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Abstract

This paper is devoted to the study of weak and strong convergence of derivations,
and of the flows associated to them, when dealing with a sequence of metric measure
structures (X, d,mn), mn weakly convergent to m. In particular, under curvature as-
sumptions, either only on the limit metric structure (X, d,m) or on the whole sequence
of metric measure spaces, we provide several stability results.
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1 Introduction

In this paper we study convergence of vector fields, more precisely derivations, and La-
grangian flows with respect to measured Gromov-Hausdorff convergence. The literature
on the topic of MGH convergence is very wide (see for instance [GMS13], [GR07], [St06],
[Sh14], [Vi09]) and the convergence problems can be attacked from different points of
view, depending also on the richness of the structure under consideration. Our motiva-
tions come from two different directions: the first one is a deeper investigation of the
convergence of gradient derivations, particularly in the case when all spaces (Xn, dn,mn)
belong to the same class RCD(K,∞) of [AGS14b]. In this respect, our results provide
a kind of local version of the Mosco convergence of the 2-Cheeger energies estabilished
in [GMS13]. This local version will play a role in a forthcoming paper [AH16], where
Mosco convergence is proved for all p-Cheeger energies, also with stability results for BV
functions, Cheeger constants and Hessians. The second motivation comes as a natural
complement of [AT14], where well-posedness of flows associated to sufficiently regular
derivations b (see Theorem 8.1) is proved for the first time in a nonsmooth setting, which
includes RCD(K,∞) metric measure spaces (X, d,m). It is then natural to investigate
the stability question (as in the Euclidean theory [AC13]), assuming that the derivations
depend on n and that the reference measures mn are variable.

In this paper, when dealing with these problems, we systematically adopt the so-called
extrinsic point of view in MGH convergence. Namely, up to an isometric embedding, we
assume that neither X nor d depend on n. We assume then that mn are locally uniformly
finite and nonnegative Borel measures in (X, d) which weakly converge to m, namely
∫

X v dmn →
∫

X v dm for all v ∈ Cbs(X), where Cbs(X) is the space of bounded continuous
functions with bounded support. As illustrated for instance in [GMS13] (where several
notions of convergence are carefully compared, for sequences of pointed metric measure
spaces), this point of view is not really restrictive, and basically unavoidable when treating
Lagrangian questions such as the convergence of flows. Indeed, some coupling between
points in the different spaces is necessary to prove convergence of paths to paths, and the
simplest way to achieve this is to embed all metric structures into a common one. Still in
connection with the metric structure (X, d), we assume only completeness and separability;
dropping local compactness assumptions is useful to include in the theory all RCD(K,∞)
spaces.

Now we pass to a more detailed description of the content of this paper. It consists
of a first part where we recall the basic properties of derivations and two more parts, an
“Eulerian” one, dealing with the convergence of derivations and particularly of gradient
derivations, and a “Lagrangian” part, dealing with the convergence of flows, that can be
read almost independently.

Part I. In the seminal paper [W00] the concept of derivation is used to build a good
notion of tangent bundle in metric spaces, the main idea being to describe the bundle
implicitly through the collection of its (m-measurable) sections. These sections, called
derivations, are linear maps b : Lipb(X) → L0(X,m) which satisfy suitable continuity and
locality properties. In this paper we almost completely adopt the point of view of [G15b],

2



where besides linearity one assumes the validity of the inequality

|b(f)| ≤ h|Df | m-a.e. in X, for all f ∈ Lipb(X). (1.1)

The only difference is that, since we are dealing with a sequence of measures, we keep
Lipb(X) as domain of derivations, to have m-independent domains, instead of the Sobolev
space considered in [G15b]. In [G15b] a systematic analysis of first and second order
calculus based on this notion is made, including in particular the L2 duality between
tangent and cotangent bundle, see Remark 3.5. The quantity |Df | in the right hand side
of (1.1) is the minimal relaxed slope of [Ch99], which provides integral representation to
Cheeger’s energy Ch, see Appendix A for a quick introduction to this concept. By duality,
the minimal h in (1.1) is denoted by |b| (strictly speaking, we should use the notation
Chm, |b|m to stress the dependence of these concepts on m). The L2 duality estabilished in
[G15b] is particularly useful for us to read the Hilbertian character of the norm |b| in terms
of the cotangent bundle, i.e. in terms of quadraticity of Cheeger’s energy. According to
the theory developed in [AGS14a] and [AGS14b], this is the analytically most convenient
formulation.

In order to treat weak convergence of derivations from the sequential point of view
it is technically useful to consider a countable algebra A ⊂ Lipb(X) of “test” functions.
In the spirit of Gromov’s reconstruction theorem [GR07] and many other results of the
theory (see also [K04] in connection with Cheeger’s coordinates in PI spaces and the more
recent work [CKS15]) it is natural to consider the algebra finitely generated by truncations
of distance functions. To make it separable, we consider a countable dense set D ⊂ X
and define A as in (2.3), also considering the subalgebra Abs of functions with bounded
support. In connection with this choice, denoting by H1,2(X, d,m) the domain of Ch, we
shall also need this approximation result (where Lipa stands for the asymptotic Lipschitz
constant, see (2.1)): for all f in H1,2(X, d,m), there exist fn ∈ Abs with fn → f and
Lipa(fn) → |Df | in L2(X,m).

Its proof, given in Appendix B, is a further refinement of the techniques and of the
results developed in [AGS14a] (see also [ACDM15]), where the approximating functions
where chosen, as in [Ch99], in the larger class Lipb(X) ∩ L2(X,m).

Part II. In this part we discuss weak convergence of derivations and criteria for strong
convergence. Even though some of our results deal with time-dependent derivations (more
natural for the study of flows, in Part III), we present in this introduction only the au-
tonomous case. We say that bn, derivations in (X, d,mn), weakly converge in duality with

Abs to b, derivation in (X, d,m), and write bn
Abs−−⇀ b, if

lim
n→∞

∫

X
bn(f)v dmn =

∫

X
b(f)v dm ∀f ∈ Abs, v ∈ Cb(X). (1.2)

Recall that the divergence div b of a derivation is defined by duality, via the formula
∫

X f div b dm = − ∫

X b(f) dm for all f ∈ Lipbs(X) (as for Ch and |b|, we should use
the notation divm, to stress its dependence on m). In presence of uniform bounds on
|bn| and on their divergences, Theorem 4.1 provides a sequential compactness result to-
tally independent of regularity assumptions on the metric measure structures. Due to
the close relation between vector fields with bounds on divergence and normal currents
(see in particular the discussion in [PS14, Appendix A]), this result is reminiscent of
the compactness result for normal currents in [AK00]. Notice that the above mentioned
approximation result, provided in Appendix B, is necessary to pass to the limit in the
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inequality |bn(f)| ≤ |bn|mn |Df |mn , using as intermediate step the weaker inequality with
the asymptotic Lipschitz constant in the right hand side.

When we deal with gradient derivations the bounds on divergence correspond to Lapla-
cian bounds, which could be too restrictive for some applications. For this reason, we ex-
ploit the regularizing properties of the heat semigroup Pt. Indeed, under suitable regularity
assumptions (only) on the limit metric measure structure (X, d,m), which are satisfied by
all RCD(K,∞) spaces, it is technically convenient to replace in (1.2) the algebra Abs by a
more regular class of test functions, namely PQ+

Abs := {Ptf : t ∈ Q+, f ∈ Abs}, letting
v vary in Cbs(X) (since the support of Ptf may have infinite measure, unless all measures
mn are finite). With this new notion of weak convergence, for which we use the notation

bn
P Abs−−−⇀ b, we provide another sequential compactness result, see Theorem 4.4, free of

divergence bounds; in Remark 4.5 we show that, under uniform bounds on divergence, the
two notions of convergence are equivalent.

In addition, for the convergence in duality with PQ+
Abs, we provide a criterion for

strong Lp convergence, namely

lim
n→∞

∫

X
|bn(f)|p dmn ≤

∫

X
|b(f)|p dm ∀f ∈ PQ+

Abs, (1.3)

under the assumption that there is no loss of norm in the limit, namely

lim sup
n→∞

∫

X
|bn|p dmn ≤

∫

X
|b|p dm < ∞.

The proof of this criterion, given in Theorem 5.3, is probably the most technical part
of this paper: its proof follows closely ideas from the theory of Young measures ([Va90],
[AGS08, Section 5.4]), with the extra difficulties due to the fact that we do not have a
pointwise description of the tangent bundle (but, via a suitable concept of pre-derivation,
we provide a kind of replacement for it).

Finally, we conclude this part by discussing convergence of gradient derivations. If fn ∈
H1,2(X, d,mn) strongly converge inH1,2 to f ∈ H1,2(X, d,m) (in particular lim supn Chn(fn) ≤
Ch(f)) we prove in Theorem 6.4, under a Mosco convergence assumption that the induced
derivations bfn

strongly converge in L2 to bf , meaning that bfn
(a) converge in L2 to

bf (a) for all a ∈ PQ+
Abs. The Mosco convergence assumption is fulfilled by sequences of

RCD(K,∞) spaces, as in [GMS13]; these results will play an important role in [AH16].

Part III. In this part we discuss the stability of flows w.r.t. strong convergence of deriva-
tions. As in [AT14], we say that X(t, x) is a regular flow relative to a possibly time de-
pendent derivation bt, t ∈ (0, T ), if X(0, x) = x, X( · , x) is absolutely continuous in [0, T ]
for m-a.e. x and solves the ODE γ′ = bt ◦ γ in the following weak sense:

d

dt
f ◦ X(t, x) = bt(f)(X(t, x)) for L

1 × m-a.e. (t, x) ∈ (0, T ) ×X, (1.4)

for all f ∈ Lipb(X). The adjective “regular” refers, as in the Euclidean theory (see [AC13]
and the references therein) to the non-concentration condition X(t, · )#m ≤ Cm for all
t ∈ (0, T ), with C = C(X,m). When the limit structure (X, d,m) is a RCD(K,∞) space
and the regularity assumptions on b of Theorem 8.1 hold (which ensure uniqueness of the
regular flow X relative to bt), we are able to provide in Theorem 8.2 a convergence result
for regular flows Xn relative to bn,t, assuming strong convergence of bn,t to bt, uniform
growth bounds and supnC(Xn,mn) < ∞. Here, convergence is undertood as convergence
in measure, namely convergence of the C([0, T ];X)-valued maps x 7→ Xn( · , x) to the map
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x 7→ X( · , x); the notion of convergence in measure can be adapted to our case, where
even the reference measures are variable.

The strategy is to prove, via tightness estimates, convergence to a regular generalized
flow π relative to bt (see Definition 7.4 for this more general concept of flow) and then use
the regularity of bt to extract a “deterministic” flow out of it. The key step, where strong
convergence of the derivations bn,t is involved, is that the ODE condition (1.4) passes
to the limit; in the proof of this we use a new principle (see Proposition 7.6) based on
the continuity equation which would lead also to the simplification of some proofs of the
Euclidean theory (for instance, [AC13, Theorem 12]).

Acknowledgments. The third author has been supported by project PRA_2016_41
from Pisa University. All authors are members of the GNAMPA research group of the
Istituto Nazionale di Alta Matematica (INdAM).

Part I

Preliminary results

2 Notation

Metric concepts. In a metric space (X, d), we denote by Br(x) and B̄r(x) the open
and closed balls respectively, by Cbs(X) the space of continuous functions with bounded
support, by Lipbs(X) ⊂ Cbs(X) the subspace of Lipschitz functions. We use the notation
Cb(X) and Lipb(X) for bounded continuous and bounded Lipschitz functions respectively.

For a function f : X → R we denote by Lip(f) ∈ [0,∞] its Lipschitz constant. We
also define the asymptotic Lipschitz constant by

Lipa f(x) = inf
r>0

Lip
(

f
∣

∣

Br(x)

)

= lim
r→0+

Lip
(

f
∣

∣

Br(x)

)

, (2.1)

which is upper semicontinuous. If I ⊂ R is an interval, we denote by AC(I;X) ⊂ C(I;X)
the space of absolutely continuous maps w.r.t. d, satisfying

d(γ(s), γ(t)) ≤
∫ t

s
g(r) dr for all s, t ∈ I with s ≤ t (2.2)

for some (nonnegative) g ∈ L1(I). We denote by evt : C(I;X) → X the evaluation map
at time t, i.e. evt(γ) = γ(t).

The metric derivative |γ̇| : I̊ → [0,∞] of γ ∈ AC(I;X) is the Borel map defined by

|γ̇|(t) := lim sup
s→t

d(γ(s), γ(t))

|s− t|

and it can be proved (see for instance [AGS08, Theorem 1.1.2]) that the lim sup is a limit
L 1-a.e. in I, that |γ̇| ∈ L1(I) and that |γ̇| is the smallest L1 function with the property
(2.2), up to L 1-negligible sets.

The metric algebras A , Abs. In the sequel we associate to any separable metric space
(X, d) a countable dense set D ⊂ X and the smallest set A ⊂ Lipb(X) containing

min{d( · , x), k} with k ∈ Q ∩ [0,∞], x ∈ D, (2.3)
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which is a vector space over Q and is stable under products and lattice operations. It is a
countable set and it depends only on the choice of D (we do not emphasize this dependence
in our notation). We shall also consider the subalgebra Abs of functions with bounded
support.

Measure-theoretic notation. The Borel σ-algebra of a metric space (X, d) is denoted
by B(X). The Borel signed measures with finite total variation are denoted by M (X),
while we use the notation M +(X), M

+
loc(X), P(X) for nonnegative finite Borel measures,

Borel measures which are finite on bounded sets and Borel probability measures. For
E ∈ B(X) the restriction operator µ 7→ µ E is defined by µ E(B) = µ(B ∩ E) for all
B ∈ B(X).

We use the standard notation Lp(X,m), Lp
loc(X,m) for the Lp spaces when m is non-

negative, including also the case p < 1 (when p = 0 the spaces L0(X,m) = L0
loc(X,m) cor-

respond to the class of real-valued m-measurable functions). Notice that, in this context
where no local compactness assumption is made, Lp

loc means p-integrability on bounded
subsets.

Given metric spaces (X, dX ) and (Y, dY ) and a Borel map f : X → Y , we denote
by f# the induced push-forward operator, mapping P(X) to P(Y ), M +(X) to M +(Y )
and, if the preimage of bounded sets is bounded, M

+
loc(X) to M

+
loc(Y ). Notice that, for

all µ ∈ M +(X), f#µ is well defined also if f is µ-measurable.

Definition 2.1 (Metric measure space). A metric measure space is a triple (X, d,m),
where (X, d) is a complete and separable metric space and m ∈ M

+
loc(X).

