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Abstract. We consider an evolution in phase field fracture which combines, in a system of pdes, an irre-
versible gradient-flow for the phase-field variable with the equilibrium equations for the displacement field.
We employ a discretization in time and an alternate minimization scheme with a quadratic penalty in the
phase-field variable (i.e. an “alternate minimizing movement”). First, we prove that discrete solutions con-
verge to a solution of our system of pdes. Then, we show that the vanishing viscosity limit is a quasi-static
BV -evolution. Both our convergence results are formulated in terms integral characterizations, à la De Giorgi,
for gradient flows and parametrized BV -evolutions, from which the pdes follow.
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1 Introduction

Phase field models are widely employed to simulate crack propagation; nowadays, even within the
linear-elastic setting, the literature comprises a huge number of phase field models with different
potentials and evolution laws for both the elastic and the phase field variable, e.g. [2, 4, 7, 8, 16,
21, 23, 29, 31]. Among the many, our interest is restricted to phase field energies of the form

E(u, v) =

∫
Ω

(v2 + ηδ)W (Du) dx, Gc L(v) = 1
2 Gc

∫
Ω

(4δ)−1(v − 1)2 + δ|∇v|2 dx,

as approximations of the linear-elastic and brittle energy respectively. Here, u is the displacement
field, W (Du) is the linear elastic energy density, v is the phase field variable, Gc is toughness while
δ > 0 and ηδ > 0 are regularization parameters. There are practical and theoretical reasons behind
this approximation: for static problems, it is well known [3, 9, 12] that for δ → 0 and ηδ = o(δ) the
Γ-limit of the energy F(u, v) = E(u, v) +GcL(v) takes the form

F(u) =

∫
Ω
W (Du) dx+GcHn−1(Ju),

where the set Ju of discontinuity points of u represents the crack. This is clearly a strong argument in
favour of this approach, however it is fair to remember that Γ-convergence yields only the convergence
of global minimizers, for applications it would be more useful to have also convergence of critical
points and energy release; these interesting questions are technically hard, some partial answers can
be found in [5, 13, 26].

Let us turn our attention toward evolutions problems considering in particular discrete schemes,
used in many applications, and based on the separate convexity of the energy F(u, v) = E(u, v) +
D(v). We start with the quasi-static variational evolution of [8]. Consider on ∂Ω a boundary
condition u = g(t) for t in the time interval [0, T ] and the initial conditions u0 and v0 (for t = 0).
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For τ > 0 let tn = nτ ∈ [0, T ] for n ∈ N. Given an equilibrium configuration (un−1, vn−1) (at
time tn−1) the equilibrium configuration (un, vn) (at time tn) is obtained by means of a sequence
(un,k, vn,k) of intermediate states. More precisely, un = limk un,k and vn = limk vn,k where the
sequences un,k and vn,k are defined inductively by the alternate minimization scheme{

un,k ∈ argmin {F(tn, u, vn,k−1) : u = g(tn) on ∂Ω}
vn,k ∈ argmin {F(tn, un,k, v) : v ≤ vn,k−1}.

Intuitively, the sequence (un,k, vn,k) provides a ”zig-zagging” evolution in the time interval [tn−1, tn]
connecting the equilibrium configurations (un−1, vn−1) and (un, vn) with the separately stable con-
figurations (un,k, vn,k). This is by definition a discrete-in-time scheme; it’s time-continuous limit (as
τ → 0) has been fully identified in [18]. Mathematically the limit is characterized by equilibrium
and energy balance in the framework of parametrized (quasi-static) BV -evolutions [11, 24, 27], with
respect to a suitable family of intrinsic norms. Keeping aside the technical details, here it is im-
portant to remark that BV -evolutions may present both a stable and an unstable, discontinuous
propagation regime. For this reason it is convenient to introduce an ”arc-length” parametrization
s 7→ (t(s), u(s), v(s)) in which stable and unstable regimes correspond respectively to t′(s) > 0 and
t′(s) = 0. From the mechanical point of view, it is remarkable that in the stable points the BV -limit
satisfies a phase-field Griffith’s criterion, indeed, if t′(s) = 0 it holds

G(t(s), v(s)) ≤ Gc, (G(t(s), v(s))−Gc)L′(v(s)) = 0,

where G(t, v) is the phase-field energy release rate while L′(s) denotes the derivative of L(s) with
respect to the parametrization variable (cf. [18] for further details).

In this work we will consider an alternate minimizing movement scheme [30, 31] which provides
a discretization of a system of pdes employed in [21]. Let ε > 0 denote a “mobility parameter” or
“viscosity”. Given (un−1, vn−1) (at time tn−1) the configuration at time tn is obtained by solving{

un ∈ argmin {F(tn, u, vn−1) : u = g(tn) on ∂Ω},
vn ∈ argmin {F(tn, un, v) + 1

2ετ
−1‖v − vn−1‖2 : v ≤ vn−1},

where τ > 0 is again the discrete time increment. Note that here the updated configuration is
determined by a single iteration. First, we will see that (as τ → 0) the time continuous limit
t 7→ (u(t), v(t)) for every t ∈ [0, T ] satisfies: u(t) ∈ argmin {E(t, u, v(t)) : u = g(t) on ∂Ω} together
with the energy balance

F(t, u(t), v(t)) = F(0, u0, v0)− 1
2

∫ t

0
‖εv̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr +

+

∫ t

0
∂tF(r, u(r), v(r)) dr, (1)

where the unilateral slope |∂−v F(t, u, v)|L2 = sup{−∂vF(t, u, v)[ξ] : ξ ≤ 0, ‖ξ‖L2 ≤ 1} takes into
account the irreversibility constraint. This is De Giorgi’s integral characterization of gradient flows.
Then, after improving time regularity estimates, we show that the limit evolution solves for a.e. time
the system of pdes{

εv̇(t) = −
[
v(t)W (Du(t)) +Gc(4δ)

−1(v(t)− 1)−Gcδ∆v(t)
]+

div
(
σv(t)(u(t))

)
= 0

(2)

where v(t)W (Du(t)) + Gc(4δ)
−1(v(t) − 1) − Gcδ∆v(t) is a Radon measure in Ω with positive part

[·]+ in L2(Ω) while σv(u) = (v2 + ηδ)σ(u) is the phase-field stress. This system, proposed in [21],
is one of the “Ginzburg-Landau” models employed in phase-filed fracture with many variations, see
for instance [1, 16].
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Finally, we consider (as ε → 0) the quasi-static (vanishing viscosity) limit, characterized again
in the parametrized setting. More precisely, the limit, represented by s 7→ (t(s), w(s), z(s)), satisfies
w(s) ∈ argmin {E(t(s), w, z(s)) : w = g(s) on ∂Ω} together with the energy balance

F(t(s), w(s), z(s)) = F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr+

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (3)

In analogy with the gradient flow, this balance together with the Lipschitz continuity of parametrized
solutions implies the main differential properties of BV -evolutions [24], including a characterization
of stable and unstable regimes in terms of pdes (cf. § 5.4).

Let us turn to some technical considerations about our convergence results. First of all, the proof
of (1) relies essentially on the separate convexity of the energy Fε(t, ·, ·), the lower semi-continuity
of the slope and an upper gradient inequality; these ingredients allow to work with evolutions of
class W 1,2(0, T ;L2) which is a “minimal” regularity assumption for (1) to make sense. Then, in
order to prove (2) it is necessary (at least in our proof) to employ the chain rule, which in turn
requires evolutions of class W 1,2(0, T ;H1); proving time regularity in H1, instead of L2, is quite
delicate and follows from a discrete Gronwall argument. Finally, in order to prove (3) from (1),
it is very convenient to employ a parametrized setting [11, 27] for both the gradient flow and the
quasi-static evolutions; this is based on the fact that the length of the parametrized curve is finite in
L2, a delicate property which shares several points in common with the estimate in W 1,2(0, T ;H1).

To conclude, let us also mention that an alternate minimization scheme has been employed, in
different ways, also in a dynamic visco-elastic setting [22] and in another gradient flow setting [5].
Different approaches which provide existence of solutions without alternate minimization can be
found in several publications, see e.g. [19, 20, 27].
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2 Setting, energy and its derivatives

Assume that Ω is an open, bounded, connected domain in R2 with Lipschitz boundary ∂Ω. Deforma-
tions are assumed to be of the form ũ = u+g(t) for u ∈ U = H1

0 (Ω,R2) and g ∈ C1([0, T ];W 1,p̄(Ω,R2))
for p̄ > 2. The phase-field ”space” V is H1(Ω, [0, 1]). In the sequel, we will say that vn ⇀ v in V if
vn ⇀ v in H1(Ω).

The potential energy F : [0, T ] × U × V → [0,+∞) is given by the following [3, 8] phase field
energy for brittle fracture

F(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Dũ(t)) dx+ 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx, (4)

where ũ(t) = u + g(t) and W (Dũ) = Dũ : CDũ = ε(ũ) : σ(ũ) is the linear elastic energy density,
Gc > 0 is the toughness while η > 0 is a (small) regularization parameter. For convenience of
notation, let

E(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Dũ(t)) dx, D(v) = 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx

denote respectively the elastic and the fracture (dissipated) phase-field energy.

Lemma 2.1 If tn → t, un ⇀ u in U and vn ⇀ v in V then

F(t, u, v) ≤ lim inf
n→+∞

F(tn, un, vn).

Proof. Since vn ⇀ v in V it is clear that D(v) ≤ lim infn→+∞D(vn). It is thus enough to show
that

E(t, u, v) ≤ lim inf
n→+∞

E(tn, un, vn).

First, extract a subsequence (not relabelled) such that lim infn E(tn, un, vn) = limn E(tn, un, vn).
Since vn is bounded, we can extract a further subsequence (again not relabelled) such that vn → v
a.e. in Ω. By Egorov’s Theorem, for every ε� 1 there exists Ωε with |Ω \Ωε| < ε such that vn → v
uniformly in Ωε. Hence for δ � 1 and n� 1 it holds 0 ≤ (v2 + η)− δ ≤ (v2

n + η). Then

1
2

∫
Ω

(v2
n + η)W (Dũn(tn)) dx ≥ 1

2

∫
Ωε

(v2 + η − δ)W (Dũn(tn)) dx.

By the weak lower semi-continuity of the right hand side

lim inf
n→+∞

E(tn, un, vn) ≥ 1
2

∫
Ωε

(v2 + η − δ)W (Dũ(t)) dx.

To conclude, it is sufficient to take first the supremum for δ ↘ 0 and then the supremum for ε↘ 0.

