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Abstract. We prove a stability result for elliptic equations under general Dirichlet-Robin

boundary conditions with respect to the variation of the domain under the Hausdorff com-

plementary topology. As a by-product, under the additional assumption of the convergence of
the perimeters, we obtain a stability result for the classical Robin-Laplacian.
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1. Introduction

In the present paper we will study the effect of domain perturbation on elliptic problems with
general Dirichlet-Robin boundary conditions. To be precise, we will focus on problems of the form

(1.1)

{
−∆u = f in Ω
∂u
∂ν + µu = 0 on ∂Ω.

Here Ω ⊂ RN is an open bounded set with Lipschitz boundary, ν denoting the exterior normal,
f ∈ L2(Ω), and µ is a Borel measure with support on ∂Ω. The weak formulation of the problem
is as usual ∫

Ω

∇u · ∇v dx+

∫
∂Ω

uv dµ =

∫
Ω

fu dx

for every admissible test function v. The natural functional framework for (1.1) is given by the
space

H1(Ω) ∩ L2(∂Ω;µ) := {u ∈ H1(Ω) : trace(u) ∈ L2(∂Ω;µ)}.
In order for the space to be well defined and for the problem to be well posed (see Section 3) we
require that the measure µ is such that

µ is absolutely continuous with respect to c2-capacity

and

µ ≥ cHN−1b∂Ω,

where c > 0 and HN−1b∂Ω denotes the restriction of (N − 1)-Hausdorff measure to ∂Ω, that is
the usual area measure on the boundary (see Section 2 for a precise definition of c2-capacity).

The choice of the measure µ can lead to Robin as well as Dirichlet boundary conditions. Indeed,
if we require µ to be of the form

µ := βHN−1b∂Ω
1
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with β > 0, the functional space involved is simply H1(Ω) and we obtain the classical Robin
boundary condition (called also Fourier condition)

(1.2)
∂u

∂ν
(x) + βu(x) = 0 for HN−1-a.e. x ∈ ∂Ω.

Variable Robin boundary conditions can be obtained by replacing β with a function defined on
∂Ω. If we choose µ to be infinite on ∂Ω and zero outside, the functional space reduces to H1

0 (Ω)
and the problem involves thus zero boundary conditions. Both Dirichlet and Robin conditions on
different parts of the boundary can be handled under appropriate choices for µ.

Our main concern will be the asymptotic behaviour of solutions un of the elliptic problems

(1.3)

{
−∆un = f in Ωn
∂un

∂ν + µnun = 0 on ∂Ωn,

when the Lipschitz domains Ωn, contained in a fixed open and bounded box D ⊂ RN , approach in
a suitable sense a limit domain Ω: here f ∈ L2(D) while, as above, µn is a Borel measure supported
on ∂Ωn. More precisely, we will be interested in stability results, that is if a limit measure µ on
∂Ω is determined in such that un approaches the solution of the corresponding elliptic problem
(1.1).

The case of Dirichlet boundary conditions has been extensively studied in the literature. The
asymptotic behaviour of the solutions of (1.3) is captured by a relaxed Dirichlet problem as de-
scribed in [8, 9]. If the limit problem is of Dirichlet type on the limit domain Ω (but this is not the
case in general), the Ωn are said to approach Ω in the sense of γ-convergence of domains: this kind
of convergence is compatible, from a geometrical point of view, with highly singular perturbations
of the limit domain. We refer the reader to [3, Chapter 4] for a survey on this topic.

The case of classical Robin boundary conditions, i.e., for µn = βHN−1b∂Ωn, has been addressed
in [10] (see as well [12, Chapter 1, Section 6] for a survey of the topic): in that paper, the
authors consider the case in which ∂Ωn can be parametrized locally on ∂Ω, the convergence of the
boundaries being uniform, and prove that un approaches the solution of

(1.4)

{
−∆u = f in Ω
∂u
∂ν + βg(x)u = 0 on ∂Ω,

where the function g is connected to the limit on ∂Ω of the area measures on ∂Ωn, that is, from
a geometrical point of view, on the oscillations of ∂Ωn. They show that g can be infinite for very
rough oscillations, that is the limit problem can exhibit Dirichlet boundary conditions.

In the present paper we will consider (see Section 2 for precise definitions)

(1.5) Ωn → Ω in the Hausdorff complementary topology, |Ωn| → |Ω|,

and associated Borel measures µn such that

(1.6)

{
µn is concentrated on ∂Ωn and absolutely continuous with respect to c2-capacity,

µn ≥ cHN−1b∂Ωn

with c independent of n. From a geometrical point of view, approximation (1.5) does not require
the “equi-graph” condition of [10], and it is compatible with singular perturbations like for exam-
ples the formations of holes concentrating at the boundary or that of sharp spikes with vanishing
volume. Moreover condition (1.6) takes into account possible variations of the Dirichlet-Robin
conditions on the approximating domains.

Our main result (Theorem 3.1) states that problems (1.3) are stable: we show that there exists
a limit measure µ supported on ∂Ω satisfying the analogue of (1.6) such that un approaches the
solution u of (1.1) (the type of convergence takes into account the fact that the functions are
defined on different domains).

As a by-product of this stability result, we obtain a stability result for classical Robin boundary
conditions: indeed we show in Theorem 3.3 that assuming in addition that

(1.7) HN−1(∂Ωn)→ HN−1(∂Ω),
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then the limit measure is given by µ = βHN−1b∂Ω, i.e., the limit problem is of Robin type.
From a geometrical point of view, condition (1.7) prohibits oscillations of the boundaries in the
convergence Ωn → Ω, which are responsible for the variation of the Robin conditions in agreement
with the results of [10].

The main stability results are complemented by the convergence of the associated resolvent
operators (see Theorem 3.2 and Corollary 3.4): in particular we show that under the same as-
sumptions we have convergence of the whole spectrum of eigenvalues.

Concerning the proofs of the results, our approach is based on the study of the functionals

(1.8) Jn(v) :=

∫
Ωn

|∇v|2 dx+

∫
∂Ωn

v2 dµn − 2

∫
Ωn

fv dx

naturally associated to problem (1.3): the functions un are indeed minimizers of Jn such that
(Lemma 4.4 and Remark 4.5)

(1.9)

∫
Ωn

[|∇un|2 + u2
n] dx+

∫
∂Ωn

u2
n dHN−1 ≤ C

for some C independent of n.
In order to compare the Jn in a unique functional framework, we extend un to the entire box

D by setting them equal to zero outside Ωn, and denote it by un1Ωn
. In this way the function is

simply an element of L2(D) since jumps can appear across ∂Ωn. It turns out (Lemma 4.2) that
up to a subsequence

(1.10) un1Ωn
→ u1Ω strongly in L2(D)

for some u ∈ H1(Ω).
In view of (1.10), we study the asymptotic behaviour of the functionals in the sense of Γ-

convergence (see Section 2) under the L2-topology. More precisely we will consider a localized
version of (1.8)

Fn : L2(D)×A(D)→ [0,+∞]

given by

(1.11) Fn(u,A) =

{ ∫
Ωn∩A |∇u|

2dx+
∫
∂Ωn∩A u

2dµn if u ∈ H1(Ωn ∩A),

+∞ otherwise.

In Theorem 3.6 we show that the variational limit F of (1.11) (the precise notion adapted to
localized functionals is that of Γ-convergence, see Section 2) can be described by means of a Borel
measure µ supported on ∂Ω, in such a way that (thanks to (1.10)) u is a minimizer of

J(v) :=

∫
Ω

|∇v|2 dx+

∫
∂Ω

v2 dµ− 2

∫
Ω

fv dx,

i.e., it is the solution of (1.1). The convergence of the volume measures in (1.5) is crucial to study
the structure of F , in particular, to prove that the measure µ is supported on ∂Ω.

Let us remark that the L2(D)-compactness (1.10) cannot be obtained using extension operators
from H1(Ωn) to H1(D): indeed this would be the case under the assumption that Ωn are “equi-
Lipschitz”, which is not entailed by (1.5). The key observation to infer the compactness is that,
in view of inequality (1.9), u2

n1Ωn belongs to the space BV (D) of functions of bounded variation
(see Section 2), with a natural uniform bound on the associated norm. Convergence (1.10) is thus
a consequence of the compact embedding properties of BV into Lebesgue spaces.

The connection between Robin boundary conditions and spaces of functions of bounded varia-
tion (and with suitable free discontinuity functionals) has been exploited recently in [2, 4] to de-
velop a variational approach to the proof of the Faber-Krahn inequality for the Robin-Laplacian,
and in [5] to study shape optimization problems under Robin conditions.