Convergence of functions and measures. We say that fn ∈ Lipb(X) converge in
the flat sense to f ∈ Lipb(X) if fn → f pointwise in X and supn(sup |fn| + Lip(fn)) < ∞.
If pointwise convergence occurs only m-a.e., we say that fn → f in the m-flat sense.

We say that mn ∈ Mloc(X) weakly converge to m ∈ Mloc(X) if
∫

X v dmn →
∫

X v dm
as n → ∞ for all v ∈ Cbs(X). When all the measures mn as well as m are probability
measures, this is equivalent to requiring that

∫

X v dmn → ∫

X v dm as n → ∞ for all
v ∈ Cb(X). We shall also use the following well-known proposition.

Proposition 2.2. If mn weakly converge to m in M
+
loc(X) and if

lim sup
n→∞

∫

X
Θ dmn < ∞

for some Borel Θ : X → [0,∞], then

lim
n→∞

∫

X
v dmn =

∫

X
v dm (2.4)

for all v : X → R continuous with limd(x,x̄)→∞ |v|(x)/Θ(x) = 0 for some (and thus all)
x̄ ∈ X. If Θ : X → [0,∞) is continuous and

lim sup
n→∞

∫

X
Θ dmn ≤

∫

X
Θ dm < ∞,

then (2.4) holds for all v : X → R continuous with |v| ≤ CΘ for some constant C.

For a sequence (mn) ⊂ M
+
loc(X) that weakly converges to m ∈ M

+
loc(X), we introduce,

following the presentation in [GMS13], notions of weak and strong convergence for a
sequence of Borel functions fn : X → R, n ≥ 1. It is difficult to trace when these concepts,
very natural when variable reference measures are involved, have been introduced for the
first time; good references in geometric setups are [HU86] and [KS03].
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Weak convergence. For p ∈ (1,∞], we say that fn ∈ Lp(X,mn) converge to f ∈
Lp(X,m) weakly (weakly-* if p = ∞) in Lp if fnmn weakly converge to fm in Mloc(X),
with

lim sup
n→∞

‖fn‖Lp(X,mn) < ∞. (2.5)

In such a situation, one has ‖f‖Lp(X,m) ≤ lim infn ‖fn‖Lp(X,mn). Moreover, if p ∈ (1,∞),
any sequence fn ∈ Lp(X,mn) such that (2.5) holds admits a subsequence weakly converg-
ing to some f ∈ Lp(X,m).

We notice that, if two sequences fn, gn ∈ Lp(X,mn) weakly converge in Lp respectively
to f , g ∈ Lp(X,m) and satisfy 0 ≤ fn ≤ gnh, mn-a.e. in X, where h : X → R+ is bounded
and upper semicontinuous, then f ≤ gh, m-a.e. in X. This follows from duality with
ϕ ∈ Cbs(X), ϕ ≥ 0, and the fact that h is the pointwise infimum of bounded continuous
functions.

Strong convergence. For p ∈ (1,∞) we say that fn ∈ Lp(X,mn) converge to f strongly
in Lp if, in addition to weak convergence in Lp, one has

lim sup
n

‖fn‖Lp(X,mn) ≤ ‖f‖Lp(X,m) . (2.6)

This condition, in the standard setting of a fixed Banach space, is reminiscent of the Kadec-
Klee property, which yields strong convergence out of weak convergence plus convergence
of norms. In our more general situation, one can prove that, under (2.6), weak convergence
of fnmn ∈ Mloc(X) to fm improves to

lim
n→∞

∫

X
vnfnmn =

∫

X
vfm, ∀vn ∈ Lp′

(X,mn) weakly converging in Lp′

to v, (2.7)

where p′ is the conjugate exponent of p. Moreover, given two sequences fn, gn ∈ Lp(X,mn)
strongly converging in Lp respectively to f, g ∈ Lp(X,m), one can show that fn + gn

strongly converges in Lp to f + g. Other improvements, which also motivate the terminol-
ogy strong convergence, are discussed in Remark 2.6.

In the special case p = 1, we say that fn ∈ L1(X,mn) converge to f ∈ L1(X,mn)
weakly in L1 if fnmn weakly converge to fm in Mloc(X). Since in the context of variable
measures it seems not easy to formulate an adequate notion of equi-integrability, this
notion is strictly weaker than the classical weak L1 convergence when the measure is fixed.
However, sufficient conditions for sequential compactness w.r.t. weak L1 convergence can
be stated also in the case of variable measures.

Lemma 2.3. The following properties hold.

(i) If |fn| ≤ gnhn with gn bounded in L2 and hn strongly convergent in L2, then (fn)
has subsequences (fn(k)) weakly convergent in L1.

(ii) If supn

∫

X Θ(|fn|) dmn < ∞ for some Θ : [0,∞) → [0,∞] with more than linear
growth at infinity, then (fn) has subsequences (fn(k)) weakly convergent in L1. In
addition, if Θ is convex and lower semicontinuous,

∫

X
Θ(|f |) dm ≤ lim inf

k→∞

∫

X
Θ(|fn(k)|) dmn(k).

Proof. (i) Let h be the strong L2 limit of hn and L = supn ‖gn‖L2(X,mn). It is easy to

check that any limit point µ of fnmn satisfies µ(C) ≤ L
(∫

C h
2 dm)1/2 for all C ⊂ X closed

and bounded, hence µ ≪ m.
(ii) It follows by a classical duality argument, see for instance [AGS08, Lemma 9.4.3].
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All such notions of weak and strong convergence have natural local analogues. In
particular, we say that fn converge to f weakly in Lp

loc (resp. weakly-* if p = ∞) if fnv
converge to fv weakly in Lp (resp. weakly-* if p = ∞) for all v ∈ Cbs(X). In the case of
strong Lp

loc convergence, p ∈ (1,∞), we ask that fnmn weakly converge to fm in Mloc(X),
with

lim sup
n→∞

‖fn‖Lp(BR(x̄),mn) ≤ ‖f‖Lp(BR(x̄),m) < ∞

for some x̄ ∈ X and arbitrarily large R. It follows immediately that (2.7) holds for all vn

weakly converging in Lp′
to v with ∪n supp vn bounded in X.

Even in the simplest case when mn = m, another natural notion of convergence for
metric-valued maps is convergence in measure.

Convergence in measure for metric space valued maps. Given a metric space
(Y, dY ), we say that Borel functions fn : X → Y (locally) converge in measure to a Borel
f : X → Y if, for every Φ ∈ Cb(Y ) one has that Φ(fn)mn weakly converge to Φ(f)m,
namely

lim
n→∞

∫

X
vΦ(fn) dmn =

∫

X
vΦ(f) dm ∀v ∈ Cbs(X). (2.8)

Notice that, choosing Φ to be constant, already (2.8) encodes the weak convergence of mn

to m, so strictly speaking this should be understood as a convergence of pairs (mn, fn),
where mn are reference measures for fn. It is also easy to check that, when mn = m is
fixed, this requirement is equivalent to the usual notion of local convergence in m-measure.

In the following proposition we provide equivalent formulations of the convergence
in measure, closely related to the theory of Young measures [Va90]. To this aim, we
introduce the following terminology: we say that a family (µn) ⊂ M

+
loc(X × Y ) is locally

tight w.r.t. X if, for some x̄ ∈ X and all R > 0, the measures µn BR(x̄) × Y are tight.
Accordingly, we denote by Cbsx(X × Y ) the space

Cbsx(X × Y ) := {f ∈ Cb(X × Y ) : supp(f) ⊂ BR(x̄) × F for some x̄ ∈ X, R > 0}

and we say that µn
Cbsx(X×Y )−−−−−−−⇀ µ if µn → µ in the duality with Cbsx(X × Y ).

Proposition 2.4. Let (Y, dY ) be a metric space, let mn be weakly convergent to m in
M

+
loc(X) and let fn, f : X → Y be Borel. The following conditions are equivalent:

(a) fn converge to f in measure;

(b) for any Φ ∈ Cb(Y ) and any vn ∈ L1(X,mn) weakly converging to v ∈ L1(X,m) in
L1 with ∪n supp(vn) ⊂ BR(x̄) for some x̄ ∈ X and R > 0, one has

lim
n→∞

∫

X
vnΦ(fn) dmn =

∫

X
vΦ(f) dm;

(c) (Id × (Φ ◦ fn))#mn converge in duality with Cbsx(X×R) to (Id × (Φ ◦ f))#m for any
Φ ∈ Cb(Y ).

Under the assumption that (Id × fn)#mn are locally tight w.r.t. X, (a), (b), (c) are also

equivalent to (Id × fn)#mn
Cbsx(X×Y )−−−−−−−⇀ (Id × f)#m.
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Proof. For ease of notation, write µn := (Id × fn)#mn, and µ = (Id × f)#m. It is obvious
that the convergence of µn to µ in duality with Cbsx(X × Y ) implies (c), and that (b)
implies (a).

We first prove the implications (c) =⇒ (b) and (a) =⇒ (c), which provide the equiv-
alence between (a), (b), (c). In the proof of these two implications, without any loss of
generality we may assume that Y is a compact interval of R, say Y = [0, 1], and that Φ is
the identity map (it is sufficient to argue with fixed Φ ∈ Cb(X) and replace fn with Φ◦fn,
f with Φ ◦ f).

(c) =⇒ (b). Let vn, v as in (b), with supn ‖vn‖L1(X,mn) ≤ 1, and let w ∈ Cbs(X). By
weak convergence of the measures vnmn to vm,

lim
n→∞

∫

X
vnfn dmn = lim

n→∞

∫

X
vnw dmn +

∫

X
vn(fn − w) dmn =

∫

vw dm,

because

lim sup
n→∞

∣

∣

∣

∣

∫

X
vn(fn − w) dmn

∣

∣

∣

∣

= lim sup
n→∞

∣

∣

∣

∣

∫

X×Y
vn(x) (y − w(x)) dµn(x, y)

∣

∣

∣

∣

≤ lim sup
n→∞

{

M

∫

BR(x̄)∩{|vn|≤M}
|y − w(x)| dµn(x, y) + mn ({|vn| > M})

}

≤ M

∫

B̄R(x̄)×Y
|y − w(x)| dµ(x, y) +

1

M

= M

∫

B̄R(x̄)
|f(x) − w(x)| dm(x) +

1

M
,

and M > 0 is arbitrary. By density of Cbs(X) in L1
loc(B̄R(x̄),m), we may optimize the

choice of w and then let M → ∞ to conclude.
(a) =⇒ (c). The family (µn) is locally tight w.r.t. X, thanks to the local tightness of

mn in X (recall that we are assuming that Y is compact). In addition, any weak limit
point σ of (µn) in duality with Cbsx(X × Y ) agrees with µ on test functions φ(x, y) of the
form ψ(x)Φ(y), with ψ ∈ Cbs(X) and Φ ∈ Cb(Y ). This class of functions is sufficient to
prove that σ = µ, hence µn weakly converge to µ in duality with Cbsx(X × Y ).

Finally, for general metric spaces (Y, dY ), if we assume that (µn) is locally tight w.r.t.X,
the argument used to prove that (a) implies (c) works and provides the weak convergence
of µn to µ in duality with Cbsx(X × Y ).

Remark 2.5 (The case of probability measures). In the study of flows, we shall need
convergence in measure of C([0, T ];X)-valued maps; in this case the reference measures for
our maps will be probability measures (actually marginal measures of probabilities defined
on C([0, T ];X)). In this simpler case the results of Proposition 2.4 can be strengthened.
Indeed when all mn as well as m are probability measures, an equivalent formulation of
the convergence in measure (2.8) is with test functions v ∈ Cb(X). In addition, stating (b)
without any bound on the support of vn and replacing Cbsx(X × Y ) with Cb(X × Y ), in
this modified form (a), (b), (c) are still equivalent; finally, assuming a priori the tightness
of µn, these notions are equivalent to the weak convergence of µn to µ in P(X × Y ).

In the following remark we compare strong convergence with convergence in measure.

Remark 2.6 (Convergence in measure versus strong Lp convergence). In the case Y = R it
is natural to compare strong convergence in Lp, p ∈ (1,∞), with convergence in measure.
As in the case of a fixed measure, for sequences convergent in measure and uniformly
bounded in Lp

loc as in (2.5) for some p ∈ (1,∞), one can use the stability of convergence
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in measure under truncations and property (b) to show strong convergence in Lq
loc for any

q ∈ (1, p) and then (thanks to weak Lp compactness), weak convergence in Lp if the bound
is uniform in Lp. Conversely, if fn converge strongly in Lp, strong convexity of the function
Θ(z) = |z|p and a detailed analysis of the limit points of the measures µ = (Id × fn)#mn

in the duality with Cbsx(X × R) (see for instance [AGS08, Section 5.4], [GMS13]) show
that fn → f in measure.

Normed L∞ modules. Recall that a (real) L∞(X,m)-module M is a real vector space
with the additional structure of bilinear multiplication by L∞(X,m) functions χ : m ∈
M 7→ χm ∈ M , with the associativity property χ(χ′m) = (χχ′)m; in addition, multiplica-
tion by λ ∈ R corresponds to the multiplication by the L∞(X,m) function equal m-a.e. to
λ.

We say that L∞(X,m)-module M is a L2(X,m)-normed module if there exists a “point-
wise norm” | · | : M → {f ∈ L2(X,m) : f ≥ 0} satisfying:

(a) |m+m′| ≤ |m| + |m′| m-a.e. in X for all m, m′ ∈ M ;

(b) |χm| = |χ||m| m-a.e. in X for all m ∈ M , χ ∈ L∞(X,m);

with the property that

‖m‖ :=

(
∫

X
|m(x)|2 dm(x)

)1/2

(2.9)

is a norm in M . Notice that the homogeneity and the subadditivity of ‖ · ‖ are obvious
consequences of (a), (b).

If M is a L2(X,m)-normed module, we can define M∗ as the set of all continuous
L∞(X,m)-module isomorphisms L : M → L1(X,m), i.e. linear maps satisfying, for some
h ∈ L2(X,m) and all χ ∈ L∞(X,m), m ∈ M , the properties

L(χm) = χL(m),

|L(m)| ≤ h|m| m-a.e. in X.

The set M∗ can also be given the structure of L2(X,m)-module, defining |L| as the least
function h (in the m-a.e. sense) satisfying the inequality above.

Finally, we say that a L2(X,m)-normed module M is a Hilbert module if (M, ‖ · ‖) is
a Hilbert space when endowed with the natural norm in (2.9).

The following result has been proved in [G15b]; see Proposition 1.2.21 and Theo-
rem 1.2.24 therein.