In the sequel, both the gradient flow and the quasi-static evolution will be defined by means of a
suitable unilateral slope of F(t, u, ·). If the displacement field u is sufficiently regular (and this is the
case for our evolutions) variations of energy take a simple form; more precisely, if u ∈ W 1,p(Ω,R2)
for some p > 2 then by Lemma A.5 the energy F(t, u, ·) is differentiable with

∂vF(t, u, v)[ξ] =

∫
Ω
vξ W (Dũ(t)) dx+Gc

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx ∀ ξ ∈ H1(Ω). (5)

Due to the irreversibility constraint in the evolution we will consider only negative variations, i.e. ξ ≤
0; thus if u ∈W 1,p(Ω,R2) for some p > 2 the unilateral slope is defined by

|∂−v F(t, u, v)|L2 = | inf{∂vF(t, u, v)[ξ] : ξ ∈ H1(Ω), ξ ≤ 0, ‖ξ‖L2 ≤ 1}|. (6)

For future convenience denote Ξ = {ξ ∈ H1(Ω), ξ ≤ 0, ‖ξ‖L2 ≤ 1}. Note that the slope could be
equivalently defined as

|∂−v F(t, u, v)|L2 = sup{−∂vF(t, u, v)[ξ] : ξ ∈ Ξ}. (7)
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Lemma 2.2 If tn → t, un → u in W 1,p(Ω,R2) for p > 2 and vn ⇀ v in V then

|∂−v F(t, u, v)|L2 ≤ lim inf
n→+∞

|∂−v F(tn, un, vn)|L2 . (8)

Proof. First, we show that for every ξ ∈ Ξ we have

lim
n→+∞

∂vF(tn, un, vn)[ξ] = ∂vF(t, u, v)[ξ]. (9)

By weak convergence in H1(Ω)

lim
n→+∞

∫
Ω

(vn − 1)ξ +∇vn · ∇ξ dx =

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx,

while

lim
n→+∞

∫
Ω

(v2
n + η)W (Dũn(tn)) dx =

∫
Ω

(v2 + η)W (Dũ(t)) dx

because vn → v in Lq(Ω) for every q <∞ (by compact embedding) while

Dũ(tn) = Dun +Dg(tn)→ Dũ(t) = Du+Dg(t) in Lr(Ω,R2×2) for r = p ∧ p̄

and thus W (Dũn(tn))→W (Dũ(t)) in Lr/2 for r/2 > 1.
By (7) for every ξ ∈ Ξ

|∂−v F(tn, un, vn)|L2 ≥ −∂vF(tn, un, vn)[ξ]

and hence by (9) for every ξ ∈ Ξ we get

lim inf
n→+∞

|∂−v F(tn, un, vn)|L2 ≥ − lim
n→+∞

∂vF(tn, un, vn)[ξ] = −∂vF(t, u, v)[ξ].

Taking the supremum with respect to ξ ∈ Ξ concludes the proof.

By the regularity in time of g the partial time derivative takes the form

∂tF(t, u, v) =

∫
Ω

(v2 + η)ε(ũ(t)) : σ(ġ(t)) dx. (10)

In particular, for v ∈ V by continuity and coercivity of the elastic energy we have

|∂tF(t, u, v)| ≤ C‖ε(ũ(t))‖L2 ≤ C ′
(
‖ε(ũ(t))‖2L2 + 1

)
≤ C ′′(F(t, u, v) + 1). (11)

Lemma 2.3 If tn → t, un ⇀ u in U and vn ⇀ v in V then

lim
n→+∞

∂tF(tn, un, vn) = ∂tF(t, u, v). (12)

Proof. It is sufficient to pass to the limit in (10) using the fact that Dġ(tn)(v2
n+η)→ Dġ(t)(v2 +η)

in L2(Ω,R2×2).
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3 Gradient flows

3.1 Incremental problems

Our gradient flow will be defined as an ”alternate minimizing movement”, i.e. as the limit of an alter-
nate implicit Euler discretization. For sake of simplicity we will assume that the initial configuration
u0, v0 (at time t = 0) is in equilibrium, i.e. that

∂uF(0, u0, v0) = 0, ∂vF(0, u0, v0)[ξ] ≥ 0 ∀ξ ∈ Ξ.

Since the energy F(t, ·, ·) is separately quadratic, equilibrium is equivalent to separate minimality,
i.e.

u0 ∈ argmin {E(0, v0, ·) : u ∈ U}, v0 ∈ argmin {F(0, ·, u0) : v ≤ v0 , v ∈ V}.

Fix τ = T/m > 0 (for some m ∈ N with m > 0) and for k = 0, ...,m consider the discrete
times tk = kτ ∈ [0, T ]. In the sequel, for sake of simplicity, we will drop the dependence on τ in the
notation. Given uk−1 = u(tk−1) and vk−1 = v(tk−1) the irreversible alternate minimizing movement
is defined by {

vk ∈ argmin {F(tk, uk−1, v) + 1
2τ ‖v − vk−1‖2L2 : v ≤ vk−1 , v ∈ V}

uk ∈ argmin {F(tk, u, vk) : u ∈ U} = argmin {E(tk, u, vk) : u ∈ U}.
(13)

By Lemma A.4 we get the regularity and the continuous dependence of uk stated in the next
Lemma.

Lemma 3.1 There exists p ∈ (2, p̄) such that uk ∈ W 1,p(Ω,R2) for every k ∈ N. Moreover, there
exists C > 0, independent of τ and k, such that

‖uk − uk−1‖W 1,p ≤ C
(
|tk − tk−1|+ ‖vk − vk−1‖Lq

)
(14)

for 1/q = 1/p−1/p̄ and for every k ≥ 1. In particular, uk is bounded in W 1,p(Ω,R2) uniformly with
respect to k and τ .

The next two lemmas provide the main ingredients in the proof of the convergence Theorem 3.6.

Lemma 3.2 For every k ≥ 1 let v̇k = (vk − vk−1)/(tk − tk−1), then

‖v̇k‖2L2 = |∂−v F(tk, uk−1, vk)|L2 ‖v̇k‖L2 = −∂vF(tk, uk−1, vk)[v̇k].

Proof. First of all, by a standard truncation argument we know that we can replace V with the
whole H1(Ω) in (13), hence

vk ∈ argmin {F(tk, uk−1, v) + 1
2τ ‖v − vk−1‖2L2 : v ≤ vk−1 , v ∈ H1(Ω)}.

By minimality, vk solves the variational inequality

∂vF(tk, uk−1, vk)[w − vk] + 〈v̇k, w − vk〉L2 ≥ 0 (15)

for every w ∈ H1(Ω) with w ≤ vk−1. Choosing w − vk = ±τ v̇k (corresponding to w = vk−1 and
w = 2vk − vk−1) provides

∂vF(tk, uk−1, vk)[v̇k] + ‖v̇k‖2L2 = 0. (16)

Next, by (7) and (15) with w − vk = ξ ∈ Ξ we get

|∂−v F(tk, uk−1, vk)|L2 = sup{−∂vF(tk, uk−1, vk)[ξ] : ξ ∈ Ξ}
≤ sup{〈v̇k, ξ〉L2 : ξ ∈ Ξ} = ‖v̇k‖L2 . (17)

If v̇k = 0 there is nothing else to prove. Otherwise, ξ = v̇k/‖v̇k‖L2 is an admissible variation and by
(16) the inequality in (17) becomes an equality, thus |∂vF(tk, uk−1, vk)|L2 = ‖v̇k‖L2 .
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Lemma 3.3 For every k ≥ 1 it holds the following energy estimate

F(tk, uk, vk) ≤ F(tk−1, uk−1, vk−1)− 1
2

∫ tk

tk−1

‖v̇k‖2L2 + |∂−v F(tk, uk−1, vk)|2L2 dt +

+

∫ tk

tk−1

∂tF(t, uk−1, vk−1) dt. (18)

Proof. By minimality and convexity of F(tk, uk−1, ·) we get

F(tk, uk, vk) ≤ F(tk, uk−1, vk) ≤ F(tk, uk−1, vk−1)− ∂vF(tk, uk−1, vk)[vk−1 − vk]. (19)

By Lemma 3.2

∂vF(tk, uk−1, vk)[vk−1 − vk] = τ‖v̇k‖2L2 = τ 1
2

(
‖v̇k‖2L2 + |∂−v F(tk, uk−1, vk)|2L2

)
and hence by (19)

F(tk, uk, vk) ≤ F(tk, uk−1, vk−1)− 1
2

∫ tk

tk−1

‖v̇k‖2L2 + |∂−v F(tk, uk−1, vk)|2L2 dt.

Finally,

F(tk, uk−1, vk−1) = F(tk−1, uk−1, vk−1) +

∫ tk

tk−1

∂tF(t, uk−1, vk−1) dt

and the proof is concluded.

Lemma 3.4 There exists C > 0, independent of τ , such that F(tk, uk, vk) ≤ C(F(t0, u0, v0) + 1)
for every index k.

Proof. By minimality of uk and vk

F(tk, uk, vk) ≤ F(tk, uk−1, vk) ≤ F(tk, uk−1, vk) + 1
2τ ‖vk − vk−1‖2L2 ≤ F(tk, uk−1, vk−1).

Further,

F(tk, uk−1, vk−1)−F(tk−1, uk−1, vk−1) = 1
2

∫
Ω

(v2
k−1 + η)[W (Duk−1 +Dgk)−W (Duk−1 +Dgk−1)] dx

Since W is quadratic

W (Duk−1 +Dgk)−W (Duk−1 +Dgk−1) = [2 ε(uk−1 + gk−1) + ε(gk − gk−1)] : σ(gk − gk−1)

where ‖σ(gk − gk−1)‖L2 ≤ Cτ while

‖ε(uk−1 + gk−1)‖L2 ≤ C(‖ε(uk−1 + gk−1)‖2L2 + 1) ≤ C ′(F(tk−1, uk−1, vk−1) + 1).

In summary, we can write

(F(tk, uk, vk) + 1) ≤ (1 + Cτ)(F(tk−1, uk−1, vk−1) + 1).

It follows that F(tk, uk, vk) ≤ (1 + Cτ)k(F(t0, u0, v0) + 1) and then, since τ ≤ T/k,

F(tk, uk, vk) ≤ (1 + CT/k)k(F(t0, u0, v0) + 1),

since (1 + CT/k)k → eCT the required estimate follows.
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3.2 Compactness and convergence

In order to find the time continuous limit it is convenient to introduce a sequence τm = T/m of
discrete time increments together with the corresponding discrete times tm,k = kτm for k = 0, ...,m.
Moreover, let us denote by um : [0, T ] → U and vm : [0, T ] → V the corresponding piecewise affine
evolutions, i.e. the interpolation of um,k = um(tm,k) and vm,k = vm(tm,k) obtained by the alternate
minimization scheme (13).

Lemma 3.5 The sequence vm is bounded in L∞(0, T ;H1(Ω)) and in H1(0, T ;L2(Ω)) and thus, upon
extracting a (non-relabelled) subsequence, vm ⇀ v in H1(0, T ;L2(Ω)).

Moreover, if tm → t then vm(tm) ⇀ v(t) in H1(Ω) and um(tm)→ u(t) in W 1,p(Ω,R2), for some
p > 2, where u(t) ∈ argmin {E(t, u, v(t)) : u ∈ U}.

Proof. From Lemma 3.4 we known that F(tm,k, um,k, vm.k) is uniformly bounded and thus vm
is bounded in L∞(0, T ;H1(Ω)) while um is bounded in L∞(0, T ;H1

0 (Ω,R2)) by Korn’s inequality.
Then from (18) and (11) we get

F(tm,k, um,k, vm,k) ≤ F(tm,k−1, um,k−1, vm,k−1)− 1
2

∫ tm,k

tm,k−1

‖v̇m,k‖2L2 dt+ Cτm.

By induction we get

1
2

∫ T

0
‖v̇m,k‖2L2 dt ≤ F(0, u0, v0) + CT

and thus vm is bounded in H1(0, T ;L2(Ω)). As a consequence, (up to subsequences) vm ⇀ v in
H1(0, T ;L2(Ω)) and vm(tm) ⇀ v(t) in L2(Ω) for tm → t; since vm(tm) is bounded in H1(Ω) it turns
out that vm(tm) ⇀ v(t) in H1(Ω).

Being um(tm) ∈ argmin {E(tm, u, vm(tm)) : u ∈ U} we have∫
Ω

(v2
m(tm) + 1)Dũm(tm) : CDφdx = 0 ∀φ ∈ U .

Since um(tm) is bounded in H1
0 (Ω,R2) there exists a subquences umj (tmj ) weakly converging to

some u∞ ∈ H1
0 (Ω,R2). Clearly

Dumj (tmj ) +Dg(tmj ) ⇀ Du∞ +Dg(t) and (v2
mj

(tmj ) + 1)Dφ→ (v2(t) + 1)Dφ

in L2(Ω,R2×2), thus ∫
Ω

(v2(t) + 1)Dũ∞(t) : CDφdx = 0 ∀φ ∈ U

and u∞ ∈ argmin {E(t, u, v(t)) : u ∈ U}. Since the limit is uniquely determined the whole sequence
converges.

