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The existence of infinitely many nontrivial radially symmetric solitary waves for
the nonlinear Klein-Gordon equation, coupled with a Born-Infeld type equation, is
established under general assumptions.

Keywords: Z2—Mountain Pass, L°°—a priori estimate.

1. Introduction

Let us consider the following nonlinear Klein-Gordon equation:

0%y 2 -2
ﬁfAd)er Y= [9[F =0, (1.1)
where 1 = (t,7) € C,t e R, 2 € R} m € R and 2 < p < 6.
In the last years a wide interest was born about solitary waves of (1.1), i.e.
solutions of the form

U(z,t) = u(z)e™?, (1.2)

where u is a real function and w € R. If one looks for solutions of (1.1) having
the form (1.2), the nonlinear Klein-Gordon equation reduces to a semilinear elliptic
equation, as well as if one looks for solitary waves of nonlinear Schrodinger equation
(see [10], [12] and the papers quoted therein). Many existence results have been
established for solutions u of such a semilinear equation, both in the case in which
u is radially symmetric and real or non-radially symmetric and complex (e.g., see
[6], [7], [15]).

From equation (1.1) it is possible to develop the theory of electrically charged
fields (see [13]) and study the interaction of ¢ with an assigned electromagnetic
field (see [1], [2], [9]). On the other hand, it is also possible to study the interaction
of ¢ with its own electromagnetic field (see [3], [4], [5], [10]), which is not assigned,
but is an unknown of the problem. More precisely, if the electromagnetic field is
described by the gauge potentials (¢, A)

6 :R¥*xR—R, A:R*xR — R?,
then, by Maxwell equations, the electric field is given by

0A
B=-Vo—
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and the magnetic induction field by
B=VxA.

Of course, equation (1.1) is the Euler-Lagrange equation associated to the La-
grangian density

=53] VR —meof| + . (13)

Lkc N

5[5

The interaction of ¢ with the electromagnetic field is described by the minimal
coupling rule, that is the formal substitution

0 o . ,
Eriamdr + e, Vi— V —ieA, (1.4)

where e is the electric charge.
By (1.4) the Lagrangian density (1.3) takes the form

2
+iepg| — |V —ieAp]* —m2|y)? +%|¢|P.

1[0
Lram = QHf;f

The total action of the system is thus given by

s— / / (Lrcns + Lomp) da dt,

where Lqns denotes the Lagrangian density of the electromagnetic field. In the
classical Maxwell theory, Lems can be written as

1
emf — _ — E 2 B 2 .
Fomt = bat 87r(| | IBI%)
If, as in [4], we look for ¢ of the form
’(/)(l‘7t) = u(x7t)eis(gc7t)

for some u, S : R3 xR — R, then S = S(u, S, ¢, A). If u = u(z), S = wt, ¢ = ¢(x)
and A = 0, then the existence of infinitely many solutions for the Euler-Lagrange
equation of

SZ//(EKGM-‘rEM)dCCdt

has been proved in [4] for 4 < p < 6 and in [10] for 2 < p < 6.

Unfortunately, the theory of Maxwell exhibits some difficulties because the elec-
tromagnetic field corresponding to “some” charge distributions (point charge) have
infinite energy (see [14]).

Born and Infeld suggested a way to overcome such difficulties in [8], introducing
the Lagrangian density

fon =0 (11— e - )
BI*47T b2 bl
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where b > 1 is the so-called Born-Infeld parameter. It is clear that the first order
expansion of Lgy coincides with Ly, but using Lp; the electrostatic case of a point
charge has finite energy (see [14]).

As done in [14] and [11], we set

1
7=

and consider the second order expansion of L£py for 8 — 0. In this way the La-
grangian density takes the form

_il 2 2 é 2 2\ 2
Co = - |5(BE = BP) + S (B - BP)’|.

In [14] the existence of electrostatic solutions with finite energy associated to
Lpr was proved, while in [11] the authors considered the total action given by

S = //(EKGM + Lpyr) dz dt.