Theorem 2.7. Let (X,m) be a measure space and let M be a L2(X,m)-normed Hilbert
module. Then the following facts hold.

(i) The map

〈m,m′〉x :=
|m+m′|(x)2 − |m−m′|(x)2

4

provides a L∞(X,m)-bilinear and continuous map from M × M to L1(X,m), with
‖|m|‖2

L2(X,m) = ‖〈m,m〉‖L1(X,m).

(ii) (Riesz theorem) For all L ∈ M∗ there exists mL ∈ M such that |L| = |mL| m-a.e. in
X (in particular ‖L‖ = ‖mL‖) and

L(m)(x) = 〈mL,m〉x for m-a.e. x ∈ X, for all m ∈ M .
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3 Derivations

The following definition is inspired by Weaver [W00], but in the statement of the quanti-
tative locality property we follow more closely the point of view systematically pursued in
[G15b]. Recall that |Df | denotes the minimal relaxed slope, as defined in Appendix A.

Definition 3.1 (Derivations). A derivation on a metric measure space (X, d,m) is a linear
functional b : Lipb(X) → L0(X,m) which, for some h ∈ L0(X,m), satisfies the quantitative
locality property

|b(f)| ≤ h|Df | m-a.e. in X, for all f ∈ Lipb(X).

The m-a.e. smallest function h with this property is denoted by |b| and is called (local)
norm of b. We denote by Der(X, d,m) the space of derivations. For p ∈ [1,∞], we denote
by Derp(X, d,m) (resp. Derp

loc(X, d,m)) the space of derivations b such that |b| ∈ Lp(X,m)
(resp. Lp

loc(X,m)).

Notice that, thanks to the locality of the minimal relaxed slope |Df | on Borel sets,
the choice of Lipb(X) instead of Lipbs(X) is not so relevant, because any functional b :
Lipbs(X) → L0(X,m) satisfying the locality property can be canonically extended to a
derivation b̃, without increasing its norm, by setting

b̃(f)(x) = b(fR)(x) m-a.e. in BR(x̄),

where fR ∈ Lipbs(X) coincides with f in BR(x̄). As a matter of fact, when integrals are
involved, we shall more often work with Lipbs(X).

As illustrated in details in [G15b], arguments analogous to [AK00] provide the chain
rule (with ϕ : R → R Lipschitz)

b(ϕ ◦ f) = (ϕ′ ◦ f)b(f) m-a.e. in X, for every f ∈ Lipb(X)

and the Leibniz rule

b(fg) = b(f)g + fb(g) m-a.e. in X, for every f, g ∈ Lipb(X)

as a consequence of additivity and locality (in connection with the Leibniz property, see
also Remark 3.3 below).

Any b ∈ Der2(X, d,m) can be canonically extended to H1,2(X, d,m) if Ch is quadratic,
retaining the condition |b(f)| ≤ |b||Df | using the existence, for all f ∈ H1,2(X, d,m),
of Lipschitz functions fn with |D(f − fn)| → 0 in L2(X,m) (so that b(fn) is a Cauchy
sequence in L1(X,m)). More generally, this extension is possible whenever H1,2(X, d,m)
is reflexive.

We can now define pre-derivations by restricting the domain to Abs and imposing a
weaker locality condition, with Lipa(f) in place of |Df | in the right hand side. As for
derivations, thanks to locality on open sets of Lipa, there is essentially no difference in
considering A or Abs as the domain of a pre-derivation.

Definition 3.2 (Pre-derivations). A pre-derivation on a metric measure space (X, d,m)
is a Q-linear functional b : Abs → L0(X,m) which, for some h ∈ L0(X,m), satisfies the
locality property

|b(f)| ≤ hLipa(f) m-a.e. in X, for all f ∈ Abs.

11



Remark 3.3. Any pre-derivation satisfies the Leibniz rule as a consequence of additivity
and locality. Indeed, it is sufficient to optimize over rational λ and µ the m-a.e. inequality

|b(fg) − λb(g) − µb(f)| ≤ hLipa

(

fg − λg − µf
)

= hLipa

(

(f − λ)(g − µ)
)

≤ h [|f − λ| Lipa(g − µ) + |g − µ| Lipa(f − λ)(].

Remark 3.4 (Different axiomatizations). Assume that b : Lipb(X) → L0(X,m) is a linear
map satisfying the weaker locality condition

|b(f)| ≤ hLipa(f) m-a.e. in X.

for some h ∈ L1
loc(X,m) and the continuity w.r.t. flat convergence

fn → f in Lipb(X) implies b(fn) → b(f) weakly in L1
loc(X,m). (3.1)

Then, b ∈ Der1(X, d,m) and |b| ≤ h. Indeed, the inequality can be improved, getting
|Df | in the right hand side, using the continuity property and Theorem A.1. Notice that
an even weaker locality property will be considered in Lemma 5.2 (ii), and that (3.1) is
satisfied when div b ∈ L1

loc, see Lemma 3.9.

Remark 3.5 (Derivations as duals of the cotangent bundle). Notice that Der(X, d,m) has
a natural structure of L∞(X,m)-module, and that Der2(X, d,m) has the structure of
L2(X,m)-normed module, provided by the map b 7→ |b|. More specifically, we shall use
at some stage that, if H1,2(X, d,m) is reflexive (this assumption is not needed in [G15b]
because Gigli’s derivations are already defined on H1,2(X, d,m)), Der2(X, d,m) can be
canonically and isometrically identified with the dual of the cotangent bundle T ∗(X, d,m)
introduced in [G15b]; in this respect, Der2(X, d,m) can be thought as the collection of all
L2 sections of the tangent bundle of (X, d,m).

Let us recall first the construction of T ∗(X, d,m) from [G15b]. It arises as the com-
pletion of the L2(X,m) normed pre-module consisting of finite collections (Ei, fi) with
Ei ∈ B(X) partition of X and fi ∈ H1,2(X, d,m). Two collections (Ei, fi) and (Fj , gj) are
identified if fi = gj m-a.e. in Ei ∩Fj. The sum of (Ei, fi) and (Fj , gj) is defined in the nat-
ural way by taking the collection (Ei ∩Fj , fi + gj) and the local norm |(Ei, fi)| ∈ L2(X,m)
of (Ei, fi) is defined by

|(Ei, fi)|(x) := |Dfi|(x), m-a.e. x ∈ Ei.

Thanks to the locality properties of the minimal relaxed slope, this definition does not
depend on the choice of the representative. Multiplication by Borel functions χ taking
finitely many values is defined by

χ(Ei, fi) = (Ei ∩ Fj , zjfi) with χ =
N

∑

j=1

zjχFj

and satisfies |χ(Ei, Fi)| = |χ||(Ei, Fi)|. By completion of this structure we obtain the
L2(X,m) normed module T ∗(X, d,m).

Now, given any b ∈ Der2(X, d,m) we can define

Lb([Ei, fi]) :=
∑

i

χEi
b(fi)

to obtain a L1(X,m)-valued functional on the pre-module which satisfies

|Lb([Ei, fi])| ≤ |b||[Ei, fi]| m-a.e. in X
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and is easily seen to be linear w.r.t. multiplications by Borel functions χ with finitely
many values. By completion, b̂ extends uniquely to a continuous L∞(X,m)-module ho-
momorphism from T ∗(X, d,m) to L1(X,m) with |Lb| ≤ |b|. From the definition of |b|
we immediately obtain that |Lb| = |b|. Conversely, any continuous L∞(X,m)-module
homomorphism L : T ∗(X, d,m) → L1(X,m) induces b ∈ Der2(X, d,m), via the formula
b(f) := L([X, f ]).

In the following lemma, to derive a strict convexity property of the norm of derivations,
we make the assumption that Ch is quadratic, which amounts to say that the cotangent
bundle is a Hilbert L2(X,m) module. Of course this convexity could be equally well be
taken as an assumption, but we preferred this path (and the use of Remark 3.5) because
the quadraticity condition on Ch is the most established assumption in the recent literature
on RCD spaces.

Lemma 3.6. If Ch is quadratic, for all c, c
′ ∈ Der(X, d,m) the condition

|c + c
′| = |c| + |c′| m-a.e. in X (3.2)

implies
c(f) = λ(c + c

′)(f) m-a.e. in X for all f ∈ Lipb(X),

with λ = |c|/(|c + c
′|) on {|c + c

′| > 0} (thus independent of f).

Proof. Let E = {x ∈ X : min{|c|(x), |c′|(x)} > 0}. We obviously need only to show that
c(f) = λ(c + c

′)(f) m-a.e. in E for all f ∈ Lipb(X). Possibly multiplying c and c
′ by a

positive Borel function χ with
∫

X χ(|c|2 + |c′|2) dm < ∞ we see that it is not restrictive
to assume that both c and c

′ belong to Der2(X, d,m). Now, the assumption that Ch

is quadratic yields that the cotangent bundle T ∗(X, d,m) described in Remark 3.5 is a
L2(X,m)-normed Hilbert module. By the identification introduced in that remark, the
same holds for Der2(X, d,m). Hence, we can use the bilinear map 〈 · , · 〉x on Der2(X, d,m)×
Der2(X, d,m) provided by Theorem 2.7 to write the assumption (3.2) in the form

〈c, c′〉x = |c|(x)|c′|(x) m-a.e. x ∈ X.

Fix x̄ ∈ X, define now En = {x ∈ E : min{|c|(x), |c′|(x)} ≥ 1/n} and set

cn,R := χBR(x̄)∩En

1

|c|c, c
′
n,R := χBR(x̄)∩En

1

|c′|c
′.

Using L∞(X,m) bilinearity gives

〈cn,R, c
′
n,R〉x = χBR(x̄)∩En

m-a.e. in X.

By integration we obtain
∫

X
|cn,R − c

′
n,R|2 dm = 0,

hence cn,R = cn,R′ . By approximation with respect to the parameters n and R, this gives
|c′|c(f) = |c|c′(f) m-a.e. on E for all f ∈ Lipb(X) and thus, with a simple algebraic
manipulation, the result.

Definition 3.7 (Divergence of (pre-)derivations). We say that b ∈ Der1
loc(X, d,m) has

divergence in L1
loc if there exists g ∈ L1

loc(X,m) satisfying

−
∫

X
b(f) dm =

∫

X
fg dm for all f ∈ Liploc(X). (3.3)

The function g is uniquely determined and it will be denoted by div b.
The case of a pre-derivation is analogous: the only difference is that Liploc(X) has to

be replaced in (3.3) by Abs ⊂ A .
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Lemma 3.8. Let b be a pre-derivation with h ∈ L2
loc(X,m) and div b ∈ L1

loc(X,m). Then
there exists a unique extension to b̃ ∈ Der2

loc(X, d,m), with |b̃| ≤ h (and same divergence).

Proof. By the locality property, it is sufficient to build b on Lipbs(X). Given f ∈ Lipbs(X),
let fn ∈ Abs be an approximating sequence as provided by Theorem B.1, i.e. such that
Lipa(fn) → |Df | in L2(X,m). Actually, up to truncating fn, we may assume that |fn| ≤
‖f‖∞, for n ≥ 1. By the bound |b(fn)| ≤ hLipa(fn) and Lemma 2.3 (i), the family b(fn)
has weak limit points in L1

loc(X,m) and any weak limit point, denoted b̃(f), satisfies

|b̃(f)| ≤ h|Df |.

We only have to show that such limit is uniquely determined by the formula
∫

X
ϕb̃(f) dm = −

∫

X
fϕdiv b dm −

∫

X
fb(ϕ) dm ∀ϕ ∈ Abs,

so that the whole family b(fn) will be weakly convergent and this will give that b̃ extends b

and that the map f 7→ b̃(f) is linear. Indeed, by definition of divergence, for any ϕ ∈ Abs

one has fnϕ ∈ Abs and thus
∫

X
ϕb(fn) dm = −

∫

X
fnϕdiv b dm −

∫

X
fnb(ϕ) dm.

By convergence of both sides, the same identity holds with f in place of fn and b̃(f) in
place of b(fn).

Lemma 3.9 (Continuity criterion w.r.t. flat convergence). Let b ∈ Der1
loc(X, d,m) and

assume that either b ∈ Div1
loc(X, d,m), or H1,2(X, d,m) is reflexive. Then (3.1) holds.

Proof. Let fn → f in Lipb(X). If b has divergence in L1
loc, we can use the formula

∫

X
b(f)φdm = −

∫

X
b(φ)f dm −

∫

X
fφdiv b dm φ ∈ Lipbs(X),

derived from the Leibniz rule to show the continuity property (3.1). In case of a re-
flexive Sobolev space H1,2(X, d,m), assuming (by locality) that the supports of fn are
equibounded, we obtain that fn → f weakly in H1,2(X, d,m); hence, if w is any weak
L1 limit point of b(fn), we can obtain w as the limit of b(gn), where gn are finite convex
combinations of fn converging to f strongly in H1,2(X, d,m). If follows that b(gn) → b(f),
hence w = b(f).

In the sequel we shall use the notation

Divq(X, d,m) :=
{

b ∈ Der1
loc(X, d,m) : div b ∈ Lq(X,m)

}

and the analogous notation Divq
loc(X, d,m).

Part II

Weak/strong convergence of derivations

Given (mn) ⊂ M
+
loc(X) weakly convergent to m ∈ M

+
loc(X) and bn ∈ Der1

loc(X, d,mn), we
consider notions of local convergence of bn to b ∈ Der1

loc(X, d,m), two weak ones and a
strong one. We study these two concepts in the next two sections.
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4 Weak convergence of derivations and compactness

We say that bn ∈ Der1
loc(X, d,mn) weakly converge to b ∈ Der1

loc(X, d,m) in duality with

Abs, and write bn
Abs−−⇀ b if, for all f ∈ Abs, bn(f)mn weakly converge to b(f)m as measures,

i.e.

lim
n→∞

∫

X
bn(f)v dmn =

∫

X
b(f)v dm ∀v ∈ Cb(X).

Theorem 4.1 (Weak compactness of derivations). Let bn ∈ Der2
loc ∩ Div1

loc(X, d,mn)
satisfying for some x̄ ∈ X and all R > 0 the conditions

sup
n

∫

BR(x̄)
|bn|2 dmn < ∞, sup

n

∫

BR(x̄)
Θ(| div bn|) dmn < ∞

for some function Θ = ΘR : [0,∞) → [0,∞] with more than linear growth at infinity.
Then there exists a subsequence bn(k) weakly convergent to b ∈ Der2

loc ∩ Div1
loc(X, d,m).

