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Abstract. We give a complete answer to which homogeneous groups admit homogeneous
distances for which the Besicovitch Covering Property (BCP) holds. In particular, we
prove that a stratified group admits homogeneous distances for which BCP holds if and
only if the group has step 1 or 2. These results are obtained as consequences of a more
general study of homogeneous quasi-distances on graded groups. Namely, we prove that
a positively graded group admits continuous homogeneous quasi-distances satisfying BCP
if and only if any two different layers of the associated positive grading of its Lie algebra
commute. The validity of BCP has several consequences. Its connections with the theory
of differentiation of measures is one of the main motivations of the present paper. As a
consequence of our results, we get for instance that a stratified group can be equipped
with some homogeneous distance so that the differentiation theorem holds for each locally
finite Borel measure if and only if the group has step 1 or 2. The techniques developed
in this paper allow also us to prove that sub-Riemannian distances on stratified groups of
step 2 or higher never satisfy BCP. Using blow-up techniques this is shown to imply that
on a sub-Riemannian manifold the differentiation theorem does not hold for some locally
finite Borel measure.
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1. Introduction

Covering theorems are known to be among the fundamental tools in analysis and geom-
etry. They reflect, in a certain sense, the geometry of the space and are commonly used to
establish connections between local and global properties. All covering theorems are based
on the same principle: from an arbitrary cover of a set, one tries to extract a subcover that
is as disjointed as possible. Among classical covering theorems, the Besicovitch Covering
Property (BCP), in which we are interested in the present paper, originates from works
of A. Besicovitch in connection with the theory of differentiation of measures in Euclidean
spaces ([Bes45], [Bes46], see also [Fed69, 2.8], [Pre83] and Section 6).

The development of analysis and geometry on abstract metric spaces leads naturally to
the question of the validity of suitable covering theorems on non-Euclidean spaces. Graded
groups provide a natural framework for many developments. A graded group is a Lie group
equipped with an appropriate family of dilations. A homogeneous quasi-distance on a
graded group is a left-invariant quasi-distance that is one-homogeneous with respect to the
family of dilations. Graded groups equipped with homogeneous quasi-distances naturally
generalize finite dimensional normed vector spaces. Due to the presence of translations
and dilations, they provide a setting where many aspects of classical analysis and geometry
can be carried out. Beyond such a priori considerations, these spaces form an important
framework because of their occurrences in many settings. There is a characterization of
positively graduable Lie groups as connected locally compact groups admitting contractive
automorphisms ([Sie86], see also Theorem 2.8). The interest of E. Siebert for groups ad-
mitting contractive automorphisms was motivated by phenomenon appearing in probability
theory on groups. Such groups have more generally been considered by various authors. In
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particular, homogeneous groups equipped with homogeneous quasi-distances as considered
in [FS82] (see also Definition 2.21) fit within this framework. They have been considered
mainly in connection with their applications in harmonic analysis, complex analysis of sev-
eral variables, and study of some non-elliptic differential operators. We refer to [FS82] and
the references therein for a detailed presentation of these aspects. A class of homogeneous
groups equipped with homogeneous distances of particular interest are stratified groups
equipped with sub-Riemannian distances. They are also known as Carnot groups according
to a terminology due to P. Pansu. See Section 7 where we use the more explicit terminology
sub-Riemannian Carnot groups. One of their occurrences is as metric tangent spaces to
sub-Riemannian manifolds where they play in some sense the role Euclidean spaces play
in Riemannian geometry (see e.g. [Mit85], [Bel96]). These structures have also connections
with optimal control theory (see e.g. [Mon02], [AS04]).

In the present paper, we give a complete answer to which graded groups admit continuous
homogeneous quasi-distances for which BCP holds, see Theorem 1.2. Characterizations of
homogeneous and stratified groups admitting homogeneous distances satisfying BCP follow
as particular cases of our results on graded groups, see Corollary 1.3 and Corollary 1.4. We
also complete previous results about the non-validity of BCP for sub-Riemannian distances
on stratified groups of step ≥ 2, see Theorem 1.9. Finally, we give applications to mea-
sure differentiation which is one of the main motivations for this paper, see Theorem 1.5,
Theorem 1.6, Corollary 1.7, and Theorem 1.10.

To explain these results, we first recall the Besicovitch Covering Property (BCP) in the
general quasi-metric setting. We refer to Section 3 for a more detailed discussion about this
covering property. See also Section 2.5 for our conventions about quasi-metric spaces, which
are the classical ones. A quasi-metric space (X, d) satisfies BCP if there exists a constant
N ≥ 1 such that the following holds. For any bounded set A ⊂ X and any family B of
balls such that each point of A is the center of some ball of B, there is a finite or countable
subfamily F ⊂ B such that the balls in F cover A, and every point in X belongs to at most
N balls in F .

We briefly recall now the definitions of graded groups and homogeneous quasi-distances.
We refer to Section 2 for a complete presentation. A graded group is a simply connected
Lie group G whose Lie algebra g is endowed with a positive grading g = ⊕t∈(0,+∞)Vt where
[Vs, Vt] ⊂ Vs+t for all s, t > 0. At the level of the Lie algebra, the associated dilation of
factor λ is defined as the unique linear map δλ : g → g such that δλ(X) = λtX for all
X ∈ Vt. Denoting also by δλ the unique Lie group homomorphism induced by this Lie
algebra homomorphism, a quasi-distance d on G is said to be homogeneous if it is left-
invariant and one-homogeneous with respect to the associated family of dilations (where
the latter means d(δλ(p), δλ(q)) = λd(p, q) for all p, q ∈ G and all λ > 0).

To state the main results of this paper and for later convenience, we introduce the follow-
ing definition that will be shown to algebraically characterize the validity of BCP for some
homogeneous quasi-distances.

Definition 1.1 (Graded groups with commuting different layers). Let G be a graded group
and let ⊕t>0Vt be the associated positive grading of its Lie algebra. We say that G has
commuting different layers if [Vt, Vs] = {0} for all t, s > 0 such that t 6= s.
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Our main results read as follows.

Theorem 1.2. Let G be a graded group. There exist continuous homogeneous quasi-
distances on G for which BCP holds if and only if G has commuting different layers.

Homogeneous groups are those graded groups that can be equipped with homogeneous
distances, i.e., homogeneous quasi-distances that satisfy the triangle inequality. Equiva-
lently, all layers Vt with t < 1 of the associated positive grading of their Lie algebra are
{0}, see Definition 2.21 and Proposition 2.22. For such groups, we prove that homogeneous
distances are continuous, see Corollary 2.28, and we get the following corollary.

Corollary 1.3. Let G be a homogeneous group. There exist homogeneous distances on G
for which BCP holds if and only if G has commuting different layers.

An important class of homogeneous groups are stratified groups, which are those for
which the degree-one layer of the associated positive grading generates the Lie algebra, see
Definitions 2.4 and 2.5. A stratified group has commuting different layers if and only if it
has (nilpotency) step 1 or 2. For such groups, Corollary 1.3 reads then as follows.

Corollary 1.4. Let G be a stratified group. There exist homogeneous distances on G for
which BCP holds if and only if G is of step ≤ 2.

One of the main motivations for studying the validity of BCP on graded groups is its
connection with the theory of differentiation of measures. If µ is a locally finite Borel
measure on a metric space (X, d), we say that the differentiation theorem holds on (X, d)
for µ if

lim
r↓0+

1

µ(Bd(p, r))

∫
Bd(p,r)

f(q) dµ(q) = f(p)

for µ-almost every p ∈ X and all f ∈ L1
loc(µ). For homogeneous groups equipped with

homogeneous distances, we prove the following characterization.

Theorem 1.5. Let G be a homogeneous group and let d be a homogeneous distance on G.
The differentiation theorem holds on (G, d) for all locally finite Borel measures if and only
if (G, d) satisfies BCP.

This characterization is a consequence of a characterization of the validity of the differ-
entiation theorem for all locally finite Borel measures on metric spaces due to D. Preiss,
taking the additional structure into account, namely, using left-translations and dilations,
see Section 6. Together with Corollary 1.3 and Corollary 1.4, we get the following results.

Theorem 1.6. Let G be a homogeneous group. There exists some homogeneous distance d
on G such that the differentiation theorem holds on (G, d) for all locally finite Borel measures
if and only if G has commuting different layers.

Corollary 1.7. Let G be a stratified group. There exists some homogeneous distance d on
G such that the differentiation theorem holds on (G, d) for all locally finite Borel measures
if and only if G is of step ≤ 2.
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To put our results in perspective, let us first recall that it is well-known since the works
of Besicovitch in the 40’s that BCP holds in Euclidean spaces, and more generally in finite
dimensional normed vector spaces. It is also known that the Riemannian distance on a Rie-
mannian manifold of class C2 satisfies a property that generalizes BCP, see [Fed69, 2.8] and
Sections 6 and 7. On the contrary, it is also well-known that BCP does not hold on infinite
dimensional normed vector spaces. Until recently only few results were known for graded
groups equipped with homogeneous quasi-distances. It was proved independently and at
the same time in [SW92] and [KR95] that BCP does not hold on the Heisenberg groups
equipped with the Cygan-Korányi distance. Later on it was proved in [Rig04] that BCP also
fails for sub-Riemannian distances on stratified groups under some regularity assumptions
on the sub-Riemannian distance. After these negative answers about the validity of BCP, it
was commonly believed that there would probably not exist homogeneous quasi-distances
satisfying BCP on graded groups.

Let us now recall that any two homogeneous distances on a homogeneous group, and
more generally any two homogeneous quasi-distances on a graded group, are biLipschitz
equivalent. However, it turns out that the validity of BCP is not stable under a biLipschitz
change of quasi-distance.

Theorem 1.8 ([LR14a, Theorem 1.6]). Let (X, d) be a metric space. Assume that there
exists an accumulation point in (X, d). Then, for all 0 < c < 1, there exists a distance dc
on X such that c d ≤ dc ≤ d and for which BCP does not hold.

See also [Pre83, Theorem 3] from which Theorem 1.8 is inspired. Notice that Theorem 1.8
can be extended to quasi-distances. As a consequence the non-validity of BCP for some
homogeneous quasi-distances cannot give any hint towards the existence or non-existence
of some other homogeneous quasi-distance satisfying BCP. Since for many purposes the
choice of a specific quasi-distance up to biLipschitz equivalence does not really matter, the
question of the existence of some homogeneous quasi-distance for which BCP holds on a
graded group remained meaningful.

The present paper follows two previous papers, [LR14a] and [LR15]. The existence of some
homogeneous distances that satisfy BCP on the Heisenberg groups is proved in [LR14a].
On the contrary it is proved in [LR15] that natural analogues of these distances on stratified
groups of step ≥ 3 do not satisfy BCP. These two cases strongly suggested that the structure
of the dilations, which comes from the structure of the grading of the Lie algebra, plays a
crucial role. Theorem 1.2 characterizes precisely in which sense the structure of the grading
plays a role for our purposes.

Let us now say few words about the proof of Theorem 1.2. Among the simplest ex-
amples of positively graduable groups are the Abelian ones, the Heisenberg groups, and
free-nilpotent groups of step 2, see Example 2.10, Example 2.11, and Section 4.1. They
play a key role in our proof of Theorem 1.2. A first step is indeed the study of the valid-
ity or non-validity of BCP for homogeneous quasi-distances relatively to various possible
positive gradings on these groups.

To prove the existence of homogeneous quasi-distances satisfying BCP on graded groups
with commuting different layers, we first prove that Hebisch-Sikora’s quasi-distances satisfy



6 ENRICO LE DONNE AND SÉVERINE RIGOT

BCP on stratified free-nilpotent groups of step 2, see Theorem 4.5. Hebisch-Sikora’s quasi-
distances are those homogeneous quasi-distances whose unit ball centered at the identity is a
Euclidean ball, see Examples 2.23 and 2.36. Theorem 4.5 extends Theorem 1.14 in [LR14a]
to stratified free-nilpotent groups of step 2 and any rank r ≥ 2. Theorem 1.14 in [LR14a]
gives indeed the conclusion for the stratified first Heisenberg group, i.e., the stratified free-
nilpotent group of step 2 and rank 2. The proof of Theorem 4.5 is in spirit inspired by the
proof of this previous result but requires a slightly different approach.

To prove the non-existence of continuous homogeneous quasi-distances satisfying BCP
on graded groups for which there exists two different layers that do not commute, we
first consider the case of the non-standard Heisenberg groups, see Theorem 5.6. A non-
standard Heisenberg group is the first Heisenberg group viewed as a graded group whose
Lie algebra is endowed with a positive grading that is not a stratification, see Example 2.11.
As already mentioned, the fact that there does not exist continuous homogeneous quasi-
distances satisfying BCP on non-standard Heisenberg groups was suggested by Theorem 1.6
in [LR15]. However, we stress that the proof of Theorem 5.6 is not a technical modification
of the arguments in [LR15]. It requires indeed a completely new approach, see Section 5.

In both cases, the general conclusion, see Theorems 4.1 and 5.2, follows using structure
properties about graded groups, using submetries, that plays a central role here, and using
some constructions on metric spaces that preserve the validity of BCP. These tools are given
in Sections 2 and 3.

