Coupled Klein-Gordon and Born-Infeld type equations: looking for solitary waves

By Dimitri Mugnai
Dipartimento di Matematica e Informatica Università di Perugia, Via Vanvitelli 1, Perugia 06123 (Italy), e-mail: mugnai@dipmat.unipg.it

The existence of infinitely many nontrivial radially symmetric solitary waves for the nonlinear Klein-Gordon equation, coupled with a Born-Infeld type equation, is established under general assumptions.

Keywords: \mathbb{Z}_{2}-Mountain Pass, $L^{\infty}-$ a priori estimate.

1. Introduction

Let us consider the following nonlinear Klein-Gordon equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-\Delta \psi+m^{2} \psi-|\psi|^{p-2} \psi=0 \tag{1.1}
\end{equation*}
$$

where $\psi=\psi(t, x) \in \mathbb{C}, t \in \mathbb{R}, x \in \mathbb{R}^{3}, m \in \mathbb{R}$ and $2<p<6$.
In the last years a wide interest was born about solitary waves of (1.1), i.e. solutions of the form

$$
\begin{equation*}
\psi(x, t)=u(x) e^{i \omega t} \tag{1.2}
\end{equation*}
$$

where u is a real function and $\omega \in \mathbb{R}$. If one looks for solutions of (1.1) having the form (1.2), the nonlinear Klein-Gordon equation reduces to a semilinear elliptic equation, as well as if one looks for solitary waves of nonlinear Schrödinger equation (see [10], [12] and the papers quoted therein). Many existence results have been established for solutions u of such a semilinear equation, both in the case in which u is radially symmetric and real or non-radially symmetric and complex (e.g., see [6], [7], [15]).

From equation (1.1) it is possible to develop the theory of electrically charged fields (see [13]) and study the interaction of ψ with an assigned electromagnetic field (see [1], [2], [9]). On the other hand, it is also possible to study the interaction of ψ with its own electromagnetic field (see [3], [4], [5], [10]), which is not assigned, but is an unknown of the problem. More precisely, if the electromagnetic field is described by the gauge potentials (ϕ, \mathbf{A})

$$
\phi: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}, \quad \mathbf{A}: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}^{3}
$$

then, by Maxwell equations, the electric field is given by

$$
\mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t}
$$

and the magnetic induction field by

$$
\mathbf{B}=\nabla \times \mathbf{A}
$$

Of course, equation (1.1) is the Euler-Lagrange equation associated to the Lagrangian density

$$
\begin{equation*}
\mathcal{L}_{K G}=\frac{1}{2}\left[\left|\frac{\partial \psi}{\partial t}\right|^{2}-|\nabla \psi|^{2}-m^{2}|\psi|^{2}\right]+\frac{1}{p}|\psi|^{p} \tag{1.3}
\end{equation*}
$$

The interaction of ψ with the electromagnetic field is described by the minimal coupling rule, that is the formal substitution

$$
\begin{equation*}
\frac{\partial}{\partial t} \longmapsto \frac{\partial}{\partial t}+i e \phi, \quad \nabla \longmapsto \nabla-i e \mathbf{A} \tag{1.4}
\end{equation*}
$$

where e is the electric charge.
By (1.4) the Lagrangian density (1.3) takes the form

$$
\mathcal{L}_{K G M}=\frac{1}{2}\left[\left|\frac{\partial \psi}{\partial t}+i e \psi \phi\right|^{2}-|\nabla \psi-i e \mathbf{A} \psi|^{2}-m^{2}|\psi|^{2}\right]+\frac{1}{p}|\psi|^{p}
$$

The total action of the system is thus given by

$$
\mathcal{S}=\iint\left(\mathcal{L}_{K G M}+\mathcal{L}_{\mathrm{emf}}\right) d x d t
$$

where $\mathcal{L}_{\text {emf }}$ denotes the Lagrangian density of the electromagnetic field. In the classical Maxwell theory, $\mathcal{L}_{\text {emf }}$ can be written as

$$
\mathcal{L}_{\mathrm{emf}}=\mathcal{L}_{\mathrm{M}}=\frac{1}{8 \pi}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)
$$

