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Abstract

We study a biharmonic Stekloff eigenvalue problem. We prove some new results and we
collect and refine a number of known results. Moreover, we highlight the main open problems
still to be solved.

1 Introduction and results

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2, let d ∈ R and consider the boundary
eigenvalue problem 




∆2u = 0 in Ω
u = 0 on ∂Ω
∆u = duν on ∂Ω ,

(1.1)

where uν denotes the outer normal derivative of u on ∂Ω. We are interested in studying the
eigenvalues of (1.1), namely those values of d for which the problem admits nontrivial solutions, the
corresponding eigenfunctions. The purpose of the present paper is to collect a number of known
(and old) results, to prove some new results and to suggest some open questions.

Elliptic problems with eigenvalues in the boundary conditions are usually called Stekloff problems
from their first appearance in [20]. By solution of (1.1) we mean a function u ∈ H2 ∩H1

0 (Ω) such
that ∫

Ω
∆u∆v dx = d

∫

∂Ω
uνvν dS for all v ∈ H2 ∩H1

0 (Ω). (1.2)

By taking v = u in (1.2), it is clear that all the eigenvalues of (1.1) are strictly positive. Let
H(Ω) := [H2 ∩H1

0 (Ω)] \H2
0 (Ω) and

d1 = d1(Ω) := min
u∈H(Ω)

∫

Ω
|∆u|2

∫

∂Ω
u2

ν

. (1.3)
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The number d1 represents the least positive eigenvalue and d
−1/2
1 is the norm of the compact linear

operator H2 ∩H1
0 (Ω) → L2(∂Ω), defined by u 7→ uν |∂Ω. Moreover, as pointed out by Kuttler [10],

d1 is the sharp constant for a priori estimates for the Laplace equation
{

∆v = 0 in Ω
v = g on ∂Ω

(1.4)

where g ∈ L2(∂Ω). Indeed, using Fichera’s principle of duality (see [6] and also (1.11) below), for
the solution v of (1.4) one has

d1(Ω) · ‖v‖2
L2(Ω) ≤ ‖g‖2

L2(∂Ω)

and d1(Ω) is the largest possible constant for this inequality.
The first eigenvalue d1 also plays a crucial role in the positivity preserving property for the

biharmonic operator ∆2 under the boundary conditions u = ∆u − duν = 0 on ∂Ω, see [3, 7]. It is
shown there that if d ≥ d1, then the positivity preserving property fails, whereas it holds when d is
in a left neighborhood of d1 (possibly d ∈ (−∞, d1)). We refer to [3, 7] for further details. We also
refer to [11] for several inequalities between the eigenvalues of (1.1) and other eigenvalue problems.

The boundary condition in (1.1) has an interesting interpretation in theory of elasticity. Consider
the model problem {

∆2u = f in Ω
u = ∆u− (1− σ)κuν = 0 on ∂Ω

(1.5)

where Ω ⊂ R2 is an open bounded domain with smooth boundary, σ ∈ (−1, 1/2) is the Poisson
ratio and κ is the mean curvature of the boundary. Problem (1.5) describes the deformation u of
the linear elastic supported plate Ω under the action of the transversal exterior force f = f(x),
x ∈ Ω. The Poisson ratio σ of an elastic material is the negative transverse strain divided by the
axial strain in the direction of the stretching force. In other words, this parameter measures the
transverse expansion (resp. contraction) if σ ≥ 0 (resp. σ < 0) when the material is compressed by
an external force. We refer to [13,21] for more details. The restriction on the Poisson ratio is due to
thermodynamic considerations of strain energy in the theory of elasticity. As shown in [13], there
exist materials for which the Poisson ratio is negative and the limit case σ = −1 corresponds to
materials with an infinite flexural rigidity, see [21, p.456]. This limit value for σ is strictly related to
the eigenvalue problem (1.1). Indeed, if we assume that Ω is the unit disk, then d = (1−σ)κ = 1−σ.
Moreover, by Theorem 3 below, the first eigenvalue d of (1.1) is equal to 2, which implies σ = −1.
Hence, the limit value σ = −1, which is not allowed from a physical point of view, also changes the
structure of the stationary problem (1.5): when Ω is the unit disk and d = (1−σ)κ = 2, (1.5) either
admits an infinite number of solutions or it admits no solutions at all, depending on f .

We are firstly interested in the description of the spectrum of (1.1). Throughout this paper we
endow the Hilbert space H2 ∩H1

0 (Ω) with the scalar product

(u, v) =
∫

Ω
∆u∆v dx . (1.6)

Consider the subspace
Z =

{
v ∈ C∞(Ω) : ∆2u = 0, u = 0 on ∂Ω

}
(1.7)

and denote by V the completion of Z with respect to the scalar product in (1.6). Then, we prove
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Theorem 1. Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded domain with C2 boundary. Then,
problem (1.1) admits infinitely many (countable) eigenvalues. The only eigenfunction of one sign is
the one corresponding to the first eigenvalue. The set of eigenfunctions forms a complete orthonor-
mal system in V .

