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Abstract. In this paper we investigate the regularity theory of codimension-1 integer rec-
tifiable currents that (almost)-minimize parametric elliptic functionals. While in the non-
parametric case it follows by De Giorgi-Nash Theorem that C1,1 regularity of the integrand
is enough to prove C1,α regularity of minimizers, the present regularity theory for parametric
functionals assume the integrand to be at least of class C2. In this paper we fill this gap by
proving that C1,1 regularity is enough to show that flat almost-minimizing currents are C1,α.
As a corollary, we also show that the singular set has codimension greater than 2.

Besides the result “per se”, of particular interest we believe to be the approach used here:
instead of showing that the standard excess function decays geometrically around every point,
we construct a new excess with respect to graphs minimizing the non-parametric functional and
we prove that if this excess is sufficiently small at some radius R, then it is identically zero at
scale R/2. This implies that our current coincides with a minimizing graph there, hence it is of
class C1,α.

1. Introduction

The regularity theory of (almost)-minimizing currents is a classical topic in geometric measure
theory that has always received a lot of attention (see for instance [8, 16, 4, 2, 5, 19, 7, 18, 6, 10]
and the references therein). The aim of this paper is to focus on the case of codimension-1
integer rectifiable currents that almost minimize parametric elliptic functionals.

The starting point of our investigation is the following observation: let us consider a n-

dimensional rectifiable current T =
−→
T ‖T‖ in Rn+1 that minimizes a variational integral F of

the form

F(T ) :=

∫
F
(−→
T
)
d‖T‖. (1.1)

Assuming that F is elliptic and of class C2, it is well-known that if T is sufficiently flat inside
a ball then T is a C1,α hypersurface inside a smaller ball (see for instance [7]). However, if we
assume a priori that T is the graph of Lipschitz some function u, then the functional F takes
the form ∫

F (∇u) dx

for some (locally) uniformly convex function F : Rn → R, and by De Giorgi-Nash Theorem it is
enough to assume that F is of class C1,1 to obtain that u ∈ C1,α.

The gap between these two results comes from the fact that, when showing regularity of
currents, the strategy of the proof goes as follow: exploiting the fact that T is sufficiently flat
inside a ball, one first shows that a large part of T can be covered by a Lipschitz graph, and then
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one proves that this Lipschitz graph almost solves the linearized version of the Euler-Lagrange
equation for T .

To explain this better, let us think that T is already the graph of a function u. Then, by
minimality, u solves the Euler-Lagrange equation

Fpipj (∇u)∂iju = 0,

and since u is small in L∞ one expects that ∇u must also be small in a large fraction of points.
Hence Fpipj (∇u) ≈ Fpipj (0) in a lot of points, and one would like to say that there is a smooth
function v, very close to u, that solves the linear equation

Fpipj (0)∂ijv = 0.

However, for this last step it is crucial the second derivatives of F to be at least continuous,
which explains the original assumption F ∈ C2.

It is worth pointing out that this C2 assumption also appear in several PDE results where one
wants to find a “good” limiting equation and use it to get regularity for the original function u
(see for instance [1, 3, 17, 11]). To our knowledge, the paper [12] is the only one in this setting
where the C2 assumption is weakened to C1,1, but the strategy there crucially uses the fact
that one is working with graphs and, in addition, it heavily depends on some specific structural
properties of the integrand.

In this paper we finally fill the gap between the parametric and non-parametric setting,
proving that C1,1 regularity of F is enough to obtain regularity results for integral currents.
Actually, as we shall see, it is enough to assume that F is C1,1 and elliptic only at directions
that are close to the “vertical one”. This simple observation makes our result flexible enough to
be used in situations when ellipticity and regularity of F are available only in some directions.
Also, in this respect, our result can be seen as the natural generalization to currents of Savin’s
regularity result for flat solutions to fully non-linear equations [17], under minimal assumptions
on F .

We shall also see how a minor variant of our argument provides the same regularity result
when the currents are only almost-minimizing, and as a corollary we deduce that if F is C1,1

and elliptic in every direction then almost-minimizing currents are regular hypersurfaces outside
a singular set of codimension 2 + ν, for some universal ν > 0.

The paper is structured as follows: in the next section we introduce the notation needed to
state our results, and show how our main Theorems 2.1-2.2 implies the estimate on the size of
the singular set. Then in Section 3 we collect some preliminary results that are used in Section
4 to prove Theorem 2.1. Finally, in Section 5 we show how our approach can be extended to
almost-minimizing currents.

Acknowledgments. AF has been partially supported by NSF Grant DMS-1262411 and NSF
Grant DMS-1361122.

2. Notation and statement of the results

For the basic definition and properties of integral currents, we refer to the seminal paper [15]
and the book [13, Sections 4.1.1-4.1.9, 4.1.24-4.1.28, 4.1.30].
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We set the following list of notation:

- points in Rn+1 will be denoted by z = (x, y), with x ∈ Rn and y ∈ R.
- e1, . . . , en, en+1 denote the canonical basis of Rn+1, and dx1, . . . , dxn, dy the dual basis.
- Λn(Rn+1) is the space of n-vectors in Rn+1, Λ∗n(Rn+1) the space of n-covectors in Rn+1,

and we set

e0 := e1 ∧ . . . ∧ en ∈ Λn(Rn+1), dxn := dx1 ∧ . . . ∧ dxn,

êi := en+1 ∧ e1 ∧ . . . ∧ ei−1 ∧ ei+1 ∧ . . . ∧ en, ∀ i ∈ {1, . . . , n}.
- CR denotes the vertical cylinder around the origin of radius R, that is

CR := BR × R, BR = BR(0) ⊂ Rn.

