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We consider the variational formulation of the Griffith fracture model in two
spatial dimensions and prove existence of strong minimizers, that is deformation
fields which are continuously differentiable outside a closed jump set and which
minimize the relevant energy. To this aim, we show that minimizers of the
weak formulation of the problem, set in the function space SBD2 and for which
existence is well-known, are actually strong minimizers following the approach
developed by De Giorgi, Carriero, and Leaci in the corresponding scalar setting
of the Mumford-Shah problem.

1 Introduction

The study of brittle fracture in solids is based on the Griffith model, which combines elasticity
with a term proportional to the surface area opened by the fracture. In its variational formulation
the energy

E[u,Γ] :=

ˆ
Ω\Γ

(1

2
Ce(u) · e(u) + g(u)

)
dx+ γHn−1(Γ) (1.1)

is minimized over all closed sets Γ ⊂ Ω and all deformations u ∈ C1(Ω \ Γ,Rn) subject to suitable
boundary and irreversibility conditions. Here Ω ⊂ Rn is the reference configuration, the function
g ∈ C0(Rn) represents external volume forces, e(u) = (∇u + ∇uT )/2 is the elastic strain, C ∈
R(n×n)×(n×n) is the matrix of elastic coefficients, γ > 0 the surface energy. The evolutionary
problem of fracture can be modeled as a sequence of variational problems, in which one minimizes
(1.1) subject to varying loads with a kinematic restriction representing the irreversibility of fracture,
see [18, 6] and references therein.

Mathematically, (1.1) is a vectorial free discontinuity problem. Much better understood is its
scalar version, in which one replaces the elastic energy by the Dirichlet integral,

EMS[u,Γ] :=

ˆ
Ω\Γ

(1

2
|Du|2 + g(u)

)
dx+ γHn−1(Γ) , (1.2)

and one minimizes over all closed sets Γ ⊂ Ω and maps u ∈ C1(Ω \ Γ,R). This scalar reduction
coincides with the Mumford-Shah functional of image segmentation, that has been widely studied
analytically and numerically [23, 2, 3, 15]. By taking into account the structure of the energy (1.2)
it is natural to introduce the space SBV (Ω) of special functions of bounded variation, by imposing
that the distributional derivative Du is a bounded measure, i.e. u ∈ BV (Ω), that can be written
as Du = ∇uLn Ω + [u]νuHn−1 Ju with ∇u the approximate gradient of u, [u] the jump of u,
Ju the (n− 1)-rectifiable jump set of u, νu its normal. Therefore, the relaxation of (1.2) is

E∗MS[u] :=

ˆ
Ω

(1

2
|∇u|2dx+ g(u)

)
+ γHn−1(Ju) , (1.3)

and it is finite provided u belongs to the subspace SBV 2(Ω) of functions in SBV (Ω) with ap-
proximate gradient ∇u ∈ L2(Ω;Rn) and Hn−1(Ju) < ∞. Existence of minimizers for the relaxed
problem E∗MS follows then from the general compactness properties of SBV 2, see [3] and references
therein.

The breakthrough in the quest for an existence theory for the Mumford-Shah functional (1.2)
came with the proof by De Giorgi, Carriero and Leaci in 1989 [16] that the jump set of minimizers
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u is essentially closed, in the sense that minimizers of the relaxed functional E∗MS obey

Hn−1(Ju \ Ju) = 0, or equivalently Hn−1(Ju) = Hn−1(Ju). (1.4)

From this, elliptic regularity implies then that (u, Ju) is a minimizer of the functional in the original
formulation (1.2).

We address here the analogous existence issue for (1.1) in two spatial dimensions. We assume
that C is a symmetric linear map from Rn×n to itself with the properties

C(z − zT ) = 0 and Cz · z ≥ α|z + zT |2 for all z ∈ Rn×n (1.5)

for some α > 0. Our main result is the following

Theorem 1.1. Let Ω ⊂ R2 be a bounded Lipschitz set, g ∈ C0(R2), C obey the positivity condition
(1.5), M > 0. Then the functional (1.1) has a minimizer in the class

A := {(u,Γ) : Γ ⊂ Ω closed, u ∈ C1(Ω \ Γ,R2) ∩ L∞(Ω,R2), ‖u‖L∞(Ω,R2) ≤M}. (1.6)

The L∞-bound on deformations guarantees existence of solutions to the corresponding relaxed
problem.