The paper is organized as follows. After some preliminaries collected in Section 2, we state
the main results in Section 3. The proofs of the stability results are contained in Section 4, while
Section 5 is devoted to the proof of Theorem 3.6 concerning the asymptotic behaviour of the
functionals Fn which is pivotal for our analysis.
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2. Notation and Preliminaries

In this section we introduce the basic notation and recall some notions employed in the rest
of the paper. If E ⊆ RN , we will denote with |E| its N -dimensional Lebesgue measure, and by
HN−1(E) its (N − 1)-dimensional Hausdorff measure: we refer to [14, Chapter 2] for a precise
definition, recalling that for sufficiently regular sets HN−1 coincides with the usual area measure.
Moreover, we denote by Ec the complementary set of E, and by 1E its characteristic function,
i.e., 1E(x) = 1 if x ∈ E, 1E(x) = 0 otherwise.

If A ⊆ RN is open and 1 ≤ p ≤ +∞, we denote by Lp(A) the usual space of p-summable
functions on A with norm indicated by ‖ · ‖p. H1(A) will stand for the Sobolev space of functions
in L2(A) whose gradient in the sense of distributions belongs to L2(A,RN ). Finally Mb(A;RN )
will denote the space of RN -valued Radon measures on A, which can be identified with the dual
of RN -valued continuous functions on A vanishing at the boundary.

Hausdorff complementary topology on open sets. The family K(RN ) of closed sets in RN
can be endowed with the Hausdorff metric dH defined by

dH(K1,K2) := max

{
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}
with the conventions dist(x, ∅) = +∞ and sup ∅ = 0, so that dH(∅,K) = 0 if K = ∅ and
dH(∅,K) = +∞ if K 6= ∅.

In order to study the behaviour of Robin problems under general domain variations, we will
use the Hausdorff complementary topology on the family of open sets of RN which is defined as
follows. Let (Ωn)n∈N be a sequence of open sets in RN . We say that Ωn converges to the open set
Ω ⊆ RN in the Hausdorff complementary topology and write

Ωn
Hc

→ Ω

if for every closed ball B ⊆ RN we have

B ∩ Ωcn → B ∩ Ωc in the Hausdorff metric on K(RN ).

Γ-convergence. Let us recall the definition of De Giorgi’s Γ-convergence in metric spaces: we
refer the reader to [6] for an exhaustive treatment of this subject. Let (X, d) be a metric space.
We say that Fn : X → R Γ-converges to F : X → R (as n → +∞) if for all u ∈ X the following
items hold true.

(i) (Γ-liminf inequality) For every sequence (un)n∈N converging to u in X,

lim inf
n

Fn(un) ≥ F (u).

(ii) (Γ-limsup inequality) There exists a sequence (un)n∈N converging to u in X, such that

lim sup
n

Fn(un) ≤ F (u).

The function F is called the Γ-limit of the sequence (Fn)n∈N (with respect to d), and we write
F = Γ− limn Fn. The following result holds true (see [6, Corollary 7.20 and Theorem 8.5])

Theorem 2.1. Let X be a separable and metric space, and let Fn : X → R.

(a) There exist F : X → R and a subsequence (Fnk
)k∈N such that

Fnk

Γ−→ F.

(b) If xn ∈ X is a minimizer of Fn such that xn → x ∈ X, then x is a minimizer of F .

Let D ⊆ RN be open, and let A(D) denote the family of open subsets of D. We say that
F : X ×A(D)→ R is increasing if

F (u,A) ≤ F (u,B)

for every u ∈ X and A,B ∈ A(D) with A ⊆ B.
The variational convergence for this kind of functionals is called Γ̄-convergence [6, Definitions

16.2 and 15.5].
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Definition 2.2 (Γ-convergence). Let Fn : X × A(D) → R be an increasing functional defined
on X ×A(D). We say that the sequence (Fn)n∈N Γ-converges to F (as n→ +∞) if

F (·, A) = sup
B
F ′(·, B) = sup

B
F ′′(·, B),

where the supremum is taken over the family of sets B ∈ A(D) such that B ⊆ A, and

F ′(u,B) := inf{lim inf
n

Fn(un, B) : un → u} and F ′′(u,B) := inf{lim sup
n

Fn(un, B) : un → u}.

Notice that the Γ-limit F is by definition increasing (with respect to the set inclusion) and
lower semicontinuous. The following compactness result holds true [6, Theorem 16.9].

Proposition 2.3. Let X be a separable metric space. Then every sequence (Fn)n∈N of increasing
functionals from X ×A(D) into R has a Γ-convergent subsequence.

It turns out that Γ-convergence is equivalent to the existence of a rich set R ⊆ A(D) such that

(2.1) ∀B ∈ R : Fn(·, B)
Γ−→ F (·, B).

Recall that a rich family R ⊆ A(D) is such that for every A1, A2 ∈ A(D) with A1 ⊂⊂ A2, there
exists B ∈ R with A1 ⊂⊂ B ⊂⊂ A2. In particular we have

(2.2) F (u,A) = sup
B⊂⊂A,B∈R

F (u,B).

Capacity. Let E ⊆ RN . We set

c2(E) := inf

{∫
RN

|∇u|2 + |u|2 dx : u ∈ H1(RN ), u ≥ 1 a.e. on E

}
.

For the properties of c2-capacity, and its relevance in the theory of Sobolev spaces, we refer the
reader to [14].

We say that a property P(x) holds c2-quasi everywhere (abbreviated c2-q.e.) on a set E ⊆ RN
if it holds for every x ∈ E except a subset B of E such that c2(B) = 0. A Borel measure µ is said
to be absolutely continuous with respect to c2-capacity if µ(B) = 0 for every Borel set B such
that c2(B) = 0.

If A ⊆ RN is open, every function u ∈ H1(A) admits a quasicontinuous representative, i.e., a
representative ũ such that for every ε > 0 there exists an open set Bε with c2(Bε) < ε and ũ|A\Bε

is continuous. The following fact holds true: if un → u strongly in H1(A), we have that up to a
subsequence ũn → ũ c2-q.e. on A.

Functions of bounded variation. If A ⊆ RN is open, we say that u ∈ BV (A) if u ∈ L1(A) and
its derivative in the sense of distributions is a finite Radon measure on A, i.e., Du ∈Mb(A;RN ).
BV (A) is called the space of functions of bounded variation on A. BV (A) is a Banach space under
the norm ‖u‖BV (A) := ‖u‖L1(A) + ‖Du‖Mb(A;Rd). We call |Du|(A) := ‖Du‖Mb(A;Rd) the total
variation of u. We refer the reader to [1] for an exhaustive treatment of the space BV .

If u ∈ BV (A), then the measure Du can be decomposed canonically (and uniquely) as

Du = Dau+Dju+Dcu.

The measure Dau is the absolutely continuous part (with respect to the Lebesgue measure) of the
derivative: the associated density is denoted by ∇u ∈ L1(A;RN ). The measure Dju is the jump
part of the derivative and it turns out that

Dju = (u+ − u−)⊗ νHN−1bJu.
Here Ju is the jump set of u, ν is the normal to Ju, while u± are the two traces of u on the jump
set. Finally Dcu is called the Cantor part of the derivative, and it vanishes on sets which are
σ-finite with respect to HN−1.

We will use the following result.
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Theorem 2.4. Let A ⊆ RN be open, bounded and with a Lipschitz boundary. The following items
hold true.

(a) Compact embedding. The space BV (A) is embedded in Lp(A) for every 1 ≤ p ≤ N
N−1 .

The immersion is compact if p < N
N−1 .

(b) Lower semicontinuity of the total variation. If (un)n∈N is bounded in BV (A) and un → u
strongly in L1(A), then

|Du|(A) ≤ lim inf
n
|Dun|(A).

3. The main results

Let us consider Ω ⊆ RN open, bounded and with a Lipschitz boundary, and let µ be a Borel
measure such that

(3.1)

{
µ is concentrated on ∂Ω and absolutely continuous with respect to c2-capacity,

µ ≥ cHN−1b∂Ω ,

for some c > 0. We are interested in the following elliptic problem

(3.2)

{
−∆u = f in Ω
∂u
∂ν + uµ = 0 on ∂Ω,

where f ∈ L2(Ω). The weak formulation of the problem involves the Hilbert space

H1(Ω) ∩ L2(∂Ω;µ) := {u ∈ H1(Ω) : u|∂Ω ∈ L2(∂Ω;µ)}

which is well defined since the measure µ vanishes on sets with zero c2-capacity. As usual, we say
that u ∈ H1(Ω) ∩ L2(∂Ω;µ) is a solution of the problem if for every v ∈ H1(Ω) ∩ L2(∂Ω;µ) we
have ∫

Ω

∇u · ∇v dx+

∫
∂Ω

uv dµ =

∫
Ω

fv dx.

