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SURFACE ENERGY ARISING FROM THE BEHAVIOR OF LIPID
MOLECULES IN THE WATER VIA Γ-CONVERGENCE

LUCA LUSSARDI a AND ALFREDO MARZOCCHI a∗

ABSTRACT. We show, in the framework of Γ-convergence, that a surface energy of area
type arises from a probabilistic model for lipid molecules in water.

Dedicated to prof. Giuseppe Grioli,
a constant authoritative presence in Mathematical Physics

1. Introduction

In a recent paper by PELETIER & RÖGER (see [5]) a simple model for a water-lipid
system has been proposed. In such a model a molecule of lipid is represented by a two-
bead chain: a head bead, which has an hydrophilic behaviour, and a tail bead, which has
an hydrophobic behaviour; heads and tails of the same molecule are connected by a spring.
The water molecules are represented by a third type of beads.

The state space at the microscopic level is determined by three positions in R3:

Xi
t , Xi

h, Xj
w.

Xi
t are the positions of the tails, Xi

h are the positions of the heads andXj
w are the positions

of water; here, i = 1, . . . , Nℓ and j = 1, . . . , Nw, being Nℓ and Nw two fixed integers.
Assuming that the beads are confined in a big set Ω ⊂ R3, we can consider the state space
for the system as

X := Ω2Nℓ+Nw .

A microstate of the system turns out to be simply a vector of the form

X = (X1
t , . . . , X

Nℓ
t , X1

h, . . . , X
Nℓ

h , X1
w, . . . , X

Nw
w ).

The system can be described in terms of probabilities on X by means of a density ψ:

ψ ∈ E , E :=


ψ : X → [0,+∞) :


X
ψ(X) dX = 1


.
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How this singular-perturbation problem is related to the terms in the title—partial
localization, lipid bilayers, and the elastica functional—we explain in the rest of
this introductory section.

1.1. Lipid bilayers

Lipid bilayers, biological membranes, are the living cell’s main separating struc-
ture. They shield the interior of the cell from the outside, and their mechanical
properties determine a large part of the interior organization of living cells. The
main component is a lipid molecule (Fig. 1) which consists of a head and two
tails. The head is usually charged, and therefore hydrophilic, while the tails are
hydrophobic. This difference in water affinity causes lipids to aggregate, and in the
biological setting the lipids are typically found in a bilayer structure as shown in
Fig. 1. In such a structure the energetically unfavorable tail-water interactions are
avoided by grouping the tails together in a water-free zone, shielded from the water
by the heads. Note that, despite the structured appearance of the bilayer, there is no
covalent bonding between any two lipids; the bilayer structure is entirely the result
of the hydrophobic effect.

As planar structures, lipid bilayers have a remarkable combination of solid-like
and liquid-like properties. On one hand they resist various types of deformation,
such as extension, bending, and fracture, much in the way a sheet of rubber or
another elastic material does: for instance, in order to stretch the bilayer, a tensile
force has to be applied, and when this force is removed the structure will again
relax to its original length. With respect to in-plane rearrangements of the lipid
molecules, however, the material behaviour is viscous, and there is no penalty to
large in-plane deformations.

While this interesting combination of properties is clearly related to the chem-
ical makeup of the lipids—most importantly, the hydrophobic character of the
tails—quantitative and detailed understanding of the phenomenon is still lacking.
Here we focus on a simple question that has already been alluded to above: how
can we understand the stability of these planar structures, and their pseudo-solid
behaviour, if they are constructed from independent, non-bound molecules? This
is the main question behind the analysis of this paper.

