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Abstract. In this paper we study the fractional analogue of the Allen-Cahn

energy in bounded domains, and we show that it admits a number of critical
points which goes to infinity as the perturbation parameter tends to zero.

1. Introduction

The problems involving fractional operators attracted great attention during
the last years. Indeed these problems appear in many areas such as optimization,
finance, crystal dislocation, minimal surfaces, water waves, fractional diffusion, (see
for example [8], [6], [3], [4], [7], [19], [18]). In particular, from a probabilistic point
of view, the fractional Laplacian is the infinitesimal generator of a Lévy process,
see e.g. [2].

In this paper we present some existence and multiplicity results for critical points
of functionals of the form

(1) Fε(u) =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy +

1

ε2s

∫
Ω

W (u) dx, if s ∈ (0, 1/2),

(2) Fε(u) =
1

| log ε|

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+1
dxdy+

1

|ε log ε|

∫
Ω

W (u) dx, if s = 1/2,

(3) Fε(u) =
ε2s−1

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy +

1

ε

∫
Ω

W (u) dx, if s ∈ (1/2, 1),

where Ω is a smooth bounded domain of Rn, u ∈ Hs(Ω;R), W ∈ C2(R;R+) is the
well known double well potential (see Section 2), and ε ∈ R+.
Fε is the fractional energy of the Allen-Cahn equation. It is the fractional coun-

terpart of the functionals studied by Modica-Mortola in [14], [15] where they proved
the Γ-convergence of the energy to De Giorgi’s perimeter. In the same way, func-
tionals (1), (2), (3) have been also considered by Valdinoci-Savin in [17], where it is
discussed their Γ-convergence.

Moreover, as proved in [13] for the functional∫
Ω

[ε|Du|2 + ε−1(u2 − 1)2] dx,

we expect that the solutions have interesting geometric properties related to the
interface minimality.
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Some autors investigated multiplicity results of nontrivial solution for

(4)


ε2s(−∆)su+ u = h(u) in Ω

u > 0

u = 0 on ∂Ω

where Ω is a bounded domain in Rn, n > 2s, and h(u) has a subcritical growth (see
[12]), or for

(5)


ε2s(−∆)su+ V (z)u = f(u) in Rn, n > 2s

u ∈ Hs(Rn)

u(z) > 0 z ∈ Rn

where the potential V : Rn → R and the nonlinearity f : R → R satisfy suitable
assumptions (see [11]).

Then Cabré and Sire in [5] studied the equation

(−∆)su+G′(u) = 0 in Rn

where G denotes the potential associated to a nonlinearity f , and they proved
existence, uniqness and qualitative properties of solutions.

Indeed, Passaseo in [16] studied the analogue of our functional, with the classical
Laplacian instead of the fractional one, i.e

(6) fε(u) = ε

∫
Ω

|Du|2 dx+
1

ε

∫
Ω

G(u) dx

where Ω is a bounded domain of Rn, u ∈ H1,2(Ω;R), G ∈ C2(R;R+) is a nonnega-
tive function having exactly two zeros, α and β, and ε is a positive parameter: he
proved that the number of critical points for fε goes to ∞ as ε→ 0.

Passaseo was motivated by De Giorgi’s idea, contained in [9], i.e. if uε → u0 in
L1(Ω) as ε→ 0 and limε→0 fε(uε) <∞, then the function Uε(t), defined as steepest
descent curves for fε starting from uε, converge to a curve U0(t) in L1(Ω) such that
U0(t) is a function with values in {α, β} for every t ≥ 0 and the interface between
the sets Et = {x ∈ Ω : U0(t)(x) = α} and Ω \ Et moves by mean curvature. As a
consequence the critical points uε of fε which satisfy

(7) lim inf
ε→∞

fε(uε) < +∞

converge in L1(Ω) to a function u0 taking values in {α, β}. De Giorgi considered
also the problem of existence and multiplicity for nontrivial critical points of fε
with the property (7), and Passaseo’s critical points verify this property and

lim inf
ε→∞

fε(uε) > 0,

so he can say that u0 is nontrivial.
In this paper we want to extend Passaseo’s results by replacing the function

G in (6) with the double well potential W , and Passaseo’s functional fε with its
fractional counterpart.