In view of the second property of µ in (3.1), it is readily seen that the elliptic problem admits a
unique solution thanks to the Lax-Milgram lemma: indeed the associated bilinear form is contin-
uous and such that∫

Ω

|∇u|2dx+

∫
∂Ω

u2 dµ ≥
∫

Ω

|∇u|2dx+ c

∫
∂Ω

u2 dHN−1 ≥ C‖u‖2H1(Ω)

for some constant C > 0 (the middle term given a norm equivalent to the standard one on H1(Ω)):
hence it is also coercive on H1(Ω) ∩ L2(∂Ω;µ).

We are interested in the behaviour of the solutions of problem (3.2) under the variation of the
domain Ω and of the measure µ.

Let us fix D ⊂ RN open and bounded, and let Ωn,Ω ⊂⊂ D be open and Lipschitz domains
such that

(3.3) Ωn
Hc

→ Ω and |Ωn| → |Ω|.

Let (µn)n∈N be a sequence of Borel measures in D such that

(3.4)

{
µn is concentrated on ∂Ωn and absolutely continuous with respect to c2-capacity,

µn ≥ cHN−1b∂Ωn

with c independent of n.
The main result of the papers is the following: recall that for u defined on E ⊆ D, we denote

with u1E the function on D extended to zero outside E.

Theorem 3.1 (Domain perturbation for generalized Robin problems). Let D ⊂ RN
be open and bounded, and let Ωn,Ω ⊂⊂ D be open and Lipschitz domains satisfying (3.3). Let
(µn)n∈N be a sequence of Borel measures on D satisfying (3.4).
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There exists a subsequence (still denoted with the same index) and a Borel measure µ on D
satisfying (3.1) such that if for f ∈ L2(D) we let un ∈ H1(Ωn) be the solution to

(3.5)

{
−∆un = f in Ωn
∂un

∂ν + unµn = 0 on ∂Ωn,

then

(3.6) un1Ωn
→ u1Ω strongly in L2(D)

and

(3.7) ∇un1Ωn
⇀ ∇u1Ω weakly in L2(D;RN ),

where u ∈ H1(Ω) is the solution to (3.2). Moreover

(3.8) lim
n

[∫
Ωn

|∇un|2 dx+

∫
∂Ωn

u2
n dµn

]
=

∫
Ω

|∇u|2 dx+

∫
∂Ω

u2 dµ.

The previous stability result is fundamental to obtain the convergence of the resolvent operators
and then of the associated spectra. Let us consider the operator

(3.9) RΩn,µn : L2(D)→ L2(D)

defined by

(3.10) RΩn,µn(f) := un1Ωn ,

where un ∈ H1(Ωn) is the solution of the elliptic problem (3.5). Recall that the complete spectrum
of the resolvent operators RΩn,µn is defined as

(3.11) λk(Ωn, µn) := inf
H∈Sn

k

max
u∈H

∫
Ωn
|∇u|2 dx+

∫
∂Ωn

u2 dµn∫
Ωn
u2 dx

,

where Snk ⊆ H1(Ωn) ∩ L2(∂Ωn;µn) denotes the family of k-dimensional subspaces, k ≥ 1.
The following result holds true.

Theorem 3.2 (Convergence of the resolvent operators). Under the assumptions of Theorem
3.1

(3.12) RΩn,µn → RΩ,µ in the operator norm.

In particular, for every k ≥ 1 we have

lim
n
λk(Ωn, µn) = λk(Ω, µ).

Given β > 0, the choice

(3.13) µn := βHN−1b∂Ωn

leads to an elliptic problem under classical Robin boundary conditions with coefficient β. The
second fundamental result of the paper is the following.

Theorem 3.3 (Stability of classical Robin problems). Let D ⊂ RN be open and bounded,
and let Ωn,Ω ⊂⊂ D be open and Lipschitz domains satisfying (3.3) and

(3.14) HN−1(∂Ωn)→ HN−1(∂Ω).

Given f ∈ L2(D) and β > 0, let un ∈ H1(Ωn) be the solution of

(3.15)

{
−∆un = f in Ωn,
∂un

∂ν + βun = 0 on ∂Ωn.

Then

(3.16) un1Ωn
→ u1Ω strongly in L2(D)

and

(3.17) ∇un1Ωn
→ ∇u1Ω strongly in L2(D;RN ),
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where u ∈ H1(Ω) is the solution to

(3.18)

{
−∆u = f in Ω
∂u
∂ν + βu = 0 on ∂Ω.

Finally

(3.19) lim
n

∫
∂Ωn

u2
n dHN−1 =

∫
∂Ω

u2 dHN−1.

Let us denote by RΩn,β and λk(Ωn, β) the resolvent operators and the eigenvalues associated to
(3.15) according to (3.10) and (3.11) with the choice (3.13) for µn. We have the following result.

Corollary 3.4. Under the assumptions of Theorem 3.3

(3.20) RΩn,β → RΩ,β in the operator norm.

In particular, for every k ≥ 1 we have

lim
n
λk(Ωn, β) = λk(Ω, β).

In order to prove the previous stability results, and more precisely to deal with the general
variation of the domains given by the convergence in the Hausdorff complementary topology, we
employ a variational approach based on Γ-convergence.

Let A(D) be the class of all open subsets of D. We will consider the localized functionals

Fn : L2(D)×A(D)→ [0,+∞]

given by

(3.21) Fn(u,A) =

{ ∫
Ωn∩A |∇u|

2dx+
∫
∂Ωn∩A u

2dµn if u ∈ H1(Ωn ∩A),

+∞ otherwise.

Remark 3.5. The trace term in the previous expression is defined in the following way.

(a) Since Ωn is Lipschitz regular, for every x̄ ∈ ∂Ωn ∩A we can find r > 0 such that

Br(x) ∩ Ωn = Br(x) ∩ Egn
where Egn = {(x′, xN ) ∈ RN−1 × R : xN ≤ gn(x′)} for a suitable Lipschitz function gn :
RN−1 → R. Reducing r if necessary, we may assume Br(x) ⊂ A. Hence u ∈ H1(Ωn ∩ A)
entails that u ∈ H1(Br(x) ∩ Egn).

(b) In view of point (a), it turns out that a value of u on ∂Ωn ∩ A is well defined up to sets
negligible with respect to c2-capacity: it is sufficient to multiply u by a smooth cut-off
functions in Br(x̄), extend to H1(RN ) and consider the restriction to ∂Ωn ∩Br(x̄) near x̄
of the associated c2-quasicontinuous representative.

Notice that if µn is in addition absolutely continuous with respect to HN−1b∂Ωn (as in the case of
classical Robin problems), the value of u involved is the usual one in the sense of traces (defined
again locally thanks to point (a)). Notice finally that for u ∈ H1(Ωn ∩A) the trace term in (3.21)
is not necessarily finite.

The following result will be pivotal for our analysis: it shows that the limit of the energies Fn
in the variational sense of Γ-convergence maintains the same structure at least on the subspace
H1(D): to deal with the localized functionals, we employ the notion of Γ̄-convergence (see Section
2).

Theorem 3.6 (The Γ̄-limit of the energies). Let D ⊂ RN be open and bounded, let Ωn,Ω ⊂⊂
D be open and Lipschitz domains satisfying (3.3). Let (µn)n∈N be a sequence of Borel measures
on D satisfying (3.4), and let Fn be the functionals defined in (3.21).

There exist F : L2(D)×A(D)→ [0,+∞] (local with respect to the second variable) and a Borel
measure µ satisfying (3.1) such that up to a subsequence (still denoted with the same index)

Fn
Γ→ F in the strong topology of L2(D),
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with

F (u,A) =

∫
Ω∩A
|∇u|2 dx+

∫
∂Ω∩A

u2dµ

for every u ∈ H1(D) and A ∈ A(D) (the trace value of u is defined according to Remark 3.5).

The proof of the results proceeds as follows. On the basis of Theorem 3.6, we will prove the
stability results for the generalized and classical Robin problems in Section 4. We complete the
analysis with the proof of Theorem 3.6 in Section 5.

4. Proof of the stability results

This section is devoted to the proof of the main stability results of the paper. More precisely,
we collect some technical lemmas in Subsection 4.1. The proofs of Theorem 3.1 and of Theorem
3.2 are given in Subsection 4.2, while the stability for the classical Robin problems is studied in
Subsection 4.3.

The starting point of our analysis is given by Theorem 3.6, whose proof is postponed to Section
5. Let us thus consider the functionals

Fn : L2(D)×A(D)→ [0,+∞]

given by (3.21). Thanks to Theorem 3.6 we have up to a subsequence (still denoted with the same
index)

(4.1) Fn
Γ→ F in the strong topology of L2(D),

where F : L2(D)×A(D)→ [0,+∞] can be represented as

(4.2) F (u,A) =

∫
A∩Ω

|∇u|2 dx+

∫
∂Ω∩A

u2 dµ

for every u ∈ H1(D) and A ∈ A(D). Here µ is a Borel measure supported on ∂Ω which satisfies
(3.1). Moreover for every u, v ∈ L2(D) and A ∈ A(D)

(4.3) u = v a.e. on A =⇒ F (u,A) = F (v,A).

