UNIQUENESS OF LIMIT FLOW FOR A CLASS
OF QUASI-LINEAR PARABOLIC EQUATIONS

MARCO SQUASSINA AND TATSUYA WATANABE

ABSTRACT. We investigate the issue of uniqueness of the limit flow for a relevant class of quasi-
linear parabolic equations defined on the whole space. More precisely, we shall investigate
conditions which guarantee that the global solutions decay at infinity uniformly in time and
their entire trajectory approaches a single steady state as time goes to infinity. Finally, we
obtain a characterization of solutions which blow-up, vanish or converge to a stationary state
for initial data of the form A¢o while A > 0 crosses a bifurcation value \o.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Overview. In the last decades, a considerable attention has been devoted to the study
of solutions to the quasi-linear Schrédinger equation

(1.1) i + Au+ uAu? —u+ [uPlu =0 in RN x (0, 00).

In fact, this equation arises in superfluid film equation in plasma physics, see [5,6], and it is also
a more accurate model in a many physical phenomena compared with the classical semi-linear
Schrédinger equation iu; +Au —u+ [u[P~1u = 0. In particular, local well-posedness, regularity,
existence and properties of ground states as well as stability of standing wave solutions were
investigated, see e.g. [8] and the references therein. The problem raised the attention also in
the framework of non-smooth critical point theory, since the functional associated with the
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2 M. SQUASSINA AND T. WATANABE

standing wave solutions of (1.1)

u 1/ (1 + 2u?)|Vul|?dz + 1/ uldr — L lu[PH dz,
2 RN 2 RN D + 1 RN
is merely lower semi-continuous on the Sobolev space H!'(RY) and it turns out that it is
differentiable only along bounded directions. Hence on H'(RY), the existence of critical points
required the development of new tools and ideas, see e.g. [22,30] and [19].
In this paper, motivated by the results obtained in [9,10] for a class of semi-linear parabolic
equations, we aim to investigate the asymptotic behavior for the quasi-linear parabolic problem

(1.2) ug — Au— uAu? +u = [ufPlu in RY x (0, 00),
(1.3) u(x,0) = up(x) in RV,

whose corresponding stationary problem is

(1.4) —Au—uAu® +u=|uPtu  in RY,

u(z) >0 as|z| — oo.

More precisely, we deal with the problem of uniqueness of the limit of bounded trajectories of
(1.2)-(1.3). Since the problem is invariant under translations, even knowing that (1.4) admits a
unique solution up to translations in general does not prevent from having different positively
diverging sequences {t,}nen, {7n}nen, such that {u(:,t,)}neny and {u(-, 7,)}nen converge to
different solutions to (1.4). As proved by L. Simon in a celebrated paper [29] (see also [16]),
in the case of variational parabolic problems such as u; + &'(u, Vu) = 0 where the associated
Lagrangian £(s,§) depends analytically on its variables (s, &), then it is always the case that
the full flow u(t) converges to a stationary solution of £ (u, Vu) = 0 and oscillatory behavior is
thus ruled out. The argument is essentially based upon Lojasiewicz inequality [20] and a series
of additional estimates. On the other hand for (1.2), the assumptions of [29] are not fulfilled
due to the presence of the non-analytical nonlinearity v — |u|P~1u, unless p is an odd integer.
In general, without the analyticity assumption, the w-limit set corresponding to a suitable sub-
manifold of initial data is a continuum of H' which is homeomorphic to the sphere, see [24,25].
However, equation (1.4) has been object of various investigations for what concerns uniqueness
and non-degeneracy of solutions. By working on the linearized operator £ around a stationary
solution w, namely

(1.5) Lo =—(1+2w*)A¢ — 4wVw - Vo — (dwAw + 2|Vw|*)¢ 4+ ¢ — plw[P~1 e,

and by exploiting the non-degeneracy [2,28] of the positive radial solutions to (1.4), i.e.
ow ow

pa TN %},

inspired by the ideas of [9] where the semi-linear case is considered, we will be able to prove that,
in fact, the flow of (1.2)-(1.3) enjoys uniqueness. As to similar results for semi-linear parabolic
problems, see [7,10,11] and references therein. Throughout the paper we shall assume that

Ker(L) = span{

3<p<

if N > 3, 3<p< ifN=1,2

We will deal with classical solutions u € C([0,Tp), C2(RN))nC((0, Tp), C(RY)) to (1.2)-(1.3),
whose local existence and additional properties will be established in Section 2. The uniqueness
of positive solutions of (1.4) has been investigated in [1, 15], while the non-degeneracy of the
unique positive solution has been also obtained in [2,3,28]. We also note that the unique
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positive solution w of (1.4) is radially symmetric with respect to a point 29 € RY and decays
exponentially at infinity. For a good source of references for the issue of long term behavior of
semi-linear parabolic equations, we refer the reader to [12].

1.2. Main results. The followings are the main results of the paper.

Theorem 1.1 (Decaying solutions). Let N > 2 and let ug € C*(RY) be non-negative and
radially non-increasing. Let u be the corresponding solution to (1.2)-(1.3) and assume that it
1s globally defined. Then w is positive, bounded, radially decreasing and
(1.6) lim supu(z,t) =0.

2|00 t>0
Theorem 1.2 (Uniqueness of limit). Let N > 1 and let u be a non-negative, bounded, globally
defined solution to (1.2)-(1.3) which satisfies (1.6). Then either u(x,t) — 0 uniformly in RV
ast — 0o or there is a positive solution w of (1.4) such that u(x,t) — w(x) uniformly in RN,
In addition,

K
(1.7) lim |lu(-,t+ s) —w(-)||i,1(RN)d8:0,

t—o00 0

for every K > 0.

Theorem 1.3 (Bifurcation). Let N > 2 and let pg € C*(RY) be non-negative, radially non-
increasing and not identically equal to zero. If p = 3, assume furthermore that

1
[ (@190l - leol*) do <
RN

Then there exists Ao > 0 such that the solution u to (1.2)-(1.3) with up = Apq satisfies

(1) If A < Ao, then u(z,t) goes to zero as t — oo uniformly in RY.
(ii) If A = o, then u(x,t) converges to a positive solution w of (1.4) uniformly in RN,
(iii) If A > Ao, then u(x,t) blows up in finite time.

Remark. Here we collect some remarks on the main results.

(i) In Theorem 1.2, we don’t need any symmetric assumptions on the solution. However by the
result in [23], we can show that our global solution is asymptotically symmetric, that is, it has
a common center of symmetry for the elements of the w-limit. See [7,21] for related results.
(ii) To prove the uniform decay condition (1.6) in Theorem 1.1, we have to assume that ug is
radially non-increasing. This assumption is used to obtain a universal bound near infinity, see
Remark 2.14. We believe that this is technical, but we don’t know how to remove it at present.
(iii) By a recent result in [3], the non-degeneracy of the positive radial solution to (1.4) holds
even if 1 < p < 3. On the other hand, the condition p > 3 appears in various situations,
especially in the proof of Theorem 1.1. Although the nonlinear term |u[P~!u is superlinear
even when 1 < p < 3, problem (1.2) has a sublinear structure due to the term uAu?, causing
our arguments to completely fail.

(iv) In the proof of Theorem 1.1, we also require that N > 2. This is to construct a suitable
supersolution, see Remark 2.16.

As we will see in Section 2, our problem is uniformly parabolic, yielding that basic tools (energy
estimate, Schauder estimate, Comparison Principle, etc) are available. Especially some proofs
work in the spirit of those of [9] for semi-linear problems. However quite often the semi-
linear techniques fail to work, especially in the construction of suitable sub-solutions (see e.g.
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Lemma 2.13). To compare the dynamical behavior of solutions for our quasi-linear parabolic
problem with that for the corresponding semi-linear one, for x > 0, we consider the problem

ug — Au — kulAu? +u = |[ulP~tu in RY x (0, 00),
u(z,0) = Apg(z) in RV

and the corresponding semi-linear parabolic problem:
{ u — Au+u = [uPlu  in RY x (0, 00),

(1.8)

(1.9) u(z,0) = Apg(z) in RV,

The stationary problem associated with (1.9) is given by
(1.10) —Aw+w = |wPlwin RY,  w(x) = 0 as |z] — oco.

It is well-known that problem (1.10) has a unique positive solution for 1 < p < (N +2)/(N —2)
if N>3and 1 <p<ooif N=1,2. Now let A\g(x) > 0 be a constant obtained by applying
Theorem 1.3 to (1.8). When 3 < p < (N +2)/(N — 2), both A\o(k) and \y(0) are defined and

(1.11) 20(0) < Ag(k) for all k > 0.

In fact we claim that Ag(ko) < Ao(k1) for all kg < k1. Defining I, by

1 1
I(w) =3 / ((+ 260) | Vul 4 ?) do — / P+ de,

it follows that if I, (u) > 0 for all u € C§°(RY), then I,;, (u) > 0 for all u € C§°(RY). Thus by
Lemmas 2.17-2.18 and by the definition of A\g(k), the claim follows. Inequality (1.11) shows that
there exist initial values ug such that the corresponding solution to (1.8) is globally defined, but
that of the semi-linear problem (1.9) blows up in finite time. In other words, the quasi-linear
term uAu? prevents blow-up of solutions. This kind of stabilizing effects has been observed for
the quasi-linear Schrodinger equation (1.1), see e.g. [6,8].

Plan of the paper. In Section 2, we state several preparatory results. In Subsection 2.1,
we establish the local existence of classical solutions of (1.2) and give qualitative properties of
classical solutions. Subsection 2.2 concerns with stability estimates for global solutions. We
prove uniform estimates of global solutions in Subsection 2.3. We state technical results about
uniqueness of limit in Subsection 2.4. In Section 3, we will prove the main results of the paper.

Notations. For any p € [1,00) and a domain U C R¥ the space LP(U) is endowed with the norm

1/p
ooy = ( [ o)

(-,-)r2(u) denotes the standard inner product in L?(U). The Sobolev space H'(U) is endowed with the

standard norm /
1/2
lull gy = (/U (|Vu|2 + |u|2) d:c) .

The higher order spaces H™(U) are endowed with the standard norm. The space C*((0,T), H™(U))
denotes the functions with k time derivatives which belong to H™(U). When U = RY | we may write
|-l e @~y = ||+ |z - The symbols du/dx;, 0*u/0x;0x; and uy denote, respectively, the first and second
order space derivatives and the time derivative of u. For non-negative integer m, D™u denotes the set of
all partial derivatives of order m. C§°(R™) denotes the space of compactly supported smooth functions.
The notation span{ws, ..., w;} denotes the vector space generated by the vectors {wy,...,wi}. We
denote by Q(u) the w-limit set of u, namely the set

Qu) == {w e H'(RY) : u(-,t,) — w uniformly in RY as n — oo, for some t,, — co}.
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The symbol B(zg, R) denotes a ball in RV of center 2y and with radius R. The complement of a
measurable set £ C RV will be denoted by E°.