Proof. Let ϕ ∈ Abs. Since |bn(ϕ)| is bounded in L2, up to a subsequence there exists a
weak L2 limit, that we denote by b(ϕ). By a diagonal argument, we may assume that
bn(ϕ) weakly converge in L2 to b(ϕ) for every ϕ ∈ Abs. We show that ϕ 7→ b(ϕ) defines
a pre-derivation with div b ∈ L1

loc(X,m), hence by Lemma 3.8 we conclude.
Since Q-linearity is preserved by weak limits we only have to notice that locality of b

follows from
|bn(ϕ)| ≤ |bn| |Dnϕ| ≤ |bn| Lipa(ϕ), mn-a.e. on X,

where ϕ ∈ Abs and |Dnϕ| denotes the minimal relaxed slope of ϕ with respect to the
measure mn. Hence, by weak convergence in L2

loc of |bn| to some h ∈ L2
loc(X,m) (possibly

taking a further subsequence) and upper semicontinuity of Lipa(ϕ), we conclude that

|b(ϕ)| ≤ hLipa(ϕ), m-a.e. on X.

Finally, a similar limiting argument proves that div bn has limit points w.r.t. the weak
L1

loc convergence, and that limit points correspond to div b.

Our second notion of weak convergence depends somehow on structural assumptions on
the metric measure structures, and actually only on the limit one. Let us assume that the
limit metric measure structure (X, d,m) satisfies the following two regularity assumptions
(recall that |Df | stands for the minimal relaxed slope, see Appendix A):

(a) Ch is quadratic;

(b) there exists ω : (0,∞) → [0,∞) such that ω(0+) = 1 and

Lipa(Ptf) ≤ ω(t)
√

Pt|Df |2 pointwise in suppm (4.1)

for all f ∈ Lipb(X) ∩H1,2(X, d,m) and t > 0.

These assumptions play a role in Lemma 4.2 and, in a more essential way, in the proof
of Lemma 5.2(ii). As illustrated in Appendix A, all these assumptions hold in RCD(K,∞)
metric measure spaces, in particular (4.1) holds with with ω(t) = e−Kt. Notice that, since
Ptf is only defined up to m-negligible sets, using McShane’s extension theorem we can
and will improve (b) by asking the validity of (4.1) on the whole of X.

In view of (4.1) it is natural to consider the countable class

PQ+
Abs := {Ptf : f ∈ Abs, t ∈ Q+} ⊂ Lipb(X). (4.2)
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Notice that, thanks to Theorem B.1, PQ+
Abs is dense in H1,2(X, d,m). Strictly speaking

PQ+
Abs should be thought as a subset of Lipb(suppm), but we understand that any

function in this class is extended to the whole of X, with the same supremum and Lipschitz
constant, and we think to this collection as a subset of Lipb(X).

Lemma 4.2. Under assumption (a), any b ∈ Der(X, d,m) is uniquely determined by its
values on PQ+

Abs.

Proof. We need to prove that b ≡ 0 on PQ+
Abs implies b = 0. It is not restrictive to

assume b ∈ Der2(X, d,m). Since, thanks to assumption (a), Psf → f in H1,2(X, d,m) as
s ↓ 0, we obtain that b ≡ 0 on Abs. Then, Theorem B.1 can be applied.

Motivated by Lemma 4.2, we can define another notion of weak convergence.

Definition 4.3. We say that bn ∈ Der1(X, d,mn) weakly converge to b ∈ Der1(X, d,m)

in duality with PQ+
Abs, and write bn

P Abs−−−⇀ b if, for all f ∈ PQ+
Abs, bn(f)mn weakly

converge to b(f)m as measures, i.e.

lim
n→∞

∫

X
bn(f)v dmn =

∫

X
b(f)v dm ∀v ∈ Cbs(X). (4.3)

Notice that in (4.3) the integrals on the left hand side depend on the extension of have
chosen of f from suppm to X; nevertheless, the compactness result presented below shows
that still (4.3) makes sense. With this new notion of weak convergence we can remove
the bounds on divergence and, at the same time, consider more general growth conditions
(not necessarily quadratic) on bn.

Theorem 4.4. Assume that (X, d,m) satisfies the regularity assumptions (a), (b) and let
bn ∈ Der(X, d,mn) be such that

lim inf
n→∞

∫

X
Θ(|bn|) dmn < ∞

for some function Θ : [0,∞) → [0,∞] with more than linear growth at infinity. Then there

exist a subsequence bn(k) and b ∈ Der(X, d,m) with bn
P Abs−−−⇀ b. In addition, if Θ is convex

and lower semicontinuous, one has
∫

X
Θ(|b|) dm ≤ lim inf

k→∞

∫

X
Θ(|bn(k)|) dmn(k) < ∞.

Proof. Let a ∈ PQ+
Abs. Since |bn(a)| satisfies the assumptions of Lemma 2.3 (ii), up to a

subsequence there exists a weak L1 limit, that we denote by b(ϕ). By a diagonal argument,
we may assume that bn(a) weakly L1

loc converge to b(a) for every a ∈ PQ+
Abs. For the

same reason is also not restrictive to assume that |bn| weakly converge in L1
loc to h.

Since Q-linearity is preserved by weak local limits, taking Lemma 5.2 (ii) into account
it is sufficient to prove

|b(a)| ≤ hLipa(a) m-a.e. in X, for all a ∈ PQ+
Abs.

This can be achieved as in the proof of Theorem 4.1 passing to the limit in the inequality
|bn(a)| ≤ |bn| Lipa(a) and using the upper semicontinuity of the asymptotic Lipschitz
constant.

Remark 4.5 (Comparison of bn
Abs−−⇀ b and bn

P Abs−−−⇀ b). Assume that we are in the setting of
both Theorem 4.1 and Theorem 4.4, namely with uniform local equi-integrability bounds
on the divergences of bn and assumptions (a), (b) on the limit metric measure structure.
Under this assumption, since both notions of convergence are sequentially compact, we

immediately get from Lemma 3.9 that bn
Abs−−⇀ b if and only if bn

P Abs−−−⇀ b.
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5 Strong convergence of derivations

Still under the assumptions (a), (b) of the previous section on the metric measure struc-
ture, we want to study conditions under which weak convergence in duality with PQ+Abs

improves to strong convergence, defined as follows.

Definition 5.1 (Strong convergence of derivations). We say that bn ∈ Der1
loc(X, d,mn)

strongly converge to b ∈ Der1
loc(X, d,m) if, for all f ∈ PQ+Abs, bn(f) converge in measure

to b(f). For p ∈ (1,∞), if for all f ∈ PQ+
Abs the stronger condition

lim sup
n→∞

∫

BR(x̄)
|bn(f)|p dmn ≤

∫

BR(x̄)
|b(f)|p dm < ∞

holds for an unbounded family of R’s, we say that bn converge strongly in Lp
loc to b.

Analogously, if

lim sup
n→∞

∫

X
|bn(f)|p dmn ≤

∫

X
|b(f)|p dm < ∞

we say that bn → b strongly in Lp.

The terminology is a bit misleading, because strong convergence of bn should be un-
derstood as a “componentwise” strong convergence, where the components of the “vector
field” are given by PQ+

Abs. As discussed in Remark 2.6, under uniform Lp
loc bounds on

bn(f) for some p > 1, the convergence in measure of bn(f) to b(f) yields convergence in

Lq
loc for all q ∈ (1, p) and therefore bn

P Abs−−−⇀ b.
The main goal of this section is to provide a sufficient condition for strong convergence.

To this aim, it is convenient to extend Abs to A∗, defined as follows: A∗ is the smallest
algebra, lattice and vector space over Q containing A and the set PQ+

Abs in (4.2). The
set A∗ is still countable and we denote by a the generic element of A∗.

In the following lemma we show how to to build a derivation from a functional c :
A∗ → L0(X,m) satisfying a (very) weak locality property and a growth bound with the
global Lipschitz constant, see (5.1).

Lemma 5.2. Assume that (X, d,m) satisfies the regularity assumptions (a), (b).

(i) Let c : A∗ → L0(X,m) be a linear functional satisfying the locality property c(a) = 0
m-a.e. in any open set U where a is constant, and

|c(a)| ≤ hLip(a) m-a.e. in X, for all a ∈ A∗ (5.1)

for some h ∈ L0(X,m). Then c is a pre-derivation, more precisely, (5.1) holds with
Lipa(a) in the right hand side.

(ii) If c : PQ+
Abs → L0(X,m) is Q-linear and satisfies

|c(a)| ≤ hLipa(a) m-a.e. in X, for all a ∈ PQ+
Abs, (5.2)

for some h ∈ L0(X,m), then there exists a derivation b satisfying |b| ≤ h which
extends c.

Proof. (i) Let D be as in (2.3). We want to improve the bound on |c(a)| to |c(a)| ≤
hLipa(a) m-a.e. in X for all a ∈ A∗. To this aim, we fix a ∈ A∗ and a bounded open
set U ⊂ X and define LU to be the Lipschitz constant of the restriction of a to U . For
x0 ∈ U , choose x′

0 ∈ D and r > 0 sufficiently small, such that Br/2(x′
0) ⊂ Br(x0) ⊂ U ,
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rLU/2 ∈ Q. Then, for k ∈ Q+ larger than r/2 and a0 ∈ Q, a0 6= a(x0), we consider the
function A = max{A1, A2} ∈ A∗, with

A1(x) := min{|a(x) − a0|, r
2
LU}, A2(x) := LU min{d(x, x′

0), k}.

Since Lip(A1|U ) ≤ LU , Lip(A2) ≤ LU and the set {A = A1} is contained inBr/2(x′
0), which

is contained in Br(x0) and in U , we obtain that Lip(A) ≤ LU . Choosing a0 sufficiently
close to a(x0) we obtain that A1 = |a− a0| in a neighbourhood V of x0, and choosing x′

0

with
LUd(x0, x

′
0) < |a(x0) − a0|

we obtain that A = |a− a0| in a neighbourhood V of x0. Hence, locality in V ∩ {a > a0}
and in V ∩ {a < a0} give

|c(a)| = |c(A)| ≤ hLip(A) ≤ hLU m-a.e. in V \ {a = a0}.

With two different choices of a0, this proves that for any x0 ∈ U there exists a neighbour-
hood V of x0 such that |c(a)| ≤ hLU m-a.e. in V . Since x0 ∈ U is arbitrary, and since m

is concentrated on a σ-compact set, it follows that |c(a)| ≤ hLU m-a.e. in U . If {Ui} is a
countable basis for the open sets of (X, d) we can find a m-negligible set N such that

|c(a)|(x) ≤ h(x)LUi
∀x ∈ Ui \N, ∀i.

Since Lipa a(x) = infUi∋x LUi
for all x ∈ X, we conclude.

(ii) First we improve the upper bound (5.2) to

|c(a)| ≤ h|Da| m-a.e. in X, for all a ∈ PQ+Abs. (5.3)

Indeed, thanks to assumption (b), one has

|c(Psa)| ≤ ω(s)h
√

Ps|Da|2 m-a.e. in X, for all s ∈ Q+, a ∈ Abs

and, writing a = Pta
′, we can use the linearity of Pt to get

|c(Psa) − c(a)| = |c(Pt(Psa
′ − a′))| ≤ ω(t)h

√

Pt
(

|D(Psa′ − a′)|2
)

.

Then, taking the limit as Q+ ∋ s → 0+ of the inequality provides the result. Then, we
build b on Lipbs(X) by approximation, as a simple consequence of (5.3) and the density
of PQ+Abs in H1,2(X, d,m), arguing as in Lemma 3.8: if f ∈ Lipbs(X) and an ∈ PQ+Abs

satisfy |D(an−f)| → 0 in L2(X,m) and m-a.e., thanks to (5.3) the sequence b(an) converges
m-a.e. and we define b(f) as its limit. This provides a derivation b with |b| ≤ h and b ≡ c

on PQ+Abs.

In the following theorem we show how to improve weak convergence, in duality with
PQ+

Abs, to strong convergence. In connection with the theory of flows, we shall also
consider time-dependent derivations and therefore a time averaged version of weak con-
vergence, deriving as a consequence strong convergence in measure, with L 1 × mn and
L 1 × m as reference measures. Of course in the simpler autonomous case we get the
improvement from weak to strong convergence.
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Theorem 5.3. Assume that (X, d,m) satisfies the regularity assumptions (a), (b), that
bn,t ∈ Der1

loc(X, d,mn), bt ∈ Der1
loc(X, d,m) satisfy

lim
n→∞

∫ T

0
χ(t)

∫

X
bn,t(a)v dmn dt =

∫ T

0
χ(t)

∫

X
bt(a)v dm dt

for all χ ∈ Cc(0, T ), v ∈ Cbs(X), a ∈ PQ+
Abs, and that

lim sup
n→∞

∫ T

0

∫

X
Θ(|bn,t|) dmn dt ≤

∫ T

0

∫

X
Θ(|b|t) dm dt < ∞ (5.4)

with Θ : [0,∞) → [0,∞) strictly convex and having more than linear growth at infinity.
Then bn,t converge strongly to bt and, if Θ(z) = |z|p for some p > 1, bn converge to b

strongly in Lp.

Proof. Step 1: the dual A ′
∗ of A∗. The Q-linear functionals from A∗ to R can be considered,

in some sense, as “pointwise” tangent vectors. More precisely, we denote by A ′
∗ the class

of Q-linear functionals L : A∗ → R satisfying |L(a)| ≤ C Lip(a) for all a ∈ A∗, for some
C ∈ [0,∞). The smallest C will then be denoted by ‖L‖. We endow A ′

∗ with the coarser
topology that makes all maps L 7→ L(a), a ∈ A∗, continuous, so that L 7→ ‖L‖ is lower
semicontinuous in A ′

∗ and the sets {L ∈ A ′
∗ : ‖L‖ ≤ c} are compact for all c ≥ 0. Since A

is countable we can easily find a distance in A ′
∗ which induces this topology (on bounded

sets).
Step 2: limit of bn,t in the sense of Young. Let us consider the maps Σn : (0, T )×X → A ′

∗

induced by bn,t, namely
Σn(t, x)(a) := bn,t(a)(x)

and the push forward measures

σn := (Id × Σn)#L
1 × mn ∈ M

+((0, T ) ×X × A
′

∗).

Notice that, since A∗ is countable, σn is independent of the choice of Borel representatives
of bn,t(a), a ∈ A∗, and that ‖Σn(t, x)‖ ≤ |b|n,t(x) for L 1 × mn-a.e. (t, x). Since L 1 × mn

weakly converge to L 1 ×m, they are tight on bounded subsets, hence thanks to Prokhorov
theorem and the uniform bound on

∫

Θ(‖L‖) dσn, we can assume with no loss of generality
that σn weakly converge to σ in (0, T ) ×X × A ′

∗ . Using test functions of the form ψ(t, x)
we can represent σ = σt,x ⊗ (L 1 × m), i.e.