4.1. Some technical lemmas. The following result will be used several times.

Lemma 4.1. Let D ⊂ RN be open and bounded and let Ω,Ωn ⊂⊂ D be open with

Ωn
Hc

→ Ω and |Ωn| → |Ω|.

The following items hold true.

(a) We have

(4.4) 1Ωn → 1Ω strongly in L1(D).

(b) Let un ∈ H1(Ωn) be such that∫
Ωn

[|∇un|2 + u2
n] dx ≤ C

for some C independent of n. Then, up to a subsequence, there exists u ∈ H1(Ω) such
that

un1Ωn
⇀ u1Ω weakly in L2(D)

and

∇un1Ωn
⇀ ∇u1Ω weakly in L2(D;RN ).

Proof. Let us start with point (a). It suffices to prove that

(4.5) 1Ωn
→ 1Ω strongly in L2(D).

There exists a subsequence such that

1Ωnk
⇀ f weakly in L2(D),
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where f ∈ L2(D) is such that f ≥ 0. We have f = 1 on Ω. Indeed, if ϕ ∈ Cc(Ω), then its support
is contained in Ωn for n large enough in view of the convergence in the Hausdorff complementary
topology, so that ∫

Ω

fϕ dx =

∫
D

fϕ dx = lim
k

∫
Ωnk

ϕdx =

∫
Ω

ϕdx.

We can thus write f = 1Ω + g1D\Ω. From the lower semicontinuity of the norms, and in view of
the convergence of the measures we may write

|Ω|+
∫
D\Ω

g2 dx = ‖f‖2L2(D) ≤ lim inf
k
|Ωnk
| = |Ω|

so that f = 1Ω. Since f is independent of the chosen subsequence, convergence (4.5) follows.
Let us come to point (b). Up to a subsequence, there exist v ∈ L2(D) and Φ ∈ L2(D;RN ) such

that
un1Ωn

⇀ v weakly in L2(D)

and
∇un1Ωn

⇀ Φ weakly in L2(D;RN ).

The result follows if we prove that v = u1Ω for some u ∈ H1(Ω), with Φ = ∇u1Ω.
In view of point (a) for every g ∈ L2(D) we have∫

D

vg dx = lim
n

∫
D

un1Ωn
g1Ωn

dx =

∫
D

vg1Ω dx

so that v = v1Ω. The same argument shows that Φ = Φ1Ω.
Let us call u the restriction of v to Ω, and let ϕ ∈ C1

c (Ω). Since ϕ ∈ C1
c (Ωn) for n large, we

may write for i = 1, . . . , N∫
Ω

u∂iϕdx = lim
n

∫
Ωn

un∂iϕdx = − lim
n

∫
Ωn

∂iun · ϕdx = −
∫

Ω

Φiϕdx.

We conclude that ∇u = Φ on Ω: this yields that u ∈ H1(Ω), and the proof of point (b) is
concluded. �

We will need the following stronger version of the previous lemma involving a control on some
energies of Robin type at the boundary of the domains Ωn: in order for these energies to be well
defined, we assume the domains to have a Lipschitz boundary.

Lemma 4.2. Let D ⊂ RN be open and bounded, and let Ω,Ωn ⊂⊂ D be open, Lipschitz with

Ωn
Hc

→ Ω and |Ωn| → |Ω|.
Let un ∈ H1(Ωn) be such that

(4.6)

∫
Ωn

(|∇un|2 + u2
n) dx+

∫
∂Ωn

u2
n dHN−1 ≤ C

for some C independent of n. Then, up to a subsequence, there exists u ∈ H1(Ω) such that

un1Ωn
→ u1Ω strongly in L2(D),

∇un1Ωn
⇀ ∇u1Ω weakly in L2(D;RN )

and ∫
∂Ω

u2 dHN−1 ≤ lim inf
n

∫
∂Ωn

u2
n dHN−1.

Proof. By Lemma 4.1 up to a subsequence

un1Ωn
⇀ u1Ω weakly in L2(D)

and

(4.7) ∇un1Ωn
⇀ ∇u1Ω weakly in L2(D;RN ),

for a some u ∈ H1(Ω). By the compact embedding of H1 into L2, we have that for A ⊂⊂ Ω

un → u strongly in L2(A)
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since A ⊂⊂ Ωn for n large, thanks to the convergence in the Hausdorff complementary topology.
Taking into account (4.4), we may assume that, up to a further subsequence,

(4.8) un1Ωn
→ u1Ω a.e. in D.

Let us consider the functions given by

vn := u2
n1Ωn

and v := u21Ω.

In view of [1, Theorem 3.87] we have that vn and v belong to BV (D) with derivatives given by
the measures (notice that jumps can appear at the boundary of Ωn and Ω)

Dvn = Davn +Djvn = 2un∇un1Ωn
dx− u2

nν∂Ωn
HN−1b∂Ωn

and

Dv = Dav +Djv = 2u∇u1Ω dx− u2ν∂ΩHN−1b∂Ω

respectively. In particular we have

(4.9) |Dvn|(D) =

∫
Ωn

2|un∇un| dx+

∫
∂Ωn

u2
n dHN−1 ≤ ‖un‖2H1(Ωn) +

∫
∂Ωn

u2
n dHN−1 ≤ C

thanks to inequality (4.6).
Up to reducing D, it is not restrictive to assume that it has Lipschitz boundary. In view of the

compact embedding of BV (D) into L1(D) we deduce that up to a further subsequence

(4.10) vn → w strongly in L1(D)

for some w ∈ BV (D), the convergence being also almost everywhere. Recalling (4.8), we get
w = v = u21Ω so that there is no need of a further subsequence and

(4.11) u2
n1Ωn

→ u21Ω strongly in L1(D).

We immediately deduce that

(4.12) un1Ωn → u1Ω strongly in L2(D).

Indeed we can use dominated convergence to infer

lim
n

∫
D

|un1Ωn
− u1Ω|2 dx = 0

thanks to (4.8) and (4.11).
In view of (4.9) and of (4.10) (since w = v = u21Ω) we deduce

Dvn
∗
⇀ Dv weakly∗ in Mb(D;RN ).

By (4.12) and (4.7) we have

un∇un1Ωn
⇀ u∇u1Ω weakly in L1(D;RN ),

which means Davn
∗
⇀ Dav weakly∗ in Mb(D;RN ). As a consequence

Djvn
∗
⇀ Djv weakly∗ in Mb(D;RN ),

so that, from the lower semicontinuity of the associated total variations, we get∫
∂Ω

u2 dHN−1 ≤ lim inf
n

∫
∂Ωn

u2
n dHN−1,

and the proof of the proposition is complete. �
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4.2. The stability results for the general problem. Let us start with the following variational
characterization of the solution of the elliptic problem(3.2).

Lemma 4.3. The solution of the elliptic problem (3.2) is the minimizer of the functional J :
H1(Ω)→ R ∪ {+∞} given by

(4.13) J(v) :=

∫
Ω

|∇v|2 dx+

∫
∂Ω

v2 dµ− 2

∫
Ω

fv dx.

Proof. The solution is readily seen to be a minimizer of the functional J . Viceversa, if u minimizes
J on H1(Ω), by comparing with a function ϕ ∈ C1

c (Ω) we see that J(u) < +∞, so that the trace
on ∂Ω belongs to L2(∂Ω;µ): hence u ∈ H1(Ω)∩L2(∂Ω;µ). Then the Euler-Lagrange equation for
variations in H1(Ω) ∩ L2(∂Ω;µ) provides the weak formulation of (3.2). �

The following lemma will be useful.

Lemma 4.4. Under the assumption of Theorem 3.1 we have

sup
n

[∫
Ωn

(|∇un|2 + u2
n) dx+

∫
∂Ωn

u2
n dµn

]
< +∞.

Proof. The proof is a consequence of the Faber-Krahn’s inequality for the first eigenvalue of the
Robin-Laplacian [11]: if we set for every open bounded set with Lipschitz boundary A ⊂ RN

λR1 (A) := min
v∈H1(A)

∫
A
|∇v|2 dx+

∫
∂A
v2 dHN−1∫

A
v2 dx

,

then

(4.14) λR1 (A) ≥ λR1 (B)

where B is a ball such that |A| = |B|.
Indeed, taking un as a test function in problem (3.5), we first get

(4.15)

∫
Ωn

|∇un|2dx +

∫
∂Ωn

u2
ndµn =

∫
Ωn

fun dx =

∫
D

fun1Ωndx ≤ ‖f‖L2(D)‖un‖L2(Ωn).