By compact embedding vm(tm) → v(t) in Lq(Ω) for every q < +∞. Then, by Lemma A.4 we
get the strong convergence of displacements in W 1,p(Ω,R2).

Theorem 3.6 Let v be a limit of vm (as in Lemma 3.5) and let u be the corresponding (pointwise)
limit of um; then for every t ∈ [0, T ] it holds

F(t, u(t), v(t)) = F(0, u0, v0)− 1
2

∫ t

t0

‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr + (20)

+

∫ t

t0

∂tF(r, u(r), v(r)) dr.

Moreover for every t ∈ [0, T ] we have u(t) ∈ argmin {E(t, u, v(t)) : u ∈ U} and

‖v̇(t)‖L2 = |∂−v F(t, u(t), v(t))|L2 . (21)
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For sake clarity the proof of the previous Theorem will be split into a couple of Propositions.

Proposition 3.7 Under the hypotheses of Theorem 3.6 for every t ∈ [0, T ] it holds

u(t) ∈ argmin {E(t, u, v(t)) : u ∈ U},

F(t, u(t), v(t)) ≤ F(0, u0, v0)− 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr + (22)

+

∫ t

0
∂tF(r, u(r), v(r)) dr.

Proof. Given t ∈ [0, T ] let 1 ≤ km ≤ m such that tm,km → t. Then, by induction (18) provides

F(tm,km , u(tm,km), v(tm,km)) + 1
2

∫ tm,km

0
‖v̇m(r)‖2L2 dr+

+ 1
2

km−1∑
k=0

∫ tm,k+1

tm,k

|∂−v F(tm,k, um,k−1, vm,k)|2L2 dr ≤

≤ F(0, u0, v0) +

km−1∑
k=0

∫ tm,k+1

tm,k

∂tF(r, um,k−1, vm,k−1) dr. (23)

We know that tm,km → t, then by Lemma 3.5 vm(tm,km) ⇀ v(t) in H1(Ω) and um(tm,km)→ u(t) in
W 1,p(Ω,R2). Then by Lemma 2.1

F(t, u(t), v(t)) ≤ lim inf
m→∞

F(tm,km , u(tm,km), v(tm,km)).

Since vm ⇀ v in H1(0, T ;L2(Ω)) we have∫ t

0
‖v̇‖2L2 dr ≤ lim inf

m→∞

∫ tm,km

0
‖v̇m‖2L2 dr.

Next, given r ∈ (0, t) let r ∈ [tm,k′m , tm,k′m+1) for k′m ≤ km. Clearly, both tm,k′m → r and tm,k′m−1 → r.
By Lemma 3.5 we know that um(tm,k′m−1) → u(r) strongly in W 1,p(Ω,R2) (for some p > 2) while
vm(tm,k′m) ⇀ v(r) in H1(Ω) and then by Lemma 2.2 we get

|∂−v F(r, u(r), v(r))|L2 ≤ lim inf
m→+∞

|∂−v F(tm,k′m , um(tm,k′m−1), vm(tm,k′m−1))|L2 .

By Fatou’s Lemma we conclude that∫ t

0
|∂−v F(r, u(r), v(r))|2L2 dr ≤ lim inf

m→+∞

km−1∑
k=0

∫ tm,k+1

tm,k

|∂−v F(tm,k, um,k−1, vm,k)|2L2 dr.

By Lemma 2.3 and (11) we get, by dominated convergence,

lim sup
m→+∞

km−1∑
k=0

∫ tm,k

tm,k−1

∂tF(r, um,k−1, vm,k−1) dr ≤
∫ t

0
∂tF(r, u(r), v(r)) dr.

Taking respectively the liminf on the left hand side and the limsup on the right hand side of
(23) we get the energy inequality

F(t, u(t), v(t)) + 1
2

∫ t

0
‖v̇(r)‖2L2 + |∂−v F(r, u(r), v(r))|2L2 dr ≤

≤ F(0, u0, v0) +

∫ t

0
∂tF(r, u(r), v(r)) dr,
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which conclude the proof.

There are different ways to prove the “upper gradient inequality”

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr

≤ 1
2

∫ t

0
|∂−v F(r, u(r), v(r))|2L2 + ‖v̇(r)‖2L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr.

For instance, the estimate will follow from the chain rule Lemma A.6 once we will know (from
Theorem 3.9) that the limit evolution v actually belongs to H1(0, T ;H1(Ω)). Proposition 3.8 below
provides instead a proof in H1(0, T ;L2(Ω)) based only on measure theory and separate convexity.

Proposition 3.8 Let v ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V) and u(t) ∈ argmin {F(t, v(t), u) : u ∈ U}
such that t 7→ |∂−v F(t, u(t), v(t))| belongs to L2(0, T ). Then for every t ∈ (0, T )

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr +

−
∫ t

0
∂tF(r, u(r), v(r)) dr. (24)

Proof. Step I. Since the slope belongs to L2(0, t) there exists a sequence of finite subdivisions tj,i
(for j ∈ N and i = 0, ..., Ij) of the time interval [0, t] with 0 = tj,0 < ... < tj,i < tj,i+1 < ... < tj,Ij = t
and with limj→+∞∆tj = 0, for ∆tj = maxi |tj,i+1 − tj,i|, such that the piecewise constant functions

Fj(t) =

Ij−1∑
i=0

χ(tj,i, tj,i+1)(t) |∂−v F(tj,i, u(tj,i), v(tj,i))|L2

converge to |∂−v F| strongly in L2(0, t) (cf. Theorem 4.12 in [10] or [15]).
Denote for simplicity uj,i = u(tj,i) and χj,i = χ(tj,i, tj,i+1) etc. For each j ∈ N and i = 0, ..., Ij

write

F(tj,i, uj,i, vj,i)−F(tj,i+1, uj,i+1, vj,i+1) =F(tj,i, uj,i, vj,i)−F(tj,i, uj,i, vj,i+1) +

+ F(tj,i, uj,i, vj,i+1)−F(tj,i+1, uj,i, vj,i+1) +

+ F(tj,i+1, uj,i, vj,i+1)−F(tj,i+1, uj,i+1, vj,i+1).

We will consider the three lines above separately, starting with the first. If F(tj,i, uj,i, vj,i) >
F(tj,i, uj,i, vj,i+1) by convexity of F(tj,i, uj,i, ·) we get

F(tj,i, uj,i, vj,i)−F(tj,i, uj,i, vj,i+1) ≤ ∂vF(tj,i, uj,i, vj,i)[vj,i+1 − vj,i]

≤ |∂−v F(tj,i, uj,i, vj,i)|L2 ‖vj,i+1 − vj,i‖L2

≤
∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr

where v̇j,i = (vj,i+1 − vj,i)/(tj,i+1 − tj,i) denotes the ”discrete” velocity. If F(tj,i, uj,i, vj,i) ≤
F(tj,i, uj,i, vj,i+1) the same estimate holds since the right hand side is non-negative. For the second
term it is sufficient to write

F(tj,i, uj,i, vj,i+1)−F(tj,i+1, uj,i, vj,i+1) = −
∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr.
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For the third term, remember that by minimality∫
Ω

(v2
j,i+1 + η)σ(uj,i+1 + gj,i+1) : ε(uj,i − uj,i+1) dx = 0

and that F(tj,i+1, ·, vj,i+1) is quadratic, then

F(tj,i+1, uj,i, vj,i+1)−F(tj,i+1, uj,i+1, vj,i+1) =

= 1
2

∫
Ω

(v2
j,i+1 + η)

(
W (Duj,i +Dgj,i+1)−W (Duj,i+1 +Dgj,i+1)

)
dx

= 1
2

∫
Ω

(v2
j,i+1 + η)σ(uj,i + uj,i+1 + 2gj,i+1) : ε(uj,i − uj,i+1) dx

= 1
2

∫
Ω

(v2
j,i+1 + η)σ(uj,i − uj,i+1) : ε(uj,i − uj,i+1) dx

≤ C‖uj,i+1 − uj,i‖2H1 = C −
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr.

In conclusion,

F(tj,i, uj,i, vj,i)−F(tj,i+1, uj,i+1, vj,i+1) ≤

≤
∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr −
∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr+

+ C −
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr.

Taking the sum for i = 0, ..., Ij yields

F(0, u0, v0)−F(t, u(t), v(t)) ≤
Ij−1∑
i=0

∫ tj,i+1

tj,i

|∂−v F(tj,i, uj,i, vj,i)|L2 ‖v̇j,i+1‖L2 dr+

−
Ij−1∑
i=0

∫ tj,i+1

tj,i

∂tF(r, uj,i, vj,i+1) dr +

Ij−1∑
i=0

−
∫ tj,i+1

tj,i

‖uj,i+1 − uj,i‖2H1 dr. (25)

Step II. Let us re-write (25) as

F(0, u0, v0)−F(t, u(t), v(t)) ≤
∫ t

0
Fj(r)Vj(r)− Pj(r) + Ej(r) dr

in terms of the piecewise-constant functions Fj (defined above) and

Vj(r) =

Ij−1∑
i=0

χj,i(r) ‖v̇j,i+1‖L2 , Pj(r) =

Ij−1∑
i=0

χj,i(r) ∂tF(r, uj,i, vj,i+1),

Ej(r) =

Ij−1∑
i=0

χj,i(r) |tj,i+1 − tj,i|−1‖uj,i+1 − uj,i‖2H1 .

Since the above estimate holds for every subdivision tj,i it must hold also

F(0, u0, v0)−F(t, u(t), v(t)) ≤ lim
j→+∞

∫ t

0
Fj(r)Vj(r)− Pj(r) + Ej(r) dr.
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We will show that

lim
j

∫ t

0
Fj(r)Vj(r)dr =

∫ t

0
|∂−v F(r, u(r), v(r))|L2 ‖v̇(r)‖L2 dr, (26)

lim
j

∫ t

0
Pj(r) dr =

∫ t

0
∂tF(r, u(r), v(r)) dr, (27)

lim
j

∫ t

0
Ej(r) dr = 0, (28)

which will prove (24).
Since Fj converge strongly in L2(0, t) (by construction) to prove (26) it is enough to see that

Vj =

Ij−1∑
i=0

χj,i ‖v̇j,i+1‖L2 ⇀ ‖v̇‖L2 weakly in L2(0, t).

Note that Vj → ‖v̇‖ a.e. in [0, t] since v ∈W 1,2(0, t;L2). Write, by Jensen’s inequality

‖v̇j,i+1‖L2 =

∥∥∥∥vj,i+1 − vj,i
tj,i+1 − tj,i

∥∥∥∥
L2

=

∥∥∥∥−∫ ti+1

ti

v̇(r) dr

∥∥∥∥
L2

≤ −
∫ ti+1

ti

‖v̇(r)‖L2 dr (29)

so that 0 ≤ Vj ≤ Cj where

Cj =

Ij−1∑
i=0

χj,i −
∫ ti+1

ti

‖v̇(r)‖L2 dr.

Note that Cj → ‖v̇‖L2 a.e. in (0, t) and that Cj ∈ L1(0, t) with

∫ t

0
Cj(r) dr =

Ij−1∑
i=0

(ti+1 − ti)−
∫ ti+1

ti

‖v̇(r)‖L2 dr =

∫ t

0
‖v̇(r)‖L2 dr.

Hence, by generalized dominated convergence Vj → ‖v̇‖L2 in L1(0, t). Arguing as in (29) we easily
get that Vj is bounded in L2(0, t), thus Vj ⇀ ‖v̇‖L2 in L2(0, t).

Let us prove (27). Fix r ∈ (0, t) and let tj,i ≤ r < tj,i+1 (with i depending on j). For a.e. r ∈ (0, t)
we have

∂tF(r, uj,i, vj,i+1) =

∫
Ω

(v2
j,i+1 + η)σ(uj,i + g(r)) : ε(ġ(r)) dr.