∫

(0,T )×X×A ′
∗

ϕ(t, x, a) dσ =

∫ T

0

∫

X

∫

A ′
∗

ϕ(t, x, a) dσt,x(a) dx dt.

From now on, for simplicity of notation, we shall omit the integration domain (0, T )×X×
A ′

∗ .
Let a ∈ A∗ be constant in an open set A ⊂ X. Using test functions of the form

(t, x, L) 7→ χ(t)v(x)|L(a)| with v ∈ Cbs(X) null on X \ A we see immediately that σt,x

satisfy the following locality property: for L 1 ×m-a.e. (t, x) ∈ (0, T )×A one has L(a) = 0
σt,x-a.e. in A ′

∗ . Thanks to this property, defining

b̃t(a)(x) :=

∫

A ′
∗

L(a) dσt,x(L) (5.5)

using the inequality |b̃t(a)(x)| ≤ Lip(a)
∫

A∗
‖L‖ dσt,x(L) and invoking Lemma 5.2 (ii) we

obtain

|b̃t(a)(x)| ≤ Lipa(a)

∫

A∗

‖L‖ dσt,x(L) m-a.e. in X, for all a ∈ A∗ (5.6)
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for L 1-a.e. t ∈ (0, T ).
Set now Σ(t, x)(a) := bt(a)(x), a ∈ A∗. Our goal is to show that σt,x is a Dirac mass at

Σ(t, x) for L 1 ×m-a.e. (t, x). To this aim, we first observe the following characterization of
Dirac masses in A ′

∗ : ν ∈ P(A ′
∗) concentrated on {L : ‖L‖ = c} for some c ≥ 0 is a Dirac

mass if and only if, for all a ∈ A∗, ν is supported in one of the “halfspaces” {L : L(a) ≥ 0},
{L : L(a) ≤ 0}. Since A∗ is countable, this characterization follows by the implication

L(a)L′(a) ≥ 0 ∀a ∈ A∗ =⇒ L = λL′ for some λ ≥ 0.

In turn, the implication above follows by this elementary argument: if a ∈ A∗ with
L′(a) 6= 0 and λ = L(a)/L′(a), for all a′ ∈ A∗ the functions s 7→ L(a+sa′), s 7→ λL′(a+sa′)
coincide at s = 0 and have the same sign if and only they coincide, i.e. L(a′) = λL′(a′).

Now, notice that (5.4) gives

∫

Θ(‖L‖) dσ ≤ lim inf
n→∞

∫

Θ(‖L‖) dσn ≤
∫

X
Θ(|b|) dm. (5.7)

On the other hand, using test functions (t, x, L) 7→ χ(t)v(x)L(a) with χ ∈ C∞
c (0, T ),

v ∈ Cbs(X) and a ∈ PQ+
Abs (notice that here we use the more than linear growth of Θ)

and the convergence of bn,t to bt, passing to the limit as n → ∞ in the identity

∫

χ(t)v(x)L(a) dσn(t, x, L) =

∫ T

0
χ(t)

∫

X
bn,t(a)(x)v(x) dmn(x) dt

and using the arbitrariness of χ and v we obtain (with b̃t as in (5.5))

b̃t(a)(x) = bt(a)(x) ∀a ∈ PQ+
Abs (5.8)

for L 1 × m-a.e. (t, x) ∈ (0, T ) ×X. From (5.6) it follows that

|bt(a)|(x) ≤ Lipa(a)

∫

A ′
∗

‖L‖ dσx(L) ∀a ∈ PQ+
Abs

for L 1 × m-a.e. (t, x) ∈ (0, T ) ×X, so that Lemma 5.2 (ii) gives

|bt|(x) ≤
∫

A ′
∗

‖L‖ dσx,t(L) for L
1 × m-a.e. (t, x) ∈ (0, T ) ×X.

Combining this information with (5.7) and the strict convexity of Θ we obtain that for
L 1 × m-a.e. (t, x) one has

‖L‖ = |bt|(x) for σt,x-a.e. L ∈ A
′

∗ .

Now, let E be a closed set of A ′
∗ and define c

i
t : A∗ → L0(X,m) by

c
1
t (a)(x) :=

∫

E
L(a) dσt,x(L), c

2
t (a)(x) :=

∫

A ′
∗\E

L(a) dσt,x(L),

so that ct := c
1
t + c

2
t coincides with bt on A∗. Notice also that c

i
t satisfy the weak locality

property (thanks to the locality of σt,x) and (5.1) with h1
t (x) =

∫

E ‖L‖ dσt,x(X) and
h2

t (x) =
∫

A ′
∗\E ‖L‖ dσt,x(X). From Lemma 5.2 (i,ii) we obtain that c

i
t induce derivations

b
i
t which coincide with c

i
t on PQ+Abs and satisfy

|b1
t |(x) ≤

∫

E
‖L‖ dσt,x(L), |b2

t |(x) ≤
∫

A ′
∗\E

‖L‖ dσt,x(L) L
1 × m-a.e. in (0, T ) ×X.
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Since, thanks to Lemma 5.2 (ii), bt is uniquely determined by its values on PQ+A∗, it
follows that bt = b

1
t + b

2
t and that |b1

t | + |b2
t | ≤ |bt| L 1 × m-a.e. in (0, T ) ×X. Therefore

we can invoke the strict convexity Lemma 3.6 to obtain b
1
t,x(a)b2

t,x(a) ≥ 0 L 1 ×m-a.e. for
all a ∈ A∗; by letting E vary in a countable family of closed sets generating the σ-algebra
of A ′

∗ , it follows that L 1 × m-a.e. measure σt,x is concentrated on {L : ‖L‖ = |bt,x|} and
satisfies the above mentioned criterion for being a Dirac mass. Coming back to (5.5) and
(5.8) we obtain that σt,x = δΣ(t,x).
Step 3. We proved that (Id×Σn)#L 1×mn weakly converge to (Id×Σ)#L 1×m. Recalling
the definitions of Σn and Σ, if we consider the continuous map (t, x, L) 7→ (t, x, L(a)) for
a ∈ PQ+Abs fixed, from Proposition 2.2 we obtain that strong convergence of bn,t(a) to
bt(a). In addition, if Θ(z) = |z|p for some p > 1, from the second part of Proposition 2.2
we get the strong Lp convergence of bn,t(a) to bt(a).

6 Convergence of gradient derivations under Mosco conver-

gence

In this section we use the typical notation of Γ-calculus, namely

Γ(f, g) := lim
ǫ↓0

|D(f + ǫg)|2 − |Df |2
2ǫ

f, g ∈ H1,2(X, d,m).

Under the assumption that Ch is quadratic, this is a symmetric and L1(X,m)-valued
bilinear form, with Γ(f, f) = |Df |2 m-a.e. in X. This fact, proved first in [AGS14b], can
now be seen as a particular case of Theorem 2.7. We can canonically associate to any
f ∈ H1,2(X, d,m) a gradient derivation bf = bf,m ∈ Der2(X, d,m), defined by

bf (g) := Γ(f, g) g ∈ H1,2(X, d,m)

(we already consider, as for all derivations in L2, the extended domain H1,2(X, d,m)).

Lemma 6.1. Assume that Ch is quadratic, let f ∈ H1,2(X, d,m), b ∈ Der2(X, d,m) and
assume that

∫

X |b|2 dm ≤
∫

X |Df |2 dm and that
∫

X(b(g) − bf (g)) dm = 0 for all g ∈
H1,2(X, d,m). Then b = bf .

Proof. Since, by the definition of |b|, b(f) ≤ |Df ||b| and since Hölder’s inequality gives
∫

X
b(f) dm =

∫

X
Γ(f, f) dm ≥

∫

X
|Df ||b| dm

we obtain that
b(f) = |Df |2 = |b|2 m-a.e. in X. (6.1)

Now, given any g ∈ H1,2(X, d,m), the pointwise equalities (6.1) in combination with the
pointwise inequalities

|b(f)|2+2εb(f)b(g)+o(ε) = |b(f+εg)|2 ≤ |b|2|D(f+εg)|2 = |b|2|Df |2+2ε|b|2Γ(f, g)+o(ε)

give the result.

Definition 6.2 (Mosco convergence). We say that the Cheeger energies Chn = Chmn

Mosco converge to Ch if both the following conditions hold:

(a) (Weak-lim inf). For every fn ∈ L2(X,mn) L2-weakly converging to f ∈ L2(X,m),
one has

Ch(f) ≤ lim inf
n→∞

Chn(fn).
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(b) (Strong-lim sup). For every f ∈ L2(X,m) there exist fn ∈ L2(X,mn), L2-strongly
converging to f with

Ch(f) = lim
n→∞

Chn(fn).

Such a convergence holds for example if (X, d,mn) are RCD(K,∞) spaces with mn(Br(x̄)) ≤
c1e

c2r2

, see [GMS13, Theorem 6.8].
In the sequel we also say that fn ∈ H1,2(X, d,mn) are weakly convergent in H1,2 to

f ∈ H1,2(X, d,m) if fn → f weakly in L2 and supn Chn(fn) is finite. Strong convergence in
H1,2 is defined by requiring strong L2 convergence of fn to f , and Ch(f) = limn Chn(fn).
We are going to use this well-known consequence of Mosco convergence:

lim
n→∞

∫

X
Γn(fn, gn) dmn =

∫

X
Γ(f, g) dm (6.2)

for any fn strongly convergent in H1,2 to f and all gn weakly convergent in H1,2 to g.
Indeed, since fn + tgn weakly converge in H1,2 to f + tg for all t > 0, by Mosco

convergence we have

Ch(f) + 2t

∫

X
Γ(f, g) dm + t2Ch(g) = Ch(f + tg)

≤ lim inf
n→∞

Chn(fn + tgn)

= lim inf
n→∞

Chn(fn) + 2t

∫

X
Γn(fn, gn) dmn + t2Chn(gn)

≤ Ch(f) + 2t lim inf
n→∞

∫

X
Γn(fn, gn) dm + t2 lim sup

n
Chn(gn).

Since supn Chn(gn) is finite, we may let t ↓ 0 to deduce the lim inf inequality in (6.2);
replacing g by −g gives (6.2).

The following simple example shows that even when the functions fn, gn are fixed,
(6.2) might not hold.

Example 6.3. Take X = R2 endowed with the Euclidean distance, f(x1, x2) = x2 and
let

mn = nL
2 (

[0, 1] × [0, 1
n ]

)

, m = H
1 [0, 1] × {0}.

Then, it is easily seen that Γn(f, f) = 1, while Γ(f, f) = 0.

The next theorem shows that any sequence (fn) strongly convergent in H1,2 to f
induces gradient derivations which are strongly converging to the gradient derivation of
the limit function.

Theorem 6.4 (Strong convergence of gradient derivations). Assume (a), (b) of Section 4
on the limit structure (X, d,m), that Chn are quadratic and that Mosco converge to Ch.
Let fn ∈ H1,2(X, d,mn) be strongly convergent in H1,2 to f ∈ H1,2(X, d,m).
Then the derivations bfn

strongly converge in L2 to bf . In addition, bfn
(gn) weakly con-

verge in L2 to bf (g) whenever gn → g in Lipb(X) with ∪n supp(gn) bounded in X.

Proof. Set bn = bfn
, b = bf , and let Γn be the bilinear form associated to Chn. From (6.2)

we get

lim
n→∞

∫

X
bn(g) dmn =

∫

X
b(g) dm ∀g ∈ Lipbs(X). (6.3)
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By Theorem 4.4 with Θ(z) = z2 there exist a subsequence bn(k) and c ∈ Der2(X, d,m)

such that bn(k)
P Abs−−−⇀ c and

∫

X
|c|2 dm ≤ lim inf

k→∞

∫

X
|bn(k)|2 dmn(k) ≤

∫

X
|b|2 dm.

We fix a sequence of cut-off functions χR ∈ Lipbs(X) with 0 ≤ χR ≤ 1, Lip(χR) ≤ 2
and χR ≡ 1 on BR(x̄). To show that b = c, let h ∈ PQ+

Abs and let us notice that the
Young inequality and the L2(X,m) integrability of h easily give

lim sup
R→∞

lim sup
n→∞

∫

X
h|Γn(fn, χR)| dmn = lim sup

R→∞
lim sup

n→∞

∫

X\B̄R(x̄)
h|Γn(fn, χR)| dmn = 0.

(6.4)
Now, taking (6.3) with g = hχR and (6.4) into account, we can pass to the limit as n → ∞
in the identity

∫

X
bn(h)χR dmn =

∫

X
Γn(fn, hχR) dmn −

∫

X
hΓn(fn, χR) dmn

to get
∫

X c(h)χR dm =
∫

X b(hχR) dm + ωR, with ωR → 0 as R → ∞. Taking the limit
w.r.t. R, we obtain

∫

X b(h) dm =
∫

X c(h) dm for every h ∈ PQ+
Abs. This identity extends,

by the density of PQ+
Abs, to any h ∈ H1,2(X, d,m); then, Lemma 6.1 applies and gives

b = c.
By sequential compactness, this proves that bn

P Abs−−−⇀ b. Strong convergence finally
follows from Theorem 5.3, with Θ(z) = z2.

In order to prove the final part of the statement it is sufficient to apply the Leibniz
formula, passing to the limit as n → ∞ in

∫

X
bn(gn)admn =

∫

X
Γn(fn, gna) dmn −

∫

X
bn(a)gn dmn a ∈ PQ+

Abs

and using (6.2) and the L2 convergence of bn(a) to b(a). This proves that bfn
(gn) weakly

converge to bf (g) in the duality with PQ+Abs, and since this class of test functions uniquely
determines the limit, the thesis follows.

Remark 6.5. In the setting of the analysis of Ricci limit spaces, S. Honda deeply studied
in [H11] notions of convergence for gradient derivations bfn

associated to fn, by looking
essentially at the weak convergence of of bfn

(gn) to bf (g) when gn = d(·, zn), g = d(·, z),
with zn → z (see in particular Definition 4.18 in [H11], and [H15] for more general tensor
fields). In this respect, the final part of the statement of Theorem 6.4 shows the connection
between ours and Honda’s convergence, under the assumption of strong convergence in
H1,2 of the fn to f .

We conclude this section by providing two examples.

Example 6.6 (Convergence of resolvents). Under the assumptions of the previous the-
orem, let fn ∈ L2(X,mn) be strongly convergent in L2 to f ∈ L2(X,m), let λ > 0 and
set un = (λ − ∆n)−1fn ∈ D(∆n), so that ∆nun = λun − fn, and consider the gradient
derivations bun .

