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Abstract

We propose a model for segmentation problems involving an energy concentrated on the ver-
tices of an unknown polyhedral set, where the contours of the images to be recovered have preferred
directions and focal points. We prove that such an energy is obtained as a Γ-limit of functionals
defined on sets with smooth boundary that involve curvature terms of the boundary. The mini-
mizers of the limit functional are polygons with edges either parallel to some prescribed directions
or pointing to some fixed points, that can also be taken as unknown of the problem.
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1 Introduction

Within the theories of Image Processing, variational methods are frequently used, in particular to
ensure existence and approximability for segmentation problems, which consist in recovering some
image contours from a given input [23, 4]. The mathematical approach for such problems can be
summarized as follows: given an input image g ∈ L∞(Ω) (where Ω denotes the image domain) solve
a minimum problem of the form:

min
{

α

∫

Ω

|u(x)− g(x)|2dx + E(u,K)
}

, (1)

for a suitable energy E, where K ⊂ Ω is union of C1-curves and u ranges over a suitable space of
functions defined in Ω\K. The solution (u,K) of (1) is a pair where K represents the relevant contours
of the image and u is a regularization of g. The first term

∫
Ω
|u(x)− g(x)|2dx is a fidelity term to the

input image, while the second one E(u,K) can be seen as an energy which penalizes large variations of
u and forces the gradient of u to not oscillate too much outside K (typically there are large oscillations
of ∇u when noise is present in the image) while at the same it penalizes over-segmentation; α is a
parameter which balances the two terms. One of the first such functionals has been introduced by
Mumford and Shah [24, 25, 26] taking E in the following form:

E(u,K) = β1

∫

Ω\K
|∇u(x)|2dx + β2H1(K) , (2)

where H1(K) denotes the one-dimensional Hausdorff measure of the set K. Within the Calculus
of Variations (1) is called a free-discontinuity problem and, denoted by F the functional F (u, K) =
α

∫
Ω
|u(x) − g(x)|2dx + E(u,K) and by C the family of all the subsets of R2 which are union of

C1-curves, problem (1) becomes:

min
{
F (u,K) : u ∈ W 1,2(Ω\K),K ∈ C} , (3)
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where W 1,2(Ω\K) is the usual Sobolev space. To obtain existence, uniqueness, regularity and approx-
imations of solutions for this problem, it is convenient to rewrite (1) in a weaker form, as

min
u∈SBV (Ω)

{
α

∫

Ω

|u(x)− g(x)|2dx + E(u)
}

, (4)

where E(u) = β1

∫
Ω\Su

|∇u(x)|2dx + β2H1(Su) and SBV (Ω) denotes the space of special functions
with bounded variations on Ω introduced by De Giorgi and Ambrosio (see [2, 10]). A key point
for the application of the direct method of the Calculus of Variations is the lower semicontinuity of
the functional E with respect to the L1-convergence, with respect to which the problems in (4) are
coercive.

From the numerical point of view, the computation of solutions is rather difficult due to the
presence of the term H1(Su), and a central issue is the approximation of energies such as (2) by more
handy energies [10]. An underlying feature of such approximation is that the jump set Su is ‘blurred’
so that it becomes a two-dimensional set, to which various approximation procedures can be applied.
In a recent paper by Braides, Chambolle and Solci [11] it is shown how we can approximate E by
functionals defined on pairs function-set

Ẽε(u,A) = β1

∫

Ω

|∇u(x)|2dx +
1
2
β2H1(∂A), |A| ≤ ε;

the introduction of the perimeter functionalH1(∂A) allows then to use ‘classical’ approximation results
as in the seminal paper by Modica and Mortola [22]. This is a formalization of an argument that is
present for example in the classical approximation by elliptic functionals by Ambrosio and Tortorelli [3]
or in the finite-element schemes by Chambolle and Dal Maso [14, 15, 16], that actually is immediately
derived from [11].

In this paper we investigate the possibility of adding to the procedure above the constraint that the
jump set Su be composed of curves pointing in some fixed directions. We have in mind the practical
problem of image reconstruction in an urban environment, where the relevant contours either are
parallel to some fixed directions (as for edges of buildings, walls, etc.) or point towards some ‘focal
point’ (as for street pavements, etc.). We will concentrate on the case corresponding to the ‘perimeter
functional’; i.e., when the unknown u in (3) is a characteristic function, or, equivalently the unknown
is a set A and the functional E reduces to β2H1(∂A). In this case the simplest constraint that we
may add is prescribing the possible directions of the edges of the unknown set A. Unfortunately, this
constraint is not closed under L1 convergence. It may be seen [1] that minimizing sequences may
develop increasingly wiggly boundary, and converge to a solution of a problem where the constraint is
lost and the usual perimeter is substituted by a different anisotropic perimeter. This over-segmentation
of the boundary of A can be avoided by introducing an additional term accounting for the cardinality
of the set Â of end-points of the segments composing ∂A. In this direction, a simple functional is

β2H1(∂A) + β3](Â) (5)

with the constraint that the tangent τ to ∂A belongs to a fixed finite set of directions. Clearly, the
introduction of the second term greatly simplifies the problem from the viewpoint of the Calculus of
Variations, as it provides a bound on the number of segments composing ∂A, but it also complicates
numerical issues as it introduces a zero-dimensional unknown set.

The functional in (5) (but without the constraints on ν) can also be seen as a particular form
of functionals E(u,K) taking into account the curvature of the unknown contour K of the following
form:

E(u,K) = β1

∫

Ω\K
|∇u|2dx + β2H1(K) + β3](K̂) + β4

∫

K

κ2(x) dH1(x) , (6)

where κ(x) denotes the curvature of K (which is supposed to be a finite union of C2-curves) in a generic
point x, K̂ is the set of endpoints of curves of K and ](K̂) is the number of points in K̂. Analysis
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of properties of functionals involving curvature terms can be found for instance in [6, 7, 17, 20]. We
refer to [26] for a description of applications to image processing of such a kind of functionals, which
are useful for instance to reconstruct overlapping shapes and in particular to recover the edges of
regions with occlusion. If we take β4 = +∞ the curvature term is replaced by the constraint that the
competitors K in (1) (with E(u,K) given by (6)) be union of segments. It is usual to refer to this
kind of problem as an edge-detection problem. The approximation of such problems is a much harder
issue than for the Mumford-Shah functional and has been addressed by Braides and March [13].

In the present paper we focus our attention on edge-detection functionals depending only on
characteristic functions u = χA, so that K = ∂A as in (5), and with the constraint that the contours
be parallel to some preferred directions or pointing to some focal points. Mathematically speaking,
this can be phrased as follows: let ν1, ..., νN ∈ S1 be some fixed directions and let p1, ..., pM ∈ R2

be some fixed points, and define Dx(x) := {νi}i=1,...,N ∪ {x− pj}j=1,...,M ; we want to solve (1) with
E(u,K) = E(K) given by (5) under the additional constraint that, if τ(x) is the tangent vector at
a point x of a curve of K, then τ(x) must be parallel to an element of Dx(x). It is interesting to
note that in these kinds of problems the directions νi and the points pi can also be considered as
an unknown, and a further minimization is possible to determine their optimal choices. Again, this
functional is numerically hard to treat due to the term ](K̂).