If, as in [4], we look for ψ of the form

$$
\psi(x, t)=u(x, t) e^{i S(x, t)}
$$

for some $u, S: \mathbb{R}^{3} \times \mathbb{R} \longrightarrow \mathbb{R}$, then $\mathcal{S}=\mathcal{S}(u, S, \phi, \mathbf{A})$. If $u=u(x), S=\omega t, \phi=\phi(x)$ and $\mathbf{A}=\mathbf{0}$, then the existence of infinitely many solutions for the Euler-Lagrange equation of

$$
\mathcal{S}=\iint\left(\mathcal{L}_{K G M}+\mathcal{L}_{\mathrm{M}}\right) d x d t
$$

has been proved in [4] for $4<p<6$ and in [10] for $2<p<6$.
Unfortunately, the theory of Maxwell exhibits some difficulties because the electromagnetic field corresponding to "some" charge distributions (point charge) have infinite energy (see [14]).

Born and Infeld suggested a way to overcome such difficulties in [8], introducing the Lagrangian density

$$
\mathcal{L}_{\mathrm{BI}}=\frac{b^{2}}{4 \pi}\left(1-\sqrt{1-\frac{1}{b^{2}}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)}\right),
$$

where $b \gg 1$ is the so-called Born-Infeld parameter. It is clear that the first order expansion of $\mathcal{L}_{\mathrm{BI}}$ coincides with \mathcal{L}_{M}, but using $\mathcal{L}_{\mathrm{BI}}$ the electrostatic case of a point charge has finite energy (see [14]).

As done in [14] and [11], we set

$$
\beta:=\frac{1}{2 b^{2}}
$$

and consider the second order expansion of $\mathcal{L}_{\text {BI }}$ for $\beta \rightarrow 0^{+}$. In this way the Lagrangian density takes the form

$$
\mathcal{L}_{\mathrm{BI}^{\prime}}=\frac{1}{4 \pi}\left[\frac{1}{2}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)+\frac{\beta}{4}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right)^{2}\right]
$$

In [14] the existence of electrostatic solutions with finite energy associated to $\mathcal{L}_{\mathrm{BI}^{\prime}}$ was proved, while in [11] the authors considered the total action given by

$$
\mathcal{S}=\iint\left(\mathcal{L}_{\mathrm{KGM}}+\mathcal{L}_{\mathrm{BI}^{\prime}}\right) d x d t
$$

In this case the authors proved that the associated Euler-Lagrange equation with $u=u(x), S=\omega t, \phi=\phi(x)$ and $\mathbf{A}=\mathbf{0}$,

$$
\begin{array}{r}
-\Delta u+\left[m^{2}-(\omega+e \phi)^{2}\right] u-|u|^{p-2} u=0 \\
\Delta \phi+\beta \Delta_{4} \phi=4 \pi e(\omega+e \phi) u^{2} \tag{1.6}
\end{array}
$$

has infinitely many solutions, provided that $4<p<6$ and $0<|\omega|<|m|$, where $\Delta_{4} u=\operatorname{div}\left(|D u|^{2} D u\right)$.

By a suitable $L^{\infty}-a$ priori estimate for ϕ, such a result is extended here in the following way.

Theorem 1.1. If $0<\omega<\sqrt{\frac{p}{2}-1}|m|$ and $2<p<4$, or $0<\omega<|m|$ and $4 \leq p<6$, the system (1.5) - (1.6) has infinitely many radially symmetric solution (u, ϕ) with $u \in H^{1}\left(\mathbb{R}^{3}\right), \phi \in L^{6}\left(\mathbb{R}^{3}\right)$ and $|\nabla \phi| \in L^{2}\left(\mathbb{R}^{3}\right) \cap L^{4}\left(\mathbb{R}^{3}\right)$.

Remark 1.1. The assumption $\omega<\left(\frac{p}{2}-1\right)|m|$ is merely technical, since it is needed only to prove the Palais-Smale condition if $p<4$ (see §3). Of course it implies the assumption $\omega<|m|$ if $p \leq 4$.