The paper is organized as follow: in the Section 2 we give some preliminaries
definitions and results. In the Section 3, we define suitable functions and sets, then
most of the work is dedicated to prove nonlocal estimates needful to obtain the
bound from above of Fε, (see Lemma 3.5), and the (PS)-condition, Lemma 3.7. In
fact in particular for the first of these results, we had to split the domain in two
types of regions and estimate Fε in the three possible interactions.
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Finally, after recalling a technical result, Lemma 3.6, we can apply a classical
Krasnoselsii’s genus tool to show the existence and multiplicity results for solutions.

Hence, knowing that minimizers of Fε Γ-converge to minimizers of the area
functional, we hope that also min-max solutions can pass to the limit as ε → 0 in
a suitable sense, producing critical points of positive index for local, if s ∈ [1/2, 1),
or nonlocal, if s ∈ (0, 1/2), area functional.

2. Notation and preliminary results

In this section we introduce the framework that we will be used throughout the
paper.

Let Ω be a bounded domain of Rn, denote by |Ω| its Lebesgue measure and
consider W the double well potential, that is

W : R→ [0,+∞) W ∈ C2(R,R+) W (±1) = 0

W > 0 in (−1, 1) W ′(±1) = 0 W ′′(±1) > 0.
(8)

Now we fix the fractional exponent s ∈ (0, 1). For any p ∈ [1,+∞), we define

W s,p(Ω) :=
{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|s+n/p

∈ Lp(Ω× Ω)
}

;

i.e. an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed with the
natural norm

‖u‖W s,p(Ω) :=
(∫

Ω

|u|p dx+

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)1/p

.

If p = 2 we define W s,2(Ω) = Hs(Ω) and it is a Hilbert space. Now let S ′(Rn) be
the set of all temperated distributions, that is the topological dual of S (Rn). As
usual, for any ϕ ∈ S (Rn), we denote by

Fϕ(ξ) =
1

(2π)
n/2

∫
Rn
e−iξ·xϕ(x) dx

the Fourier transform of ϕ and we recall that one can extend F from S (Rn) to
S ′(Rn). At this point we can define, for any u ∈ S (Rn) and s ∈ (0, 1), the
fractional Laplacian operator as

(−∆)su(x) = C(n, s)P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy.

Here P.V. stands for the Cauchy principal value and C(n, s) is a normalizing con-
stant (see [10] for more details). It is easy to prove that this definition is equivalent
to the following two:

(−∆)su(x) = −1

2
C(n, s)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy ∀x ∈ Rn,

and

(−∆)su(x) = F−1(|ξ|2s(Fu)) ∀ξ ∈ Rn.

Now we remember some embedding’s results for the fractional spaces:
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Proposition 2.1. [10] Let p ∈ [1,+∞) and 0 < s ≤ s′ ≤ 1. Let Ω be an open

set of Rn and u : Ω→ R be a measurable function. Then W s′,p(Ω) is continuously

embedded in W s,p(Ω), denoted by W s′,p(Ω) ↪→W s,p(Ω), and the following inequality
holds

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some suitable positive constant C = C(n, s, p) ≥ 1.
Moreover, if also Ω is an open set of Rn of class C0,1 with bounded boundary,

then W 1,p(Ω) ↪→W s,p(Ω) and we have

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω)

for some suitable positive constant C = C(n, s, p) ≥ 1.

Definition 2.2. [10] For any s ∈ (0, 1) and any p ∈ [1,+∞), we say that an open
set Ω ⊆ Rn is an extension domain for W s,p if there exists a positive constant C =
C(n, p, s,Ω) such that: for every function u ∈ W s,p(Ω) there exists ũ ∈ W s,p(Rn)
with ũ(x) = u(x) for all x ∈ Ω and ‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω).