Fig. 1. Lipid molecules aggregate into macroscopically surface-like structuresFigure 1. Lipid molecules aggregate into macroscopically surface-like structures

Actually, the observable quantities are three derived quantities, i.e. the volume fractions
of tails, heads and water respectively. More precisely, for a given probability density ψ ∈
E , we denote by rh(ψ)(x) the probability that in the point x ∈ Ω there is an head of
a lipid molecule. For tails and water we can define rt(ψ) and rw(ψ) in a similar way.
The behaviour of the system is governed by two free energies, the sum of an “ideal” free
energy and the “non-ideal” one. The ideal free energy wants to represent the interaction
between beads of the same molecule, and and it penalizes head-tail distance by means of
a spring type energy. Regarding this paper, the most important energy we are interested is
the non-ideal one, which takes the form

Ω×Ω

(rw(ψ)(x) + rh(ψ)(x))rt(ψ)(y)k(x− y) dx dy

being k a convolution kernel: we penalize the proximity of hydrophilic beads (heads and
water) and hydrophobic beads (tails). Since it is natural to assume that in any point x of Ω
the incompressibility condition

rw(ψ)(x) + rh(ψ)(x) + rt(ψ)(x) = 1

holds, we immediately get the next expression for the non-ideal energy:
Ω×Ω

(1− rt(ψ)(x))rt(ψ)(y)k(x− y) dx dy.

Replacing k by a rescaled version kδ defined by

kδ(x) := δ−3k(x/δ)

in [5] the authors said that one gets the Γ-convergence

2

δ


Ω×Ω

(1− rt(ψ)(x))rt(ψ)(y)kδ(x− y) dx dy
δ→0→ c(k)F int(rt(ψ)) (1)
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where c(k) is a positive constant depending on the function k and

F int(u) :=


H2(Ju) u ∈ BV (Ω; {0, 1})
+∞ otherwise.

Here, Ju is the discontinuity set of u, so that at the limit we obtain the area of the surface
formed by the lipid molecule. Actually, such a convergence result has not been explicitly
proved in [5].

The aim of this paper is to investigate convergence (1) proving a rigorous Γ-convergence
result; something about the proof can be found in [3].

2. Some preliminary results

In this section we recall some results by ALBERTI & BELLETTINI which are contained
in papers [1] and [2].

2.1. An optimal profile problem. In order to state the Γ-convergence result that we will
need, we have to investigate first an optimal profile problem.

Let ρ : R → [0,+∞) be an even function with +∞

−∞
ρ(t)(1 + |t|) dt < +∞

and let W : R → [0,+∞) be a continuous function which vanishes at ±1 only, and tends
to +∞ at infinity. Consider the minimum problem

min
u∈X


1

4


R×R

ρ(t− s)(u(t)− u(s))2 dtds+

 +∞

−∞
W (u(t)) dt


(2)

where
X := {u : R → [−1, 1] : lim

t→+∞
u(t) = +1, lim

t→−∞
u(t) = −1}.

It turns out, in [1], that problem (2) has always a solution: we let

σ(ρ,W ) := min
u∈X


1

4


R×R

ρ(t− s)(u(t)− u(s))2 dtds+

 +∞

−∞
W (u(t)) dt


.

The next proposition can be found in [1] (see cor. 2.16); in what follows, for any u ∈ X
increasing, the function u−1 : (−1, 1) → R is defined by

u−1(t) := inf{s : t ≤ u(s)}.

Proposition 2.1. Let f(t) := max{−t, 0} and let g := ρ ∗ f . For any u ∈ X increasing
and for any s ∈ [−1, 1] we let

Hu(s) := −
 s

−1

 1

s

g′(u−1(t′)− u−1(t)) dt′

dt.

Then u solves the problem (2) if and only if W ≥ Hu everywhere in [−1, 1] and W = Hu

everywhere in the support of the measure (u−1)′.

By means of proposition 2.1, one is able to solve explicitly the problem (2) for a suitable
choice of the potential W , as the next corollary shows.
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Corollary 2.2. Assume that W (t) ≥ cρ(1− t2) everywhere, where

cρ :=

 +∞

0

ρ(t) dt.

Then the function u(t) := sgn t solves the problem (2). In particular, we have

σ(ρ,W ) =

 +∞

−∞
|t|ρ(t) dt (3)

for any admissible ρ.

Proof. By definition, we immediately get u−1(t) = 0 everywhere in (−1, 1). Then, for
any s ∈ [−1, 1] we obtain

Hu(s) = −g′(0)(1− s2).