2. Proof of Theorem 1.1

Let us choose $e=1$ in (1.5)-(1.6), so that the system reduces to

$$
\begin{array}{r}
-\Delta u+\left[m^{2}-(\omega+\phi)^{2}\right] u-|u|^{p-2} u=0 \\
\Delta \phi+\beta \Delta_{4} \phi=4 \pi(\omega+\phi) u^{2} \tag{2.2}
\end{array}
$$

By $H^{1} \equiv H^{1}\left(\mathbb{R}^{3}\right)$ we denote the usual Sobolev space endowed with the norm

$$
\|u\|_{H^{1}} \equiv\left(\int_{\mathbb{R}^{3}}\left(|D u|^{2}+|u|^{2}\right) d x\right)^{1 / 2}
$$

and by $D\left(\mathbb{R}^{3}\right)$ the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ with respect to the norm

$$
\|\phi\|_{D\left(\mathbb{R}^{3}\right)}=\|D \phi\|_{L^{2}}+\|D \phi\|_{L^{4}} .
$$

Denoting by $D^{1,2}\left(\mathbb{R}^{3}\right)$ the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ with respect to the norm

$$
\|u\|_{D^{1,2}\left(\mathbb{R}^{3}\right)}=\left(\int_{\mathbb{R}^{3}}|D u|^{2} d x\right)^{1 / 2}
$$

it is clear that $D\left(\mathbb{R}^{3}\right)$ is continuously embedded in $D^{1,2}\left(\mathbb{R}^{3}\right)$. Moreover $D^{1,2}\left(\mathbb{R}^{3}\right)$ is continuously embedded in $L^{6}\left(\mathbb{R}^{3}\right)$ by Sobolev inequality and $D\left(\mathbb{R}^{3}\right)$ is continuously embedded in $L^{\infty}\left(\mathbb{R}^{3}\right)$ by Proposition 8 in [14]. We remark that $q=6$ is the critical exponent for the Sobolev embedding $H^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{3}\right)$, so that equation (2.1) has a subcritical nonlinearity.

Theorem 1.1 is then proved if we show the existence of solutions (u, ϕ) with $u \in H^{1}\left(\mathbb{R}^{3}\right)$ and $\phi \in D\left(\mathbb{R}^{3}\right)$, so that

$$
\begin{align*}
\int_{\mathbb{R}^{3}}|D u|^{2} d x+\int_{\mathbb{R}^{3}}|u|^{2} d x<+\infty \tag{2.3}\\
\int_{\mathbb{R}^{3}}|D \phi|^{2} d x+\int_{\mathbb{R}^{3}}|D \phi|^{4} d x<+\infty \tag{2.4}
\end{align*}
$$

For the sake of simplicity, from now on, the integration domain is intended to be \mathbb{R}^{3}, if not explicitly stated otherwise.

Consider the functional $F: H^{1}\left(\mathbb{R}^{3}\right) \times D\left(\mathbb{R}^{3}\right) \longrightarrow \mathbb{R}$ defined by

$$
\begin{gathered}
F(u, \phi)=\int\left\{\frac{1}{2}|D u|^{2}-\frac{1}{8 \pi}|D \phi|^{2}+\frac{1}{2}\left(m^{2}-(\omega+\phi)^{2}\right) u^{2}\right. \\
\left.-\frac{\beta}{16 \pi}|D \phi|^{4}-\frac{1}{p}|u|^{p}\right\} d x
\end{gathered}
$$

whose Euler-Lagrange equation is precisely (2.1)-(2.2).
It is readily seen that the following result holds.
Proposition 2.1. The functional F is of class C^{1} on $H^{1}\left(\mathbb{R}^{3}\right) \times D\left(\mathbb{R}^{3}\right)$ and its critical points solve (2.1) and (2.2) under the conditions (2.3)-(2.4).

It seems quite hard to find critical points for F directly, since it depends on two variables and since it is strongly indefinite, i.e. unbounded both from above and below, even modulo compact perturbations. Therefore, following the approach of [4], [10], [11], we introduce a new functional J depending only on u in such a way that critical points of J give rise to critical points of F.

First of all we need the following Lemma.
Lemma 2.2. For every $u \in H^{1}\left(\mathbb{R}^{3}\right)$ there exists a unique $\phi=\Phi[u] \in D\left(\mathbb{R}^{3}\right)$ which solves (2.2). If u is radially symmetric, then $\Phi[u]$ is radially symmetric.