Theorem 2.3. [10] Let s ∈ (0, 1) and p ∈ [1,+∞) be such that sp < n. Let
q ∈ [1, p∗), where p∗ = p∗(n, s) = np/(n − sp) is the so-called “fractional critical
exponent”. Let Ω ⊆ Rn be a bounded extension domain for W s,p and I be a
bounded subset of Lp(Ω). Suppose that

sup
f∈I

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞.

Then I is pre-compact in Lq(Ω).

We remind also the notion of Krasnoselskii’s genus, useful in the sequel:

Definition 2.4. [1] Let H be a Hilbert space and E be a closed subset of H \ {0},
symmetric with respect to 0 (i.e. E = −E).

We call genus of E in H, indicated with genH(E), the least integer m such that
there exists φ ∈ C(H;R) such that φ is odd and φ(x) 6= 0 for all x ∈ E.

We set genH(E) = +∞ if there are no integer with the above property and
genH(∅) = 0.

It is well known that genH(Sk) = k+1 if Sk is a k-dimensional sphere of H with
centre in zero.

Finally we recall a well known result:

Theorem 2.5. [1] Let H be a Hilbert space and f : H → R be an even C2-
functional satisfying the following Palais-Smale condition: given a sequence (ui)i
in H such that the sequence (f(ui))i is bounded and f ′(ui) → 0, (ui)i is relatively
compact in H.

Set f c = {u ∈ H : f(u) ≤ c}, ∀ c ∈ R. Then, ∀ c1, c2 ∈ R, such that c1 ≤ c2 <
f(0), we have

(9) genH(f c2) ≤ genH(f c1) + #{(−ui, ui) : c1 ≤ f(ui) ≤ c2, f ′(ui) = 0},
where, if A is a set, we indicate with #A the cardinality of A.

From now on we consider Hs(Ω) as Hilbert space and we shall write simply
gen(E) instead of genHs(Ω)(E); then we refer to the Palais-Smale condition with
the symbol (PS)-condition.
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3. Multiplicity of critical points

Let us start enouncing the fundamental result of the paper:

Theorem 3.1. Let Ω be a smooth bounded domain of Rn and W be a function
verifying condition (8). Then there exist two sequences of positive numbers (εk)k,
(ck)k such that for every ε ∈ (0, εk), the functional Fε has at least k pairs

(−u1,ε, u1,ε), . . . , (−uk,ε, uk,ε)
of critical points, all of them different from the costant pair (−1, 1) satisfying

−1 ≤ ui,ε(x) ≤ 1 ∀x ∈ Ω, ∀ ε ∈ (0, εk), ∀ i = 1, . . . k,

and

Fε(ui,ε) ≤ ck ∀ ε ∈ (0, εk), ∀ i = 1, . . . , k.

Moreover, ∀ ε ∈ (0, εk) and ∀ i = 1, . . . , k we have

(10) Fε(u) ≥ min

{
Fε(u) : u ∈ Hs(Ω),−1 ≤ u(x) ≤ 1 ∀x ∈ Ω,

∫
Ω

u dx = 0

}
.

Remark 3.2. The constant function u ≡ 0 is obviously a critical point for the
functional Fε for every ε > 0 but it is not included among the ones given by
Theorem 3.1. Instead if s ∈ (1/2, 1), but for the other cases it is similar,

Fε(0) =
1

ε
W (0)|Ω| → +∞ as ε→ 0.

Moreover, since inf{W (t) : W ′(t) = 0,−1 < t < 1} > 0, then one can say that
the critical points given by Theorem 3.1 are not constant functions.