The vector space V also has a different interesting characterization:

Theorem 2. Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded domain with C2 boundary. Then, the
space H2 ∩H1

0 (Ω) admits the following orthogonal decomposition with respect to the scalar product
(1.6)

H2 ∩H1
0 (Ω) = V ⊕H2

0 (Ω).

Moreover, if v ∈ H2∩H1
0 (Ω) and if v = v1 + v2 is the corresponding orthogonal decomposition, then

v1 ∈ V and v2 ∈ H2
0 (Ω) are weak solutions of





∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω

and





∆2v2 = ∆2v in Ω
v2 = 0 on ∂Ω
(v2)ν = 0 on ∂Ω .

(1.8)

When Ω = B (the unit ball) we may determine explicitly all the eigenvalues of (1.1). To this
end, consider the spaces of harmonic homogeneous polynomials:

Dk := {P ∈ C∞(Rn); ∆P = 0 in Rn, P is an homogeneous polynomial of degree k − 1}.

Also, denote by µk the dimension of Dk. In particular, we have

D1 = span{1} , µ1 = 1 ,

D2 = span{xi; (i = 1, ..., n)} , µ2 = n ,

D3 = span{xixj ; x2
1 − x2

h; (i, j = 1, ..., n, i 6= j, h = 2, ..., n)} , µ3 =
n2 + n− 2

2
.

Then, we prove

Theorem 3. If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, ...:
(i) the eigenvalues of (1.1) are dk = n + 2(k − 1);
(ii) the multiplicity of dk equals µk;
(iii) for all ψk ∈ Dk, the function ϕk(x) := (1− |x|2)ψk(x) is an eigenfunction corresponding to dk.

Remark 1. Theorems 1 and 3 become false if n = 1. It is shown in [3] that the one dimensional
problem

uiv = 0 in (−1, 1) , u(±1) = u′′(−1) + du′(−1) = u′′(1)− du′(1) = 0 , (1.9)

admits only two eigenvalues, d1 = 1 and d2 = 3, each one of multiplicity 1. The reason of this
striking difference is that the “boundary space” of (1.9) has precisely dimension 2, one for each
endpoint of the interval (−1, 1). This result is consistent with Theorem 3 since µ1 = µ2 = 1 and
µ3 = 0 whenever n = 1.
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By combining Theorems 1 and 3 we obtain

Corollary 1. Assume that n ≥ 2 and that Ω = B. Assume moreover that for all k ∈ N the set
{ψ`

k : ` = 1, ..., µk} is a basis of Dk chosen in such a way that the corresponding functions ϕ`
k are

orthonormal with respect to the scalar product (1.6). Then, for any u ∈ V there exists a sequence
{α`

k} ∈ `2 (k ∈ N; ` = 1, ..., µk) such that

u(x) = (1− |x|2)
∞∑

k=1

µk∑

`=1

α`
kψ

`
k(x) for a.e. x ∈ B .

We now restrict our attention to the first eigenvalue d1(Ω). To this end, we recall a consequence
of Fichera’s principle of duality [6]. Assume that ∂Ω ∈ C2 and let

C2
H(Ω) := {v ∈ C2(Ω); ∆v = 0 in Ω} .

We consider the norm defined by ‖v‖H := ‖v‖L2(∂Ω) for all v ∈ C2
H(Ω). Then, we consider

H := the closure of C2
H(Ω) with respect to the norm ‖ · ‖H .

Finally, we define

δ1 = δ1(Ω) := min
h∈H\{0}

∫

∂Ω
h2

∫

Ω
h2

. (1.10)

The minimum in (1.10) is achieved. To see this, combine the continuous embedding (for weakly
harmonic functions) H−1/2(∂Ω) ⊂ L2(Ω) (see Théorème 6.6 in Ch. 2 in [14]) with the compact
embedding L2(∂Ω) ⊂ H−1/2(∂Ω).

Fichera’s principle [6] states that

δ1(Ω) = d1(Ω) for all Ω such that ∂Ω ∈ C2 . (1.11)

For the reader’s convenience we quote a new proof of this statement in Section 5.

Problem 1. Does equality (1.11) hold also if ∂Ω 6∈ C2? This question is strictly related with
the following: are the maps Ω 7→ d1(Ω) and Ω 7→ δ1(Ω) continuous with respect to Hausdorff
convergence of domains?

In view of the important applications explained in the introduction, one is interested in finding
both lower and upper bounds for d1(Ω). First, we extend to any space dimension n ≥ 2 a lower
bound for d1(Ω) obtained for planar domains (n = 2) by Payne [15], see also Kuttler [9] for a
different proof. This estimate is useful for convex domains since it involves the mean curvature of
the boundary as stated in the following

Theorem 4. Let Ω ⊂ Rn (n ≥ 2) a bounded convex open domain with C2 boundary. For all x ∈ ∂Ω,
let K(x) denote the mean curvature at x and let

K := min
x∈∂Ω

K(x) .