In Section 2 we establish preliminary results about graded groups. In Sections 2.1 and 2.2
we fix the definitions and the terminology we shall use throughout the paper for graded and
stratified Lie algebras and Lie groups and for the associated families of dilations. Section 2.3
is devoted to various examples and to the description of some constructions on graded
groups for later use. In particular the Heisenberg groups and various positive gradings of
their Lie algebra to be used later in the paper are given in Example 2.11. In Section 2.4, we
prove some structure properties for graded groups. Proposition 2.15 gives a description of
graded groups with commuting different layers. Proposition 2.18 explains how every graded
group with some different layers not commuting gives rise a non-standard Heisenberg group.
Section 2.5 is devoted to homogeneous quasi-distances. The meaning of the terminology
homogeneous groups we use in this paper is in particular given in Definition 2.21. We
stress that working with quasi-distances rather than with distances naturally occurs in ap-
plications but may lead to topological issues. In our setting, we prove that homogeneous
quasi-distances on graded groups induce the manifold topology, see Proposition 2.26. As
a consequence, homogeneous distances on homogeneous groups are continuous, see Corol-
lary 2.28. These results seem not to have been previously noticed in the literature and may
be of independent interest. On the contrary we stress that homogeneous quasi-distances
may or may not be continuous and Proposition 2.29 characterizes continuous homogeneous
quasi-distances.

In Section 3 we first recall general facts about the Besicovitch Covering Property (BCP)
and one of its variants which we call the Weak Besicovitch Covering Property (WBCP). We
raise that these two variants are not equivalent in general metric spaces, see Example 3.4.
However, in our setting, and more generally on doubling metric spaces, BCP and WBCP are
equivalent, see Proposition 3.7. It turns out that WBCP is for our purposes technically more
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convenient to work with. Next, we consider some constructions that preserve the validity
of (W)BCP. In particular products of metric spaces are considered in Theorem 3.16. The
role of surjective morphisms of Lie algebra and submetries is given in Propositions 3.20
and 3.21. Results in this section will be used together with the structure properties proved
in Section 2.4 to deduce Theorem 1.2 from the particular cases mentioned above.

Sections 4 and 5 are devoted to the proof of Theorem 1.2 together with Corollaries 1.3
and 1.4. In Section 4 we prove the existence of continuous homogeneous quasi-distances for
which BCP holds on graded groups with commuting different layers, following the scheme
already described above, see Theorem 4.1. In Section 5 we consider more general quasi-
distances, called self-similar, which are only required to be one-homogeneous with respect
to some dilation, see Definition 5.1. We prove that continuous self-similar quasi-distances
do not satisfy BCP on graded groups for which there exist two different layers of the
associated positive grading that do not commute, see Theorem 5.2. Self-similar, rather than
homogeneous, quasi-distances may occur naturally. We stress that in this case, additional
topological issues have to be taken into account, see Section 5.2.

In Section 6 we give applications to measure differentiation on graded groups and we
prove Theorem 1.5.

In Section 7 we consider sub-Riemannian distances on stratified groups. We complete
the already known results of [Rig04] with the following general negative answer. We refer
to Definition 7.1 for the definition of sub-Riemannian Carnot groups.

Theorem 1.9. Let (G, d) be a sub-Riemannian Carnot group of step ≥ 2. Then BCP does
not hold on (G, d).

The proof of this result is independent of Theorem 1.2 but uses some techniques developed
in Section 3, in particular Proposition 3.21. Using the fact that sub-Riemannian Carnot
groups appear as metric tangent spaces to sub-Riemannian manifolds, we get the follow-
ing consequence about measure differentiation on sub-Riemannian manifolds. We refer to
Section 7.2 for the definition of sub-Riemannian manifold.

Theorem 1.10. Let M be a sub-Riemannian manifold and let d be its sub-Riemannian
distance. Then there exists some locally finite Borel measure for which the differentiation
theorem on (M,d) does not hold.

2. Preliminaries on graded groups

2.1. Graded and stratified Lie algebras and Lie groups. All Lie algebras considered
here are over R and finite-dimensional.

Definition 2.1 (Positively graduable Lie algebras). A positive grading of a Lie algebra g
is a family (Vt)t∈(0,+∞) of vector subspaces of g, where all but finitely many of the Vt’s are
{0}, such that

g =
⊕

t∈(0,+∞)

Vt

and where [Vs, Vt] ⊂ Vs+t for all s, t > 0. Here [V,W ] := span{[X,Y ]; X ∈ V, Y ∈W}. We
say that a Lie algebra is positively graduable if it admits a positive grading.
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A positively graduable Lie algebra may admit several positive gradings that are not
isomorphic, see for instance Example 2.11 (and Definition 2.16 for the definition of isomor-
phisms of graded Lie algebras). We will use the terminology “graded Lie algebra” when
considering a positively graduable Lie algebra equipped with a given positive grading as
stated in the following definition.

Definition 2.2 (Graded Lie algebras). We say that a Lie algebra is graded when it is
positively graduable and endowed with a given positive grading called the associated positive
grading.

Given a positive grading g = ⊕t>0Vt and given t ∈ (0,+∞), the subspace Vt is called the
degree-t layer of the grading.

Recall that, for a Lie algebra g, the lower central serie is defined inductively by g(1) = g,
g(k+1) = [g, g(k)]. A Lie algebra g is called nilpotent if g(s+1) = {0} for some integer s ≥ 1.

We say that g is nilpotent of step s if g(s+1) = {0} but g(s) 6= {0}. Positively graduable
Lie algebras are nilpotent ([Goo77], [FS82]). However, nilpotent Lie algebras that are not
positively graduable do exist ([Dye70]).

Definition 2.3 (Stratifiable Lie algebras). A stratification of step s of a Lie algebra g is a
direct-sum decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs
for some integer s ≥ 1 where Vs 6= {0}, [V1, Vj ] = Vj+1 for all integers j ∈ {1, . . . , s}, and
where we have set Vs+1 := {0}. We say that a Lie algebra is stratifiable if it admits a
stratification.

Equivalently, a stratifiable Lie algebra g is a positively graduable Lie algebra that admits
a positive grading whose degree-one layer generates g as a Lie algebra. A stratification is
uniquely determined by its degree-one layer V1. Moreover, one has g = V1 ⊕ [g, g]. Recall
that the rank of a nilpotent Lie algebra is defined as dim g− dim[g, g]. For a stratified Lie
algebra it coincides with the dimension of the degree-one layer of any of its stratification.
However, we stress that an arbitrary vector space V of a stratifiable Lie algebra g that is
in direct sum with [g, g], i.e., satisfies g = V ⊕ [g, g], may not generate a stratification, see
Example 2.12. Note also that a positive grading of a stratifiable Lie algebra may not be a
stratification, see Example 2.11.

Any two stratifications of a Lie algebra are isomorphic, see [LD15]. In particular they have
equal step that we will call the step of the stratifiable Lie algebra. Note that a stratifiable
Lie algebra of step s is nilpotent of step s. When we fix a given stratification of a stratifiable
Lie algebra, we will use the terminology “stratified Lie algebra” as stated in the following
definition.

Definition 2.4 (Stratified Lie algebras). We say that a Lie algebra is stratified when it is
stratifiable and endowed with a given stratification called the associated stratification.

Definition 2.5 (Positively graduable, graded, stratifiable, stratified groups). We say that
a Lie group G is a positively graduable (respectively graded, stratifiable, stratified) group if
G is a connected and simply connected Lie group whose Lie algebra is positively graduable
(respectively graded, stratifiable, stratified).
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For the sake of completeness, we will give in Theorem 2.8 below a characterization of
positively graduable groups in terms of existence of a contractive group automorphism.
This characterization is due to E. Siebert.

2.2. Dilations on graded algebras and graded groups.

Definition 2.6 (Dilations on graded Lie algebras). Let g be a graded Lie algebra with
associated positive grading g = ⊕t>0Vt. For λ > 0, we define the associated dilation of
factor λ as the unique linear map δλ : g→ g such that δλ(X) = λtX for all X ∈ Vt.

Dilations δλ : g → g are Lie algebra automorphisms. Moreover, the family of dilations
(δλ)λ>0 is a one-parameter group of Lie algebra automorphisms, i.e., δλ ◦ δη = δλη for all
λ, η > 0.

Throughout this paper, given a Lie group homomorphism ϕ : G → H, we will denote
by ϕ∗ : g → h the associated Lie algebra homomorphism. Recall that, if G is simply
connected, given a Lie algebra homomorphism φ : g → h, there exists a unique Lie group
homomorphism ϕ : G → H such that ϕ∗ = φ (see [War83, Theorem 3.27]). This allows to
define dilations on graded groups as stated in the following definition.

Definition 2.7 (Dilations on graded groups). Let G be a graded group with Lie algebra
g. Let δλ : g → g be the associated dilation of factor λ > 0. The associated dilation of
factor λ on G is the unique Lie group automorphism, also denoted by δλ : G → G, such
that (δλ)∗ = δλ.

For technical simplicity, we keep the same notation for both dilations on the Lie algebra
g and the group G. There will be no ambiguity here. Indeed, graded groups being nilpotent
and simply connected, the exponential map exp : g → G is a diffeomorphism (see [CG90,
Theorem 1.2.1] or [FS82, Proposition 1.2]) and one has δλ ◦ exp = exp ◦ δλ (see [War83,
Theorem 3.27]), hence dilations on g and dilations on G coincide in exponential coordinates.

For the sake of completeness, we give now a equivalent characterization of positively
graduable groups due to Siebert. If G is a topological group with identity e and τ : G→ G is
a group automorphism, we say that τ is contractive if, for all g ∈ G, one has limk→∞ τ

k(g) =
e. We say that G is contractible if G admits a contractive automorphism.

For graded groups, associated dilations of factor λ ∈ (0, 1) are contractive automorphisms.
Hence positively graduable groups are contractible. Conversely, E. Siebert proved (see
Theorem 2.8 below) that if G is a connected locally compact group and τ : G → G is a
contractive automorphism then G is a connected and simply connected Lie group and τ
induces a positive grading on the Lie algebra g of G. Note however that τ itself may not
be a dilation associated to the induced grading.

Theorem 2.8 ([Sie86, Corollary 2.4]). A topological group G is a positively graduable Lie
group if and only if G is a connected locally compact contractible group.

2.3. Examples. We first introduce the definition of basis adapted to a positive grading for
later use.
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Definition 2.9. Let g be a graded Lie algebra with associated positive grading given by
g = ⊕t>0Vt. Let n := dim g and 0 < t1 < · · · < tl be such that Vti 6= {0} for all i = 1, . . . , l
and Vt = {0} for all t 6∈ {t1, . . . , tl}. We say that a basis (X1, . . . , Xn) of g is adapted to
the positive grading if (Xmi−1+1, . . . , Xmi) is a basis of Vti for all 1 ≤ i ≤ l. Here m0 = 0
and mi −mi−1 = dimVti .

Example 2.10 (Abelian Lie algebras and Lie groups). Abelian Lie algebras are stratifiable
Lie algebras of step 1 and any direct-sum decomposition is a positive grading.

In particular, if g is an Abelian n-dimensional Lie algebra, the trivial direct-sum decom-
position g = ⊕t>0Vt where V1 = g and Vt = {0} for all t 6= 1 gives the stratification. The
connected and simply connected Lie group with Lie algebra g can be identified with Rn
equipped with the Abelian group law. Associated dilations are the usual multiplication by
a scalar positive real number given by x 7→ λx for λ > 0.

More generally, for any real numbers 0 < d1 ≤ · · · ≤ dn, the maps

(x1, . . . , xn) 7→ (λd1x1, . . . , λ
dnxn) ,

define a family of dilations on the Abelian group Rn associated to some positive grading of
its Lie algebra.

Example 2.11 (Heisenberg Lie algebras and Lie groups). The n-th Heisenberg Lie algebra
hn is the (2n + 1)-dimensional Lie algebra that admits a basis (X1, . . . , Xn, Y1, . . . , Yn, Z)
where the only non-trivial bracket relations are [Xj , Yj ] = Z for all 1 ≤ j ≤ n. We call such
a basis a standard basis of hn.

The n-th Heisenberg group Hn is the connected and simply connected Lie group whose
Lie algebra is hn. Using exponential coordinates of the first kind, we write p ∈ Hn as
p = exp((

∑n
j=1 xjXj + yjYj) + zZ) and we identify p with (x1, . . . , xn, y1, . . . , yn, z). Using

the Baker-Campbell-Hausdorff formula, the group law is given by

(x1, . . . , xn, y1, . . . , yn, z) · (x′1, . . . , x′n, y′1, . . . , y′n, z′)

= (x1 + x′1, . . . , xn + x′n, y1 + y′1, . . . , yn + y′n, z + z′ +
1

2

n∑
j=1

(xjy
′
j − yjx′j)) .

Heisenberg Lie algebras are stratifiable of step 2. Using a standard basis,

hn = V1 ⊕ V2 where V1 := span{Xj , Yj ; 1 ≤ j ≤ n}, V2 := spanZ

is a stratification. Dilations associated to this stratification are given by

(x1, . . . , xn, y1, . . . , yn, z) 7→ (λx1, . . . , λxn, λy1, . . . , λyn, λ
2z) .

Heisenberg Lie algebras also admit positive gradings that are not stratifications. We
will in particular consider in this paper such gradings on the first Heisenberg Lie algebra.
Namely, for α ∈ (1,+∞), we call non-standard Heisenberg Lie algebra of exponent α the
first Heisenberg Lie algebra equipped with the following non-standard grading of exponent
α

h1 = W1 ⊕Wα ⊕Wα+1

where
W1 := span{X1}, Wα := span{Y1}, Wα+1 := span{Z} ,
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and where (X1, Y1, Z) is a standard basis of h1. Note that up to isomorphisms of graded
Lie algebras (see Definition 2.16) and up to powers (see Example 2.14), these non-standard
gradings give all the possible positive gradings of h1 that are not a stratification. Dilations
associated to the non-standard grading of exponent α are given by

(x1, y1, z) 7→ (λx1, λ
αy1, λ

α+1z) .

We will use the terminology non-standard Heisenberg group (of exponent α) when consid-
ering the first Heisenberg group as a graded group whose Lie algebra is endowed with the
non-standard grading (of exponent α).