In this case the authors proved that the associated Euler-Lagrange equation with
u=u(z), S =uwt, p =¢(x) and A =0,

—Au+ [m? — (w+ ep)?Ju — |[ulP2u=0 (1.5)
A¢ + BALp = dme(w + ep)u?, (1.6)

has infinitely many solutions, provided that 4 < p < 6 and 0 < |w| < |m|, where
Ayu = div(|Dul?Du).

By a suitable L>®—a priori estimate for ¢, such a result is extended here in the
following way.

Theorem 1.1. If0 < w < /5§ —1|m[ and 2 < p < 4, or 0 < w < |m| and
4 < p <6, the system (1.5) — (1.6) has infinitely many radially symmetric solution
(u, @) with u € HY(R?), ¢ € LS(R3) and |Vo| € L2(R?) N L4(R3).

Remark 1.1. The assumption w < (§—1)|m| is merely technical, since it is needed

only to prove the Palais-Smale condition if p < 4 (see §3). Of course it implies the
assumption w < |m| if p < 4.

2. Proof of Theorem 1.1

Let us choose e =1 in (1.5)—(1.6), so that the system reduces to

—Au+[m? — (w+ @) Ju — |[ulPu=0 (2.1)
Ad + A4 = d(w + ¢)u.

By H! = H'(R3) we denote the usual Sobolev space endowed with the norm

1/2
lull g = (/ (|Du|2+ |u|2) dx)
]RS
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and by D(R?) the completion of C§°(R?, R) with respect to the norm

[6llp@s) = 1D¢ L2 + [[ Dbl s

Denoting by DY?(R?) the completion of C§°(R3, R) with respect to the norm

1/2
||u||D1,2(R3) = (/ DU|2d£L'> s
R3

it is clear that D(R3) is continuously embedded in D'?(R3). Moreover D':2(R3) is
continuously embedded in L%(R3) by Sobolev inequality and D(R?) is continuously
embedded in L>°(R3) by Proposition 8 in [14]. We remark that ¢ = 6 is the critical
exponent for the Sobolev embedding H'(R?) — L4(R?), so that equation (2.1) has
a subcritical nonlinearity.

Theorem 1.1 is then proved if we show the existence of solutions (u,¢) with
u € HY(R?) and ¢ € D(R?), so that

/ |Du\2d:1:+/ |u? dx < +oo (2.3)
R3 R3

/ |Dgz5|2das—|—/ |Do|* dx < +o00 (2.4)
R3 R3

For the sake of simplicity, from now on, the integration domain is intended to
be R3, if not explicitly stated otherwise.
Consider the functional F : H'(R?) x D(R?) — R defined by

Flu.) = [ {GIDuP = golDof? 4 5 (m = (0 + 0)2)12

B a1

— Dt~ Zulr} d
Dol = Jjulr | da,
whose Euler-Lagrange equation is precisely (2.1)-(2.2).

It is readily seen that the following result holds.

Proposition 2.1. The functional F is of class C* on HY(R3) x D(R3) and its
critical points solve (2.1) and (2.2) under the conditions (2.3)—(2.4).

It seems quite hard to find critical points for F' directly, since it depends on two
variables and since it is strongly indefinite, i.e. unbounded both from above and
below, even modulo compact perturbations. Therefore, following the approach of
[4], [10], [11], we introduce a new functional J depending only on w in such a way
that critical points of J give rise to critical points of F.

First of all we need the following Lemma.

Lemma 2.2. For every u € HY(R3) there exists a unique ¢ = ®[u] € D(R?) which
solves (2.2). If u is radially symmetric, then ®[u] is radially symmetric.

The first result is proved in [11, Lemma 3], while the second one, though not
explicitly stated, is proved in [11, Lemma 5].