Scope of this paper is to present a class of functionals of the type above defined as limits of curvature
functionals defined on boundary of sets, the underlying idea being that the counting functional can
be considered as a degenerate curvature functional. With this approximation the zero-dimensional
unknown set K̂ is substituted by a one-dimensional unknown set, to which approximation arguments
by elliptic functionals in the spirit of the Modica and Mortola result can be applied (see [12, 22]). We
prove a result of Γ-convergence which generalizes that given by Braides and Malchiodi in [12], where
the case without focal points is considered. We refer to [12] and the references quoted there also for
other possible applications (for instance elastic crystals) of such a kind of functionals.

In the sequel for simplicity we first assume Ω to be equal to the whole plane R2 and then we show
how it is possible to generalize the results to a bounded domain. Let ϕ : R2 × S1 → R be a function
such that ϕ(x, ·) vanishes only on Dx(x) and, given a function g : R2 → R and ε > 0, let us consider
the family of minimum problems

min
{∫

∂A

(
ϕ(x, τ(x))

ε
+ εκ2(x)

)
dH1(x) +

∫

R2
|χA − g|2dx

}
. (7)

where the minimum is taken among subsets of R2 with C2-boundary and κ(x) and τ(x) denote
respectively the curvature and the unit vector of ∂A at x; χA is the characteristic function of the set
A. We want to rigorously characterize the properties of the limit of minimizers under the assumption of
equi-boundedness on their perimeters, showing that they also solve a minimum problem. To compute
the form of the limit energy with respect to the L1-convergence (of characteristic functions), we use
the tools of Γ-convergence. Since the second term in (7) is seen to be a L1-continuous perturbation,
it is enough to prove the Γ-convergence of the first term. Therefore we focus our attention on:

Gε(E) :=
∫

∂E

(
ϕ(x, τ(x))

ε
+ εκ2(x)

)
dH1(x) .

Loosely speaking we expect that for ε small the minimizers have the sides either parallel to the
directions νi or pointing to the focal points. In particular we prove that the minimizers, up to
subsequence, converge to the solutions of a minimum problem for a functional defined on a suitable
class of polygons; for a polygon P with Lipschitz boundary (that means at each vertex only two
segments meet) and with a finite number of vertices (we shall call “regular” this kind of polygons),
the functional has the following form:

G(P ) =
∑

v∈V (P )

g(p, v+(p), v−(p)) , (8)
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where V (P ) denotes the set of all vertices of P , v−(p), v+(p) are the direction of the two segments
meeting at p and g is a continuous function such that g(·, v1, v2) vanishes in {pj}j=1,...,M (explicitly
computed from ϕ, see (16)). On general P polygons, the functional is defined on P as the lower
semi-continuous extension of G:

G(P ) = inf
{

lim inf
n→+∞

G(Pn) : Pn → P, Pn regular
}

. (9)

Differently from the problem studied in [12], since g(·, v1, v2) tends to 0 as p goes to some pj (in
particular we have that g(p, v1, v2) = O(|p−pj |)), this functional can be finite also on polygons with a
countable set of vertices accumulating at focal points. Moreover, as in [12], the problem is complicated
by the usual non-local effects that are characteristic of curvature energies (see also [5, 7]).

Note that we make an explicit choice of ϕ as a quadratic function of νi and pj (see (14)) so that a
possible interpretation of {νi} and {pj} as unknowns could be easily implemented. Moreover, general
ϕ can also be considered.

2 Notation and definitions

We denote by A the family of all the open sets of R2 with C2 boundary. For δ > 0 and q ∈ R2 we
denote by Bδ(q) the open ball centered in q and of radius δ. Where there is no risk of confusion we
identify S1 with R modulo 2π. If ν1 and ν2 belong to S1, we denote by L(ν1, ν2) the length of the

shortest arc (in S1) linking ν1 and ν2. Set J :=
(

0 −1
1 0

)
and for v ∈ R2 define v⊥ := Jv.

For a, b ∈ R, let γ : [a, b] → R2 be the parametrization of a piecewise-C1 curve C. (When there is
no risk of confusion we use the term “curve” indifferently for the support C and the parametrization
γ.) If x = γ(t) ∈ C is such that γ is differentiable in t and γ̇(t) 6= 0, then we say that x is a regular
point of C and we denote by τ(x) := γ̇(t)

|γ̇(t)| and ν(x) := τ(x)⊥ the unit tangent and normal vectors
at x respectively. We use the variable s when we parameterize C by means of the arc length, that is
when |γ̇(s)| = 1 for all s ∈ [0, L(C)] (here L(C) is the length of C). If x is a point where γ is not
C1 then we call x a vertex of C. We denote by V (C) the set of all vertices of C. If C is C2 in x,
we denote by κ(x) the curvature of C at x. Recall that, if x = γ(s) (and s is the arc length), then
κ(x) = |γ′′(s)|.

If γ1 : [a1, b1] → R2 and γ2 : [a2, b2] → R2 are such that γ1(b1) = γ2(a2) then we denote by γ1 ∗ γ2

the curve defined on [a1, b1 + b2 − a2] and parameterized by

γ1 ∗ γ2(t) =
{

γ1(t) t ∈ [a1, b1]
γ2(t− b1 + a2) t ∈ [b1, b1 + b2 − a2]

.

We say that C is a closed curve if γ(a) = γ(b).
Given a sequence of curves Cn, we say that Cn converge uniformly if their parameterizations are

defined on the same interval [a, b] and {γn} converge uniformly in the usual sense.

2.1 Γ-convergence

In order to describe the convergence of minimum problems we will use the notion of Γ-convergence
[10, 18]. We recall its definition and the main properties we will use.

Definition 2.1. Let X be a topological space and let Fn, F : X → R ∪ {+∞}. Define the Γ- lim inf
and the Γ- lim sup of Fn as:

Γ- lim inf
n→+∞

Fn(x) := inf
{

lim inf
n→+∞

Fn(xn) : xn → x
}

Γ- lim sup
n→+∞

Fn(x) := inf
{

lim sup
n→+∞

Fn(xn) : xn → x
}

.
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We say that Fn Γ-converges to F if for all x ∈ X we have:

Γ- lim inf
n→+∞

Fn(x) = Γ- lim sup
n→+∞

Fn(x) = F (x). (10)

We say that the family of functionals {Fε}ε∈R Γ-converges to F as ε → 0 if {Fεh
} Γ-converges to F

for every subsequence {εh} converging to zero as h → +∞.

Remark 2.2. It is easy to show that (10) is equivalent that for all x ∈ X the two following require-
ments hold:

• (Γ-liminf inequality) F (x) ≤ lim inf
n→+∞

Fn(xn) for every sequence {xn} converging to x

• (Γ-limsup inequality) there exists a sequence {xn} converging to x such that F (x) ≥ lim sup
n→+∞

Fn(xn).