Then d1(Ω) ≥ nK and equality holds if and only if Ω is a ball.
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By rescaling, it is not difficult to see that the map Ω 7→ d1(Ω) is homogeneous of degree −1,
namely, for any Ω and k > 0 we have d1(Ω) = kd1(kΩ). This suggests that d1 should somehow be
related to the “isoperimetric ratio” |∂Ω|/|Ω|. As noticed by Kuttler [9], this is indeed the case: by
taking h ≡ 1 in (1.10) and using (1.11) one readily gets

d1(Ω) ≤ |∂Ω|
|Ω| for all Ω . (1.12)

In Section 7, we determine extremal sets for the isoperimetric inequality (1.12):

Theorem 5. Let Ω ⊂ Rn (n ≥ 2) be a bounded connected domain with C2 boundary. Then

d1(Ω) =
|∂Ω|
|Ω|

if and only if Ω is a ball.

Problem 2. The above mentioned homogeneity also suggests that the map Ω 7→ d1(Ω) could be
monotone decreasing with respect to domain inclusions. Is this true?

We now deal with a particular class of nonsmooth domains. It is clear that (planar) rectangles
are slightly easier to handle than general domains. We consider the two families of rectangles

∀a ∈
(
0,

π

2

]
, Ra := (0, π − a)× (0, a) , ∀α ∈ (0,

√
π] , Qα :=

(
0,

π

α

)
× (0, α). (1.13)

We note that the Ra’s have the same perimeter 2π as the unit disk, whereas the Qα’s have the same
area π as the unit disk. Moreover, Rπ/2 and Q√

π are squares.
Smith [18,19] conjectured that for any domain Ω, one has d1(Ω) ≥ d1(Ω∗), where Ω∗ is the ball

having the same measure as Ω. In particular, for planar domains Ω of measure π (as the unit disk),
this would mean that d1(Ω) ≥ 2. This conjecture was disproved by Kuttler [9] which shows that

d1(Q√
π) < 1.9889... (1.14)

In fact, Kuttler’s estimate [9, p.3] is given for the square Q′ := (0, 1)2 for which d1(Q′) < 3.5254...,
so that (1.14) is obtained by rescaling this inequality. In order to prove (1.14), Kuttler uses directly
the characterization (1.3) of d1(Q√

π) and finds a suitable linear combination of a fourth order
polynomial with the stress function of Q√

π to get an upper bound for d1(Q√
π). In Section 8,

by using Fichera’s principle (1.11) and a much simpler trial function, we improve (1.14) with the
following

d1(Q√
π) < 1.96256. (1.15)

We now consider rectangles with sizes of different length. In Section 9 we show that if they
maintain the same perimeter and become “thin” then d1 tends to infinity:

Theorem 6. For all 0 < a ≤ π
2 let Ra be as in (1.13). Then,

π

2
≤ lim inf

a→0

[
a · d1(Ra)

]
≤ lim sup

a→0

[
a · d1(Ra)

]
≤ πd1(Rπ/2) < (2.2146)π .
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Theorem 6 complements some numerical approximations of d1 for rectangles obtained by Kuttler
[10] using a posteriori / a priori inequalities, see also [12]. We recall here his results: for our
convenience, we scale [10, Table 1] to the case of the rectangles Ra defined in (1.13) and we add the
last column, according to Theorem 6.

Table 1. Numerical estimates for d1(Ra) of rectangles Ra such that |∂Ra| = 2π.
smallest side a π/2 5π/11 4π/9 3π/7 2π/5 π/3 2π/7 → 0

d1(Ra) > 2.2118 2.2261 2.2331 2.2459 2.2846 2.4493 2.666 →∞
d1(Ra) < 2.2133 2.2304 2.2359 2.2498 2.2878 2.4542 2.6839

In view of these results, Kuttler suggests a new and weaker conjecture, which we state for any
space dimension n:

Conjecture 1. [9]
Let B ⊂ Rn denote the unit ball. Let Ω ⊂ Rn be a smooth bounded domain whose surface measure
satisfies |∂Ω| = |∂B|. Then, n = d1(B) ≤ d1(Ω).

In other words, the first eigenvalue d1 is expected to be minimal on the ball, among all domains
having the same surface measure. In connection with this conjecture, we also make the following

Remark 2. For the second order Stekloff problem
{

∆u = 0 in Ω
uν = λu on ∂Ω ,

(1.16)

it is known (see [5, Theorem 3]) that the first (nontrivial) eigenvalue λ1 = λ1(Ω) satisfies λ1(Ω) ≤
λ1(Ω∗) where

λ1 = λ1(Ω) := inf
u∈H(Ω)

∫

Ω
|∇u|2

∫

∂Ω
u2

and H(Ω) :=
{

u ∈ H1(Ω) \H1
0 (Ω);

∫

∂Ω
u = 0

}
.