The first result is proved in [11, Lemma 3], while the second one, though not explicitly stated, is proved in [11, Lemma 5].

A deeper look at solutions of (2.2) leads to the following $L^{\infty_{-a}}$ priori estimate on $\Phi[u]$, which is a fundamental tool to prove Theorem 1.1.

Lemma 2.3. For any $u \in H^{1}\left(\mathbb{R}^{3}\right)$, it results $\Phi[u] \leq 0$. Moreover $\Phi[u](x) \geq-\omega$ if $u(x) \neq 0$.
Proof. Multiplying (2.2) by $\Phi^{+}=\max \{\Phi[u], 0\}$, we get

$$
-\int\left|D \Phi^{+}\right|^{2} d x-\beta \int\left|D \Phi^{+}\right|^{4} d x=4 \pi \omega \int u^{2} \Phi^{+} d x+4 \pi \int u^{2}\left(\Phi^{+}\right)^{2} d x \geq 0
$$

so that $\Phi^{+} \equiv 0$.
If we multiply (2.2) by $(\omega+\Phi[u])^{-}$, which is an admissible test function since $\omega>0$, we get

$$
\begin{gathered}
\int_{\{x: \Phi[u]<-\omega\}}|D \Phi[u]|^{2} d x+\beta \int_{\{x: \Phi[u]<-\omega\}}|D \Phi[u]|^{4} d x \\
=-4 \pi \int_{\{x: \Phi[u]<-\omega\}}(\omega+\Phi[u])^{2} u^{2} d x,
\end{gathered}
$$

so that $(\omega+\Phi[u])^{-}=0$ where $u \neq 0$.
In view of Lemma 2.2, we consider the map $\Phi: H^{1}\left(\mathbb{R}^{3}\right) \longrightarrow D, u \mapsto \Phi[u]$. From standard arguments, $\Phi \in C^{1}\left(H^{1}, D^{1,2}\right)$ and from the very definition of Φ we get

$$
F_{\phi}^{\prime}(u, \Phi[u])=0 \quad \forall u \in H^{1}
$$

Now consider the functional $J: H^{1}\left(\mathbb{R}^{3}\right) \longrightarrow \mathbb{R}$ defined by

$$
J(u)=F(u, \Phi[u]),
$$

that is

$$
\begin{gather*}
J(u)=\int\left\{\frac{1}{2}|D u|^{2}-\frac{1}{8 \pi}|D \Phi[u]|^{2}+\frac{1}{2}\left(m^{2}-(\omega+\Phi[u])^{2}\right) u^{2}\right. \\
\left.-\frac{\beta}{16 \pi}|D \Phi[u]|^{4}-\frac{1}{p}|u|^{p}\right\} d x \tag{2.5}
\end{gather*}
$$

Of course $J \in C^{1}\left(H^{1}, \mathbb{R}\right)$, since both F and Φ are C^{1}.
The next lemma states a relationship between the critical points of the functionals F and J (the proof can be found in [4, Proposition 3.5]).
Lemma 2.4. The following statements are equivalent:
i) $(u, \Phi) \in H^{1} \times D^{1,2}$ is a critical point of F,
ii) u is a critical point of J and $\Phi=\Phi[u]$.

Then, in order to get solutions of (2.1)-(2.2), we look for critical points of J. Assume the following result holds.

Theorem 2.5. Assume $2<p<6$ and $0<\omega<\left(\frac{p}{2}-1\right)|m|$. Then the functional J has infinitely many critical points having a radial symmetry.

It is now immediate to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Theorem 2.5 establishes the existence of infinitely many nontrivial critical points u_{n} of J. Lemma 2.4 implies that ($u_{n}, \Phi\left[u_{n}\right]$) are critical points for F. Finally Proposition 2.1 guarantees that ($u_{n}, \Phi\left[u_{n}\right]$) solve (2.1)-(2.2) under the conditions (2.3)-(2.4).