- p : Rn+1 → Rn denotes the canonical projection.
- Given a function h : Rn → R, we denote by Th the n-current associated to its graph,

that is

〈Th, ψ〉 :=

∫
Rn
〈ψ(H(x)),∧n∇H(x)〉 dx, ∀ψ ∈ C∞c

(
Rn+1; Λ∗n(Rn+1)

)
,

where

H(x) := (x, h(x)) ∈ Rn+1, ∧n∇H(x) :=
∂H

∂x1
(x) ∧ . . . ∧ ∂H

∂xn
(x) ∈ Λn(Rn+1).

Notice that

∧n∇H(x) = e0 +
∂h

∂xi
(x) êi +O

(
|∇h(x)|2

)
. (2.1)

- Given a Borel set A ⊂ Rn, 〚A〛 denotes the n-current in Rn obtained by integration over
A, that is

〈〚A〛, φ dxn〉 :=

∫
A
φ(x) dx ∀φ ∈ C∞c (Rn).

We consider an integrand F : Λn(Rn+1) → R, of class C1 outside the origin, satisfying the
following properties: there are positive constants A0, %0, such that1

F(λξ) = λF(ξ) ∀λ ≥ 0, ξ ∈ Λn(Rn+1); (2.2)

F(ξ) ≥ 1 ∀ ξ ∈ Λn(Rn+1), |ξ| = 1; (2.3)

F(η)− 〈dF(ξ),η〉 ≥ 0 ∀ ξ,η ∈ Λn(Rn+1), |ξ| = |η| = 1; (2.4)

F(η)− 〈dF(ξ),η〉 ≥ 1

2
|ξ − η|2

∀ ξ,η ∈ Λn(Rn+1), |ξ| = |η| = 1, |ξ − e0| ≤ %0; (2.5)

1Notice that, by differentiating the homogeneity condition (2.2) with respect to λ and setting λ = 1, we get

F(ξ) = 〈dF(ξ), ξ〉 ∀ ξ ∈ Λn(Rn+1).

Hence (2.4) corresponds to the convexity of F , while (2.5) is a uniform convexity assumption for F at n-vectors
ξ sufficiently close to e0. Also, (2.7) asserts that F is C1,1 only at directions sufficiently close to e0.
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sup
|ξ|=1

(
F(ξ) + |dF(ξ)|

)
≤ A0; (2.6)

F(η)− 〈dF(ξ),η〉 ≤ A0|ξ − η|2

∀ ξ,η ∈ Λn(Rn+1), |ξ| = |η| = 1, |ξ − e0| ≤ %0. (2.7)

Given a function F as above, we can define a functional on n-dimensional rectifiable currents
F as in (1.1). Notice that when F(ξ) = |ξ| the functional F(T ) coincides with the mass of the
current M(T ).

In the whole paper we shall use the notation a . b whenever a ≤ C b for some constant C
depending only on F and the dimension (such a constant will be called universal).

We say that a rectifiable current T is F-minimal inside an open set O ⊂ Rn+1 if

F(T ) ≤ F(T +X)

for all rectifiable n-currents X with ∂X = ∅ and supp(X) ⊂ O.
To state our main result we shall introduce a notion of excess with respect to graphs. More

precisely, given r > 0 and a C1 function u : Br → R, we define

E(T, r, u) :=
1

rn

∫
Cr

∣∣−→T −−→U ∣∣2 d‖T‖,
where

−→
U (z) :=

∧n∇U(p(z))

| ∧n ∇U(p(z))|
for z ∈ Cr, U(x) :=

(
x, u(x)

)
. (2.8)

Theorem 2.1. Let F : Λn(Rn+1) → R satisfy (2.2)-(2.7), and let T to be a n-dimensional
integer rectifiable current in CR such that:

(H1) 0 ∈ supp(T ), supp(T ) ⊂ CR is compact, supp(∂T ) ⊂ ∂CR;
(H2) T is F-minimal in CR;
(H3) p#

(
T bCR

)
= 〚BR〛.

Then there exist δ > 0 and a function u : BR/2 → R of class C1,δ such that if

E(T,R, 0) ≤ ε0
then

E(T,R/2, u) = 0,

that is, T coincides inside CR/2 with the n-current associated to the graph of u.

In order to estimate the singular sets of minimizing currents, it will actually be useful to
extend the theorem above to almost-minimizing currents. Of course we could have proved The-
orem 2.1 above directly in the context of almost-minimizing currents. However, as we already
mentioned in the abstract, we believe that the proof of Theorem 2.1 has its own interest, and
this is why we have decided to present our results in this way.

Given a non-decreasing function ω : R+ → R+ with ω(0+) = 0, a rectifiable current T is
(F , ω)-minimal inside an open set O ⊂ Rn+1 if

F(T ) ≤ F(T +X) + ω(r)M(X)
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for all rectifiable n-currents X with ∂X = ∅ such that supp(X) ⊂ O and diam(supp(X)) ≤ r.
The following result extends our main Theorem 2.1 to the case of almost-minimizing currents:

Theorem 2.2. Let F : Λn(Rn+1) → R satisfy (2.2)-(2.7), and let T to be a n-dimensional
integer rectifiable current in CR such that:

(H1) 0 ∈ supp(T ), supp(T ) ⊂ CR is compact, supp(∂T ) ⊂ ∂CR;
(H2) T is (F , ω)-minimal in CR;
(H3) p#

(
T bCR

)
= 〚BR〛.

Also, set Ω(R) :=
∫ R
0

√
ω(r)

r dr and assume that Ω(1) <∞.
There exist α > 0, r ∈ (0, 1/8), and ε0 = ε0(r) > 0 such that, if

R+ E(T,R, 0) ≤ ε0,
then T coincides inside CR/2 with the n-current associated to the graph of a C1 function f :
BR/2 → R. In addition ‖f‖C1(BR/2)

→ 0 as ε0 → 0.