Definition 2.3. A sequence of functionals Fn : X → R ∪ {+∞} is said to be equicoercive if for any
sequence {xn} such that supn Fn(xn) < +∞ there exists a convergent subsequence.

Theorem 2.4. Let {Fn} be a sequence of equicoercive functionals defined on X and Γ-converging to
F . Then there exists min

X
F and min

X
F = lim

n→∞
inf
X

Fn. Moreover, if xn is a minimizer of Fn, then

every limit of a subsequence {xnk
} of {xn} is a minimizer of F .

Proposition 2.5. Let {Fn} be a sequence of functionals Γ-converging to F and let G be a continuous
functional. Then the sequence {Fn + G} Γ-converges to F + G.

2.2 Admissible polygons

Let N ≥ 0 and M ≥ 0 be such that N + M ≥ 2; in the whole paper τ1, ..., τN are fixed directions
belonging to the unit circle S1 and p1, ..., pM are fixed points in R2 (in the paper we call them focal
points). For each x ∈ R2 we set:

Dx := {νi}i=1,...,N ∪ {x− pj}j=1,...,M . (11)

Definition 2.6 (Admissible and regular polygons). We define P as the class of all the polygons
P such that τ(x) ∈ Dx for almost every x ∈ ∂P (we call admissible such a polygon). We say that
P ∈ P is regular if (it is admissible and) V (P ) is finite and ∂P is Lipschitz (in other words an
admissible polygon is regular if at each vertex of its boundary only two segments meet). We denote by
R the class of all the regular admissible polygons.

Definition 2.7. For P ∈ P and v ∈ V (∂P ) let n be the number of the segments which meet at v.
(Note that n is an even number.) We define the multiplicity of v as n

2 .

Remark 2.8. If P belongs to R, then each vertex of P has multiplicity 1.

For P ∈ P we define a side of P to be the closure of a component of ∂P\V (P ). If q1, q2 ∈ R2, we
set:

[q1, q2] := {z ∈ R2 : z = q1+t(q2−q1), t ∈ [0, 1]} and (q1, q2) := {z ∈ R2 : z = q1+t(q2−q1), t ∈ (0, 1)} .

Given q1, q2, q3, q4 ∈ R2, we say that the segments [q1, q2] and [q3, q4] do not intersect transversally if
(q1, q2) ∩ (q3, q4) = ∅.

Define Υ = {γ1, . . . , γk} as an element of the class

C :=




{γ1, . . . , γk} such that for all i = 1, . . . , k :

γi : [ai, bi] → R2 is Lipschitz

γ̇i(t)
|γ̇i(t)| ∈ Dγ(t) a.e. t ∈ [0, 1]

γi(bi) = γi+1(ai+1)





.
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For Υ ∈ C define the image Im(Υ) as the image of the path γ1 ∗ · · · ∗ γk and the support S(Υ)
as the subset of Im(Υ), where a segment, if it is run an equal number of times in opposite ways, is
erased. An example of an element of C (for which the image and the support are different) is shown
below: if we consider the two curves γ1 and γ2 in Figure 1, Im(Υ) and S(Υ) are drawn in Figure 2.

γ 1 γ 2

Figure 1: here are pictured the two paths γ1 and γ2.

Im(γ ∗ γ )1 2 S(γ ∗ γ )1 2

Figure 2: fere are pictured the image and the support of γ1 ∗ γ2.

We define C̃ as the class of finite unions of elements of C and, if Υ1, . . . , Υm belong to C, we write:
Υ = [Υ1, . . . , Υm] ∈ C̃. For Υ ∈ C̃ we set:

Im(Υ) :=
m⋃

α=1

Im(Υα) and S(Υ) :=
m⋃

α=1

S(Υα) .

We say that Υα is a component of Υ.

Remark 2.9. It is important not to confuse the components of Υ with the connected components of
S(Υ).

Lemma 2.10. For δ > 0 and q ∈ R2, if pj is a focal point, set:

Σδ :=
M⋃

j=1

Bδ(pj) (12)

and
Sδ = R2\Σδ . (13)
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Let P ∈ P be a polygon such that, for every δ > 0, V (P ∩Sδ) is finite. Then there exists a polygon
P δ ∈ P such that:

• P δ ≡ P on Sδ

• P δ has a finite number of vertices

• the vertices of P δ in Σδ have multiplicity 1.

For the proof of this Lemma see the Appendix.

Remark 2.11. If P ∈ P has a finite number of vertices, then there exists at least a Υ ∈ C̃ such that
S(Υ) = ∂P . Note that even if P has only vertices with multiplicity 1 and is connected, there exist
more than one Υ with this property.

Definition 2.12. For P ∈ P, let Υ ∈ C̃ be such that S(Υ) = ∂P . We say that S(Υ) is an ordered
path of ∂P .

Remark 2.13. Let P be an admissible polygon with a finite number of vertices and let {En} ⊂ A
be a sequence of sets converging to P and such that ∂En → ∂P uniformly.
Then there exists Υ = [Υ1, . . . , Υm] ∈ C̃ (with Υα = {γα,1, . . . , γα,k} for α ∈ {1, . . . , m}) such that:

• S(Υ) = ∂P

• for each α ∈ {1, . . . ,m} γα = γα,1 ∗ · · · ∗ γα,k is closed (possibly with vertices of multiplicity
greater than 1, but without segments which transversally intersect),

• for all α ∈ {1, . . . , m} and for all i ∈ {1, . . . , n} γα,i has vertices only with multiplicity 1 .

Definition 2.14. Let P be an admissible polygon and Y an element of C̃ with the properties stated
in Remark 2.13. We say that S(Υ) is an ordered path of P induced by {En}.

Remark 2.15. Let P be an admissible polygon with finite number of vertices. If Υ1, Υ2 ∈ C̃ are such
that S(Υ1) and S(Υ2) are two ordered paths of P , then we do not necessarily have that Im(Υ1) ≡
Im(Υ2).

3 The main result

Remark 3.1. In the sequel we identify E ⊂ R2 with its characteristic function χE and with a little
abuse of notation we say that {En} converges to E (in L1(R2)) if χEn → χE in L1(R2).

Let ϕ : R2 × S1 → R be the function defined as:

ϕ(x, v) =
N∏

i=1

(
v · τ⊥i

)2
M∏

j=1

(
v · (x− pj)⊥

)2
, (14)

where for v1, v2 ∈ R2 v1 · v2 denotes the usual scalar product in R2.

Remark 3.2. For each fixed x, ϕ(x, ·) vanishes exactly on vectors parallel to an element of the set
Dx defined in (11).

Let Gε : A → [0, +∞) be the functional defined as:

Gε(E) =
∫

∂E

(
ϕ(x, τ)

ε
+ εκ2(x)

)
dH1(x) . (15)
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For v1, v2 ∈ S1 let C(v1, v2) be the shortest of the two arcs in S1 connecting v1 and v2. Let g :
R2 × S1 × S1 → [0,+∞) be defined as:

g(x, v1, v2) = 2
∫

C(v1,v2)

√
ϕ(x, ξ)dH1(ξ) . (16)

For P ∈ P we define the following functional:

GR(P ) =





∑

p∈V (P )\{p1,...,pM}
g(p, v−(p), v+(p)) if P ∈ R

+∞ otherwise

(17)

where v−(p) and v+(p) denote the tangent vectors respectively on both sides of the point p (considered
in counterclockwise sense).