Example 2.12. There are examples of stratifiable Lie algebras g for which one can find a
subspace V in direct sum with [g, g] but that does not generate a stratification. One can
for instance consider the stratifiable Lie algebra g of step 3 generated by e1, e2 and e3 and
with the relation [e2, e3] = 0. If V := span{e1, e2 + [e1, e2], e3}, one has g = V ⊕ [g, g] but
V does not generate a stratification of g, see [LD15].

Example 2.13 (Direct product of graded Lie groups). The direct product of graded groups
is positively graduable. If G and H are graded groups with associated positive grading of
their Lie algebras given by g = ⊕t>0Vt and h = ⊕t>0Wt respectively, then ⊕t>0(Vt ⊕Wt)
is a positive grading of the Lie algebra of G × H. This can be extended to the direct
product of finitely many graded groups in the obvious way. In the rest of this paper, we
will always consider the direct product of graded groups as graded groups with associated
positive grading given by the above mentioned grading.

Example 2.14 (Power of graded Lie algebras and of graded groups). Let g be a graded
Lie algebra with associated positive grading g = ⊕s>0Vs and let t > 0 be a real positive
number. Then g = ⊕s>0Ws where Wts := Vs is a positive grading of g, which we call the
t-power of the initial positive grading.

For λ > 0, let δλ denote the dilation of factor λ associated to the initial positive grading
and δ̃λ denote the dilation of factor λ associated to the grading of its t-power. In expo-
nential coordinates of the first kind associated to a basis adapted to these gradings, we
have δλ(x1, . . . , xn) = (λs1x1, . . . , λ

snxn) and δ̃λ(x1, . . . , xn) = (λts1x1, . . . , λ
tsnxn) for some

0 < s1 ≤ · · · ≤ sn.

If G is a graded group, we call t-power of G the group G considered as the graded group
whose Lie algebra is endowed with the t-power of the initial positive grading.

2.4. Structure of graded algebras and graded groups. We give in this section some
results about the structure of graded algebras and groups to be used later in this paper.
They may be more generally of independent interest.

First, we consider graded groups with commuting different layers, see Definition 1.1.
Notice that for such graded groups, a layer of the positive grading may not commute with
itself.

Proposition 2.15. Let G be a graded group with commuting different layers. Then G is
the direct product of powers of stratified groups of step ≤ 2.
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See Example 2.14 for the definition of powers of a graded group, Example 2.13 for the
definition of direct product graded groups and Definition 2.5 for the definition of stratified
groups.

Proof. Let g denote the Lie algebra of G. Let 0 < t1 < · · · < tm be such that Vtk 6= {0} for
all k = 1, . . . ,m and Vt = {0} for all t 6∈ {t1, . . . , tm}. We have g = Vt1 ⊕ Vt2 ⊕ . . .⊕ Vtm .

If [Vt1 , Vt1 ] = {0} then [Vt1 , g] = {0} since [Vt1 , Vs] = {0} for all s 6= t1. It follows that
h := Vt1 and h′ := Vt2 ⊕ . . .⊕ Vtm are ideals of g. Hence (see [Pon66, p.388]) G is the direct
product of exp(h) and exp(h′). Moreover exp(h) is the t1-power of an Abelian stratified
group.

If [Vt1 , Vt1 ] 6= {0}, we set h := Vt1 ⊕ [Vt1 , Vt1 ] ⊆ Vt1 ⊕ V2t1 . Then we consider V ′2t1 any
complement of [Vt1 , Vt1 ] in V2t1 , i.e., [Vt1 , Vt1 ] ⊕ V ′2t1 = V2t1 . We set V ′t1 = {0}, V ′t = Vt
for t 6= t1, 2t1 and h′ := ⊕t>0V

′
t . We have g = h ⊕ h′. We prove now that G is the direct

product of exp(h) and exp(h′). As before, to get the conclusion, we prove that both h and
h′ are ideals of g.

To show that h is an ideal, take X ∈ h and Y ∈ g. It is enough to consider the following
4 cases. First, assume X ∈ Vt1 and Y ∈ Vt1 . Then [X,Y ] ∈ h by definition of h. Second,
assume X ∈ Vt1 and Y ∈ Vt, with t 6= t1. Then [X,Y ] = 0 since G has commuting
different layers. Third, assume X = [Xa, Xb] with Xa, Xb ∈ Vt1 and Y ∈ V2t1 . By Jacobi’s
identity and since 2t1 6= t1 and G has commuting different layers, we get [[Xa, Xb], Y ] =
[[Xa, Y ], Xb] + [[Y,Xb], Xa] = 0. By bilinearity of the Lie bracket, it follows that [X,Y ] =
0 ∈ h for all X ∈ [Vt1 , Vt1 ] and Y ∈ V2t1 . Finally, assume X ∈ [Vt1 , Vt1 ] and Y ∈ Vt with
t 6= 2t1. Then [X,Y ] = 0 since G has commuting different layers. All together it follows
that [X,Y ] ∈ h for all X ∈ h and all Y ∈ g hence h is an ideal.

To show that h′ is an ideal, we note that if X ∈ Vt with t > t1 and Y ∈ Vs for some s ≥ t1,
we have t + s > 2t1 and hence [X,Y ] ∈ ⊕l>2t1Vl = ⊕l>2t1V

′
l ⊂ h′. Since h′ ⊂ ⊕t>t1Vt and

by bilinearity of the Lie bracket, it follows that [h′, g] ⊂ h′ hence h′ is an ideal. It follows
that G is the direct product of exp(h) and exp(h′). Moreover exp(h) is the t1-power of a
stratified group of step 2.

Finally, arguing by induction on the dimension of g, we get the conclusion. �

We will next consider the case where there exist two different layers of the positive
associated grading that do not commute. We first introduce the notions of morphisms of
graded Lie algebras and of graded subalgebras.

Definition 2.16 (Morphism of graded Lie algebras). Let g = ⊕t>0Vt and h = ⊕t>0Wt be
graded Lie algebras. We say that φ : g → h is a morphism (respectively isomorphism) of
graded Lie algebras if φ is a Lie algebra homomorphism (respectively isomorphism) such
that φ(Vt) ⊂Wt for all t > 0.

Let g = ⊕t>0Vt be a graded Lie algebra with associated dilations (δλ)λ>0. We say that
a Lie subalgebra ĝ of g is homogeneous if δλ(ĝ) = ĝ for all λ > 0. If ĝ is a homogeneous
Lie subalgebra of g, then ⊕t>0(Vt ∩ ĝ) is a positive grading of ĝ called the induced positive
grading and associated dilations are the restriction of δλ to ĝ.
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Definition 2.17 (Graded subalgebra). Let g be a graded Lie algebra. We say that ĝ is a
graded subalgebra of the graded algebra g if ĝ is a homogeneous Lie subalgebra of g endowed
with the induced positive grading.

Proposition 2.18. Let g = ⊕t>0Vt be a graded Lie algebra. Assume that [Vt, Vs] 6= {0}
for some t < s. Then there exist a graded subalgebra ĝ of g and a surjective morphism of
graded Lie algebras from ĝ to h where h is the t-power of the non-standard Heisenberg Lie
algebra of exponent s/t.

See Example 2.11 for the definition of non-standard Heisenberg Lie algebras and Exam-
ple 2.14 for the definition of the t-power of a graded Lie algebra.

Proof. Let X1 ∈ Vt and X2 ∈ Vs be such that [X1, X2] 6= 0. Let ĝ denote the Lie subalgebra
of g generated by X1 and X2. We have δλ(ĝ) = ĝ for all λ > 0 where δλ are the associated
dilations on g. Hence ĝ is homogeneous. We endow it with the induced positive grading
ĝ = ⊕u>0V̂u where V̂u := Vu ∩ ĝ to make it a graded subalgebra of g. We have

ĝ = V̂t ⊕ V̂s ⊕ V̂t+s ⊕ (⊕u>t+sV̂u)

with V̂t = span{X1}, V̂s = span{X2} and V̂t+s = span{X3} where X3 := [X1, X2]. Let

n := dim ĝ and (X4, . . . , Xn) be a basis of ⊕u>t+sV̂u such that (X1, . . . , Xn) is a basis of ĝ
adapted to its positive grading (see Definition 2.9).

Let h := Wt ⊕Ws ⊕Ws+t be the t-power of the non-standard Heisenberg Lie algebra of
exponent s/t (see Example 2.11 and Example 2.14). Let Y1 6= 0 ∈ Wt, Y2 6= 0 ∈ Ws, and
set Y3 := [Y1, Y2]. Then Ws+t = span{Y3}.

Let φ : ĝ → h be the linear map defined by φ(Xi) := Yi for i = 1, 2, 3 and φ(Xi) := 0 for
i ≥ 4. It can easily be checked that φ is a Lie algebra homomorphism. It can also easily be
checked that φ(V̂u) = Wu for all u > 0. Here we set Wu := {0} for u 6∈ {t, s, s+ t}. Hence
φ is a surjective morphism of graded Lie algebras. �

Remark 2.19. To conclude this section, let us mention the following general fact. For
any graded Lie algebra g, there exist a positive grading of a free-nilpotent Lie algebra f
and a surjective morphism φ : f → g of graded Lie algebras. We shall use this fact in
the simple case of stratified Lie algebras of step 2 where all what we need can be eas-
ily constructed by hand, see the proof of Theorem 4.24. We refer to [Bou98, Chapter
II], [Jac79], [Ser06], [Reu93], [DK11] for more details on the subject.

2.5. Homogeneous quasi-distances. Given a nonempty set X, we say that d : X×X →
[0,+∞) is a quasi-distance on X if it is symmetric, d(p, q) = 0 if and only if p = q, and
there exists a constant C ≥ 1 such that d(p, q) ≤ C(d(p, p′) + d(p′, q)) for all p, p′, q ∈ X
(quasi-triangle inequality with multiplicative constant C). We call (X, d) a quasi-metric
space. When speaking of a ball B in (X, d), it will be understood that B is a set of the form
B = Bd(p, r) for some p ∈ X and some r > 0 where Bd(p, r) := {q ∈ X; d(q, p) ≤ r}. When
d satisfies the triangle inequality, i.e., the quasi-triangle inequality with a multiplicative
constant C = 1, then d is a distance on X.

Definition 2.20 (Homogeneous quasi-distances on graded groups). Let G be a graded
group with associated dilations (δλ)λ>0. We say that a quasi-distance d on G is homogeneous
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if d is left-invariant, i.e., d(p · q, p · q′) = d(q, q′) for all p, q, q′ ∈ G, and one-homogeneous
with respect to all dilations (δλ)λ>0, i.e., d(δλ(p), δλ(q)) = λd(p, q) for all p, q ∈ G and all
λ > 0.

Note that, in this definition, we do not require any topological property, and in particular
any continuity property, of a homogeneous quasi-distance with respect to the manifold
topology on the group. We will discuss these topological issues below, see Proposition 2.26,
Corollary 2.28, and Proposition 2.29. Let us stress that we will consider in Section 5
a more general class of quasi-distances, called self-similar quasi-distances in the present
paper. Additional topological issues occur for self-similar quasi-distances. For the sake
of clarity, we devote the present section to homogeneous quasi-distances. We postpone
the discussion about topological properties of self-similar quasi-distances to Section 5, see
especially Section 5.2.

Homogeneous quasi-distances on arbitrary graded groups do exist. One can for instance
follow the arguments in [FS82, Chapter 1]. Note however that our terminology is slightly
different from the terminology adopted for graded groups in [FS82]. See also Example 2.25
below for another construction of homogeneous quasi-distances on arbitrary graded groups.

On the other hand, homogeneous distances do exist if and only if, for all t < 1, degree-t
layers of the associated positive grading are {0}. These groups are called homogeneous
in [FS82] and we will follow here this terminology.

Definition 2.21 (Homogeneous groups). We say that G is a homogeneous group if G is
a graded group whose associated positive grading ⊕t>0Vt of its Lie algebra is such that
Vt = {0} for all t ∈ (0, 1).

As already mentioned, we have the following proposition.

Proposition 2.22. Let G be a graded group. There exists a homogeneous distance on G if
and only if G is a homogeneous group.

Proof. If some degree-t layer of the positive grading is non-trivial for some t < 1, a map d :
G×G→ [0,+∞) that is left-invariant and one-homogeneous with respect to some non-trivial
associated dilation cannot satisfy the triangle inequality (i.e., the quasi-triangle inequality
with a multiplicative constant C = 1). On the other hand, W. Hebisch and A. Sikora proved
in [HS90] the existence of homogeneous distances on homogeneous groups. �

Homogeneous distances considered by Hebisch and Sikora play a central role in Section 4
and we describe them below.

Example 2.23 (Hebisch-Sikora’s homogeneous distances on homogeneous groups). Let G
be a homogeneous group with identity e, associated positive grading of its Lie algebra given
by g = ⊕t>0Vt and associated dilations (δλ)λ>0. Let n := dim g and let (X1, . . . , Xn) be a
basis of g adapted to the positive grading (see Definition 2.9). Using exponential coordinates
of the first kind, we identify p ∈ G with (p1, . . . , pn) where p = exp(p1X1 + · · · + pnXn).
For R > 0, we set

AR :=

{
p ∈ G;

n∑
i=1

p2
i ≤ R2

}
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and

dR(p, q) := inf
¶
λ > 0; δ1/λ(p−1 · q) ∈ AR

©
.

Hebisch and Sikora proved in [HS90] that there exists R∗ > 0 such that for all 0 < R < R∗,
dR defines a homogeneous distance on G.

Example 2.24 (Homogeneous quasi-distances on powers of graded groups). If G is a graded

group, d a homogeneous quasi-distance on G and t ∈ (0,+∞) then d1/t is a homoge-
neous quasi-distance on its t-power (see Example 2.14 for the definition of powers of graded
groups). Notice that when G is a homogeneous group, d a homogeneous distance and t > 1,

then (G, d1/t) is a snowflake of (G, d).