Therefore, (1.15) and the possible validity of Conjecture 1 would show that the fourth order problem
(1.1) and the second order problem (1.16) are completely different.

Consider now the rectangles Qα defined in (1.13) and which have fixed area. By Theorem 6 and
by rescaling (it suffices to put α =

√
aπ/(π − a)) we obtain

Corollary 2. For all 0 < α ≤ √
π let Qα be as in (1.13). Then,

π

2
≤ lim inf

α→0

[
α · d1(Qα)

]
≤ lim sup

α→0

[
α · d1(Qα)

]
≤ πd1(Rπ/2) < (2.2146)π .

Therefore, also for thinning rectangles of fixed area, the first eigenvalue d1 tends to infinity,
although at a lower rate. Then, we may also rescale Table 1 above and obtain for the rectangles
Qα in (1.13):
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Table 2. Numerical estimates for d1(Qα) of rectangles Qα such that |Qα| = π.
smallest side α

√
π

√
5π/6

√
4π/5

√
3π/4

√
2π/3

√
π/2

√
2π/5 → 0

d1(Qα) > 1.9601 1.9647 1.9667 1.97 1.9838 2.0465 2.1347 →∞
d1(Qα) < 1.9615 1.9685 1.9693 1.9734 1.9866 2.0506 2.149

The numerical estimate in the first column of Table 2 seems to show that (1.15) is almost
optimal.

Problem 3. From (1.15) we know that the ball (at least if n = 2) is not the minimizer for d1

among domains having the same measure. Does there exist an optimal shape for this minimization
problem? At least in the class of convex domains, we feel that the answer could be affirmative.

2 Proof of Theorem 1

Let Z be as in (1.7) and define on Z the scalar product given by

(u, v)W :=
∫

∂Ω
uνvν dS for all u, v ∈ Z (2.1)

and we denote by W the completion of Z with respect to this scalar product. Then, we prove:

Lemma 1. The (Hilbert) space V is compactly embedded into the (Hilbert) space W .

Proof. By definition of d1 we have

‖u‖W = ‖uν‖L2(∂Ω) ≤ d
−1/2
1 ‖∆u‖L2(Ω) = d

−1/2
1 ‖u‖V ∀u ∈ Z (2.2)

and hence any Cauchy sequence in Z with respect to the norm of V is a Cauchy sequence with respect
to the norm of W . Since V is the completion of Z with respect to (1.6), it follows immediately that
V ⊂ W . The continuity of this inclusion can be obtained by density from (2.2).

It remains to prove that this embedding is compact. To this purpose, let um ⇀ u in V , so that
also um ⇀ u in H2∩H1

0 (Ω). Then by trace embedding and compact embedding H1/2(∂Ω) ⊂ L2(∂Ω)
we obtain immediately um → u in W . ¤

Denote by I1 : V → W the embedding V ⊂ W and by I2 : W → V ′ the continuous linear
operator defined by

〈I2u, v〉 = (u, v)W ∀u ∈ W, ∀v ∈ V.

Moreover, let L : V → V ′ be the linear operator given by

〈Lu, v〉 =
∫

Ω
∆u∆v dx ∀u, v ∈ V.

Then L is an isomorphism and in view of Lemma 1, the linear operator K = L−1I2I1 : V → V is
compact. Since for n ≥ 2, V is an infinite dimensional Hilbert space and K is a compact self-adjoint
operator with strictly positive eigenvalues then V admits an orthonormal base of eigenfunctions of
K and the set of the eigenvalues of K can be ordered in a strictly decreasing sequence {µi} which
converges to zero.

Therefore problem (1.2) admits an infinite set of eigenvalues given by di = 1
µi

and the eigen-
functions of (1.2) coincide with the eigenfunctions of K. The demonstration of Theorem 1 will be
complete once we prove
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Lemma 2. If dk is an eigenvalue of (1.1) corresponding to a positive eigenfunction ϕk then dk = d1.