By assumption (3.4) on µn and the Faber-Krahn inequality (4.14) it follows∫
Ωn

|∇un|2 dx+

∫
∂Ωn

|un|2 dµn ≥
∫

Ωn

|∇un|2 dx+ c

∫
∂Ωn

|un|2 dHN−1

≥ λR1 (Ωn, c)

∫
Ωn

|un|2 dx ≥ λR1 (Bn, c)

∫
Ωn

|un|2 dx,

where Bn is a ball with the same measure of Ωn. Since |Bn| → |Ω| there exists λ̄ > 0 such that
λR1 (Bn, c) ≥ λ̄, so that

(4.16) λ̄

∫
Ωn

u2
n dx ≤

∫
Ωn

|∇un|2 dx+

∫
∂Ωn

|un|2 dµn.

Gathering (4.15) and (4.16) we obtain∫
Ωn

|∇un|2dx+

∫
∂Ωn

u2
ndµn ≤ C

for some C > 0. The conclusion follows using again (4.16). �

Remark 4.5. In view of the previous proof, there exists a constant C independent of n such that∫
Ωn

[|∇un|2 + u2
n] dx+

∫
∂Ωn

u2
ndHN−1 ≤ C‖f‖L2(D)‖un‖L2(Ωn).

We are now in a position to prove the first stability result.
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Proof of Theorem 3.1. By Lemma 4.4 and assumption (3.4) on µn we deduce

sup
n

[∫
Ωn

(|∇un|2 + u2
n) dx+ c

∫
∂Ωn

u2
n dHN−1

]
≤ sup

n

[∫
Ωn

(|∇un|2 + u2
n) dx+

∫
∂Ωn

u2
n dµn

]
< +∞.

By Lemma 4.2 there exists a subsequence (unk
)k∈N such that

(4.17) unk
1Ωnk

→ u1Ω strongly in L2(D)

and

∇unk
1Ωnk

⇀ ∇u1Ω weakly in L2(D;RN ),

for some u ∈ H1(Ω).
In view of (4.1), we can choose A ⊂ D open with Ω ⊂⊂ A such that

Fn(v,A)− 2

∫
Ωn

fv dx
Γ→ F (v,A)− 2

∫
Ω

fv dx,

since the integral term involving f is a continuous (with respect to the strong topology of L2(D))
perturbation of Fn(·, A), so that the Γ-convergence is preserved. Thanks to (4.17), the general
properties of Γ-convergence entail that u1Ω is a minimizer of

v 7→ F (v,A)− 2

∫
Ω

fv dx.

Since Ω is Lipschitz, we can extend u to û ∈ H1(D). Since u1Ω and û coincide on Ω ∩ A = Ω,
thanks to the locality property (4.3) we can write

F (u,A) = F (û, A),

so that using the representation (4.2) we get

F (u,A) =

∫
Ω

|∇û|2 dx+

∫
∂Ω

û2 dµ =

∫
Ω

|∇u|2 dx+

∫
∂Ω

u2 dµ.

We conclude that u ∈ H1(Ω) is a minimizer of

v 7→
∫

Ω

|∇v|2 dx+

∫
∂Ω

v2 dµ− 2

∫
Ω

fv dx

so that by Lemma 4.3 it is the solution of problem (3.2), hence it is uniquely determined. In
particular the entire sequence (un)n∈N satisfies (3.6) and (3.7). Finally the Γ-convergence ensures
also that

lim
n

[∫
Ωn

|∇un|2 dx+

∫
∂Ωn

u2
n dµn − 2

∫
Ωn

fun dx

]
=

∫
Ω

|∇u|2 dx+

∫
∂Ω

u2 dµ− 2

∫
Ω

fu dx.

Since

lim
n

∫
Ωn

fun dx =

∫
Ω

fu dx,

equation (3.8) holds true, and the proof is concluded. �

Let us address now the stability result for the resolvent operators given by Theorem 3.2. The
following result holds true.

Lemma 4.6. The resolvent operator RΩ,µ is compact with respect to the weak convergence in
L2(D), i.e. for every gn ⇀ g weakly in L2(D) then

RΩ,µ(gn)→ RΩ,µ(g) strongly in L2(D).
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Proof. Let us set
un := RΩ,µ(gn) and u := RΩ,µ(f).

We have testing the equation with un∫
Ω

|∇un|2dx+

∫
∂Ω

u2
ndµ =

∫
Ω

gnun dx =

∫
D

gnun1Ωdx ≤ ‖gn‖L2(Ω)‖un‖L2(Ω).

By property (3.1) of µ we have∫
Ω

|∇un|2 dx+

∫
∂Ω

u2
n dµ ≥

∫
Ω

|∇un|2 dx+ c

∫
∂Ω

u2
n dHN−1 ≥ C‖un‖2H1(Ω)

for some C > 0 (the middle term gives a norm equivalent to the usual one on H1). We thus obtain

‖un‖H1(Ω) ≤M

with M > 0 constant. Thus there exists a subsequence (unk
)k∈N and u ∈ H1(Ω) such that

unk
⇀ u weakly in H1(Ω)

so that in particular, being Ω Lipschitz,

(4.18) unk
→ u strongly in L2(Ω).

Let us see that u is the solution of (3.2). Notice that the functionals Jn : H1(Ω)→ R ∪ {+∞}

Jn(v) :=

∫
Ω

|∇v|2dx+

∫
∂Ω

v2dµ− 2

∫
Ω

gnv dx

are readily seen to Γ-converge in the strong topology of L2(Ω) to the functional J given in (4.13)
(indeed, we have a continuous convergence). We thus infer that u is the minimizer of J , that is,
thanks to Lemma 4.3, u is the solution of (3.2). By uniqueness, there is no need to pass to a
subsequence in (4.18), so that the result follows. �

The conclusion of Theorem 3.1 can be rephrased as

RΩn,µn
(f)→ RΩ,µ(f) strongly in L2(D)

for every f ∈ L2(D). The result can be strengthened in the following way.

Lemma 4.7. Under the assumptions of Theorem 3.1, let fn, f ∈ L2(D) be such that

fn ⇀ f weakly in L2(D).

Then along the same subsequence given by Theorem 3.1

RΩn,µn
(fn)→ RΩ,µ(f) strongly in L2(D).

Proof. In view of Remark 4.5 and of Lemma 4.2, we have that there exists a subsequence such
that

(4.19) RΩnk
,µnk

(fnk
) = unk

1Ωnk
→ u1Ω strongly in L2(D)

for some u ∈ H1(Ω). In view of Lemma 4.3, in order to conclude it is sufficient to prove that u is
the minimizer of J : H1(Ω)→ R ∪ {+∞} given by (4.13).

Thanks to (4.1) we can find A ⊆ D open with Ω ⊂⊂ A and such that

Fn(v,A)− 2

∫
Ωn

fnv dx
Γ→ F (v,A)− 2

∫
Ω

fv dx,

since the integral term involving fn is a continuous (with respect to the strong topology of L2(D))
perturbation of that containing f , so that the Γ-convergence is preserved. Thanks to (4.19), the
general properties of Γ-convergence entail that u1Ω is a minimizer of

v 7→ F (v,A)− 2

∫
Ω

fv dx = J(v),

so that the conclusion follows. �

We can now give the proof of Theorem 3.2.
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Proof of Theorem 3.2. The convergence in the operator norm is equivalent to the following
relation

(4.20) sup
f∈L2(D),‖f‖L2(D)≤1

‖RΩn,µn(f)−RΩ,µ(f)‖L2(D) → 0.

Let (fn)n∈N be a sequence such that ‖fn‖L2(D) ≤ 1 and

‖RΩn,µn
(fn)−RΩ,µ(fn)‖L2(D) = sup

f∈L2(D),‖f‖L2(D)≤1

‖RΩn,µn
(f)−RΩ,µ(f)‖L2(D).

The existence of fn is guaranteed by Lemma 4.6. Since fn is bounded in L2(D), we may assume
that up to a further subsequence there exists f ∈ L2(D), such that

fn ⇀ f weakly in L2(D).

From Lemma 4.6 we have

‖RΩ,µ(fn)−RΩ,µ(f)‖L2(D) → 0,

while Lemma 4.7 entails

‖RΩn,µn(fn)−RΩ,µ(f)‖L2(D) → 0.