Now,

g(t) =

 +∞

−∞
ρ(τ)f(t− τ) dτ

hence

g′(t) =

 +∞

−∞
ρ(τ)f ′(t− τ) dτ =

 +∞

−∞
ρ(t− τ)f ′(τ) dτ

= −
 0

−∞
ρ(t− τ) dτ = −

 +∞

t

ρ(r) dr

and then g′(0) = −cρ, from which we get

Hu(s) = cρ(1− s2) ≤W (s).

Moreover, we notice that the support of the measure (u−1)′ is empty. Applying proposition
2.1 we deduce that u solves problem (2). Finally, (3) is a straightforward computation. □

2.2. A Γ-convergence result. Let n be a positive integer and let J : Rn → [0,+∞) be
such that J(x) = J(−x) for any x ∈ Rn and

J(x)(1 + |x|) dx < +∞.

For any η > 0 let Jη : Rn → [0,+∞) be given by

Jη(x) :=
1

ηn
J


x

η


.

Moreover, letW : R → [0,+∞) as before, i.e. a continuous function which vanishes at ±1
only, and tends to +∞ at infinity. Let Ω ⊂ Rn be an open and bounded set with Lipschitz
boundary. For any ε > 0 we define ABε(·, J,W ) : L1(Ω) → [0,+∞] as

ABε(u, J,W ) :=
1

4ε


Ω×Ω

Jε(x− y)(u(x)− u(y))2 dxdy +
1

ε


Ω

W (u(x)) dx.
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By means of the optimal profile problem investigated in paragraph 2.1 we are able to state
the Γ-convergence result for the family {ABε(·, J,W )}ε>0 which is contained in [2]. Fix
a unit vector e ∈ Rn. For any s ∈ R let

Je(s) :=


{y∈Rn:⟨y,e⟩=0}

J(y + se) dHn−1(y).

The following Γ-convergence-compactness result holds (see thm 1.4 in [2]).

Theorem 2.3. Let AB(·, J,W ) : L1(Ω) → [0,+∞] be given by

AB(u, J,W ) :=



Ju

σ(Jνu ,W ) dHn−1 if u ∈ BV (Ω; {−1, 1})

+∞ otherwise in L1(Ω).

Then the following conditions hold:

lim inf
j→+∞

ABεj (uj , J,W ) ≥ AB(u, J,W ), for any u ∈ L1(Ω), for any εj ↘ 0

and for any uj
L1(Ω)−→ u;

(4)

for any u ∈ BV (Ω; {−1, 1}) there exist εj ↘ 0 and uj
L1(Ω)−→ u

with −1 ≤ uj ≤ 1 a.e. in Ω and with lim sup
j→+∞

ABεj (uj , J,W ) ≤ AB(u, J,W ).

(5)
In particular, it holds ABε(·, J,W )

Γ→ AB(·, J,W ) as ε → 0+ with respect to the L1-
strong topology. Moreover, if (vj) is a sequence in L1(Ω) with ABεj (vj) ≤ C for some
positive constant C and some sequence εj ↘ 0 then up to subsequence (not relabelled) vj
converges to some v ∈ BV (Ω; {−1, 1}) strongly in L1(Ω).

3. Main result

In this section first of all we state a problem which turns out to be the generalization of
the problem (1).

Let k : R → [0,+∞) be a continuous function with compact support. Let n be a
positive integer. We let K : Rn → [0,+∞) as K(x) := k(|x|). For any η > 0 let
kη : Rn → [0,+∞) be given by

kη(x) :=
1

ηn
K


x

η


.

Let Ω ⊂ Rn be an open and bounded set with Lipschitz boundary. For any ε > 0 we define
Fε : L

1(Ω) → [0,+∞] as

Fε(u) :=


2

ε


Ω×Ω

(1− u(x))u(y)kε(x− y) dxdy if 0 ≤ u ≤ 1 a.e. in Ω

+∞ otherwise in L1(Ω).

In what follows we use the notation

ωn := Hn−1(Sn−1), K1,n :=
1

ωn


Sn−1

|⟨w, e⟩| dHn−1(w), kn :=


Rn

|x|K(x) dx
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being e any unit vector in Rn and Sn−1 := {x ∈ Rn : |x| = 1}. Moreover, we let

αn := K1,nkn.

