problem of type

F (K((ωr)1≤r≤NC )) +H((ωr)1≤r≤NC ) (4.1)

where F is the convex characteristic function of the set of equality constraints (i’) and (ii), the
linear operator K : (Rn×2)NC → (Rn)NC×Nt is induced by the product with vectors (ti)1≤i≤Nt
and H is the vectorial convex characteristic function of the product of ball of radius 1 for the
norm || · ||∗, that is, B(|| · ||∗, 1)NC×Nt . H corresponds to the strongest constraint (3.1). As it has
been mentioned, there is no proof of the fact that every optimal Steiner tree has an associated
discrete calibration. As a consequence, the previous optimization problem may be ill posed, in
the sense that it does not exist a matrix field in the intersection of the convex sets defined by
(i’), (ii) and (3.1). In order to consider a well posed constraint satisfaction problem we relax
problem (4.1) in considering the minimization problem

L((ω1
r )1≤r≤NC ), (ω2

r )1≤r≤NC )) = F (K((ω1
r )1≤r≤NC )) +H((ω2

r )1≤r≤NC ) + ||(ω1
r − ω2

r )1≤r≤NC ||
2.

(4.2)
Defining the vectorial variable Ω = ((ω1

r )1≤r≤NC , (ω
2
r )1≤r≤NC ) and the projection operators π1

and π2 on the first and second matrix fields, problem (4.2) can be seen as a minimization problem
of type

F (K̃((Ω))) + H̃(Ω) (4.3)

where K̃ = K ◦ π1, H̃(Ω) = H(π2(Ω)) + ||π1(Ω) − π2(Ω)||2. We recall in the next section an
efficient algorithm adapted to the minimization of previous non smooth convex functions.

4.1 Proximal algorithms

Several algorithms have been developed in the last decades to solve non smooth convex satis-
faction problems of type (4.3). A standard approach is to use the so called ADMM algorithm
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Algorithm 1 Alternating-direction method of multipliers (ADMM)

Input σ, τ, θ > 0

Initialization Ω0 ∈ ((Rn×2)NC )2, Y0 ∈ ((Rn)NC×Nt)2, Ωt = Ω0

For n = 0, 1, . . .
Yn+1 = proxσ F

∗(Yn + σK̃(Ωt))
Ωn+1 = proxτ H̃(Ωn − τK̃∗(Yn+1))
Ωt = Ωn + θ(Ωn+1 − Ωn)

(Alternating-direction method of multipliers). The version of the algorithm that we describe
below (see [1] for a convergence study) is able to handle functions that are easily proximable (see
Definition 4.1) and do not require to solve a system involving K∗K, which is a crucial issue in
our large scale setting. To describe ADMM algorithm more in details, we recall the definition
of proximal operator:

Definition 4.1. The proximal operator associated to a convex function M : Rm → R is defined
by:

proxγM(y) = arg min
x∈Rm

M(x) +
1

γ
||x− y||2. (4.4)

In our case, F is the indicator function of a convex set, and proxγ F coincides with the

projection operator on this set. Analogously, the proximal operator of function H̃ is very closely
related to the projection operator on the affine subspace defined by conditions (i’) and (ii)
(see Section 4.2). We give a complete description of ADMM approach applied to our context
in 1, where we used the notation F ∗ to denote the Legendre transform of F . Notice that
Moreau’s identity makes it possible to deduce proxγ F

∗ from proxγ F for every τ, x by a simple
computation, since:

x = proxτ M
∗(x) + τ prox 1

τ
M(x/τ)

In all our experiments we used the parameters σ = 10, τ = 0.9
σnK

and θ = 1, where nK stands for

a numerical evaluation of the operator norm of K̃∗K̃.

4.2 The proximal operator of H̃

For completeness, we recall a very standard approach to project on an affine subspace which
corresponds to the constraints induced by equalities (i’) and (ii). In this context, we need to
solve a projection problem of the type

min
(x,y), Ax=b

||x− x0||2 + ||y − y0||2 + ||x− y||2 (4.5)

where x0 ∈ Rp, A ∈ Rq×p and b ∈ Rq are the data of the problem. The first order optimality
condition with respect to y gives

y =
x+ y0

2
(4.6)

while the first optimality condition with respect to x ensures that

2(2x− x0 − y) +A∗λ = 0 (4.7)

for some unknown Lagrange multiplier λ ∈ Rq. Multiplying this last equality and using the fact
that Ax = b, we observe that the identification of λ is equivalent to solve the linear system

AA∗λ = 3b−A(2x0 + y0).
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In our case it is straightforward to establish that the matrix AA∗ is non singular, by providing an
algorithm to compute λ and then x by equality (4.7). Thus, projecting on an affine subspace is
equivalent to solve a linear equation. Since the linear system does not change during iterations,
we used a prefactorization approach to speed up the resolution of these linear systems.