Remark 2.3. The modulus of continuity of ∇f in the above theorem depends on ω via (5.1).
In particular, if ω decays geometrically (that is, ω(R) . Rβ for some β > 0) then ∇f is Hölder
continuous in BR/2.

Remark 2.4. Theorem 2.2 applies also to integrands depending on the variable z ∈ Rn+1, that
is F = F(z, ξ). Indeed, assuming

sup
|ξ|=1

‖F(z, ξ)−F(z′, ξ)‖ ≤ ω̂(|z − z′|) ∀ z, z′ ∈ Rn+1,

any (F , ω)-minimal current T is (F0, ω+C ω̂)-minimal for F0(ξ) := F(0, ξ) and some universal

constant C > 1, hence our main theorem applies provided
∫ 1
0

√
ω̂(r)

r dr <∞.

As mentioned before, Theorem 2.2 allows us to get a bound for the singular sets of minimizing
currents provided the C1,1 and uniformly convexity assumptions on F are true at every point.
Notice that this corresponds to take %0 = 2 in (2.5) and (2.7), as the inequality |ξ − e0| ≤ 2 is
always satisfied for |ξ| = 1.

To state the corollary we need to introduce the singular set: we first define the unoriented
spherical excess

E (T, z, r) := inf
|ξ|=1

1

rn

∫
Br(z)

∣∣−→T − ξ∣∣2 d‖T‖,
where Br(z) ⊂ Rn+1 denotes the ball centered at z ∈ Rn+1 of radius r.

Although our ε-regularity Theorem 2.1 is stated using a cylindrical excess E instead of E ,
it is a classical fact that the result is still true with E in place of E (maybe, up to reduce the
constant ε0). So we assume that ε0 is still a regularity scale for E and we define

Sing(T ) :=
{
z ∈ supp(T ) : lim inf

r→0+
E (T, z, r) ≥ ε0

}
.

The next result gives a bound on the size of the singular set.

Corollary 2.5. Let F : Λn(Rn+1) → R satisfy (2.2)-(2.7) with %0 = 2, and let T to be a
n-dimensional multiplicity-1 rectifiable current rectifiable current in CR such that:

- supp(T ) ⊂ CR is compact, supp(∂T ) ⊂ ∂CR;
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- T is (F , ω)-minimal in CR.

Set Ω(R) :=
∫ R
0

√
ω(r)

r dr and assume that Ω(1) < ∞. Then Sing(T ) ∩ CR/2 is relatively closed

inside supp(T ), (supp(T ) \ Sing(T )) ∩ CR/2 is a C1 hypersurface, and

H n−2−ν(Sing(T ) ∩ CR/2
)

= 0

for some universal ν > 0.

Proof. As we shall see, this proof is basically a minor modification of the argument that was
first used in [19] and has been recently revised in [9] to estimate the size of the singular set for
C2,1 integrands. Here we briefly discuss why the proof still works in our setting, referring to the
recent paper [9] for more details.

The fact that Sing(T )∩CR/2 is relatively closed inside supp(T ) and that (supp(T ) \ Sing(T ))∩
CR/2 is a C1,δ hypersurface follows by Theorem 2.2 and the definition of Sing(T ), so the only

point is to prove that H n−2−ν(Sing(T ) ∩ CR/2
)

= 0.
We begin by noticing that it is enough to prove that

H n−2(Sing(T ) ∩ CR/2
)

= 0. (2.9)

Indeed, a general argument due to Almgren (and written by White in [21, Lemma 5.1]) asserts
that every time that one has a family of compact sets K satisfying suitable scaling and closure
properties (in our case, this is the class of singular sets of all (F , ω)-minimal currents as F
varies among all the integrands satisfying (2.2)-(2.7) with %0 = 2), then the set of s such that
H s(K) = 0 for all K ∈ K is open. So we are left with proving (2.9).

By a blow-up argument it is enough to prove the result when ω ≡ 0 (equivalently, T minimizes
F). The main idea to prove (2.9) is to define the families

G := {F : (2.2)-(2.7) hold with %0 = 2},

G∗ := {F ∈ G : (2.9) holds for any T as in the statement of the corollary},

and show that G∗ is both open and closed inside G for the local uniform convergence of the in-
tegrands F . Indeed, noticing that the isotropic integrand F(ξ) = |ξ| (corresponding to the area
functional) belongs to G∗ [14], it follows that G∗ is nonempty and so this openness-closedness
property combined with the connectedness of G (notice that G is convex) would imply that
G∗ = G , concluding the proof. Hence we are left with proving that G∗ is both open and closed
inside G .

As shown in the proof of [9, Proposition 1.7], the fact that G∗ is open is an easy consequence
of the upper-semicontinuity of singular sets, which in our setting follows from the ε-regularity
Theorem 2.1.

Concerning the closedness, the main point is to prove that the validity of (2.9) is equiva-
lent to the fact that the second fundamental form IIT of the hypersurfaces corresponding to
supp(T ) \ Sing(T ) belongs to L2 in the interior of CR. More precisely, one wants to show the
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following:2

Claim: (2.9) is equivalent to∫
CR/2∩(supp(T )\Sing(T ))

∣∣IIT ∣∣2dH n ≤ C (2.10)

where C > 0 is a universal constant.

Indeed, assuming the validity of the claim, one argues as follows (see the proof of [9, Propo-
sition 1.8] for more details): if Fk is a sequence of integrands in G∗ converging to F , given T
minimal for F one can approximate it with a sequence of currents Tk that are almost-minimal
for Fk. Since Fk ∈ G∗ it follows that H n−2(Sing(Tk)∩ CR/2

)
= 0 and, thanks to the claim, one

gets ∫
CR/2∩(supp(Tk)\Sing(Tk))

∣∣IITk ∣∣2dH n ≤ C.