It is then known (see e.g., [GMS13, Corollary 6.10]) that Mosco convergence entails
L2-strong convergence of un to u = (λ− ∆)−1f ∈ D(∆), as well as limn Chn(un) = Ch(u).
We may choose Θ(z) = z2, to fulfil the assumptions of Theorem 6.4 and we deduce strong
convergence of bun to bu.

23



Example 6.7 (Laplacian eigenvalues). Let us assume that (X, d,mn) are RCD(K,∞)
spaces, so that in particular the assumptions of the previous theorem hold. In this case, let
us consider normalized eigenfunctions of (minus) the Laplacian operators, i.e. un ∈ D(∆n)
which satisfy

∫

X u2
n dmn = 1, and −∆nun = λnun, for some λn ∈ R+. Assuming in addition

that either K > 0 or all mn are probability measures, using min-max arguments and Mosco
convergence of the Cheeger energies, it has been proved in [GMS13, Theorem 7.8] that,
representing the discrete spectra of −∆n as (λk

n)k≥0 (in non-decreasing order), for each
k ≥ 0 the eigenvalues λk

n converge as n → ∞ to the k-th eigenvalue of λk of −∆, and that
the associated eigenfunctions uk

n L
2-strongly converge to a corresponding eigenfunction uk,

possibly extracting a subsequence (there is no need to extract subsequences if the limit
eigenvalue is simple).

Since Chn(uk
n) = λk

n → λk, by Theorem 6.4 we deduce the strong convergence of the
gradient derivations buk

n
.

Part III

Flows associated to derivations and their
convergence

7 Continuity equations and flows associated to derivations

Given (bt)t∈(0,T ) ⊂ Der1
loc(X, d,m), we now consider the continuity equation











d

dt
µt + div(btµt) = 0,

µ0 = µ̄
(CE)

and its weak formulation in the space of probability measures µt = utm absolutely contin-
uous w.r.t. m.

Definition 7.1 (Weak solutions to the continuity equation). Let µt = utm ∈ P(X),
t ∈ (0, T ), and µ̄ ∈ P(X). We say that µt is a solution to (CE) if

∫ T

0

∫

X
|bt(f)| dµt dt < ∞ ∀f ∈ Lipbs(X) (7.1)

and for every f ∈ Lipbs(X) and χ ∈ C1
c ([0, T )) one has

−
∫ T

0
χ′(t)

∫

X
f dµt dt =

∫ T

0
χ(t)

∫

X
bt(f) dµt dt+ χ(0)

∫

X
f dµ̄. (7.2)

Remark 7.2 (Different classes of integrability and test functions). Under the stronger as-
sumption µt ≤ Cm, the weak formulation of (CE) makes sense for all test functions
f ∈ Lipb(X) assuming the condition

∫ T

0
‖bt(f)‖L1+L∞(X,m) dt < ∞ ∀f ∈ Lipb(X), (7.3)

somehow weaker than (7.1) (a weaker norm, but a larger class of functions). If one has

∫ T

0

∫

X
Θ(|bt|) dm dt < ∞ (7.4)
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for some Θ : [0,∞) → [0,∞] with more than linear growth at infinity, then the inequality
z ≤ c(1 + Θ(z)) immediately yields that (7.3) holds. Furthermore, if we assume (7.4) and
µt ≤ Cm, it is easy by a truncation argument to pass in the weak formulation of (CE)
from Lipbs(X) to Lipb(X).

We say that a solution µt to (CE) is weakly continuous if t 7→
∫

X f dµt is continuous in
(0, T ) for all f ∈ Lipbs(X); under this assumption, because of (7.1), the map is absolutely
continuous and (7.2) can be written in the equivalent form

d

dt

∫

X
f dµt =

∫

X
bt(f) dµt for L

1-a.e. t ∈ (0, T ), lim
t↓0

∫

X
f dµt =

∫

X
f dµ̄.

A natural class of examples of weakly continuous solutions to (CE) is given by µt = (evt)#π

with π ∈ P(C([0, T ];X)), see Remark 7.5 below for more details.

Definition 7.3 (Regular flow relative to b). Let X : [0, T ] ×X → X be a Borel map. We
say that X is a regular flow relative to bt if:

(a) for some constant C = C(X,m), one has X(t, · )#m ≤ Cm for all t ∈ [0, T ];

(b) X( · , x) ∈ AC([0, T ];X) and X(0, x) = x for m-a.e. x ∈ X and, for all f ∈ Lipbs(X),
one has

d

dt
f ◦ X(t, x) = bt(f)(X(t, x)) for L

1 × m-a.e. (t, x) ∈ (0, T ) ×X.

The property of being a regular flow is independent of the choice of representatives
bt(f); to see this, notice that the condition X(t, · )#m ≪ m for L 1-a.e. t ∈ (0, T ), weaker
than (a), and Fubini’s theorem give that the set

{(t, x) ∈ (0, T ) ×X : (t,X(t, x)) ∈ N}

is L 1 × m-negligible for any L 1 × m-negligible set N ⊂ (0, T ) ×X.
In connection with the stability analysis, the previous definition needs to be extended

in order to cover generalized flows, namely flows where branching behaviour is allowed.

Definition 7.4 (Regular generalized flow relative to b). Let π ∈ P(C([0, T ];X)). We
say that π is a regular flow relative to bt if:

(a) for some constant C = C(π,m), one has (evt)#π ≤ Cm for all t ∈ [0, T ];

(b) π is concentrated on AC([0, T ];X) and for all f ∈ Lipbs(X) one has

d

dt
f ◦ γ(t) = bt(f)(γ(t)) for L

1 × π-a.e. (t, γ) ∈ (0, T ) × C([0, T ];X). (7.5)

As for Definition 7.3, it is the regularity condition (a), even in the weakened form
(evt)#π ≪ m for L 1-a.e. t ∈ (0, T ), that ensures that property (b) above is independent
of the choice of representatives of bt(f). Obviously any regular flow X induces regular
generalized flows π, given by Σ#(fm), where f is the density of a probability measure and
Σ : X → C([0, T ];X) is given by Σ(x) = X( · , x). The converse holds if m ≪ (ev0)#π

and if the conditional probability measures πx in C([0, T ];X) induced by ev0 are Dirac
masses m-a.e. in X; indeed, if this is the case, setting πx = δ{X( · ,x)}, we recover X.
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Remark 7.5. Under the mild integrability assumption (7.1) on bt, property (7.5) in Definition 7.4
and the continuity equation are closely related. More precisely, if π ∈ P(C([0, T ];X)) sat-
isfies (evt)#π ≪ m for L 1-a.e. t ∈ (0, T ) (weaker than (a)) and (7.5), then its marginals
µt = (evt)#π, t ∈ [0, T ], are weakly continuous in time and satisfy (CE). Indeed, fix
f ∈ Lipbs(X); it is clear that t 7→

∫

X f dµt is continuous. Moreover, by the Fubini-Tonelli
theorem, for L 1-a.e. t ∈ (0, T ) one has

d

dt
f ◦ γ(t) = bt(f)(γ(t)) for π-a.e. γ ∈ C([0, T ];X)

and, by integration, one obtains

d

dt

∫

X
f dµt =

d

dt

∫

f(γ(t)) dπ(γ) =

∫

bt(f)(γ(t)) dπ(γ) =

∫

X
bt(f) dµt.

The following elementary criterion will be useful and provides a converse to Remark 7.5;
roughly speaking, it links the validity of the continuity equations for arbitrary modifica-
tions gπ, g ∈ Cb(C([0, T ];X)), to the property of being concentrated on solutions to the
ODE, in the weak sense expressed by condition (b).

Proposition 7.6 (Concentration criterion). Let π ∈ P(C([0, T ];X)) be concentrated on
AC([0, T ];X) with (evt)#π ≪ m for L 1-a.e. t ∈ (0, T ) and assume that bt satisfy (7.1).
Then, the following properties are equivalent:

(a) for all f ∈ Lipbs(X), (7.5) holds;

(b) for all g ∈ Cb(C([0, T ];X)), with gπ ∈ P(C([0, T ];X)), the curve

µg
t := (evt)#(gπ), t ∈ [0, T ],

solves the continuity equation (CE) with µ̄ = µg
0.

Proof. We already proved the implication from (7.5) to the continuity equation. To show
the converse, fix g as in (b). For all g ∈ Lipbs(X), by integration in an interval [s, t] ⊂ [0, T ]
we get

∫

X
f dµg

t −
∫

X
f dµg

s =

∫ t

s

∫

X
br(f) dµg

r dr,

so that
∫

f(γ(t)) − f(γ(s)) dgπ(γ) =

∫ ∫ t

s
br(f)(γ(r)) dr dgπ(γ),

i.e.,
∫

[

f(γ(t)) − f(γ(s)) −
∫ t

s br(f)(γ(r)) dr
]

g(γ) dπ(γ) = 0. Since g varies in a suffi-

ciently large class, we obtain that f(γ(t)) − f(γ(s)) =
∫ t

s br(f)(γ(r)) dr for π-a.e. γ, for s
and t fixed. Since f ◦ γ ∈ AC([0, T ]) for π-a.e. γ, by letting s and t vary in Q ∩ [0, T ] we
obtain, via a density argument

f(γ(t)) − f(γ(s)) =

∫ t

s
br(f)(γ(r)) dr for all s, t ∈ [0, T ] with s ≤ t, for π-a.e. γ,

which yields (7.5).

Remark 7.7 (Metric speed of a generalized flow). Let us recall that |bt| provides an upper
bound for the metric speed of curves selected by a generalized flow: indeed, [AT14, Lemma
7.4] gives the inequality |γ̇| (t) ≤ |bt| (γ(t)) L 1-a.e. in (0, T ), for π-a.e. γ.
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Proposition 7.8 (Tightness for generalized flows). Assume that πn ∈ P(C([0, T ];X))
are regular generalized flows relative to bn,t such that

lim
R→∞

sup
n

(ev0)#πn

(

X \BR(x̄)
)

= 0 (7.6)

for some x̄ ∈ X,

sup
n
C(πn,mn) < ∞ and sup

n

∫ T

0

∫

X
Θ(|bn,t|) dmn dt < ∞,

with Θ : [0,∞) → [0,∞] having more than linear growth at infinity. Then the family {πn}
is tight in P(C([0, T ];X)), and any limit point π ∈ P(C([0, T ];X)) is concentrated on
AC([0, T ];X).

Proof. In order to prove tightness, we build a coercive functional Ψ : C([0, T ];X) → [0,∞]
(i.e., a map with relatively compact sublevel sets) such that

sup
n

∫

C([0,T ];X)
Ψ(γ) dπn(γ) < ∞.

Let Ri ↑ ∞ with m(∂BRi
(x̄)) = 0. From the convergence of mn B̄Ri

(x̄) to m B̄Ri
(x̄) we

obtain coercive functions ψi : B̄Ri
(x̄) → [0,∞] such that

sup
n

∫

B̄Ri
(x̄)
ψi dmn ≤ 2−i.

Setting ψi = 0 on X \ B̄Ri
(x̄) and ψ =

∑

i≥1 ψi, we obtain

sup
n

∫

X
ψ dmn ≤ 1

and, since ψ ≥ ψi and Ri → ∞, all sets {ψ ≤ t} ∩ B̄R(x̄) are relatively compact in
X. Using (7.6) we can also find ϕ : X → [0,∞] with ϕ(x) → ∞ as d(x, x̄) → ∞ and
supn

∫

X ϕ(γ(0)) dπn(γ) < ∞.
Now fix a countable dense set {tj} in [0, T ] and define

Ψ(γ) = ϕ(γ(0)) +
∑

j∈N

2−jψ(γ(tj)) +

∫ T

0
Θ(|γ̇| (t)) dt

if γ ∈ AC([0, T ];X), Ψ(γ) = ∞ otherwise. Thanks to the above-mentioned local compact-
ness property of the sublevel sets of ψ, it is easily seen (as in Ascoli-Arzelà’s theorem) that
Ψ is coercive. It is now clear, using the condition (evtj

)#πn ≤ C(πn,mn)mn, that

sup
n

∫

C([0,T ];X)

[

ϕ(γ(0)) +
∑

j∈N

2−jψ(γ(tj))

]

dπn(γ) < ∞.

In addition
∫

C([0,T ];X)

∫ T

0
Θ(|γ̇| (t)) dt dπn(γ) ≤

∫ T

0

∫

C([0,T ];X)
Θ(|bn,t| (γ(t))) dπn(γ) dt

≤ C(πn,mn)

∫ T

0

∫

X
Θ(|bn,t|) dmn dt,

where the first inequality above follows from Remark 7.7.
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In the following proposition we prove that limits of flows relative to bn,t are flows
relative to bt, if bn,t strongly converge according to (7.7). This condition, stated in the
minimal form needed for the validity of the proof, is in many cases implied by the notion
of strong convergence of the previous sections, for instance in RCD(K,∞) spaces the class
D = PQ+Abs is dense w.r.t. m-flat convergence and one can use the convergence in measure
of bn,t(f) to bt(f) for f ∈ D, together with uniform bounds in L1 + L∞, to prove (7.7).
We do not discuss in generality this point, referring to the specific examples discussed in
Section 8.

Proposition 7.9 (Closure theorem). Assume that πn ∈ P(C([0, T ];X)) are regular gen-
eralized flows relative to bn,t and that:

(i) supnC(πn,mn) < ∞ and πn weakly converge to π ∈ P(C([0, T ];X)), with π con-
centrated on AC([0, T ];X);

(ii) for all f in a class D ⊂ Lipb(X), dense w.r.t. m-flat convergence, one has

lim
n→∞

∫ T

0

∫

X
bn,t(f)vn dmn dt =

∫ T

0

∫

X
bt(f)v dm dt (7.7)

whenever 0 ≤ vn ≤ C < ∞ and vn(t, · )mn ∈ P(X) weakly converge to v(t, · )m ∈
P(X) for all t ∈ (0, T );

(iii)
∫ T

0 ‖bt(f)‖L1+L∞(X,m) dt < ∞ and supn

∫ T
0 ‖bn,t(f)‖L1+L∞(X,mn) dt < ∞ for all f ∈

Lipb(X);

(iv) either H1,2(X, d,m) is reflexive, or
∫ T

0

∫

BR(x̄) | div bt| dm dt < ∞ for all R > 0.

Then π is a regular generalized flow relative to bt.

Proof. Fix g ∈ Cb(C([0, T ];X)) with gπ ∈ P(C([0, T ];X)), set gn = g/
∫

g dπn, so that,
for n large enough, the measures π

gn
n := gnπn ∈ P(C([0, T ];X)) are well-defined and

weakly converge to π
g := gπ.