Example 2.25 (Existence of homogeneous quasi-distances on graded groups). Let G be
a graded group with associated positive grading ⊕s>0Vs of its Lie algebra. All t-powers
of G where tmin{s > 0; Vs 6= {0}} ≥ 1 are homogeneous groups. If d is a homogeneous
distance on such a t-power of G, it follows from Example 2.24 that dt is a homogeneous
quasi-distance on G.

A quasi-distance d on a set X induces a topology on X declaring a set O to be open if
and only if for all x ∈ O there exists r > 0 such that Bd(x, r) ⊂ O. Equivalently a set F
is said to be closed if and only if for all sequences (xk) of points in F such that d(xk, x)
converges to 0 for some x ∈ X, we have x ∈ F . In the following proposition, we prove that
on a graded group the topology induced by a homogeneous quasi-distance and the manifold
topology coincide.

Proposition 2.26. The topology induced by a homogeneous quasi-distance on a graded
group coincides with the manifold topology of the group. Moreover, a set is relatively compact
if and only if it is bounded with respect to the homogeneous quasi-distance.

Proof. Let G be a graded group with identity e, associated positive grading of its Lie
algebra given by g = ⊕t>0Vt and associated dilations (δλ)λ>0. Let d be a homogeneous
quasi-distance satisfying the quasi-triangle inequality with multiplicative constant C.

To prove that the topology Td induced by d and the manifold topology Tm coincide, it is
enough to show that d(e, p) goes to 0 if and only if p converges to e. Here, and in the rest
of this proof, the latter convergence (and more generally the convergence of some sequence
of points) means convergence with respect to the manifold topology.

First, we show that the quasi-distance d(e, ·) from e is continuous at e with respect to
Tm. Since graded groups are nilpotent and simply connected, we can consider exponential
coordinates of second kind with respect to a suitable choice of basis (X1, . . . , Xn) of g,
see [CG90]. Namely, first for all i = 1, . . . , n, there exists di > 0 such that Xi ∈ Vdi , and
consequently, δλ(Xi) = λdiXi. Second, there is a diffeomorphism p 7→ (P1(p), . . . , Pn(p))
from G onto Rn such that for all p ∈ G,

p = exp(P1(p)X1) · . . . · exp(Pn(p)Xn) .
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In particular Pi(e) = 0 for all i = 1, . . . , n. Then, using the quasi-triangle inequality, the
left-invariance and the homogeneity of the quasi-distance, we get

d(e, p) = d(e, exp(P1(p)X1) · . . . · exp(Pn(p)Xn))

≤
n∑
i=1

Ci d(e, exp(Pi(p)Xi))

≤
n∑
i=1

Ci d(e, exp(δ|Pi(p)|1/di (sgn(Pi(p))Xi))

=
n∑
i=1

Ci |Pi(p)|1/di d(e, sgn(Pi(p)) exp(Xi)),

where sgn(Pi(p)) denotes the sign of Pi(p). The last upper bound goes to 0 when p converges
to e and this proves the claim.

Second, we show that if (pk) is a sequence for which d(e, pk) goes to 0 then pk converges
to e. We set

(2.27) ‖p‖ :=
n∑
i=1

|Pi(p)| .

Arguing by contradiction, up to a subsequence, there would exist ε > 0 such that ‖pk‖ > ε
for all k. Since the map λ 7→ ‖δλ(q)‖ is continuous with respect to Tm for all q ∈ G, we
get that, for all k, one can find λk ∈ (0, 1) such that ‖δλk(pk)‖ = ε. By compactness with
respect to Tm of {p ∈ G; ‖p‖ = ε}, up to a subsequence, we would get that δλk(pk) converges
to some q ∈ G with ‖q‖ = ε. In particular q 6= e and hence d(e, q) > 0. However,

0 < d(e, q) ≤ C(d(e, δλk(pk)) + d(δλk(pk), q))

= C(λkd(e, pk) + d(e, q−1 · δλk(pk)))

≤ C(d(e, pk) + d(e, q−1 · δλk(pk))) .

By continuity of d(e, ·) at e with respect to Tm and since q−1 · δλk(pk) converges to e, we
have that d(e, q−1 · δλk(pk)) goes to 0. Hence the last upper bound in the above inequalities
goes to 0. This gives a contradiction and proves the claim. All together we get that both
topologies coincide.

Relative compactness with respect to the manifold topology is equivalent to boundedness
with respect to ‖ · ‖. Hence, to show that relative compactness is equivalent to bounded-
ness with respect to the quasi-distance, we show that boundedness with respect to d and
boundedness with respect to ‖ · ‖ are equivalent. By contradiction, assume that one can
find a sequence (pk) such that, for some M > 0, d(e, pk) ≤ M for all k, but ‖pk‖ goes
to +∞. Arguing as above, one can find a positive sequence (λk) converging to 0 such
that ‖δλk(pk)‖ = 1 for all k. On the other hand, since d(e, δλk(pk)) = λkd(e, pk) ≤ Mλk,
d(e, δλk(pk)) goes to 0. As shown before, this implies that δλk(pk) converges to e and gives
a contradiction. One shows in a similar way that boundedness with respect to ‖ · ‖ implies
boundedness with respect to the quasi-distance. �

In the rest of this paper, when not specified, all topological properties on graded groups
will be understood as defined with respect to the manifold topology, or, equivalently in
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view of Proposition 2.26, with respect to the topology induced by any homogeneous quasi-
distance.

If d is a distance on a set X, then d is continuous on X ×X with respect to the topology
it induces and subsets of the form {y ∈ X; d(y, x) < r}, respectively {y ∈ X; d(y, x) ≤ r},
are open, respectively closed, with respect to the topology induced by d. In particular, in
view of Proposition 2.26, we have the following consequence.

Corollary 2.28. Every homogeneous distance on a homogeneous group G is continuous on
G×G with respect to the manifold topology.

On the contrary, we stress that, if d is a quasi-distance on a set X, subsets of the form
{y ∈ X; d(y, x) < r}, respectively {y ∈ X; d(y, x) ≤ r}, may not be open, respectively
closed, for the topology induced by d. Moreover, even when one of these properties holds,
the quasi-distance may not be continuous on X×X with respect to the topology it induces,
see Remark 2.30 below. In particular, in view of Proposition 2.26, a homogeneous quasi-
distance on a graded group G may not be continuous on G×G with respect to the manifold
topology. The first part of the proof of Proposition 2.26 only says that the quasi-distance
d(e, ·) from e is continuous at e (or equivalently by left-invariance, the quasi-distance d(q, ·)
from q is continuous at q for all q ∈ G). In other terms, it only says that a ball Bd(p, r)
contains its center p in its interior. We show in the next proposition that a homogeneous
quasi-distance on a graded group G is continuous on G × G if and only if its spheres are
closed, or equivalently its unit sphere centered at e is closed .

Proposition 2.29 (Continuity of homogeneous quasi-distances). A homogeneous quasi-
distance d on a graded group G is continuous on G × G if and only if its unit sphere
centered at e is closed.

Proof. First, note that a homogeneous quasi-distance d : G×G→ [0,+∞) is continuous on
G×G if and only if the quasi-distance d(e, ·) from e is continuous onG. If d(e, ·) is continuous
on G then its unit sphere Sd(e, 1) := {p ∈ G; d(e, p) = 1} is obviously closed. Conversely
assume that Sd(e, 1) is closed. We already know from the proof of Proposition 2.26 that
d(e, ·) is continuous at e. To prove the continuity of d(e, ·) at an arbitrary point p with p 6= e,
it is sufficient to show that for any sequence (pk) such that d(pk, p) goes to 0, one can extract
a subsequence whose quasi-distance to e converges to d(e, p). Set λk := d(e, pk). We have
λk ≤ C(d(e, p)+d(p, pk)) hence the sequence (λk) is bounded. Up to a subsequence, one can
thus assume that λk converges to some λ ≥ 0. If λ = 0, then λk = d(e, pk) goes to 0, hence
pk converges to e (see Proposition 2.26) and we would have p = e. Since we are considering
p 6= e, we thus have λ > 0. Then ‖δ1/λk(pk)− δ1/λ(p)‖ goes to 0 (remember (2.27) for the
definition of ‖ ·‖), i.e., δ1/λk(pk) converges to δ1/λ(p). Since δ1/λk(pk) ∈ Sd(e, 1) and Sd(e, 1)
is closed we get that δ1/λ(p) ∈ Sd(e, 1). Hence λ = d(e, p) which concludes the proof. �

Remark 2.30. In view of Proposition 2.29, it is easy to construct examples of homogeneous
quasi-distances that are not continuous. In such a case, the unit ball centered at the
identity may or may not be closed. For instance, in R2 equipped with its trivial abelian
stratification, consider the homogeneous quasi-distance d1 whose unit ball centered at the
origin is the union of the Euclidean closed unit disk centered at the origin with the interval
[−2, 2]×{0} (see Example 2.31 below for a characterization of homogeneous quasi-distances
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on graded groups in terms of their unit ball). Its unit sphere at the origin is the union
of two points {(−2, 0), (2, 0)} with the set {(x, y) ∈ R2; x2 + y2 = 1} \ {(1, 0), (−1, 0)},
which is not closed. In this example, the unit ball (and hence any ball) is (are) closed
and sets of the form {p ∈ R2; d1(0, p) < r} are not open. One can also consider the
homogeneous quasi-distance d2 whose unit ball centered at the origin is the Euclidean
closed unit disk centered at the origin minus the segments [−1,−1/2) ∪ (1/2, 1], which is
not closed. Its unit sphere at the origin is the union of two points {(−1/2, 0), (1/2, 0)} with
the set {(x, y) ∈ R2; x2 + y2 = 1} \ {(1, 0), (−1, 0)}, which is not closed as well. However
sets of the form {p ∈ R2; d2(0, p) < r} are open. In both examples, the quasi-distance from
the origin is not continuous at points p ∈ R∗ × {0}.

We conclude this section with a characterization of homogeneous quasi-distances by means
of their unit ball. Together with Proposition 2.29, we get the existence of continuous
quasi-distances on graded groups. Finally, we also recall a characterization of homogeneous
distances by means of their unit ball.

Example 2.31 (Characterization of homogeneous quasi-distances by means of their unit
ball). Let G be a graded group with identity e and with associated dilations (δλ)λ>0. Let
d be a homogeneous quasi-distance on G. By Proposition 2.26, e belongs to the interior of
Bd(e, 1) and Bd(e, 1) is relatively compact. By left-invariance, Bd(e, 1) is symmetric, i.e.,
p ∈ Bd(e, 1) implies p−1 ∈ Bd(e, 1). Finally, it follows from the homogeneity of d that, for
all p ∈ G, the set {λ > 0; δ1/λ(p) ∈ Bd(e, 1)} is a closed subinterval of (0,+∞) (for the
relative topology on (0,+∞)).

Conversely, assume that K is a subset of G that contains e in its interior, K is relatively
compact, symmetric, and such that the set {λ > 0; δ1/λ(p) ∈ K} is a closed subinterval of
(0,+∞) for all p ∈ G. Then

d(p, q) := inf
¶
λ > 0; δ1/λ(p−1 · q) ∈ K

©
defines a homogeneous quasi-distance on G. It is the homogeneous quasi-distance whose
unit ball centered at e is the set K.

For the sake of completeness, we give below a detailed proof of this claim. Although the
general scheme of the proof is a classical one, we stress that some of the arguments use the
topological properties proved in Proposition 2.26. For p ∈ G, we set

I(p) :=
¶
λ > 0; δ1/λ(p) ∈ K

©
and

ρ(p) := inf
¶
λ > 0; δ1/λ(p) ∈ K

©
.

Note that since K contains e in its interior and δ1/λ(p) converges to e when λ goes to +∞,
we have I(p) 6= ∅ and ρ(p) < +∞ for all p ∈ G. Obviously, one has ρ(e) = 0. Conversely let
p ∈ G with p 6= e. Then ‖δ1/λ(p)‖ goes to +∞ when λ goes to 0 (remember (2.27) for the
definition of ‖ · ‖). Since K is relatively compact, and hence bounded with respect to ‖ · ‖,
it follows that δ1/λ(p) 6∈ K for all λ > 0 small enough. Hence ρ(p) 6= 0 and consequently,
we get that

(2.32) ρ(p) = 0 if and only if p = e .
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Next, since K is symmetric, we have I(p) = I(p−1). Hence

(2.33) ρ(p) = ρ(p−1) .

Third, since δλ ◦ δη = δλη for all λ, η > 0, one has I(δλ(p)) = λI(p) for all p ∈ G and all
λ > 0. Hence

(2.34) ρ(δλ(p)) = λρ(p) .

Finally, the fact ρ satisfies the quasi-triangle inequality, i.e., there exists some constant
C > 0 such that

(2.35) ρ(p · q) ≤ C (ρ(p) + ρ(q))

for all p, q ∈ G, follows from the fact that ρ is bi-Lipschitz equivalent to any homoge-
neous quasi-norm on G. Indeed let d0 be a homogeneous quasi-distance on G (remember
that homogeneous quasi-distances on graded groups do exist, see Example 2.25) and set
ρ0(p) := d0(e, p). Since the topology induced by d0 and the manifold topology coincide
(see Proposition 2.26) and since e belongs to the interior of K, there exists η > 0, such
that p ∈ K as soon as ρ0(p) < η. By homogeneity, it follows that 2ρ0(p)/η ∈ I(p) for all
p 6= e. Hence ρ(p) ≤ 2ρ0(p)/η for all p ∈ G. On the other hand, since K is relatively
compact, it is bounded with respect to ρ0 by Proposition 2.26. Hence one can find M > 0
such that ρ0(p) ≤ M for all p ∈ K. It follows that for p 6= e, δ2M/ρ0(p)(p) 6∈ K and hence
ρ0(p)/2M 6∈ I(p). By assumption, I(p) is closed subinterval of (0,+∞). Moreover, since
K contains e in its interior and δ1/λ(p) converges to e when λ goes to +∞, I(p) is an
unbounded closed subinterval of (0,+∞), i.e.,

I(p) = [ρ(p),+∞)

for all p ∈ G with p 6= e. It follows that ρ0(p)/2M ≤ ρ(p) for all p ∈ G. All together we get
that one can find a constant L > 0 such that

L−1ρ0(p) ≤ ρ(p) ≤ L ρ0(p)

for all p ∈ G. Then the fact that ρ0 satisfies the quasi-triangle inequality implies that ρ
satisfies the quasi-triangle inequality as well. This proves (2.35).