Hence, by the lower semicontinuity of the L2 norm of the second fundamental form3∫
CR/2∩(supp(T )\Sing(T ))

∣∣IIT ∣∣2dH n ≤ C,

and applying the converse implication of the claim one deduces that H n−2(Sing(T )∩CR/2
)

= 0,
proving that F ∈ G∗ as desired. Hence we are left with proving the claim.

As shown in [9, Lemma 2.5], the fact that (2.9) implies (2.10) is a simple consequence of
[9, Equation (A.13)] combined with a covering argument relying on capacity estimates. In [9]
the authors assume that F ∈ C2 but actually their proof still works if F ∈ C1,1. Indeed,
although [9, Equation (A.13)] is a consequence of the second variation formula for minimizers
of C2 functionals, the constant appearing there only depend on the L∞ norm of D2F . So, if
F is merely C1,1 it is enough to approximate T with a family of almost minimizers with C2

integrands (see for instance the beginning of the proof of [9, Proposition 1.8]) and then pass to
the limit into [9, Equation (A.13)]. In this way one proves that (2.9) implies (2.10).

2Notice that, at regular points, T coincides (in some suitable system of coordinates) with the graph of a C1,δ

function u that by minimality solves the Euler-Lagrange equation ∂i(Fpi(∇u)) = 0 for some F : Rn → R locally
uniformly convex and C1,1. Differentiating the Euler-Lagrange equation we obtain that

∂i
(
aij∂j(∂eu)

)
= 0 ∀ e ∈ Sn−1,

where the coefficients aij := Fpipj (∇u) are bounded and uniformly elliptic, so by Caccioppoli inequality we

deduce that ∂eu ∈ W 1,2 for all e ∈ Sn−1. This gives that u ∈ C1,δ ∩W 2,2, from which it follows that IIT ∈
L2

loc (supp(T ) \ Sing(T )). Hence the claim asserts that the validity of (2.9) is equivalent to a global L2 bound on
IIT .

3As shown in the proof of [9, Lemma 2.4] it is enough to prove the lower semicontinuity when Tk are represented
by the graphs of some functions uk ∈ C1 ∩W 2,2 that converge in C1 and weakly in W 2,2 to some function u
representing T (see also footnote 2). In that case it holds that∣∣IITk

∣∣2 = ∂ijuk ∂`muk (gk)ij(gk)`m

where (gk)ij := δij + ∂iu ∂ju and (gk)ij denotes the inverse matrix, hence the lower semicontinuity follows by the

fact that
∣∣IITk

∣∣2 is a convex function of the Hessian of uk (so it is lower semicontinuous under weak convergence).
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The converse implication is based again on a covering argument together with the fact that
if the L2 norm of |IIT | is sufficiently small then the point is regular (see [9, Lemmas 2.6 and
2.7]). The validity of this latter fact in our setting is again a consequence of our ε-regularity
Theorem 2.1 together with a simple contradiction argument (see the proof of [9, Lemma 2.6] for
more details). With respect to the proof in [9, Lemma 2.6] we also need to rule out that a finite
union of transversal hyperplanes can minimize an elliptic integrand, a fact proved in [19, Part
I, Theorem 1.3] This proves the claim and completes the proof. �

3. Preliminary results

In all this section, (H1)-(H2)-(H3) denote the hypotheses stated in Theorem 2.1.
We begin by stating some basic properties of minimizing currents.
First, as shown for instance in [7, Lemma 4], the following lower density estimate holds:

Lemma 3.1. Assume (H1)-(H2) hold. Then, if z0 ∈ supp(T ), we have

‖T‖(Br(z0)) & rn ∀ r < R− |z0|. (3.1)

By a classical argument, the above density estimate combined the assumption that 0 ∈
supp(T ) provides a universal L∞-bound on T .

Lemma 3.2. Assume (H1) holds and let u : BR → R be a C1 function with ‖∇u‖L∞(BR) ≤ 1.
There exists a small constant ε1 > 0 such that if E := E(T,R, u) ≤ ε1 and T satisfies (3.1), then

supp(T bCR′ ) ⊂
{
|y − u(x)| . E1/4nR

}
, (3.2)

where R′ :=
(
1− E1/2n

)
R.

Proof. Let Φ : CR → CR be the map

Φ(x, y) := (x, y − u(x)).

Since Φ is bi-Lipschitz it is easy to check that the current Φ#T still satisfies the density estimate
(3.1). In addition

E(T,R, u) ' E(Φ#T,R, 0),

hence the result follows by applying the classical L∞ bound (see for instance [7, Lemma 5]) to
the current Φ#T . �

Applying the classical Lipschitz Approximation Lemma (see for instance [2, Lemma 8.12], [7,
Lemma 3], [18, Lemma 3]) to the current Φ#T defined in the proof above, we also deduce the
following result:

Lemma 3.3 (Lipschitz Approximation Lemma). Assume that (H1) and (H3) hold, u : BR → R
is a C1 function with ‖∇u‖L∞(BR) ≤ 1, E := E(T,R, u) ≤ ε1 (ε1 as in Lemma 3.2), T satisfies

(3.1), and set R′ :=
(
1− E1/2n

)
R. Then, for any γ ∈ (0, 1] there exists a function gγ : BR′ → R

and a compact set Kγ ⊂ BR′ such that:

(a) Lip(gγ) ≤ γ, ‖gγ‖L∞(BR′ )
≤ E1/4nR.

(b) The currents T and Tu+gγ agree over Kγ, that is T bp−1(Kγ)= Tu+gγbp−1(Kγ), and the
following estimates hold: ∣∣BR′ \ Kγ∣∣ . E Rn

γ2
(3.3)
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and

‖T‖
(
CR′ \ p−1(Kγ)

)
.
E Rn

γ2
. (3.4)

We now show that the current T is close in L1 to Tu+gγ , with an estimate which is superlinear
in the excess.