Remember that v ∈ H1(0, t;L2(Ω)) ∩L∞(0, t;V), hence vj,i+1 = v(tj,i+1)→ v(r) in Lq(Ω) for every
q < ∞. Similarly, vj,i = v(tj,i) → v(r) in Lq(Ω) and thus uj,i = u(tj,i) → u(r) in W 1,p(Ω,R2) for
p > 2 (by Lemma 3.1). As a consequence∫

Ω
(v2
j,i+1 + η)σ(uj,i + g(r)) : ε(ġ(r)) dr →

∫
Ω

(v2(r) + η) σ(u(r) + g(r)) : ε(ġ(r)) dr.

Therefore ∂tF(r, uj,i, vj,i+1)→ ∂tF(r, u(r), v(r)) a.e. in (0, t). Since v ∈ L∞(0, t;H1) by (11) we get
that |∂tF(r, uj,i, vj,i+1)| is uniformly bounded and thus (27) follows by dominated convergence.

Finally, let us prove (28). Since uj,i ∈ argmin {E(tj,i, ·, vj,i)} by Lemma 3.1 we known that

‖uj,i+1 − uj,i‖2H1 ≤ C|tj,i+1 − tj,i|2 + C‖vj,i+1 − vj,i‖2Lq ,

for some q sufficiently large. Since vj,i ∈ Lp(Ω) for every p < ∞ (by Sobolev embedding) we can
apply the interpolation inequality

‖vj,i+1 − vj,i‖Lq ≤ ‖vj,i+1 − vj,i‖αL2 ‖vj,i+1 − vj,i‖1−αLq̄
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with 1/q = α/2 + (1− α)/q̄ (for a suitable q̄). Hence, for α = 1/2 we get

|tj,i+1 − tj,i|−1‖vj,i+1 − vj,i‖2Lq ≤ ‖v̇j,i+1‖L2 ‖vj,i+1 − vj,i‖Lq̄ .

Then,

∫ t

0
Ej(r) dr ≤

Ij−1∑
i=0

∫ tj,i+1

tj,i

|tj,i+1 − tj,i|−1‖uj,i+1 − uj,i‖2H1

≤
Ij−1∑
i=0

∫ tj,i+1

tj,i

C|tj,i+1 − tj,i|+ C ‖v̇j,i+1‖L2 ‖vj,i+1 − vj,i‖Lq̄ dr

≤ C
∫ t

0
∆tj + Vj(r)Dj(r) dr, (30)

where Vj has been defined before while Dj(r) =
∑

i
χj,i‖vj,i+1 − vj,i‖Lq . We have already seen that

Vj ⇀ ‖v̇‖L2 weakly in L2(0, t). Moreover, ‖vj,i+1 − vj,i‖Lq̃ ≤ C and

‖vj,i+1 − vj,i‖Lq̄ = ‖v(tj,i+1)− v(tj,i)‖Lq̄ → 0 a.e. in (0, t).

As a consequence ‖vj,i+1 − vj,i‖Lq̃ → 0 in L2(0, t) and from (30) follows (28).

3.3 From energy balance to PDEs

In this subsection we will see that the limit evolution v obtained by the sequence vm (as in Lemma
3.5) is a solution of (2). First, we need to show that vm is weakly compact in H1(0, T ;V).

Theorem 3.9 Let vm, um be the discrete evolutions provided by the alternate minimization algo-
rithm (13). Then vm is bounded in W 1,∞(0, T ;L2)∩H1(0, T ;H1) and um is bounded in W 1,∞(0, T ;W 1,p)
for some p > 2 independent of m. Hence, the limit evolutions v and u (cf. Lemma 3.5) belong re-
spectively to W 1,∞(0, T ;L2) ∩H1(0, T ;H1) and W 1,∞(0, T ;W 1,p).

Proof. For later use the proof is divided into several steps. Moreover, for sake of simplicity we will
drop in the subscript the dependence on m.

Step I. By Lemma 3.2 we have for k ≥ 0

∂vF(tk+1, uk, vk+1)[v̇k+1] + ‖v̇k+1‖2L2 = 0. (31)

By a simple truncation argument, vk is actually a minimizer among v ∈ H1 (and not only in V)
with v ≤ vk, i.e.

vk ∈ argmin {F(tk, uk−1, v) + 1
2τ ‖v − vk−1‖2L2 : v ≤ vk−1 , v ∈ H1}.

Thus for k ≥ 1

∂vF(tk, uk−1, vk)[w − vk] + 〈v̇k, w − vk〉L2 ≥ 0 for every w ∈ H1(Ω) with w ≤ vk−1.

Choosing w = vk + v̇k+1 provides

∂vF(tk, uk−1, vk)[v̇k+1] + 〈v̇k, v̇k+1〉L2 ≥ 0. (32)

For k = 0 we have, by equilibrium,

∂vF(0, u0, v0)[v̇1] ≥ 0. (33)
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Hence, from (31) and (32) we obtain, for k ≥ 1,

∂vF(tk, uk−1, vk)[v̇k+1]− ∂vF(tk+1, uk, vk+1)[v̇k+1] ≤
≤ ‖v̇k+1‖2L2 − 〈v̇k, v̇k+1〉L2 ≤ 1

2‖v̇k+1‖2L2 − 1
2‖v̇k‖

2
L2 . (34)

For k = 0 from (31) and (33) we get

∂vF(0, u0, v0)[v̇1]− ∂vF(t1, u0, v1)[v̇1] ≥ ‖v̇1‖2L2 .

Setting v̇0 = 0 we can also write

∂vF(0, u0, v0)[v̇1]− ∂vF(t1, u0, v1)[v̇1] ≥ 1
2‖v̇1‖2L2 − 1

2‖v̇0‖2L2 . (35)

and thus (34) actually holds for every k ≥ 0.
For the left hand side of (34) we proceed as follows.

∂vF(tk, uk−1, vk)[v̇k+1] − ∂vF(tk+1, uk, vk+1)[v̇k+1] =

= ∂vE(tk, uk−1, vk)[v̇k]− ∂vE(tk+1, uk, vk+1)[v̇k+1] +

+ ∂vD(vk)[v̇k+1]− ∂vD(vk+1)[v̇k+1].

Write ∂vD(vk)[v̇k+1]− ∂vD(vk+1)[v̇k+1] as

Gc

∫
Ω

(vk − 1) v̇k+1 +∇vk · ∇v̇k+1 dx−Gc
∫

Ω
(vk+1 − 1) v̇k+1 +∇vk+1 · ∇v̇k+1 dx =

= Gc

∫
Ω

(vk − vk+1) v̇k+1 +∇(vk − vk+1) · ∇v̇k+1 dx = −τGc‖v̇k+1‖2H1 .

We can estimate ∂vE(tk, uk−1, vk)[v̇k]− ∂vE(tk+1, uk, vk+1)[v̇k+1] by∫
Ω
vkv̇k+1W (Duk−1 +Dgk) dx−

∫
Ω
vk+1 v̇k+1W (Duk +Dgk+1) dx ≤

≤
∫

Ω
vkv̇k+1W (Duk−1 +Dgk) dx−

∫
Ω
vk+1v̇k+1W (Duk−1 +Dgk) dx+

+

∫
Ω
vk+1v̇k+1W (Duk−1 +Dgk) dx−

∫
Ω
vk+1v̇k+1W (Duk +Dgk+1) dx

≤
∫

Ω
(vk − vk+1)v̇k+1W (Duk−1 +Dgk) dx+

+

∫
Ω
vk+1v̇k+1

(
W (Duk−1 +Dgk)−W (Duk +Dgk+1)

)
dx

≤
∫

Ω
vk+1v̇k+1

(
W (Duk−1 +Dgk)−W (Duk +Dgk+1)

)
dx,

where last inequality follows from (vk − vk+1) v̇k+1W (Duk + Dgk) ≤ 0. For 1/s + 2/p = 1 we get
by Hölder inequality∫

Ω
v̇k+1vk+1

(
W (Duk−1 +Dgk)−W (Duk +Dgk+1)

)
dx ≤

≤ ‖v̇k+1‖Ls ‖W (Duk−1 +Dgk)−W (Duk +Dgk+1)‖Lp/2 .

Since uk is uniformly bounded in W 1,p(Ω,R2) for 2 < p < p̄ (by Lemma A.4) and since g ∈
W 1,∞(0, T ;W 1,p̄(Ω,R2) we get

sup
k
‖(Duk−1 +Dgk) + (Duk +Dgk+1)‖Lp < +∞,

‖(Duk−1 +Dgk)− (Duk +Dgk+1)‖Lp ≤ C(|tk − tk−1|+ ‖vk − vk−1‖Lr + |tk+1 − tk|)
≤ Cτ(1 + ‖v̇k‖Lr),
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where 1/r = 1/p− 1/p̄. Thus for q = s ∨ r we have∫
Ω
v̇k+1vk+1

(
W (Duk−1 +Dgk)−W (Duk +Dgk+1)

)
dx ≤ Cτ‖v̇k+1‖Lq(1 + ‖v̇k‖Lq).

In conclusion, for k ≥ 0 we have

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤ −τGc‖v̇k+1‖2H1 + Cτ‖v̇k+1‖Lq(1 + ‖v̇k‖Lq). (36)

Step II. Let us see that for every 0 < δ � 1 there exists Cδ such that

C‖v̇k+1‖Lq(1 + ‖v̇k‖Lq) ≤ Cδ(1 + ‖v̇k+1‖L1‖v̇k+1‖L2) + δ‖v̇k+1‖2H1 + δ‖v̇k‖2H1 . (37)

By Young’s inequality, for 0 < µ� 1 and Cµ > 1

‖v̇k+1‖Lq(1 + ‖v̇k‖Lq) ≤ ‖v̇k+1‖Lq + Cµ‖v̇k+1‖2Lq + µ‖v̇k‖2Lq ≤ C ′µ(1 + ‖v̇k+1‖2Lq) + µ‖v̇k‖2Lq .

Write 1/q = α + (1 − α)/q̄ for α ∈ (0, 1) and q < q̄ < +∞. Then, by interpolation and Young’s
inequality, with p = 1/α, for 0 < λ� 1 we have

‖v̇k+1‖2Lq ≤ ‖v̇k+1‖
2α
L1 ‖v̇k+1‖

2(1−α)
Lq̄ ≤ Cλ‖v̇k+1‖2L1 + λ‖v̇k+1‖2Lq̄

≤ C ′λ‖v̇k+1‖L1‖v̇k+1‖L2 + λ‖v̇k+1‖2Lq̄ . (38)

By embedding ‖v̇k+1‖2Lq̄ ≤ C‖v̇k+1‖2H1 and ‖v̇k‖2Lq̄ ≤ C‖v̇k‖2H1 . Hence, upon choosing µ and λ
sufficiently small we can write (37). Joining (36) and (37) yields the estimate

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤

≤−τGc‖v̇k+1‖2H1 + τδ‖v̇k+1‖2H1 + τδ‖v̇k‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδ. (39)

Step III. In order to apply the discrete Gronwall Lemma A.1 we need to re-write (39). First,

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤− τ(Gc − 2δ)‖v̇k+1‖2H1 − δτ‖v̇k+1‖2H1 + δτ‖v̇k‖2H1

+ τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδ.

Hence, (
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
−
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)
≤

− τ(Gc − 2δ)‖v̇k+1‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδ.

For τ, δ � 1 and γ > 0 we can write

γ
(

1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
≤ (Gc − 2δ)‖v̇k+1‖2H1 .

Therefore, we get(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
−
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)
≤ −γτ

(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
+

+C ′δτ‖v̇k+1‖L1

(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)1/2
+ Cδτ. (40)

Define
ak =

(
1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2
, bk = C ′δ‖v̇k‖L1 , c2

k = Cδ.

Hence (40) reads: for every 0 ≤ k ≤ m− 1

a2
k+1 − a2

k ≤ −τγa2
k+1 + τak+1bk+1 + τc2

k+1.
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Then, for 0 < β < γ/2 by Lemma A.1 we get

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+
k∑
i=0

τe−β(tk−ti)bi.