In fact, if uε = cε is a costant critical point for Fε (distinct from −1 and 1), it
must be W ′(cε) = 0 and −1 < cε < 1, and therefore

(11) W (cε) ≥ inf{W (t) : W ′(t) = 0,−1 < t < 1} > 0

and so, for example by considering the functional related to s ∈ (1/2, 1), but the
other cases are similar,

(12) Fε(cε) =
1

ε
W (cε)|Ω| → +∞ as ε→ 0,

in contradiction with Fε(cε) ≤ ck ∀ ε ∈ (0, εk).
Notice that ∀ε > 0,

(13) min

{
Fε(u) : u ∈ Hs(Ω),−1 ≤ u(x) ≤ 1 ∀x ∈ Ω,

∫
Ω

u dx = 0

}
> 0

if we assume, without loss of generality, that Ω is a connected domain.
In fact, let ū be a minimizing function; if we assume Fε(ū) = 0, then∫

Ω

∫
Ω

|ū(x)− ū(y)|2

|x− y|n+2s
dxdy ≡ 0

and W (ū) ≡ 0. Therefore we must have ū ≡ 0 in contradiction with W (0) > 0.
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Definition 3.3. Let k be a fixed positive integer; for every λ = (λ(0), . . . , λ(k)) ∈
Rk+1 define the function ϕλ : R→ R by

ϕλ(t) =

k∑
m=0

λ(m) cos(mt).

For every λ ∈ Rk+1 with |λ|Rk+1 = 1 and ε > 0, let Lε(ϕλ) : R → R be the
function defined by

Lε(ϕλ)(t) =
1

2ε

∫ t+ε

t−ε

ϕλ(τ)

|ϕλ(τ)|
dτ ;

notice that Lε(ϕλ) is well defined because ϕλ has only isolated zeros ∀λ ∈ Rk+1

with |λ|Rk+1 = 1.
For every x = (x1, · · · , xn) ∈ Ω ⊂ Rn we consider the projection onto the first

component, P1(x) = x1, and the set

Skε = {Lε(ϕλ) ◦ P1 : λ ∈ Rk+1, |λ|Rk+1 = 1}.

Lemma 3.4. Let us fix a, b ∈ R with a < b and set

χ(ϕλ) = #{t ∈ [a, b] : ϕλ(t) = 0}

for every λ ∈ Rk+1 with |λ|Rk+1 = 1. Then for every k ∈ N it results:

sup{χ(ϕλ) : λ ∈ Rk+1, |λ|Rk+1 = 1} < +∞.

Proof. Let us remark that for every λ ∈ Rk+1 with |λ|Rk+1 = 1, the function ϕλ
can have only isolated zeros, because, otherwise, it should be identically zero in
R, which is impossible since the functions cos(mt) (m = 0, 1, . . . , k) are linearly
independent.

Therefore

χ(ϕλ) < +∞ ∀λ ∈ Rk+1 with |λ|Rk+1 = 1.

Now suppose by contradiction that

sup{χ(ϕλ) : λ ∈ Rk+1, |λ|Rk+1 = 1} = +∞,
i.e. there exists a sequence (λi)i in Rk+1, with |λi|Rk+1 = 1 ∀ i ∈ N, such that

limi→∞ χ(ϕλi) = +∞. We can assume that (up to subsequences) λi → λ̃ in Rk+1;
so ϕλi → ϕλ̃ uniformly in R. Set

Z̃ = {t ∈ [a, b] : ϕλ̃(t) = 0}
and, for every ε > 0,

Z̃ε = {t ∈ R : dist(t, Z̃) < ε}.
Since min{|ϕλ̃(t)| : t ∈ ([a, b] \ Z̃ε)} > 0 ∀ ε > 0 and ϕλi → ϕλ̃ uniformly in R,

for every ε > 0 there exists j(ε) ∈ N such that

min{|ϕλi(t)| : t ∈ ([a, b] \ Z̃ε)} > 0 ∀ i > j(ε),

that is

{t ∈ [a, b] : ϕλi(t) = 0} ⊂ Z̃ε ∀ i > j(ε).
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Since χ(ϕλ̃) < +∞ and limi→∞ χ(ϕλi) = +∞, we deduce that there exists t̃ ∈ Z̃
such that (up to subsequences) we have:

lim
i→∞

#{t ∈ [t̃− ε, t̃+ ε] : ϕλi = 0} = +∞.