We denote by G(P ) the lower semicontinuous envelope of GR with respect to the L1(R2)-topology.
We have the following formula for G:

G(P ) := inf
{

lim inf
n→+∞

GR(Pn) : Pn → P in L1(R2)
}

. (18)

Remark 3.3. The set on which the infimum in (18) is performed is not empty. In fact, given P ∈ P,
if for each δ > 0 we consider the polygon P δ given by Lemma 2.10, to such a kind of polygon we can
apply Remark 2.1 in [12], which ensures that there exists a sequence {Rδ

k} ⊂ R converging in L1(R2)
to P δ. Then the thesis follows by means of a diagonal argument.

For Υ = {γ1, . . . , γk} ∈ C we define:

F (Υ) =
k∑

i=1

ni∑

l=1

g(qi
l , v

−(qi
l), v

+(qi
l)) , (19)

where we are assuming that each γi has ni vertices, denoted by qi
1, . . . , q

i
ni

.
For Υ = [Υ1, . . . , Υm] ∈ C̃, with a little abuse of notation we still denote by F the functional

defined as:

F (Υ) :=
m∑

α=1

F (Υα) .

In the sequel we shall need the following lemmata.

Lemma 3.4. Let P ∈ P be a polygon with V (P ) finite and let Υ ∈ C̃ be an ordered path of P induced
by a sequence {En} ⊂ A. Then there exists a sequence of polygons {Rh} ⊂ R such that:

Rh → P and lim
h→+∞

GR(Rh) ≤ F (Υ) . (20)

Proof. Let us denote by {qi}i=1,...,k the vertices of Υ. We may use Lemma 3.4 in [12] (which gives the
desired approximation for P , fixed the set of possible tangent direction of the approximating sets),
applied by choosing such direction to be exactly the tangents to P . Hence we deduce that there exists
an approximating sequence (of P ) {Rh} ⊂ R such that, if we denote by {qh

i }i=1,...,kh
the vertices of

Rh (recall that kh can be grater or equal than k), for each i ∈ {1, . . . , k} there exists li ∈ N (with
k∑

i=1

li = kh) and {qh
1 , . . . , qh

li
} ⊂ V (Rh) such that

lim
h→+∞

qh
j = qi ∀j ∈ {1, . . . , li}
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and
k∑

i=1

li∑

j=1

g(qi, v
+
j,h, v−j,h) ≤ F (Υ) , (21)

where v+
j,h and v−j,h denote the directions of the two segments meeting in qh

j . Using the continuity of

ϕ and recalling that GR(Rh) =
k∑

i=1

li∑

j=1

g(qh
j , v+

j,h, v−j,h), by (21) we argue:

lim
h→+∞

GR(Rh) = lim
h→+∞

k∑

i=1

li∑

j=1

ϕ(qh
j , v+

j,h, v−j,h) =
k∑

i=1

g(qi, v
+
i , v−i ) ≤ F (Υ) ,

which is the thesis.

Lemma 3.5. Let {ρε} ⊂ R be a sequence such that ρε > 0 and ρε = o(
√

ε). For q ∈ R2\{p1, . . . , pM}
consider Bρε(q). For ν1, ν2 ∈ S1 and η ∈

(
0, L(ν1,ν2)

2

)
, let α : [a, b] → Bρε(q) be a curve of class C2

parameterized by the arc length and such that α(a), α(b) ∈ ∂Bρε(q) and α̇ : [a, b] → C(ν1, ν2), with
α̇(a) = ν1 + η, α̇(b) = ν2 − η. (The value α̇(a) has to be thought as lim

t→a+
α̇(t), and the same applies

for α̇(b).) Then the following inequality holds:

∫ b

a

(
1
ε
ϕ(α(s), α̇(s)) + ε|α̈(s)|2

)
ds ≥ g(q, ν1, ν2) + oε(1) + oη(1) . (22)

For the proof of this lemma see the Appendix.
The first theorem we prove is the following Γ-convergence result.

Theorem 3.6 (Γ-convergence). Let G̃ε, G̃ : L1(R2) → [0,+∞] be the functionals given by:

G̃ε(u) =
{

Gε(E) if u = χE with ∂E of class C2

+∞ otherwise, (23)

G̃(u) =
{

G(P ) if u = χP with P ∈ P
+∞ otherwise. (24)

Then {G̃ε} Γ-converges to G̃ with respect to the L1(R2)-topology.

Proof. As already focused in Remark 3.1, we recall that for the sake of simplicity we identify functionals
defined on sets and functionals defined on characteristic functions of sets. We perform this proof (as
well as that of Theorem 3.14) directly taking in account the functionals Gε and G.

We first prove the Γ-liminf inequality. Let P be an admissible polygon and let {En} ⊂ A be a
family of sets converging to P in L1(Rn) and such that lim inf

n→+∞
Gεn(En) < +∞. We want to prove

that
G(P ) ≤ lim inf

n→+∞
Gεn(En) . (25)

Let Pδ be the polygon given by the construction performed in Lemma 2.10 and denote by {Eδ
n}

a sequence of subsets of A such that Eδ
n coincides with En in Sδ, Eδ

n converges to P δ in L1(R2)
(the construction of such a kind of sets can be performed as follows: for each pair qi, qi+1 of points
belonging to the set U defined in the proof of Lemma 2.10, consider for instance an extension of P δ

of the type [qi, hi] ∪ [hi, qi+1], where hi is the suitable point given by the same lemma; then we can
consider a C1-curve converging uniformly to [qi, hi]∪ [hi, qi+1] and smoothly joining the curve En∩Sδ

9



in qi and qi+1; finally we take as extension of Eδ
n in Σδ the union of all these C1-curves). Let Υδ be

an ordered path of P δ induced by {Eδ
n}. By Lemma 3.5 we have:

F (Υδ ∩ Sδ) ≤ Gεn
(En) , (26)

F (Υδ) = F (Υδ ∩ Sδ) + ξδ, with ξδ = oδ(1) (27)

and therefore
F (Υδ) ≤ Gεn

(En) + ξδ . (28)

Let {Rδ
h} ⊂ R be the sequence given by Lemma 3.4 for Υδ. Recalling the definition of G in (18),

we immediately get:
G(P δ) ≤ Gεn

(En) + ξδ. (29)

If we choose a sequence {δn} converging to 0 as n goes to infinity, by construction of P δ we know
that P δn converges to P in L1(R2) and, since by definition G is lower semicontinuous, we argue that
G(P ) ≤ lim inf

n→+∞
G(P δ). Hence, using a diagonal argument and passing to the limit for n going to

infinity in (29), we get the desired inequality (25).