2. PREPARATORY RESULTS

2.1. Local existence and basic properties. In this subsection, we prove the local existence
of classical solutions of (1.2)-(1.3) and provide also some qualitative properties. First we
observe that (1.2) can be written as L(u) = 0 where

ou
L) =(1+ 2u2)Au n 2u|VU|2 —u+ |u|p—1u —up =: F (U, 875,;’ axzauxj> — Uy,

where we have set
N N

F(u,pi,rij) = > (14 2u")8yrij +2u ) p} — u+ |ufP'u,
4,j=1 =1

Then one has 837};_ = (1 + 2u?)é;; and hence

2,

N 8F< ou  0%u

u PR R —
" Ox; 00,

&€ = (1+2u”)[¢* > [¢],
X 87“2']'
7j=1
for all ¢ € RV \ {0} and u € R. This implies that F is uniformly elliptic and the nonlinear
operator L is (strongly) parabolic with respect to any u. We also note that L can be written

by the divergence form
L(u) = divA(u, Vu) + B(u, Vu) — uy,

(2.1) A(u,p) = (14 2u*)p, B(u,p) = —(1+2p|*)u+ |[ulf'u.

Then we have the following result on the local existence of classical solutions whose proof is
based on a modified Galerkin method as in [31].

Lemma 2.1 (Local existence). Let ug € C§°(RY). Then there exist Ty = To(ug) € (0,00] and
a unique classical solution u(x,t) of (1.2)-(1.3) satisfying

(2.2) sup ||Dku<'7t)”Loo(]RN) < oo for |k| <2,
te(0,To)
(2.3) u(z,t) — 0 as |x| — oo for each t € (0,Tp).

Proof. Since the operator L is strongly parabolic, for any ug € C§° (RN), there exist a (small)
positive number Ty = Tp(up) and a unique solution u(x,t) of (1.2)-(1.3) satisfying

N
ue C([0,Tp), H™(RY)) n C* ((0,Tp), H™ *(R")) for any m € N with m > 5 +2

by using a suitable approximation and applying the energy estimate, see [31, Proposition 7.5].
Then by the Sobolev embedding H™(RY) < C*(RY) and H™2(RY) < C(RY) for m > 5 +2,
u is a classical solution of (1.2)-(1.3). Moreover by the Sobolev and Morrey inequalities, (2.2)
and (2.3) also hold. O

From (2.1), we can also obtain the local existence of classical solutions by applying the Schauder
estimate, see [17, Theorem 8.1, p.495]. We note that T is not the maximal existence lifes-
pan, but the local solution u(z,t) can be extended beyond Tp as long as sup [[u(-, )| c2@ny is
bounded. Next we prepare the following Comparison Principle for later use. For this statement,
we refer the reader to [26, Section 7, Theorem 12, p.187].
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Lemma 2.2 (Comparison principle). Let U be a bounded domain in RN and T > 0. Suppose
that u is a solution of L(u) = f(x,t) in U x (0,T] satisfying the initial boundary conditions:

u(z,t) = gi(x,t) on oU x (0,T),
u(z,0) = ga(z) in U.
Assume that z(z,t) and Z(x,t) satisfy the inequalities:
L(Z) < f(z,t) < L(2) in U x (0, T,
z(z,t) < gi(z,t) < Z(z,t) on U x (0,T),
2(x,0) < go(z) < Z(2,0) in U.

If L is parabolic with respect to the functions Qu+ (1 —0)z and u—+ (1 —0)Z for any 6 € [0, 1],
then it follows that
z2(z,t) <wu(z,t) < Z(z,t) in U x (0,T7].

We recall that z and Z are called a subsolution and a supersolution of L(u) = f respectively.
By applying Lemma 2.2, we provide some qualitative properties for solutions of (1.2)-(1.3).

Lemma 2.3 (Radially decreasing flows). Suppose that ug € C§°(RY) is non-negative and not
identically zero. Then the corresponding solution u is positive for all z € RN and t € (0,Tp).
Moreover if ug(x) = uo(|z|) and uy(r) < 0 for all r > 0, then u(z,t) is also radial and
ur(r,t) <0 for all v >0 and t € (0,Tp).

Proof. First since z = 0 is a subsolution of L(u) = 0, it follows by Lemma 2.2 that u > 0.
Moreover from (2.1), we can see that the structural assumptions for quasi-linear parabolic
equations in [32] are fulfilled. Then we can use the time-dependent Harnack inequality for
L(u) = 0, see [32, Theorem 1.1]. Thus we have u > 0. Next we suppose that ug is radial.
Then by the local uniqueness and the rotation invariance of problem (1.2), it follows that u is
radially symmetric. Let us assume that u((r) < 0 for all » > 0. We show that u, < 0. To this
end, we follow an idea in [27, Section 52.5]. Now we differentiate (1.2) with respect to r and
write u/ = u, for simplicity. Then by a direct calculation, one has

N-1
up — (1+2u?)u” — (Suu' + —— (1 + 2u2))u"
T
(4(N— ), N-1

uu —

(1+2u?) +2(u) 4+ puP ™! — 1>u’ =0.

2
r
We put ¢(r,t) = u,(r,t)e 5" for K > 0. Then ¢ satisfies the following parabolic problem:
(2.4) L(¢) = (14 2u®)¢" + a¢’ + bp — ¢y = 0,

N -1
a(r,t) = Suu' + ——(1 + 2u?),
r

AN-1) , N-1

b(r,t) = ———uu' — —5—(1+2u*) + 2(u/)* + pu’~' =1 - K.
T T

Moreover choosing sufficiently large K > 0, we may assume that b(r,¢) < 0 in (0, 00) x (0,Tp).
Hereafter we write @ = (0,00) x (0,Tp) for simplicity. Next we suppose that

sup ¢(r,t) > 0.
Q

Then we can take

1
M = —sup¢(r,t) >0
2 q
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and put ®(r,t) = ¢(r,t) — M. We observe that ®(0,¢) = u,(0,t)e 5" — M = —M for ev-
ery t € (0,7yp). Moreover ®(r,t) — —M as r — oo for each t € (0,7p). In fact since
[Vu(-,t)[| gm—1 )y < oo for any m > & +2, it follows by the Morrey embedding theorem that
|Vu(z,t)] — 0 as |x| — oo and hence

lim ®(r,t) = hﬁm up(r, t)e Kt — M = — M.

r—00

Now since
sup ¢(0,t) = lim sup P(r,t) = —M,

te(0,Tp) 700 te(0,To)
there exist (rg,r1) C (0,00) such that ®(r,t) <0 for r € (0,79) U (r1,00) and ¢ € (0,Tp),
(25) @(To,t) = (I)(’I"l,t) =0forte (0, To)
Moreover by the definition of ® and from u((r) < 0, it follows that
(2.6) ®(r,0) = ¢(r,0) — M = u,(r,0) — M = uj(r) — M <0 for v € (rg,71).
Finally from (2.4), ® = ¢ — M and b < 0, we also have
(2.7) L(®) = L(¢) — bM = —bM > 0 in (rg, 1) x (0, Tp).

Since the operator L is parabolic, we can a~pply the Comparison Principle. Thus from (2.5)-
(2.7), it follows that ® is a subsolution of L(u) = 0 and hence ® < 0 in (0,00) x (0,7p). On
the other hand by the definition of M, one has

sup ®(r,t) = sup ¢(r,t) — M = M > 0.
Q Q

This is a contradiction. Thus supg ¢ < 0 and hence u,(r,t) = eftp(r,t) <0 for all r > 0 and
t € (0,Tp). This completes the radial non-increase of u as required. Finally the radial decrease
of u follows by the Hopf lemma, see [26, Theorem 6, P. 174]. O

2.2. Energy stabilization. In this subsection, we prove several stability estimates. Let u(z,t)
be a non-negative bounded, globally defined solution of (1.2)-(1.3) satisfying (1.6) and denote
by Q(u) the w-limit set of u. We also suppose that ||[Vu(:, )| focrn) is uniformly bounded. We
define the functional

1 1
I(u) = 1+ 20°)|Vul? + v®) do — —— P dg.
W= [ (2T 4 i) do = = [ s
Notice that I is well defined on the set of functions u € H'(RY) such that u?> € H'(R") from

3<p< 3]<,Vj'22, via the Sobolev embedding (cf. [8]). Moreover we have the following.

Lemma 2.4 (Energy identity). There holds

d 2
%I(u(-,t)) = _/]RN u(x,t)* dx.

Proof. It is possible to prove that [ is differentiable along smooth bounded directions. By the
proof of Lemma 2.1, we know that u € C'((0,Tp), H™ *(RY)) for any m > N/2+ 2. Since
H™ 2(RYN) < L>®(RY) for m > N/2+ 2, it follows that u € C*((0,Tp), L(R")) and hence I
is differentiable with respect to ¢ at uw along the smooth direction u;. By a direct computation
and from (1.2), we have

d / 2
GI0) = Pl )0 == [ w0 de
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This completes the proof. O

Lemma 2.4 implies that [ is decreasing in ¢ and hence [ is a Lyapunov function associated with
the problem (1.2)-(1.3).

Lemma 2.5 (Flow stabilization). For every K > 0 we have

lim sup ||lu(,t+7)—u(-t)|| 2@y =0,
i sup ot 7) —uC Dl

lim sup ||lu(-,t+7)—u(,7 ~y = 0.
Jim sup ot +7) — 7)o

In particular if u(-,t,) — w uniformly in RN, then u(-,t, + p,) — w in CYRN) for any
bounded sequence {pptneny C RT.

Proof. We fix 7 € [0, K]. For every ¢t > 0 we have

t+7 t+7
/ ’U(7t+7')—u(’t)’2d$—/ / Ut(',S S gj‘<7'/ / |Ut ’ ds dx
RN RN

_T/HT/ Jus (-, 5)|? d ds = (I(t) — I(t +7)).

Since I(t) is non-increasing and bounded from below, it has finite limit as ¢ — oo, which yields
the assertion. For the second claim, since {u(,t), ¢ > 1} is relatively compact in C'(R") (see
the argument in the proof of Lemma 2.20), one can argue as in [21, Lemma 3.1]. O

By Lemma 2.5, we have the following basic result.
Lemma 2.6 (w limit structure). Q(u) is either {0} or consists of positive solutions of (1.4).

Proof. For every ¢ € C§°(RY) and 7 > 0, we have

tn+7 tn+T7 tn+T7
/ / utcpdxds+/ Vu-Vgpdxds+2/ / wp|Vu|? dz ds
tn RN RN tn RN

tn+T tn+T tn+T
+2/ / u2Vu-V<,0d:Bds—|—/ / ugpdxd.s:/ / uPpdrds.
tn RN tn RN tn RN

This yields for some &, € [t,,t, + 7]

/RN (u(z, tn +7) — u(z, ty)) p(z) dz + Vu(z, &) - Vo(x) dr

RN

+2 /RN u(z, &) ()| Vu(z, £,)) dz + 2 /RN u?(z, &) Vu(z, &) - Vo(z) da

+ /]RN u(x, &) p(x) de = /RN uP (x, &) () dz

Since u(-,t,) — w uniformly in R, by virtue of Lemma 2.5 it follows that u(-, ¢, +7) — w in
L*(RY) and u(-,&,) — w in CY(RY), which yields

Vw-chdx+2/ wtprIde+2/
RN

w?Vw - Vo dz + /
RN

wgpdac—/ wPydzx,
RN RN

RN

for every ¢ € C§°(RY), namely w is a non-negative solution of (1.4). O

Lemma 2.7 (Energy bounds). The following properties hold.
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(i) There exists C' > 0 such that

2 2 2
igg /RN (1 + 2fu(z, t)|*)|Vu(z, )]* + Ju(z, t)]?) dz < C.