It follows that there exists a sequence (jh)h in N such that for every i > jh there

exists t̃
(h)
i,ε ∈ [t̃ − ε, t̃ + ε] which satisfies Dhϕλi(t̃

(h)
i,ε ) = 0, where Dh denote the

h-order derivative.
We can assume that (up to subsequences) limi→∞ t̃

(h)
i,ε = t̃

(h)
ε . Hence, ∀ ε > 0 and

∀ h ∈ N there exists t̃
(h)
ε ∈ [t̃−ε, t̃+ε] such thatDhϕλ̃(t̃

(h)
ε ) = limi→∞Dhϕλi(t̃

(h)
i,ε ) =

0 and so, as ε→ 0, we obtain

Dhϕλ̃(t̃) = 0 ∀ h ∈ N

which implies that ϕλ̃ ≡ 0. But this is a contradiction because |λ̃|Rk+1 = 1. �

Lemma 3.5. Let Ω be a bounded domain of Rn and W be a function verifying (8).
Then, for every k ∈ N there exists a positive constant ck such that

(14) maxFε(f) ≤ ck ∀f ∈ Skε .

Proof. Let uλ,ε = Lε(ϕλ) ◦ P1 ∈ Skε and set

a = inf P1(Ω),

b = supP1(Ω),

Zλ = {t ∈ [a, b] : ϕλ(t) = 0},
Zλ,ε = {t ∈ R : dist(t, Zλ) < ε}.

Notice that

(i) If P1(x) /∈ Zλ,ε, then |uλ,ε(x)| = 1 and Duλ,ε(x) = 0, while

(ii) if P1(x) ∈ Zλ,ε, then |uλ,ε(x)| ≤ 1 and |Duλ,ε(x)| ≤ 1

ε
.

Since Ω is bounded, we can suppose it is included in a cube Q of side large
enough. We will denote with Yλ,ε = ZCλ,ε the complement to Zλ,ε, then we have to
distinguish three cases:

a) if x ∈ Yλ,ε and y ∈ Yλ,ε;

b) if x ∈ Zλ,ε and y ∈ Yλ,ε;

c) if x ∈ Zλ,ε and y ∈ Zλ,ε.
We set k = max{χ(ϕλ) : λ ∈ Rk+1, |λ|Rk+1 = 1}, then

Zλ,ε =

k∑
i=1

Ziλ,ε and Yλ,ε =

k∑
i=1

Y iλ,ε.

Now we call Žλ,ε = P−1
1 (Zλ,ε) ∩ Ω, Y̌λ,ε = P−1

1 (Yλ,ε) ∩ Ω and we observe that

(15)

∫
Y̌λ,ε

W (uλ,ε) dx = 0,
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while if we set ρ = sup{|x| : x ∈ Ω}, M = max{W (t) : |t| ≤ 1} and denote by ωn−1

the (n− 1)-dimensional measure of the unit sphere of Rn−1, it results

(16)

∫
Žλ,ε

W (uλ,ε) dx ≤M |Žλ,ε| ≤ 2εMωn−1ρ
n−1.

At this point it remains to analyze

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy. We split it

in three cases:
Case a). We have

(17)∫
Y̌λ,ε

∫
Y̌λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy =

k∑
i,j=1
i 6=j

∫
Y̌ iλ,ε

∫
Y̌ jλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy

We indicate with Q− = Q ∩ P−1
1 ({x1 < 0}), Q+ = Q ∩ P−1

1 ({y1 > 2ε}) and we
split Q− in N strips of width ε, with N of order 1/ε, so we obtain

(18)

k∑
i,j=1
i6=j

∫
Y̌ iλ,ε

∫
Y̌ jλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy ≤ k2

∫
Q−

∫
Q+

4

|x− y|n+2s
dxdy

≤ 4Nk2

∫ −2ε

−ε

∫ +∞

−2x1

r−2s−1 drdx1 =
2

s
Nk2

∫ −2ε

−ε
(−2x1)−2s dx1.

