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Via Vanvitelli 1, Perugia 06123 (Italy), e-mail: mugnai@dipmat.unipg.it

The existence of infinitely many nontrivial radially symmetric solitary waves for
the nonlinear Klein-Gordon equation, coupled with a Born-Infeld type equation, is
established under general assumptions.

Keywords: Z2–Mountain Pass, L∞–a priori estimate.

1. Introduction

Let us consider the following nonlinear Klein-Gordon equation:

∂2ψ

∂t2
−∆ψ +m2ψ − |ψ|p−2ψ = 0, (1.1)

where ψ = ψ(t, x) ∈ C, t ∈ R, x ∈ R3, m ∈ R and 2 < p < 6.
In the last years a wide interest was born about solitary waves of (1.1), i.e.

solutions of the form
ψ(x, t) = u(x)eiωt, (1.2)

where u is a real function and ω ∈ R. If one looks for solutions of (1.1) having
the form (1.2), the nonlinear Klein-Gordon equation reduces to a semilinear elliptic
equation, as well as if one looks for solitary waves of nonlinear Schrödinger equation
(see [10], [12] and the papers quoted therein). Many existence results have been
established for solutions u of such a semilinear equation, both in the case in which
u is radially symmetric and real or non-radially symmetric and complex (e.g., see
[6], [7], [15]).

From equation (1.1) it is possible to develop the theory of electrically charged
fields (see [13]) and study the interaction of ψ with an assigned electromagnetic
field (see [1], [2], [9]). On the other hand, it is also possible to study the interaction
of ψ with its own electromagnetic field (see [3], [4], [5], [10]), which is not assigned,
but is an unknown of the problem. More precisely, if the electromagnetic field is
described by the gauge potentials (φ,A)

φ : R3 × R −→ R, A : R3 × R −→ R3,

then, by Maxwell equations, the electric field is given by

E = −∇φ− ∂A
∂t
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and the magnetic induction field by

B = ∇×A.

Of course, equation (1.1) is the Euler-Lagrange equation associated to the La-
grangian density

LKG =
1
2

[∣∣∣∣∂ψ∂t
∣∣∣∣2 − |∇ψ|2 −m2|ψ|2

]
+

1
p
|ψ|p. (1.3)

The interaction of ψ with the electromagnetic field is described by the minimal
coupling rule, that is the formal substitution

∂

∂t
7−→ ∂

∂t
+ ieφ, ∇ 7−→ ∇− ieA, (1.4)

where e is the electric charge.
By (1.4) the Lagrangian density (1.3) takes the form

LKGM =
1
2

[∣∣∣∣∂ψ∂t + ieψφ

∣∣∣∣2 − |∇ψ − ieAψ|2 −m2|ψ|2
]

+
1
p
|ψ|p.

The total action of the system is thus given by

S =
∫ ∫

(LKGM + Lemf) dx dt,

where Lemf denotes the Lagrangian density of the electromagnetic field. In the
classical Maxwell theory, Lemf can be written as

Lemf = LM =
1
8π

(|E|2 − |B|2).

If, as in [4], we look for ψ of the form

ψ(x, t) = u(x, t)eiS(x,t)

for some u, S : R3×R −→ R, then S = S(u, S, φ,A). If u = u(x), S = ωt, φ = φ(x)
and A = 0, then the existence of infinitely many solutions for the Euler-Lagrange
equation of

S =
∫ ∫

(LKGM + LM) dx dt

has been proved in [4] for 4 < p < 6 and in [10] for 2 < p < 6.
Unfortunately, the theory of Maxwell exhibits some difficulties because the elec-

tromagnetic field corresponding to “some” charge distributions (point charge) have
infinite energy (see [14]).

Born and Infeld suggested a way to overcome such difficulties in [8], introducing
the Lagrangian density

LBI =
b2

4π

(
1−

√
1− 1

b2
(|E|2 − |B|2)

)
,
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where b � 1 is the so-called Born-Infeld parameter. It is clear that the first order
expansion of LBI coincides with LM, but using LBI the electrostatic case of a point
charge has finite energy (see [14]).

As done in [14] and [11], we set

β :=
1

2b2

and consider the second order expansion of LBI for β → 0+. In this way the La-
grangian density takes the form

LBI′ =
1
4π

[
1
2
(
|E|2 − |B|2

)
+
β

4
(
|E|2 − |B|2

)2]
.

In [14] the existence of electrostatic solutions with finite energy associated to
LBI′ was proved, while in [11] the authors considered the total action given by

S =
∫ ∫

(LKGM + LBI′) dx dt.