We now prove the Γ-limsup inequality, that means: for each admissible polygon P we want to find
a sequence {En} ⊂ A converging to P in L1(R2) and such that

lim sup
n→+∞

Gεn(En) ≤ G(P ) . (30)

We proceed in two steps: we first prove inequality (30) for regular polygons and then we extend the
result to a general admissible polygon by means of an approximation lemma.

Let R be a regular polygon. Without loss of generality we can assume that ∂R is connected. Let
{q1, . . . , qk} be the elements of V (R) and let us assume that they are ordered running through ∂R in
counterclockwise sense. Recall that by definition of regular polygon, k is finite. For qi ∈ V (R) define
the segment si = [qi, qi+1] and let Li be the length of si. If

vi
1 :=

qi − qi−1

|qi − qi−1| and vi
2 :=

qi+1 − qi

|qi+1 − qi|

are the two unit vectors of the directions which meet at qi, define the curve γi :
[
−Li−1

2 , Li

2

]
→ R2 in

the following way:

γi(t) =

{
qi − t vi

1 t ∈
[
−Li−1

2 , 0
]

qi + t vi
2 t ∈ [

0, Li

2

]
.

(31)

Remark 3.7. It can be immediately checked that γ := γ1 ∗ . . . ∗ γk is a parametrization of ∂P .

Remark 3.8. By construction we have that vi
1 and vi

2 belong to Dqi , that means: ϕ(qi, v
i
1) =

ϕ(qi, v
i
2) = 0.

We construct an approximating sequence {Γn} of ∂P in such a way that γn (parametrization of
Γn) is C2 and in the form:

γn = γ1
n ∗ . . . ∗ γk

n ,

with γi
n converging to γi uniformly. Let En be the domain included by Γn.

Definition 3.9. Let C be a curve parameterized by β : [a, b] → R2. For x1, x2 ∈ C, we say that “x1

precedes x2” (and we write “x1 ≺ x2”) if x1 = β(t1) and x2 = β(t2) with t1 < t2.

10



Definition 3.10. Let λ : R→ S1 be the usual parametrization:

λ(ϑ) = (cos(ϑ), sin(ϑ)) ,

useful to identify S1 with R modulo 2π.
Let C be an S1-valued function. We say that C is S1-increasing if, for every x1, x2 ∈ C with

x1 ≺ x2, it holds: λ−1(x1) < λ−1(x2).

Definition 3.11. For ν1, ν2 ∈ S1 let θ1, θ2 ∈ R modulo 2π be the respective angle. We define
ν1+̇ν2 := (cos(θ1 + θ2), sin(θ1 + θ2)).

In the next proposition we construct the optimal profile γi
n.

Proposition 3.12. Let Γi be the curve parameterized by γi :
[
−Li

2 , Li+1
2

]
→ R2 defined as in (31).

Then, for every positive sequence {εn} converging to 0, there exists a sequence {Γi
n} of curves param-

eterized by γi
n :

[
−Li

2 , Li+1
2

]
→ R2 such that:

1. γi
n ∈ C2

2. γi
n

(−Li

2

)
= γi

(−Li

2

)
and γi

n

(
Li+1

2

)
= γi

(
Li+1

2

)

3. γi
n → γi uniformly

4.
∫

Γi
n

[
1
εn

ϕ(x, τ(x)) + εnκ2(x)
]

dH1(x) ≤ g(qi, vi
1, v

i
2) + oεn(1) .

Proof. (Proposition 3.12) Let {εn} ⊂ R be a positive sequence converging to 0. For n large enough we
can suppose that 2εn belongs to the interval

(
0, min

{
Li

2 , Li+1
2

})
. We divide the interval

[
−Li

2 , Li+1
2

]

in the following five intervals:

• Ii,n
1 =

[−Li

2 ,−εn − ε2
n

]

• Ii,n
2 =

[−εn − ε2
n,−εn

]

• Ii,n
3 = [−εn, εn]

• Ii,n
4 =

[
εn, εn + ε2

n

]

• Ii,n
5 =

[
εn + ε2

n, Li+1
2

]

and we choose a suitable definition of γi
n in each Ii,n

j .
To do this, we consider the problem of finding a solution u : R→ S1 of the following Cauchy problem:





u̇(t) =
√

ϕ(qi, u(t)) J u(t)

u(0) =
vi
1+̇vi

2

2

, (32)

where J is the π/2-rotation matrix defined in Section 2. By the regularity properties of ϕ, classical
results (on ordinary differential equations) ensure that there exists a C1 and unique maximal solution of

(32). Moreover |u(t)| has to be constant, because
d

dt
|u(t)|2 = 2 u(t)·u̇(t) = 2

√
ϕ(qi, u(t)) u(t)·u(t)⊥ =

0 and, since |u(0)| = 1, we immediately get:

u(t) ∈ S1 ∀ t ∈ R . (33)
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If we rewrite equation (32) in the integral form:

u(t) =
vi
1+̇vi

2

2
+

∫ t

0

√
ϕ(qi, u(σ)) u(σ)⊥ dσ , (34)

recalling that we denote by u(σ)⊥ a rotation of π
2 in counterclockwise sense, we get that u is S1-

increasing. We define

βn(t) := qi +
∫ t

0

u
(σ

ε

)
dσ , (35)

which by construction is C2 and parameterized by the arc length.
We define γi

n :
[
−Li

2 , Li+1
2

]
→ R2 in the following form:

γi
n(t) =





vi
1 if t ∈ Ii,n

1

ψ1
n(t) if t ∈ Ii,n

2

βn(t) if t ∈ Ii,n
3

ψ2
n if t ∈ Ii,n

4

vi
2 if t ∈ Ii,n

5 ,

(36)

where ψ1
n(t) : Ii,n

2 → R2 and ψ2
n(t) : Ii,n

4 → R2 are C2 and such that:




ψ̈1
n(−εn − ε2

n) = 0

ψ̇1
n(−εn − ε2

n) = νi
1

ψ̇1
n(−εn) = βn(−εn),





ψ̈2
n(εn + ε2

n) = 0

ψ̇2
n(εn + ε2

n) = νi
1

ψ̇2
n(εn) = βn(εn)

(37)

and 


|ψ̇2

n(t)| < 2|β̇n(−εn)− vi
1| ∀ t ∈ Ii,n

2

|ψ̇2
n(t)| < 2|β̇n(−εn)− vi

1| ∀ t ∈ Ii,n
2 .

(38)

By construction γi
n satisfies properties 1–3. Let us now check property 4. We have:

∫

Γi
n

[
1
εn

ϕ(x, τ(x)) + εnκ2(x)
]

dH1(x)

=
∫

Γi
n

[
1
εn

ϕ(qi, τ(x)) + εnκ2(x)
]

dH1(x) +
∫

Γi
n

1
εn
∇xϕ(qi, τ(x)) · (ζx − qi) dH1(x) , (39)

where ζx ∈ (γi
n(x), qi). Let us denote by G1

n and G2
n respectively the first and the second term in (39).