Now we have to distinguish two cases:

j) if s 6= 1/2, we have

(19)
2

s
Nk2

∫ −2ε

−ε
(−2x1)−2s dx1 =

21−2sNk2

s(1− 2s)
ε1−2s(21−2s − 1);

jj) while, if s = 1/2,

(20)
2

s
Nk2

∫ −2ε

−ε
(−2x1)−2s dx1 =

21−2s

s
Nk2 log 2.

Case b). We note that Y̌ iλ,ε ⊆ Q \ Žiλ,ε, so
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∫
Žλ,ε

∫
Y̌λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy

≤
k∑
i=1

∫
Žiλ,ε

∫
Q\Žiλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy

≤ 2ωn−1ρ
n−1ε

k∑
i=1

sup
x∈Žiλ,ε

∫
Q\Žiλ,ε

min{1/ε2|x− y|2, 4}
|x− y|n+2s

dy

≤ 2kεωn−1ρ
n−1
(∫ 2ε

0

1

ε2
r1−2s dr +

∫ +∞

2ε

4r−1−2s dr
)

= k
(2

ε

r2−2s

2− 2s

∣∣∣2ε
0

+ 8ε
r−2s

−2s

∣∣∣+∞
2ε

)
ωn−1ρ

n−1

= kε1−2s
(22−2s

1− s
+

22−2s

s

)
ωn−1ρ

n−1.

(21)

Case c). It results
(22)∫
Žλ,ε

∫
Žλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy =

k∑
i=1

∫
Žiλ,ε

∫
Žiλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy

+

k∑
i,j=1
i6=j

∫
Žjλ,ε

∫
Žiλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy.

Concerning the first term of the right hand side, we have

(23)

k∑
i=1

∫
Žiλ,ε

∫
Žiλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy

≤ 1

ε2

k∑
i=1

|Žiλ,ε|
∫ 2ε

0

r1−2s dr ≤ kωn−1ρ
n−1 22−2s

1− s
ε1−2s.

The other term is estimated as in Case b).
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So we can obtain the estimates for the functionals Fε. In fact, by (18), (19),
(20), (21) and (23), if s ∈ (0, 1/2) we have

(24)

Fε(uλ,ε) =

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy +

1

ε2s

∫
Ω

W (uλ,ε) dx

≤ 2kωn−1ρ
n−1
(22−2s

1− s
ε1−2s +

22−2s

s
ε1−2s

)
+ ε1−2s 22−2s

1− s
kωn−1ρ

n−1 +
kM

ε2s
2εωn−1ρ

n−1

+
21−2sNk2

s(1− 2s)
ε1−2s(21−2s − 1)

≤ k
(23−2s

1− s
+

23−2s

s
+

22−2s

1− s
+ 2M

)
ωn−1ρ

n−1

+
21−2sNk2

s(1− 2s)
(21−2s − 1);

if s = 1/2 it results

(25)

Fε(uλ, ε) =
1

| log ε|

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+1
dxdy +

1

|ε log ε|

∫
Ω

W (uλ,ε) dx

≤
(

20k

| log ε|
+

2kM

| log ε|

)
ωn−1ρ

n−1 +
1

s| log ε|
Nk2 log 2

≤ k(20 + 2M)ωn−1ρ
n−1 +

1

s
Nk2 log 2;

and, if s ∈ (1/2, 1) we get

(26)

Fε(uλ, ε) =
ε2s−1

2

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|n+2s
dxdy +

1

ε

∫
Ω

W (uλ,ε) dx

≤ k
(22−2s

1− s
+

22−2s

s
+

21−2s

1− s
+ 2M

)
ωn−1ρ

n−1

+
2−2sNk2

s(1− 2s)
(21−2s − 1).

