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Abstract We obtain an improved Bochner inequality based on the curvature-
dimension condition RCD∗(K , N ) and propose a definition of N -dimensional Ricci
tensor on metric measure spaces.
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1 Introduction

Let M be a Riemannian manifold equipped with a metric tensor 〈·, ·〉 : [T M]2 �→
C∞(M). We have the Bochner formula

�2( f ) = Ricci(∇ f,∇ f ) + |H f |2HS, (1.1)

valid for any smooth function f , where |H f |HS is the Hilbert–Schmidt norm of the
Hessian H f := ∇d f and the operator �2 is defined by

�2( f ) := 1

2
L�( f, f ) − �( f, L f ), �( f, f ) := 1

2
L( f 2) − f L f,

where �(·, ·) = 〈∇·,∇ · 〉, and L = � is the Laplace–Beltrami operator.
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In particular, if the Ricci curvature of M is bounded from below by K , i.e.
Ricci(v, v)(x) ≥ K |v|2(x) for any x ∈ M and v ∈ TxM , and the dimension is
bounded from above by N ∈ [1,∞], we have the Bochner inequality

�2( f ) ≥ 1

N
(L f )2 + K�( f ). (1.2)

Conversely, it is not hard to show that the validity of (1.2) for any smooth function
f implies that the manifold has lower Ricci curvature bound K and upper dimension
bound N , or in short that it is a CD(K , N ) manifold.

Being this characterization of the CD(K , N ) condition only based on properties of
L , one can take (1.2) as a definition of the CD(K , N ) condition with respect to the
diffusion operator L . This was the approach suggested by Bakry-Émery in [9]; we
refer to [10] for an overview on this subject.

Following this line of thought, one can wonder whether in this framework we can
recover the definition of the Ricci curvature tensor and deduce from (1.2) that it is
bounded from below by K . From (1.1) we see that a natural definition is

Ricci(∇ f,∇ f ) := �2( f ) − |H f |2HS, (1.3)

and it is clear that if Ricci ≥ K , then (1.2) holds with N = ∞. There are few things
that need to be understood in order to make definition (1.3) rigorous and complete in
the setting of diffusion operators:

1) If our only data is the diffusion operator L , how can we give a meaning to the
Hessian term in (1.3)?

2) Can we deduce that the Ricci curvature defined as in (1.3) is actually bounded
from below by K from the assumption (1.2)?

3) Can we include the upper bound on the dimension in the discussion? How the
presence of N affects the definition of the Ricci curvature?

This last question has awell-known answer thanks to thework ofBakry-Émery: it turns
out that the correct thing to do is to define, for every N ≥ 1, a sort of ‘N -dimensional’
Ricci tensor as follows:

RicciN (∇ f,∇ f ) :=
⎧
⎨

⎩

�2( f ) − |H f |2HS − 1
N−n (trH f − L f )2, if N > n,

�2( f ) − |H f |2HS − ∞(trH f − L f )2, if N = n,

−∞, if N < n,

(1.4)
where n is the dimension of themanifold (recall that on a weightedmanifold in general
we have trH f �= � f ). It is then not hard to see that if RicciN ≥ K then indeed (1.2)
holds.

It is harder to understand how to go back and prove that RicciN ≥ K starting from
(1.2). A first step in this direction, which answers (1), is to notice that in the smooth
setting the identity

2H f (∇g,∇h) = �(g, �( f, h)) + �(h, �( f, g)) − �( f, �(g, h))

for any smooth g, h totally characterizes the Hessian of f , so that the same identity can
be used to define the Hessian starting from a diffusion operator only. The question is
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then whether one can prove any efficient bound on it starting from (1.2) only. The first
result in this direction was obtained by Bakry in [7] and [8], and recently Sturm [21]
concluded the argument showing that (1.2) implies RicciN ≥ K . In Sturm’s approach,
the operator RicciN is not defined as in (1.4), but rather as

RicciN (∇ f,∇ f )(x) := inf
g : �( f −g)(x)=0

�2(g)(x) − (Lg)2(x)

N
(1.5)

and it is part of his contribution in the proof that this definition is equivalent to (1.4).
All this for smooth, albeit possibly abstract, structures. On the other hand, there

is as of now a quite well-established theory of (non-smooth) metric measure spaces
satisfying a curvature-dimension condition: that of RCD∗(K , N ) spaces introduced
by Ambrosio–Gigli–Savaré (see [4,13]) as a refinement of the original intuitions of
Lott–Sturm–Villani (see [16,19,20]) and Bacher–Sturm (see [6]). In this setting, there
is a very natural Laplacian and inequality (1.2) is known to be valid in the appropriate
weak sense (see [4,5,12]) and one can therefore wonder if even in this low-regularity
situation one can produce an effective notion of N -Ricci curvature. Part of the problem
here is the a priori lack of vocabulary, so that for instance it is unclear what a vector
field should be.

In the recent paper [14], Gigli builds a differential structure on metric measure
spaces suitable to handle the objects we are discussing (see the preliminary section for
some details). One of his results is to give a meaning to formula (1.3) on RCD(K ,∞)

spaces and to prove that the resulting Ricci curvature tensor, now measure-valued, is
bounded from below by K . Although giving comparable results, we remark that the
definitions used in [14] are different from those in [21]: it is indeed unclear how to
give a meaning to formula (1.5) in the non-smooth setting, so that in [14] the definition
(1.3) has been adopted.

Gigli worked solely in the RCD(K ,∞) setting. The contribution of the current
work is to adapt Gigli’s tool and Sturm’s computations to give a complete description
of the N -Ricci curvature tensor on RCD∗(K , N ) spaces for N < ∞.

In our main result Theorem 4.3, we prove that the N -Ricci curvature is bounded
from below by K on a RCD(K ′,∞) space if and only if the space is RCD∗(K , N ). As
an application of our theory, it is possible to study the curvature-dimension condition
of metric measure space under several transformations, see [15] for more details.