Lemma 3.4. With the same notation as in Lemma 3.3, it holds∫
CR′
|y − u(x)− gγ(x)| d‖T‖ . E

1+1/4nRn+1

γ2
.

Proof. We notice that, as a consequence of (3.2) and Lemma 3.3(a),

sup
{
|y − u(x)− gγ(x)| : x ∈ BR′ , (x, y) ∈ supp(T )

}
. E1/4nR.

Hence, recalling (3.4), we get∫
CR′
|y − u(x)− gγ(x)| d‖T‖ =

∫
CR′\p−1(Kγ)

|y − u(x)− gγ(x)| d‖T‖

. E1/4nR ‖T‖
(
CR′ \ p−1(Kγ)

)
.
E1+1/4nRn+1

γ2
.

�

The next result shows that, if we minimize a functional with small C1,η-boundary data, then
global regularity holds under the assumption that the integrand is C1,1 and elliptic only in a
neighborhood of the origin.

Lemma 3.5. Let γ, δ, ρ be positive constants, let F : Rn → R be a convex function of class C1,1

inside Bρ and satisfying D2F (p) ≥ γ Id for |p| ≤ ρ. Let u : B1 → R minimize∫
B1

F
(
∇u(x)

)
dx, u|∂B1 = g

with g ∈ C1,η(∂B1) for some η ∈ [δ/2, δ]. Then there exists a small constant κ > 0, independent
of η, such that the following hold provided ‖g‖C1,η(∂B1) ≤ κ:

(1) There exists an exponent α ∈ (0, 1), independent of δ, η, κ, such that

‖∇u‖C0,α(B1/2)
. ‖∇u‖L2(B1).

(2) There exist an exponent β ∈ (0, 1), independent of δ, η, κ, such that

‖u‖C1,ζ(B1) . ‖g‖C1,η(∂B1), ζ := min{η, α, β}

Proof. Notice that, to prove the above statements, we can assume that F ∈ C1,1(Rn) and that
D2F (p) ≥ γ

2 Id for all p ∈ Rn.

Indeed, consider an integrand F̂ which is uniformly elliptic, of class C1,1, and coincides
with F for |p| ≤ ρ/2, and assume that we can prove the above statements for u minimizing∫
B1
F̂
(
∇u(x)

)
dx. Then it follows from (2) that, provided κ is chosen sufficiently small,

‖∇u‖L∞(B1) ≤ ‖u‖C1,ζ(B1) ≤ C0 ‖g‖C1,η(∂B1) ≤ C0κ ≤
ρ

2
,
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therefore F (∇u) = F̂ (∇u). This implies that u solves the Euler-Lagrange equation associated
to F and so, by the convexity of F , u is the unique minimizer of

∫
B1
F
(
∇u(x)

)
dx, proving the

desired result. Hence we are left with showing the lemma when F is globally C1,1 and uniformly
convex.

In this case we start by differentiating the Euler-Lagrange equation

∂i
(
Fpi(∇u)∂ju

)
= 0 (3.5)

to deduce that
∂i
(
Fpipj (∇u)∂j(∂eu)

)
= 0 ∀ e ∈ Sn−1,

so it follows by De Giorgi-Nash’s Theorem that u ∈ C1,α
loc (B1/2) for some universal exponent

α > 0, with
‖∇u‖C0,α(B1/2)

. ‖∇u‖L2(B1).

This proves point (1).
To show point (2), we notice that (3.5) can be rewritten as a linear uniformly elliptic equation

with measurable coefficients
Fpipj

(
∇u
)
∂iju = 0.

Hence the global regularity follows in a standard way combining the interior C1,α regularity
provided by De Giorgi-Nash’s Theorem (see the above discussion) with the C1,β-boundary esti-
mates for linear equations (see for instance [20, Theorem 1.1], where the result is proved in the
more general context of fully nonlinear equations). �

4. Proof of Theorem 2.1

We begin by noticing that, up to perform the dilation (x, y) 7→ (x/R, y/R), we can assume
that R = 1 and that

T is F-minimal in C1. (4.1)

Set

δ := min

{
α, β,

1

24n

}
, θ := 1− δ

4
, M :=

2

(1− θ)δ
. (4.2)

We define the series of radii
ρj := 1/2 + 2−j , j ≥ 1,

and we assume, for any j = 1, . . . , k we are given functions uj : Bρj → R such that ‖uj‖C1,δj (Bρj )
≤

µ 2−j , where

δj := δ − 1

M

j∑
i=1

θi, j ≥ 1, (4.3)

and µ > 0 is a small constants to be fixed later. Notice that, thanks to the definition of M ,
δj ∈ (δ/2, δ) for all j ≥ 1.

Then we set vk :=
∑k

j=1 uj and assume that vk minimizes∫
Bρk

F (∇u) dx, F (p) := F
(
e0 +

∑
i

piêi

)
∀ p = (p1, . . . , pn) ∈ Rn, (4.4)

and that

E(T, ρk, vk) ≤ ε
(1+δ/2)k

0
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where ε0 is a universally small constant (to be fixed later).

Claim: There exists a function uk+1 : Bρk+1
→ R such that ‖uk+1‖C1,δk+1 (Bρk+1

)
≤ µ 2−(k+1),

vk+1 := vk + uk+1 minimizes (4.4) in Bρk+1
, and

E(T, ρk+1, vk+1) ≤ E(T, ρk, vk)
1+δ/2.