3. Proof of Theorem 2.5

Since J is invariant under the group of translations, there is an evident lack of compactness. In order to overcome this difficulty, we constrain J on the space of radially symmetric functions. More precisely we introduce the subspace

$$
H_{r}^{1}\left(\mathbb{R}^{3}\right)=\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \mid u(x)=u(|x|)\right\}
$$

and we look for critical points of J constrained on $H_{r}^{1}\left(\mathbb{R}^{3}\right)$. In order to prove Theorem 2.5, this is enough in view of the following result (see [11] for the proof).
Lemma 3.1. Any critical point $u \in H_{r}^{1}$ of $J_{H_{r}^{1}\left(\mathbb{R}^{3}\right)}$ is also a critical point of J.
The choice of $H_{r}^{1}\left(\mathbb{R}^{3}\right)$ lets us recover a compactness property: indeed the embedding of $H_{r}^{1} \hookrightarrow L^{q}\left(\mathbb{R}^{3}\right)$ is compact for any $q \in(2,6)$ (see [6]).

We recall that a C^{1} functional f defined on a Banach space B satisfies the Palais-Smale condition, $(P S)$ for short, if

> any sequence $\left(u_{n}\right)_{n}$ such that $f^{\prime}\left(u_{n}\right) \rightarrow 0$ in B^{\prime} and $f\left(u_{n}\right)$ is bounded, has a converging subsequence.

In [11] the Palais-Smale condition, as well as the existence of infinitely many solutions to (2.1)-(2.2), was proved for the case $4<p<6$. By Lemma 2.3 we are able to extend the result to the general case $2<p<6$.

Proposition 3.2. If $2<p<6$, then $J_{\mid H_{r}^{1}\left(\mathbb{R}^{3}\right)}$ satisfies the Palais-Smale condition.
Proof. From now on, let us write Ω in place of $m^{2}-\omega^{2}$. Moreover, according to what we said above, it is enough to assume $2<p \leq 4$.

Suppose $\left(u_{n}\right)_{n}$ in $H_{r}^{1}\left(\mathbb{R}^{3}\right)$ is such that

$$
J_{\mid H_{r}^{1}\left(\mathbb{R}^{3}\right)}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { and } \quad\left|J\left(u_{n}\right)\right| \leq M
$$

for a positive M.
From equation (2.2) we get

$$
-\frac{1}{8 \pi} \int|D \Phi[u]|^{2} d x-\frac{\beta}{8 \pi} \int|D \Phi[u]|^{4} d x=\frac{\omega}{2} \int u^{2} \Phi[u] d x+\frac{1}{2} \int u^{2} \Phi^{2}[u] d x
$$

Substituting in (2.5), we obtain the following form of J :

$$
\begin{equation*}
J(u)=\frac{1}{2} \int\left\{|D u|^{2}+\Omega u^{2}-\omega u^{2} \Phi[u]\right\} d x+\frac{\beta}{16 \pi} \int|D \Phi[u]|^{4} d x-\frac{1}{p} \int|u|^{p} d x \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right)\left(u_{n}\right)=\left(\frac{p}{2}-1\right)\left\{\int\left|D u_{n}\right|^{2} d x+\Omega \int u_{n}^{2} d x\right\} \\
+ & \int u_{n}^{2} \Phi^{2}\left[u_{n}\right] d x-\omega\left(\frac{p}{2}-2\right) \int u_{n}^{2} \Phi\left[u_{n}\right] d x+\frac{p \beta}{16 \pi} \int\left|D \Phi\left[u_{n}\right]\right|^{4} d x \\
\geq & \left(\frac{p}{2}-1\right)\left\{\int\left|D u_{n}\right|^{2} d x+m^{2} \int u_{n}^{2} d x\right\}-\omega^{2}\left(\frac{p}{2}-1\right) \int u_{n}^{2} d x
\end{aligned}
$$

$$
-\omega\left(\frac{p}{2}-2\right) \int u_{n}^{2} \Phi\left[u_{n}\right] d x
$$

and by Lemma 2.3, since $2<p \leq 4$,

$$
\geq\left(\frac{p}{2}-1\right)\left\{\int\left|D u_{n}\right|^{2} d x+m^{2} \int u_{n}^{2} d x\right\}-\omega^{2} \int u_{n}^{2} d x
$$