Remembering the definition of ak, bk and ck, the previous estimate gives

1
2‖v̇k‖L2 ≤

(
1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2 ≤ C( k∑
i=0

e−2β(tk−ti)τ

)1/2

+ C
k∑
i=0

τe−β(tk−ti)‖v̇k‖L1

≤ C

(∫ tk

0
e−2β(tk−r) dr

)1/2

+ C

∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr

≤ C/2β + C

∫ tk

0
‖v̇(r)‖L1 dr ≤ C ′(1 + |Ω|),

where the last inequality follows from monotonicity (in time) and boundedness of v. Hence v ∈
W 1,∞(0, T ;L2).
Step IV. Let us go back to (39), i.e.

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤

≤ −τ(Gc − δ)‖v̇k+1‖2H1 + τδ‖v̇k‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδ.

Let 0 < C = Gc − δ for 0 < δ � 1; being ‖v̇k‖L2 uniformly bounded (by the previous step) the
above estimate can be written as

τC‖v̇k+1‖2H1 ≤
(

1
2‖v̇k‖

2
L2 − 1

2‖v̇k+1‖2L2

)
+ τδ‖v̇k‖2H1 + τC ′δ(1 + ‖v̇k+1‖L1).

Taking the sum for k = 0, ...,m− 1 gives

C

∫ T

0
‖v̇‖2H1 dt = C

m−1∑
k=0

τ‖v̇k+1‖2H1 ≤
m−1∑
k=0

(
1
2‖v̇k‖

2
L2 − 1

2‖v̇k+1‖2L2

)
+

+δ
m−1∑
k=0

τ‖v̇k‖2H1 + C ′δ

m−1∑
k=0

τ(1 + ‖v̇k+1‖L1)

≤ 1
2‖v̇0‖2L2 − 1

2‖v̇m‖
2
L2 + δ

∫ T

0
‖v̇‖2H1 dt+ C ′δ

∫ T

0
1 + ‖v̇k+1‖L1 dt

≤ δ

∫ T

0
‖v̇‖2H1 dt+ C(T + |Ω|). (41)

Since 0 < δ � 1 it follows that v ∈ H1(0, T ;H1).

Theorem 3.10 Let v, u be the limit evolution obtained by Lemma 3.5 then for a.e. t ∈ [0, T ] it
holds {

v̇(t) = −
[
v(t)W (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t)

]+
div
(
σv(t)(ũ(t))

)
= 0

(42)

where v(t)W (Dũ(t)) + Gc(v(t) − 1) − Gc∆v(t) is a (Radon) measure in Ω, with positive part in
L2(Ω), and σv(ũ) = (v2 + η) CDũ is the phase-field stress.

Proof. By the chain rule, cf. Lemma A.6, for a.e. t ∈ [0, T ] we have

Ḟ(t, u(t), v(t)) = ∂tF(t, u(t), v(t)) + ∂vF(t, u(t), v(t)) [v̇(t)] .
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On the other hand, by the energy balance

Ḟ(t, u(t), v(t)) = −1
2‖v̇(t)‖2L2 − 1

2 |∂
−
v F(r, u(t), v(t))|2L2 + ∂tF(t, u(t), v(t)).

Hence, by Young’s inequality

−|∂−v F(t, u(t), v(t))|L2 ‖v̇(t)‖L2 ≤ ∂vF(t, u(t), v(t)) [v̇(t)]

≤ −1
2‖v̇(t)‖2L2 − 1

2 |∂
−
v F(r, u(t), v(t))|2L2

≤ −|∂−v F(r, u(t), v(t))|L2 ‖v̇(t)‖L2 .

It turna out that all inequalities are equalities and thus ‖v̇(t)‖L2 = |∂−v F(r, u(t), v(t))|L2 and

v̇(t) ∈ argmin {∂vF(t, u(t), v(t))[ξ] : ξ ∈ H1, ξ ≤ 0, ‖ξ‖L2 ≤ R}, (43)

where R = ‖v̇(t)‖L2 = |∂−v F(t, u(t), v(t))|L2 . Equivalently,

−v̇(t) ∈ argmax {∂vF(t, u(t), v(t))[ξ] : ξ ∈ H1, ξ ≥ 0, ‖ξ‖L2 ≤ R}.

If ζ = ∂vF(t, u(t), v(t)) 6= 0 we get by Lemma A.3

−v̇/R = ζ+/‖ζ+‖L2 = ζ+/R

and thus v̇(t) = [−∂vF(t, u(t), v(t))]+ in the sense of distributions and in L2(Ω). If R = 0 the same
equation clearly holds. Hence, for φ ∈ C∞0 (Ω)

∂vF(t, u(t), v(t))[φ] =

∫
Ω
vφW (Dũ(t)) dx+Gc

∫
Ω

(v(t)− 1)φ+∇v · ∇φdx

= 〈vW (Dũ(t)) +Gc(v(t)− 1)−Gc∆v(t), φ〉, (44)

where the duality is in the sense of distributions.
For the second equation it is sufficient to write the Euler-Lagrange equation∫

Ω
(v2 + η)CDũ(t) : Dφdx = 0 for every φ ∈ C∞0 (Ω,R2)

in distributional form.

4 Time rescaling

For ε > 0 let us consider the boundary condition gε(t) = g(εt) defined in [0, Tε], for Tε = T/ε.
Clearly gε is Lipschitz continuous in W 1,p̄(Ω,R2) with

‖gε(t2)− gε(t1)‖W 1,p̄ ≤ εC|t2 − t1|.

Next, we define Fε : [0, Tε]× U × V → [0,+∞) by

Fε(t, u, v) = 1
2

∫
Ω

(v2 + η)W (Du+Dgε(t)) dx+ 1
2 Gc

∫
Ω

(v − 1)2 + |∇v|2 dx.

As in §3 fix τ = Tε/m > 0 and let tk = kτ for k = 0, ...,m. Given uk−1 and vk−1 define by induction{
vk ∈ argmin

{
Fε(tk, uk−1, v) + 1

2τ ‖v − vk−1‖2L2 : v ≤ vk−1 , v ∈ V
}

uk ∈ argmin {Fε(tk, u, vk) : u ∈ U} .
(45)

Now, consider a sequence τm = Tε/m, for m ∈ N with m > 0, and denote by uε,m and vε,m the
corresponding piecewise affine interpolate. By Lemma 3.5 together with Theorem 3.6 we easily get
the following convergence result.
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Theorem 4.1 There exists a subsequence (not relabelled) of vε,m such that vε,m ⇀ vε in H1(0, Tε;L
2(Ω)).

Let uε be the corresponding pointwise limit. Then, for every t ∈ [0, Tε] it holds

Fε(t, uε(t), vε(t)) = Fε(0, u0, v0)− 1
2

∫ t

0
‖v̇ε(r)‖2L2 + |∂−v Fε(r, uε(r), vε(r))|2L2 dr +

+

∫ t

t0

∂tFε(r, uε(r), vε(r)) dr, (46)

Moreover for every t ∈ [0, Tε] we have uε(t) ∈ argmin {E(t, vε(t), u) : u ∈ U} and

‖v̇ε(t)‖L2 = |∂−v Fε(t, uε(t), vε(t))|L2 . (47)

Corollary 4.2 For every λ ∈ [0, 1] it holds

Fε(t, uε(t), vε(t)) = Fε(0, u0, v0) +

∫ t

0
∂tFε(r, uε(r), vε(r)) dr +

−
∫ t

0
λ ‖v̇ε(r)‖2L2 + (1− λ)|∂vFε(r, uε(r), vε(r))|2L2 dr. (48)

Proof. It is sufficient to re-write (46) taking into account (47).

We remark that in general (48) does not provide a characterization of the gradient flow, unless
it holds for λ = 1/2. For instance, if Fε is independent of time then t 7→ (u0, v0) is a solution of
(48) for λ = 1 independently of |∂vFε(u0, v0)|2L2 .

5 Quasi-static limit of the rescaled evolutions

In this section we will apply the change of variable

t 7→ sε(t) = εt+

∫ t

0
‖v̇ε(r)‖L2 dr

in order to obtain a parametrization of the evolution vε and uε (defined for t ∈ [0, T/ε]) in terms of
an arc-length parameter s ∈ [0, Sε]. First of all, let us see that sε maps the ”physical” time interval
[0, T/ε] onto a reference parametrization interval [0, Sε] with Sε = sε(Tε) uniformly bounded with
respect to ε > 0. We will prove this property employing again the time discretization scheme.

5.1 Finite length

Theorem 5.1 The length of the discrete curves vε,m is uniformly bounded in L2, i.e., there exists
C > 0 (independent of ε and m) such that for τm sufficiently small it holds∫ Tε

0
‖v̇ε,m(t)‖L2 dt ≤ C(εT + |Ω|).

Moreover, ∫ Tε

0
‖v̇ε,m(t)‖2H1 dt ≤ C(εT + |Ω|).

Proof. The first part follows step by step the proof of Theorem 3.9. For sake of simplicity we will
drop the dependence on ε and m in the discrete evolution (45).

Step I. Replacing F with Fε in (36) yields for every k ≥ 0

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤ −τGc‖v̇k+1‖2H1 + Cτ‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq) (49)

where ε in the right hand comes from the Lipschitz continuity of gε.
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Step II. By Young’s inequality for 0 < µ� 1 we get

‖v̇k+1‖Lq(ε+ ‖v̇k‖Lq) ≤ ε‖v̇k+1‖Lq + Cµ‖v̇k+1‖2Lq + µ‖v̇k‖2Lq ≤ C ′µ(ε2 + ‖v̇k+1‖2Lq) + µ‖v̇k‖2Lq .

By interpolation and embedding, for 0 < λ� 1 we get, as in (38),

‖v̇k+1‖2Lq ≤ C ′λ‖v̇k+1‖L1‖v̇k+1‖L2 + Cλ‖v̇k+1‖2H1 .

Then, for every 0 < δ � 1, upon choosing µ and λ sufficiently small, from (49) we get

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤ −τGc‖v̇k+1‖2H1 + τδ‖v̇k+1‖2H1 + τδ‖v̇k‖2H1 +

+τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2. (50)

Step III. In order to apply the discrete Gronwall Lemma A.1 we re-write (50) as (cf. (40))(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
−
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)
≤ −γτ

(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)
+

+C ′δτ‖v̇k+1‖L1

(
1
2‖v̇k+1‖2L2 + δτ‖v̇k+1‖2H1

)1/2
+ Cδτε

2. (51)

Defining

ak =
(

1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2
, bk = C ′δ‖v̇k‖L1 , c2

k = Cδε
2,

(51) becomes
a2
k+1 − a2

k ≤ −τγa2
k+1 + τak+1bk+1 + τc2

k+1.

By Lemma A.1 we get

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+

k∑
i=0

τe−β(tk−ti)bi

and then

1
2‖v̇k‖L2 ≤

(
1
2‖v̇k‖

2
L2 + δτ‖v̇k‖2H1

)1/2 ≤ C( k∑
i=0

e−2β(tk−ti)τε2

)1/2

+ C
k∑
i=0

τe−β(tk−ti)‖v̇k‖L1

≤ Cε

(∫ tk

0
e−2β(tk−r) dr

)1/2

+ C

∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr

≤ Cε(2β)−1/2 + C

∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr. (52)

In particular ‖v̇k‖L2 ≤ C(ε+ |Ω|). Moreover,∫ T/ε

0
‖v̇ε,m(t)‖L2 dt ≤

m∑
k=1

τ‖v̇k‖L2 ≤ CεT + C

m∑
k=1

τ

∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr.

Then, for t ∈ [tk, tk+1] we can write∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr ≤

∫ t

0
e−β(t−τ−r)‖v̇(r)‖L1 dr

and thus

m∑
k=1

τ

∫ tk

0
e−β(tk−r)‖v̇(r)‖L1 dr ≤

∫ T/ε

0

∫ t

0
e−β(t−τ−r)‖v̇(r)‖L1 dr dt.