2 Preliminaries

Let M = (X, d,m) be a RCD(K ,∞) metric measure space for some K ∈ R (or
for simplicity, a RCD space). We denote the space of finite Borel measures on X by
Meas(M), and equip it with the total variation norm ‖ · ‖TV.

The Sobolev space W 1,2(M) is defined as in [3], and the minimal weak upper
gradient (or call it weak gradient for simplicity) of a function f ∈ W 1,2(M) is denoted
by |D f |. It is part of the definition of RCD(K ,∞) space that W 1,2(M) is a Hilbert
space, in which case (X, d,m) is called infinitesimally Hilbertian space (see [13] for
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1298 B.-X. Han

more discussions). In order to introduce the concepts of ‘tangent/cotangent vector
field’ in non-smooth setting, we will use the vocabulary of L∞-modules.

Definition 2.1 (L2-normed L∞-module) Let M = (X, d,m) be a metric measure
space. A L2-normed L∞(M) module is a Banach space (B, ‖ · ‖B) equipped with a
bilinear map

L∞(M) × B �→ B,

( f, v) �→ f · v

such that

( f g) · v = f · (g · v),

1 · v = v

for every v ∈ B and f, g ∈ L∞(M), where 1 ∈ L∞(M) is the function identically
equal to 1 on X , and a ‘pointwise norm’ | · | : B �→ L2(M) which maps v ∈ B to a
non-negative function in L2(M) such that

‖v‖B = ‖|v|‖L2

| f · v| = | f ||v|, m − a.e.

for every f ∈ L∞(M) and v ∈ B.

Nowwe define the tangent and cotangent modules of M which are particular exam-
ples of L2-normed module. We define the ‘Pre-Cotangent Module’ PCM as the set
consisting the elements of the from {(Ai , fi )}i∈N, where {Ai }i∈N is a Borel partition
of X , and { fi }i are Sobolev functions such that

∑
i

∫

Ai
|D fi |2 < ∞.

We define an equivalence relation on PCM via

{(Ai , fi )}i∈N ∼ {(Bj , g j )} j∈N if |D(g j − fi )| = 0, m − a.e. on Ai ∩ Bj .

We denote the equivalence class of {(Ai , fi )}i∈N by [(Ai , fi )]. In particular, we call
[(X, f )] the differential of a Sobolev function f and denote it by d f .

Then we define the following operations:

1) [(Ai , fi )] + [(Bi , gi )] := [(Ai ∩ Bj , fi + g j )],
2) Multiplication by scalars: λ[(Ai , fi )] := [(Ai , λ fi )],
3) Multiplication by simple functions:

(∑
j λ jχ Bj

)
[(Ai , fi )] := [(Ai ∩ Bj , λ j fi )],

4) Pointwise norm: |[(Ai , fi )]| := ∑
i
χ Ai |D fi |,

where χ A denote the characteristic function on the set A.
It can be seen that all the operations above are continuous on PCM/ ∼ with

respect to the norm ‖[(Ai , fi )]‖ :=
√∫ |[(Ai , fi )]|2m and the L∞(M)-norm on

the space of simple functions. Therefore we can extend them to the completion
of (PCM/ ∼, ‖ · ‖) and we denote this completion by L2(T ∗M). As a con-
sequence of our definition, we can see that L2(T ∗M) is the ‖ · ‖ closure of
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{∑
i∈I aid fi : |I | < ∞, ai ∈ L∞(M), fi ∈ W 1,2

}
(see Proposition 2.2.5 in [14] for

a proof). It can also be seen from the definition and the infinitesimal Hilbertianity
assumption on M that L2(T ∗M) is a Hilbert space equipped with the inner product
induced by ‖ · ‖. Moreover, (L2(T ∗M), ‖ · ‖, | · |) is a L2-normed module according
to the Definition 2.1, which we shall call cotangent module of M .

We then define the tangent module L2(T M) as HomL∞(M)(L2(T ∗M), L1(M)),
i.e. T ∈ L2(T ∗M) if it is a continuous linear map from L2(T ∗M) to L1(M) viewed
as Banach spaces satisfying the homogeneity:

T ( f v) = f T (v), ∀v ∈ L2(T ∗M), f ∈ L∞(M).

It can be seen that L2(T M) has a natural L2-normed L∞(M)-module structure
and is isometric to L2(T ∗M) both as a module and as a Hilbert space. We denote the
corresponding element of d f in L2(T M) by ∇ f and call it the gradient of f (see also
the Riesz theorem for Hilbert modules in Chapter 1 of [14]). The natural pointwise
norm on L2(T M) (we also denote it by |·|) satisfies |∇ f | = |d f | = |D f |.We can also
prove that

{∑
i∈I ai∇ fi : |I | < ∞, ai ∈ L∞(M), fi ∈ W 1,2

}
is dense in L2(T M).

In other words, we have a pointwise inner product 〈·, ·〉 : [L2(T ∗M)]2 �→ L1(M)

satisfying

〈d f, dg〉 := 1

4

(
|D( f + g)|2 − |D( f − g)|2

)

for f, g ∈ W 1,2(M). Thus for any g ∈ W 1,2(M), we can define the gradient∇g as the
element in L2(T M) such that ∇g(d f ) = 〈d f, dg〉,m-a.e. for every f ∈ W 1,2(M).
Therefore, L2(T M) inherits a pointwise inner product from L2(T ∗M) and we still
use 〈·, ·〉 to denote it.

Then we can define the Laplacian by duality (integration by part) in the same way
as on a Riemannian manifold.

Definition 2.2 (Measure-valued Laplacian, [13,14]) The space D(�) ⊂ W 1,2(M) is
the space of f ∈ W 1,2(M) such that there is a measure μ satisfying

∫

h dμ = −
∫

〈∇h,∇ f 〉 dm,∀h : M �→ R, Lipschitz with bounded support.

In this case the measure μ is unique and we shall denote it by � f . If � f � m, we
denote its density by � f .

In [18] the author introduces the space of test functions TestF(M) ⊂ W 1,2(M),
which is defined as

TestF(M) :=
{
f ∈ D(�) ∩ L∞ : |D f | ∈ L∞ and � f ∈ W 1,2(M)

}
.