Therefore, since $\left(\frac{p}{2}-1\right) m^{2}>\omega^{2}$ for any $p \in(2,4]$, we get

$$
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \geq C\left\|u_{n}\right\|^{2}
$$

for a positive constant C independent of n.
On the other hand, by hypotheses,

$$
p J\left(u_{n}\right)-J^{\prime}\left(u_{n}\right)\left(u_{n}\right) \leq p M+\varepsilon\left\|u_{n}\right\|,
$$

where $\left\|J^{\prime}\left(u_{n}\right)\right\|_{\left(H^{1}\right)^{\prime}} \leq \varepsilon$.
In this way $\left(u_{n}\right)_{n}$ is bounded.
Then, up to a subsequence,

$$
u_{n} \rightharpoonup u \quad \text { in } H_{r}^{1}\left(\mathbb{R}^{3}\right)
$$

Moreover from equation (2.2) we have

$$
\begin{gathered}
\int\left|D \Phi\left[u_{n}\right]\right|^{2} d x+\int\left|D \Phi\left[u_{n}\right]\right|^{4} d x=-4 \pi \omega \int u_{n}^{2} \Phi\left[u_{n}\right] d x \\
-4 \pi \int u_{n}^{2} \Phi^{2}\left[u_{n}\right] d x \leq 4 \pi \omega\left(\int \Phi^{6}\left[u_{n}\right] d x\right)^{1 / 6}\left(\int\left|u_{n}\right|^{12 / 5} d x\right)^{5 / 6} \\
\leq C\left\|\Phi\left[u_{n}\right]\right\| \cdot\left\|u_{n}\right\|^{2}
\end{gathered}
$$

and so also $\left(\Phi\left[u_{n}\right]\right)_{n}$ is bounded. This fact and the compact embedding of $H_{r}^{1} \hookrightarrow$ $L^{q}\left(\mathbb{R}^{3}\right)$ for any $q \in(2,6)([6])$, imply that

$$
u_{n} \rightarrow u \text { strongly in } H_{r}^{1}\left(\mathbb{R}^{3}\right)
$$

in a standard fashion (see, for example, [11]).
Now we show that $J_{H_{r}^{1}\left(\mathbb{R}^{3}\right)}$ satisfies the three geometrical hypothesis of the following \mathbb{Z}_{2} version of the mountain pass theorem (see [16, Theorem 9.12]).

Theorem 3.3 (\mathbb{Z}_{2}-Mountain Pass). Let E be a Banach space with $\operatorname{dim}(E)=\infty$, and $I \in C^{1}(E, \mathbb{R})$ be even, satisfy $(P S)$ and $I(0)=0$. Assume

- $\exists \rho>0$ and $\alpha>0$ such that $I(u) \geq \alpha \forall u$ with $\|u\|=\rho$;
- for every finite dimensional subspace X of E there exists $R=R(X)$ such that $I(u) \leq 0$ if $\|u\| \geq R$.

Then I has an unbounded sequence of critical values.

First of all we observe that $J(0)=0$. Moreover the hypotheses on the coefficients imply that there exists $\rho>0$ and small enough such that

$$
\inf _{\|u\|=\rho} J(u)>0
$$

In fact, from (2.2) we get

$$
-\omega \int u^{2} \Phi[u] d x=\frac{1}{4 \pi} \int|D \Phi[u]|^{2} d x+\frac{\beta}{4 \pi} \int|D \Phi[u]|^{4} d x+\int u^{2} \Phi[u]^{2} d x
$$

and substituting this quantity in the expression (2.5) of J, we get

$$
J(u)=\int\left\{\frac{1}{2}|D u|^{2}+\frac{1}{8 \pi}|D \Phi[u]|^{2}+\frac{\Omega}{2} u^{2}+\frac{1}{2} u^{2} \Phi^{2}[u]+\frac{3 \beta}{16 \pi}|D \Phi[u]|^{4}-\frac{1}{p}|u|^{p}\right\} d x .
$$

Since $p>2$, the claim follows.
Finally, let $X \subset H^{1}\left(\mathbb{R}^{3}\right)$ be a finite-dimensional subspace. From (2.2) we get

$$
-\frac{\beta}{16 \pi} \int|D \Phi[u]|^{4} d x=\frac{1}{16 \pi} \int|D \Phi[u]|^{2} d x+\frac{\omega}{4} \int u^{2} \Phi[u] d x+\frac{1}{4} \int u^{2} \Phi^{2}[u] d x
$$