�

Now we show a technical lemma, that we will use to prove our main result:

Lemma 3.6. For every ε > 0 and k ∈ N the set Skε verifies the following properties:

a) Skε is a compact subset of Hs(Ω);
b) Skε = −Skε ;
c) ∀ k ∈ N there exists ε̄k > 0 such that 0 /∈ Skε ∀ ε ∈ (0, ε̄k);
d) ∀ k ∈ N and ∀ ε > 0 such that 0 /∈ Skε , it results gen(Skε ) ≥ k + 1.

Proof. The points b), c) and d) are proved in [16]. For a) we use Lemma 2.8 of
[16] and the continuous embedding of H1(Ω) in Hs(Ω) ∀ s ∈ (0, 1), see Proposition
2.1. �

Before proving the main theorem of this work, we point out a useful property of
Fε:

Lemma 3.7. Functionals (1), (2), (3) satisfy the (PS)-condition.
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Proof. We will prove the lemma for s ∈ (1/2, 1) being the other cases analogue.
If W is quadratic, in particular there exist α, β > 0 such that

(27) W (u) ≥ αu+ β ∀u ∈ R.

Since (Fε(un))n is bounded, (27) implies that also ‖un‖Hs(Ω) is bounded, hence

un ⇀ u in Hs(Ω), un → u in Lq, ∀ q ∈
[
1, 2∗ =

2n

n− 2s

)
from Theorem 2.3,

therefore un → u a.e. x ∈ Ω.
We claim that u is a critical point of Fε. In fact ∀ v ∈ Hs(Ω)

(28)

F ′ε(u)(v) = ε2s−1

∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
(v(x)− v(y)) dxdy

+
1

ε

∫
Ω

W ′(u)v dx

= ε2s−1 lim
n→∞

∫
Ω

∫
Ω

un(x)− un(y)

|x− y|n+2s
(v(x)− v(y)) dxdy

+
1

ε
lim
n→∞

∫
Ω

W ′(un)v dx

since un ⇀ u in Hs(Ω), un → u in L2(Ω) and, by hypothesis, F ′ε(un)→ 0.
This implies that F ′ε(un)(un − u) + F ′ε(u)(un − u)→ 0, but on the other hand

(29)

F ′ε(un)(un − u) + F ′ε(u)(un − u) =

= ε2s−1

∫
Ω

∫
Ω

un(x)− un(y)

|x− y|n+2s
(un(x)− u(x)− un(y) + u(y)) dxdy

− ε2s−1

∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
(un(x)− u(x)− un(y) + u(y)) dxdy

+
1

ε

∫
Ω

[W ′(un)−W ′(u)(un − u)] dx,

and the second term on the right hand side goes to 0. In particular we obtain∫
Ω

∫
Ω

|un(x)− un(y)|2

|x− y|n+2s
dxdy −→

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy.

Hence ‖un‖Hs(Ω) → ‖u‖Hs(Ω) and since un ⇀ u in Hs(Ω), we have the thesis. �

We are now able to prove our main result

Proof of Theorem 3.1. As usual we will prove the theorem only for s ∈ (1/2, 1).
Consider W ∈ C2(R;R+) another even function, which satisfies the following

properties:

W = W ∀t ∈ [−1, 1]; tW
′
(t) > 0 for |t| > 1

and with an asymptotic behaviour guaranteeing that

F ε(u) =
ε2s−1

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy +

1

ε

∫
Ω

W (u) dx

is a C2-functional verifying the (PS)-condition.



12 DAYANA PAGLIARDINI

We prove now that for every critical point u ∈ Hs(Ω) which is a critical point
for the functional F ε, it results |u(x)| ≤ 1 ∀x ∈ Ω, and so u is a critical point for
the functional Fε too: indeed we have ∀ v ∈ Hs(Ω)

ε2s−1

∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
(v(x)− v(y))dxdy +

1

ε

∫
Ω

W
′
(u)v dx = 0.