Proof. Since ϕk > 0 in Ω and ϕk = 0 on ∂Ω, then (ϕk)ν ≤ 0 on ∂Ω and in turn ∆ϕk = dk(ϕk)ν ≤
0 on ∂Ω. Therefore by ∆2ϕk = 0 in Ω and the weak comparison principle, we infer ∆ϕk ≤ 0 in Ω.
Moreover, since ϕk > 0 in Ω and ϕk = 0 on ∂Ω, the Hopf boundary lemma implies that (ϕk)ν < 0
on ∂Ω. Let ϕ1 be a positive eigenfunction corresponding to the first eigenvalue d1 (see Theorem 1
in [3]). Then ϕ1 also satisfies (ϕ1)ν < 0 on ∂Ω and hence from

dk

∫

∂Ω
(ϕk)ν(ϕ1)ν dS =

∫

Ω
∆ϕk∆ϕ1dx = d1

∫

∂Ω
(ϕk)ν(ϕ1)ν dS > 0

we obtain dk = d1. ¤

3 Proof of Theorem 2

We start by proving that Z⊥ = H2
0 (Ω). Let v ∈ Z and w ∈ H2 ∩H1

0 (Ω). After two integrations by
parts we obtain

∫

Ω
∆v∆w dx =

∫

Ω
∆2v w dx +

∫

∂Ω
(wν∆v − w(∆v)ν) dS =

∫

∂Ω
wν∆v dS

for all v ∈ Z and w ∈ H2 ∩H1
0 (Ω). This proves that wν = 0 on ∂Ω if and only if w ∈ Z⊥ and hence

V ⊥ = Z⊥ = H2
0 (Ω).

Let v ∈ H2 ∩H1
0 (Ω) and consider the first Dirichlet problem in (1.8):





∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω.

(3.1)

Since vν ∈ H1/2(∂Ω), by Lax-Milgram Theorem and Théorème 8.3 in Ch. 1 in [14], we deduce that
(3.1) admits a unique solution v1 ∈ H2 ∩H1

0 (Ω) such that

‖∆v1‖L2(Ω) ≤ C ‖vν‖H1/2(∂Ω) (3.2)

This proves that v1 ∈ V . Let v2 = v−v1, then (v2)ν = 0 on ∂Ω and, in turn, v2 ∈ H2
0 (Ω). Moreover,

by (3.1) we infer
∫

Ω
∆v2∆w dx =

∫

Ω
∆v∆w dx−

∫

Ω
∆v1∆w dx =

∫

Ω
∆v∆w dx ∀w ∈ H2

0 (Ω) (3.3)

which proves that v2 is a weak solution of the second problem in (1.8).

4 Proof of Theorem 3

We start with the following technical result:
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Lemma 3. Let k ∈ N, let Ω ⊂ Rn (n ≥ 2) be a bounded domain with boundary ∂Ω of class Ck+1.
Let u ∈ Ck+1(Ω) be such that u ≡ 0 on ∂Ω. Consider the function ϕ : Ω → R defined by

ϕ(x) :=
u(x)

dist(x, ∂Ω)
.

Then, there exists δ > 0 such that ϕ ∈ Ck(Ωδ), with Ωδ = {x ∈ Ω; dist(x, ∂Ω) < δ}.
Proof. It is well-known (see e.g. [2]) that there exists δ > 0 such that x 7→ dist(x, ∂Ω) is of

class Ck+1(Ωδ); this will give the “size” of δ. Therefore, by local Ck+1-charts, we may restrict our
attention to the case where

Ω = Rn
+ , ∂Ω = {x = (x1, ..., xn) ∈ Rn; x1 = 0} , dist(x, ∂Ω) = x1 , ϕ(x) =

u(x)
x1

,

with u ∈ Ck+1({x1 ≥ 0}) and u(x) = 0 whenever x ∈ ∂Ω. We denote x = (x1, x
′); then, by the

mean value Theorem, we have

ϕ(x) =
u(x)− u(0, x′)

x1
=

1
x1

∫ 1

0

∂u

∂x1
(tx1, x

′)x1 dt =
∫ 1

0

∂u

∂x1
(tx1, x

′) dt .

Since ∂u
∂x1

∈ Ck({x1 ≥ 0}), we conclude that also ϕ ∈ Ck({x1 ≥ 0}). ¤

Consider now an eigenfunction u of (1.1). Then u ∈ C∞(B) and by Lemma 3 we can write

u(x) = (1− |x|2)ϕ(x) (4.1)

with ϕ ∈ C∞(B). We have
uxi = −2xiϕ + (1− |x|2)ϕxi ,

and on ∂B,
uν = x · ∇u = x · (−2xϕ + (1− |x|2)∇ϕ) = −2ϕ. (4.2)

Moreover,
∆u = −2nϕ− 4x · ∇ϕ + (1− |x|2)∆ϕ. (4.3)

Hence
∆u = −2nϕ− 4ϕν on ∂B. (4.4)

¿From (4.3) we get for i = 1, . . . , n,

(∆u)xi = −(2n + 4)ϕxi − 4
n∑

j=1

xjϕxjxi − 2xi∆ϕ + (1− |x|2)∆ϕxi ,

and therefore

(∆u)xixi = −2(n + 4)ϕxixi − 4x · ∇(ϕxixi)− 2∆ϕ− 4xi(∆ϕ)xi + (1− |x|2)∆ϕxixi .