February 9, 2016 p. 20

By Fubini’s Theorem∫ T/ε

0

∫ t

0
e−β(t−τ−r)‖v̇(r)‖L1 dr dt ≤ eβτ

∫ T/ε

0
‖v̇(r)‖L1

∫ T/ε

r
e−β(t−r) dt dr

≤ C
∫ T/ε

0
‖v̇(r)‖L1dr ≤ C|Ω|.

Step IV. We back to (50), i.e.

1
2‖v̇k+1‖2L2 − 1

2‖v̇k‖
2
L2 ≤

≤ −τGc‖v̇k+1‖2H1 + τδ‖v̇k+1‖2H1 + τδ‖v̇k‖2H1 + τCδ‖v̇k+1‖L1‖v̇k+1‖L2 + τCδε
2.

For 0 < δ � 1 by (52) the previous estimate becomes

τC‖v̇k+1‖2H1 ≤
(

1
2‖v̇k‖

2
L2 − 1

2‖v̇k+1‖2L2

)
+ τδ‖v̇k‖2H1 + τC ′δ(ε

2 + ‖v̇k+1‖L1).

Taking the sum for k = 1, ...,m provides (cf. (41))∫ Tε

0
‖v̇ε,m‖2H1 dt ≤ δ

∫ Tε

0
‖v̇ε,m‖2H1 dt+ CTεε

2 + C

∫ Tε

0
‖v̇ε,m‖L1 dt,

which concludes the proof.

Passing to the limit for τm → 0 we get the following result.

Corollary 5.2 The limit evolution vε (provided by Theorem 4.1) satisfies∫ Tε

0
‖v̇ε(t)‖L2 + ‖v̇ε(t)‖2H1 dt ≤ C(εT + |Ω|).

Hence Sε = sε(T/ε) is uniformly bounded.

5.2 Rescaled parametrized gradient flows

Let us go back to our parametrization

t 7→ sε(t) = εt+

∫ t

0
‖v̇ε(r)‖L2 dr (53)

from [0, Tε] onto [0, Sε]. The map t 7→ sε(t) is absolutely continuous and strictly monotone; let tε(s)
be its inverse. Denote also

tε(s) = εtε(s), zε(s) = vε ◦ tε(s), wε(s) = uε ◦ tε(s). (54)

Accordingly, let w0 = u0 and z0 = v0.

Lemma 5.3 The functions s 7→ tε(s) and s 7→ zε(s) are Lipschitz continuous in [0, Sε], more
precisely for a.e. s ∈ [0, Sε] it holds

t ′ε(s) + ‖z′ε(s)‖L2 = 1, t ′ε(s) =
ε

ε+ |∂−v F(tε(s), wε(s), zε(s))|L2

.

Proof. As t 7→ sε(t) is absolutely continuous with ṡε(t) ≥ ε a.e. in [0, Tε] the inverse function
s 7→ tε(s) turns out to be Lipschitz continuous with (tε)′(s) = 1/ṡε(tε(s)) a.e. in [0, Sε]. Hence, by
(53) and (54)

1 = ṡε(tε(s)) (tε)′(s) = (ε+ ‖v̇ε(tε(s))‖L2) (tε)′(s) = t′ε(s) + ‖z′ε(s)‖L2 .
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Moreover, by (21) for a.e. t ∈ [0, Tε] we have

‖v̇ε(t)‖L2 = |∂−v Fε(t, uε(t), vε(t))|L2 = |∂−v F(εt, uε(t), vε(t))|L2 .

Thus

‖v̇ε(tε(s))‖L2 = |∂−v F(εtε(s), uε ◦ tε(s), vε ◦ tε(s))|L2 = |∂−z F(tε(s), wε(s), zε(s))|L2 .

Since sets of measure zero are mapped to sets of measure zero, both by s 7→ tε(s) and by t 7→ sε(t),
for a.e. s ∈ [0, Sε] we have

t ′ε(s) =
ε

ṡε(tε(s))
=

ε

ε+ ‖v̇ε(tε(s))‖L2

=
ε

ε+ |∂vF(tε(s), wε(s), zε(s))|L2

, (55)

which concludes the proof.

Lemma 5.4 For ε > 0, the rescaled parametrized evolutions (tε, zε) are (uniformly) bounded in
W 1,∞(0, Sε; [0, T ] × L2) and in L∞(0, Sε; [0, T ] × V) with t′ε ≥ 0, z′ε ≤ 0 and t′ε + ‖z′ε‖L2 ≤ 1.
Further, for every s ∈ [0, Sε] and every λ ∈ [0, 1] the following energy balance holds:

F(tε(s), wε(s), zε(s)) = F(0, w0, z0) +

∫ s

0
∂tF(tε(r), wε(r), zε(r)) t

′
ε(r) dr+

−
∫ s

0
λΨε(‖z′ε(r)‖L2) + (1− λ)Φε(|∂−z F(tε(r), wε(r), zε(r))|L2) dr, (56)

where

Ψε(ξ) =

{
εξ2/(1− ξ) 0 ≤ ξ < 1

+∞ ξ ≥ 1,
Φε(ξ) = ξ2/(ε+ ξ).

We consider both Ψε and Φε to be defined in [0,+∞). Clearly, wε(s) ∈ argmin {E(tε(s), w, zε(s)) :
w ∈ U}

Proof. By Corollary 4.2 we known that for every t̄ ∈ [0, Tε] it holds

Fε(t̄, uε(t̄), vε(t̄)) = Fε(0, u0, v0) +

∫ t̄

0
∂tFε(t, uε(t), vε(t)) dt +

−
∫ t̄

0
λ ‖v̇ε(t)‖2L2 + (1− λ)|∂−v Fε(t, uε(t), vε(t))|2L2 dt.

Remember that Fε(t, u, v) = F(εt, u, v) and thus

∂tFε(t, u, v) = ε ∂tF(εt, u, v), ∂vFε(t, u, v) = ∂vF(εt, u, v).

Hence, by the change of variable t = tε(s) = tε(s)/ε, the energy balance in parametrized form
reads: for a.e. s̄ ∈ [0, Sε] it holds

F(tε(s̄), wε(s̄), zε(s̄)) = F(0, w0, z0) +

∫ s̄

0
∂tF(tε(s), wε(s), zε(s)) t

′
ε(s) ds +

−
∫ s

0

[
λ ‖v̇ε(tε(s))‖2L2 + (1− λ)|∂−v F(tε(s), wε(s), zε(s))|2L2

]
(tε)′(s) ds.

Since ‖v̇ε(tε(s))‖L2 (tε)′(s) = ‖z′ε(s)‖L2 and (tε)′(s) = t′ε(s)/ε it follows by Lemma 5.3 that

‖v̇ε(tε(s))‖2L2 (tε)′(s) = ε‖z′ε(s)‖2L2/t
′
ε(s) = ε‖z′ε(s)‖2L2/(1− ‖z′ε(s)‖L2) = Ψε(‖z′ε(s)‖L2).

Again by Lemma 5.3, (tε)′(s) = 1/(ε+ |∂−z F(tε(s), wε(s), zε(s))|L2).



February 9, 2016 p. 22

Since Sε is uniformly bounded, by Corollary 5.2, we have S = lim infε Sε < +∞. For compact-
ness, it will be convenient to consider parametrized evolutions tε and zε to be defined in [0, S] with a
constant extension in (Sε, S] (clearly only in the case Sε < S). In this way all the (possibly extended)
evolutions enjoy the compactness properties of the previous Lemma in the parametrization interval
[0, S]. Note however that, with this simple extension, the energy balance is not true, in general, for
s ∈ (Sε, S]. Using Lemma 5.3 and Lemma A.4 it is immediate to prove the following compactness
property.

Corollary 5.5 For εn → 0 there exists a subsequence (not relabelled) such that

(tεn , zεn)
∗
⇀(t, z) in W 1,∞(0, S; [0, T ]× L2).

Moreover, for a.e. s ∈ [0, S] we have zεn(s) ⇀ z(s) in H1 and thus wεn(s) → w(s) in W 1,p (for
p > 2) where w(s) ∈ argmin {E(t(s), w, z(s)) : w ∈ U}.

5.3 Quasi-static limit

Theorem 5.6 Every limit evolution obtained by Corollary 5.5 satisfies z′ ≤ 0, t′ ≥ 0 and t′ +
‖z′‖L2 ≤ 1. Moreover, for every s ∈ [0, S] we have w(s) ∈ argmin {E(t(s), w, z(s)) : w ∈ U} and the
following energy balance

F(t(s), w(s), z(s)) = F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr+

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (57)

Any such limit is called a parametrized BV -evolution (cf. Proposition 5.10).

Proof. Part I. The proof follows closely that of [27, Theorem 4.4]. If s < S then s ∈ [0, Sεn) for
εn � 1; thus (56), with λ = 0, provides

F(tεn(s), wεn(s), zεn(s)) = F(0, w0, z0) +

∫ s

0
∂tF(tεn(r), wεn(r), zεn(t)) t′εn(r) dr+

−
∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr. (58)

By Corollary 5.5 we known that tεn(s)→ t(s), zεn(s) ⇀ z(s) in H1 and wεn(s)→ w(s) in W 1,p (for
p > 2). As a consequence, by Lemma 2.2

F(t(s), w(s), z(s)) ≤ lim inf
εn→ 0

F(tεn(s), wεn(s), zεn(s)). (59)

Next, taking the lim supεn→0 in (58) we get

lim sup
εn→ 0

F(tεn(s), wεn(s), zεn(s)) ≤ F(0, w0, z0) +

+ lim sup
εn→ 0

∫ s

0
∂tF(tεn(r), wεn(r), zεn(r)) t′εn(r) dr

− lim inf
εn→ 0

∫ s

0
Φεn(|∂zF(tεn(r), wεn(r), zεn(r))|L2) dr. (60)

First, let us see that

lim
εn→ 0

∫ s

0
∂tF(tεn(r), wεn(r), zεn(r)) t′εn(r) dr =

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (61)
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By Lemma 2.3 we know that ∂tF(tεn(r), wεn(r), zεn(t)) → ∂tF(t(r), w(r), z(r)) for a.e. r ∈ [0, s].
Moreover ∂tF(tεn(r), wεn(r), zεn(r)) is uniformly bounded since

|∂tF(tεn(r), wεn(r), zεn(r))| ≤ C(F(tεn(r), wεn(r), zεn(r)) + 1) < C̄.

Hence ∂tF(tεn(·), wεn(·), zεn(·)) converge to ∂tF(t(·), w(·), z(·)) strongly in L1(0, s) (by dominated

convergence). Since tεn
∗
⇀ t in L∞(0, s) we get (61).

Finally, let us show that∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr ≤ lim inf

ε→0

∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr. (62)

It is not difficult to check that Φε(ξ) ≥ ξ − ε for every ξ ∈ [0,+∞). Thus we can write∫ s

0
Φεn(|∂−z F(tεn(r), wεn(r), zεn(r))|L2) dr ≥

∫ s

0
|∂−z F(tεn(r), wεn(r), zεn(r))|L2 dr − εns.

By Lemma 2.2

|∂−z F(t(r), w(r), z(r))|L2 ≤ lim inf
εn→0

|∂−v F(tεn(r), wεn(r), zεn(r))|L2

and thus (62) follows from Fatou’s Lemma. Joining (59)-(62) yields

F(t(s), u(s), v(s)) ≤ F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr+

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr.