Notice that the claim implies the theorem. Indeed, thanks to our assumption, we can pick
u1 ≡ 0 and apply iteratively the claim above to deduce that

E(T, ρk, vk) ≤ ε
(1+δ/2)k

0 , ‖vk‖C1,δk (Bρk )
≤ µ ∀ k ≥ 1,

so, by letting k →∞,

E(T, 1/2, v∞) = 0, v∞ :=

∞∑
i=1

ui ∈ C1,δ/2(B1/2),

as desired. Hence our goal will be to prove the claim.
To make the proof easier to follow, we shall split the argument in several steps. Our proof is

partly inspired by the arguments in [18].

Step 1: The Lipschitz approximations and some preliminary estimates. Set Ek :=
E(T, ρk, vk), let δ > 0 be as in (4.2), and define ĝδ : Bρ′k → R to be the function gγ provided by

Lemma 3.3 with

u := vk, R := ρk, γ := E2δk , ρ′k :=
(

1− E1/4nk

)
ρk.

Also, let φ ∈ C∞c (Rn) be a convolution kernel with support in B1 and set

g̃δ := ĝδ ∗ φEk , φEk(x) :=
1

Enk
φ
( x
Ek

)
.

Then, thanks to Lemma 3.3(a)-(b) and by standard properties of convolution we have
‖∇g̃δ‖L∞(Bρ′

k
−Ek

) ≤ ‖∇ĝδ‖L∞(Bρ′
k
) ≤ E2δk ,

‖g̃δ − ĝδ‖L∞(Bρ′
k
−Ek

) ≤ Ek ‖∇ĝδ‖L∞(Bρ′
k
) ≤ E1+2δ

k ,

‖∇g̃δ‖C0,δ(Bρ′
k
−Ek

) ≤ E−δ‖∇ĝδ‖L∞(Bρ′
k
) ≤ Eδk .

(4.5)

In addition

‖T‖(C1)− |B1| =
1

2

∫
C1
|
−→
T − e0|2 d‖T‖ ≤ E(T, 1, 0),

hence
‖T‖(C1) ≤ |B1|+ E . 1. (4.6)

Notice that, provided ε0 is sufficiently small, we can ensure that(
ρ′k − Ek

)
−
(
ρk − Eδk

)
& Eδk . (4.7)
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Step 2: Finding a good slice to construct a comparison for T . Given σ ∈ (0, 1) we
define the (n− 1)-current

〈T, σ〉 := ∂(T bCσ).

Combining Lemma 3.4 and (4.6) with the Coarea Formula

dxbB1=

∫ 1

0
H n−1b∂Bσ dσ, ‖T bC1‖ ≥

∫ 1

0
‖〈T, σ〉‖ dσ

(see for instance [13, Sections 2.9.19, 3.2.22, 4.2.1]), we deduce the existence of σ ∈
(
ρk − Eδk , ρ′k − Ek

)
such that ∫

∂Cσ
|y − vk(x)− ĝδ(x)| d‖〈T, σ〉‖ . E1+1/4n−5δ

k , M(〈T, σ〉) . E−δk , (4.8)

where M(〈T, σ〉) denotes the mass of the (n− 1)-current 〈T, σ〉.
Now, our goal is to find a “good” comparison for T by gluing the slice 〈T, σ〉 to the graph

of a function u minimizing F inside Cσ with boundary condition g̃δ. More precisely, let u ∈
C1,δk(Bσ,R) minimize (4.4) with boundary conditions u = vk + g̃δ on ∂Bσ.4 Recalling that by
assumption ‖vk‖C1,δk ≤ µ and δk ∈ (δ/2, δ), it follows from (4.5), (2.5), and (2.7) that, provided

µ ≤ κ

2
, Ek is sufficiently small, (4.9)

we can apply Lemma 3.5 to deduce that

‖u‖C1,δk (Bσ)
. µ+ Eδk . (4.10)

Since vk is also a minimizer, it follows by the maximum principle and Lemma 3.3(a) that

‖u− vk‖L∞(Bσ) ≤ ‖g̃δ‖L∞(∂Bσ) ≤ E
1/4n
k ,

hence by interpolation we get

‖u− vk‖C1,δk+1 (Bσ)
. E

1
4n

(
1−

1+δk+1
1+δk

)
k ≤ E

δk−δk+1
8n

k .

Noticing that θ(1+δ/2) > 1 (see (4.2)) and recalling that δk−δk+1 = 1
M θ

k+1 and Ek ≤ ε
(1+δ/2)k

0 ,
this gives

‖u− vk‖C1,δk+1 (Bσ)
. ε

θ
8nM

[θ(1+δ/2)]k

0 ≤ µ 2−k ∀ k ≥ 1 (4.11)

provided ε0 is sufficiently small. We now define the “comparison” current S as

S := TubCσ
and observe that S =

−→
S ‖S‖ with

−→
S (z) =

∧n∇W (p(z))

| ∧n ∇W (p(z))|
∀ z ∈ Cσ, W (x) :=

(
x, u(x) + vk(x)

)
. (4.12)

4By the homogeneity and ellipticity assumptions (2.2) and (2.4) on F , the function F is convex so existence
of a minimizer u is standard.
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Step 3: Show that S provides a good approximation of T in terms of the excess.

First, by the homogeneity condition (2.2) it follows that F
(−→
S
)

= 〈dF
(−→
S
)
,
−→
S 〉, which gives

F(T bCσ)− F(SbCσ) =

∫
Cσ
F
(−→
T
)
d‖T‖ −

∫
Cσ
F
(−→
S
)
d‖S‖

=

∫
Cσ

(
F
(−→
T
)
− 〈dF

(−→
S
)
,
−→
T 〉
)
d‖T‖

+

∫
Cσ
〈dF

(−→
S
)
,
−→
T 〉 d‖T‖ −

∫
Cσ
〈dF

(−→
S
)
,
−→
S 〉 d‖S‖.