Summing with respect to i and recalling that u is biharmonic in B, we obtain

0 = ∆2u = −2(n + 4)∆ϕ− 4x · ∇∆ϕ− 2n∆ϕ− 4x · ∇∆ϕ + (1− |x|2)∆2ϕ

= (1− |x|2)∆2ϕ− 8x · ∇∆ϕ− 4(n + 2)∆ϕ. (4.5)
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Writing (4.5) as an equation in w = ∆ϕ, we get

(1− |x|2)∆w − 8x · ∇w − 4(n + 2)w = 0 in B,

so that
0 = −(1− |x|2)4∆w + 8(1− |x|2)3x · ∇w + 4(n + 2)(1− |x|2)3w

= −div[(1− |x|2)4∇w] + 4(n + 2)(1− |x|2)3w.
(4.6)

Multiplying the right hand side of (4.6) by w and integrating by parts over B, we obtain
∫

B
(1− |x|2)4|∇w|2 + 4(n + 2)

∫

B
(1− |x|2)3w2 =

∫

∂B
(1− |x|2)4wwν = 0.

Hence ∆ϕ = w ≡ 0 in B. Now from (1.1), (4.2) and (4.4) we get

ϕν =
d− n

2
ϕ on ∂B. (4.7)

Therefore, we obtained the following result:

Lemma 4. The number d is an eigenvalue of (1.1) with corresponding eigenfunction u if and only
if ϕ defined by (4.1) is an eigenfunction of the boundary eigenvalue problem

{
∆ϕ = 0 in B
ϕν = aϕ on ∂B,

(4.8)

where a = d−n
2 .

So we are led to study the eigenvalues of the second order Stekloff problem (4.8). Since we were
unable to find an explicit reference, we quickly explain how to obtain them. In radial and angular
coordinates (r, θ), the equation in (4.8) reads

∂2ϕ

∂r2
+

n− 1
r

∂ϕ

∂r
+

1
r2

∆θϕ = 0 , (4.9)

where −∆θ denotes the Laplace-Beltrami operator on ∂B. From [4, p.160] we quote

Lemma 5. The Laplace-Beltrami operator −∆θ admits a sequence of eigenvalues {λk} having
multiplicity µk equal to the number of independent harmonic homogeneous polynomials of degree
k − 1. Moreover, λk = (k − 1)(n + k − 3).

In the sequel, we denote by e`
k (` = 1, ..., µk) the independent normalized eigenfunctions corre-

sponding to λk. Then, one seeks functions ϕ = ϕ(r, θ) of the kind

ϕ(r, θ) =
∞∑

k=1

µk∑

`=1

ϕ`
k(r)e

`
k(θ) .

Hence, by differentiating the series, we obtain

∆ϕ(r, θ) =
∞∑

k=1

µk∑

`=1

(
d2

dr2
ϕ`

k(r) +
n− 1

r

d

dr
ϕ`

k(r)−
λk

r2
ϕ`

k(r)
)

e`
k(θ) = 0 .

10



Therefore, we must solve the equations

d2

dr2
ϕ`

k(r) +
n− 1

r

d

dr
ϕ`

k(r)−
λk

r2
ϕ`

k(r) = 0 k = 1, 2... ` = 1, ..., µk. (4.10)

With the change of variables r = et (t ≤ 0), equation (4.10) becomes a linear constant coefficients
equation. It has two linearly independent solutions, but one is singular. Hence, up to multiples, the
only regular solution of (4.10) is given by ϕ`

k(r) = rk−1 because

2− n +
√

(n− 2)2 + 4λk

2
= k − 1 .

Since the boundary condition in (4.8) reads d
drϕ`

k(1) = aϕ`
k(1) we immediately infer that a = k̄ − 1

for some k̄. In turn, Lemma 4 tells us that

dk̄ = n + 2(k̄ − 1).

The proof of Theorem 3 is so complete.

5 Proof of Fichera’s principle of duality (1.11)

We say that δ is an eigenvalue relative to problem (1.10) if there exists g ∈ H such that

δ

∫

Ω
gv =

∫

∂Ω
gv for all v ∈ H .

Clearly, δ1 is the least eigenvalue. We prove (1.11) by showing that both δ1 ≥ d1 and δ1 ≤ d1.

Proof of δ1 ≥ d1. Let h be a minimizer for δ1, then

δ1

∫

Ω
hv =

∫

∂Ω
hv for all v ∈ H . (5.1)

Let u ∈ H(Ω) be the unique solution of
{

∆u = h in Ω
u = 0 on ∂Ω .

(5.2)

Integrating by parts we have
∫

Ω
hv =

∫

Ω
v∆u =

∫

∂Ω
vuν for all v ∈ H ∩ C2(Ω) .

By a density argument, the latter follows for all v ∈ H. Inserting this into (5.1) gives

δ1

∫

∂Ω
vuν =

∫

∂Ω
v∆u for all v ∈ H .