Part II. To prove the opposite inequality we employ the “upper gradient inequality” as in
Proposition 3.8. In this setting, t ∈ W 1,∞(0, s), z ∈ W 1,∞(0, s;L2(Ω)) ∩ L∞(0, s;V), w(r) ∈
argmin {F(t(r), u, z(r)) : u ∈ U} and r 7→ |∂−z F(t(r), w(r), z(r))|L2 belongs to L1(0, s). Then,
following step by step the proof of Proposition 3.8 it is not difficult (but lengthy) to check that

F(0, w0, z0)−F(t(s), w(s), z(s)) ≤
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 ‖z′(r)‖L2 dr +

−
∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr. (63)

Since ‖z′(r)‖L2 ≤ 1 we get

F(0, w0, z0)−F(t(s), w(s), z(s)) ≤
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr +

−
∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr, (64)

which concludes the proof.

Corollary 5.7 If sεn → s then F(tεn(sεn), wεn(sεn), zεn(sεn))→ F(t(s), w(s), z(s)) and zεn(sεn)→
z(s) in H1. Moreover s 7→ z(s) is continuous from (0, S) to H1.

Proof. Following the proof of Theorem 5.6 it is easy to check that

F(t(s), w(s), z(s)) ≤ lim inf
n→+∞

F(tεn(sεn), wεn(sεn), zεn(sεn))

≤ lim sup
n→+∞

F(tεn(sεn), wεn(sεn), zεn(sεn)) ≤ F(t(s), w(s), z(s)).
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Thus limn→+∞F(tεn(sεn), wεn(sεn), zεn(sεn)) = F(t(s), w(s), z(s)).
If sε → s then by compactness (cf. Corollary 5.5) zεn(sεn) converge to z(s) weakly in H1 and

thus, by compact embedding, strongly in Lq for every q < +∞. Since tεn
∗
⇀ t we get tεn(sεn)→ t(s).

Then by Lemma A.4 we have wε(sε)→ w(s) in W 1,p for some p > 2. Hence∫
Ω

(z2
εn(sεn) + η)W (Dũεn(sεn)) dx →

∫
Ω

(z2(s) + η)W (Dũ(s)) dx,∫
Ω

(zεn(sεn)− 1)2 dx →
∫

Ω
(z(s)− 1)2 dx.

By convergence of the energy it follows that∫
Ω
|∇zεn(sεn)|2 dx →

∫
Ω
|∇z(s)|2 dx,

from which follows the strong convergence in H1. Since zεn(sεn) → z(s) in H1 for every sequence
sεn → s we get that zεn → z (strongly in H1) locally uniformly in (0, S).

Remember that, by Theorem 3.9, given ε > 0 the evolution vε is bounded in W 1,∞(0, Tε;L
2) ∩

H1(0, Tε;H
1) and thus it is continuous in H1. As a consequence s 7→ zε(s) = vε ◦ tε(s) is continuous

from [0, Sε] to H1. Since zε converge to z locally uniformly, its limit z is continuous as well.

Remark 5.8 Using the Legendre transform it is possible to write (57) “in gradient flow fashion”.
Let

Ψ̃(z) =

{
0 z ≤ 1

+∞ z > 1,
Φ̃(z) =

{
+∞ z < 0

z z ≥ 0 .

Note that Φ̃(z) = Ψ̃∗(z). With this notation (57) reads

F(t(s), w(s), z(s)) = F(0, w0, z0) +

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr +

−
∫ s

0
Ψ̃(‖z′(r)‖L2) + Ψ̃∗(|∂−v F(t(r), w(r), z(r))|L2) dr . (65)

5.4 From energy balance to PDEs

In this last subsection we provide some properties, in terms of PDEs, of the parametrized evolution
characterized by Theorem 5.6. Intuitively such an evolution is an “arc-length” parametrization of a
BV -evolution [24, 25].

Remember that quasi-static evolutions for non-convex energies may have discontinuity in time
and that characterization of these points makes the difference between different notion of quasi-
static evolution, e.g. energetic, BV or local [24, 25]. Remember also that discontinuity points td (in
time) correspond in the parametric picture to intervals (s[, s]) with t(s) = td, z(s

[) = z−(td) and
z(s]) = z+(td). ”Vice versa” if t′(sc) > 0 then tc = t(sc) is a continuity point in time.

Most of the informations are provided by the relationship between the derivative t′(s) and the
slope |∂−v F(t(s), w(s), z(s))|L2 , which is the subject of Proposition 5.10 ; its pdes form is provided
in Corollary 5.11. First, in order to employ the chain rule, we prove the following lemma.

Lemma 5.9 Any limit z, provided by Theorem 5.6, belongs to W 1,2
loc (0, S;H1).

Proof. Remember that zε(s) = vε ◦ tε(s) and that (tε)′(s) = 1/ṡε(tε(s)) (being tε the inverse of
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sε); then, for s1 < s2 by the change of variable s = sε(t) we get∫ s2

s1

‖z′ε(s)‖2H1 ds =

∫ s2

s1

‖v̇ε(tε(s))‖2H1 |(tε)′(s)|2 ds

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ṡε(t)
dt

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ε+ ‖v̇ε(t)‖L2

dt

=

∫ tε2

tε1

‖v̇ε(t)‖2H1

ε+ |∂−v Fε(t, uε(t), vε(t)|L2

dr.

Now, let s̄ ∈ [0, S] such that |∂−v F(t(s̄), w(s̄), z(s̄))|L2 6= 0. By the lower semi-continuity of the slope
(cf. Lemma 2.2) for δ � 1 it holds |∂−v F(t, w, z)|L2 ≥ C > 0 for

(t, z) ∈ Iδ ×Bδ = {|t− t(s̄)| ≤ δ} × {‖z − z(s̄)‖H1 ≤ δ}

and w ∈ argmin {F(t, ·, z)}. Since s 7→ (t(s), z(s)) is continuous in [0, T ] ×H1 and since tε and zε
converge locally uniformly (cf. Corollary 5.7) there exists s1 < s2 such that both (t(s), z(s)) ∈ Iδ×Bδ
and (tε(s), zε(s)) ∈ Iδ ×Bδ and for s ∈ [s1, s2]. Thus,

|∂−v F(tε(s), wε(s), zε(s))|L2 ≥ C > 0 for s ∈ [s1, s2].

Equivalently, for tε1 = tε(s1) and tε2 = tε(s2) we have sε(t) ∈ [s1, s2]. Hence, with the change of
variable s = sε(t) we get

|∂−v Fε(t, uε(t), vε(t))|L2 ≥ C > 0 for t ∈ [tε1, t
ε
2].

Hence, ∫ tε2

tε1

‖v̇ε(t)‖2H1

ε+ |∂−v Fε(t, uε(t), vε(t)|L2

dr ≤ 1

ε+ C

∫ Tε

0
‖v̇ε(t)‖2H1 ≤ +∞.

Thus, zε and its limit z belong to W 1,2(s1, s2;H1).

Proposition 5.10 Let (t, w, z) be a parametrized evolution (provided by Theorem 5.6) then for
a.e. s ∈ [0, S] it holds

• ∂wF(t(s), w(s), z(s)) = 0,

• if t′(s) > 0 then |∂−z F(t(s), w(s), z(s))|L2 = 0,

• if |∂−z F(t(s), w(s), z(s))|L2 6= 0 then t′(s) = 0 and ‖z′(s)‖L2 = 1,

• z′(s) ∈ argmin {∂zF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}.

Proof. Equilibrium for the displacement field follows from the minimality of w(s).
Since ‖z′(s)‖L2 ≤ 1 for a.e. s ∈ [0, S] we can write by (57) and (63)

F(t(s), w(s), z(s)) = F(0, w0, z0)−
∫ s

0
|∂−z F(t(r), w(r), z(r))|L2 dr +

+

∫ s

0
∂tF(t(r), w(r), z(r)) t′(r) dr

≤ F(0, w0, z0)−
∫ s

0
|∂−v F(t(r), w(r), z(r))|L2 ‖z′(r)‖L2 dr +

+

∫ s

0
∂tF(t(r), u(r), v(r)) t′(r) dr ≤ F(t(s), u(s), v(s)).
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Hence all inequalities becomes equalities and hold in every subinterval (s1, s2) ⊂ (0, S). In particular,
for a.e. s ∈ (0, S) we have

|∂−z F(t(s), w(s), z(s))|L2 (1− ‖z′(s)‖L2) = 0. (66)

Hence, if t′(s) > 0 then ‖z′(s)‖L2 < 1 (simply because t′(s) + ‖z′(s)‖L2 ≤ 1) and thus

|∂−z F(t(s), w(s), z(s))|L2 = 0.

On the contrary, if |∂−z F(t(s), w(s), z(s))|L2 6= 0 then ‖z′(s)‖L2 = 1 and t′(s) = 0.
It remains to show that z′(s) ∈ argmin {∂vF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1} . Clearly, if

|∂−v F(t(s), w(s), z(s))|L2 = 0 there is nothing to prove. In the case |∂−v F(t(s), w(s), z(s))|L2 6= 0 our
proof employs the chain rule (76) which requires the evolution z to be in W 1,2

loc (0, S;H1) (cf. Lemma
5.9). Hence,

F ′(t(s), w(s), z(s)) = ∂zF(t(s), w(s), z(s))[z′(s)] + ∂tF(t(s), w(s), z(s)) t′(s) (67)

for a.e. in s ∈ (0, S). On the other hand, by Theorem 5.6 for a.e. s ∈ [0, S] it holds

F ′(t(s), w(s), z(s)) = −|∂vF(t(s), w(s), z(s)|L2 + ∂tF(t(s), w(s), z(s)) t′(s).

Hence,
∂zF(t(s), w(s), z(s))[z′(s)] = −|∂vF(t(s), w(s), z(s))|L2 .

Therefore z′(s) ∈ argmin {∂vF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}.

Corollary 5.11 Let (t, w, z) be a parametrized evolution (provided by Theorem 5.6) then for a.e. s ∈
[0, S] we have

• if t′(s) > 0 then {[
z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)

]+
= 0

div
(
σz(s)(w̃(s))

)
= 0,

(68)

• if t(s) = td in (s[, s]) then{
λ(s)z′(s) = −

[
z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)

]+
div
(
σz(s)(w̃(s))

)
= 0,

(69)

where λ(s) = ‖[z(s)W (Dw̃(s)) +Gc(z(s)− 1)−Gc∆z(s)]+‖L2.

Remember that the first case corresponds to a continuity point in time, the second describes instead
the “instantaneous evolution” in the discontinuity point td.

Proof. If t′(s) > 0 then by Proposition 5.10 |∂−v F(t(s), w(s), z(s))|L2 = 0, i.e.

∂zF(t(s), w(s), z(s))[ξ] ≥ 0 for every ξ ∈ H1 with ξ ≤ 0.

As a consequence ∂zF(t(s), w(s), z(s)) (as a distribution) is a negative Radon measure, or equiva-
lently a Radon measure µ with positive part µ+ = 0. As in (44), writing ∂vF(t(s), w(s), z(s)) in the
sense of distribution yields (68).

By Proposition 5.10 we know that z′(s) ∈ argmin {∂zF(t(s), w(s), z(s))[ξ] : ξ ∈ Ξ, ‖ξ‖L2 ≤ 1}
and thus by Lemma A.3 we get (69).
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A Some Lemmas

A.1 Discrete Gronwall

First of all let us provide the Gronwall estimate to be used in the proof of Theorem 5.1. It’s proof
originates from [28] and [19].

Lemma A.1 Let γ > 0, ak, bk, ck ≥ 0 and a0 = 0 such that

a2
k+1 − a2

k ≤ −τγa2
k+1 + τak+1bk+1 + τc2

k+1 for k ∈ N. (70)

Denote tk = kτ for k ∈ N. Then for 0 < β < γ/2 and τ � 1 it holds

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+
k∑
i=0

τe−β(tk−ti)bi for k ∈ N.

Proof. for λ = (1 + τγ)1/2 and for τ < 1 let us re-write (70) as λ2a2
k+1 − a2

k − ak+1bk+1 ≤ c2
k+1.

Denote

Ak = λ−k(Ck +Bk) , Ck =

( k∑
i=0

λ2ic2
i

)1/2

, Bk =

k∑
i=0

λibi .