We recall that by definition of ϕ we know that there exists C1 > 0 such that |∇xϕ(qi, τ(x))| ≤ C1 for
every x ∈ Γi

n. Moreover by the properties of βn, ψ1
n and ψ2

n we have: |ζx − qi| ≤ C2εn, for suitable
C2 > 0. Finally, denoted by Γ̃i

n the support of ψ1
n ∗ βn ∗ ψ2

n, then we get:

|G2
n| =

∣∣∣∣∣
∫

Γi
n

1
εn
∇xϕ(qi, τ(x)) · (ζx − qi) dH1(x)

∣∣∣∣∣

≤
∫

Γ̃i
n

1
εn
|∇xϕ(qi, τ(x))| |ζx − qi| dH1(x) ≤ C1C2εn . (40)
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Let us estimate the quantity G1
n:

G1
n =

∫ Li+1
2

−Li
2

[
1
εn

ϕ
(
qi, γ̇

i
n(t)

)
+ εn

∣∣γ̈i
n(t)

∣∣
]

dt

=
∫

Ii,n
1 ∪Ii,n

5

[
1
εn

ϕ
(
qi, γ̇

i
n(t)

)
+ εn

∣∣γ̈i
n(t)

∣∣
]

dt +
∫

Ii,n
2 ∪Ii,n

4

[
1
εn

ϕ
(
qi, γ̇

i
n(t)

)
+ εn

∣∣γ̈i
n(t)

∣∣
]

dt

+
∫

Ii,n
3

[
1
εn

ϕ
(
qi, γ̇

i
n(t)

)
+ εn

∣∣γ̈i
n(t)

∣∣
]

dt . (41)

Recalling Remark 3.8 and the definition of γi
n, we have that the first term in the latter sum of equation

(41) is trivially equal to 0 and we can rewrite:

G1
n =

∫ −εn

−εn−ε2
n

[
1
εn

ϕ
(
qi, ψ̇

1
n(t)

)
+ εn

∣∣∣ψ̈1
n(t)

∣∣∣
]

dt +
∫ εn+ε2

n

εn

[
1
εn

ϕ
(
qi, ψ̇

2
n(t)

)
+ εn

∣∣∣ψ̈2
n(t)

∣∣∣
]

dt

+
∫ εn

−εn

[
1
εn

ϕ
(
qi, β̇n(t)

)
+ εn

∣∣∣β̈n(t)
∣∣∣
]

dt . (42)

Moreover, by property (38) of ψ1
n and ψ2

n and recalling the differential property satisfied by the
derivative of βn, for suitable M > 0 we get:

|G1
n| ≤ Mεn + µε3

n + g(qi, u(−1), u(1)) ≤ o(εn) + g(qi, v
i
1, v

i
2) , (43)

where we have set µ := |u(1)−vi
1|2+ |u(−1)−vi

2|2. By (39), (40) and (43) we finally get the thesis.

Now we are in position to prove inequality (30) for a regular polygon. In fact, as already said
above, we take En as the interior of the curve Γn parameterized by γn := γ1

n ∗ . . . ∗ γk
n and we get:

Gεn(En) =
k∑

i=1

∫

Γi
n

[
1
εn

ϕ(x, τ(x)) + εnκ2(x)
]

dH1(x) ≤
k∑

i=1

g(qi, vi
1, v

i
2) + o(εn)

= GR(P ) + o(εn) ≡ G(P ) + o(εn) (44)

and, passing to the lim sup for n tending to +∞, we get the thesis.
Now we consider an admissible polygon P such that G(P ) < +∞. To prove inequality (30) for

this kind of polygon we need the following lemma.

Lemma 3.13. For each P ∈ P such that G(P ) < +∞ there exists a sequence {Rk} ⊂ R converging
to P in L1(R2) and such that

lim
k→+∞

GR(Rk) = G(P ) . (45)

To prove this lemma we can take, for each δ > 0, the polygon P δ given by Lemma 2.10. To this
kind of polygon we can apply Remark 2.2 in [12], which ensures (using the continuity of ϕ) that there
exists a sequence {Rδ

k} ⊂ R converging to P δ in L1(R2) and such that (45) holds. Then by means of
a diagonal argument we recover an approximating sequence for P . Moreover, since P δ has no vertices
in {p1, . . . , pM}, we can assume the same property for the approximating sequence Rk, even thought
this is not strictly necessary, and the proof could work the same (with some minor modification) also
without this requirement.

We can now conclude the proof of Theorem 3.6. Let {Rk} be the sequence given by Lemma 3.13.
Since Rk is regular, we have already proved that there exists a sequence {Ek

n} ⊂ A such that:

lim sup
n→+∞

Gεn(Ek
n) ≤ GR(Rk) . (46)

Hence by (45) and (46), we can choose a suitable subsequence of {Ek
n} converging to P in L1(R2) and

with the desired property to fulfill (30).
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In the following theorem we give a compactness result under the additional assumption of equi-
boundedness of perimeters.

Theorem 3.14 (Compactness). Let {En} ⊂ A be such that

sup
n
H1(En) = M1 < +∞ , (47)

sup
n

Gεn(En) = M2 < +∞ (48)

and
there exists a bounded K ⊂ R2 such that En ⊂ K for all n . (49)

Then there exist a subsequence {Enk
} and P ∈ P such that: Enk

→ P in L1(R2) and G(P ) < +∞.

Proof. Let K be the number (possibly equal to +∞) of connected components of ∂En (passing to a
subsequence we can suppose that K is independent of n). We denote by Γi

n each connected component
of ∂En.

Remark 3.15. We assume that the boundary of ∂En is oriented in such a way that the outer
connected component is oriented in counterclockwise sense.

Let {γi
n} ⊂ C2([0, 1];R2) be a sequence of parameterizations of Γi

n. We suppose that these curves
are parameterized proportionally to their arc length, which means there exists {ci

n} ⊂ R such that
|γ̇n(t)| = ci

n ∀t ∈ [0, 1]. By assumption (47) we immediately get that {ci
n} is bounded and hence for

each i we have:

sup
n

∫ 1

0

|γ̇i
n(t)|2dt < +∞ . (50)

On the other hand we also have:

sup
n

∫ 1

0

|γi
n(t)|2dt < +∞ . (51)

This follows by the following inequality:

|γi
n(t)| ≤ |γi

n(0)|+
∫ t

0

|γ̇i
n(σ)|dσ ≤ |γi

n(0)|+ M1 (52)

and by hypotheses (49) we may assume: supn |γi
n(0)| < +∞. By (50) and (51) we conclude that {γi

n} is
bounded in W 1,2([0, 1];R2). Since the immersion of W 1,2([0, 1];R2) in C0([0, 1];R2) is compact, we im-
mediately deduce that there exists a subsequence {γi

nk
} uniformly converging to a γi ∈ C0([0, 1];R2).

We denote by Γi the curve parameterized by γi.
If Γ is a curve parameterized by γ ∈ C2([0, 1];R2), for ξ = (ξ1, ξ2) ∈ R2\Γ we denote by σ(γ, ξ)

the winding number of γ around ξ defined as:

σ(γ, ξ) :=
∫ 1

0

(
− γ2(t)− ξ2

(γ1(t)− ξ1)2 + (γ2(t)− ξ2)2
γ̇1(t) +

γ1(t)− ξ1

(γ1(t)− ξ1)2 + (γ2(t)− ξ2)2
γ̇2(t)

)
dt .