11



This yields ∆u = δ1uν on ∂Ω. Therefore,

δ1 =

∫

∂Ω
h2

∫

Ω
h2

=

∫

∂Ω
|∆u|2

∫

Ω
|∆u|2

= δ2
1

∫

∂Ω
u2

ν

∫

Ω
|∆u|2

.

In turn, this implies that

δ1 =

∫

Ω
|∆u|2

∫

∂Ω
u2

ν

≥ min
v∈H(Ω)

∫

Ω
|∆v|2

∫

∂Ω
v2
ν

= d1 .

Proof of δ1 ≤ d1. Let u be a minimizer for d1 in (1.3), then ∆u = d1uν on ∂Ω so that ∆u ∈
H1/2(∂Ω) ⊂ L2(∂Ω) and ∫

∂Ω
v∆u = d1

∫

∂Ω
vuν for all v ∈ H . (5.3)

Let h := ∆u so that h ∈ L2(Ω) ∩ L2(∂Ω). Moreover, ∆h = ∆2u = 0 (in distributional sense) and
hence h ∈ H. Two integrations by parts (and a density argument) yield

∫

Ω
hv =

∫

∂Ω
vuν for all v ∈ H .

Replacing this into (5.3) gives
∫

∂Ω
hv = d1

∫

Ω
hv for all v ∈ H .

This proves that h is an eigenfunction relative to problem (1.10) with corresponding eigenvalue d1.
Since δ1 is the least eigenvalue, we obtain d1 ≥ δ1.

6 Proof of Theorem 4

Let ϕ be a first eigenfunction of (1.1) such that ϕ > 0 in Ω and ϕν < 0 on ∂Ω (see Lemma 2). The
boundary condition ∆ϕ = d1ϕν on ∂Ω also reads

ϕνν + (n− 1)Kϕν = d1ϕν on ∂Ω (6.1)

(see e.g. (4.68) p.62 in [16]). Therefore
(
ϕ2

ν

)
ν

= 2ϕννϕν = 2 [d1 − (n− 1)K] ϕ2
ν

so that if we put D2ϕD2ϕ =
n∑

i,j=1
(∂ijϕ)2, by (1.1) and integration by parts, we obtain

2
∫

∂Ω
[d1 − (n− 1)K]ϕ2

ν dS =
∫

∂Ω

(
ϕ2

ν

)
ν

dS =
∫

∂Ω

(
|∇ϕ|2

)
ν
dS =

∫

Ω
∆

(
|∇ϕ|2

)
dx

12



= 2
∫

Ω
∇ (∆ϕ)∇ϕ dx+2

∫

Ω
D2ϕD2ϕ dx = −2

∫

Ω
ϕ∆2ϕ dx+2

∫

∂Ω
ϕ (∆ϕ)ν dS +2

∫

Ω
D2ϕD2ϕ dx

= 2
∫

Ω
D2ϕD2ϕ dx ≥ 2

n

∫

Ω
|∆ϕ|2 dx.

Finally, by (1.2) we have

2
∫

∂Ω
[d1 − (n− 1) K] ϕ2

ν dS ≥ 2d1

n

∫

∂Ω
ϕ2

νdS

from which we obtain ∫

∂Ω

(
d1

n
−K

)
ϕ2

ν dS ≥ 0, (6.2)

which implies at once that d1 ≥ nK.
It remains to prove that equality holds if and only if Ω is a ball. If d1 = nK, then d1 ≤ nK(x)

for x ∈ ∂Ω and since ϕν < 0 on ∂Ω, by (6.2) we infer that K(x) ≡ d1
n . This proves that Ω is a ball

in view of Alexandrov’s characterization of spheres [1].

7 Proof of Theorem 5

Assume that equality holds in (1.12). Then, h ≡ 1 is a minimizer for (1.10) and, according to
Fichera’s principle (see (5.2)), the minimizer u of (1.3) is the stress function for Ω (the solution of
the torsion problem), namely { −∆u = 1 in Ω

u = 0 on ∂Ω .

Since u also solves the Euler equation (1.1) with d = d1, we have a solution to the problem

−∆u = 1 in Ω , uν = −d−1
1 on ∂Ω , u = 0 on ∂Ω .

By a result of Serrin [17], this shows that Ω is a ball and completes the proof.

8 Proof of (1.15)

In view of the results in [8], we may argue as for (5.2) in order to show that d1 ≤ δ1.
For our convenience, we translate the square Q√

π and consider instead

Q :=
(
−
√

π

2
,

√
π

2

)2

.

For all k ∈ R, consider the harmonic function hk(x, y) := x4 +y4−6x2y2 +k. Then by (1.10)-(1.11)
we have

d1(Q) ≤ δ1(Q) ≤

∫

∂Q
h2

k dS

∫

Q
h2

k dxdy

for all k ∈ R. (8.1)
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Via direct computation we obtain
∫

∂Q
h2

k dS =
√

π

(
4k2 − 2

5
π2k +

59
1260

π4

)
and

∫

Q
h2

k dxdy = πk2 − 1
30

π3k +
59

25200
π5.