Since

‖RΩn,µn
(fn)−RΩ,µ(fn)‖L2(D) ≤ ‖RΩn,µn

(fn)−RΩ,µ(f)‖L2(D) + ‖RΩ,µ(fn)−RΩ,µ(f)‖L2(D)

relation (3.12) easily follows.
Since the resolvent operators are compact in view of Lemma 4.6, the convergence of the eigen-

values is a standard consequence of their convergence [13, Lemma XI.9.5], so that the proof is
concluded. �

4.3. Proof of the stability result for the classical Robin problems. In this subsection we
prove the stability results for classical Robin problems given by Theorem 3.3 and Corollary 3.4.
The setting is precisely that of the general stability result with the choice

µn := βHN−1b∂Ωn.

The results thus follow from Theorem 3.1 and Theorem 3.2 if we show that the associated measure
µ is given by

(4.21) µ = βHN−1b∂Ω.

Indeed, if it is the case, being µ uniquely determined, there is no need to pass to a subsequence
in the convergence results of Theorem 3.1 so that

(4.22) un1Ωn
→ u1Ω strongly in L2(D)

and

(4.23) ∇un1Ωn ⇀ ∇u1Ω weakly in L2(D;RN ),

together with

lim
n

[∫
Ωn

|∇un|2 dx+ β

∫
∂Ωn

u2
n dHN−1

]
=

∫
Ω

|∇u|2 dx+ β

∫
∂Ω

u2 dHN−1.

Using (4.23) and Lemma 4.2 the previous convergence entails

lim
n

∫
Ωn

|∇un|2 dx =

∫
Ω

|∇u|2 dx and lim
n

∫
∂Ωn

u2
n dHN−1 =

∫
∂Ω

u2 dHN−1,

so that convergences (3.17) and (3.19) follow.
In order to conclude the proof, we have to show that (4.21) holds true. We claim that for every

ϕ ∈ H1(D) ∩ L∞(D) we have

(4.24) lim
n

∫
∂Ωn

ϕ2dHN−1 =

∫
∂Ω

ϕ2dHN−1.
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Notice that thanks to assumption (3.14) on the perimeters∫
Ωn

(|∇ϕ|2 + ϕ2) dx+

∫
∂Ωn

ϕ2 dHN−1 ≤ ‖ϕ‖2H1(D) + ‖ϕ‖2∞HN−1(∂Ωn) ≤ C

for some C independent of n. By Lemma 4.2 applied to the functions ϕ1Ωn
and ϕ1Ω, we obtain

(4.25)

∫
∂Ω

ϕ2 dHN−1 ≤ lim inf
n

∫
∂Ωn

ϕ2 dHN−1.

On the other hand, applying the same arguments to the functions

wn := (‖ϕ‖2∞ − ϕ2)1Ωn
and w := (‖ϕ‖2∞ − ϕ2)1Ω

we deduce ∫
∂Ω

(‖ϕ‖2∞ − ϕ2) dHN−1 ≤ lim inf
n

∫
∂Ωn

(‖ϕ‖2∞ − ϕ2) dHN−1.

Using again (3.14) we get ∫
∂Ω

ϕ2 dHN−1 ≥ lim sup
n

∫
∂Ωn

ϕ2 dHN−1,

which together with (4.25) yields claim (4.24).
In view of (4.1), we can choose A ⊂ D open with Ω ⊂⊂ A such that

Fn(v,A)
Γ→ F (v,A).

We may thus write

F (ϕ,A) ≤ lim inf
n

Fn(ϕ,A)

which gives in this case, for the choice of A and since 1Ωn
→ 1Ω strongly in L1(D)∫

Ω

|∇ϕ|2dx+

∫
∂Ω

|ϕ|2dµ ≤ lim inf
n

∫
Ωn

|∇ϕ|2dx+ β

∫
∂Ωn

|ϕ|2dHN−1

=

∫
Ω

|∇ϕ|2dx+ lim inf
n

β

∫
∂Ωn

|ϕ|2dHN−1.

This implies using (4.24)∫
∂Ω

ϕ2dµ ≤ lim inf
n

β

∫
∂Ωn

ϕ2dHN−1 = β

∫
∂Ω

ϕ2dHN−1.

Notice that Theorem 3.1 ensures that µ ≥ βHN−1b∂Ω: as a consequence∫
∂Ω

ϕ2dµ = β

∫
∂Ω

ϕ2dHN−1.

Let now A ∈ A(D). Choosing ϕ ∈ C1
c (A) such that ϕ ↗ 1A, by the previous equality we deduce

since µ is supported on ∂Ω

µ(A) = µ(∂Ω ∩A) = βHN−1(∂Ω ∩A),

which yields µ = βHN−1b∂Ω, so that relation (4.21) is proved.

5. Proof of the Γ-convergence result

This section is devoted to the proof of Theorem 3.6 on which the analysis leading to the main
results of the paper are based.

Let us start noticing that by definition the functional Fn defined in (3.21) is such that Fn(·, A)
is lower-semicontinuous (with respect to the strong topology of L2(D)) for all A ∈ A(D) and
Fn(u, ·) is monotone with respect to the set inclusion, for all u ∈ L2(D).

The following compactness result holds true.
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Proposition 5.1 (Compactness for the energies). There exists a functional F : L2(D) ×
A(D)→ [0,+∞], such that up to a subsequence (still denoted with the same index)

(5.1) Fn
Γ→ F

in the strong topology of L2(D). In particular F (u, ·) is inner regular on A(D) for every u ∈ L2(D).

Proof. In view of the monotonicity of Fn(u, ·) with respect to set inclusion, the result follows by
applying [6, Theorem 16.9] with X = L2(D) (see also Proposition 2.3). �

We have immediately the following locality property for F .

Lemma 5.2 (Locality). Let A ∈ A(D) and u, v ∈ L2(D) such that u = v a.e. on Ω ∩ A. Then
F (u,A) = F (v,A).

Proof. We follow [6, Proposition 16.15]. According to (5.1) and to (2.1), let B ⊂⊂ A be such that

Fn(·, B)
Γ→ F (·, B).

Let vn ∈ L2(D) such that vn → v strongly in L2(D) and

Fn(vn, B)→ F (v,B).

Then if we set

un :=

{
vn on Ωn ∩B
u otherwise in D

we get un → u strongly in L2(D) (since 1Ωn
→ 1Ω strongly in L1(D) thanks to Lemma 4.1) so

that

F (u,B) ≤ lim inf
n

Fn(un, B) = lim inf
n

Fn(vn, B) = F (v,B) ≤ F (v,A).

Letting B invade A we obtain according to (2.2) the inequality F (u,A) ≤ F (v,A). The opposite
one comes by interchanging the roles of u and v. �

In order to derive a representation formula for F (u,A), we start with the following lemma.

Lemma 5.3. For every (u,A) ∈ L2(D)×A(D) with F (u,A) < +∞ we get that u|Ω∩A ∈ H1(Ω∩A)
and

(5.2) F (u,A) ≥
∫

Ω∩A
|∇u|2dx.

Proof. According to (5.1) and to (2.1), let B ⊂⊂ A ∩ Ω be such that

Fn(·, B)
Γ−→ F (·, B) in the strong topology of L2(D).

From the definition of Γ-convergence, there exists un ∈ L2(D) such that un → u strongly in L2(D)
and

lim
n
Fn(un, B) = F (u,B).

The convergence Ωn
Hc

→ Ω yields that B ⊆ Ωn for n large enough, so that

F (u,B) = lim
n
Fn(un, B) ≥ lim inf

n

∫
Ωn∩B

|∇un|2 dx = lim inf
n

∫
B

|∇un|2 dx.

Since F (u,B) < +∞, we get that the restriction of un to B is bounded in H1(B), hence also the
restriction of u to B belongs to H1(B). We infer by lower-semicontinuity

(5.3) F (u,B) ≥ lim inf
n

∫
B

|∇un|2 dx ≥
∫
B

|∇u|2 dx.

Letting B invade A ∩ Ω, we obtain according to (2.2)

F (u,A) ≥
∫

Ω∩A
|∇u|2 dx.

�
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In view of the preceding lemma, we may write for all (u,A) ∈ L2(D)×A(D)

(5.4) F (u,A) =

∫
Ω∩A
|∇u|2dx+G(u,A),

where
G : L2(D)×A(D)→ [0,+∞],

adopting the convention that G(u,A) = +∞ if F (u,A) = +∞ (in this case, also the first term on
the right could be infinite, i.e., u|(Ω∩A) 6∈ H1(Ω ∩A)).

We want to recover an integral representation for G, at least on H1(D) × A(D): this will be
done using the results contained in [7]. With this aim, the following result holds true.

Proposition 5.4 (Properties of G). The restriction of G to H1(D)×A(Ω) satisfies the following
properties.

(P1) Lower semicontinuity: for every A ∈ A(D) the mapping u → G(u,A) is lower semicon-
tinuous with respect to the strong topology of H1(D).