(4.13)

Noticing that (thanks to (4.12), (2.1), and (4.10))

|
−→
S − e0| . |∇u| . Eδk + µ, (4.14)

assuming Ek and µ small enough we can use the uniform ellipticity assumption (2.5) to get∫
Cσ

(
F
(−→
T
)
− 〈dF

(−→
S
)
,
−→
T 〉
)
d‖T‖ ≥ 1

2

∫
Cσ

∣∣−→T −−→S ∣∣2 d‖T‖. (4.15)

To control the last term in (4.13) we consider the map

H(t, x, y) :=
(
x, (1− t)y + tu(x)

)
, ∀ t ∈ [0, 1], x ∈ Bσ, y ∈ R,

and define the (n+ 1)-current

X := H#

(
[0, 1]× T bCσ

)
.

In this way we see that

∂X = (T − S)bCσ−Σ, Σ := H#

(
[0, 1]× 〈T, σ〉

)
⊂ ∂Cσ, (4.16)

and because of (4.5), (4.8), and the fact that u = vk + g̃δ on ∂Bσ, it holds

M(Σ) ≤
∫
∂Cσ
|y − vk(x)− g̃δ(x)| d‖〈T, σ′〉‖ .

∫
∂Cσ
|y − vk(x)− ĝδ(x)| d‖〈T, σ′〉‖

+

∫
∂Cσ
|ĝδ(x)− g̃δ(x)| d‖〈T, σ′〉‖ . E1+1/4n−5δ

k + E1+δk . (4.17)

We now notice that dF is 0-homogeneous (since F is 1-homogeneous), therefore (see (4.12))

dF
(−→
S
)

= dF(∧ndU).

Also, because u minimizes F (see (4.4)), the Euler-Lagrange equation for u corresponds to saying
that dF(∧ndU) is a closed n-form, hence

〈∂X, dF(∧ndU)〉 = 0.

and by (4.16) and (4.17) we get∣∣〈(T − S)bCσ , dF
(−→
S
)
〉
∣∣ =

∣∣〈Σ, dF(−→S )〉∣∣ . E1+1/4n−5δ
k + E1+δk . (4.18)

Combining (4.13), (4.15), and (4.18), we conclude that there exists a universal constant C1 such
that

1

2

∫
Cσ

∣∣−→S −−→T ∣∣2 d‖T‖ ≤ C1

(
E1+1/4n−5δ
k + E1+δk

)
+ F(T bCσ)− F(SbCσ). (4.19)
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To estimate the last term we simply observe that, since ∂(T bCσ) = ∂(S + Σ), the minimality
condition (4.1) together with (4.17) implies that

F(T bCσ)− F(SbCσ) = F(T bCσ)− F(SbCσ+Σ) + F(Σ) . E1+1/4n−5δ
k + E1+δk . (4.20)

Combining this bound with (4.19) finally yields

E(T, σ, vk + u) .
∫
Cσ

∣∣−→T −−→S ∣∣2 d‖T‖ . E1+1/4n−5δ
k + E1+δk = 2 E1+δk ,

where at the last step we used the definition of δ (see (4.2)). In particular, since Ek ≤ ε
(1+δ/2)k

0

we deduce that E1+δk � E1+δ/2k and

σ ≥ ρk − Eδk ≥ ρk − 2−k−1 = ρk+1,

hence

E(T, ρk+1, u) ≤ E1+δ/2k .

Recalling (4.11), this proves the claim with uk+1 := u − vk and concludes the proof of the
theorem.

�

5. Proof of Theorem 2.2

The proof of the ε-regularity theorem for almost-minimizing currents follows the one of The-
orem 2.1, with some minor modifications. More precisely, choose ρk := Rrk for some r ∈ (0, 1)
to be fixed later. We claim that there exists a sequence of linear functions `k : Rn → R such
that, for all k ≥ 0,

Ek+1 ≤ rα Ek +
ω(ρk)

rn+1
(5.1)

and

|∇`k+1 −∇`k|2 ≤
Ek + ω(ρk)

rn+1
, (5.2)

where

Ek := E(T, ρk, `k)

and α > 0 is given by Lemma 3.5(1). As we shall explain at the end of the section, this claim
implies the result.

We set `0 ≡ 0 so that E0 = E(T,R, 0) ≤ ε0, and we show how to construct `k+1 once `k is
given. However, before doing that, we first notice that applying iteratively (5.1) and using that
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ω is non-decreasing, one obtains

Ek+1 ≤ r(k+1)αE0 +
1

rn+1

k∑
j=0

rjαω(Rrk−j)

. r(k+1)αE0 + rkα
k∑
j=0

r(j−k)αω(Rrk−j)

. r(k+1)αE0 + rkα
k∑
j=1

∫ rk−j−1

rk−j
ω(R t)

dt

t1+α
+ rkαω(R)

= rkα
(
E0 + ω(R)

)
+ rkα

∫ 1

rk/2
ω(R t)

dt

t1+α
+ rkα

∫ rk/2

rk
ω(R t)

dt

t1+α

. rkα
(
E0 + ω(R)

)
+ rkαω(R)

∫ 1

rk/2

dt

t1+α
+ rkαω(Rrk/2)

∫ rk/2

rk

dt

t1+α

. rkαE0 + rkα/2ω(R) + ω(Rrk/2).

This implies that Ek → 0 as k → ∞, and in addition Ek can be made arbitrary small for all
k ≥ 1 provided ε0 is small enough.