All together (2.32), (2.33), (2.34) and (2.35) imply that d is a homogeneous quasi-distance
on G. Finally, one has ρ(p) ≤ 1 if and only if 1 ∈ I(p), i.e., p ∈ K, hence K = Bd(e, 1).

Example 2.36 (Existence of continuous homogeneous quasi-distances on graded groups).
The characterization given in Example 2.31 together with Proposition 2.29 gives an effective
way to construct continuous homogeneous quasi-distances on arbitrary graded groups. In
particular, one can extend Hebisch and Sikora’s construction of Example 2.23. Namely,
following the notations of Example 2.23, we get that, for all R > 0, dR induces a homoge-
neous quasi-distance on an arbitrary graded group. It is the homogeneous quasi-distance
whose unit ball centered at the identity is a Euclidean ball of radius R, using exponential
coordinates of the first kind relative to some basis of the Lie algebra adapted to the positive
grading. Moreover, its unit sphere centered at the identity is a Euclidean sphere of radius
R hence is closed. It follows that dR is continuous.
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Example 2.37 (Characterization of homogeneous distances on homogeneous groups). We
recall here a characterization, already contained in a slightly different form in [HS90], of
homogeneous distances on homogeneous groups in terms of their unit ball. Let G be a
homogeneous group with associated dilations (δλ)λ>0 and with identity element e. If d is a
homogeneous distance on G, then e belongs to the interior of Bd(e, 1), Bd(e, 1) is compact
and symmetric. Since d satisfies the quasi-triangle inequality with a multiplicative constant
C = 1, we have δλ(p) · δ1−λ(q) ∈ Bd(e, 1) for all p, q ∈ Bd(e, 1) and all λ ∈ [0, 1].

Conversely, assume that K is a subset of G that contains e in its interior, K is compact,
symmetric and such that δλ(p) · δ1−λ(q) ∈ K for all p, q ∈ K and all λ ∈ [0, 1]. Then

d(p, q) := inf
¶
λ > 0; δ1/λ(p−1 · q) ∈ K

©
defines a homogeneous distance on G. It is the homogeneous distance whose unit ball
centered at e is the set K. We refer to [HS90] for the proof of the fact that d satisfies the
quasi-triangle inequality with a multiplicative constant C = 1 and to Example 2.31 for all
other properties that must be satisfied by a homogeneous distance.

3. Besicovitch Covering Property

3.1. BCP and WBCP. Recall from the introduction the definition of the Besicovitch
Covering Property in the general quasi-metric setting. See Section 2.5 for the definition
and our conventions about quasi-metric spaces.

Definition 3.1 (Besicovitch Covering Property). Let (X, d) be a quasi-metric space. We
say that (X, d) satisfies the Besicovitch Covering Property (BCP) if there exists a constant
N ≥ 1 such that the following holds. Let A be a bounded subset of X and B be a family
of balls such that each point of A is the center of some ball of B, then there is a finite or
countable subfamily F ⊂ B such that the balls in F cover A, and every point in X belongs
to at most N balls in F , that is,

1lA ≤
∑
B∈F

1lB ≤ N,

where 1lA denotes the characteristic function of the set A.

The Besicovitch Covering Property originates from works of Besicovitch in connection
with the theory of differentiation of measures in Euclidean spaces ([Bes45], [Bes46], see also
Section 6). Finite dimensional normed vector spaces satisfy BCP (see [Fed69, Chapter 2.8])
whereas infinite dimensional normed vector spaces do not satisfy BCP.

Definition 3.1 for BCP is a common and classical one, even though one can find various
variants in the literature. In the Euclidean setting, these variants are equivalent. One of
them, called in the present paper the Weak Besicovitch Covering Property (WBCP), see
Definition 3.3, turns out to be equivalent to BCP in our setting of graded groups equipped
with homogeneous quasi-distances, and more generally for doubling quasi-metric spaces, see
Proposition 3.7. For our purposes, WBCP is actually technically more convenient to work
with.

For the sake of completeness, we discuss in more details in the rest of this section the
relationships between BCP and WBCP, first pointing out that BCP and WBCP may happen
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to be non equivalent for general quasi-metric spaces, see Example 3.4. This might be of
independent interest, and, to our knowledge, cannot be found explicitly written in the
literature. We will next prove that for doubling quasi-metric spaces, and hence for graded
groups equipped with homogeneous quasi-distances, BCP and WBCP are equivalent. We
first introduce some convenient terminology.

Definition 3.2 (Family of Besicovitch balls). Let (X, d) be a quasi-metric space. We say
that a family B := {B = Bd(xB, rB)} of balls in (X, d) is a family of Besicovitch balls if B
is a finite family of balls such that, for all B, B′ ∈ B with B 6= B′, one has xB 6∈ B′, and
for which

⋂
B∈B B 6= ∅.

Definition 3.3 (Weak BCP). Let (X, d) be a quasi-metric space. We say that (X, d)
satisfies the Weak Besicovitch Covering Property (WBCP) if there exists a constant Q ≥ 1
such that CardB ≤ Q for every family B of Besicovitch balls in (X, d).

If (X, d) satisfies BCP, then (X, d) satisfies WBCP. One can indeed take Q = N where N
is given by Definition 3.1. Conversely, as already mentioned, WBCP is in general strictly
weaker than BCP, as the following example shows.

Example 3.4. Here is an example of a metric space that does not satisfy BCP and for
which CardB = 1 for every family B of Besicovitch balls. Let X = {x1, x2, . . . } be a
countable set of points. Let us define d : X ×X → [0,+∞) as follows. We set d(xi, xi) = 0
for all i ≥ 1 and

d(xi, xj) = 1− 1

max(i, j)
for i 6= j .

We first check that d defines a distance on X. The fact that d(x, y) = 0 if and only if
x = y and d(x, y) = d(y, x) are obvious from the definition. To prove the triangle inequality,
let j < i and k ≥ 1 be fixed. If k < i, we have

d(xi, xj) = 1− 1

i
≤ 1− 1

i
+ 1− 1

max(j, k)
= d(xi, xk) + d(xk, xj) .

If i < k, then k ≥ 3, hence i/(i+ 1) ≤ 1 ≤ k/2 and so 1− 1/i ≤ 2(1− 1/k). It follows that

d(xi, xj) = 1− 1

i
≤ 2

Å
1− 1

k

ã
= d(xi, xk) + d(xk, xj) .

Hence d satisfies the triangle inequality.

We claim that BCP does not hold in (X, d). Indeed, set

ri := 1− 1

i
for i = 1, 2, . . .

and let us consider A := {xi; i ≥ 2} and the family B := {Bd(xi, ri); i ≥ 2}. Since
d(xj , xi) = ri for all j < i and d(xj , xi) = rj > ri for j > i, we have

Bd(xi, ri) = {x1, . . . , xi} for i = 2, 3, . . . .

It follows that for any subfamily F ⊂ B whose balls cover the set A, we have

sup{i ≥ 2; Bd(xi, ri) ∈ F} = +∞ ,
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that is, CardF = +∞. On the other hand, x1 ∈ ∩B∈FB. In particular x1 belongs to
infinitely many balls in F which shows that (X, d) does not satisfy BCP.

Let us now check that CardB = 1 for every family B of Besicovitch balls and hence (X, d)
satisfies WBCP. By contradiction, assume that {Bd(xil , ρil)}kl=1 is a family of Besicovitch
balls with k ≥ 2. Assume with no loss of generality that i1 < i2 < · · · < ik. We have
d(xij , xik) = rik and xij 6∈ Bd(xik , ρik) for all j = 1, . . . , k − 1, so rik > ρik . It follows that
d(xik , xl) = max(rik , rl) ≥ rik > ρik for all l 6= ik and thus

Bd(xik , ρik) = {xik} ⊂ X \
k−1⋃
j=1

B(xij , ρij )

which contradicts the fact that ∩kl=1B(xil , ρil) 6= ∅.
Remark 3.5. If (X, d) satisfies WBCP then it satisfies a weak form of BCP that can be
stated as follows. There is a constant N ≥ 1 such that the following holds. Let A be a
bounded subset of X. Let B be a family of balls such that each point of A is the center of
some ball of B and such that either sup{rB; B ∈ B} = +∞ or B ∈ B 7→ rB attains only
an isolated set of values in (0,+∞). Then there is a finite or countable subfamily F ⊂ B
such that the balls in F cover A, and every point in X belongs to at most N balls in F
(see [Pre83]). Note that in Example 3.4, the number 1 is an accumulation point of the set
{ri; i ≥ 2} in (0,+∞).

As already mentioned, for doubling quasi-metric spaces, BCP and WBCP are equivalent.
Let us recall the definition of doubling quasi-metric spaces.

Definition 3.6 (Doubling quasi-metric space). A quasi-metric space (X, d) is said to be
doubling if there is a constant C ≥ 1 such that for each r > 0, each ball in (X, d) with
radius 2r can be covered by a family of at most C balls of radius r.

Proposition 3.7. Let (X, d) be a doubling quasi-metric space. Then (X, d) satisfies BCP
if and only if (X, d) satisfies WBCP.

As a classical fact, graded groups equipped with homogeneous quasi-distances are dou-
bling. The next corollary hence follows.

Corollary 3.8. Let G be a graded group and let d be a homogeneous quasi-distance on G.
Then (G, d) satisfies BCP if and only if (G, d) satisfies WBCP.

For the sake of completeness, we give below a proof of Proposition 3.7. This proof follows
closely the arguments of the proof of Theorem 2.7 in [Mat95] about the validity of BCP in
Euclidean spaces, using the following well-known property of doubling quasi-metric spaces
(see e.g. [LS98] for more details about doubling (quasi-)metric spaces).

Remark 3.9. If (X, d) be a doubling quasi-metric space, then there are constants c ≥ 1 and
s ≥ 0 such that if x ∈ X, r > 0 and λ ≥ 1, the cardinality of every set in Bd(x, λr) whose
points are at least r apart is at most cλs.

Proof of Proposition 3.7. Since any quasi-metric space satisfying BCP also satisfies WBCP,
we only need to prove that (X, d) satisfies BCP when (X, d) is a doubling quasi-metric space
satisfying WBCP.
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Let A be a bounded subset of X and B be a family of balls such that each point of A
is the center of some ball of B. For each x ∈ A choose one ball Bd(x, r(x)) in B. As A is
bounded, we claim that we may assume that

M1 := sup
x∈A

r(x) < +∞ .

Indeed, otherwise pick some point x in A with r(x) ≥ diamA. Then F := {Bd(x, r(x))} is
obviously a subfamily of B which shows that BCP holds in (X, d).

Choose x1 ∈ A with r(x1) ≥M1/2 and then inductively

xj+1 ∈ A \
j⋃
i=1

Bd(xi, r(xi)) with r(xj+1) ≥M1/2

as long as possible. Since A is bounded and points xi’s are at least M1/2 apart, it follows
from Remark 3.9 that the process terminates and we get a finite sequence x1, . . . , xk1 .

Let

M2 := sup{r(x); x ∈ A \
k1⋃
i=1

Bd(xi, r(xi))} ,

and choose

xk1+1 ∈ A \
k1⋃
i=1

Bd(xi, r(xi)) with r(xk1+1) ≥M2/2

and again inductively

xj+1 ∈ A \
j⋃
i=1

Bd(xi, r(xi)) with r(xj+1) ≥M2/2

as long as possible.

Continuing this process we get a finite or infinite increasing sequence of integers 0 =
k0 < k1 < k2 < · · · , a decreasing sequence of positive numbers Mi with 2Mi+1 ≤ Mi,
and a sequence of balls Bi := Bd(xi, r(xi)) ∈ B with the following properties. If Ij :=
{kj−1 + 1, . . . , kj} for j = 1, 2, . . . , then

Mj/2 ≤ r(xi) ≤Mj for i ∈ Ij ,(3.10)

xj+1 ∈ A \
j⋃
i=1

Bi for j = 1, 2, . . . ,(3.11)

xi ∈ A \
⋃
m 6=k

⋃
j∈Im

Bj for i ∈ Ik.(3.12)

The first two properties (3.10) and (3.11) follow from the construction. To prove (3.12),
let m 6= k, i ∈ Ik and j ∈ Im. If m < k, xi 6∈ Bj by (3.11). If k < m, then, by construction
r(xj) < r(xi), and xj 6∈ Bi by (3.11), and so xi 6∈ Bj .

Let us now check that this subfamily of balls satisfies the conditions for BCP to hold. If
the sequence k0, k1, . . . is finite, it follows immediately from the construction that the balls
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Bi’s cover A. If the sequence is infinite, then Mj converges to 0, (3.10) implies that r(xi)
converges to 0, and it follows as well from the construction that

A ⊂
+∞⋃
i=1

Bi .