4.3 Projection on the unit ball of E∗

In this short section we describe the projection operator with respect to the l2 norm onto the
unite ball of E∗. Let v ∈ Rn−1. We want to find w ∈ Rn−1 which minimizes ||v − w||22 and
satisfies ||w||∗ ≤ 1 where || · ||∗ is described in Proposition 2.16. Up to a permutation of the
coordinates, we can assume that v = (v+, v−) where v+ and −v− are vectors with non-negative
coefficients. Notice that v+ and v− do not have necessarily the same number of elements. In
this setting, it is straightforward to check that the components of the optimal vector w have the
same sign as the ones of v, because removing a non zero component of w preserves the vector
in the unit ball of E∗. Thus, we have to solve the minimization problem

min∑
w+≤1,−

∑
w−≤1,

w+≥0,−w−≥0

||v+ − w+||2 + ||v− − w−||2 .

Since the latter problem is separable with respect to the positive and negative parts, we con-
clude that the projection w is simply equal to (w̃+, w̃−) where w̃+ and w̃− are respectively the
projections on the unit ball of vectors w+ and w−.

5 Numerical results

We present below some results obtained by our approximation strategy for geometrical configu-
rations drawn in Figure 7. Motivated by the theoretical results obtained in [6], we drew a special
attention in identifying calibrations which are piecewise constant on large subsets of our fixed
mesh. Considering the well known fact that a calibration for a given tree is also a calibration
for every other globally optimal tree, we enforce not only the mesh to cover the edges of the
tree but also to cover every edges obtained by “symmetric” trees which are also known to be
globally optimal. By imposing these constraints to the mesh, we hope to minimize dramati-
cally the number of triangles needed to approximate precisely piecewise constant calibrations
in symmetric configurations. As it can be observed in Figures 3 and 4, we were able to recover
the theoretical piecewise constant matrix field which had been introduced in [6] to prove the
optimality of Steiner trees associated to the vertices of an equilateral triangle and the vertices
of a square. Observe that in the latter case we recover the symmetries imposed by both global
optimal solutions. As mentioned previously, by imposing that edges of the mesh cover exactly all
optimal trees, we reduce the number of parameters to describe piecewise constant calibrations.

In Figures 5 and 6 we illustrate the behavior with respect to non optimal trees. The optimal
values obtained after the same number of iterations were of order 10−2 which is significantly
different from best values obtained by optimal trees.

When the set of data points has many symmetries, we may suspect that it is more likely
that a calibration does not exist since a calibration has to be optimal for every globally optimal
tree. It has been suspected by many authors that the vertices of a regular pentagon or of a
regular hexagon may be one of the simplest situation where non existence occurs. Surprisingly,
our experiments do not confirm this intuition. Actually in all our experiments, the minimal
value of our cost function 4.2 was less than 10−5 after 106 iterations which may suggest that
in all these cases a calibration exists. We represent the coefficients of the optimal matrix fields
obtained by our algorithm: see the figure 4 and the figures of the appendix.

One unexpected fact is the existence of apparently non piecewise constant calibration for the
case of the of the pentagon and of the hexagon (see Figures 3 and 4).
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Figure 3: Representation of an optimal calibration associated to three equilateral points

Figure 4: Representation of an optimal calibration associated to the four vertices of a square

Figure 5: Representation of an optimal matrix field which does not calibrate the non optimal
tree on the right (optimal value >> 1)
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Figure 6: Representation of an optimal matrix field which does not calibrate the non optimal
tree on the right (optimal value >> 1)
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Appendices

Figure 7: Three optimal Steiner trees and the associated constrained meshes

Figure 8: Representation of an optimal calibration associated to the five vertices of a Pentagon
(see the first mesh of figure 7)
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Figure 9: Representation of an optimal calibration associated to the six vertices of an Hexagon
(see the second mesh of figure 7)
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Figure 10: Representation of an optimal calibration associated to the six vertices (see the third
mesh of figure 7)
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