In this case the authors proved that the associated Euler-Lagrange equation with
u = u(x), S = ωt, φ = φ(x) and A = 0,

−∆u+ [m2 − (ω + eφ)2]u− |u|p−2u = 0 (1.5)
∆φ+ β∆4φ = 4πe(ω + eφ)u2, (1.6)

has infinitely many solutions, provided that 4 < p < 6 and 0 < |ω| < |m|, where
∆4u = div(|Du|2Du).

By a suitable L∞–a priori estimate for φ, such a result is extended here in the
following way.

Theorem 1.1. If 0 < ω <
√

p
2 − 1 |m| and 2 < p < 4, or 0 < ω < |m| and

4 ≤ p < 6, the system (1.5)− (1.6) has infinitely many radially symmetric solution
(u, φ) with u ∈ H1(R3), φ ∈ L6(R3) and |∇φ| ∈ L2(R3) ∩ L4(R3).

Remark 1.1. The assumption ω < (p
2−1)|m| is merely technical, since it is needed

only to prove the Palais–Smale condition if p < 4 (see §3). Of course it implies the
assumption ω < |m| if p ≤ 4.

2. Proof of Theorem 1.1

Let us choose e = 1 in (1.5)–(1.6), so that the system reduces to

−∆u+ [m2 − (ω + φ)2]u− |u|p−2u = 0 (2.1)
∆φ+ β∆4φ = 4π(ω + φ)u2. (2.2)

By H1 ≡ H1(R3) we denote the usual Sobolev space endowed with the norm

‖u‖H1 ≡
(∫

R3

(
|Du|2 + |u|2

)
dx

)1/2

Article submitted to Royal Society



4 Dimitri Mugnai

and by D(R3) the completion of C∞
0 (R3,R) with respect to the norm

‖φ‖D(R3) = ‖Dφ‖L2 + ‖Dφ‖L4 .

Denoting by D1,2(R3) the completion of C∞
0 (R3,R) with respect to the norm

‖u‖D1,2(R3) =
(∫

R3
|Du|2 dx

)1/2

,

it is clear that D(R3) is continuously embedded in D1,2(R3). Moreover D1,2(R3) is
continuously embedded in L6(R3) by Sobolev inequality and D(R3) is continuously
embedded in L∞(R3) by Proposition 8 in [14]. We remark that q = 6 is the critical
exponent for the Sobolev embedding H1(R3) ↪→ Lq(R3), so that equation (2.1) has
a subcritical nonlinearity.

Theorem 1.1 is then proved if we show the existence of solutions (u, φ) with
u ∈ H1(R3) and φ ∈ D(R3), so that∫

R3
|Du|2 dx+

∫
R3
|u|2 dx < +∞ (2.3)

∫
R3
|Dφ|2 dx+

∫
R3
|Dφ|4 dx < +∞ (2.4)

For the sake of simplicity, from now on, the integration domain is intended to
be R3, if not explicitly stated otherwise.

Consider the functional F : H1(R3)×D(R3) −→ R defined by

F (u, φ) =
∫ {

1
2
|Du|2 − 1

8π
|Dφ|2 +

1
2

(
m2 − (ω + φ)2

)
u2

− β

16π
|Dφ|4 − 1

p
|u|p

}
dx,

whose Euler-Lagrange equation is precisely (2.1)-(2.2).
It is readily seen that the following result holds.

Proposition 2.1. The functional F is of class C1 on H1(R3) × D(R3) and its
critical points solve (2.1) and (2.2) under the conditions (2.3)–(2.4).

It seems quite hard to find critical points for F directly, since it depends on two
variables and since it is strongly indefinite, i.e. unbounded both from above and
below, even modulo compact perturbations. Therefore, following the approach of
[4], [10], [11], we introduce a new functional J depending only on u in such a way
that critical points of J give rise to critical points of F .

First of all we need the following Lemma.

Lemma 2.2. For every u ∈ H1(R3) there exists a unique φ = Φ[u] ∈ D(R3) which
solves (2.2). If u is radially symmetric, then Φ[u] is radially symmetric.

The first result is proved in [11, Lemma 3], while the second one, though not
explicitly stated, is proved in [11, Lemma 5].

A deeper look at solutions of (2.2) leads to the following L∞–a priori estimate
on Φ[u], which is a fundamental tool to prove Theorem 1.1.
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Lemma 2.3. For any u ∈ H1(R3), it results Φ[u] ≤ 0. Moreover Φ[u](x) ≥ −ω if
u(x) 6= 0.