(ii) If w € Q(u), then w € H'(RY). Moreover

sup ([lwll g1 gny + [lwll oo ) < 0.
weN(u)

Proof. We prove (i). Since I is decreasing in ¢, it follows that for ¢ > 0

1 1

< 1+ 2u2) | Vul? 2>d o P+ g < T(un).
2/RN((+u)| ) de =g [l < Ea)
Moreover for every R > 0, one has

1 +1 1 p-1 2 +1
|ulPT da < sup |u(z,t)] |u|” dx + |ulP™ dx.
1 1
p+1 JgNn P+ 1Nz >R t>0 B<(0,R) B(0,R)

Finally from (1.6), by taking R large enough, we have

L( sup |u(x,t)]>p_1§

1
P+ 1\ >R >0 4’

which yields

sup/ ((1+ 2l ) [ Vu(, D + [u(z, D) de < AMIB(O, R)| + 41 (uo),
t>0 JRN

p+1
Lo (RN x[0,00))"

where we have set M = ||ul]
(ii) Suppose that

Ju(-stn) — w ()| poomivy — 0 for some ¢, — oo.
Then from (i), it follows that {u(-,t,)} is bounded in H'(RY). Thus, up to a subsequence,
we have u(-,t,) — @ in H'(RY) and u(-,t,) — @ a.e. in RY for some w € H'(RY). Since
u(-,t,) converges to w uniformly, it follows that w = @, which implies that w € H*(R"). By
the boundedness of u(z,t) in H'(RY) and L>(RY), the last assertion of (ii) follows. O

Lemma 2.8 (Lipschitzianity controls). Let 0 < t; < ta. Then there exists C > 0 independent
of t1 and ty such that the following properties hold.

(@) u(,t2) = wOll 2@y < =TVl ) = w()| 2@my.

to
(11) /t ”U(, S) — w()”qul(RN) ds < Cec(bitl)nu('atl) - w()H%Q(RN)
1

Proof. (i) The proof is based on the standard energy estimate. We put ¢(x,t) = u(x,t) —w(z).
From (1.2), (1.4) and by the mean value theorem, one has
(2.8) ¢t7(1+2u2)A¢72wV(u+w)-V¢72(u+w)Aw¢72|Vu]2¢+¢fp(mu+(lfﬁ)w)p_l¢ =0,
for some « € (0,1). Multiplying (2.8) by ¢ and integrating it over RY, we get
10
S5l - / ((1+ 20)0A6 + 2069 (u +w) - Vo + 2(u + w)¢* Aw + 20°|Vul?) da
RN

+ ®? dm—p/ (ku+ (1 —K)w)p_lgbz dr = 0.
RN RN
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Using the integration by parts, we have
—/ (1+2u*)pApdr = / (1 + 2u®)|Vé|* + 4upVu - Vo dz,
RN RN

— / 2(u + w)p* Aw dx = / 20°Vw - V(u + w) + 4(u + w)pVw - Vo dz.
RN RN

Thus one has
19
o3+ [ {0+ 2)VoP + 4060 - V6 — 206V (u -+ w) - Vo
28t RN
+20°Vw - V(1 + w) + 4(u + w)¢Vuw - Vo — 2¢2|Vu|2} dx

+ ¢2d33—p/ (ﬁu+(1—li)w)p_1¢2dx:0.
RN RN

Since u, w, Vu and Vw are bounded, we obtain

10
5319072 + 18170 < CllélllIV el + Cligl7a-

Thus by the Young inequality, it follows that

0
(2.9) Sill0C AL + lloC, 1)l < ClloC, Iz

Now let ¢(t) := [|¢(-,t)[|32. Then one has ¢'(t) < C((t). By the Gronwall inequality, it follows
that ((to) < e“t2=1)¢(#;) and hence the claim holds.
(ii) Integrating (2.9) over [t1,t2], one has

to to
/ lo(, )17 ds < 1o, )17 + C/ (-, 5)I72 ds.

t1 t1

Thus from (i), we get

& 2 1 QC(tz—tl) 2
|16 ds < (14 55 )29 o, )2

t1

This completes the proof. O

Lemma 2.9 (Further stability estimates). Let K > 1 be arbitrarily given and {t,}nen be a
sequence such that t, — 0o as n — oo. If [[u(-,tn) — w(-)||peemny — 0 as n — oo, then the
following properties hold.
K
(i) lim |u(-, s+ tn) —w(-)H%Il(RN) ds = 0.

n—oo
(i) Tm fJu,t + tn) = w()l| oo @rxgo,7) = 0.

Proof. Arguing as in the proof of Lemma 2.7 (ii), we may assume that u(-,t,) — w in H'(R").
Moreover by the uniform decay condition (1.6), one can show that sup,,~; u(z,t,) decays expo-
nentially at infinity, see Lemma 2.15. Thus by the exponential decay of w and the embedding
HYRN) — L2 (RY), it follows that

(2.10) lim [lu(-,t) — w(*)|| L2y = 0.

n—o0



UNIQUENESS OF LIMIT FLOW FOR QUASI-LINEAR PARABOLIC EQUATIONS 11

Next applying Lemma 2.8 (ii) with ¢; = ¢,, and t3 = t,, + K, one has

K 2 CK 2
[ ) =) ds < CeF ute ) = wl)
Thus from (2.10), the claim holds.
(ii) We argue as in [17, Theorem 2.5, P. 18]. Let ¢, (x,t) = u(x,t + t,) — w(x) and define
L(gn) = (1+20%) Ay + 20V (u + w) - Vo + a(2)dn — (6n):,
a(z) = 2(u+ w)Aw + 2|Vul* — 1 + p(rku + (1 — I{',)w)p_l.
Then from (2.8), it follows that L(¢,) = 0. We put
1)l o) * 1900 o) = M ol = A, 100, 0)llegay = B

For e > 0, R > 0 and ¢ > 0, we define

M
Z(x,t) = ¢p(z,t)e” AT _ B ﬁ(CUQ +ct), |z <R, t€]0,K].

Then by a direct calculation, one has

(L-A-¢)Z=B(A+e—a(z))

+ % (c + (A+e—a(@) (@ +ct) — 2(1 + 2u®) — 4wV (u + w) - V:n)
=: F(z,t).

From (2.11) and the boundedness of u, w, Vu, Vw, we can choose large ¢ independent of €, R
and n € N so that F' > 0. Moreover from (2.11), we also have

_ M
Z(z,t) = dppe” A B M — Zact <0 on |z| =R, t € [0,K],
M,

Z(x,0) = ¢p(x,0) — B — yooka <0 for|z| <R.
Thus by applying the Comparison Principle to L — A — ¢, we obtain Z < 0 for |z| < R and
t € [0, K]. Defining

M
2(2,t) = oz, t)e” AT £ B4 — (2% 4 ct)

R2
for same ¢ > 0, one can see that

(L-—A—¢)z=f<0, z>0on|z|]=R, tc[0,K], =z(x,0)>0 for|z| <R.
Thus by the Comparison Principle, we get z > 0 and hence

M
o (2, 1)] < AT <B + ﬁ@:? + ct)) for |z| < R, t € [0, K].

Since ¢ is independent of € and R, we can take R — oo, ¢ — 0 to obtain
16 C DM e (v o) S Be™™ = €16, 0) o e):
Then by the assumption ||¢,(+,0)|| e = ||u(:,t,) — w(:)||ze — 0, it follows that
||¢"("t)||L<>°(RNx[0,K]) —0 asn— oo.

This completes the proof. O
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Lemma 2.10 (Further stability estimates). Let K > 1. Then there exists C = C(K) > 0 with

K K
/o (s 4+ 7+ ) = ()1 gy ds < C / s +8) = w) ) ds
for anyt >0 and T € [0, K].

Proof. Although the proof proceeds as in [10, Proposition 4.2], we will sketch it for the sake of
completeness. By the mean value theorem and Schwarz inequality, there is s¢ € [0, K] with

[ut + s0) —w()ll L2 < lult + s0) = w()ll g

t+K
<c / () — w()l| s ds

<c( T utes) —w OBy ds)

Thus by applying Lemma 2.8 (ii) with ¢t; =t + sp and t2 =t + so + 2K, it follows that

t+so+2K
A‘ (- 5) = w7 ds < Ce“Fful-,t + s0) — w(-)]7:
+s0

t+K
< 0O / (-, 8) — w(-) |2 ds.

Let 7 € [0, K]. Since [t+7,t+7+ K| C [t,t+2K] C [t,t + K|U [t + so,t + so + 2K], we obtain

t+7+K +K
/ lu(8) — w()|2 ds < (1 + CeCK) / (-, 8) — w(-) |2 ds.
t+1 t

This completes the proof. O

Lemma 2.11. Let {z,}nen C RY be a sequence with |z,| < 1 for all n € N. Then there exists
C > 0 independent of n € N such that the following properties hold.

() Nlw(- +2n) = w() = V() - 2nll g vy < Clanl.
(i) flw(- + zn) = w)ll g @yy < Cl2nl.

Proof. (i) By the Taylor expansion, one has
0*w
81‘2‘61']'

(. + Knzn)

)

N
lw(x + 2,) — w(zx) — Vw(z) - 25| < Clzn)? Z

3,j=1

for some k,, € (0,1). From (1.4) and by the exponential decay of w, we can show that aﬁg%‘b%

also decays exponentially at infinity for all 4,5,k =1,--- , N. Thus, we get

-+ "ann)

N
0w
[w(- +2n) —w(-) = V() - zn|m < C|Zn‘2 Z (
5 Hﬁxi(‘):cj

< C|zn\2.
Hl

(ii) We differentiate (1.4) w.r.t to ;. Then multiplying by 27’” and integrating on R, yields

9 ow |? ow\? 9
RN{(sz) 5e| 2( 5, ) 190l

2 2
+8w§$Vw : Vg;u + <3w) — pwP1 <3w) }dx =0.

\Y
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Then by the Schwarz inequality, Young inequality and from the boundedness of w, Vw, we get

(2.12) / owl® oo 122 g C|lw|?
' RN (‘9:52 - RN 81‘1 - Ht:

Thus from (i), (2.12) and |z,| < 1, it follows that
[w(- +2n) —w()lar < llw(- +20) —w() = V() - zollgr + V() - zal g
< Clznl? + Clza| < Clzy).

\Y

This completes the proof. O

2.3. Decay estimates. In this subsection, we show uniform estimates for global solutions of
(1.2)-(1.3). Our goal of this subsection is to prove the following proposition.

Proposition 2.12 (Uniform decay). Let u(z,t) be a non-negative, radially non-increasing and
globally defined solution of (1.2)-(1.3). Then the following properties hold.
(i) sup [Ju(-, )|l Lo vy < o0
t>0

(ii) lim supu(zx,t) =0.

|z|—00 t>0

The proof of Proposition 2.12 consists of several lemmas. First, we prove that u is uniformly
bounded near infinity.