It is known from [4] that TestF(M) is dense in W 1,2(M) provided M is RCD(K ,∞).
It is also proved in [18] that TestF(M) is an algebra under the same assumption. In
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1300 B.-X. Han

particular, we know that 〈∇ f,∇g〉 ∈ D(�) ⊂ W 1,2(M) for any f, g ∈ TestF(M).
Therefore we can define the Hessian and �2 operator as follows.

Let f ∈ TestF(M). We define the Hessian H f : {∇g : g ∈ TestF(M)}2 �→ L0(M)

by

2H f (∇g,∇h) = 〈∇g,∇〈∇ f,∇h〉〉 + 〈∇h,∇〈∇ f,∇g〉〉 − 〈∇ f,∇〈∇g,∇h〉〉
for any g, h ∈ TestF(M). Using the estimate obtained in [18], it can be seen that H f

can be extended to a symmetric L∞(M)-bilinear map on L2(T M) and continuous
with values in L0(M), see Theorem 3.3.8 in [14] for a proof.

Let f, g ∈ TestF(M). We define the measure �2( f, g) as

�2( f, g) = 1

2
�〈∇ f,∇g〉 − 1

2

(〈∇ f,∇�g〉 + 〈∇g,∇� f 〉)m,

and we put �2( f ) := �2( f, f ).
Then we recall some results on the non-smooth Bakry-Émery theory.

Proposition 2.3 (Bakry-Émery condition, [2,12]) Let M = (X, d,m) be a RCD
space. Then it is a RCD∗(K , N ) space with K ∈ R and N ∈ [1,∞] if and only if

�2( f ) ≥
(
K |D f |2 + 1

N
(� f )2

)
m

for any f ∈ TestF(M).

Lemma 2.4 ([18]) Let M = (X, d,m) be a RCD∗(K , N ) space, n ∈ N, f1, ..., fn ∈
TestF(M) and � ∈ C∞(Rn) be with �(0) = 0. Put f = ( f1, ..., fn), then �(f) ∈
TestF(M). In particular, �2(�(f)) ≥

(
K |D�(f)|2 + (��(f))2

N

)
m.

Lemma 2.5 (Chain rules, [8,18]) Let f1, ..., fn ∈ TestF(M) and � ∈ C∞(Rn) be
with �(0) = 0. Put f = ( f1, ..., fn), then

|D�(f)|2m =
n∑

i, j=1

�i� j (f)〈∇ fi ,∇ f j 〉m,

�2(�(f)) =
∑

i, j

�i� j (f)�2( fi , f j )

+ 2
∑

i, j,k

�i� j,k(f)H fi (∇ f j ,∇ fk)m

+
∑

i, j,k,l

�i, j�k,l(f)〈∇ fi ,∇ fk〉〈∇ f j ,∇ fl〉m,

and

��(f) =
n∑

i=1

�i (f)� fi +
n∑

i, j=1

�i, j (f)〈∇ fi ,∇ f j 〉m.
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At the end of this section, we discuss the dimension of M which is understood as
the dimension of L2(T M) as a L∞-module. Let A be a Borel set.We denote the subset
of L2(T M) consisting of those v such that χ Acv = 0 by L2(T M)|A.
Definition 2.6 (Local independence) Let A be a Borel set with positive measure. We
say that {vi }ni=1 ⊂ L2(T M) is independent on A if

∑

i

fivi = 0, m − a.e. on A

holds if and only if fi = 0m-a.e. on A for each i .

Definition 2.7 (Local span and generators) Let A be a Borel set in X and V :=
{vi }i∈I ⊂ L2(T M). The span of V on A, denoted by SpanA(V ), is the subset of
L2(T M)|A with the following property: there exist a Borel decomposition {An}n∈N
of A and families of vectors {vi,n}mn

i=1 ⊂ L2(T M) and functions { fi,n}mn
i=1 ⊂ L∞(M),

n = 1, 2, . . . , such that

χ Anv =
mn∑

i=1

fi,nvi,n

for each n. We call the closure of SpanA(V ) the space generated by V on A.

We say that L2(T M) is finitely generated if there is a finite family v1, . . . , vn
spanning L2(T M) on X , and locally finitely generated if there is a partition {Ei } of
X such that L2(T M)|Ei

is finitely generated for every i ∈ N.

Definition 2.8 (Local basis and dimension) We say that a finite set v1, . . . , vn is a
basis on a Borel set A if it is independent on A and SpanA{v1, . . . , vn} = L2(T M)|A.
If L2(T M) has a basis of cardinality n on A, we say that it has dimension n on A, or
that its local dimension on A is n. If L2(T M) does not admit any local basis of finite
cardinality on any subset of A with positive measure, we say that L2(T M) has infinite
dimension on A.

It can be proved (see Proposition 1.4.4 in [14] for example) that the definition of
basis and dimension are well posed. As a consequence of this definition, we can prove
the existence of a unique decomposition {En}n∈N∪{∞} of X such that for each En with
positive measure, n ∈ N∪{∞}, L2(T M) has dimension n on En . Furthermore, thanks
to the infinitesimal Hilbertianity we have the following proposition.

Proposition 2.9 (Theorem 1.4.11, [14]) Let (X, d,m) be a RCD(K ,∞) metric mea-
sure space. Then there exists a unique decomposition {En}n∈N∪{∞} of X such that

• For any n ∈ N and any B ⊂ En with finite positive measure, L2(T M) has a unit
orthogonal basis {ei,n}ni=1 on B,

• For every subset B of E∞ withfinite positivemeasure, there exists a unit orthogonal
set {ei,B}i∈N∪{∞} ⊂ L2(T M)|B which generates L2(T M)|B ,
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1302 B.-X. Han

where unit orthogonal of a countable set {vi }i ⊂ L2(T M) on B means 〈vi , v j 〉 =
δi j m-a.e. on B.

Definition 2.10 (Analytic Dimension) We say that the dimension of L2(T M) is k
if k = sup{n : m(En) > 0} where {En}n∈N∪{∞} is the decomposition given in
Proposition 2.9. We define the analytic dimension of M as the dimension of L2(T M)

and denote it by dimmax M .