We recall that 3.141592 < π < 3.141593. Hence, if we choose k = 2.69 we obtain
∫

∂Q
h2

k dS <
√

3.141593
(

4 · (2.69)2 − 2
5
· (2.69) · (3.141592)2 +

59
1260

· (3.141593)4
)

< 40.56426

and
∫

Q
h2

k dxdy > (3.141592) · (2.69)2 − (3.141593)3

30
· (2.69) +

59
25200

· (3.141592)5 > 20.66911.

By inserting these estimates into (8.1) we obtain (1.15).

9 Proof of Theorem 6

Let u ∈ H2 ∩H1
0 (Rπ/2) be a (positive) minimizer for (1.3) when Ω = Rπ/2:

d1(Rπ/2) =

∫

Rπ/2

|∆u|2
∫

∂Rπ/2

u2
ν

.

By uniqueness of the minimizer, u is symmetric in Rπ/2 so that

∫ π/2

0
u2

x(0, y) dy =
∫ π/2

0
u2

x

(π

2
, y

)
dy =

∫ π/2

0
u2

y(x, 0) dx =
∫ π/2

0
u2

y

(
x,

π

2

)
dx. (9.1)

Fix a ∈ (0, π
2 ), let Ra := (0, π − a)× (0, a) and consider the function v ∈ H2 ∩H1

0 (Ra) defined by

v(x, y) = u

(
π x

2(π − a)
,
π y

2a

)
.

Then,

d1(Ra) ≤

∫

Ra

|∆v|2
∫

∂Ra

v2
ν

(9.2)

and we estimate the two integrals in the right hand side of (9.2). We have

vx(x, y) =
π

2(π − a)
· ux

(
π x

2(π − a)
,
π y

2a

)
, vxx(x, y) =

(
π

2(π − a)

)2

· uxx

(
π x

2(π − a)
,
π y

2a

)
,

vy(x, y) =
π

2a
· uy

(
π x

2(π − a)
,
π y

2a

)
, vyy(x, y) =

( π

2a

)2
· uyy

(
π x

2(π − a)
,
π y

2a

)
.
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Hence, applying (9.1) and with obvious changes of variables, we obtain
∫ a

0
v2
x(π − a, y) dy =

∫ a

0
v2
x(0, y) dy =

π2

4(π − a)2

∫ a

0
u2

x

(
0,

π y

2a

)
dy =

=
aπ

2(π − a)2

∫ π/2

0
u2

x(0, y) dy =
aπ

8(π − a)2

∫

∂Rπ/2

u2
ν ,

∫ π−a

0
v2
y(x, a) dx =

∫ π−a

0
v2
y(x, 0) dx =

π2

4a2

∫ π−a

0
u2

y

(
π x

2(π − a)
, 0

)
dx =

=
π(π − a)

2a2

∫ π/2

0
u2

y(x, 0) dx =
π(π − a)

8a2

∫

∂Rπ/2

u2
ν .

Therefore, we infer ∫

∂Ra

v2
ν =

π

4

(
a

(π − a)2
+

π − a

a2

) ∫

∂Rπ/2

u2
ν . (9.3)

Moreover, with a change of variables, we also obtain

∫

Ra

|∆v|2 =
∫

Ra

[(
π

2(π − a)

)2

· uxx

(
π x

2(π − a)
,
π y

2a

)
+

( π

2a

)2
· uyy

(
π x

2(π − a)
,
π y

2a

)]2

dx dy =

= 4a(π − a)π2

∫

Rπ/2

(
u2

xx(x, y)
16(π − a)4

+
uxx(x, y) · uyy(x, y)

8a2(π − a)2
+

u2
yy(x, y)
16a4

)
dx dy . (9.4)

Next, as noticed by Kuttler [10, p.334], we recall that two integration by parts yield
∫

Rπ/2

uxx(x, y) · uyy(x, y) dx dy =
∫

Rπ/2

u2
xy(x, y) dx dy > 0 .

Hence, we may estimate (9.4) as follows
∫

Ra

|∆v|2 ≤ π2(π − a)
4a3

∫

Rπ/2

|∆u|2 . (9.5)

Inserting (9.3) and (9.5) into (9.2) yields

d1(Ra) ≤ (π − a)3

a(π2 − 3πa + 3a2)
d1(Rπ/2) .

Letting a → 0, shows that
lim sup

a→0
[a · d1(Ra)] ≤ π d1(Rπ/2) ,

which is precisely the upper bound in the statement of Theorem 6.
In order to prove the lower bound, we rewrite [10, (15)] as

d1(Ra) ≥ π

2

√
1

(π − a)2
+

1
a2

and we let a → 0.
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