(P2) Measure property: for every u ∈ H1(D) the mapping

A→ G(u,A)

is the trace of a Borel measure on D.
(P3) Locality property: for every A ∈ A(D) and u, v ∈ H1(D) such that u|A = v|A a.e., then

G(u,A) = G(v,A).
(P4) C1-convexity: the following items hold true.

(a) For every A ∈ A(D) the mapping u→ G(u,A) is convex in H1(D).
(b) For every u, v ∈ H1(D) and ϕ ∈ C1(D) ∩W 1,∞(D) with 0 ≤ ϕ ≤ 1, we have

G(ϕu+ (1− ϕ)v,A) ≤ G(u,A) +G(v,A).

(P5) Quadraticity: for every A ∈ A(D), the mapping

u→ G(u,A)

is quadratic on H1(D), i.e. there exists a linear subspace YA ⊆ H1(D) and a symmetric
bilinear form BA : H1(D)×H1(D)→ R such that

G(u,A) =

{
BA(u, u) for all u ∈ YA,
+∞ for all u ∈ H1(D) \ YA.

Proof. Let us deal with the several properties separately.

Proof of (P1). Let un → u strongly in H1(D). We have to prove that

(5.5) G(u,A) ≤ lim inf
n→+∞

G(un, A)

for every A ∈ A(D). First of all we claim that

(5.6) F (u,A) ≤ lim inf
n→+∞

F (un, A).

Indeed, if according to (2.1) B ⊂⊂ A is such that

Fn(·, B)
Γ→ F (·, B)

in the strong topology of L2(D), we have

F (u,B) ≤ lim inf
n→+∞

F (un, B) ≤ lim inf
n→+∞

F (un, A)

so that thanks to (2.2) claim (5.6) follows.
In view of (4.4) we have

∇un1Ωn
→ ∇u1Ω strongly in L2(D;RN ),

so that

lim
n

∫
Ωn∩A

|∇un|2 dx = lim
n

∫
A

|∇un1Ωn
|2 dx =

∫
A

|∇u1Ω|2 dx =

∫
A∩Ω

|∇u|2 dx.
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Coming back to (5.6) we obtain∫
A∩Ω

|∇u|2 dx+G(u,A) ≤ lim inf
n

F (un, A) =

∫
A∩Ω

|∇u|2 dx+ lim inf
n

G(un, A)

from which (5.5) follows.

Proof of (P2). Since

G(u,A) = F (u,A)−
∫

Ω∩A
|∇u|2 dx

it suffices to prove that F (u, ·) is the trace on A(D) of a Borel measure on D. Let us first observe
that for each n ∈ N the functional

Fn(u,A) =

∫
Ωn∩A

|∇u|2 dx+

∫
∂Ωn∩A

u2dµn

is the trace on A(D) of a Borel measure on D. According to [6, Theorem 18.5], in order to transfer
this property to F (u, ·), it is sufficient to prove that the functionals Fn satisfy the following uniform
fundamental estimate: for every δ > 0 and for every A′, A′′, B ∈ A(D), with A′ ⊆ A′′, there exists
a constant M > 0 with the property that for every u, v ∈ H1(D) there exists a cut-off function ϕ
between A′ and A′′, such that

F (ϕu+ (1− ϕ)v,A′ ∪B) ≤ (1 + δ) {F (u,A′′) + F (v,B)}+ δ
{
‖u‖2L2(S) + ‖v‖2L2(S) + 1

}
+M‖u− v‖2L2(S),

where S := (A′′ \A′) ∩B.

Let A′, A′′, B ∈ A(D) with A
′ ⊆ A′′, and let u, v ∈ H1(D). If ϕ is a cut-off function between

A′ and A′′, let us estimate

Fn(ϕu+ (1− ϕ)v,A′ ∪B)

=

∫
Ωn∩(A′∪B)

|∇(ϕu+ (1− ϕ)v)|2 dx+

∫
∂Ωn∩(A′∪B)

[ϕu+ (1− ϕ)v]2dµn =: I1 + I2.

Let us start with I2. We find

I2 =

∫
∂Ωn∩(A′∪B)

[ϕu+ (1− ϕ)v]2dµn ≤
∫

∂Ωn∩(A′∪B)

(
ϕu2 + (1− ϕ)v2

)
dµn

≤
∫

∂Ωn∩A′′

ϕu2dµn +

∫
∂Ωn∩B

(1− ϕ)v2dµn

≤
∫

∂Ωn∩A′′

u2dµn +

∫
∂Ωn∩B

v2dµn.

(5.7)

Consider now I1. For every δ > 0, there exists a constant Cδ > 0 such that we may write

I1 =

∫
Ωn∩(A′∪B)

|∇(ϕu+ (1− ϕ)v)|2 dx

=

∫
Ωn∩(A′∪B)

|ϕ∇u+ (1− ϕ)∇v +∇ϕ(u− v)|2 dx

≤ (1 + δ)

∫
Ωn∩(A′∪B)

|ϕ∇u+ (1− ϕ)∇v|2 dx+ Cδ

∫
Ωn∩(A′∪B)

|∇ϕ|2|u− v|2 dx

≤ (1 + δ)

 ∫
Ωn∩A′′

|∇u|2 dx+

∫
Ωn∩B

|∇v|2 dx

+M

∫
Ωn∩(A′′\A′)∩B

|u− v|2 dx

(5.8)



20 D. BUCUR, A. GIACOMINI, AND P. TREBESCHI

with M := Cδ max |∇ϕ|2.
Combining (5.8) and (5.7) we obtain that for every δ > 0 and every cut-off function ϕ there

exists M > 0 such that

Fn(ϕu + (1 − ϕ)v,A′ ∪ B) ≤ (1 + δ)[Fn(u,A′′) + Fn(v,B)] + M‖u − v‖2L2(Ωn∩(A′′\A′)∩B),

i.e., Fn satisfy the uniform fundamental estimate.

Proof of (P3). We proved a stronger locality property in Lemma 5.2.

Proof of (P4). Let u, v ∈ H1(D) and ϕ ∈ C1(D) with 0 ≤ ϕ ≤ 1. Without loss of generality,
we may assume that G(u,A) < +∞ and G(v,A) < +∞. According to (2.1), let B ⊂⊂ A be such
that

Fn(·, B)
Γ→ F (·, B).

There exist un ∈ L2(D) and vn ∈ L2(D) such that

(5.9) un → u, vn → v strongly in L2(D)

with

F (u,B) = lim
n
Fn(un, B) and F (v,B) = lim

n
Fn(vn, B).

By assumption (3.3) on the Hausdorff convergence and since 1Ωn
→ 1Ω strongly in L1(D) thanks

to Lemma 4.1, we infer

Ωn ∩B
Hc

→ Ω ∩B and |Ωn ∩B| → |Ω ∩B|.

Using again the convergence of the characteristic functions we get

(5.10) ∇un1Ωn∩B ⇀ ∇u1Ω∩B , ∇vn1Ωn∩B ⇀ ∇v1Ω∩B weakly in L2(D;RN ).

We may write

(5.11) G(ϕu+ (1− ϕ)v,B) = F (ϕu+ (1− ϕ)v,B)−
∫

Ω∩B
|∇(ϕu+ (1− ϕ)v)|2 dx

≤ lim
n
Fn(ϕun + (1− ϕ)vn, B)−

∫
Ω∩B
|∇(ϕu+ (1− ϕ)v)|2 dx

= lim
n

[∫
Ωn∩B

|∇(ϕun + (1− ϕ)vn)|2 dx+

∫
∂Ωn∩B

|ϕun + (1− ϕ)vn|2 dµn
]

−
∫

Ω∩B
|∇(ϕu+ (1− ϕ)v)|2 dx

= lim
n

(∫
Ωn∩B

|ϕ∇(un − u) + (1− ϕ)∇(vn − v)|2 dx+

∫
∂Ωn∩B

|ϕun + (1− ϕ)vn|2 dµn
)
,

where the last equality follows by a direct calculation taking into account (5.9) and (5.10).
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Let us prove point (a) of (P4), i.e., the convexity property. So let us assume that ϕ reduces to
a constant λ ∈]0, 1[. We can write

G(λu+ (1− λ)v,B)

≤ lim inf
n

(∫
Ωn∩B

|λ∇(un − u) + (1− λ)∇(vn − v)|2 dx+

∫
∂Ωn∩B

|λun + (1− λ)vn|2 dµn
)

≤ lim inf
n

(
λ

∫
Ωn∩B

|∇(un − u)|2 dx+ (1− λ)

∫
Ωn∩B

|∇(vn − v)|2 dx

+λ

∫
∂Ωn∩B

u2
n dµn + (1− λ)

∫
∂Ωn∩B

v2
n dµn

)
= lim inf

n

(
λ

∫
Ωn∩B

|∇un|2 dx+ (1− λ)

∫
Ωn∩B

|∇vn|2 dx

+λ

∫
∂Ωn∩B

u2
n dµn + (1− λ)

∫
∂Ωn∩B

v2
n dµn

)
− λ

∫
Ω∩B
|∇u|2 dx− (1− λ)

∫
Ω∩B
|∇v|2 dx

= λF (u,B) + (1− λ)F (v,B)− λ
∫

Ω∩B
|∇u|2 dx− (1− λ)

∫
Ω∩B
|∇v|2 dx

= λG(u,B) + (1− λ)G(v,B).