The proof is sketched below and will be discussed in detail elsewhere [12]. In [12] we also consider
generalizations of the basic model (1.1) with p-growth, p ∈ (1,∞), which may be appropriate for
the study of materials with defects, such as damage or dislocations, and are obtained by replacing
the quadratic volume energy density with

fµ(ξ) :=
1

p

((
Cξ · ξ + µ

)p/2 − µp/2) (1.7)

where µ ≥ 0 is a parameter.
This result is restricted to the two-dimensional case because the approximation result in Propo-

sition 2.2 below is only valid in two dimensions.

2 Outline of the proof

Following the ideas by De Giorgi, Carriero and Leaci in the scalar case, the key point in obtaining
Theorem 1.1 consists in establishing a one-sided Alfhors regularity for the jump set of (local)
minimizers of the relaxed functional (1.3), also known in literature as density lower bound estimate
(for the precise formulation see Theorem 2.1 below).

In this perspective, we start off by considering the weak formulation of (1.1). The functional
setting is provided by SBD2(Ω), the space of fields u ∈ L1(Ω,Rn) with symmetrized distributional
derivative Eu := (Du+DuT )/2 that is a bounded measure of the form Eu = e(u)Ln Ω + [u]�
νuHn−1 Ju, with [u] the jump of u, Ju the (n − 1)-rectifiable jump set of u, νu its normal, and
with the properties e(u) ∈ L2(Ω,Rn×n) and Hn−1(Ju) < ∞. Here, a � b = (a ⊗ b + b ⊗ a)/2.
SBD2(Ω) is a subset of the space of functions with bounded deformation BD(Ω). The latter
was introduced and investigated in [24, 25, 26, 4, 22] for the mathematical study of plasticity,
damage and fracture models in a geometrically linear framework. Instead, SBD2(Ω) provides the
natural function space in the modeling of fracture in linear elasticity [1, 5]. Fine properties of
BD and SBD2 are much less understood than those of their scalar counterparts BV and SBV 2,
respectively. Indeed, many standard technical tools are not available in this context, starting
with basic ones such as truncation results and the coarea formula. Despite this, recently several
contributions have improved the understanding of such spaces [7, 9, 14, 8, 19, 20, 10, 17].

In view of the discussion above, the relaxation of (1.1) is

E∗[u] :=

ˆ
Ω

(1

2
Ce(u) · e(u) + g(u)

)
dx+ γHn−1(Ju) (2.1)

for u ∈ SBD2(Ω). The density lower bound estimate for the jump set of minimizers in this setting
is the content of the ensuing theorem.
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Theorem 2.1 (Density lower bound). If u ∈ SBD2(Ω) ∩ L∞(Ω,R2) is a minimizer of the func-
tional in (2.1) with ‖u‖L∞(Ω,R2) ≤M , then there exist ϑ0 and R0, depending only on C, g, M and

γ such that if 0 < ρ < R0, x0 ∈ Ju, and Bρ(x0) ⊂⊂ Ω, then
ˆ
Bρ(x0)

1

2
Ce(u) · e(u)dx+ γH1(Ju ∩Bρ(x0)) ≥ ϑ0ρ. (2.2)

Therefore,
H1(Ju \ Ju) = 0. (2.3)

Using this result, classical elliptic regularity yields that the minimizers u belong to C∞(Ω \
Ju,R2) (see for instance [21]), so that (u, Ju) is a minimizer of the strong formulation of the problem
in (1.1). This leads directly to the proof of Theorem 1.1.

The density lower bound estimate is a mild regularity result for the jump set of a minimizer u,
therefore it is natural to analyze the infinitesimal behaviour of u in points x0 and, having selected
a sequence ρh ↓ 0, investigate the asymptotic of

uh(x) := ρ
−1/2
h u(x0 + ρhx).

We notice that the prefactor ρ
−1/2
h is needed to balance the different scaling of the volume and

surface term in the energy E∗. Indeed, we have

E∗[uh;B1] = ρ−1
h E∗[u;Bρh(x0)],

in the formula above the domains of integration are indicated explicitly.
The original proof of the density lower bound in formula (2.2) in the scalar case is indirect

[16, 3]. One first constructs truncations of the rescaled functions uh and estimates them in SBV
using a Poincaré-Wirtinger type inequality. Then, using Ambrosio’s SBV compactness theorem,
one obtains convergence of a subsequence, and shows that the limit is a local minimizer of the
bulk term of the Mumford-Shah energy E∗MS restricted to Sobolev spaces, i.e., it is an harmonic
function, and in particular smooth. By a contradiction argument one then shows that if in a ball
the length of the jump set of a minimizer u of E∗MS is sufficiently small and if u is not too far from
being a (local) minimizer of the reduced functional

u 7→
ˆ

Ω

1

2
|∇u|2dx+ γHn−1(Ju) ,

then in corresponding dyadic balls such an energy decays as fast as the Dirichlet integral for
harmonic functions. From this, one deduces that the base point x0 of the blow up process is not
a jump point and the density lower bound follows at once.