Without loss of generality we may assume that σ(γi
n, ξ) ∈ {−1, 0, 1} for all ξ ∈ R2\Γi

n, n ∈ N, i ∈
{1, . . . , K}. Recalling that σ(·, ξ) is continuous with respect to the uniform convergence, we can
extend the definition of σ to γi, in such a way that: σ(γi, ξ) = lim

n→+∞
σ(γi

n, ξ). In particular, since

the winding number is integer-valued, there exists n ∈ N such that σ(γi, ξ) = σ(γi
n, ξ) for every n > n

and for every ξ ∈ R2\ ∪K
i=1 Γi. Now we define:

P :=

{
ξ ∈ R2\

K⋃

i=1

Γi :
K∑

i=1

σ(γi, ξ) = 1

}
.
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Remark 3.16. The function χ(ξ) :=
∑K

i=1 σ(γi, ξ) takes only the values 0 or 1. If K is finite, this
immediately follows by definition of σ and Remark 3.15. If instead K is equal to +∞, then there
exists a focal point p such that di := sup

t∈[0,1]

|γi(t)− p| goes to 0 as i tends to +∞. Therefore, if we set

l := |ξ− p|, we have that there exists i ∈ N such that di < l for every i > i and hence σ(γi, ξ) is equal
to 0 for every i > i.

Remark 3.17. By construction we have that: ∂P =
K⋃

i=1

Γi.

To conclude the proof, we need to show that P is an admissible polygon. Let Γi
nk

be the curve
parameterized by γi

nk
. Using (48), we get:

∫

Γi
nk

ϕ(x, τ(x))dH1(x) ≤ εnM2 ∀εn > 0 (53)

and hence, for εnk
going to 0, Γi

nk
converges pointwise to a curve such that its tangent vector τ(x)

belongs to Dx for a.e. x ∈ Γi.
We now show that the cardinality of V (P ) is at most countable and G is finite on P . For δ > 0,

consider the set Sδ defined in (13). Recalling the definition of ϕ given above, for every δ > 0 there
exists cδ > 0 (with cδ = oδ(1)) such that g(p, v−(p), v+(p) ≥ cδ for all p ∈ Sδ. Therefore we argue
that

⋃K
i=1 Γi must have a finite number of vertices in Sδ. For δ going to 0, by a diagonal argument

we get that Enk
tends to an admissible polygon P with (possibly) countable vertices near the focal

points.
Note that by (48) and (22) and the definition of G, it immediately follows that G is finite on P .

3.1 The case of a bounded domain

Until now we have considered our functionals as defined on subsets of the whole R2. For applications
to image processing it is important to consider subsets of a fixed bounded domain. We briefly see how
results in Theorem 3.14 and 3.6 can fit this case with some little modification.

Let Ω ⊂ R2 be a bounded star-shaped open set with Lipschitz boundary and set:

AΩ := {E ⊂ Ω : ∂E ∩ Ω is C2}
RΩ := {P ⊂ Ω : ∃P̃ ∈ R such that P̃ ∩ Ω = P}
PΩ := {P ⊂ Ω : ∃P̃ ∈ P such that P̃ ∩ Ω = P} .

For the sake of simplicity we can suppose that Ω is star-shaped with respect to the origin.
Denote by V (P ) the set of the vertices of ∂P ∩ Ω. Remark that, if ∂P ∩ ∂Ω is not empty, we do

not consider as elements of V (P ) the end-points of each connected component of ∂P ∩ Ω.
We call efficient boundary of P the following set: ∂̃P := ∂P\∂Ω and we denote by Ṽ (P ) the set of

the vertices of ∂̃P . In general Ṽ (P ) is greater or equal than V (P ). In Figure 3 we picture an example
describing the difference between V (P ) and Ṽ (P ).

Analogously to the definitions in (15), (17) and (18), we denote by

Gε : AΩ → [0, +∞], GR : PΩ → [0, +∞] and G : PΩ → [0, +∞]

15



q

P
1

P
2

Figure 3: P1 is such that V (P1) = Ṽ (P1), while V (P2) is strictly contained in Ṽ (P2); in fact the point
q belongs to Ṽ (P )\V (P ).

the following functionals:

Gε(E) =
∫

∂E∩Ω

(
ϕ(x, τ)

ε
+ εκ2(x)

)
dH1(x)

GRΩ(P ) =





∑

p∈V (P )\{p1,...,pM}
g(p, v−(p), v+(p)) if P ∈ RΩ

+∞ otherwise

G(P ) = inf
{

lim inf
n→+∞

GRΩ(Pn) : Pn → P in L1(Ω)
}

,

where g is defined as in (16).
For the family {Gε} it can be proved a result of compactness with respect to the L1(Ω)-topology

and the proof essentially follows the same strategy in that of Theorem 3.14.
Moreover the family {Gε} Γ-converges to G with respect to the L1(Ω)-topology. We do not include

the detailed proof in this case, just pointing out the main differences with the case treated in Theorem
3.6. First of all, in the case of a bounded domain, the boundaries of the approximating sets and of the
limit sets are union of not necessarily closed curves. However the several definitions in the lemmata
used to prove the main results can be rephrased in this framework. Another difference is that the
functional G does not weigh the vertices on the boundary of Ω. In this case for the Γ-liminf inequality
we can reason as in the proof of Theorem 3.6 and we note that the lower estimate improves when
we remove the terms (in the Γ-limit) related to the vertices on the boundary. To recover the optimal
sequence for the Γ-limsup inequality we reason as follows. If P is a polygon such that P ⊂ Ω (and
hence ∂P ∩ ∂Ω = ∅) or if ∂P ∩ ∂Ω 6= ∅ and V (P ) ≡ Ṽ (P ), then we consider the sequence {Eε} given
by Theorem 3.6 (for the case when the ambient space is R2) and we can take as optimal sequence
the family {Eε ∩ Ω}. If instead V (P ) is strictly contained in Ṽ (P ), then we consider the dilation
T η : R2 → R2, defined for η > 0 as: T η(x) = η x. For η small enough we define P η := T η(P ) and
we choose η in such a way that V (P η) ≡ Ṽ (P η). In general P η could not belong to PΩ: this happen
if there are segments of the boundary of P pointing to a focal point. In this case however, for every
εη > 0, we can take a polygon P̃ η ∈ PΩ such that ||χP̃ η − χP η ||L1(Ω) < εη. Now, since P̃ η belongs
to PΩ, we can extend it to a polygon P

η
belonging to P. Let {Eη

ε } be the optimal sequence given
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by Theorem 3.6 for P
η

and let us consider the family of sets {Eη
ε ∩ Ω}. By a diagonal argument we

recover an optimal approximating sequence for P in such a way that G does not weigh the vertices of
P lying on the boundary of Ω.