Let us show that Ak satisfies

λ2A2
k+1 −A2

k −Ak+1bk+1 ≥ c2
k+1 (71)

In terms of Ck and Bk, the left hand side reads

λ−2(k+1)+2
(
C2
k+1 +B2

k+1 + 2Ck+1Bk+1

)
− λ−2k

(
C2
k +B2

k + 2CkBk
)
− λ−(k+1)

(
Ck+1 +Bk+1

)
bk+1

Let us see that (71) holds. First, since λ > 1

λ−2kC2
k+1 − λ−2kC2

K = λ−2k(C2
k+1 − C2

k) ≥ λ−2k+2(k+1)c2
k+1 ≥ c2

k+1.

Next,

λ−2kB2
k+1 − λ−2kB2

k − λ−(k+1)Bk+1bk+1 =

= λ−2k(Bk + λk+1bk+1)2 − λ−2kB2
k − λ−(k+1)(Bk + λk+1bk+1)bk+1

=
(
λ−2k+2(k+1) − 1

)
b2k+1 +

(
2λ−2k+(k+1) − λ−(k+1)

)
Bkbk+1 ≥ 0,

where the last inequality follows again from λ > 1. Finally,

2λ−2kCk+1

(
Bk + λk+1bk+1

)
− 2λ−2kCkBk − λ−(k+1)Ck+1bk+1 =

= 2λ−2k
(
Ck+1 − Ck)Bk +

(
2λ−2k+(k+1) − λ−(k+1)

)
Ck+1bk+1 ≥ 0,

again because λ > 1.
Since λ2a2

k+1 − a2
k − ak+1bk+1 ≤ c2

k+1 and ak+1 ≥ 0 we get

ak+1 ≤
1

2λ2

(
bk+1 +

√
b2k+1 + 4λ2(a2

k + c2
k+1)

)
.

In the same way

Ak+1 ≥
1

2λ2

(
bk+1 +

√
b2k+1 + 4λ2(A2

k + c2
k+1)

)
.

Hence by induction ak ≤ Ak for every k ∈ N, i.e.

ak ≤
( k∑
i=0

τλ2(i−k)c2
i

)1/2

+
k∑
i=0

τλi−kbi .
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Finally, it is not hard to check that for 0 < β < γ/2 and 0 < τ � 1 it holds

λ−1 = (1 + τγ)−1/2 ≤ 1− βτ.

Hence, for tk = kτ we have

λ(i−k) = λ−(k−i) ≤ (1− βτ)(k−i) = e(k−i) ln(1−βτ) ≤ e−β(k−i)τ = e−β(tk−ti).

Then

ak ≤
( k∑
i=0

τe−2β(tk−ti)c2
i

)1/2

+
k∑
i=0

τe−β(tk−ti)bi .

which concludes the proof.

A.2 Representation of linear functionals

We provide here a couple of representations, to be used in Theorem 3.10 and in Corollary 5.11. A
similar result, related to unilateral gradient flows, is already stated (without proof) in [14].

Lemma A.2 Let ζ ∈ H−1. If

sup
{
〈ζ, ξ〉 : ξ ∈ H1

0 , ξ ≥ 0, ‖ξ‖L2 ≤ 1
}
< +∞ (72)

then ζ (as a distribution) is a Radon measure whose positive part belongs to L2.

Proof. We introduce the indicator functions IB, I+ : H1
0 → [0,+∞] given by

IB(ξ) =

{
0 ‖ξ‖L2 ≤ 1

+∞ otherwise,
I+(ξ) =

{
0 ξ ≥ 0

+∞ otherwise.

Then (72) reads
sup
ξ∈H1

0

〈ζ, ξ〉 −
(
I+(ξ) + IB(ξ)

)
< +∞.

In other terms, ζ belongs to the proper domain of the Legendre transform (I+ + IB)∗ in H−1. In
order to characterize the proper domain, let us write by inf-convolution, e.g. §15.1 in [6],

(I+ + IB)∗(ζ) = min
ϕ∈H−1

I∗+(ϕ) + I∗B(ζ − ϕ).

Clearly, if (I+ + IB)∗(ζ) < +∞ there exists µ ∈ H−1 such that I∗B(ζ − µ) + I∗+(µ) < +∞. Since

I∗+(µ) = sup
ξ∈H1

0

〈µ, ξ〉+ I+(ξ) ≥ 0 and I∗B(ζ − µ) = sup
ξ∈H1

0

〈ζ − µ, ξ〉+ IB(ξ) ≥ 0

both I∗+(µ) < +∞ and I∗B(ζ − µ) < +∞. Choosing ξ = λξ̂, for λ ≥ 0 and ξ̂ ≥ 0, yields

λ〈µ, ξ̂〉 ≤ sup{〈µ, ξ〉 : ξ ∈ H1
0 , ξ ≥ 0} = I∗+(µ) < +∞ for every λ ≥ 0;

hence 〈µ, ξ̂〉 ≤ 0 for every ξ̂ ≥ 0 in H1
0 and thus µ is a negative Radon measure. Further, since

I∗B(ζ − µ) = sup{〈ζ − µ, ξ〉 : ξ ∈ H1
0 , ‖ξ‖L2 ≤ 1} < +∞,

the functional ζ − µ can be extended from H1
0 to the whole L2 (by Hahn-Banach Theorem) and

thus it can be represented as an element f ∈ L2 (by Riesz’s representation Theorem). In summary,
we write ζ = µ + fL, where µ is a negative measure, f is an L2-function and L is the Lebesgue
measure. Write µ = µac +µs where µac and µs are, respectively, absolutely continuous and singular
with respect to L. Then µac = −mL (by Radon-Nikodym Theorem) where m ∈ L1 and m ≥ 0.
Hence

ζ+ = (f −m)+L+ µ+
s = (f −m)+L = (f −m)L|A

where A = {f −m ≥ 0}. In A we have f ≥ m ≥ 0 and thus m ∈ L2(A). It follows that ζ+ ∈ L2.
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Lemma A.3 Let ζ ∈ (H1)∗ such that there exists

ξM ∈ argmax
{
〈ζ, ξ〉 : ξ ∈ H1, ξ ≥ 0, ‖ξ‖L2 ≤ 1

}
,

then ζ (as a distribution) is a Radon measure and ζ+ = ξM ‖ζ+‖L2.

Proof. Considering ζ ∈ H−1 (and thus ξ ∈ H1
0 ) provides

sup
{
〈ζ, ξ〉 : ξ ∈ H1

0 , ξ ≥ 0, ‖ξ‖L2 ≤ 1
}
< +∞.

By the previous Lemma, ζ is a Radon measure with positive part in L2. Thus we can write
ζ = ζ+ − ζ− where ζ− is a positive Radon measure while ζ+ = fL, for f ∈ L2 with f ≥ 0. Since
the measures ζ± are supported on disjoint Borel sets, say Ω±, we have f = 0 on Ω−.

If f = 0 there is nothing to prove. Otherwise, since ξ ≥ 0 we have

sup{〈ζ, ξ〉 : ξ ∈ H1
0 , ξ ≥ 0, ‖ξ‖L2 ≤ 1} ≤ sup{〈ζ, ξ〉 : ξ ∈ H1, ξ ≥ 0, ‖ξ‖L2 ≤ 1}

≤ sup{〈ζ+, ξ〉 : ξ ∈ L2, ξ ≥ 0, ‖ξ‖L2 ≤ 1} = ‖f‖L2 .

Note that ξ = f/‖f‖L2 is the unique maximizer in L2. Now, we will show that

sup{〈ζ, ξ〉 : ξ ∈ C∞0 (Ω), ξ ≥ 0, ‖ξ‖L2 ≤ 1} = ‖f‖L2 (73)

from which we get ξM = f/‖f‖L2 and then the thesis. For sake of simplicity we will consider only
the case in which the measure ζ− is finite. In the case of a locally finite measure it is sufficient to
employ an increasing sequence of open sets Ωn ⊂⊂ Ω whose union is Ω.

Let us choose a (smooth) convolution kernel ρn such that ‖f ∗ρn− f‖L2 ≤ 1/n. Clearly f ∗ρn is
smooth, bounded and non-negative. Since Ω± are Borel sets and since both L and ζ− are regular,
there exists compact set K±n ⊂ Ω± such that

ζ−(Ω−\K−n )‖f ∗ ρn‖L∞ ≤ 1/n, L(Ω+\K+) ‖f ∗ ρn‖2L∞ ≤ 1/n2.

For every n ∈ N there exists a smooth cut off function ηn with 0 ≤ ηn ≤ 1 such that ηn = 1 on
K+ and ηn = 0 on K−. Consider the smooth, non-negative function (f ∗ ρn) ηn. We have∫

Ω
(f ∗ ρn) ηn dζ

− ≤ ‖f ∗ ρn‖L∞
∫

Ω−
ηn dζ

− ≤ ‖f ∗ ρn‖L∞ζ−(Ω−\K−n ) ≤ 1/n. (74)

Moreover∫
Ω+

|(f ∗ ρn) ηn − f |2 dx ≤ 2

∫
Ω+

|(f ∗ ρn) (ηn − 1)|2 dx+ 2

∫
Ω+

|f ∗ ρn − f |2 dx

≤ 2L(Ω+\K+
n ) ‖f ∗ ρn‖2L∞ + 2

∫
Ω+

|f ∗ ρn − f |2 dx ≤ 4/n2.

Thus ∫
Ω+

f(f ∗ ρn) ηn dx =

∫
Ω+

f2 dx−
∫

Ω+

f(f − (f ∗ ρn) ηn) dx

≥ ‖f‖2L2 − ‖f‖L2‖f − (f ∗ ρn) ηn‖L2 ≥ ‖f‖2L2 − 2‖f‖L2/n. (75)

Let λn = ‖(f ∗ ρn)ηn‖L2 → ‖f‖. Then ξ = λn(f ∗ ρn)ηn is an admissible test function in (73) and
from (74) and (75) we get

〈ζ, ξn〉 = λn

∫
Ω+

f(f ∗ ρn)ηn dx− λn
∫

Ω−
(f ∗ ρn)ηn dζ

− ≥ λn‖f‖2 − C/n.

Thus we have (73).
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A.3 Continuous dependence and differentiability

Finally, we collect, for the readers convenience, few results from [19] adapted to our notation and
framework; the first follows from a general regularity result proved in [17].

Lemma A.4 Let g ∈ C1([0, T ];W 1,p̄(Ω,R2)) for p̄ > 2. For t ∈ [0, T ] and v ∈ V denote u(t, v) =
argmin{F(t, ·, v) : u ∈ U}. For every 2 < p < p̄ there exists C > 0 s.t. for every t1, t2 ∈ [0, T ] and
every v1, v2 ∈ V

‖u(t2, v2)− u(t1, v1)‖W 1,p ≤ C‖g(t2)− g(t1)‖Lq + C‖v2 − v1‖Lq

where 1/q = 1/p− 1/p̄.

Lemma A.5 If u ∈W 1,p(Ω,R2) for some p > 2 then F(t, u, ·) is Gateaux differentiable and

∂vF(t, u, v)[ξ] = 2

∫
Ω
vξ W (Du+Dg(t)) dx+Gc

∫
Ω

(v − 1)ξ +∇v · ∇ξ dx ∀ ξ ∈ H1(Ω).

Lemma A.6 If v ∈ W 1,2(0, T ;H1) and u(t) ∈ argmin{F(t, u, v(t)) : u ∈ U} then the energy
t 7→ F(t, u(t), v(t)) is a.e. differentiable in (0, T ) and the following chain rule holds:

Ḟ(t, u(t), v(t)) = ∂tF(t, u(t), v(t)) + ∂vF(t, u(t), v(t)) [v̇(t)] . (76)
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[6] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New
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[14] U. Gianazza and G. Savaré. Some results on minimizing movements. Rend. Accad. Naz. Sci.
XL Mem. Mat. (5), 18:57–80, 1994.
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