To verify the other property for the validity of BCP, assume that a point x ∈ X belongs
to p balls Bm1 , . . . , Bmp . Since WBCP holds in (X, d) we have by (3.12) that the indices
mi can belong to at most Q different blocks Ij , where Q is given by Definition 3.3, that is,

Card{j; Ij ∩ {m1, . . . ,mp} 6= ∅} ≤ Q .

To conclude, let us check that

Card(Ij ∩ {m1, . . . ,mp}) ≤M for j = 1, 2, . . .

for some constant M depending only on the doubling constant of (X, d). Let j be fixed.
The points xl, l ∈ Ij ∩ {m1, . . . ,mp}, are at least Mj/2 apart by (3.10) and (3.11) and are
all contained in Bd(x,Mj), and so the claim follows from Remark 3.9. �

Remark 3.13. Note that the subfamily constructed in the previous proof satisfies the follow-
ing additional property: Bd(xi, r(xi)/4)∩Bd(xj , r(xj)/4) = ∅ for all i 6= j. Indeed let i < j.
Then r(xj) ≤ 2r(xi) and xj 6∈ Bi by (3.11), hence d(xj , xi) > r(xi) > r(xi)/4 + r(xj)/4.

3.2. Preserving BCP. Let us first recall that the validity of (W)BCP is not stable under
a biLipschitz change of (quasi-)distance, see Theorem 1.8. More generally, the validity of
(W)BCP might not be stable under natural operations on quasi-metric spaces. See for
instance the example before Theorem 3.16 about product of quasi-metric spaces. The fact
that (W)BCP holds on a quasi-metric space (X, d) depends indeed on the precise shape of
balls in (X, d). We give in this section cases where the validity of (W)BCP is preserved, to
be used later. This might be more generally of independent interest.

We begin with the following simple remark. If d1 and d2 are two quasi-distances on a
space X such that any ball with respect with d2 is a ball with respect to d1, with the same
center but possibly with a different radius, then the validity of (W)BCP in (X, d1) implies
the validity of (W)BCP in (X, d2).

For instance if (W)BCP holds in (X, d), then, for any s > 0, ds defines a quasi-distance
on X and (W)BCP holds on (X, ds). Note that it is well-known that a metric space (X, d)
and its snowflakes (X, ds), 0 < s < 1, have for many over purposes significantly different
properties. For graded groups, we get the following proposition, to be used later.

Proposition 3.14. Let G be a graded group and let d be a homogeneous quasi-distance on
G. Let t > 0. If BCP holds on (G, d) then BCP holds on the t-power of G equipped with

the homogeneous quasi-distance d1/t.

See Example 2.14 for the definition of the t-power of a graded group and Example 2.24
for homogeneous quasi-distances on t-powers.

Another simple remark is the fact that a subset of a quasi-metric space that satisfies
(W)BCP also satisfies (W)BCP when equipped with the restricted quasi-distance. We
state it below for later reference.
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Proposition 3.15. Let (X, dX) be a quasi-metric space. Let Y ⊂ X. If BCP (resp.
WBCP) holds on (X, dX) then BCP (resp. WBCP) holds on (Y, dY ) where dY denotes the
quasi-distance dX restricted to Y .

Given two quasi-metric spaces (X, dX) and (Y, dY ), there are many ways to define quasi-
distances on X × Y . If (X, dX) and (Y, dY ) both satisfy WBCP, then WBCP may fail for
classical choices of quasi-distances on X×Y , as shows the following example. We know that,
for s ≥ 1, R equipped with the snowflake distance ds(x, x

′) := |x′ − x|1/s satisfies WBCP.
Let s > 1, r ≥ 1, and let ds,r be the distance on R × R given by ds,r((x, y), (x′, y′)) :=

(d1(x, x′)r+ds(y, y
′)r)1/r. Then, if r ∈ [1, s), WBCP does not hold on (R×R, ds,r). Indeed,

ds,r is a left-invariant distance on R × R (equipped with the Abelian group law) and is
one-homogeneous with respect to the dilations δλ(x, y) := (λx, λsy). Its unit ball centered

at the origin is given by Bds,r(0, 1) = {(x, y) ∈ R×R; |x′− x|r + |y′− y|r/s ≤ 1}. It follows
from [LR15, Lemma 3.2] that if WBCP holds in (R× R, ds,r), one would have r ≥ s.

However, the following theorem, to be used later, shows that one can always find a quasi-
distance satisfying WBCP on a product of quasi-metric spaces that satisfy WBCP.

Theorem 3.16. Let (X, dX) and (Y, dY ) be two metric spaces. Assume that WBCP holds
in (X, dX) and in (Y, dY ). Then X × Y equipped with the max distance

dX×Y ((x, y), (x′, y′)) := max(dX(x, x′), dY (y, y′))

satisfies WBCP.

Proof. Let Q ∈ N be such that CardF ≤ Q for any family F of Besicovitch balls in
(X, dX) or in (Y, dY ). Let B := {BdX×Y (pi, ri)}Ni=1 be a family of Besicovitch balls in
(X × Y, dX×Y ). Let i, j ∈ {1, · · · , N}, i 6= j and let pi := (xi, yi) and pj := (xj , yj). By
definition of families of Besicovitch balls and by definition of dX×Y , we have dX×Y (pi, pj) =
max(dX(xi, xj), dY (yi, yj)) > max(ri, rj) hence dX(xi, xj) > max(ri, rj) or dY (yi, yj) >
max(ri, rj). In other terms, for any pair of indices (i, j) with i 6= j, we have

(3.17) xi 6∈ BdX (xj , rj) and xj 6∈ BdX (xi, ri)

or

(3.18) yi 6∈ BdY (yj , rj) and yj 6∈ BdY (yi, ri) .

Let us consider the graph Γ with N vertices i = 1, · · · , N and where i is connected to j
if and only if i 6= j and (3.17) holds. Then, for any complete subgraph γ of Γ (a complete
graph is a graph where any two vertices are connected), {BdX (xi, ri)}i∈γ is a family of
Besicovitch balls in (X, dX). Let Γ′ be the complementary graph of Γ, that is, the graph
with the same vertices as Γ and where two vertices are connected in Γ′ if and only if they
are not connected in Γ. Since (3.18) holds whenever (3.17) does not, {BdY (yi, ri)}i∈γ′ is a
family of Besicovitch balls in (Y, dY ) for any complete subgraph γ′ of Γ′.

As a special case of Ramsey’s theorem stated in the language of graph theory, there exists
a function f(k, l) such that for any given graph Γ with N ≥ f(k, l) vertices, then either Γ
contains a complete subgraph of order k or its complementary graph Γ′ contains a complete
subgraph of order l (the order of a complete graph is the number of its vertices). An upper
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bounded for f(k, k) for k ≥ 3 has been proved by P. Erdos and G. Szekeres ([ES35]), namely
f(k, k) < 4k−1.

Going back to the family of Besicovitch balls B, it follows that if the numbers N of
balls in B is larger than 4Q (we may assume with no loss of generality that Q ≥ 2), there
would exist either a family of Besicovitch balls in (X, dX) with cardinality Q+1 or a family
of Besicovitch balls in (Y, dY ) with cardinality Q + 1. This contradicts the fact that by
assumption any family of Besicovitch balls in (X, dX) or in (Y, dY ) has cardinality at most
Q. Hence (X × Y, dX×Y ) satisfies WBCP. �

Submetries, also known as metric submersions, will play a important role in our argu-
ments. They are indeed well adapted tools for our purposes. We first recall the definition.

Definition 3.19 (Submetry). Let (X, dX) and (Y, dY ) be quasi-metric spaces. We say that
π : X → Y is a submetry if π is a surjective map such that π(BdX (p, r)) = BdY (π(p), r) for
all p ∈ X and all r > 0.

We recall the following property of submetries related to WBCP.

Proposition 3.20 ([LR15, Proposition 2.7]). Let (X, dX) and (Y, dY ) be quasi-metric
spaces. Assume that there exists a submetry from (X, dX) onto (Y, dY ). If (X, dX) sat-
isfies WBCP then (Y, dY ) satisfies WBCP.

Proposition 3.20 will be used in the proof of our main results together with Proposi-
tion 3.21 below.

Proposition 3.21. Let Ĝ and G be graded groups with graded Lie algebra ĝ and g respec-
tively. Assume that there exists a surjective morphism of graded Lie algebras φ : ĝ → g.
Let ϕ : Ĝ→ G denote the unique Lie group homomorphism such that ϕ∗ = φ and let d̂ be a
homogeneous distance, respectively a continuous homogeneous quasi-distance, on Ĝ. Then

d(p, q) := d̂(ϕ−1({p}), ϕ−1({q}))
defines a homogeneous distance, respectively a continuous homogeneous quasi-distance, on
G and ϕ : (Ĝ, d̂)→ (G, d) is a submetry.

We stress that continuity of the quasi-distance d̂, which means global continuity on Ĝ×Ĝ,
is necessary in order to get that d is a quasi-distance on G, which turns out to be continuous
on G × G as well, and also in order to get that ϕ : (Ĝ, d̂) → (G, d) is a submetry. Indeed,
consider the homogeneous quasi-distance d2 on R2 given in Remark 2.30, which is not
globally continuos. The projection of Bd2(0, 1) onto the x-axis is the open segment I :=
(−1, 1). If x ∈ R∗, we have {λ > 0, x/λ ∈ I} = (|x|,+∞) which is not a closed subinterval
of (0,+∞). It follows from Example 2.31 that I is not the unit ball of some homogeneous

quasi-distance on R. However, when d̂ is a homogeneous distance, recall that d̂ is continuous
on Ĝ× Ĝ (see Corollary 2.28).

Proof of Proposition 3.21. First, we prove that d defines a quasi-distance on G and that
ϕ : (Ĝ, d̂)→ (G, d) is a submetry. By [LR15, Proposition 2.8], it is sufficient to prove that

for all p, q ∈ G and all p̂ ∈ ϕ−1({p}), one can find q̂ ∈ ϕ−1({q}) such that d(p, q) = d̂(p̂, q̂).
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Set K̂ := Kerϕ. We have ϕ−1({p}) = K̂ · p̂ and k̂ · ϕ−1({q}) = ϕ−1({q}) for all k̂ ∈ K̂. By

left-invariance of d̂, it follows that

d̂(p̂, ϕ−1({q})) = d̂(k̂ · p̂, k̂ · ϕ−1({q}) = d̂(k̂ · p̂, ϕ−1({q})) .

In other words, the function p̂′ ∈ ϕ−1({p}) 7→ d̂(p̂′, ϕ−1({q})) is constant. Hence, by
definition of d, we get

d(p, q) = d̂(p̂, ϕ−1({q})) = inf
q̂∈ϕ−1({q})

d̂(p̂, q̂) .

Bounded sets with respect to d̂ are relatively compact (see Proposition 2.26), the set

ϕ−1({q}) is closed and d̂ is assumed to be continuous, hence one can find q̂ ∈ ϕ−1({q}) such

that d̂(p̂, q̂) = inf q̂′∈ϕ−1({q}) d̂(p̂, q̂′) = d(p, q). This proves that d defines a quasi-distance on

G and that ϕ : (Ĝ, d̂)→ (G, d) is a submetry.

Note that if d̂ satisfies the quasi-triangle inequality with multiplicative constant C, then
d satisfies the quasi-triangle inequality with the same multiplicative constant (see the proof

of [LR15, Proposition 2.8]). In particular if d̂ is a distance on Ĝ then d is a distance on G.

Next, one can easily check that d is homogeneous. This follows from the fact that d̂ is
a homogeneous quasi-distance together with the fact that φ is a surjective morphism of
graded Lie algebra.

To conclude the proof, it remains to prove that d is globally continuous on G × G.
Since d is left-invariant, it is sufficient to prove that d(e, ·) is globally continuous on G.

Here e denotes the identity in G and below ê will denote the identity in Ĝ. Let p ∈
G and let (pk) be a sequence converging to p. First, let p̂k ∈ ϕ−1({pk}) be such that

d(e, pk) = d̂(ê, p̂k). Since the sequence (pk) is relatively compact, it is bounded with respect

to d (see Proposition 2.26). Hence (p̂k) is bounded with respect to d̂ and, once again by
Proposition 2.26, relatively compact. Up to a subsequence, one can thus assume that p̂k
converges to some p̂ ∈ ϕ−1({p}). Since d̂ is continuous, it follows that d̂(ê, p̂k) converges to

d̂(ê, p̂) and one gets

d(e, p) ≤ d̂(ê, p̂) = lim
k→+∞

d̂(ê, p̂k) = lim
k→+∞

d(e, pk) .

Next, let p̂′ ∈ ϕ−1({p}) be such that d(e, p) = d̂(ê, p̂′). Since ϕ = exp ◦φ ◦ exp−1 is an
open map (see [War83, p.104]), one can find a sequence p̂′k ∈ ϕ−1({pk}) converging to p̂′.

Since d̂ is assumed to be continuous, d̂(ê, p̂′k) goes to d̂(ê, p̂′). On the other hand, we have

d(e, pk) ≤ d̂(ê, p̂′k). Hence

lim
k→+∞

d(e, pk) ≤ d̂(ê, p̂′) = d(e, p) .

All together we finally get that limk→+∞ d(e, pk) = d(e, p) which concludes the proof. �

4. Graded groups with commuting different layers

In this section we consider graded groups with commuting different layers, see Defini-
tion 1.1, and we prove the following results.
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Theorem 4.1. Let G be a graded group with commuting different layers. There exist
continuous homogeneous quasi-distances on G for which BCP holds.

Corollary 4.2. Let G be a homogeneous group with commuting different layers. There
exist homogeneous distances on G for which BCP holds.