3 Improved Bochner Inequality

In this part, we will study the dimension of RCD∗(K , N ) metric measure spaces and
prove an improved Bochner inequality.

First of all, we have a lemma.

Lemma 3.1 (Lemma 3.3.6, [14]) Let μi = ρi m + μs
i , i = 1, 2, 3 be measures with

μs
i ⊥ m. We assume that

λ2μ1 + 2λμ2 + μ3 ≥ 0, ∀λ ∈ R.

Then we have

μs
1 ≥ 0, μs

3 ≥ 0

and

|ρ2|2 ≤ ρ1ρ3, m − a.e..

Now we prove that N is an upper bound of the dimensions of RCD∗(K , N ) spaces.

Proposition 3.2 Let M = (X, d,m) be a RCD∗(K , N ) metric measure space. Then
dimmaxM ≤ N. Furthermore, if the local dimension on a Borel set E is N, we have
trH f (x) = � f (x)m-a.e. x ∈ E for every f ∈ TestF.

Proof Let {Em}m∈N∪{∞} be the partition of X given by Proposition 2.9. To prove
dimmaxM ≤ N , it is sufficient to prove that for any Em with positive measure, we
have m ≤ N .

Then, let m ∈ N ∪ {∞} be such that m(Em) > 0, and n ≤ m a finite number. We
define the function �(x, y, z1, . . . , zn) := λ(xy + x) − by + ∑n

i (zi − ci )2 − ∑n
i c

2
i

where λ, b, ci ∈ R. Then we have

�x,i = 0, �y,i = 0, �i, j = 2δi j , �x,y = λ

�x = λy + λ, �y = λx − b, �i = 2(zi − ci ).

From Lemma 2.4 we know

�2(�(f)) ≥
(

K |D�(f)|2 + (��(f))2

N

)

m
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for any f = ( f, g, h1, . . . , hn) where f, g, h1, . . . , hn ∈ TestF.
Combining the chain rules (see Lemma 2.5), the inequality above becomes

A(λ, b, c) ≥
(
K B(λ, b, c) + 1

N
C2(λ, b, c)

)
m, (3.1)

where

A(λ, b, c) = (λ f − b)2�2(g) + (λg + λ)2�2( f )

+
∑

i, j

4(hi − ci )(h j − c j )�2(hi , h j )

+ 2λ(g + 1)(λ f − b)�2( f, g) +
∑

i

4(λg + λ)(hi − ci )�2( f, hi )

+
∑

i

4(λ f − b)(hi − ci )�2(g, hi ) + 8λ
∑

i

(hi − ci )Hhi (∇ f,∇g)m

+ 4
∑

i

(λg + λ)H f (∇hi ,∇hi )m + 4
∑

i

(λ f − b)Hg(∇hi ,∇hi )m

+ 4λ(λ f − b)Hg(∇ f,∇g)m + 4λ(λg + λ)H f (∇ f,∇g)m

+ 8
∑

i, j

(hi − ci )Hhi (∇h j ,∇h j )m + 2λ2|D f |2|Dg|2m

+ 2λ2|〈∇ f,∇g〉|2m
+ 4

∑

i, j

|〈∇hi ,∇h j 〉|2m + 8λ
∑

i

〈∇ f,∇hi 〉〈∇g,∇hi 〉m

B(λ, b, c) = (λ f − b)2|Dg|2 + (λg + λ)2|D f |2
+ 2(λg + λ)(λ f − b)〈∇ f,∇g〉 + 4

∑

i

(λg + λ)(hi − ci )〈∇ f,∇hi 〉

+ 4
∑

i

(λ f − b)(hi − ci )〈∇g,∇hi 〉

+ 4
∑

i, j

(hi − ci )(h j − c j )〈∇hi ,∇h j 〉

C(λ, b, c) = (λg + λ)� f + (λ f − b)�g + 2
∑

i

(hi − ci )�hi

+ 2λ〈∇ f,∇g〉 + 2
∑

i

|Dhi |2.

Let B be an arbitrary Borel set. From the inequality (3.1) we know

χ BA(λ, b, c) ≥
(
Kχ B B(λ, b, c) + 1

N
χ BC

2(λ, b, c)
)
m.

Combining this observation and the linearity of A, B,C with respect to b, we can
replace the constant b in (3.1) by an arbitrary simple function. Pick a sequence
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1304 B.-X. Han

of simple functions {bn}n such that bn → λ f in L∞(M). Since �2( f, g) and
H f (∇g,∇h)m have finite total variation for any f, g, h ∈ TestF, we can see
that A(λ, bn, c), B(λ, bn, c)m,C2(λ, bn, c)m converge to A(λ, λ f, c), B(λ, λ f, c)m,

C2(λ, λ f, c)m, respectively, with respect to the total variation norm ‖·‖TV. Therefore,
we can replace b in (3.1) by λ f . For the same reason, we can replace ci by hi . Then
we obtain the following inequality.

A′(λ) ≥
(
K B ′(λ) + 1

N
(C ′)2(λ)

)
m, (3.2)

where

A′(λ) = 4
∑

i

(λg + λ)H f (∇hi ,∇hi )m + 2λ2|D f |2|Dg|2m + 2λ2|〈∇ f,∇g〉|2m

+ 4
∑

i, j

|〈∇hi ,∇h j 〉|2m + 8λ
∑

i

〈∇ f,∇hi 〉〈∇g,∇hi 〉m

+ (λg + λ)2�2( f ) + 4λ(λg + λ)H f (∇ f,∇g)

B ′(λ) = (λg + λ)2|D f |2
C ′(λ) = (λg + λ)� f + 2λ〈∇ f,∇g〉 + 2

∑

i

|Dhi |2.