In particular, if we set û = max{min{u, 1},−1}, by choosing v = u− û

(30) ε2s−1

∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
(u(x)− û(x)− u(y) + û(y)) dxdy

+
1

ε

∫
Ω

W
′
(u)(u− û) dx = 0

with

(31)

∫
Ω

∫
Ω

u(x)− u(y)

|x− y|n+2s
(u(x)− û(x)− u(y) + û(y)) dxdy

=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≥ 0

and ∫
Ω

W
′
(u)(u− û) dx > 0 if u− û 6≡ 0 in Ω

since tW
′
(t) > 0 for |t| > 1. It follows that u = û, i.e. |u(x)| ≤ 1 for almost every

x ∈ Ω.

Let εk > 0 be such that εk <
1

ck
W (0)|Ω|, where ck is the constant introduced in

Lemma 3.5. Then, for every ε ∈ (0, εk) we can apply Theorem 2.5 to the functional

F ε with c1 < 0 and c2 = ck, because F ε(0) =
1

ε
W (0)|Ω| > ck ∀ ε ∈ (0, εk). In

this way we can prove that for every ε ∈ (0, εk), F ε has at least (k + 1) pairs
(−u0,ε, u0,ε), . . . , (−uk,ε, uk,ε) of critical points with F ε(ui,ε) ≤ ck ∀ i = 0, 1, . . . , k.

In fact gen(F
c1
ε ) =gen(∅) = 0, while gen(F

ck
ε ) ≥gen(Skε ) ≥ k + 1 because Skε ⊆

F
ck
ε ⊆ Hs(Ω) \ {0}.
Notice that these (k + 1) pairs of critical points include also the one constitued

by the minimizers ±1; so we can assume that (−u0,ε, u0,ε) = (−1,+1).

On the contrary, the other solutions are not minimizers for the functional F ε if
Ω is a connected domain. Indeed it results

F ε(ui,ε) > 0 ∀ ε ∈ (0, εk) and ∀ i = 0, 1, . . . , k

because if Fε(ui,ε) = F ε(ui,ε) = 0, then we should have∫
Ω

∫
Ω

|ui,ε(x)− ui,ε(y)|2

|x− y|n+2s
dxdy = 0 and W (ui,ε) ≡ 0 in Ω

and so ui,ε should be a constant function with value +1 or −1.
Moreover let us remark that ∀ ε ∈ (0, εk) and ∀ i = 1, . . . k we have

(32) Fε(ui,ε) ≥ min

{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

u dx = 0

}
.



CRITICAL POINTS OF THE ALLEN-CAHN ENERGY 13

In fact, assume that

min

{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

u dx = 0

}
> 0,

otherwise (32) would be obvious. Then, for every c1 > 0 such that

c1 < min

{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

u dx = 0

}
,

we would have clearly gen(F
c1
ε ) = 1 because below c1 the mean is non zero and we

can use it as odd function into R1 in the genus definition, see Definition 2.4; thus,
if (32) was false, the solutions would belong to a set of genus one, in contradiction
with respect their costruction in Theorem 2.5.

Now, in order to prove (10), let us replace the function W appearing in the

definition of functional F ε by a sequence of functions (W j)j and denote by (F
j

ε)j
the corresponding sequence of new functionals. Assume moreover that the functions
W j satisfy the same properties as W for all j ∈ N and that

(33) lim
j→∞

W j(t) = +∞ for |t| > 1.

Then property (32) holds for the higher critical values of the functional F
j

ε for
all j ∈ N and so (10) follows for j large enough, taking into account that

lim
j→∞

min

{
F
j

ε(u) : u ∈ Hs(Ω),

∫
Ω

u dx = 0

}
= min

{
Fε(u) : u ∈ Hs(Ω), |u(x)| ≤ 1 ∀x ∈ Ω,

∫
Ω

u dx = 0

}
because of (33).

�
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