Remark 3.18. If Ω is a bounded domain and all the focal points belong to R2\Ω, we can slightly
modify the definition of G considering the following functional:

F (P ) := inf
{

lim inf
n→+∞

GR(Pn) : Pn → P in L1(Ω), sup
n
H1(∂Pn) < +∞

}
, (54)

which in this case is lower semicontinuous with respect to the L1(Ω)-topology. We have that the family
{Gε} Γ-converges to F with respect to the L1(Ω)-topology with uniform bounds of the perimeters,
that means:

• for every P ∈ P and every sequence {En} ⊂ A (with supnH1(∂En) < +∞) converging to P
⇒ G(P ) ≤ lim inf

n→+∞
Gεn

(En)

• for every P ∈ P there exists a sequence {En} ⊂ A (with supnH1(∂En) < +∞) converging to
P such that G(P ) ≥ lim sup

n→+∞
Gεn(En).

By Theorem 2.4 and Proposition 2.5 we deduce that, up to a subsequence, the solutions of problem

min
{∫

∂E

(
ϕ(x, τ(x))

ε
+ εκ2(x)

)
dH1(x) +

∫

R2
|χE − χA|2dx

}

converge to solutions of problem

min
P∈P

{
F (P ) +

∫

R2
|χP − χA|2dx

}
.

4 Appendix

4.1 Proof of Lemma 2.10

We perform the construction for a single Bδ(pj), which be iterated for each j = 1, . . . ,M (we can
suppose that ∂Bδ(pi) ∩ ∂Bδ(pj) for i 6= j). Set U := ∂Bδ(pj) ∩ ∂P . By assumption on P we have
that the number of points of U is finite and we set U := {q1, . . . , ql}. Moreover, without loss of
generality, we can assume that V (P ) ∩ ∂Bδ(pj) = ∅ and then l is even, because ∂P is closed. Let
us consider the points {p1, . . . , pl} ordered in the natural way induced by the identification of Bδ(pj)
with R modulo 2π. With a little abuse of notation we denote this ordering by the usual symbol “<”
and for points y1, y2 ∈ Bδ(pj) with y1 < y2 we define Cδ(y1, y2) as the closed arc connecting y1 and y2

in Bδ(pj). For x ∈ ∂Bδ(pj) let ν(x) be the outer normal unit vector and define ψ(x) = τ(x) · ν(x). By
the geometrical properties stated before for P , it is easy to see that ψ(qi) · ψ(qi+1) < 0. Let us now
modify P in Bδ(pj). For each qi, with i odd, consider the segments Li := [qi, pj ] and Li+1 := [qi+1, pj ]
and distinguish the two following cases.

Case 1 : there exists at least a vector v ∈ {τ1, . . . , τN} such that δv+pj /∈ Cδ(q1, q2)∪Cδ(−q2,−q1).
In this case let e1 and e2 be the two orthogonal unit vectors defined as:

e2 :=
q1 + q2 − 2pj

|q1 + q2 − 2pj | , e1 := −e⊥2 .

Now if
v · e2

v · e1
< 0 , (55)
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e1

q
i+1

q
i

and

the extention of the polygon

e 2

v

hi

L Li i+1

Figure 4: in this figure is shown a possible extension of P in Bδ(pj) when there exists at least a vector
v ∈ {τ1, . . . , τN} such that δv + pj /∈ Cδ(q1, q2) ∪ Cδ(−q2,−q1).

then let ri be the straight line passing thought qi and parallel to v and set hi := Li+1 ∩ ri (condition
(55) ensures that such hi exists). The required extension of P in Bδ(pj) will be the union of the two
segments [qi, hi] and [hi, qi+1] (see Figure 4).

Moreover, if ψ(qi) is negative, we will take a parametrization of [qi, hi] ∪ [hi, qi+1] in such a way
to go from qi to qi+1, while in the case ψ(qi) > 0 we consider the path going from qi+1 to qi.
If instead

v · e2

v · e1
> 0 , (56)

we can repeat the previous steps but taking

hi = Li ∩ ri+1 ,

where ri+1 is the straight line passing though qi+1 and parallel to v.

Case 2 : all the fixed directions τ1, . . . , τN belong to Cδ(qi, qi+1) ∪ Cδ(−qi+1,−qi). Let v, w ∈
{±τ1, . . . ,±τN} such that:

v · w > 0 and
v · e2

v · e1
<

w · e2

w · e1
.

For h1
i ∈ [qi, pj ] and h2

i ∈ [qi+1, pj ] let Li be the straight line passing through h1
i and parallel to w

and Li+1 be the straight line passing through h2
i and parallel to v. We chose h1

i and h2
i in such a way

that h3
i = Li ∩Li+1 belongs to Bδ(pj). The required extension of P in Bδ(pj) in this case is obtained

taking the set [qi, h
1
i ]∪ [h1

i , h
3
i ]∪ [h3

i , h
2
i ]∪ [h2

i , qi+1], paying attention also in this case to the versus of
the parametrization according to the sign of ψ(qi) (see Figure 5).

4.2 Proof of Lemma 3.5

By the regularity of ϕ we can write

∫ b

a

(
ϕ(α(s), α̇(s))

ε
+ ε|α̈(s)|2

)
ds =

∫ b

a

(
ϕ(q, α̇(s))

ε
+ ε|α̈(s)|2

)
ds +

∫ b

a

∇xϕ(ζ, α̇(s)) · (α(s)− q)
ε

ds

(57)
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Figure 5: in this figure is shown a possible extension of P in Bδ(pj) when all the fixed directions
τ1, . . . , τN belong to Cδ(qi, qi+1) ∪ Cδ(−qi+1,−qi).

for suitable ζ ∈ (α(s), q). For the first term in the sum in (57) we have:

∫ b

a

(
ϕ(q, α̇(s))

ε
+ ε|α̈(s)|2

)
ds ≥ 2

∫ b

a

√
ϕ(q, β(s)|β̇(s)|ds (58)

≥ 2
∫

C(ν1+η,ν2−η)

√
ϕ(q, ξ)dH1(ξ)

≥ 2
∫

C(ν1,ν2)

√
ϕ(q, ξ)dH1(ξ) + oη(1) = g(q, ν1, ν2) + oη(1)

where we have set β(s) := α̇(s). For the second term in the sum in (57) we have:

∫ b

a

∇xϕ(ζ, α̇(s)) · (α(s)− q)
ε

ds = oε(1) . (59)

In fact by the definition of ϕ in (14) it follows that there exists c1, c2 > 0 such that:

|∇xϕ(x, τ)| ≤ c1ρε + c2ρ
2
ε ∀x ∈ Bρε , ∀τ ∈ S1 . (60)

By (60) and (47) we get:
∣∣∣∣∣
∫ b

a

∇xϕ(ζ, α̇(s)) · (α(s)− q)
ε

ds

∣∣∣∣∣ ≤
1
ε

∫ b

a

|∇xϕ(ζ, α̇(s))| · |(α(s)− q)| ds ≤ 2M1
ρ2

ε

ε
(c1 + c2ρε) , (61)

which is the thesis, choosing ρε = o(
√

ε).
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