It can be seen that H f (∇ f,∇g) = 1
2 〈∇|D f |2,∇g〉. Therefore, all the terms in

A′, B ′ m and C ′ m vary continuously w.r.t. ‖ · ‖TV as g varies in W 1,2(M). Hence the
inequality (3.2) holds for any Lipschitz function g with bounded support. In particular,
we can pick g identically 1 on some bounded set 	 ⊂ X , so that we have |Dg| = 0
and H f (∇ f,∇g) = 0 m-a.e. on 	. By the arbitrariness of 	 we can replace g by 1
which is the function identically equals to 1 on X . Then the inequality (3.2) becomes

λ2�2( f ) +
⎛

⎝2λ
∑

i

H f (∇hi ,∇hi ) +
∑

i, j

|〈∇hi ,∇h j 〉|2 − Kλ2|D f |2
⎞

⎠m

−
(

λ2
(� f )2

N
+ 2λ

� f

N
|Dhi |2 + (

∑
i |Dhi |2)2
N

)

m ≥ 0.

Let γ2( f )m be the absolutely continuous part of �2( f ). By Lemma 3.1 we have
the inequality

∣
∣
∣
∣
∣

∑

i

(
H f (∇hi ,∇hi ) − � f

N
|Dhi |2

)
∣
∣
∣
∣
∣

2

≤
(

γ2( f ) − K |D f |2 − (� f )2

N

)
⎛

⎝
∑

i, j

|〈∇hi ,∇h j 〉|2 − (
∑

i |Dhi |2)2
N

⎞

⎠ .
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In particular, since γ2( f ) − K |D f |2 − (� f )2

N ≥ 0 (by Proposition 2.3), we have

∑

i, j

|〈∇hi ,∇h j 〉|2 ≥ (
∑

i |Dhi |2)2
N

, m − a.e..

This inequality remains true if we replace ∇hi by v := ∑
k
χ Ak∇ fk where fk are test

functions and Ak are disjoint Borel sets. Therefore by density we can replace {∇hi }n1
by any {ei,m}ni=1 which is a unit orthogonal subset of L2(T M)|Em

, whose existence
is guaranteed by Proposition 2.9 and the choice of m, n, Em at the beginning of the
proof. Then we obtain

n =
∑

i, j

|〈ei,m, e j,m〉|2 ≥ (
∑

i |ei,m |2)2
N

= n2

N
, m − a.e. on Em,

which implies n ≤ N on Em . Since the finite integer n ≤ m was chosen arbitrarily,
we deduce m ≤ N . Furthermore, if EN has positive measure, we obtain

∣
∣
∣
∣
∣

N∑

i=1

H f (ei,N , ei,N ) −
N∑

i=1

� f

N
|ei,N |2

∣
∣
∣
∣
∣
= 0, m − a.e. on EN ,

where {ei,N }Ni=1 is a unit orthogonal basis on EN . This is the same as to say that
trH f = � f,m-a.e. on E .

According to this proposition, onRCD∗(K , N ) spaces,we can see that the pointwise
Hilbert–Schmidt norm |T |HS of a L∞-bilinear map T : [L2(T M)]2 �→ L0(M) can be
defined in the followingway.Wedenote dimloc : M �→ N as the local dimensionwhich
is defined as dimloc(x) = n on En , where {En}n∈N∪{∞} is the partition of X in Propo-
sition 2.9. Let T1, T2 : [L2(T M)]2 �→ L0(M) be symmetric bilinear maps, we define
〈T1, T2〉HS as a function such that 〈T1, T2〉HS := ∑

i, j T1(ei,n, e j,n)T2(ei,n, e j,n), m-
a.e. on En , where {En}n≤N is the partition of X in Proposition 2.9 and {ei,n}i , n =
1, . . . , �N� are the corresponding unit orthogonal basis. Clearly, this definition is well
posed. In particular, we define the Hilbert–Schmidt norm of T1 by

√〈T1, T1〉HS and
denote it by |T1|HS, and the trace of T1 can be written as trT1 = 〈T1, Iddimloc〉HS where
Iddimloc is the unique map satisfying Iddimloc(ei,n, e j,n) = δi j , m-a.e. on En .

In the following theorem, we prove an improved Bochner inequality.

Theorem 3.3 Let M = (X, d,m) be a RCD∗(K , N ) metric measure space. Then

�2( f ) ≥
(
K |D f |2 + |H f |2HS + 1

N − dimloc
(trH f − � f )2

)
m

holds for any f ∈ TestF, where 1
N−dimloc

(trH f − � f )2 is taken 0 by definition on the
set {x : dimloc(x) = N }.
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1306 B.-X. Han

Proof We define the function � as

�(x, y1, . . . , yN ) := x − 1

2

N∑

i, j

ci, j (yi − ci )(y j − c j ) − c
N∑

i=1

(yi − ci )
2 + C0,

where c, ci , ci, j = c j,i are constants, C0 = 1
2

∑N
i, j ci, j ci c j + c

∑N
i=1 c

2
i . Then we

have

�x,i = �x,x = 0, �i, j = −ci, j − 2cδi j

�x = 1, �i = −
∑

j

ci, j (y j − c j ) − 2c(yi − ci ).

Let f, h1, . . . , hN be test functions. Using the chain rules we have

|D�( f, h1, . . . , hN )|2 = |D f |2 +
∑

i

(hi − ci )Ii ,

�2(�( f, h1, . . . , hN )) = �2( f ) − 2
∑

i, j

(ci, j + 2cδi j )Hf(∇hi,∇hj)m

−
∑

i, j,k,l

(ci, j + 2cδi j )(ck,l + 2cδkl)〈∇hi ,∇hk〉

× 〈∇hl ,∇h j 〉m +
∑

i

(hi − ci )Ji ,

��( f, h1, . . . , hN ) = � f −
∑

i, j

(ci, j + 2cδi j )〈∇hi ,∇h j 〉 +
∑

i

(hi − ci )Ki ,

where {Ii , Ki }i are some L1(M)-integrable terms and {Ji }i are measures with finite
mass.