The main result of the paper is given by the following theorem.

Theorem 3.1. It holds Fε
Γ→ F as ε→ 0+ with respect to the L1-strong topology, where

F (u) :=


αnHn−1(Ju) if u ∈ BV (Ω; {0, 1})
+∞ otherwise in L1(Ω).

Moreover, if (uj) is a sequence in L1(Ω) with Fεj (uj) ≤ C for some positive constant C
and some sequence εj ↘ 0 then up to subsequence (not relabelled) uj converges to some
u ∈ BV (Ω; {0, 1}) strongly in L1(Ω).

Proof. We divide the proof in several steps.

Step 1. First of all we need to relate Fε with functional of type ABε. We claim that
for any u ∈ L1(Ω) with 0 ≤ u ≤ 1 a.e. in Ω and for ε sufficiently small we have

Fε(u) = ABε(2u− 1,K,W0) (6)

where

W0(t) :=
τn
2
|1− t2|, τn :=


Rn

K(x) dx.

Indeed, let v := 2u− 1. Then, v ∈ L1(Ω) and, by direct computation, using the symmetry
of K, we have

Fε(u) =
2

ε


Ω×Ω

(1− u(x))u(y)kε(x− y) dxdy

=
2

ε


Ω×Ω


1− v(x) + 1

2


v(y) + 1

2
kε(x− y) dxdy

=
1

2ε


Ω×Ω

(1− v(x))(1 + v(y))kε(x− y) dxdy

=
1

4ε


Ω×Ω

(1− v(x))(1 + v(y))kε(x− y) dxdy

+
1

4ε


Ω×Ω

(1− v(y))(1 + v(x))kε(x− y) dxdy

=
1

2ε


Ω×Ω

(1− v(x)v(y))kε(x− y) dxdy

=
1

4ε


Ω×Ω

(2− 2v(x)v(y) + v2(x) + v2(y)− v2(x)− v2(y))kε(x− y) dxdy

=
1

4ε


Ω×Ω

kε(x− y)(v(x)− v(y))2 dxdy +
1

4ε


Ω×Ω

(1− v2(x))kε(x− y) dxdy

+
1

4ε


Ω×Ω

(1− v2(y))kε(x− y) dxdy.
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Now, for any x ∈ Ω, using the very definition of kε, we obtain
Ω

kε(x− y) dy =


1
ε (Ω−x)

K(z) dz.

Since k has compact support in R and Ω is bounded, for ε sufficiently small we get
1
ε (Ω−x)

K(z) dz =


Rn

K(z) dz = τn

from which 
Ω×Ω

(1− v2(x))kε(x− y) dxdy = τn


Ω

(1− v2(x)) dx.

In the same way we get
Ω×Ω

(1− v2(y))kε(x− y) dxdy = τn


Ω

(1− v2(y)) dy.

Therefore we deduce that

Fε(u) =
1

4ε


Ω×Ω

kε(x− y)(v(x)− v(y))2 dxdy +
τn
2ε


Ω

(1− v2(x)) dx

=
1

4ε


Ω×Ω

kε(x− y)(v(x)− v(y))2 dxdy +
1

ε


Ω

W0(v(x)) dx

= ABε(v,K,W0)

= ABε(2u− 1,K,W0)

and this gives (6).

Step 2. We are ready to prove the compactness of equibounded (in energy) sequences.
Let (uj) be a sequence in L1(Ω) with Fεj (uj) ≤ C for some positive constant C and
some sequence εj ↘ 0. Of course we can assume 0 ≤ uj ≤ 1 a.e. in Ω for any j ∈ N. Let
vj := 2uj − 1. Then |vj | ≤ 1 a.e. in Ω and thus, by (6) we get

Fεj (uj) = ABεj (vj ,K,W0).

Therefore ABεj (vj ,K,W0) ≤ C and then, by theorem 2.3 we deduce that, up to subse-
quence not relabelled, vj converges to some v ∈ BV (Ω; {−1, 1}) strongly in L1(Ω). It is
sufficient to let u := 1

2 (v + 1).