Substituting in (2.5), we obtain the following form for J :

$$
\begin{align*}
& J(u)=\frac{1}{2} \int|D u|^{2} d x+\frac{\Omega}{2} \int u^{2} d x-\frac{1}{4} \int u^{2} \Phi^{2}[u] d x \\
& -\frac{3}{4} \omega \int u^{2} \Phi[u] d x-\frac{1}{16 \pi} \int|D \Phi[u]|^{2} d x-\frac{1}{p} \int|u|^{p} d x \tag{3.2}
\end{align*}
$$

If $u \in X$, using (3.2), we get

$$
J(u) \leq \frac{1}{2} \int|D u|^{2} d x+\frac{\Omega}{2} \int u^{2} d x-\frac{3}{4} \omega \int u^{2} \Phi[u] d x-\frac{1}{p} \int|u|^{p} d x
$$

By Lemma 2.3,

$$
J(u) \leq \frac{1}{2} \int|D u|^{2} d x+\frac{\Omega}{2} \int u^{2} d x+\frac{3}{4} \omega^{2} \int_{\{x: u(x) \neq 0\}} u^{2} d x-\frac{1}{p} \int|u|^{p} d x
$$

Therefore, if R is big enough and $\|u\| \geq R$, then $J(u) \leq 0$, since all norms are equivalent in X.

We have thus verified all the conditions of Theorem 3.3, proving that J has an unbounded sequence of critical values.
The author is supported by the M.I.U.R. project Metodi Variazionali ed Equazioni Differenziali Nonlineari (Variational Methods and Nonlinear Differential Equations).

References

Avron, J. \& Herbst, I. \& Simon, B. 1978 Schrödinger operators with electromagnetic fields I - General interaction. Duke Math. J. 45, 847-883.
Avron, J. \& Herbst, I. \& Simon, B. 1981 Schrödinger operators with electromagnetic fields
III - Atoms in homogeneous magnetic field. Comm. Math. Phys. 79, 529-572.

Benci, V. \& Fortunato, D. 1998 An eigenvalue problem for the Schrödinger -Maxwell equations. Top. Meth. Nonlinear Anal. 11, 283-293.
Benci, V. \& Fortunato, D. 2002 Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equation. Rev. Math. Phys. 14, 409-420.
Benci, V. \& Fortunato, D. \& Masiello, A. \& Pisani, L. 1999 Solitons and electromagnetic fields. Math. Z. 232, 73-102.
Berestycki, H. \& Lions, P. L. 1983 Nonlinear scalar field equatios, I - Existence of a ground state. Arch. Rat. Mech. Anal. 82 n. 4, 313-3-45.
Berestycki, H. \& Lions, P. L. 1983 Nonlinear scalar field equatios, II - Existence of infinitely many solutions. Arch. Rat. Mech. Anal. 82 n. 4, 347-375.
Born, M. \& Infeld, L. 1934 Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425-451.
Combes, J. M. \& Schrader, R. \& Seiler, R. 1978 Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields. Ann. Phys. 111, 1-18. [9]
D'Aprile, T. \& Mugnai, D. 2002 Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Preprint, University of Bari, submitted.
D'Avenia, P. \& Pisani, L. 2002 Nonlinear Klein-Gordon equations coupled with BornInfeld type equations. Elect. J. Diff. Eqns. No. 26, 13 pp.
del Pino, M. \& Felmer, P. \& Tanaka, K. 2002 An elementary construction of complex patterns in nonlinear Schrödinger equations. Nonlinearity 15 no. 5, 1653-1671. [12]
Felsager, B. 1998 Geometry, particles and fields. New York: Springer-Verlag. [13]
Fortunato, D. \& Orsina, L. \& Pisani, L. 2002 Born-Infeld type equations for electrostatic fields. J. Math. Phys. 43 No. 11, 5698-5706.
Lions, P. L. 1986 Solutions complexes d'équations elliptiques semilinéaires dans \mathbb{R}^{N}. C.R. Acad. Sci. Paris, Sér. I 302, 673-676.
Rabinowitz, P. H. 1986 Minimax methods in critical point theory with applications to differential equations. Reg. Conf. Ser. Math. 65.