Proof. Multiplying (2.2) by Φ+ = max{Φ[u], 0}, we get

−
∫
|DΦ+|2 dx− β

∫
|DΦ+|4 dx = 4πω

∫
u2Φ+ dx+ 4π

∫
u2(Φ+)2 dx ≥ 0,

so that Φ+ ≡ 0.
If we multiply (2.2) by (ω + Φ[u])−, which is an admissible test function since

ω > 0, we get ∫
{x:Φ[u]<−ω}

|DΦ[u]|2 dx+ β

∫
{x:Φ[u]<−ω}

|DΦ[u]|4 dx

= −4π
∫
{x:Φ[u]<−ω}

(ω + Φ[u])2u2 dx,

so that (ω + Φ[u])− = 0 where u 6= 0.

In view of Lemma 2.2, we consider the map Φ : H1(R3) −→ D, u 7→ Φ[u]. From
standard arguments, Φ ∈ C1(H1, D1,2) and from the very definition of Φ we get

F ′
φ(u,Φ[u]) = 0 ∀u ∈ H1.

Now consider the functional J : H1(R3) −→ R defined by

J(u) = F (u,Φ[u]),

that is

J(u) =
∫ {

1
2
|Du|2 − 1

8π
|DΦ[u]|2 +

1
2

(
m2 − (ω + Φ[u])2

)
u2

− β

16π
|DΦ[u]|4 − 1

p
|u|p

}
dx.

(2.5)

Of course J ∈ C1(H1,R), since both F and Φ are C1.
The next lemma states a relationship between the critical points of the func-

tionals F and J (the proof can be found in [4, Proposition 3.5]).

Lemma 2.4. The following statements are equivalent:

i) (u,Φ) ∈ H1 ×D1,2 is a critical point of F ,

ii) u is a critical point of J and Φ = Φ[u].

Then, in order to get solutions of (2.1)–(2.2), we look for critical points of J .
Assume the following result holds.

Theorem 2.5. Assume 2 < p < 6 and 0 < ω < (p
2 − 1)|m|. Then the functional J

has infinitely many critical points having a radial symmetry.

It is now immediate to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 2.5 establishes the existence of infinitely many
nontrivial critical points un of J . Lemma 2.4 implies that (un,Φ[un]) are critical
points for F . Finally Proposition 2.1 guarantees that (un,Φ[un]) solve (2.1)–(2.2)
under the conditions (2.3)–(2.4). �
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3. Proof of Theorem 2.5

Since J is invariant under the group of translations, there is an evident lack of
compactness. In order to overcome this difficulty, we constrain J on the space of
radially symmetric functions. More precisely we introduce the subspace

H1
r (R3) = {u ∈ H1(R3) |u(x) = u(|x|)},

and we look for critical points of J constrained on H1
r (R3). In order to prove

Theorem 2.5, this is enough in view of the following result (see [11] for the proof).

Lemma 3.1. Any critical point u ∈ H1
r of J∣∣H1

r (R3)
is also a critical point of J .

The choice of H1
r (R3) lets us recover a compactness property: indeed the em-

bedding of H1
r ↪→ Lq(R3) is compact for any q ∈ (2, 6) (see [6]).

We recall that a C1 functional f defined on a Banach space B satisfies the
Palais–Smale condition, (PS) for short, if

any sequence (un)n such that f ′(un) → 0 in B′ and f(un) is bounded,
has a converging subsequence.

In [11] the Palais–Smale condition, as well as the existence of infinitely many
solutions to (2.1)–(2.2), was proved for the case 4 < p < 6. By Lemma 2.3 we are
able to extend the result to the general case 2 < p < 6.

Proposition 3.2. If 2 < p < 6, then J|H1
r (R3) satisfies the Palais–Smale condition.

Proof. From now on, let us write Ω in place of m2 − ω2. Moreover, according to
what we said above, it is enough to assume 2 < p ≤ 4.

Suppose (un)n in H1
r (R3) is such that

J ′|H1
r (R3)(un) → 0 and |J(un)| ≤M ,

for a positive M .
From equation (2.2) we get

− 1
8π

∫
|DΦ[u]|2 dx− β

8π

∫
|DΦ[u]|4 dx =

ω

2

∫
u2Φ[u] dx+

1
2

∫
u2Φ2[u] dx.

Substituting in (2.5), we obtain the following form of J :

J(u) =
1
2

∫ {
|Du|2 + Ωu2 − ωu2Φ[u]

}
dx+

β

16π

∫
|DΦ[u]|4 dx− 1

p

∫
|u|p dx.