By Proposition 7.6, applied with πn and gn, the marginal measures µgn

n,t := (evt)#π
gn
n

solve (CE) with µ̄ = µgn

n,0, have uniformly bounded (w.r.t. t ∈ [0, T ] and n sufficiently
large) densities w.r.t. mn,

ugn

n,t ≤ sup
n
C(πn,mn) ‖gn‖∞

and weakly converge to µg
t := (evt)#π

g, since evt is a continuous map. Passing to the
limit as n → ∞ in the weak formulation

−
∫ T

0
χ′(t)

∫

X
f dµgn

n,t dt =

∫ T

0
χ(t)

∫

X
bn,t(f)ugn

n,t dmn dt+ χ(0)

∫

X
f dµgn

n,0.

with f ∈ D and using the convergence assumption with vn(t, x) = T−1ugn

n,t(x) we get

−
∫ T

0
χ′(t)

∫

X
f dµg

t dt =

∫ T

0
χ(t)

∫

X
bt(f) dµg

t dt+ χ(0)

∫

X
f dµg

0.

for all f ∈ D. By an easy approximation based on assumption (iv) and Lemma 3.9, the
density of D gives that µg

t solve (CE) with µ̄ = µg
0. Again by Proposition 7.6, we obtain

that π is a regular generalized flow relative to b.
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Remark 7.10. In Proposition 7.9 the strong convergence property of bn,t expressed by (7.7)
can not be replaced, in general, by weak convergence together with convergence of the
norms. In fact, we have the following simple counterexample. Consider in (R3, ‖ · ‖∞ ,L 3)
the vector fields

bn(x) = wn(x1)e2 + e3

with (weak convergences are meant in the weak-∗ topology of L∞)

wn : R → R, wn ⇀ 0, |wn| = 1, w+
n ⇀

1

2
.

For instance, we can take wn(t) = sign sin(2nt). Then we have that bn ⇀ e3 and limn |bn| =
|e3|. Let us call Xn the flow relative to bn. Then, given any probability density u, we have
the following convergence of the associated generalized flows ηn = Xn( · , x)#(u(x)L 3):

∫

R3

δXn( · ,x)u(x) dx
P(C([0,T ];R3))−−−−−−−−−−⇀

∫

R3

1

2

(

δγ+( · ,x) + δγ−( · ,x)

)

u(x) dx

where

γ±(t, x) =
(

x1, x2 ± 1

2
t, x3 + t

)

.

Therefore, we have that the generalized flows converge in P(C([0, T ];R3)) to a probability
measure that is not a generalized flow relative to the weak limit e3.

This example raises a problem about possible extensions of Theorem 5.3 to the case
when the norm on derivations is not strictly convex, since oscillations in the vector fields
might not be detected by the convergence of the norms.

We end this section with the following stability result for regular flows, under the
assumption that for the limit vector field any regular generalized flow is induced by a
regular flow, see (7.8). Notice that with a similar proof a similar convergence result holds
if we replace Xn by regular generalized flows πn.

Proposition 7.11 (Stability for regular flows, general case). Assume that Xn are regular
flows relative to bn,t with bn,t strongly convergent to bt according to (7.7) of Proposition 7.9,

sup
n
C(Xn,mn) < ∞ and sup

n

∫ T

0

∫

X
Θ(|bn,t|) dmn dt < ∞,

and Θ : [0,∞) → [0,∞] having more than linear growth at infinity. Assume also that any
regular generalized flow π relative to b is induced by a regular flow X relative to b, i.e.

π =

∫

X
X( · , x) d(ev0)#π. (7.8)

Then, Xn : X → C([0, T ];X) converge in measure towards X : X → C([0, T ];X).

Proof. To deduce convergence in measure, we rely on Proposition 2.4, with Y = C([0, T ];X).
Let v ∈ Cbs(X) nonnegative with

∫

X v dm = 1, let x̄ ∈ X and R̄ > 0 large enough so that
supp(v) ⊂ BR̄(x̄). We define cn :=

∫

X v dmn, which converge to 1 as n → ∞, and, for
n large enough, πn := c−1

n

∫

X X( · , x)v(x) dmn ∈ P(C([0, T ];X)). Then, πn is a regular
generalized flow, relative to bn, with C(πn,mn) ≤ c−1

n C(Xn,mn) sup |v|, hence uniformly
bounded in n.

By Proposition 7.8, the family {πn} is tight, in P(C([0, T ];X)): indeed, the only
non trivial condition to check is (7.6), but that expression is 0 for R > R̄. Next, by
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Proposition 7.9, any limit point π is a regular generalized flow relative to b: in this case,
we have to check condition (iii) only, which follows from the inequality

|bn,t(f)| ≤ |bn,t| Lip(f) ≤ cLip(f)(1 + Θ(|bn,t|),

where c > 0 is some constant such that |z| ≤ c(1 + Θ(z)) for all z ∈ [0,∞). Hence, our
assumptions entail then that π can be written as in (7.8).

To apply Proposition 2.4 with Y = C([0, T ];X), let Φ : Y → R and g : X → R be
bounded and continuous functions. Then,

∫

X×Y
g(x)Φ(γ) d(Id × Xn)#(vmn)(x, γ) =

∫

X
g(x),Φ(Xn(x, · ))v(x) dmn(x)

(since Xn(x, 0) = x mn-a.e. on X) =

∫

X
g(Xn(x, 0))Φ(Xn(x, · ))v(x) dmn(x)

=

∫

Y
g(ev0(γ))Φ(γ) dπn(γ)

(as n → ∞) →
∫

Y
g(ev0(γ))Φ(γ) dπ(γ)

(by the representation (7.8)) =

∫

X
g(X(x, 0))Φ(X(x, · ))v(x) dm(x)

=

∫

X×Y
g(x)Φ(γ) d(Id × X)#(vm)(x, γ),

where the limit as n → ∞ follows from the fact that g(ev0)Φ is a bounded continuous
function on Y .

8 Convergence of flows under Ricci curvature bounds

Let us recall the following well-posedness result, from [AT14], that we report here in a
form suitable for our purposes. A crucial assumption, leading to well-posedness of the
continuity equation, and then to the existence and uniqueness of the regular flow, is on
the “deformation” Dsym

b of b (corresponding to the symmetric part of derivative in the
Euclidean case), which can be defined in a suitable weak sense [AT14, Definition 5.2]. For
example, if b( · ) = (ω + c)Γ(f, · ), for f ∈ D(∆), ω ∈ H1,2(X, d,m) ∩ L∞(X,m), c ∈ R,
then [AT14, Theorem 6.7] gives ‖Dsym

b‖4,4 < ∞.

Theorem 8.1 (Well-posedness of flows). Let (X, d,m) be a RCD(K,∞) space, for some
K ∈ R and let b = (bt)t∈(0,T ) be a Borel time-dependent derivation with

|b|,div b ∈ L1
t (L2(X,m) + L∞(X,m)), (div b)− ∈ L1

t (L∞(X,m)),

and ‖Dsym
bt‖4,4 ∈ L1(0, T ).

Then, there exists a unique regular flow X relative to b and every regular generalized flow
π relative to b is induced by X as in (7.8).

Proof. By [AT14, Theorem 4.3, Theorem 5.4], the continuity equation (CE) associated to
b has existence and uniqueness of solutions in the class of weakly continuous solutions µt =
utm ∈ P(X), t ∈ [0, T ], with ‖ut‖L∞(X,m) bounded in [0, T ], so that [AT14, Theorem 8.3]
applies, providing existence and uniqueness of a regular flow X relative to b. The last
statement follows from [AT14, Theorem 8.4].
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We state and prove our main result concerning stability of flows on converging RCD(K,∞)
metric measure spaces. Let us stress the fact that bounds on divergence and deformation
are assumed only for the limit derivation.

Theorem 8.2 (Stability of regular flows under curvature assumptions). Let b = (bt)t∈(0,T ) ∈
L1

t (Der1
loc(X, d,m)) as in Theorem 8.1. For n ≥ 1, let bn = (bn,t)t∈(0,T ) ∈ L1

t (Der1
loc(X, d,mn))

and assume that

lim
n→∞

∫ T

0
χ(t)

∫

X
bn,t(a)v dmn dt =

∫ T

0
χ(t)

∫

X
bt(a)v dm dt

for all χ ∈ Cc(0, T ), v ∈ Cbs(X), a ∈ PQ+
Abs, and

lim sup
n→∞

∫ T

0

∫

X
Θ(|bn,t|) dmn dt ≤

∫ T

0

∫

X
Θ(|b|t) dm dt < ∞

with Θ : [0,∞) → [0,∞) strictly convex and having more than linear growth at infinity.
Let Xn be regular flows relative to bn, and X be the (m-a.e. unique) regular flow

relative to b. If supnC(Xn,mn) < ∞, then Xn : X → C([0, T ];X) converge in measure
towards X : X → C([0, T ];X).

Proof. The thesis follows from Proposition 7.11, with D = PQ+Abs. Indeed, it is sufficient
to notice that, by Theorem 4.4 and Theorem 5.3 we obtain strong convergence of bn to b,
and by Theorem 8.1, we deduce that the representation (7.8) holds true for any generalized
flow π relative to b.

Example 8.3 (Convergence of flows associated to resolvents). In the setting of Example 6.6,
since the operator (λ−∆n)−1 are Markovian, if for some constant c one has |fn| ≤ c mn-a.e.
then it follows |un| ≤ c mn-a.e. and therefore div bun = λ(un −fn) ∈ L∞(X,mn) uniformly
w.r.t. n. Now, by [AT14, Theorem 6.7], one has ‖Dsym

bun‖4,4 < ∞. We are in a position
to deduce that there exist the mn-a.e. unique regular flows Xn relative to bun and that,
as n → ∞, Xn converge in measure in C([0, T ];X) to the m-a.e. unique flow X relative
to bu.

Example 8.4 (Convergence of flows associated to Laplacian eigenfunctions). In the set-
ting of Example 6.7, for k fixed set bn = buk

n
and b = buk . From [AT14, Theorem 6.7]

we obtain ‖Dsym
bn‖4,4 < ∞, but in order to obtain the validity of the assumption

(div bn)− ∈ L∞(X,m) in Theorem 8.1, the RCD(K,∞) assumption is not sufficient, e.g.,
in case of Gaussian space where the eigenfunctions are Hermite polynomials. To obtain
non trivial examples, we may restrict ourselves to metric measure spaces (X, d,mn) where
the heat semigroup Pn

t is ultracontractive, i.e., mapping for t > 0 the space L2(X,mn)
into L∞(X,mn). Under this assumption, for t > 0 one has

∆nu
k
n = −λk

ne
λk

ntPn
t u

k
n ∈ L∞(X,mn).

If we assume that quantitative ultracontractive bounds hold uniformly w.r.t. n, then a
unique regular flow Xn relative to bn is defined and we deduce convergence in measure to
the natural limit flow X, as n → ∞.

Appendix

A Minimal relaxed slopes and Cheeger energy

In this section we recall basic facts about minimal relaxed slopes, Sobolev spaces and
heat flow in metric measure spaces, see [AGS14a] and [G15a] for a more systematic treat-
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ment of this topic. The Cheeger energy Ch : L2(X,m) → [0,∞] is the convex and lower
semicontinuous functional defined as follows:

Ch(f) := inf

{

lim inf
n→∞

1

2

∫

X
Lip2

a(fn) dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0

}

.

The Sobolev space H1,2(X, d,m) is simply defined as the finiteness domain of Ch. It can be
proved that H1,2(X, d,m) is Hilbert if Ch is quadratic, and reflexive if (X, d) is doubling.
(see [ACDM15]).

In connection with the definition of Ch, for all f ∈ H1,2(X, d,m) one can consider the
collection RS(f) of all functions in L2(X,m) larger than a weak L2(X,m) limit of Lipa(fn),
with fn → f in L2(X,m). This collection describes a convex, closed and nonempty set,
whose element with smallest L2(X,m) norm is called minimal relaxed slope and denoted
by |Df |. Because of the minimality property, |Df | provides an integral representation to
Ch and it is not hard to improve weak to strong convergence.

Theorem A.1. For all f ∈ D(Ch) one has

Ch(f) =
1

2

∫

X
|Df |2 dm

and there exist fn ∈ Lipb(X)∩L2(X,m) with fn → f in L2(X,m) and Lipa(fn) → |Df | in
L2(X,m). In particular, if H1,2(X, d,m) is reflexive, there exist fn ∈ Lipb(X) ∩ L2(X,m)
satisfying fn → f in L2(X,m) and |D(fn − f)| → 0 in L2(X,m).

Most standard calculus rules can be proved, when dealing with minimal relaxed slopes.
For the purposes of this paper the most relevant ones are:

Locality on Borel sets. |Df | = |Dg| m-a.e. on {f = g} for all f, g ∈ H1,2(X, d,m);

Pointwise minimality. |Df | ≤ g m-a.e. for all g ∈ RS(f);

Degeneracy. |Df | = 0 m-a.e. on f−1(N) for all f ∈ H1,2(X, d,m) and all L 1-negligible
N ⊂ R Borel;

Chain rule. |D(φ◦f)| = |φ′(f)||Df | for all f ∈ H1,2(X, d,m) and all φ : R → R Lipschitz
with φ(0) = 0.

Another object canonically associated to Ch and then to the metric measure structure
is the heat flow Pt, defined as the L2(X,m) gradient flow of Ch, according to the Brezis-
Komura theory of gradient flows of lower semicontinuous functionals in Hilbert spaces, see
for instance [B70]. This theory provides a continuous contraction semigroup. We shall use
Pt only in the case when Ch is quadratic, as a regularizing operator. In this special case
Pt is also linear (and this property is equivalent to Ch being quadratic) and it is easily
seen that

lim
t↓0

Ptf = f for all f ∈ H1,2(X, d,m).

Finally, we describe the class of RCD(K,∞) metric measure spaces of [AGS14b], where
thanks to the lower bounds on Ricci curvature even stronger properties of Pt can be
proved. We say that a metric measure space (X, d,m) satisfying the growth bound (for
some constants c1, c2 and some x̄ ∈ X)

m

(

Br(x̄)
)

≤ c1e
c2r2 ∀r > 0 (A.1)
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is a RCD(K,∞) metric measure space, with K ∈ R, if Ch is quadratic and if, setting

P2(X) :=

{

µ ∈ P(X) :

∫

X
d

2(x̄, x) dm(x) < ∞
}

,

the Relative Entropy Functional Ent(µ) : P2(X) → R ∪ {∞} given by

Ent(µ) :=

{

∫

X ρ log ρdm if µ = ρm ≪ m,

∞ otherwise

is K-convex along Wasserstein geodesics in P2(X). See [AGS14b] (dealing with finite
reference measures), [AGMR15] (for the σ-finite case) and [AGS15] for various characteri-
zations of this class of spaces. We quote here the following result, which essentially derives
from the identification of Pt as the gradient flow of Ent w.r.t. the Wasserstein distance
and the contractivity properties with respect to that distance.