Notice that the third equality is again obtained by a direct calculation taking into account (5.10).
Letting B invade A we get according to (2.2)

G(λu+ (1− λ)v,A) ≤ λG(u,A) + (1− λ)G(v,A).

Let us pass to point (b). Coming back to (5.11) we may write with similar arguments

G(ϕu+ (1− ϕ)v,B)

≤ lim inf
n

(∫
Ωn∩B

[
|∇(un − u)|2 + |∇(vn − v)|2

]
dx+

∫
∂Ωn∩B

(
u2
n + v2

n

)
dµn

)
= lim inf

n

(∫
Ωn∩B

[
|∇un|2 + |∇vn|

]
dx+

∫
∂Ωn∩B

(
u2
n + v2

n

)
dµn

)
−
∫

Ω∩B
|∇u|2 dx−

∫
Ω∩B
|∇v|2 dx

= F (u,B) + F (v,B)−
∫

Ω∩B
|∇u|2 dx−

∫
Ω∩B
|∇v|2 dx = G(u,B) +G(v,B).

The result follows again letting B invade A.

Proof of (P5). According to (2.1), let B ∈ A(Ω) be such that

Fn(·, B)
Γ→ F (·, B).

Being Fn(·, B) quadratic functionals on H1(D), we get thanks to [6, Theorem 11.10]) that also
F (·, B) is quadratic on H1(D). In particular we have F (0, B) = 0 and that for every u, v ∈ H1(D)
and t 6= 0

F (tu,B) = t2F (u,B), F (u+ v,B) + F (u− v,B) ≤ 2F (u,B) + 2F (v,B).

These properties hold true replacing B by an arbitrary A ∈ A(D) using the inner regularity
according to (2.2). This yields that also F (·, A) is quadratic (see [6, Proposition 11.9]). The
quadraticity of G(·, A) follows now from the equality

G(u,A) = F (u,A)−
∫

Ω∩A

|∇u|2 dx.

�

We are in a position to prove an integral representation formula for G.
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Proposition 5.5 (Integral representation of G on H1(D) × A(D)). There exists a Borel
measure µ on D with support on ∂Ω, absolutely continuous with respect to c2-capacity and such
that for every u ∈ H1(D) and A ∈ A(D)

(5.12) G(u,A) =

∫
∂Ω∩A

u2dµ,

where the trace value of u is defined according to Remark 3.5.

Proof. Since G satisfies (P1)–(P4), according to [7, Theorem 7.5], there exist a finite Borel
measure η on D, absolutely continuous with respect to c2-capacity and a Borel function f :
Ω× R→ [0,+∞] such that for every u ∈ H1(D) and A ∈ A(Ω)

G(u,A) =

∫
A

f(x, ũ(x)) dη(x),

where ũ is the c2-quasi-continuous representative of u. Thanks to the quadratic behaviour given
by (P5) we have that

f(x, ξ) = a(x)ξ2

where a : D → [0,+∞] given by a(x) := f(x, 1) is Borel. Set µ := a(x)η: then µ is a Borel
measure on D, possibly not finite (since a(x) can be infinite somewhere) such that

G(u,A) =

∫
A

ũ2(x)dµ.

According to the definition of the trace value of u in (5.12), in order to conclude it suffices to show
that µ is supported on ∂Ω.

Let us start by proving that µ(A) = 0 for all A ⊂⊂ Ω. According to (2.2) we may assume

without loss of generality that Fn(·, A)
Γ→ F (·, A). If ϕ ∈ C1

c (A), we can write

F (ϕ,A) ≤ lim inf
n

Fn(ϕ,A).

Since Ωn
Hc

→ Ω, we have that A ⊂⊂ Ωn for n large enough, so that

lim inf
n

Fn(ϕ,A) = lim inf
n

(∫
Ωn∩A

|∇ϕ|2 dx+

∫
∂Ωn∩A

ϕ2 dµn

)
=

∫
A

|∇ϕ|2 dx.

We infer ∫
A

|∇ϕ|2 dx+

∫
A

ϕ2 dµ ≤
∫
A

|∇ϕ|2 dx,

so that ∫
A

ϕ2 dµ ≤ 0.

Letting ϕ↗ 1A, we conclude that µ(A) = 0.

We prove now that µ(A) = 0 for every A ⊂⊂ D\Ω. As above we may assume Fn(·, A)
Γ→ F (·, A).

Let

Kn := A ∩ Ωn.

Thanks to (4.4) we have that |Kn| → 0. Let Bn be open with Kn ⊂⊂ Bn ⊂⊂ int(D\Ω), |Bn| → 0,
and let ψn ∈ H1(D), with 0 ≤ ψn ≤ 1 on D, ψn = 0 on Kn and ψn = 1 outside of Bn. We have

ψn → 1 strongly in L2(D).

Let ϕ ∈ C1
c (A): then

ϕn := ϕψn → ϕ strongly in L2(D),

and consequently

F (ϕ,A) ≤ lim inf
n

Fn(ϕn, A).

Being A ∩ Ω = ∅, the left-hand side reduces to

(5.13) F (ϕ,A) =

∫
A∩Ω

|∇ϕ|2 dx+G(ϕ,A) = G(ϕ,A) =

∫
A

ϕ2 dµ.
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Since ϕn = 0 on A ∩ Ωn, for the right-hand side we have

Fn(ϕn, A) = 0.

We thus conclude ∫
A

ϕ2 dµ ≤ 0.

Letting again ϕ↗ 1A, we deduce µ(A) = 0, and the result follows.
The properties above show that µ is concentrated on ∂Ω, and the proof is concluded. �

We are now in a position to prove Theorem 3.6.

Proof of Theorem 3.6. In view of Proposition 5.1, Lemma 5.2, relation (5.4) and Proposition
5.5, we need only to prove that

(5.14) µ ≥ cHN−1b∂Ω,

where c is the constant appearing in assumption (3.4) for µn.
Let us show that for every ϕ ∈ H1(D) we have

(5.15) c

∫
∂Ω

ϕ2 dHN−1 ≤
∫
∂Ω

ϕ2 dµ.

It is not restrictive to assume that the right-hand side is finite. According to (2.1), let A ∈ A(D)
be such that Ω ⊂⊂ A and

Fn(·, A)
Γ→ F (·, A).

Then by the Hausdorff convergence (3.3) we have also Ωn ⊂⊂ A for n large enough. Let ϕn ∈
L2(D) be a recovery sequence for ϕ on A. Using a truncation argument we may assume that
‖ϕn‖∞ ≤ ‖ϕ‖∞. In view of the assumption on A we have

(5.16)

∫
Ω

|∇ϕ|2dx+

∫
∂Ω

ϕ2dµ = lim
n

{∫
Ωn

|∇ϕn|2dx+

∫
∂Ωn

ϕ2
n dµn

}
.

Thanks to assumption (3.4) on µn we obtain that (ϕn)|Ωn
∈ H1(Ωn) is such that∫

Ωn

(|∇ϕn|2 + ϕ2
n) dx+

∫
∂Ωn

ϕ2
n dHN−1 ≤ C

for some C independent of n. By Lemma 4.2 we infer

ϕn1Ωn
→ ϕ1Ω strongly in L2(D),

∇ϕn1Ωn
⇀ ∇ϕ1Ω weakly in L2(D;RN ),

and ∫
∂Ω

ϕ2dHN−1 ≤ lim inf
n

∫
∂Ωn

ϕ2
ndHN−1.

Taking into account (5.16) we thus deduce∫
Ω

|∇ϕ|2dx+

∫
∂Ω

ϕ2dµ = lim
n

{∫
Ωn

|∇ϕn|2dx+

∫
∂Ωn

ϕ2
n dµn

}
≥ lim inf

n

{∫
Ωn

|∇ϕn|2dx+ c

∫
∂Ωn

ϕ2
n dHN−1

}
≥
∫

Ω

|∇ϕ|2dx+ c

∫
∂Ω

ϕ2dHN−1.

which yields (5.15).
If B ∈ A(D) and ϕ ∈ C1

c (B) with ϕ↗ 1B , we deduce from (5.15) that

cHN−1(∂Ω ∩B) ≤ µ(B ∩ ∂Ω) = µ(B)

from which we get (5.14). The proof is now concluded. �
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