Step 3. Next, formula (6) suggests that we have to compute AB(v,K,W0): we claim
that for any v ∈ BV (Ω; {−1, 1}) it holds

AB(v,K,W0) = αn. (7)

It is sufficient to prove that for any e ∈ Sn−1 one has σ(Ke,W0) = αn. First of all, we
notice that, since K is radially symmetric, +∞

0

Ke(s) ds =

 +∞

0


{y∈Rn:⟨y,e⟩=0}

K(y + se) dHn−1(y) ds

=


{z∈Rn:⟨z,e⟩≥0}

K(z) dHn−1(z) =
τn
2
.
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Thus, we can apply corollary 2.2 and then we get

σ(Ke,W0) =

 +∞

−∞
|t|Ke(t) dt.

Now, in order to compute the right hand-side we use the coarea formula and we obtain +∞

−∞
|t|Ke(t) dt =

 +∞

−∞
|t|


{y∈Rn:⟨y,e⟩=0}

K(y + te) dHn−1(y) dt

=

 +∞

−∞
|t|


{z∈Rn:⟨z,e⟩=t}

K(z) dHn−1(z) dt

=

 +∞

−∞


{z∈Rn:⟨z,e⟩=t}

|⟨z, e⟩|K(z) dHn−1(z) dt

=


|⟨x, e⟩|K(x) dx

=

 +∞

0


{y∈Rn:|y|=r}

|⟨y, e⟩|K(y) dHn−1(y) dr

=

 +∞

0

k(r)


{y∈Rn:|y|=r}

|⟨y, e⟩| dHn−1(y) dr.

It is easy to see, for instance using spherical coordinates in Rn, that
{y∈Rn:|y|=r}

|⟨y, e⟩| dHn−1(y) = rn

Sn−1

|⟨w, e⟩| dHn−1(w)

from which we get, using again the coarea formula, +∞

0

k(r)


{y∈Rn:|y|=r}

|⟨y, e⟩| dHn−1(y) dr

= K1,n

 +∞

0

ωnr
nk(r) dr

= K1,n

 +∞

0

Hn−1(Sn−1)rn−1rk(r) dr

= K1,n

 +∞

0


{x∈Rn:|x|=r}

rk(r) dHn−1(x) dr

= αn

and this ends the proof of (7).

Step 4. We are ready to prove the Γ-liminf inequality. Let (εj) be a positive and infinites-

imal sequence and let (uj) be a sequence in L1(Ω) with uj
L1(Ω)→ u for some u ∈ L1(Ω);

we have to prove that

lim inf
j→+∞

Fεj (uj) ≥ F (u). (8)
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Of course, we can assume that 0 ≤ uj ≤ 1 a.e. in Ω, otherwise (8) is trivial. Combining

(6) with (4) and (7) we obtain, since 2uj − 1
L1(Ω)→ 2u− 1,

lim inf
j→+∞

Fεj (uj) = lim inf
j→+∞

ABεj (2uj − 1,K,W0) ≥ AB(2u− 1,K,W0)

= αn


J2u−1

dHn−1

= αnHn−1(Ju) = F (u)

which is (8).

Step 5. We conclude the proof proving the Γ-limsup inequality. Let u ∈ BV (Ω, {0, 1})
we have to prove that there exist a positive and infinitesimal sequence εj and a sequence

(uj) in L1(Ω) with uj
L1(Ω)→ u such that

lim sup
j→+∞

Fεj (uj) ≤ F (u). (9)

Let (εj) be a positive and infinitesimal sequence and (vj) in L1(Ω) be such that vj
L1(Ω)→

2u− 1 and such that, conformally to (5),

lim sup
j→+∞

ABεj (vj ,K,W0) ≤ AB(2u− 1,K,W0) = F (u).

Since |vj | ≤ 1 we can use again (6) and conclude that, letting uj := 1
2 (vj + 1),

lim sup
j→+∞

Fεj (uj) = lim sup
j→+∞

ABεj (vj ,K,W0) ≤ F (u)

and thus (9) holds. □
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