(3.1)
Then

pJ(un)− J ′(un)(un) =
(p

2
− 1
){∫

|Dun|2 dx+ Ω
∫
u2

n dx

}

+
∫
u2

nΦ2[un] dx− ω
(p

2
− 2
)∫

u2
nΦ[un] dx+

p β

16π

∫
|DΦ[un]|4 dx

≥
(p

2
− 1
){∫

|Dun|2 dx+m2

∫
u2

n dx

}
− ω2

(p
2
− 1
)∫

u2
n dx
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−ω
(p

2
− 2
)∫

u2
nΦ[un] dx

and by Lemma 2.3, since 2 < p ≤ 4,

≥
(p

2
− 1
){∫

|Dun|2 dx+m2

∫
u2

n dx

}
− ω2

∫
u2

n dx.

Therefore, since (p
2 − 1)m2 > ω2 for any p ∈ (2, 4], we get

pJ(un)− J ′(un)(un) ≥ C‖un‖2

for a positive constant C independent of n.
On the other hand, by hypotheses,

pJ(un)− J ′(un)(un) ≤ pM + ε‖un‖,

where ‖J ′(un)‖(H1)′ ≤ ε.
In this way (un)n is bounded.
Then, up to a subsequence,

un ⇀ u in H1
r (R3).

Moreover from equation (2.2) we have∫
|DΦ[un]|2 dx+

∫
|DΦ[un]|4 dx = −4πω

∫
u2

nΦ[un] dx

−4π
∫
u2

nΦ2[un] dx ≤ 4πω
(∫

Φ6[un] dx
)1/6(∫

|un|12/5 dx

)5/6

≤ C‖Φ[un]‖ · ‖un‖2,

and so also (Φ[un])n is bounded. This fact and the compact embedding of H1
r ↪→

Lq(R3) for any q ∈ (2, 6) ([6]), imply that

un → u strongly in H1
r (R3)

in a standard fashion (see, for example, [11]).

Now we show that J∣∣H1
r (R3)

satisfies the three geometrical hypothesis of the

following Z2 version of the mountain pass theorem (see [16, Theorem 9.12]).

Theorem 3.3 (Z2–Mountain Pass). Let E be a Banach space with dim(E) = ∞,
and I ∈ C1(E,R) be even, satisfy (PS) and I(0) = 0. Assume

• ∃ ρ > 0 and α > 0 such that I(u) ≥ α ∀u with ‖u‖ = ρ;

• for every finite dimensional subspace X of E there exists R = R(X) such that
I(u) ≤ 0 if ‖u‖ ≥ R.

Then I has an unbounded sequence of critical values.
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First of all we observe that J(0) = 0. Moreover the hypotheses on the coefficients
imply that there exists ρ > 0 and small enough such that

inf
‖u‖=ρ

J(u) > 0.

In fact, from (2.2) we get

−ω
∫
u2Φ[u] dx =

1
4π

∫
|DΦ[u]|2 dx+

β

4π

∫
|DΦ[u]|4 dx+

∫
u2Φ[u]2 dx,

and substituting this quantity in the expression (2.5) of J , we get

J(u) =
∫ {

1
2
|Du|2 +

1
8π
|DΦ[u]|2 +

Ω
2
u2 +

1
2
u2Φ2[u] +

3β
16π

|DΦ[u]|4 − 1
p
|u|p

}
dx.

Since p > 2, the claim follows.
Finally, let X ⊂ H1(R3) be a finite–dimensional subspace. From (2.2) we get

− β

16π

∫
|DΦ[u]|4 dx =

1
16π

∫
|DΦ[u]|2 dx+

ω

4

∫
u2Φ[u] dx+

1
4

∫
u2Φ2[u] dx.

Substituting in (2.5), we obtain the following form for J :

J(u) =
1
2

∫
|Du|2 dx+

Ω
2

∫
u2 dx− 1

4

∫
u2Φ2[u] dx

−3
4
ω

∫
u2Φ[u] dx− 1

16π

∫
|DΦ[u]|2 dx− 1

p

∫
|u|p dx.

(3.2)

If u ∈ X, using (3.2), we get

J(u) ≤ 1
2

∫
|Du|2 dx+

Ω
2

∫
u2 dx− 3

4
ω

∫
u2Φ[u] dx− 1

p

∫
|u|p dx.

By Lemma 2.3,

J(u) ≤ 1
2

∫
|Du|2 dx+

Ω
2

∫
u2 dx+

3
4
ω2

∫
{x:u(x) 6=0}

u2 dx− 1
p

∫
|u|p dx.

Therefore, if R is big enough and ‖u‖ ≥ R, then J(u) ≤ 0, since all norms are
equivalent in X.

We have thus verified all the conditions of Theorem 3.3, proving that J has an
unbounded sequence of critical values.

The author is supported by the M.I.U.R. project Metodi Variazionali ed Equazioni Dif-
ferenziali Nonlineari (Variational Methods and Nonlinear Differential Equations).
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