The Poincaré-Wirtinger type inequality proven by De Giorgi, Carriero and Leaci states (in
2d) that if u ∈ SBV 2(B1) and H1(Ju) is small, then there are m ∈ R and a modified function
ũ ∈ SBV 2(B1) such that ‖ũ−m‖L2(B1) ≤ c‖∇u‖L2(B1,R2), |Dũ|(B1) ≤ 2‖∇u‖L1(B1,R2), and ũ = u
on most of B1, see [3, Th. 4.14] for details. The function ũ is obtained from u by truncation,
setting ũ(x) = max{τ−,min{u(x), τ+}} for suitable τ± ∈ R chosen through the coarea formula,
so that ũ automatically fulfills |Dũ| ≤ |Du|. This procedure is not applicable to the vector-valued
BD functions which appear in the Griffith model, since this space is not stable under truncation,
and the coarea formula does not apply.

The key result to bypass such a problem is an approximation result for SBDp functions,
p ∈ (1,∞), with small jump set with W 1,p functions, stated below in the case of interest p = 2
and established in [11]. This property yields an equivalent Poincaré-Wirtinger type inequality for
SBDp functions, however restricted to two spatial dimensions.

Proposition 2.2 (Approximation of SBD2 fields). There exist universal constants c, η > 0 such
that if u ∈ SBD2(Bρ), ρ > 0, satisfies

H1(Ju ∩Bρ) < η (1− s)ρ
2

for some s ∈ (0, 1), then there are a countable family F = {B} of closed balls of radius rB <
(1− s)ρ/2 with finite overlap, ∪FB ⊂⊂ Bρ and a field w ∈ SBD2(Bρ) such that
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(i) ρ−1
∑
F L2

(
B
)

+
∑
F H1

(
∂B
)
≤ c/ηH1(Ju ∩Bρ);

(ii) H1
(
Ju ∩ ∪F∂B

)
= H1

(
(Ju ∩Bsρ) \ ∪FB

)
= 0;

(iii) w = u L2-a.e. on Bρ \ ∪FB;

(iv) w ∈W 1,2(Bsρ,R2) and H1(Jw \ Ju) = 0;

(v) If u ∈ L∞(Bρ,R2), then w ∈ L∞(Bρ,R2) with ‖w‖L∞(Bρ,R2) ≤ ‖u‖L∞(Bρ,R2);

(vi) ˆ
B

|e(w)|2dx ≤ c
ˆ
B

|e(u)|2dx for each B ∈ F ; (2.4)

(vii) There is a skew-symmetric matrix A such that
ˆ
Bsρ\∪FB

|∇u−A|2dx ≤ c
ˆ
Bρ

|e(u)|2dx. (2.5)

Related results have been recently obtained in [8, 19, 20].
Proposition 2.2 holds for any exponent p, is however restricted to two spatial dimensions. Its

proof is based on covering the jump set of u with balls such that the total length of the jump
set contained in each of them is comparable (but significantly smaller than) the radius. Clearly,
these balls cover a small part of Bρ, and u does not need to be modified outside of them. In
each of the balls, then, a new function is constructed by a finite-element approximation, on a grid
which refines close to the boundary of the ball, as was done in [13] in the study of solid-solid phase
transitions. The key step is to show that one can choose such a grid with the property that all grid
segments do not intersect the jump set of u. One then obtains an estimate of the oscillation of u
along the segments, and hence on the corners of each of the triangles which constitute the grid.
Linear interpolation gives then the desired extension. We refer to [11] for the details of the proof.
In higher dimension, the same procedure would require finding a grid such that the edges do not
intersect the jump set. This is however not possible, at least with the strategy of [13, 11], as was
explained in those papers.

Proposition 2.2 is used in the proof of Theorem 2.1 to replace the truncation procedure and the
Poincaré-Wirtinger inequality. One then modifies the functions once more, subtracting not only a
constant as in the BV case but also a linear function with skew-symmetric gradient, and obtains
compactness. This permits to classify the blow up limits of minimizers of (2.1) with vanishing
length of the jump set and to show that they minimize a quadratic energy on Sobolev spaces, and
therefore to conclude the proof of Theorem 2.1.
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Sci. Paris Sér. A-B 286 (1978) A1201–A1204.
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