Lemma 2.13 (Universal bound near infinity). Let u(z,t) be a non-negative globally defined
solution of (1.2)-(1.3) and assume that u is radially non-increasing with respect to the origin.
Then for any

K> ()7
there exists Rx > 0 such that
(2.13) u(z,t) < K forall |x| > Rg and t > 0.

Proof. Suppose by contradiction that the claim fails. Then we find Ko > ((p + 1)/2)%/®=1
such that for all R > 0, u(zp,tr) > Ko for some |zg| > R and tg > 0. For simplicity, we write
|zr| = R. Since u is radially non-increasing, it follows that

(2.14) u(z,tr) > Ko for all z € B(0, R).

We claim that u(x,t) must blow-up in finite time. We define a functional I by
1 1

(2.15) Ip(u) == / (1 + 2u®)|Vul® + v?) do — —— lulP*t de.
2 /B(o,R) p+1/Bo,r)

First, for sufficiently large R > 1, we show that there exists a function vg € C$°(RY) such that
(2.16) Ir(vg) <0, wvr<Kp in B(0,R), vg=0 ondB(0,R).
To this aim, let

1

)F<C<K0

(2.17) (E

2
be arbitrarily given and choose vg € C§°(RY) so that 0 < vg(z) < ¢ for all z € RY,

vp(x) =¢ for |[z| < R—-1, wg(x)=0 for|z|>R, |Vugr(z) <CC.
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Then we have

o2 <2 ) 2 UP‘H CZ Cp+1
I < 142 - dz+|B(0,R—1
R(UR)_/{ngugR}( y (2T +1) oIB )|<2 zo+1>
C2 Cp+1
2 p+1>'

By (2.17), it follows that ¢(?/2 — ¢(P*!/(p+1) < 0 and hence Ir(vg) — —o0, as R — oo. Thus,
by taking large R > 1, we obtain Ir(vg) < 0. Moreover, by the construction, we also have
vp < Ko in B(0,R) and vg = 0 on dB(0, R). Finally since R > R, we can replace R by R.
Next we consider the following auxiliary problem:

(2.18) vy = (14 20%)Av + 20|Vo|> —v + 9P in B(0,R) x [tg, o0),
v=0 ondB(0,R) x [tg,0),
v(z,tg) = vz(r) in B(O,R).

< (BY = (R—1)M)C2|BO, DI+ ¢ + (R- 1)V |BO, (%

We claim tha v(x,t) blows up in finite time in a similar argument as [14]. Indeed by a direct
calculation, 1z (v(- )) <0 for t > tg. Next from (2.18), we obtain

ar.
8(1/ (z,1) dm) - _/ ((1 + 40%)|Vol? + 02 — up+1> dw
ot \2 (OR B(O,R)

4
=) () [

p—3 +1
> —Alx(vp) + —— P .
BYRS p+1 Ik
By the Holder inequality, we also have

p+1

|B(0, R)|~ pl(/ ~1}2(1lar,‘)2§/ Pt de,
B(0,R) B(0,R)

Thus from Iz(vz) < 0 and p > 3, we obtain

9 / 2 / 2 ER
— vi(x,t)dx ) > C ve(x,t) dz for all t > tg.
8t( B(O,R) ( ) ) ( B(O,R) ( ) )
This implies that v(x,t) blows up in finite time. Now from (2.14) and (2.16), one has
L(v) >0 inB(0,R)x[tg,00), v<u ondB(0,R)x[tr,00), v(-tr)<u(-,tr)in B(0,R).

Then by Lemma 2.2, it follows that u(z,t) > v(x,t) for all z € B(0, R) and ¢t > tz. Thus u(z,t)
must blow-up in finite time, contradicting the assumption that u(z,t) is globally defined. O

Remark 2.14. Lemma 2.13 is the only part where the radial non-increase of u(z, t) is needed.
We can remove this assumption if we could show that

max  u(x,t) < inf w(z,t) fort € [0,7] and large R > 0.
z€0B(0,R+2) z€B(0,R

This type of estimates were obtained for porous medium equations, see [4, Proposition 2.1].
However we don’t know whether this estimate holds true for our quasi-linear parabolic problem.

Once we have the uniform boundedness near infinity, we can get the decay estimate at infinity.
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Lemma 2.15 (Exponential decays). Suppose N > 2 and let u(x,t) be a non-negative global
solution of (1.2)-(1.3) which satisfies the uniform boundedness property (2.13). Then there
exist > 0, C >0 and Ry > 0 such that

sup | D*u(z, t)| < Ce ™ for ail || > Ry and |k| < 2.
>0

Proof. By standard linear parabolic estimates, it suffices to consider the case k = 0. Let w be
a positive solution of (1.4). Then w is radially decreasing and decays exponentially at infinity.
Moreover we claim that w(0) > ((p + 1)/2)"/®=1 . Indeed, w satisfies the Pohozaev identity

N -2 wPtt w?
o<~ 1+ 2w? 2dr = ( ——)d.
< SN /RN( + 2w?)|Vwl|*® dx /RN Tl )M

For the proof, see [8, Lemma 3.1]. If the claim fails, then w(z) < ((p + 1)/2)Y/®=D for all
x € RY \ {0} by the monotonicity of w, which implies

p+1 2
/ (w _W) iz < 0.
RN p+1 2

which is impossible. Now applying Lemma 2.13 with

(p-l—l
2

)”11 < K < w(0),
there exists Ry = R(K) such that
(2.19) u(z,t) < K for |x| > Ry and ¢t > 0.
Moreover choosing Ry larger if necessary, we may assume supp(ug) C B(0, Rp). Next, we put
Z(xz,t) := Z(x) = w(|x| — Ry), for |x| > Ry and t > 0.
Then there exists 9 > 0 such that Z(z) > K for Ry < |z| < Ry + €¢. From (2.19), we get
L(Z) <0 for Ry <|z| < Ryp+epandt>D0,
Z >wu for |z|= Ry, Ry+¢epandt >0,
Z(-,0) >wuy for Ry <|z| < Rp+ eo.
Thus by Lemma 2.2, we obtain u(xz,t) < U(x) for Ry < |z| < Ry + ¢ and t > 0. Applying the

Comparison Principle again, we have u(z,t) < U(x) for all || > Ry and ¢ > 0. This completes
the proof. O

Remark 2.16. In the proof of Lemma 2.15, our construction of a supersolution Z fails when
N = 1. In fact in this case, we claim that

o= (£

To see this, we multiply w’ by the one-dimensional version of equation (1.4)
(1 + 2w*)w” + 2w(w')? — w4+ wP = 0.
Integrating it over [0, r], since w’(0) = 0, we have
S )+ L0 DO w0
Passing to a limit 7 — oo, the claim is proved. Since there is no gap between w(0) and ((p +
1)/2)Y/®=1) we cannot apply Lemma 2.13 for N = 1. But if we could replace ((p+1)/2)"/®=1)
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by 1 in Lemma 2.13, we could construct a decaying supersolution Z in the same way. More
precisely, instead of (2.13), let us assume that for any K > 1, there exists Rx > 0 such that

u(z,t) < K, forall |z| > Rk and ¢t > 0.

Then the same conclusion as Lemma 2.15 holds. On the other hand, replacing ((p+1)/2)"/®-1)
by 1, our construction of a blow up subsolution v in the proof of Lemma 2.13 fails. Thus we need
another argument when NV = 1. We also remark that a construction of blowing up subsolutions
for semi-linear problems as in [9] does not work for our problem.

Lemma 2.17 (Global existence and energy sign I). Let u be a global solution of (1.2)-(1.3).
Then I(u(-,t)) >0 for every t > 0.

Proof. We use the concavity method as in [18]. It suffices to show that if I(u(-,29)) < 0 for
some to > 0, then u(x,t) must blow-up in finite time. To this end, suppose by contradiction
that I (u(-,to)) < 0 but u is globally defined. First multiplying (1.2) by u and integrating it
over R, one has

/ uutd:c—i—/ ((1+4u2)]Vu\2+u2)da:—/ P+ d = 0.
RN RN RN

Thus by the definition of I(u), it follows that

—1
p/ (IVul* +u®)dz + (p — 3)/ w?|Vul? dz = (p + 1)1 (u) + / wuy d.
2 Jrv RN R

N
We put
1 t
M) =5 [l ) B, ds.
to

Then one has M'(t) = ||u(-,t)||2,. Moreover by Lemma 2.4 and from p > 3, we also have
M"(t) :/ uuy dx
RN

=—(p+ DI(u(-t) + pgl/RN (Vu\2 —|—u2) dx + (p — 3) /]RN u?|Vul? dx

> —(p+ DI(u(-,to)) >0 for t > t.

This implies that M'(t) — oo and M (t) — oo as t — oco. Next by Lemma 2.4, it follows that
t

lue ()17 ds = 1 (u(-,t0)) = I (u(-,1)) < =1 (u(-,1)),

to
which implies that

t

M"(t) > —(p+ DI (u(-,t)) > (p+1) t g (-, 5)[|25 ds.

Thus we get

s> 0 ([ utizaas) ([t oizaas)

p+1 (/ttu(x Syu(w, 5) dz ds>2

= P ) — M (k).

v
S
4+ o

i)
o+ o
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Since M'(t) — oo as t — 0o, there exists o > 0 and ¢1 > ¢y such that
M)M"(t) > (1+a)M'(t)>  for t > t.

This shows that M ~(t) is concave on [t1,00), contradicting to M ~*(t) — 0 as t — co. Thus,
the assertion holds. O

Finally we show the following lemma.

Lemma 2.18 (Global existence and energy sign II). Let 0 < T < co. Let u be a non-negative
solution of (1.2)-(1.3) and assume that I(u(-,t)) >0 for allt € (0,L). Then then there exists
C > 0 such that

sup |u(-; t)| ooy < C.
te(0,L)
Proof. Suppose that there exists a sequence {t,}nen C (0, L) converging to L such that
My, = |[u(-, tn) || oo mvy — 00

We derive a contradiction by using a blow-up type argument. Let {z,},en € RY be such that

M,
7 < (-Tnytn) < Mn»

and consider the sequence

Yy T
Un(y,7) = | Bt et o |
n Mn2 n

Then by a direct calculation, one has

ovy,

5 = M2 v + 02 in RY x (=MP7't,,0].

A'Un + vp A’U W

Passing to a subsequence and using a diagonal argument as in [13], we have

v, — U In CIQOi(RN X (—00,0]),

where v is a non-negative solution of the following parabolic problem
v

— =vAv? + P in RY x (—o0,0].
or

Now we claim that v, = 0. To this end, we observe that by Lemma 2.4 that

/oto /RN fur e, 6)[* dw dt < I(u(-,0)) = I(u(-to)) for any to > 0.

Since I(u(-,t)) > 0 for all ¢ > 0, we have
y T
( uz et M5_1>

(Y, T dydr

2
L Jaen| avar= i [ [
RN RN
(N—2)p—3N—2
<M, *? / / lug(, t)|? da dt

(N—2)p—3N -2

<M, °*? I(u(-,0)).
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Since p < (3N 4+ 2)/(N — 2) and M,, — oo, it follows that v, = 0. Now since v, =0, v is a
nontrivial, non-negative bounded solution of the following nonlinear elliptic problem

(2.20) —vAv® =P in RY.