Thenwe applyLemma2.4 to the function�( f, h1, . . . , hN ) to obtain the inequality

�2( f ) − 2
∑

i, j

(ci, j + 2cδi j )H f (∇hi ,∇h j )m

−
∑

i, j,k,l

(ci, j + 2cδi j )(ck,l + 2cδkl)〈∇hi ,∇hk〉〈∇hl ,∇h j 〉m+
∑

i

(hi − ci )Ji m

≥ K
(
|D f |2 +

∑

i

(hi − ci )Ii
)
m

+ 1

N

(
�( f ) −

∑

i, j

(ci, j + 2cδi j )〈∇hi ,∇h j 〉 +
∑

i

(hi − ci )Ki

)2
m.

Using the same argument as in the proof of last Proposition, we can replace the
constants ci by any simple function. Furthermore, by an approximation argument we
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can replace the constant c, ci , ci, j by arbitrary L2 functions. Then pick ci = hi , the
inequality becomes

�2( f ) − 2
∑

i, j

(ci, j + 2cδi j )H f (∇hi ,∇h j )m

−
∑

i, j,k,l

(ci, j + 2cδi j )(ck,l + 2cδkl)〈∇hi ,∇hk〉〈∇hl ,∇h j 〉m

≥ K |D f |2 m + 1

N

(
�( f ) −

∑

i, j

(ci, j + 2cδi j )〈∇hi ,∇h j 〉
)2

m.

Now we restrict the inequality above on Borel set En, n ≤ N where {En}�N�
n=1 is the

partition of X in Proposition 2.9. The inequality remains true if we replace ∇hi by
v := ∑

k
χ Ak∇ fk where fk are test functions and Ak are disjoint Borel subsets of En .

Therefore due to the density of test functions, we can replace {∇hi }n1 by any {ei,n}ni=1
which is a unit orthogonal basis of L2(T M)|En

. Doing this replacement on every En ,
we obtain

�2( f ) −
(
2
dimloc∑

i, j=1

(ci, j + 2cδi j )H f (ei,dimloc , e j,dimloc)

+
dimloc∑

i, j=1

(ci, j + 2cδi j )(ci, j + 2cδi j )
)
m

≥ K |D f |2m + 1

N

(
�( f ) −

dimloc∑

i=1

(ci,i + 2c)
)2

m.

Pick

c =
⎧
⎨

⎩

N trH f − dimloc � f − (N − dimloc)trC

2n(N − dimloc)
on {x : dimloc(x) �= N }

0 on {x : dimloc(x) = N }

in the inequality above, where C = (ci, j ) is a symmetric dimloc × dimloc-matrix
whose i, j entry is given by the function ci, j . Using the local basis vector fields ei,n ,
we can associate toC the L∞(M)-bilinearmap from [L2(T M)]2 with values in L0(M)

sending
(∑

i ai,nei,n,
∑

j b j,ne j,n
)
to

∑
i, j ai,nb j,nci, j , and abusing a bit the notation

we shall call this map C as well.
Then we obtain the inequality

�2( f ) ≥
(
K |D f |2 − |C |2HS + 2〈C,H f 〉HS

)
m

+
( 1

N
(trC)2 + 1

N
(� f )2 − 2

N
(� f )(trC)

)
m

+
(
(N trH f − dimloc � f )2 + (dimloc −N )2(trC)2 + 2(dimloc −N )(trC)(N trH f − dimloc � f )

)

N dimloc(N − dimloc)
m
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1308 B.-X. Han

=
(
K |D f |2 + 1

N
(� f )2 + 1

N dimloc(N − dimloc)
(N trH f − dimloc � f )2

)
m

−
(
|C − H f + trH f

dimloc
Iddimloc |2HS + |H f − trH f

dimloc
Iddimloc |2HS + 1

dimloc
(trC)2

)
m,

where 〈·, ·〉HS is the inner product induced by the Hilbert–Schmidt norm and Iddimloc is
the dimloc-identity matrix. It can be seen from the Proposition 3.2 that this inequality
still makes sense if we accept 0

0 = 0.

Then we pick C = H f − trH f
dimloc

Iddimloc in this inequality and finally obtain

�2( f ) ≥
(
K |D f |2 + 1

N
(� f )2 + 1

Ndimloc(N − dimloc)
(N trH f − dimloc� f )2

)
m

+|H f − trH f

dimloc
Iddimloc |2HSm

=
(
K |D f |2 + |H f |2HS + 1

(N − dimloc)
(trH f − � f )2

)
m,

which is the thesis. ��

4 N-Ricci Tensor

In this section, we use the improved version of Bochner inequality obtained in the last
section to give a definition of N -Ricci tensor.

We recall that the class of test vector fields TestV(M) ⊂ L2(T M) is defined as

TestV(M) :=
{

n∑

i=1

gi∇ fi : n ∈ N, fi , gi ∈ TestF(M), i = 1, . . . , n

}

.

It can be proved that TestV(M) is dense in L2(T M) when M is RCD.
Let X = ∑

i gi∇ fi ∈ TestV(M) be a test vector field.We define∇X ∈ L2(T M)⊗
L2(T M) by the following formula:

〈∇X, v1 ⊗ v2〉L2(T M)⊗L2(T M) :=
∑

i

〈∇gi , v1〉〈∇ fi , v2〉

+
∑

i

giH fi (v1, v2), ∀v1, v2 ∈ TestV(M).

It can be seen that this definition is well posed and that the completion of TestV(M)

with respect to the norm ‖ · ‖C :=
√

‖ · ‖2
L2(T M)

+ ∫ |∇ · |2
L2(T M)⊗L2(T M)

m can be

identified with a subspace of L2(T M), which is denoted by H1,2
C (T M).

Let X ∈ L2(T M). We say that X ∈ D(div) if there exists a function g ∈ L2(M)

such that
∫

hgm = −
∫

〈∇h, X〉m
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for any h ∈ W 1,2(M). We then denote such function which is clearly unique by divX .
It is easy to see that div· is a linear operator on D(div), that TestV(M) ⊂ D(div)

and that the formula

div(g∇ f ) = 〈∇g,∇ f 〉 + g� f, f, g ∈ TestF(M)

holds.
It is unknown whether there is any inclusion relation between D(div) and

H1,2
C (T M). However, in [14] it has been introduced the space (H1,2

H (T M), ‖ · ‖H1,2
H

)

which is contained in both D(div) and H1,2
C (T M), and will be useful for our purposes.