Then, inserting this estimate into (5.2) one deduces that

|∇`k+1| ≤
k∑
j=0

|∇`j+1 −∇`j | .
k∑
j=0

√
Ej + ω(Rrj)

.
k∑
j=0

(
rjα/2

√
E0 + rjα/4

√
ω(R) +

√
ω(Rrj/2)

)
.
√
E0 +

√
ω(R) +

∫ 1

0

√
ω(R t)

dt

t
,

which can also be made arbitrary small provided we choose ε0 sufficiently small. In particular
we can ensure that at every step |∇`k| ≤ κ

2 with κ as in Lemma 3.5, which allows us to apply
Lemma 3.5 (compare with Step 2 in the proof of Theorem 2.1). We now begin the proof of
(5.1)-(5.2).

Up to perform the dilation (x, y) 7→ (x/ρk, y/ρk) we can assume that ρk = 1 and that

T is (F , ωk)-minimal in C1 with ωk(t) := ω(ρkt). (5.3)

Then, arguing exactly as in the proof of Theorem 2.1 with `k in place of vk we arrive at the
validity of (4.19)-(4.20) with the only difference that now T is not F-minimal but (F , ωk)-
minimal, therefore

F(T bCσ)− F(SbCσ) . E1+1/4n−5δ
k + E1+δk + ωk(σ).

Hence, recalling the definition of δ (see (4.2)) we obtain

E(T, σ, u) .
∫
Cσ

∣∣−→T −−→S ∣∣2 d‖T‖ . 2 E1+δk + ωk(σ). (5.4)
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We now want to relate E(T, σ, u) with E(T, r, `k+1), where r ∈ (0, σ/4) has to be suitably chosen
and `k+1(x) := ∇u(0) · x. This part of the argument is pretty standard.

Let r ∈ (0, σ/4) to be fixed later. We have∫
C2r

∣∣−→T −−→S (0)
∣∣2 d‖T‖ ≤ 2

∫
C2r

∣∣−→T −−→S ∣∣2 d‖T‖+ 2

∫
C2r

∣∣−→S −−→S (0)
∣∣2 d‖T‖

≤ 2

∫
C2r

∣∣−→T −−→S ∣∣2 d‖T‖+ 2
(

sup
C2r

∣∣−→S −−→S (0)
∣∣2)M(T bC2r).

(5.5)

Observing that

M(T bC2r)−
√

1 + |∇`k|2 |B2r| =
1

2

∫
C2r

∣∣−→T −−→L k

∣∣2 d‖T‖ ≤ Ek
where

−→
L k :=

∧n∇Lk
| ∧n ∇Lk|

, Lk(x) :=
(
x, `k(x)

)
,

we get

M(T bC2r) . rn + Ek.

Moreover it follows by (2.1) that
−→
S = ∇u + O(|∇u|2) and |∇(u − `k)| .

∣∣−→S − −→L k

∣∣. Hence,

noticing that the C0,α seminorms of ∇u and ∇(u− `k) are equal, Lemma 3.5(1) and (H3) give

sup
C2r

∣∣−→S −−→S (0)
∣∣2 . r2α[∇u]2C0,α(B2r)

= r2α[∇(u− `k)]2C0,α(B2r)

. r2α‖∇(u− `k)‖2L2(Bσ)
. r2α

∫
Cσ

∣∣−→S −−→L k

∣∣2 dx ≤ r2α ∫
Cσ

∣∣−→S −−→L k

∣∣2 d‖T‖.
Combining these last two estimates with (5.5), we get∫

C2r

∣∣−→T −−→S (0)
∣∣2 d‖T‖ . ∫

C2r

∣∣−→T −−→S ∣∣2 d‖T‖+ r2α
(
rn + E

) ∫
Cσ

∣∣−→S −−→L k

∣∣2 d‖T‖
≤
∫
C2r

∣∣−→T −−→S ∣∣2 d‖T‖
+ 2 r2α

(
rn + Ek

) ∫
Cσ

[∣∣−→T −−→S ∣∣2 +
∣∣−→T −−→L k

∣∣2] d‖T‖
.
∫
Cσ

∣∣−→T −−→S ∣∣2 d‖T‖+ r2α
(
rn + Ek

)
Ek,

that together with (5.3) and (5.4) gives

1

2 rn

∫
C2r

∣∣−→T −−→S (0)
∣∣2 d‖T‖ . (Eδk + r2α +

Ek
rn−2α

)
Ek +

ω(ρk)

rn
. (5.6)

Since
1

2 rn

∫
C2r

∣∣−→T −−→L k

∣∣2 d‖T‖ ≤ Ek
rn
,
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adding this inequality with (5.6) and using the bound M(T bC2r) ≥ |B2r|, we obtain

|∇u(0)−∇`k|2 .
∣∣−→S (0)−

−→
L k

∣∣2 . Ek + ω(ρk)

rn
.

Hence, if we set `k+1(x) := ∇u(0) · x (so that
−→
L k+1 =

−→
S (0)) we deduce that

Ek+1 ≤ C1

([
Eδk + r2α +

Ek
rn−2α

]
Ek +

ω(ρk)

rn

)
|∇`k+1 −∇`k|2 ≤ C2

Ek + ω(ρk)

rn
,

where C1, C2 > 0 are universal constants. We are now ready to select all the constants involved
in this proof and complete the argument. First, we choose r ∈ (0, 1/8) such that

C1r
2α ≤ rα

2
, C2r ≤ 1.

Then, recalling that Ek can be made arbitrary small for all k ≥ 1 provided ε0 is small enough
(see the iteration argument described at the beginning of the proof), we take ε0 sufficiently small
so that

C1

[
Eδk +

Ek
rn−2α

]
≤ rα

2
∀ k ≥ 1.

Since with these choices C2r ≤ 1 we deduce that (5.1)-(5.2) hold, as desired.

By (5.1)-(5.2), the iteration argument described at the beginning of the proof shows that T
is C1 at the origin. Then, since the same argument can be repeated replacing 0 by any other
points z ∈ supp(T )∩ CR/2, we deduce that T coincides with a C1 graph inside CR/2, concluding
the proof.

�
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