If 3<p< (3N +2)/(N —2), it follows that v = 0 by applying the Liouville theorem to v?.
This contradicts to the fact v(0) > 1/2. On the other hand if p = 3, it follows that v? is a
nontrivial bounded eigenfunction of —A in RY associated with the eigenvalue 1. But this is
impossible. Thus in both cases, we obtain a contradiction and hence the proof is complete. [

Remark 2.19. We note that in the proof of Lemma 2.18, we need the assumption 3 < p
to obtain the non-existence of nontrivial, non-negative bounded solutions of (2.20). We also
observe that if we adopt the scaling

(.7) 1= u(an + ety o)
on(y,7) = —ulx > -
" M, \"" MT "t
as in [9], then we obtain the following rescaled problem
0
% = Ay, + M2v, Av? — — v, + 08 in RY x (=M2 4, 0],

n

Hence this scaling does not work in our case due to the term M2v,Av2.

Now we can see that Proposition 2.12 follows from Lemmas 2.3, 2.15, 2.17 and 2.18.

2.4. Some technical results. In this subsection, we prepare some technical lemmas to prove
Theorem 1.2. First we shall need the following result.

Lemma 2.20 (w-limit). Let u be a non-negative, bounded and globally defined solution of (1.2)-
(1.3) satisfying the uniform decay condition (1.6). Then {u(-,t,)} has a uniformly convergent
subsequence in RN for any sequence {t,}nen with t, — co. In particular, the w-limit set Q(u)
is well-defined. Furthermore, the set {u(-,t,)} is relatively compact in C*(RY).

Proof. We know that [|u(-,?)|| oo gy is uniformly bounded. Moreover by assumption (1.6), we
can show that the function sup,.,|D*u(z,t)| decay exponentially for |k| < 2 (cf. the proof
of Lemma 2.15). Applying the Schauder estimate, we also have the uniform boundedness of
[Vu(:, )] oo mrvy- Let {tn}nen be a sequence such that ¢, — oo. Then by (i) of Lemma 2.7, it
follows that [ju(-,t,)||z1 < C. Passing to a subsequence, we may assume that u(-,t,) — w in
H'(RY) for some w € H'(RY). Then arguing as in Lemma 2.6, one can see that either w = 0
or w is a positive solution of (1.4). In particular, w decays exponentially at infinity. Arguing
as for the proof of (i) of Lemma 2.9, we have |lu(-,t,) — w(:)||z2 — 0. Let U be any bounded
domain. Then applying higher order regularity theory, we get

[u(tn) = w)llam vy < Cllul tn) = w2

for any V CC U and m > & + 1. By the Sobolev embedding H™(V) < C%(V'), passing to
a subsequence, we have that u(-,¢,) — w uniformly on V. Since U is arbitrary and u(z,t,)
decays uniformly at infinity, it follows that u(-,¢,) — w(-) uniformly in RY. Finally since
m > % + 1, we have the continuous embedding H/"(RY) < CL (RY). Together with the
uniform exponential decay of |D*(u(-,t,)| for |k| < 2, passing to a subsequence if necessary, it

follows that u(-,t,) — w in C*(RY). This completes the proof. O
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To finish the proof of Theorem 1.2, we have to prove (1.7) and show that the limit w € Q(u)
is independent of the choice of the sequence {t¢,}. To this end, we put
T , 3
8) = ([ Tuteos ) = ) ey d5)
where w is a fixed element in the w-limit set Q(u). First we state the following proposition

whose proof will be given later.

Proposition 2.21. There exist M > 0 and T > 1 such that the following properties hold. For
every sequence {(Yn,tn)neny C RY x RY satisfying |yn| < 1, t, — oo and

T 2
ot = ([ s +t0) = w4 ) ds) =0
0
there exist a subsequence {(yn,,tn;)} and {z;} C RY such that |z;] < Mn(Yn;,tn;) and

1
1 (2n; + Ynystn, +T) < §n(ynwtna‘)'

By Proposition 2.21, we obtain the following Corollary.

Corollary 2.22 (Uniform stability). There exist M > 0, T > 1, t9 > 0 and ng > 0 such
that the following property hold. For every (y,t) € RN x Ry satisfying |y| < 1, t > to and
n(y,t) < mno, there exists z € RN such that |z| < Mn(y,t) and

1

Proof. Let M > 0, T > 1 be the constants provided in Proposition 2.21. We assume by
contradiction that Corollary 2.22 does not hold. Then there exists {(yn,tn)}nen € RY x Ry
such that n(yn, tn) = 0, |yn| < 1, t, — 0o and

1
77(2 + Yn, tn + T) > in(yna tn)
for all z € RV with |z| < Mn(yn,t,). This contradicts Proposition 2.21. O

Lemma 2.23. Let M > 0, T > 1 and tqg > 0 be constants provided by Corollary 2.22. Then
there exists 1 > 0 such that the following property hold. For every k € N and t* > to with
n(0,t*) <1, there exists {x;}¥_; C RN such that |z;| < Mn(z1 4+ +xi1,t* + (i — 1)T) and
1
n(z1 + - 4 ap, " + kT) < 5n(a;1 4 oo, + (k= 1)T).
Here we put zg = 0.

Proof. It M >0, T > 1, tyg > 0 and ny > 0 denote the constants by Corollary 2.22, we define

1. 1
7= 5 min g 7o, 5o
and claim that for each k € N, there exists z;, € RY such that
1
n(xy + -+ ap, t°+ kT) < 577(961 o, U+ (B = 1)T),

(2.21) || < Mu(a1+ -+ zp_1, t* + (k— 1)T),
’-T1+"'+$k‘ <1,
n(x1 + 4 xg, T +kT) <7.
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This will be proved by an induction argument. Suppose that 1(0,¢*) < 7. Then by applying
Corollary 2.22 with y := 0 and ¢ := t*, there exists z =: 1 € RY such that

1 1
|z1| < Mn(0,t*) < M7 < 1 and n(x,t"+7T) < 517(0,75*) <.

This implies that (2.21) holds for £ = 1. Next we assume that (2.21) holds for k¥ € N. Using
Corollary 2.22 with y := @1 + --- 4+ 23 and t := t* + kT, there exists zx; € R such that
|epr1] < Mn(xy + -+ 4+ zg, t* + kT) and

n(z1 + -+ zp, t° + KT).

N | =

(2.22) n(z1+- -+ zp + 2p1, 5+ (k+ 1)T) <
To finish the inductive step, it suffices to show that

|21+ +ap+ apg1| <1 and gz + -+ 2p 4 2, 0+ (B 1DT) <7
Now by the induction hypothesis, it follows that

k41 k+1
Z\xﬂ < MZn(wl 4t @i, U+ (= 1T,
=2 =2
. 1 . «
(2.23) n(zr+- + i, + (- 1T) < 577(3:1 4 mig, t + (1 —2)T) < Qi—ln(O,t ),

for every 2 < ¢ < k+ 1. Thus one has
|21 4+ 4 @+ B | < 2M(0,87) < 2M7 <
Finally from (2.21) and (2.22), we also have

n(z1 + - 4 ap + ot + (k+ D7) <
Thus by induction, Lemma 2.23 holds. g

Lemma 2.24. Let T'> 1, tg > 0 and no > 0 be constants in Corollary 2.22 and Lemma 2.25.
Then there exists C > 0 such that the following properties hold. For every k € N and t* > tg
with n(0,t*) <7, it follows that

n(0,t* + ET) < Cn(0,t%).

Proof. Let M >0, T > 1,ty > 0,7 > 0 and {x;}}_; C RY be as in Lemma 2.23. Then by the
triangular inequality and (ii) of Lemma 2.11, one has

In(z1 + -+ + g, t* + kT) — n(0,t" + kT)|

1

2
<

T
</ lu(-, s+t +kT) —w(-+x1 + -+ $k)||§{1 d5>
0

1
2

_ (/OT lu(ey s+ £ + KT) — w(-)|2: ds)

1
2

< T||w(°+331 + oo ag) = w()|[F ds
0

k k
<OT2 Y el <CTEM S p(ar + -+ @ioy, t* + (i — 1)T).
i=1 =1
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Thus from (2.23), we obtain
k
n(0,t* + kT) < (14 CTzM) S onwr 4wt + (i — DT
i=1

< 2(1+ CT2 M)n(0,t%).
Taking C' = 2(1 + C’T%M), the claim holds. O

We shall now prove Proposition 2.21. Let T' > 1 be a constant which will be chosen later and
suppose that a sequence {(yn,tn)}nen C RY x R, satisfies |y,| < 1, ¢, — oo and

1
2

T
) = ([ oo+ 00) = w4 00) By ) =0,

Then passing to a subsequence, we may assume that y, — yo as n — oo. Moreover since
tn, — 00 as n — oo, we may also assume that u(-,t,) — @ uniformly for some w € Q(u). Thus
for any K > 1, we have by (ii) of Lemma 2.9 that

Jim Ju(t+tn) = D) oo (e xpo,5)) = 0.

On the other hand, it follows that w(- +y,) — w(- +yo) in HY(RY). Thus from 7(yn,t,) — 0,

T
(2.24) lim llu(-, s + tn) —w(-—l—yo)Hip(RN) ds = 0.

n—oo 0
This implies that w(-) = w(- + yo) and hence
(2.25) Jim Ju(-st +tn) — w(- + yo) |l oo mn x[0,x7) = O-
Moreover by Lemma 2.20, we know that {u(-,¢ + t,)} is relatively compact in C*(RY). Thus
by the uniform convergence of u(-,t + t,) — w(- + yo), one also has
(2.26) lim [[Vu(, ¢+ ) — V- + 40) || e xfo.x) = 0-
n—oo
Hereafter, we write for simplicity
M = N(Yn, tn),  Un(z,t) :=u(x, t+1t,), wp(z):=w®+yn), wo(x):=w(x+yo).
We also note that up to translation, wq is radially symmetric with respect to yg. Now we set
t —
ula, 1) = 8D = 0nl)
Ui

Since
1 ) T )
[ 10 ds < [ ol ds = 1.
2

we have ||¢, (-, 7) || 1 < 2 for some {7} C [$,1] by the mean value theorem. Thus, passing to
a subsequence, we may assume that

1
(2.27) Tn —> T0 € [5, 1} and ¢ (-, 7,) — ¢o in HY(RY),
for some ¢g € H'(RY). Moreover by the compact embedding H. (RY) < L2

2 (RYN), we have
Gn(-, ) = ¢o in LE (RY) and [doll L2y < 2.
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Lemma 2.25. Let K > 1 be given. Then there exists C > 0 such that
K 2
ilelll\)l/o [6n (s 8) [l vy ds < C.
Proof. By applying (ii) of Lemma 2.8 with ¢; = 7,, + t,, and to = K + t,, one has
K
/ l6n (- 8) 7 ds < CETlgn (-, 7).