A deeper look at solutions of (2.2) leads to the following L*>°—a priori estimate
on ®[u], which is a fundamental tool to prove Theorem 1.1.
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Lemma 2.3. For any u € H'(R?), it results ®[u] < 0. Moreover ®[u](x) > —w if
u(zx) # 0.
Proof. Multiplying (2.2) by ®* = max{®[u],0}, we get

—/|D<I>+|2 dx—ﬂ/|D<I>+|4d:E:47w)/u2<1>+ da?+47r/u2(<l>+)2 dzx >0,

so that &+ = 0.
If we multiply (2.2) by (w + ®[u])~, which is an admissible test function since
w > 0, we get

/ \D®[u][2 dz + 8 \D®[u][* da
{z:®lu]<—w} {z:®u]<—w}

= —47r/ (w + ®[u))?u? de,
{z:®lu]<—w}
so that (w + ®[u])~ = 0 where u # 0. O

In view of Lemma 2.2, we consider the map ® : H}(R3) — D, u + ®[u]. From
standard arguments, ® € C'(H', D'2) and from the very definition of ® we get

Fy(u, ®[u]) =0 YueH'
Now consider the functional J : H1(R?) — R defined by
J(u) = F(u, Olul),
that is

aw= [ {;Duﬁ — Lpep + L (m? o+ afu)?)

(2.5)
_ 5 pofut - 1|u|1’} dz.
167 p

Of course J € C'(H',R), since both F' and ® are C*.
The next lemma states a relationship between the critical points of the func-
tionals F' and J (the proof can be found in [4, Proposition 3.5]).

Lemma 2.4. The following statements are equivalent:
i) (u,®) € H' x DV2 is a critical point of F,
it) u is a critical point of J and ® = P[u).

Then, in order to get solutions of (2.1)—(2.2), we look for critical points of J.
Assume the following result holds.

Theorem 2.5. Assume 2 <p <6 and 0 <w < (§ —1)|m|. Then the functional J
has infinitely many critical points having a radial symmetry.

It is now immediate to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Theorem 2.5 establishes the existence of infinitely many
nontrivial critical points u, of J. Lemma 2.4 implies that (u,, ®[u,]) are critical
points for F. Finally Proposition 2.1 guarantees that (u,, ®[u,]) solve (2.1)—(2.2)
under the conditions (2.3)—(2.4). O
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3. Proof of Theorem 2.5

Since J is invariant under the group of translations, there is an evident lack of
compactness. In order to overcome this difficulty, we constrain J on the space of
radially symmetric functions. More precisely we introduce the subspace

HNR?) = {u € H'(R®) |u(z) = u(|z])},

and we look for critical points of J constrained on H!(R3). In order to prove
Theorem 2.5, this is enough in view of the following result (see [11] for the proof).

Lemma 3.1. Any critical point u € H} of J is also a critical point of J.

|1 (r3)

The choice of H!(R?) lets us recover a compactness property: indeed the em-
bedding of H} — L%(R3) is compact for any ¢ € (2,6) (see [6]).

We recall that a C! functional f defined on a Banach space B satisfies the
Palais-Smale condition, (PS) for short, if

any sequence (uy ), such that f’(u,) — 0in B’ and f(u,) is bounded,
has a converging subsequence.

In [11] the Palais—Smale condition, as well as the existence of infinitely many
solutions to (2.1)—(2.2), was proved for the case 4 < p < 6. By Lemma 2.3 we are
able to extend the result to the general case 2 < p < 6.

Proposition 3.2. If2 <p <6, then Jg1(rs) satisfies the Palais-Smale condition.

Proof. From now on, let us write  in place of m? — w?. Moreover, according to
what we said above, it is enough to assume 2 < p < 4.
Suppose (u,,)n, in H}(R?) is such that

J"H;(RS)(un)ﬂO and  |J(un)| < M,

for a positive M.
From equation (2.2) we get

_é/w(b[u]ﬁdl‘— 8%/|D<I>[u]|4dac= %/u%[u] dx+%/u2¢’2[u] dz.