In the smooth setting, H1,2
H (T M) would be the space of vector fields corresponding

to L2 1-forms having both exterior derivative and co-differential in L2(M).
The properties of H1,2

H (T M) that we shall need are as follows:

(a) TestV(M) is dense in H1,2
H (T M).

(b) H1,2
H (T M) is contained in H1,2

C (T M) with continuous embedding.

(c) H1,2
H (T M) ⊂ D(div) and for any Xn → X in H1,2

H (T M), we have divXn → divX
in L2(M).

Now, we can generalize the Proposition 3.2 in the following way. We denote the
natural correspondences (dualities) between L2(T M) and L2(T ∗M) by (·)b and (·)�
(same notation for L2(T M) ⊗ L2(T M) and L2(T ∗M) ⊗ L2(T ∗M)). For example,
(∇ f )b = d f , (H f )

� = ∇∇ f for f ∈ TestF(M). In this case, we know 〈T1, T2〉HS =
〈(T1)�, (T2)�〉L2(T M)⊗L2(T M) for any T1, T2 ∈ L2(T ∗M) ⊗ L2(T ∗M).

Proposition 4.1 Let M = (X, d,m) be aRCD∗(K , N )metric measure space, E ⊂ X
be a Borel set. Assume that the local dimension of M on E is N, then tr(∇X)b =
divX m-a.e. x ∈ E for any X ∈ H1,2

H (T M).

Proof Thanks to the Proposition 3.2, it is sufficient to prove the equality

tr(∇X)b = divX m − a.e. on E (4.1)

for any X ∈ H1,2
H (T M), under the assumption that trH f = � f m-a.e. on E for any

f ∈ TestF(M).
First of all, as we know (∇∇ f )b = H f and div(∇ f ) = � f , the equality (4.1)

holds for every X of the form ∇ f for some f ∈ TestF(M).
Secondly, for any X = ∑

i gi∇ fi ∈ TestV, the assertion holds by recalling the
identities∇(g∇ f ) = ∇g⊗∇ f + g∇(∇ f ) and div(g∇ f ) = 〈∇g,∇ f 〉+ gdiv(∇ f ).

Finally, for any X ∈ H1,2
H (T M), we can find a sequence {Xi }i ⊂ TestV such that

Xi → X in H1,2
H (T M). Therefore 〈(∇Xi )

b, Iddimloc〉HS → 〈(∇X)b, Iddimloc〉HS in
L2 because ‖ · ‖H1,2

H
convergence is stronger than the ‖ · ‖H1,2

C
convergence. Then

tr(∇Xi )
b = 〈(∇Xi )

b, Iddimloc〉HS → 〈(∇X)b, Iddimloc〉HS = tr(∇X)b in L2. Since
Xi → X in H1,2

H (T M) implies divXi → divX in L2, we conclude that divX =
tr(∇X)b m-a.e. on E . ��
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1310 B.-X. Han

We shall now use the result of Theorem 3.3 to define the N -Ricci tensor.
We start defining �2(·, ·) : [TestV(M)]2 �→ Meas(M) by

�2(X,Y ) := �
〈X,Y 〉

2
+

(1

2
〈X, (�HY

b)�〉 + 1

2
〈Y, (�HX

b)�〉
)
m,

where (X,Y ) ∈ [TestV(M)]2 and �H is the Hodge Laplacian. It is proved in [14]
that �2(∇ f,∇ f ) = �2( f ) for f ∈ TestF(M) and that �2(·, ·) can be continuously
extended to [H1,2

H (T M)]2. Furthermore, it is known from Theorem 3.6.7 of [14] that
Ricci(X,Y ) := �2(X,Y ) − 〈(∇X)b, (∇Y )b〉HSm is a symmetric TestF(M)-bilinear
form on [H1,2

H (T M)]2.
We then define the map RN on [H1,2

H (T M)]2 by

RN (X,Y ) :=
⎧
⎨

⎩

1

N − dimloc

(
tr(∇X)b − divX

)(
tr(∇Y )b − divY

)
dimloc < N ,

0 dimloc ≥ N .

From the continuity of div· and tr(∇·)b on H1,2
H (T M), we deduce that (X,Y ) �→

RN (X,Y )m is continuous on [H1,2
H (T M)]2 with values in Meas(M). From the calcu-

lus rules developed in [14], it is easy to see that (X,Y ) �→ RN (X,Y )m is homogenous
with respect to the multiplication of test functions, i.e.

f RN (X,Y )m = RN ( f X,Y )m

for any f ∈ TestF(M). Therefore we can define RicciN (·, ·) on [H1,2
H (T M)]2 in the

following way:

Definition 4.2 (Ricci tensor) We define RicciN as a measure-valued map on
[H1,2

H (T M)]2 such that for any X,Y ∈ H1,2
H (T M) it holds

RicciN (X,Y ) = �2(X,Y ) − 〈(∇X)b, (∇Y )b〉HSm − RN (X,Y )m.

Combining the discussions above and Proposition 3.2, we know RicciN is a well-
defined tensor, i.e. (X,Y ) �→ RicciN (X,Y ) is a symmetric TestF(M)-bilinear form.
Then,we canprove the following theorembycombiningourTheorem3.3 andTheorem
3.6.7 of [14].

Theorem 4.3 Let M be a RCD∗(K , N ) space. Then

RicciN (X, X) ≥ K |X |2m,

and

�2(X, X) ≥
( (divX)2

N
+ RicciN (X, X)

)
m (4.2)

holds for any X ∈ H1,2
H (T M). Conversely, on a RCD(K ′,∞) space M, assume that
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(1) dimmaxM ≤ N
(2) tr(∇X)b = divX m − a.e. on {dimloc = N },∀X ∈ H1,2

H (T M)

(3) RicciN ≥ K

for some K ∈ R, N ∈ [1,+∞], then it is RCD∗(K , N ).