Tn

1

Since 7, € (3, 1] and [|¢n (-, 70| 2@y) < 2, we get

K
/n%uw%wga

where C' > 0 is independent of n € N. Since fOT [n (-, 8)|131 ds = 1, we also have

Tn T
10 ds < [ 1000 ds = 1.
Thus the claim holds. O

Lemma 2.26 (Convergence to the linearized problem). Let K > 1 be arbitrarily given. Then
there exists a subsequence of {¢n}, still denoted by {¢,,}, such that ¢, — ¢ in L*([0, K), H'(RY)).
Moreover ¢ € C((0,00), L>(RY)) and satisfies the following linear parabolic problem
{ b+ Lop=0 in RN x (0, 00),
é(x,70) = ¢o(x) in RV,
Here Ly is the linearized operator around wg, which is defined by

Lo¢ := —(1 + 2w3) A — dwoVwg - Vo — (dwoAwg + 2|Vwo|?)¢ + ¢ — pul ' 6.

(2.28)

Proof. The weak convergence of ¢, follows by Lemma 2.25. We show that the weak limit ¢
satisfies (2.28). Now from (1.2) and (1.4) and by the definition of ¢,,, one has

(2.29) ()t — Adp + Oy — 1) * (unAui - wnAwZ) —n Y(wP —wP) = 0.
Fix ¢ € C§°(RY x [0, K]). Multiplying (2.29) by ¢ and integrating over [r,,, K] x RY, we get

n Tin

K 1 1
/ / ( — ¢t + Vo, - Vo+ dpp — — (unAui — wnAwa)go — —(ub — wﬁ)gp) dx ds
™ JRN

= On(x, ) o(x, 7)) dx.
RN

Now from the integration by parts, it follows that

1
S — (unAu,% — wnAwZ)cpdx = 2/ (unV(up +wyp) - Vo, + |an\2¢n)g0 dx
n JRN RN
(2.30) + 2/ ((un + wn) PV, + wZV@L) -Vedx.
RN
Moreover by the mean value theorem, we also have
1
(2.31) - = (ub —wl)pdr = —p/ (Knun + (1 — nn)wn)p*%ngo dx
I JRN RN
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for some k,, € (0,1). Thus, we obtain

4
(2.32) / / b+ Lodo ) dods = [ on(a)plo,m)do =3I
=1

where we have set
Pim [ ] = D60 Vot b 2{(ua + 0)6, T + 03T -V
70 JRN
+ 2(un V (tn, + wy) - Vo, + [Vwn|2én) e — p(knun + (1 — mn)wn)p_1¢n<p} dx ds,

= [ (Gulemetem) =~ do(e)ete.m) da,
K
I3 := / / p((ﬁnun + (1 = kp)wy )P~ — wg_l)qﬁngo dz ds,
o RN

K
17 := —/ /RN {2¢n((un + wy) Vuy, — 2woVwy) - Vo + 2(w? — wi) Ve, - Vi

+ 2g0(unV(un + wy) — QwOVwo) -V + 2(\an|2 — ]Vw()]Q)qbngo} dx ds.

Now by virtue of Lemma 2.25, as n — oo one has

| < 0/ /RN (\qbn!(lsotl + ol + [Vel) + [Von| (V| + |¢y))dxd5
70
Tn 9 9 9 % Tn ) ) %
gc(/m /RN (Ipel? + I + [V o) dr ds) (/ /RN (1960l +160?) d ds )

K 1
< Clm —To|é(/ én (-, 8) 120 ds)2 < Clry — 7|2 — 0.
0

Moreover since ¢y, (-, 7,) — ¢o in L2 (RY), we also have |I3| — 0 as n — oo. Next from (2.25)
and by the uniform convergence of w,, to wy, it follows that

lim ( sup ‘wgfl — (Knpup + (1 — mn)wn)p_l‘) =0.
N0 A RN [0,K]

Thus by Lemma 2.25, one has |I§| — 0. Similarly by the uniform convergences of Vu,, — Vwo,
Vw, — Vwy and from (2.24), we also have |I}| — 0. Letting n — oo in (2.32), we obtain

// ¢80t+50¢90d93d8—/ ¢o(z)¢(x,70) dz = 0.

This implies that ¢ is a weak solution of (2.28). Then by the linear parabolic theory, it follows
that ¢ is a classical solution and ¢ € C((0,00), L(R")). O
Lemma 2.27. Let 0,(x,t) := ¢n(x,t) — ¢(x,t). Then the following facts hold.

(i) Let K > 1. Then there exist ny = ny(K) € N and a positive constant C independent of
n € N and K such that

K
Sup /1 ||9n(75)||§_11(RN) ds S C.

n>ni
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(ii) For any e > 0, there exist T, > 1 and ny = n2(T;) € N such that

2T:
sup / He’ﬂ(?s)”%l(RN) dS < €.

n>ng

Proof. (i) Let R > 0 be given. First, we claim that

(2.33) lim sup HH”("t)”m(B(o,R)):O'

=0 telr,, K]

Now from (2.28) and (2.29), one has

1 1
(On)e — Abp + 0, — . (unAul — wy Aw?) — 777(“% — w?)
(2.34) + 2w(2)A¢ + 4w0Vw0 . V¢ + 4wOAw0¢) + 2\Vw0|2¢ + pwg—lqb —0.

Let £ € C$°(RY) be a cut-off function satisfying ¢ = 1 on B(0, R). We multiply (2.34) by £26,
and integrate it over RY. Then, from (2.30), (2.31) and the integration by parts, we get

5
(2.35) / ( ; gt (€262) + (1 + 2wd) |V, |2€2 + 02€2 + 2€0,V0),, - vg) de=-3 I7,

where we have set

=
=3
i

(2 (tt + W) - Vb — dwo Vg - v¢) €20, du,
N

=
NF
i

(2| Vw26 — 2| V| ¢>)g 0, du,

N

2(up + W) Pn Vu, — 4w0¢Vw0> . V(§29n) dx

(2
(2

=
w3
i

2(w? — w)E2V ey - Vi + 2wV, — w2V ) - V(§2)0n> de,

N

=
a3
i

p(wg_l¢ - (Hnun + (1 - Kvn)wn)p_l(bn) 52 0, dx.

| I
%\%\%\%\%\

Now by the Schwarz and the Young inequalities, it follows that
1
2| €0,V0,-Védr > —/ |VO,|?|€)* do — 2/ 10,2V E|? da.
RN 2 RN RN

Next by the Schwarz inequality, one has

| < 2[[un V (un + wp) || oo @™ (0,57 1€V Onll L2 1€ 2
+ 2||un V (un, + wy) — 2w0 Vwol| oo mn (0,57 IEV Al L2160 L2
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Similarly we have
5| < 21| Vwn|* = [Vwo?|| oo 1€0nll 22l nll 2 + 2] Vewo T 160272,
3] < 2[|(un + wn) Vun — 200V wo|| Lo ||én| £2]|EVOn|| .2
+ 4| (un + wn) Vun — 2woVwo || Lo [|€0n| 2|0 VE ] 12,
+ Af|woVwo || Lo ]|€0n| £2[1EVOn | L2 + 8llwo Vwo|| Los 1€0n | 22 |02 VE ]| 12
0] < 2fjwy; — will o [Vl L2 l|E Va2 + 20w, — Wil o 1€V 72
+ 4sz — w2 €V Dl 2116 VE]| L2 + 4l|wn Lo 1€V O] 21|67 VE] 2,
3] < pllwh ™ = (Bntin + (1= £n)wn)P 1= || @nll 21600l 2 + pllwollF = 16572
Next applying (i) of Lemma 2.8 with ¢, = 7, + ¢, and to =t + t,,, we get
I6n ()12 < e“CT [ dn () L2 < CeCF for t € [, K]

and hence [|0,,(-,t)||z2 < C. Thus from (2.35), the uniform decays of wu,, wy,, Vu,, Vw, and
by the Young inequality, we obtain

i l8ala+ [ (V07 + I Ple do
< Cl&nllzz + CllVEIZ2
+2]lwy — willz< [€VOnlI2 + CllOVE 12 + hn,
where C and h,, are positive constants with h,, — 0. Now let € > 0. We choose £ so that
ClonVElEs + CloVEl2 < Csup VEI(1 +[E]) < 5.
Next we take large ng € N so that
2||lw? — wd| e < % and h, < g for n > ny.
Then we obtain
(2.36) 2 1660a( )32 < Cletn (B3 + .

Let (n(t) = [|€0n (-, t)||32. From (2.36), it follows that ¢/, < C(, + . Thus by the Gronwall
inequality, one has

t
gn(t) S ec(t*Tn)Cn(Tn) + eCt/ Ee*CS ds S eCK (C’I’L(T’I’L) _|_ 3) fOI- t c [Tn,K]

C

Since ¢ (-, ) — ¢(-,70) in LE (RY), we have ((7n) = [|€05 (-, 7|22 — 0. Thus,

loc
limsup( sup ||9”("t)||L2(B(0,R)) < %eCK.

n—oo te [Tn ’K]

Since ¢ is arbitrarily, (2.33) holds. Next we show that flK 100 (-, )15 &) ds < C. To this aim,
we multiply (2.34) by 6,, and integrate it over RY. Then arguing as above, one has

10 y I
/RN (55760 + (1 4+ 208) V02 + |62 dw = = " 37

i=1
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where we have set

e
=3

— / (29 (tn + wa) - Vo — 4o Vuwy - V6 )0 da,
RN

Jy = / (2(un + W) pn Vu, — 4w0¢Vw0> -V, dz,
RN

= / 21V w2 — 2|V w0200 + 2(w? — wd) Ve, - V6, di,
RN

Iy = / p(wpflgi) — (Knpun + (1 — nn)wn)p_lgﬁn) 0, dx.
RN

Now, we fix § > 0 arbitrarily. By the Young inequality, it follows that
|J7] < 2/ [un V (un, + W) ||0n] VO] + |unV (uy + wy) — 2wVl V| |6,] da
RN

1
< GIVOuE: +C [l (un + wn) Pl da
8 RN
+ 8100122 + CsllunV (wn + wn) — 2woVawg|| 200 | V|22
1
< L1V, + C sup ]un(a:,t)]/ lﬁn\de—i—C’/ 0,2 da
8 |z|>R B<(0,R) B(O,R)

+0]10n172 + CsllunV (n + wy) — 2woVwo | 7o [ V7.
From (1.6), there exists Rs > 0 such that

O sup funle,t)] <,
|z|>Rs

for all n € N and ¢ € [1, K]. Thus we obtain
1 .
|wswwwﬁ+wm@+@/ 16,2 iz + Ch,
8 B(0,Rs)

where C§ is a positive constant independent of n € N and K, and fzn is a positive constant
satisfying h,, — 0 as n — oo. Estimating J5,J5,J} similarly, we have

0 1
N0l + 10020 < (= + w2 = wdl|ze ) V0|2
ot 2
+ 5616, 72 +Ca/ 10,2 dz + Csh,.
B(0,Rs)

Now we choose § = 1/10. Taking n € N larger if necessary, we have ||w2 —wg||L~ < 1/4. Then
we obtain

0 .
(2:37) o 10a . 18O < Cs [ foulant) P+ Cion
B(0,Rs)

Integrating (2.37) over [1,,, K|, we get

K K
/ 10, )2 ds < 116, 72) 122 +05/ / 10 (2, 8) |2 dae ds + Cshn (K — 7).
Tn mn J B(0,Rs)
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From (2.33) and h,, — 0, there exists n; = ny(K) € N such that
K
C(;/ / 0, (z,5)*drds <2 and Cshp(K —7,) <2 forn > ny.
mn J B(0,Rs)