The proof of Theorem 4.1 and Corollary 4.2 is divided into three steps. First, we con-
sider stratified free-nilpotent Lie groups of step 2. We prove that for such groups, some
homogeneous (quasi-)distances that satisfy BCP are those whose unit ball centered at the
origin coincides with a Euclidean ball centered at the origin in exponential coordinates of
the first kind associated to a canonical choice of basis of the Lie algebra, see Theorem 4.5.
Next, we prove the existence of homogeneous distances satisfying BCP for stratified groups
of step 2, see Theorem 4.24. These homogeneous distances are induced by homogeneous
distances satisfying BCP on stratified free-nilpotent Lie groups of step 2 via submetries.
Finally, the general case follows from Theorem 4.24 together with the structure property
given by Proposition 2.15, and Theorem 3.16, see Section 4.3.

4.1. Free-nilpotent groups of step 2. Let r ≥ 2 be an integer. We denote by Fr2 the
stratified free-nilpotent Lie group of step 2 and rank r whose Lie algebra fr2 is endowed
with a given stratification fr2 = V ⊕W where [V, V ] = W and where

dimV = r , dimW =
r(r − 1)

2
.

We set n := dim fr2. We fix a basis (X1, . . . , Xr) of V and we set Xij := [Xi, Xj ]. Then
(Xij)1≤i<j≤r is a basis ofW . Using exponential coordinates of the first kind associated to the
basis (X1, . . . , Xr, (Xij)1≤i<j≤r) adapted to the given stratification of fr2, we write p ∈ Fr2
as p = exp(

∑r
i=1 piXi+

∑
1≤i<j≤r pijXij) and we identify p with (p1, . . . , pr, (pij)1≤i<j≤r) =

[vp, wp] where vp := (p1, . . . , pr) and wp := (pij)1≤i<j≤r.

The group law is given by vp·q = vp + wq and wp·q = ((p · q)ij)1≤i<j≤r where

(4.3) (p · q)ij = pij + qij +
1

2
(piqj − qipj)

for 1 ≤ i < j ≤ r. The identity element is the origin.

The associated dilations are given by

δλ(p) = (λvp, λ
2wp).

We denote by the same notations ‖ · ‖ and 〈·, ·〉 the Euclidean norm and scalar product in
Rn, Rr and Rn−r with respect to our choice of coordinates. Equivalently, we equip fr2 with a
Euclidean structure for which our chosen basis ((X1, . . . , Xr), (Xij)1≤i<j≤r) is orthonormal
and we consider on V and W the induced Euclidean structures.

For R > 0, we consider the homogeneous quasi-distance d on Fr2 whose unit ball centered
at the origin is given by

(4.4) Bd(0, 1) := {p ∈ Fr2 ; ‖p‖2 ≤ R2} .
Such a quasi-distance is well-defined and is continuous, see Example 2.36 (we drop here
the index R for simplicity of notations). Recall also that it follows from [HS90] (see also
Example 2.23) that d is a distance whenever R < R∗ for some R∗ > 0.
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This section is devoted to the proof of the validity of BCP on Fr2 equipped with such a
quasi-distance.

Theorem 4.5. Let R > 0 be fixed. Let d be the homogeneous quasi-distance on Fr2 whose
unit ball centered at the origin is given by (4.4). Then BCP holds on (Fr2, d).

From now on in this section, we let R > 0 be fixed and d denotes the homogeneous quasi-
distance on Fr2 whose unit ball centered at the origin is given by (4.4). We set B := Bd(0, 1).
We begin with a series of remarks for later use.

First, for p ∈ Fr2, we define the function Ap : Fr2 → R by

(4.6) Ap(q) := ‖q‖2 − 2〈p, q〉+
∑

1≤i<j≤r
(pij − qij)(piqj − qipj) +

1

4
(piqj − qipj)2.

Lemma 4.7. Let p ∈ ∂B. Then q ∈ Bd(p, 1) if and only if Ap(q) ≤ 0.

Proof. Let p ∈ ∂B. We have ‖p‖2 = ‖vp‖2 + ‖wp‖2 = R2 and q ∈ Bd(p, 1) if and only if
‖p−1 · q‖2 = ‖vp−1·q‖2 + ‖wp−1·q‖2 ≤ R2. Then the lemma follows from the specific form of
the group law given in (4.3). �

Next, we denote by ∠(·, ·) the (non-oriented) angle ∈ [0, π] between two vectors in a
Euclidean space. In the proof of Theorem 4.1, we are going to look at points p, q for
which the angles ∠(vp, vq) and ∠(wp, wq) are small. These two angles are dilation invariant.
Namely, we have

(4.8) ∠(vδλ(p), vδλ(q)) = ∠(vp, vq) and ∠(wδλ(p), wδλ(q)) = ∠(wp, wq)

for all p, q ∈ Fr2 and all λ > 0. Note that, on the contrary, the angle ∠(p, q) is not dilation
invariant.

Lemma 4.9. For all ε > 0, there exists δ > 0 such that, for all p, q ∈ Fr2, if ∠(vp, vq) < δ
and ∠(wp, wq) < δ, then

(4.10) |piqj − qipj | ≤ ε‖vp‖‖vq‖

for all 1 ≤ i < j ≤ r,

(4.11) 〈vp, vq〉 ≥ (1− ε)‖vp‖‖vq‖

and

(4.12) 〈wp, wq〉 ≥ (1− ε)‖wp‖‖wq‖ .

Proof. To prove (4.10), note that |piqj−qipj | represents the area of the planar quadrilateral
generated by the 2-dimensional vectors (pi, pj) and (qi, qj). For fixed length of these vectors,
this area goes to zero when the angle between the two vectors goes to zero. This angle is
smaller than ∠(vp, vq), and the length of the two vectors is bounded by ‖vp‖ and ‖vq‖,
respectively. This implies (4.10). To prove (4.11) and (4.12), note that if a and b are two
vectors in a Euclidean space such that ∠(a, b) < π/2, then 〈a, b〉 is positive and represents the
product between ‖a‖ and the norm of the orthogonal projection of b onto a. In particular,
if ∠(a, b) goes to 0, this product converges to ‖a‖‖b‖. �
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Lemma 4.13. Let ε > 0 and p, q ∈ B be such that (4.10), (4.11) and (4.12) hold. Let
Ap(q) be defined by (4.6). Then we have

Ap(q) ≤ ‖vq‖2 + ‖wq‖2 − 2(1− ε)‖vp‖‖vq‖ − 2(1− ε)‖wp‖‖wq‖(4.14)

+ 2r2Rε‖vp‖‖vq‖+
r2

4
ε2R2‖vp‖‖vq‖

≤ ‖vq‖2 + ‖wq‖2 − 2(1− ε)‖vp‖‖vq‖ − 2(1− ε)‖wp‖‖wq‖(4.15)

+ 2r2R2ε‖vq‖+
r2

4
ε2R3‖vq‖ .

Proof. By definition of Ap(q), we have

Ap(q) = ‖vq‖2 + ‖wq‖2 − 2〈vp, vq〉 − 2〈wp, wq〉

+
∑

1≤i<j≤r
(pij − qij)(piqj − qipj) +

1

4
(piqj − qipj)2 .

Then (4.14) and (4.15) follow from (4.10), (4.11) and (4.12) together with the following
simple observations. First, dimW ≤ r2, which is used to bound the number of terms in the
sum. Second, since p, q ∈ B, we have ‖vp‖, ‖wp‖, ‖vq‖, ‖wq‖ ≤ R , which is used to bound
some of the terms. �

Next, we will consider in the proof of Theorem 4.5 the following parabolic regions. For
a > 0, we set

Pa := {p ∈ Fr2 ; R‖wp‖ > a‖vp‖2}.

These regions, as well as their complement, are invariant under dilations. Namely,

(4.16) δλ(Pa) = Pa and δλ(Pca) = Pca
for all a > 0 and all λ > 0.

Lemma 4.17. We have the following bounds.

(i) Let p ∈ B. If p /∈ Pa, then

(4.18) ‖wp‖ ≤
R

2a

Ä√
1 + 4a2 − 1

ä
.

(ii) Let p ∈ ∂B. If p ∈ Pa, then

(4.19) ‖wp‖ ≥
R

2a

Ä√
1 + 4a2 − 1

ä
.

(iii) Let p ∈ ∂B. If p /∈ Pa, then

(4.20) ‖vp‖ ≥
R

a

 √
1 + 4a2 − 1

2
.

Proof of (i). From the assumptions, we have

‖wp‖2 +
R

a
‖wp‖ ≤ ‖wp‖2 + ‖vp‖2 ≤ R2.
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Hence a‖wp‖2 +R‖wp‖ − aR2 ≤ 0 and ‖wp‖ ≥ 0, which is equivalent to

0 ≤ ‖wp‖ ≤
R

2a

Ä
−1 +

√
1 + 4a2

ä
and gives (4.18). �

Proof of (ii). From the assumptions, we have

‖wp‖2 +
R

a
‖wp‖ > ‖wp‖2 + ‖vp‖2 = R2.

Hence a‖wp‖2 +R‖wp‖ − aR2 > 0 and ‖wp‖ ≥ 0, which is equivalent to

‖wp‖ >
R

2a

Ä
−1 +

√
1 + 4a2

ä
and implies (4.19). �

Proof of (iii). From the assumptions, we have

a2

R2
‖vp‖4 + ‖vp‖2 ≥ ‖wp‖2 + ‖vp‖2 = R2.

Hence a2‖vp‖4 +R2‖vp‖2 −R4 ≥ 0, which is equivalent to

‖vp‖2 ≥
R2

2a2

Ä
−1 +

√
1 + 4a2

ä
and gives (4.20). �

To prove Theorem 4.5, we are going to partition Fr2 into three disjointed regions,

Fr2 = Pa′ t (Pa \ Pa′) t Pca ,
for some suitable choice of 0 < a < a′.

The next three lemmas show that, for a suitable choice of 0 < a < a′, if p and q are two
points for which the angles ∠(vp, vq) and ∠(wp, wq) are small and both belong to one of
these regions, then either q ∈ Bd(p, d(0, p)) or p ∈ Bd(q, d(0, q)). We first consider the case
where p, q ∈ Pca.

Lemma 4.21. Let a = 0.9. There exists δ > 0 such that, if p, q ∈ Pca are such that
∠(vp, vq) < δ and ∠(wp, wq) < δ, then q ∈ Bd(p, d(0, p)) or p ∈ Bd(q, d(0, q)).

Proof. The value a has been chosen in such a way that

1 +

√
1 + 4a2 − 1

2
− 2

 √
1 + 4a2 − 1

2a2
< 0.

Hence, we can fix some ε > 0 so that

1 +

√
1 + 4a2 − 1

2
− 2(1− ε)

 √
1 + 4a2 − 1

2a2
+ 2r2Rε+

r2

4
ε2R2 < 0 .

Let p, q ∈ Pca. Assume that ∠(vp, vq) < δ and ∠(wp, wq) < δ where δ > 0 is given by
Lemma 4.9, i.e., is such that (4.10), (4.11), and (4.12) hold for our choice of ε. Using
dilations together with (4.8) and (4.16), and exchanging the role of p and q if necessary, one
can assume with no loss of generality that p ∈ ∂B and q ∈ B.
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Then let us prove that q ∈ Bd(p, 1). By Lemma 4.7, this is equivalent to Ap(q) ≤ 0.
By (4.15), we have

Ap(q) ≤ ‖vq‖2 + ‖wq‖2 − 2(1− ε)‖vp‖‖vq‖ − 2(1− ε)‖wp‖‖wq‖

+ 2r2R2ε‖vq‖+
r2

4
ε2R3‖vq‖ .

To bound the 1st term, we use that ‖vq‖ ≤ R since q ∈ B. To bound the 2nd one, we use

that q /∈ Pa both through (4.18) and the fact that ‖wq‖ <
a

R
‖vq‖2 ≤ a‖vq‖. In the 3rd

term, we use that p /∈ Pa through (4.20). Since the 4th term is non positive, we get

Ap(q) ≤ R‖vq‖+
R

2a
(
√

1 + 4a2 − 1)a‖vq‖ − 2(1− ε)R
a

 √
1 + 4a2 − 1

2
‖vq‖

+ 2r2R2ε‖vq‖+
r2

4
ε2R3‖vq‖

= R‖vq‖

Ñ
1 +

√
1 + 4a2 − 1

2
− 2(1− ε)

 √
1 + 4a2 − 1

2a2
+ 2r2Rε+

r2

4
ε2R2

é
≤ 0

by the choice of ε. �

Next, we consider the case where p, q ∈ Pa′ .

Lemma 4.22. Let a′ = 1.9. There exists δ > 0 such that if p, q ∈ Pa′ are such that
∠(vp, vq) < δ and ∠(wp, wq) < δ, then q ∈ Bd(p, d(0, p)) or p ∈ Bd(q, d(0, q)).

Proof. The value a′ has been chosen in such a way that

1

a′
+ 1−

√
1 + 4a′2 − 1

a′
< 0 .

Hence, we can fix some ε > 0 so that

1

a′
+ 1− (1− ε)

√
1 + 4a′2 − 1

a′
< 0

and

−2(1− ε) + 2r2Rε+
r2

4
ε2R2 < 0 .

Let p, q ∈ Pa′ . Assume that ∠(vp, vq) < δ and ∠(wp, wq) < δ where δ > 0 is given by
Lemma 4.9, i.e., is such that (4.10), (4.11), and (4.12) hold for our choice of ε. Arguing as
in the proof of Lemma 4.21, one can assume with no loss of generality that p ∈ ∂B and
q ∈ B.