Proof Assume that we have the decomposition:

RicciN (X, X) = RicciacN (X, X) + RiccisingN (X, X),

where RicciacN (X, X) = RicciN (X, X)m is the absolutely continuous part of

RicciN (X, X) and RiccisingN (X, X) is its singular part. Then we need to prove that

RicciN (X, X)m ≥ K |X |2m (4.3)

and
RiccisingN (X, X) ≥ 0 (4.4)

for any X ∈ H1,2
H (T M).

From the definition of RicciN and Ricci we know that RiccisingN (X, X) coin-
cides with the singular part of Ricci(X, X). It is proved in Lemma 3.6.2, [14] that
Ricci(X, X) ≥ K |X |2m. Therefore (4.4) holds for any X ∈ H1,2

H (T M).

We turn to prove (4.3) for any X ∈ H1,2
H (T M). It can be seen from the definition

that (4.3) means

γ2(X, X)m ≥
(
K |X |2 + |(∇X)b|2HS + 1

N − dimloc
(tr(∇X)b − divX)2

)
m,

(4.5)

where γ2(X, X)m is the absolutely continuous part of �2(X, X).
First of all, notice that for X = ∇ f , (4.5) is exactly the inequality in Theorem 3.3.

Hence (4.3) holds for any X = ∇ f, f ∈ TestF(M).
Secondly, we need to prove (4.3) for any X ∈ TestV(M). Let X = ∑

i gi∇ fi
be a test vector field. From the homogeneity of RN m and Ricci := �2(·, ·) −
〈(∇·)b, (∇·)b〉HSm which is proved in [14] we know that RicciN (·, ·) is a symmetric
TestF(M)-bilinear form. In particular, RicciN (·, ·)m is a symmetric TestF(M)-bilinear
form. Therefore RicciN (X, X) = ∑

i, j gi g jRicciN (∇ fi ,∇ f j )m-a.e.. Thus we need
to prove the inequality

∑

i, j

gi g jRicciN (∇ fi ,∇ f j )m ≥ K
∑

i, j

gi g j 〈∇ fi ,∇ f j 〉m. (4.6)
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Hence by approximation with simple functions (see Lemma 4.4 below), it is sufficient
to prove this inequality for simple functions gi = ∑Ki

ki=1 ai,ki χ Ei,ki
, i.e.

∑

i, j,ki ,k j

ai,ki a j,k j χ Ei,ki ∩E j,k j
RicciN (∇ fi ,∇ f j )m

≥ K
∑

i, j,ki ,k j

ai,ki a j,k j χ Ei,ki ∩E j,k j
〈∇ fi ,∇ f j 〉m.

Let E ∈ X be a Borel set with positive measure such that E = ∩I (Ei,ki ∩ E j,k j )

where I := {(i, j, ki , k j ) : m(E ∩ Ei,ki ∩ E j,k j ) > 0. We then restrict the inequality
above on E

∑

(i, j,ki ,k j )∈I
RicciN (∇ai,ki fi ,∇a j,k j f j )m|E ≥ K

∑

(i, j,ki ,k j )∈I
〈∇ai,ki fi ,∇a j,k j f j 〉m|E ,

which is equivalent to

RicciN (∇F,∇F)|E ≥ K |DF |2m|E ,

where F = ∑
(i,ki ):∃(i, j,ki ,k j )∈I ai,ki fi . Clearly, this is true due to Theorem 3.3. Then

we can repeat this argument on all E which is a decomposition of X and prove the
assertion.

Next, it is sufficient to prove that (4.5) can be continuously extended to H1,2
H (T M).

It is proved in Theorem 3.6.7 of [14] that �2(X, X)−|(∇X)b|2HSm vary continuously

w.r.t.‖·‖TV as X varies in H1,2
H (M). The term 1

N−dimloc
(tr(∇X)b−divX)2 m also varies

continuously in Meas(M) due to the property (b) and (c) of H1,2
H (T M). Therefore we

know (4.5) holds for all X ∈ H1,2
H (T M).

Moreover, from the definition of RicciN we can see that
( (divX)2

N
+ RicciN (X, X)

)
m = �2(X, X) − |(∇X)b|2HSm + (divX)2

N
m

− 1

N − dimloc

(
tr(∇X)b − divX

)2
m

≤ �2(X, X) − (tr(∇X)b)2

dimloc
m + (divX)2

N
m

− 1

N − dimloc
(tr(∇X)b − divX)2

)
m

≤ �2(X, X)

which is the inequality (4.2).
Conversely, picking X = ∇ f, f ∈ TestF in RicciN (X, X) ≥ K |X |2m, we have

the following inequality according to the definition

�2( f ) ≥ (
K |D f |2 + |H f |2HS + 1

N − dimloc
(trH f − � f )2

)
m.
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Then by Cauchy–Schwarz inequality we obtain

�2( f ) ≥ (
K |D f |2 + 1

dimloc
(trH f )

2 + 1

N − dimloc
(trH f − � f )2

)
m

≥ (
K |D f |2 + 1

N
(� f )2

)
m

for any f ∈ TestF(M). The conclusion follows Proposition 2.3.

Lemma 4.4 The inequality (4.6) holds for gi ∈ L∞ if it holds for {gi } which are
simple functions.

Proof The inequality (4.6) holds if and only if

∫

h
∑

i, j

gi g jRicciN (∇ fi ,∇ f j ) dm ≥ K
∫

h
∑

i, j

gi g j 〈∇ fi ,∇ f j 〉 dm. (4.7)

for any h ∈ L∞, h ≥ 0. Since gi is L∞, we can find simple functions {gni }n such that
gni → gi in L∞. From hypothesis we know

∫

h
∑

i, j

gni g
n
jRicciN (∇ fi ,∇ f j ) dm ≥ K

∫

h
∑

i, j

gni g
n
j 〈∇ fi ,∇ f j 〉 dm. (4.8)

From the property of Ricci in Theorem 3.6.7 in [14] and the definition of RicciN , we
know RicciN (∇ fi ,∇ f j ) are L1. Letting n → ∞, both the sides in (4.8) converge in
L1 and we obtain (4.7). ��
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