Moreover from ||¢n (-, 7)1z < 2, ||¢(-,70)|l L2 < 2 and by the continuity of ¢, we also have
2
sup [0, 7)ll72 < (16, )iz + 160, 70) = (-, 70)llz2 + [ 6(, 70) 1 £2)” < 36.

n>ni
Since 1, < 1, we obtain
K
sup / 160(-, 8)||31 ds < 40 for n > n;.
n>ny J1

This completes the proof of (i).
(ii) We fix € > 0 arbitrarily and let 7' > 1. First we observe from (i) that

T
/n@@gﬁp@gé for n > ny (7).
1

Thus by the mean value theorem, there exists s, € [1,7] such that [|6,(-, sn)||72 < % Next
we integrate (2.37) over [s;,2T]. Then from 7, <1 < s, < T, it follows that

2T ) 2T )
/T 162 8)|2%0 ds < / 10+ )% ds

2T
1080|122 + C / / 0, 2 du ds
Sn B(07R§)

C 2T N
<+C/ /} |0, |% dzz ds + Chy, (2T — s,).
-1 mm  JB(O,Rs)

IN

Now we choose T, > 1 so that L < 5. Next from formula (2.33) and hp — 0, we can take

To—1
large ng = na(7:) € N so that

2T, .
C’/ / 10, |% dz ds < S and Ch, (2T, — s,) < S forn > no.
mm  JBO,Rs) 3 3
Then it follows that
2T,

sup [ 00,9 ds < ¢
n>na €

and hence the proof is complete. O

Now we consider the following eigenvalue problem
Lo =mp, e L2RY) and o(z) — 0 as |z| — oco.
Then the first eigenvalue p; is negative. We denote by 1; the associated eigenfunction with
el r2rny) = 1. Moreover we know that the second eigenvalue ps is zero and the corresponding
eigenspace is spanned by {%—7;’? N (See [3], Remark 4.10). Let 1 € [%,1] be as in (2.27) and
decompose
N

(2.38) do(x) = d(z, ) = Coe ™™y () + 3 G220

2 7'873’;1(:1:) +é(.’1},7’0),
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where Cy, C; € R and 1, %’ 0 are mutually orthogonal in L2(RN ). Finally we set

N
(2.39) O(z,t) == ¢(x,t) — Coe "py(z) = Y Cj
=1

(‘9w0

Do, (z).
Then by direct calculations, one can see that 0 satisfies
(2.40) 0+ Lo6 =0 in RY x (0,00).

Moreover by the definition of 0, we also have

6

8zd$_0 fori=1,---,N.

(2.41) 0( T0 ¢1d.1‘—/ 9 7'0

RN

In the next result, we shall use the crucial information of non-degeneracy of stationary solutions.

Lemma 2.28 (Non-degeneracy and stability). There exist « > 0 and T > 0 such thate=°T < 1
and

2T -
/ ||9(',3)H%11(RN) ds<e T forall T>T.
T

Proof. First we claim that

(2.42) / 0(-, )1 da::/ é(-,t)awo dr=0 fori=1,---,N and t > 7.
RN RN 8:@
To this aim, we put n(t fRN t)y1 dx. Then from (2.40), one has

' (t) = (§t7¢1)L2 = —(Lob,1) 2 = —(0, Lotb1) 2 = —p1(0,¢1) 2 = —pan.

Thus from (2.41), it follows that n(t) = n(mp)e #(:=7) = 0 for all t > 75. We can prove the
second equality in a similar way. Next we define

o= inf {(Lov,0)e v € H'RY), ]2 =1,
(¢, 91) 2 (1!1, OwO)L2 =0 fori=1,- N}

and suppose that g > 0 for the present. Then from (2.40) and (2.42), we get

d _ o N
(2.43) o 62(-,t)dr = —2(Lo0,0) 2 < =2 | 6%(-,t)dx
RN RN
and hence
(2.44) 0%(-,t) do < e~ 2(t=m0) 0%(-,79) dz  for t > 79.
RN RN

Now let T > 1 be a constant which will be chosen later and take T' > T arbitrarily. Integrating
(2.43) over [T, 2T, one has

~, 2T ~ ~ ~,
02(-,2T)d:c+2/ (L06,0)2ds = 6(-,T) dz.

RN T RN



UNIQUENESS OF LIMIT FLOW FOR QUASI-LINEAR PARABOLIC EQUATIONS 29

Moreover by the Young inequality, we also have

(L06,0) 2 = / ((1 + 2wd)|VO)? + SwofVwy - VO + 262 |Vuo|? + 6% — pw{;—lé2) dx
]RN

z/ (yvéF + 6% — 8wp|f|| Vwo| |V —pwg—lé2) dz
RN
1 ~ ~ ~
(2.45) > / IVO* + 6% dx —/ (pwg*1 +32w(2)|Vw0\2)02 dx
2 JrN RN

Y

1 - -
100Dl = ClOC, D)o

Thus from (2.44), we obtain
2T ) 2T ) ~ )
/T 18 8)|2 ds < C /T 10 8)22 ds + 1, T2
2T
< O (-, 1) % / €72 ds 4 2P (- 1) |2 2T
T

C . _ o _
< ﬁez“mII@(w 70) 72T + 2F|6(-, 7o) |72 2T
< Ce ?T forall T>T,

Where~C_’ > 0 is independent of T and T. Putting o := i > 0 and taking 7' > 1 larger so that
Ce=°T < 1, the claim holds. We now show that i > 0. By the definition of i and o = 0, it
follows that fi > 0. Suppose by contradiction that i = 0. Then there exists {t,} ¢ H'(RY)
such that [[nllz2 = 1, (¢n, ¥1)12 = (hn, 322) g2 =0 for i =1,-- , N and (Loton, )2 — 0 as
n — o0o. Since (Lo¥n, ¥n)r2 — 0 and ||¢y,||z2 = 1, one can show that ||| 1 is bounded. Thus
passing to a subsequence, we may assume that 1, — 1 in H'(R") and v, — ¥ in L%OC(RN )
for some 1) € H'(RY). Moreover arguing as (2.45), we have

1 _
(2.46) 5;\%\@1 < (Loton, Yn)p2 + /RN (pwh ™" + 3203 | Vo |?) 1?2 d.
Since wy decays exponentially at infinity and |[1,||72 = 1, there exists R > 0 such that
_ 1
/ (pwh ™" + 3208 | Vo |?) 2 dz < .
B<(0,R) 4

Thus from (2.46), we get
1
- gc/ Y2 dx + o (1).
4 B(0.R)

This implies that 1) # 0. Moreover by the Fatou lemma, the weak convergence of 1,, — 1, the

strong convergence in LIQOC(RN ) and by the exponential decay of wg, one can show that

. . Dy |
(£0¢7w)L2 SO? ("lpﬂ/}l)L? = <¢7 871‘1')12 =0 fori= 17 7N'

Since i = 0, it follows by the definition of fi that (Lo, )2 = 0. By the Lagrange multiplier

rule, using 1, 11 and Jwp/dx; as test functions, one can prove that Loy = 0, which contradicts

Ker(Ly) = span{%—i’?}. Thus i > 0 and the proof is complete. O
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Lemma 2.29. [t follows that Cy = 0 and hence it holds

8w0

N
P(x,t) = Zci%(ﬂﬁ) +0(z,1).
i=1 v

Proof. First we observe by Lemma 2.4 that
(2.47) I(u)(t+t,) —I(u)(t+7) <0, forany 0 <7 <t,.

Let tg > 1 be given. From (2.25), (2.26) and uniform exponential decay of sup;sq |D¥u(-,t)|
for |k| <1, one has

I(u)(t 4+ t,) — I(wg) asmn — oo on [1,t).
Thus integrating (2.47) over [1,%o] and passing a limit n — oo, we get

(2.48) /1 i (I(u)(s+7) — I(wo)) ds >0 for any to > 1.

Next since u, = wy, + Nndn, I'(wy) = 0 and I(wg) = I(w,), by Taylor expansion, we have
to
/ (I(u)(s+tn) — I(wo)) ds
1
to
= /1 (I(wn + M) — I(wn)) ds

[
:? L <I (wn+’£nnn¢n)¢nv¢n>d5

2 rto 2 o
:7’2’“/1 <I//(w0)¢m¢n>d8+772”/1 <(I”(wn)_I’/(wﬂ))¢na¢n>d8

2 to
(2.49) + %” : (" (wn + Fnindn) — I () b, b ) ds,

for some K, € (0,1). Now from w,, + Kpndn = Kntn + (1 — £y )wy,, one has
<(I”(wn + Enn®n) — I”(wn))¢m ¢n>
_ / {2¢%<\V(Fanun P T \an|2) + 2yv¢nyz((ﬁnun + (1= kp)wn)? — w,%)
RN
+ 8¢V, - <(/inun + (1 — ’fn>wn)v("€nun + (1 - "in)wn) - wnvwn>
- pqs?b(}’inun + (1 - /{n)wnvj_l - |wn’p_1> } dx.
Since u,, and wj, converge to wy in L™ (RN x [1,%]) by (2.25) and (2.26), it follows that
<(I”(wn + ﬁnnn(bn) - I//<wn))¢nv ¢n> < 0<1)H¢n(7 t)H%{l(RN)-

Thus by Lemma 2.25, there exists ng = ng(tg) € N such that for n > ny,

(2.50) / (I (0 + Fntiadn) — " (00)) b, ) ds < 1.

1
Similarly one gets for n > nq,

(2.51) " ) = 1)) ds < 1
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Next since 6,, = ¢, — ¢, it follows that

/O<I”<WO)¢nv¢n>d5=/o (¢1"(w0)6, 8) +2(1" (w0), 00 + (" (w0)0n, ) ) dis.
1 1

By (i) of Lemma 2.27, there exists ny = nj(tg) € N such that for n > nq,
to to
/ (I"(w0)0n, 0 ) ds = / / 1+ 2wg) V| + 8wob, Vg - VO,
1
+ 202 |Vwo|* + 6% — pwgflei} dxds

to
(2.52) < C/ 105 (-, 8)[[32 ds < C,

to to
/ (I"(wo)$, b ) ds = / / {(1 + 203)V - VO, + dwedVwg - Vi,
1 1 RN

4w, Vg - Vb + 260, Vawe|? + ¢br — pwg—lqsan} dz ds

(2:53) <c(/ 166, )l ds)% (/ 16u )2 ds)% <e,

where C is independent of n € N and to. Finally from (2.39), it follows that

J )0, 6)ds = (1w ) [ Corenas

42 Coe “15<I”w0 wl,ZO +0>ds
1

to Oowyg Owg
//
+/1 (1" (wy (anxl ). anxz ) ds.
Noticing that (I"(wo)v1, - ) = (Lo, )2 = 1 (Y1, ) 12,

(22 = (2o (22).),, -
Owo

and that 1, Do, are orthogonal in L2, we have

/1 ’ <I"(wo)¢, ¢> ds

(Co)? to - to s
(2.54) = (et _ o721y L9y O / 3 (41, 0) 12 ds + / (I"(w)0, 0) ds.
1 1

2
Next by the Schwarz inequality, one has

to ~ to
2111 Co / ¢34y, ) 2 ds < 2lju1|Cole 110 [ | 2 / 10 5) 12 ds
1 1

1
to 2
<2l ([ 166,13 a5
1

31



32 M. SQUASSINA AND T. WATANABE

Let T > 0 be as in Lemma 2.28 and suppose ¢T < tg < (£ + 1)T for some ¢ € NU{0}. Then

to 5 k+1)T
/1 18- 8)%: ds < / 16 ||H1ds+2 / 160 )% ds
é/ |!§<~,s>Hipds+Ze*“’“T
1

k=1
—aT

T ~ e
§/ 10, 8)|| 31 ds + —
. _

e—aT

Thus there exists L > 0 independent of ¢y such that

to _
(255) 2,[1,100/ 6_#15(1/}1, G)LQ ds S L|CQ|\/%€_#NO.
1

Similarly one has
to o

(2.56) / (I"(wo)0,0) ds < L.
1

From (2.49)-(2.56), we obtain

/1 " (I(u)(s + ta) — I(wp)) ds

2 2
S 77271 (2+2C+L—|— (CO) —2;“ +L‘Co|m€—u1t0 o (C;)) €—2u1t0>

for n > max{ng,n1}. Now suppose by contradiction that Cy # 0. Then since p1 < 0, one has

(Co)®

5 e 2l s oo as ty — oo.