Proposition A.2. In RCD(K,∞) spaces (X, d,m), for all t > 0 the semigroup Pt maps
L2 ∩ L∞(X,m) to Cb(X) and if f ∈ Lip(X) ∩H1,2(X, d,m) one has

Lipa(Ptf) ≤ e−Kt
√

Pt|Df |2 pointwise in X.

B An approximation result

In this section we improve Theorem A.1 by showing that the approximating sequence can
be chosen in the “canonical” algebra A generated by the distance functions, and even in
the subalgebra Abs. The deep reason why this is possible is the fact that this is the class
of functions appearing in the Hopf-Lax formula, see (B.8).

Theorem B.1. For all f ∈ D(Ch) there exist fn ∈ Abs with fn → f in L2(X,m) and
Lipa(fn) → |Df | in L2(X,m). In particular, if H1,2(X, d,m) is reflexive, one has the
existence of fn ∈ Abs satisfying fn → f in L2(X,m) and |D(fn − f)| → 0 in L2(X,m).

Proof. The proof follows closely the strategy developed in [AGS14a]. We first build a
variant of Cheeger’s energy by restricting the approximation to functions in Abs; this
construction provides a new minimal relaxed slope, that we denote by |Df |A and that we
prove to coincide with |Df | passing through the notion of minimal 2-weak upper gradient
|Df |w. Let us outline the main steps, quoting them also from [ACDM15], whose context
is closer to the one of the present paper (indeed, in [AGS14a] more general metric measure
structures, with possibly infinite distances, are allowed).
Step 1. (Construction of ChA , |Df |A and calculus rules). For all f ∈ L2(X,m) we define

ChA (f) := inf

{

lim inf
n→∞

1

2

∫

X
Lip2

a(fn) dm : fn ∈ Abs, fn → f in L2(X,m)

}

.

It is immediate to check that ChA is a convex and L2(X,m)-lower semicontinuous func-
tional in L2(X,m), with a dense domain (here we use that Abs is dense in L2(X,m)). It
is also obvious by the definition that

Ch ≤ ChA (B.1)

where Ch is Cheeger’s functional considered in the previous section.
As in [ACDM15, Section 4], for all f ∈ D(ChA ) one can defineRSA (f) as the collection

of all functions g ∈ L2(X,m) which are larger than a weak L2(X,m) limit of Lipa(fn), with
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fn ∈ Abs and fn → f in L2(X,m). By weak L2-compactness, this set is not empty and
it is not hard to show that it is closed and convex. Its element with minimal L2(X,m)
norm is defined to be |Df |A . Since RSA (f) ⊂ RS(f) for all f ∈ D(ChA ), we can use the
pointwise minimality property of |Df | to refine (B.1) to a pointwise inequality:

|Df | ≤ |Df |A m-a.e. in X for all f ∈ D(ChA ). (B.2)

As we already mentioned in the previous section, in connection with |Df |, several
properties of |Df |A stem from the variational definition, in particular,

(a) there exist fn ∈ Abs with fn → f in L2(X,m) and Lipa(fn) → |Df |A strongly in
L2(X,m);

(b) locality on Borel sets, pointwise minimality, degeneracy and chain rule;

(c) for all g ∈ D(ChA ) where ChA has nonempty subdifferential one has

−
∫

X
f∆A g dm ≤

∫

X
|Df |A |Dg|A dm,

where −∆A g is the element with smallest norm in the subdifferential of ChA (g),
with equality if f = ϕ(g) with ϕ Lipschitz, nondecreasing, ϕ(0) = 0.

Notice that the proof of properties (b), which rests on the decomposability property
of RSA

χg1 + (1 − χ)g2 ∈ RSA (f) for all g1, g2 ∈ RSA (f), χ ∈ A , 0 ≤ χ ≤ 1,

depends on the fact that the class of functions χ ∈ A with values in [0, 1] is dense in
L∞(X, [0, 1]), w.r.t. convergence in m-measure. Here the assumption that A is a lattice
plays a role.

Because of property (a), the proof of the theorem will be achieved if we show that, for
all f ∈ D(Ch), one has f ∈ D(ChA ) and |Df |A = |Df | m-a.e. in X. Notice that, because
of (B.1) and (B.2), one has D(ChA ) ⊂ D(Ch) and |Df | ≤ |Df |A m-a.e. in X for all
f ∈ D(ChA ), so our main concern will be to prove the converse inclusion and inequality.

For the proof of this statement we can easily reduce ourselves to the case when the
support of m has finite diameter and m(X) < ∞. Indeed, notice that A contains cut-off
functions hn : X → [0, 1], n ≥ 1, with Lip(hn) ≤ 2, hn ≡ 1 in Bn−1(x̄) and hn ≡ 0 in
X \ Bn(x̄). Now, fix f ∈ D(Ch). Denoting by mn the measures χBn(x̄)m, and by Chn,
|Df |n, ChA ,n, |Df |A ,n the corresponding relaxed energies and slopes, we obviously have
f ∈ D(Chn) and |Df |n ≤ |Df| mn-a.e. in X. If we are able to show that f ∈ D(ChA ,n)
and |Df |A ,n ≤ |Df |n mn-a.e. in X for all n, we are then able to find functions fk,n ∈ Abs

with fk,n → f in L2(X,mn) as k → ∞

lim sup
k→∞

∫

X
Lip2

a(fk,n) dmn ≤
∫

X
|Df |2 dmn.

Using the inequality Lipa(hg) ≤ Lipa(g) + Lip(h)gχsupp(1−h), with h : X → [0, 1] and
Lip(h) ≤ 1, it is now immediate to build, by a diagonal argument, fkn,nhn → f in
L2(X,m) with

lim sup
n→∞

∫

X
Lip2

a(fkn,nhn) dm = lim sup
n→∞

∫

X
Lip2

a(fkn,nhn) dmn ≤
∫

X
|Df |2 dm.
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Since fkn,nhn ∈ Abs, this proves that f ∈ D(ChA ); in addition, by lower semicontinuity,
we obtain

∫

X |Df |2
A

dm ≤
∫

X |Df |2 dm, whence the equality of the relaxed slopes follows.
So, from now on, we assume m(X) < ∞ and (possibly replacing X by the support of

m) that (X, d) has finite diameter.
Step 2. (Gradient flow of ChA and computation of the energy dissipation rate). Thanks
to the convexity and lower semicontinuity properties of ChA we can define a (possibly
nonlinear) continuous semigroup Pt in L2(X,m) by considering the L2(X,m) gradient
flow of ChA , as we did in the previous section for Ch. Notice that it is the density of
D(ChA ) that enables to the define Pt on the whole of L2(X,m). Specifically, t 7→ Ptf is
locally absolutely continuous in (0,∞) and satisfies

d

dt
Ptf = ∆A (Ptf) L

1-a.e. in (0,∞).

Then, using the chain rule, an approximation argument (since z 7→ z log z is not Lipschitz)
and property (c) one can prove the entropy dissipation formula

− d

dt

∫

X
ft log ft dm =

∫

{ft>0}

|Dft|2A
ft

dm

with ft = Ptf , for all f ∈ L2(X,m) nonnegative with
∫

X f log f dm < ∞.
Notice that the sign condition is preserved by Pt, as well as the integral of f , namely

∫

X Ptf dm =
∫

X f dm. This last property crucially depends on the finiteness assumption of
m (the finiteness assumption can be relaxed to (A.1), still sufficient for the mass-preserving
property). Because of this, if f is a probability density also Ptf is a probability density
and we shall consider the path of measures

µt = ftm = Ptfm t ≥ 0. (B.3)

Step 3. (Minimal 2-weak upper gradient |Df |w and energy dissipation estimate with
|Df |w). We say that g ∈ L2(X,m) is a 2-weak upper gradient if the inequality

|f(γ(1)) − f(γ(0))| ≤
∫ 1

0
g(γ(s))|γ̇|(s) ds (B.4)

holds π-a.e. for all 2-test plans π. Recall that a 2-test plan is a probability measure π in
C([0, 1];X) concentrated on AC2([0, 1];X) and satisfying, for some C = C(π) ≥ 0,

(evt)#π ≤ Cm ∀t ∈ [0, 1]. (B.5)

Because of the non-concentration condition (B.5), the property of being a 2-weak upper
gradient is independent of the choice of the representative of g in L2(X,m); furthermore,
the class of 2-weak upper gradients is a convex closed set and we can identify, as we did
for |Df |A , the element with minimal L2(X,m) norm. This distinguished element, the so-
called minimal 2-weak upper gradient, will be denoted by |Df |w. The stability property
of 2-weak upper gradients (a variant of the so-called Fuglede’s lemma), the fact that the
asymptotic Lipschitz constant is a (2-weak) upper gradient and Theorem A.1 then give

|Df |w ≤ |Df | m-a.e. in X for all f ∈ D(Ch). (B.6)

For all probability density f0 ∈ L2(X,m) having a 2-weak upper gradient, by integrating
(B.4) with f = f0 and g = |Df0|w with respect to a suitable test plan provided by
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Lisini’s superposition theorem [L07], we obtain an estimate on the entropy dissipation
rate involving |Df0| (see [AGS14a, Lemma 5.17]):

∫

X
f0 log f0 dm −

∫

X
ft log ft dm ≤ 1

2

∫ t

0

∫

{f0>0}

|Df0|2w
f2

0

fs dm ds+
1

2

∫ t

0
|µ̇|2(s) ds (B.7)

for all t > 0. Here µt = ftm is any curve in AC2
loc([0,∞); (P(X),W2)) and |µ̇|(t) is its

metric derivative.
Using this sharper energy dissipation estimate we will prove that f ∈ D(ChA ) for all

f having a 2-weak upper gradient as well as the inequality |Df |w = |Df |A in the next,
final, step. In combination with (B.6) this provides the converse inequality to (B.2) and
then the result.
Step 4. (The equality |Df |A = |Df |w). Given h ∈ L2(X,m) having a 2-weak upper
gradient, we want to prove that h ∈ D(ChA ) and that |Dh|A = |Dh|w m-a.e. in X.
By the local property of this statement, we can consider with no loss of generality only
h ∈ L∞(X,m) with

∫

X h2 dm = 1, h ≥ c > 0 and we set f = h2. Then we consider the
path of measures µt = ftm in (B.3), noticing that still ft ≥ c2 > 0.

The refined subsolution property (B.9) of Lemma B.2 can be used together with the
integration by parts formula (d) to obtain the so-called Kuwada’s lemma (see for instance
[ACDM15, Lemma 34]), which yields µt ∈ AC2([0,∞); (P(X),W2)) and

|µ̇|(s) ≤
∫

X

|Dfs|2
A

fs
dm for L

1-a.e. s ∈ (0,∞).

This, in combination with (B.7) with f0 = f , gives
∫

X
f log f dm −

∫

X
ft log ft dm ≤ 1

2

∫ t

0

∫

X

|Df |2w
f2

fs dm ds+
1

2

∫ t

0

∫

X

|Dfs|2
A

fs
dm ds.

Hence we deduce
∫ t

0
4ChA (

√

fs) ds =
1

2

∫ t

0

∫

X

|Dfs|2
A

fs
dm ds ≤ 1

2

∫ t

0

∫

X

|Df |2w
f2

fs dm ds.

Letting t ↓ 0, taking into account the L2
loc-lower semicontinuity of ChA and the fact that

ft → f in L2(X,m), we get ChA (h) = ChA (
√
f) ≤ lim inft↓0

1
t

∫ t
0 ChA (

√
fs) ds. On the

other hand, since |Df |2w/f2 belongs to L1(X,m), the L2(X,m) convergence of fs to f
(which entails weak∗ convergence in L∞(X,m)) yields

∫

X

|Df |2
f

dm = lim
t↓0

1

t

∫ t

0

∫

X

|Df |2w
f2

fs dm ds.

In summary, we proved that h ∈ D(ChA ) and that

2

∫

X
|Dh|2A dm ≤ 1

2

∫

X

|Df |2w
f

dm = 2

∫

X
|Dh|2w dm,

where we used the chain rule once once. Taking the inequality |Dh| ≤ |Dh|A into account,
this integral inequality proves the coincidence m-a.e. in X.

Lemma B.2 (Subsolution property). If m(X) < ∞, X has finite diameter and f ∈ Cb(X),
the function

Qt(f) := inf
y∈X

f(y) +
1

2t
d

2(x, y) (B.8)

is locally Lipschitz in (0,∞) ×X and

d

dt
Qtf +

1

2
|DQtf |2A ≤ 0 L

1 × m-a.e. in (0,∞) ×X. (B.9)
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Proof. Let D = {xk} be as in (2.3). Let n ≥ 1 and define

Qn
t f(x) := min

1≤i≤n
f(xi) +

1

2t
d

2(x, xi) x ∈ X, t > 0.

Then x 7→ Qn
t f(x) ∈ A for all t > 0, Qn

t f is locally Lipschitz in (0,∞) ×X and

d

dt
Qn

t f +
1

2
Lip2

a(Qn
t f) ≤ 0 L

1 × m-a.e. in (0,∞) ×X.

The proof of this inequality is elementary, see for instance [ACDM15, Theorem 14].
In order to obtain (B.9), we notice that the density of D inX yields that the family Qn

t f
monotonically converges to Qtf from above. Given ζ(t, x) = χ(t)ψ(x), with χ ∈ C1

c (0, T )
nonnegative and ψ ∈ Cb(X), inf ψ > 0, we can pass to the limit in the inequality

∫ T

0

∫

X

(

−Qn
t f

d

dt
ζ +

ζ

2
Lip2

a(Qn
t f)

)

dm dt ≤ 0

to get
∫ T

0

∫

X

(

−Qtf
d

dt
ζ +

ζ

2
|DQtf)|2A

)

dm dt ≤ 0

which provides, by the arbitrariness of ζ, (B.9). In this limiting argument we used the
lower semicontinuity property

∫

X
ψ|Dg|2A dm ≤ lim inf

n→∞

∫

X
ψ Lip2

a(gn) dmn

whenever gn ∈ A and gn → g in L2(X,m), which is a simple consequence of the m-a.e.
minimality property of the minimal relaxed slope.
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