Substituting in (2.5), we obtain the following form of J:

5= 3 f (0 0 ot} e+ 2 [ oatatar L [
(3.1

Then

P () = () () = (2 1) {/|Dun|2dx+9/uidx}
+/u ®[u,) dz —w(g—z)/u ®fuy) dx+—/|D<I>un 114 dz
> (%-1) {/|Dun2dx+m2/uidx}—w2 (2—1)/@@
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Klein—Gordon & Born-Infeld: solitary waves 7

—w (g - 2) /ui@[un] dx

and by Lemma 2.3, since 2 < p < 4,

> (g 71) {/Dun|2dx+m2/uidz} wa/uidx.

Therefore, since (§ —1)m? > w? for any p € (2,4], we get

pJ (un) — J/(un)(un) > C”un”2

for a positive constant C' independent of n.
On the other hand, by hypotheses,

pJ (tn) = J'(tn) (un) < pM + €jun|l,
where [|J"(un) |1y < €.

In this way (uy ), is bounded.
Then, up to a subsequence,

Up — U in H!(R?).

Moreover from equation (2.2) we have

/\D@[un]|2dx+/\D@[un]|4dx: —4m/uiq>[un] dx

1/6 5/6
—4w/ui<1>2[un] drx < 4ww (/ Y [u,,] dm) (/ | 1275 dm)

< Cll@[un]ll - llunll?,

and so also (®[u,]), is bounded. This fact and the compact embedding of H}! —
L9(R3) for any ¢ € (2,6) ([6]), imply that

u, — u strongly in H}!(R?)
in a standard fashion (see, for example, [11]). O

Now we show that J | satisfies the three geometrical hypothesis of the

H(R?)
following Zs version of the mountain pass theorem (see [16, Theorem 9.12]).

Theorem 3.3 (Z;—Mountain Pass). Let E be a Banach space with dim(E) = oo,
and I € C1(E,R) be even, satisfy (PS) and I(0) = 0. Assume

e dp >0 and a > 0 such that I(u) > o Vu with |ju| = p;

o for every finite dimensional subspace X of E there exists R = R(X) such that
I(u) <0 if ||u]| > R.

Then I has an unbounded sequence of critical values.
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First of all we observe that J(0) = 0. Moreover the hypotheses on the coefficients
imply that there exists p > 0 and small enough such that

inf J(u) > 0.

llull=p

In fact, from (2.2) we get

fw/ u?du 7f/|D<I> |2da;+—/|D<1> |4d9:+/ uw?®u)? dz,

and substituting this quantity in the expression (2.5) of J, we get
1 1 Q 1 33 1
= —|Du* + —|D®[u]]* + =u® + —u’P? 2 |D®[u]|* — = |ulP ¢ d.
J(u) /{2| ul” + o |DR]|” + Su” + Ju % [u] + 7o [ DP[u]| p|U| x

Since p > 2, the claim follows.
Finally, let X C H'(R?) be a finite-dimensional subspace. From (2.2) we get

1 1
—16%/|Dcl)[u]\4dx: 167/|D<I>[u}|2dx+%/u2‘1>[u] dx+1/u2¢’2[u} da.

Substituting in (2.5), we obtain the following form for J:

1 Q 1
=— [ |Dul? = [ vwide — = [ w?®?
2/\ ul dx+2/udx 4/u [u] dx
3 12
v dxf |D®[ul]| da:ff |u|? de.

If w € X, using (3.2), we get

1 Q 3 1
< = 2 o 2 2 2 4t P .
u) < 2/|Du| dx + 5 /u dx 4w/u D[u] dx p/M dx

By Lemma 2.3,

1
/|Du|2dx—|——/u dx + w2/ u2d$c—f/|u|pda:.
{z:u(z)#£0} p

Therefore, if R is big enough and |lu|| > R, then J(u) < 0, since all norms are
equivalent in X.

We have thus verified all the conditions of Theorem 3.3, proving that J has an
unbounded sequence of critical values.

The author is supported by the M.I.U.R. project Metodi Variazionali ed Equazioni Dif-
ferenziali Nonlineari (Variational Methods and Nonlinear Differential Equations).
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