24+2C + L+ (Cg)

—2m + L|C’0|\/%e*“1t0 _

This contradicts to (2.48). Thus it follows that Cp = 0 and hence the proof is complete. [

Proof of Proposition 2.21 concluded. Let Cy,--- ,Cx be as defined in (2.38) and T >0,
a > 0 be as in Lemma 2.28. We put C = (C1,---,Cy) and z, := mC € RN, Since n, — 0,
we may assume |z,| < 1. By Lemma 2.29, the orthogonality of %1;;0, (-, 70) in L2(RY) and
from ||¢ol| ;2 < 2, one has

N 2

owy = _
42 loolife = [ S GiG2 +6C.m)|| = ICPIVwola + 60, 70)|
i=1 v

L2
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Since ||Vw||r2 = |[Vw||z2, it follows that |C| < W
the definitions of ¢,, 0, and from Lemma 2.29, we get

=: M and hence |z,| < Mn,,. Next by

u(z,t +tn) — w(@ + yn + 2n)
= Nndn (2, t) + w(T + yn) — w(T + Yn + 21)
= nnen(xy t) + nn(b(x, t) + ’w(%‘ + yn) - w(x + Yn + Zn)

N
0 -
= N (2, 8) + ) nnCi%(a:) +120(2, 1) + w(T + yp) — (T + Y + 20)
i=1 ¢

= (@, ) + 0l (2, 8) + (Vwo(z) - 2 + 0(T + yn) — w(T + Yo + 20))
= DpOn(2,t) + Npbp(x, 1) + (Vw(z +yn) - 2n + w(z + yn) — w(T + yn + 21))
+ (Vwo(z) — Vw(z + yn)) - 2n.
By Lemma 2.11 (i), one has
(- + yn + 20) = w( +yn) = V(- +yn) - 20l Fn < Clzal".
Moreover since w(- + yn) — w(- + yo) = wo(-) in C2(RY), we also have
[(Vwo() = V(- +ya)) - zallFn = o(1)]za]*.

Thus by the Triangular inequality, we obtain

2T
P+t + ) = [ st ta) = w4+ 20) s ds
T
2T B
< </ (16”971(‘, 8)|131 + 166, s)||fql> ds + OT (|zn|* + 0(1))) :
T
By Lemma 2.27 (ii), there exist 7' > 1 and ng = na(7T") € N such that

27
1
/ 100(,8) 151 ds < = and  CT(|z,* +0(1)) < for n > ny.
T

256

| —

Taking T > 1 large if necessary, we may assume 7' > T and e~ < ﬁlﬁ. Then by Lemma 2.28,

2T ) 1
: <.
/T ”9( 7S)HH1 ds = 9256

Thus we obtain n2(y, + 2n, t, + 1) < inQ (Yn, tn). This completes the proof. d

3. PROOF OF THE MAIN RESULTS

In this section, we will prove the main results of the paper.

3.1. Proof of Theorem 1.1. Let ug € CgO(RN ) be non-negative, radially non-increasing and
not identically zero. Then, by means of Lemma 2.3, we know that

w(z,t) >0, u(x,t)=uv(z,t), v.(z|,t) <0 forany z € RY and t € (0, Timax)-

If u is globally defined, we have that Ti,,x = co. Then by Proposition 2.12, we learn that u is
uniformly bounded in space and time, and it satisfies the decay condition (1.6). O
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3.2. Proof of Theorem 1.2. Let w € Q(u). Then there exists a diverging sequence {t, }nen
such that u(-,t,) — w(-) uniformly in RY as n — co. Let T > 1, g > 0, top > 0 be as in
Lemma 2.24 and fix ¢ > 0. Then by (i) of Lemma 2.9, there exists ng € N such that t,, > to,

T 2
n(0,tn,) = </0 lu(-, s + tny) — w(')”%ﬂ(RN) ds> < min{n, e}.
Thus from Lemma 2.24, one has
(3.1) 7(0,tp, + kT) < Ce for every k € N.

Let t > t,, be given. Then it follows that t,, + kT <t < t,, + (k+ 1)T for some k € N. Thus
we can write t = t,, + kT + 7 with 7 € [0,7]. Then by Lemma 2.10 and from (3.1), there
exists C' > 0 independent of ¢ such that

(3.2) n(0,t) = n(0,tn, + kT + 1) < Cn(0,tyn, + kT) < Ce.

Now let K > 0 be arbitrary. Then /T < K < (¢ + 1)T for some ¢ € N. Then from (3.2),

K (t+1)T
/ lu(, s + ) = w() |7 ds < / lu(, s+ ) = w(-) |7 ds
0 0
¢
= 7*(0,t+jT) < (£ + 1)C2>.
§=0
This implies that (1.7) holds. Finally we show that the limit w € Q(u) is independent of the

choice of the sequence {t,}nen. Indeed suppose that there exists another sequence {t,}nen
such that u(-,t,) — @ uniformly for some w € Q(u). Then by the previous argument, one has

K
/ lu(ys +8) — @()|2 ds < (€ + 1)C%2.
0
This implies that w = w and hence the proof is complete. (|

3.3. Proof of Theorem 1.3. Let ¢y € C$°(RY) be a function which is non-negative, radially
non-increasing and not-identically equal to zero. For A > 0, we denote by u) the solution of
(1.2)-(1.3) with the initial condition ug = Apg. Then two cases may occur, either uy blows up
in finite time or it is globally defined. In the second case, u) is positive, radially decreasing and
satisfies the uniform decay condition (1.6) by Lemma 2.3 and Theorem 1.1. Thus by Theorem
1.2, uy converges to 0 or a positive solution of (1.4) uniformly in RY. Now we define

A:={X € (0,00) : uy blows up in finite time}.

B:={\ € (0,00) : uy converges to a positive solution of (1.4) uniformly in RV}.

C:={)\ € (0,00): uy converges to zero uniformly in R™V}.
One can see that A, B,C are intervals and AU B UC = (0,00). The proof of Theorem 1.3
consists of four steps.
Step 1: A is open.

By using standard parabolic estimates, one can prove that, for fixed tg > 0, the mapping
A — I(u,\(~,t0))

is continuous. On the other hand, it follows from Lemmas 2.17 and 2.18 that u) blows up in
finite time iff there is ¢y > 0 such that I(uA(-, tg)) < 0. These facts imply that A is open. O
Step 2: C is open and not empty.
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We observe that any constant less than 1 is a super-solution of (1.2). Moreover as we have
observed in the proof of Lemma 2.15, any positive solutions of (1.4) have maximum values
strictly larger than 1. Finally for fixed ¢ > 0, u)(+,¢) is continuous with respect to A uniformly
in € RN. From these facts, one can show that C is open and not empty. O
Step 3: A is not empty.

We choose R > 0 so that supp ¢9 C B(0, R). Then, taking into account Lemma 2.17, it
suffices to show that I(Agg) < 0 for large A > 0. It follows that

)\2
IO0) = 5 /B o

)

)\P-i-l
(IVeol® + ¢3) d$+>\4/ @8IV po|? dz — / ool da.
) B(0,R) p+1./Bo,R)

)

If p>3,orp=3and [pn @3 Veol> — 1|po|* dz < 0, then we have I(Apg) — —00 as A — oo.
Thus we have I(Apg) < 0 for large A > 0 and A is not empty. O

Now since (0, 00) is connected, it follows that B is not empty.

Step 4: B consists of a single point Ag.
Suppose by contraction that the set B has at least two elements A\g < A;. We claim that
(Ao, A1) € A. Now let A € (Ao, A1) be arbitrarily given. First we show that

(3.3) tl_i)r%I(uA(-,t)) <0,

where T > 0 is the maximal existence time for uy. To this end, we suppose by contradiction
that I(uA(-,t)) > 0 for all t € (0,7]. Then by Lemmas 2.17-2.18, uy is globally defined.
Moreover since uy,(+,0) < uy(+,0), we have uy,(z,t) < uy(z,t) for all z € RN and ¢t > 0 by
the Comparison Principle. Finally since uy,(z,t) — w(z) as t — oo, it follows that A € B and
hence uy(z,t) — w(x) as t — oo by the radial symmetry of u) and the uniqueness of positive
radial solution of (1.4). Next we put ¢ = uy — uy,. Then from (1.2), one has

0=+ Lo+ 2(u} — w)Ad + (dwAw — 2(uy + ury)Auy, )@
(3.4) +2(|Vur|? = [Vw*)¢ + (dwVw — 2ux, V(uy +uy,)) - Vo

+p<wp_1 — (kur+ (1 - H)Uxo)p_1>¢,

where k € (0,1) and £ is the linearized operator which is defined in (1.5). Let u1 < 0 be the
first eigenvalue of £y and 11 be the corresponding eigenfunction. Multiplying 1 by (3.4) and
integrating it over R", one can obtain as in the proof of Lemma 2.26 that

8/ oY1 dz — (1 +e(t)) ¢p1de >0 for all t > 0,

ot JrN RN

where e(t) — 0 as t — oo. Since p1 < 0, it follows that [px ¢(- )11 dz — oo as t — oo.
But this contradicts to ¢(-,t) — 0 as t — oo. Thus inequality (3.3) holds. Now from (3.3)
and by the continuity of I (ux(-,t)) with respect to t, we have I(ux(-,t)) < 0 for ¢ sufficiently
close to T). Then one can show that uy(z,t) blows up in finite time and hence A € A. Since
A € (Ao, A1) is arbitrarily, we obtain (Ag, A1) C A as claimed. Next for A € (Mg, A1), we have
uy(z,t) < uy, (x,t) for all z € RY and ¢t > 0 by the Comparison Principle. Since A € A and
A1 € B, it follows that wuy,(-,t) — w as t — oo but uy blows up in finite time. This is a
contradiction and hence the set B consists of a single point A\g. Finally, by Steps 1-4, it follows

that A = (A, 00), B = {Ao} and C = (0, \g). This completes the proof. O
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