Let us prove that q ∈ Bd(p, 1). By Lemma 4.7, this is equivalent to Ap(q) ≤ 0. By (4.14),
we have

Ap(q) ≤ ‖vq‖2 + ‖wq‖2 − 2(1− ε)‖vp‖‖vq‖ − 2(1− ε)‖wp‖‖wq‖

+ 2r2Rε‖vp‖‖vq‖+
r2

4
ε2R2‖vp‖‖vq‖ .
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To bound the 1st term, we use that q ∈ Pa′ , i.e., ‖vq‖2 <
R

a′
‖wq‖. To bound the 2nd one,

we use that ‖wq‖ ≤ R since q ∈ B. In the 4th term, we use that p ∈ Pa′ through (4.19).
This gives

Ap(q) ≤
R

a′
‖wq‖+R‖wq‖ − 2(1− ε)‖vp‖‖vq‖ − 2(1− ε) R

2a′

Ä√
1 + 4a′2 − 1

ä
‖wq‖

+ 2r2Rε‖vp‖‖vq‖+
r2

4
ε2R2‖vp‖‖vq‖

= R‖wq‖
Ç

1

a′
+ 1− (1− ε)

√
1 + 4a′2 − 1

a′

å
+ ‖vp‖‖vq‖

Ç
−2(1− ε) + 2r2Rε+

r2

4
ε2R2

å
≤ 0

by the choice of ε. �

Finally, we consider the case where p, q ∈ Pa \ Pa′ .

Lemma 4.23. Let a = 0.9 and a′ = 1.9. There exists δ > 0 such that if p, q ∈ Pa \ Pa′ are
such that ∠(vp, vq) < δ and ∠(wp, wq) < δ, then q ∈ Bd(p, d(0, p)) or p ∈ Bd(q, d(0, q)).

Proof. The values of a and a′ have been chosen in such a way that

1

2
+

√
1 + 4a′2 − 1

4
− 2

a′

 √
1 + 4a′2 − 1

2
< 0

and
1

2a
+

1

2
−
√

4a2 + 1− 1

a
< 0 .

Hence, we can fix some ε > 0 so that

1

2
+

√
1 + 4a′2 − 1

4
− 2(1− ε) 1

a′

 √
1 + 4a′2 − 1

2
+ 2r2Rε+

r2

4
ε2R2 < 0

and
1

2a
+

1

2
− (1− ε)

√
4a2 + 1− 1

a
< 0 .

Let p, q ∈ Pa \ Pa′ . Assume that ∠(vp, vq) < δ and ∠(wp, wq) < δ where δ > 0 is given
by Lemma 4.9, i.e., is such that (4.10), (4.11), and (4.12) hold for our choice of ε. Arguing
as in the proof of Lemma 4.21, one can assume with no loss of generality that p ∈ ∂B and
q ∈ B.

Let us prove that q ∈ Bd(p, 1). By Lemma 4.7, this is equivalent to Ap(q) ≤ 0. By (4.15),
we have

Ap(q) ≤
1

2
‖vq‖2 +

1

2
‖vq‖2 +

1

2
‖wq‖2 +

1

2
‖wq‖2 − 2(1− ε)‖vp‖‖vq‖

− 2(1− ε)‖wp‖‖wq‖+ 2r2R2ε‖vq‖+
r2

4
ε2R3‖vq‖ .



34 ENRICO LE DONNE AND SÉVERINE RIGOT

To bound the 1st term, we use that q ∈ Pa, i.e., ‖vq‖2 <
R

a
‖wq‖. To bound the 2nd term,

we use that q ∈ B, hence ‖vq‖ ≤ R. To bound the 3rd term, we use that q 6∈ Pa′ through

both (4.18) and the fact that ‖wq‖ <
a′

R
‖vq‖2 ≤ a′‖vq‖. In the 4th one, we use that q ∈ B,

hence ‖wq‖ ≤ R. In the 5th term, we use that p /∈ Pa′ through (4.20) and in the 6th one
we use that p ∈ Pa through (4.19). This gives

Ap(q) ≤
R

2a
‖wq‖+

R

2
‖vq‖+

R

4a′
(
√

1 + 4a′2 − 1)a′‖vq‖+
R

2
‖wq‖

− 2(1− ε)R
a′

 √
1 + 4a′2 − 1

2
‖vq‖ − 2(1− ε) R

2a
(
√

4a2 + 1− 1)‖wq‖

+ 2r2R2ε‖vq‖+
r2

4
ε2R3‖vq‖

= R‖vq‖

Ñ
1

2
+

√
1 + 4a′2 − 1

4
− 2(1− ε) 1

a′

 √
1 + 4a′2 − 1

2
+ 2r2Rε+

r2

4
ε2R2

é
+R‖wq‖

Ç
1

2a
+

1

2
− (1− ε)

√
4a2 + 1− 1

a

å
≤ 0

by the choice of ε. �

We are now going to conclude the proof of Theorem 4.5.

Proof of Theorem 4.5. Let a = 0.9, a′ = 1.9 and let δ > 0 be small enough so that Lem-
mas 4.21, 4.22 and 4.23 hold. Let N be an upper bound of the maximum number of vectors
in a max(r, n−r)-dimensional Euclidean space that pairwise make an angle larger than δ/2.
Such a bound exists and is finite by compactness of finite dimensional Euclidean spheres.

We are going to prove that a family of Besicovitch balls in (Fr2, d) cannot have a cardi-
nality larger than 3N2. This will imply that WBCP, and hence BCP by Corollary 3.8, holds
in (Fr2, d). Let {Bd(pi, ri)}i∈I be a family of Besicovitch balls. Using left-translations and
shrinking balls if necessary, one can assume with no loss of generality that 0 ∈ ∩i∈IBd(pi, ri)
and ri = d(0, pi) for all i ∈ I. If Card I > 3N2, by the pigeonhole principle one can find
I1 ⊆ I with Card I1 ≥ Card I/N > 3N such that ∠(vpi , vpj ) < δ for all i, j ∈ I1. Then, once
again by the pigeonhole principle, one can find I2 ⊆ I1 with Card I2 ≥ Card I1/N > 3 such
that ∠(wpi , wpj ) < δ for all i, j ∈ I2. Finally, there exists at least 2 distinct points pi and
pj with i, j ∈ I2 that both belong either to Pa′ , or Pa \ Pa′ or Pca. Then Lemmas 4.21, 4.22
and 4.23, lead to a contradiction since by definition of a family of Besicovitch balls, we have
pi /∈ Bd(pj , rj) = Bd(pj , d(0, pj)) for all i 6= j ∈ I. �

4.2. Stratified groups of step 2. This section is devoted to the proof of Corollary 4.2 in
the case of stratified groups of step 2 as restated below.

Theorem 4.24. Let G be a stratified group of step 2. There exist homogeneous distances
on G for which BCP holds.
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Proof. Let G be a stratified group of step 2 and rank r whose Lie algebra is endowed
with a given stratification g = V1 ⊕ V2. Let (Y1, . . . , Yr) be a basis of V1. Let Fr2 be
the free-nilpotent Lie group of step 2 and rank r. With the conventions and notations of
Section 4.1, let φ : fr2 → g denote the unique morphism of graded Lie algebras such that
φ(Xi) = Yi for i = 1, . . . , r, which is surjective. Let ϕ : Fr2 → G denote the unique Lie
group homomorphism such that ϕ∗ = φ. Let d be a homogeneous distance on Fr2 for which
BCP holds. Such distances exist by Theorem 4.5 and [HS90] (see also Example 2.23). Recall
also that homogeneous distances are continuous. It follows from Proposition 3.21 that

(4.25) dG(p, q) := d(ϕ−1({p}), ϕ−1({q})

defines a homogeneous distance on G and ϕ : (Fr2, d)→ (G, dG) is a submetry. To conclude
the proof, the fact that WBCP holds on (G, dG) follows from Proposition 3.20. Hence BCP
holds on (G, dG) by Corollary 3.8. �

Remark 4.26. More generally, arguing as in the proof of Theorem 4.24, one gets that, if d
is a continuous homogeneous quasi-distance satisfying BCP on Fr2, then (4.25) defines a
continuous homogeneous quasi-distance for which BCP holds on the stratified group G of
step 2 and rank r. In particular all homogeneous quasi-distances on Fr2 whose unit ball
centered at the origin are given by (4.4) are continuous and hence induce on G continuous
homogeneous quasi-distances for which BCP holds.

Remark 4.27. It can be checked that if d is a homogeneous quasi-distance on Fr2 whose
unit ball centered at the origin is given by (4.4) for some R > 0, then the unit ball centered
at the origin for the quasi-distance dG given by (4.25) on the stratified group G of step 2
can be described as a Euclidean ball centered at the origin in exponential coordinates of
the first kind relative to a suitable choice of basis of g adapted to its stratification. More
precisely, one can find a basis (Z1, . . . , Zr) of V1 and a basis (Zr+1, . . . , Zn) of V2 such that,
in exponential coordinates of the first kind relative to the basis (Z1, . . . , Zn) of g, we have

BdG(0, 1) = {p ∈ G;
n∑
i=1

p2
i ≤ R2} .

One can reasonably expect that for any choice of basis of g adapted to its stratification,
homogeneous quasi-distances on G whose unit ball centered at the origin is a Euclidean
ball in exponential coordinates of the first kind relative to the chosen basis satisfy BCP.
This would require technical modifications of our arguments and we do not wish here to go
further about these technicalities.

4.3. Arbitrary groups with commuting different layers. We conclude in this section
the proof of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1 and Corollary 4.2. LetG be a graded group with commuting different
layers. By Proposition 2.15, G can be written as a direct product of powers of stratified
groups of step ≤ 2.

For an Abelian Lie group with trivial associated positive grading (i.e., stratified of step 1),
the Euclidean distance (and more generally any distance induced by a norm) is a homoge-
neous distance that satisfies BCP. For a stratified group of step 2, we know by Theorem 4.24
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that there exist homogeneous distances that satisfy BCP. Next, if d is a homogeneous dis-
tance for which BCP holds on a graded group, then d1/t is a homogeneous quasi-distance
on its t-power (see Example 2.24) that satisfies BCP by Proposition 3.14. In addition,

since d is a distance, it is continuous (see Corollary 2.28), and hence d1/t is a continuous
quasi-distance.

Hence, on each factor of the decomposition of G, there exist continuous homogeneous
quasi-distances for which BCP, and hence WBCP, holds. Then Theorem 4.1 follows from
Theorem 3.16.

Note that if G is a homogeneous group, all t-powers in its decomposition as a direct
product are t-powers with t ≥ 1. This implies the existence of homogeneous distances on
G for which BCP holds and proves Corollary 4.2. �

5. Graded groups with two different layers not commuting

In this section we consider graded groups for which there are two different layers of the
associated positive grading of their Lie algebra that do not commute, and we consider a
more general class of quasi-distances defined as follows.

Definition 5.1 (Self-similar quasi-distances on graded groups). Let G be a graded group
with associated dilations (δλ)λ>0. We say that a quasi-distance d on G is self-similar if it is
left-invariant and one-homogeneous with respect to some non-trivial dilation, i.e., if there
exists λ > 0, λ 6= 1, such that d(δλ(p), δλ(q)) = λd(p, q) for all p, q ∈ G.

Note that d(δλ(p), δλ(q)) = λd(p, q) implies d(δλk(p), δλk(q)) = λkd(p, q) for all k ∈ Z. In
particular, the previous definition is equivalent to the existence of some 0 < λ < 1 such
that d(δλk(p), δλk(q)) = λkd(p, q) for all p, q ∈ G and all k ∈ Z.

We prove the following result.

Theorem 5.2. Let G be a graded group and let ⊕t>0Vt be the associated positive grading
of its Lie algebra. Assume that [Vt, Vs] 6= {0} for some t 6= s. Let d be a self-similar quasi-
distance on G that is continuous with respect to the manifold topology. Then WBCP, and
hence BCP, does not hold in (G, d).

Remark 5.3. Although we will not use it here, it can be noticed that self-similar quasi-
distances on graded groups are doubling, hence BCP and WBCP are equivalent in this
context (see Proposition 3.7).

Since homogeneous quasi-distances are in particular self-similar, we get the following
corollary.

Corollary 5.4. Let G be a graded group whose associated positive grading of its Lie algebra
is given by ⊕t>0Vt. Assume that [Vt, Vs] 6= {0} for some t 6= s. Let d be a continuous
homogeneous quasi-distance on G. Then BCP does not hold in (G, d).

Homogeneous distances on homogeneous groups are continuous with respect to the man-
ifold topology, recall Corollary 2.28. Hence, in such a case, one can drop the continuity
assumption and we get the following corollary.
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Corollary 5.5. Let G be a homogeneous group whose associated positive grading of its
Lie algebra is given by ⊕t≥1Vt. Assume that [Vt, Vs] 6= {0} for some t 6= s. Let d be a
homogeneous distance on G. Then BCP does not hold in (G, d).

The proof of Theorem 5.2 is divided into two steps. First, we prove that there does not
exist continuous self-similar quasi-distances that satisfy WBCP on the non-standard Heisen-
berg groups, see Theorem 5.6. Next, we deduce Theorem 5.2 from Theorem 5.6 together
with Proposition 2.18 and the use of submetries via a generalization of Proposition 3.21 to
continuous self-similar distances, see Proposition 5.26. Let us stress that one of the main
differences between homogeneous and self-similar quasi-distances are topological issues that
we will explain in Section 5.3.

5.1. Non-standard Heisenberg groups. This section is devoted to the proof of Theo-
rem 5.6 below. To simplify notations, we denote here by h the first Heisenberg Lie algebra,
by (X,Y, Z) a standard basis of h, and by H the first Heisenberg group. Recall from Exam-
ple 2.11 that for α > 1, H is called the non-standard Heisenberg group of exponent α when
considered as a graded group whose Lie algebra is endowed with the non-standard grading
of exponent α, i.e., the grading given by h = W1 ⊕Wα ⊕Wα+1 where W1 := span{X},
Wα := span{Y }, Wα+1 := span{Z}, and where the only non-trivial bracket relation is
[X,Y ] = Z.

Theorem 5.6. Let α > 1. There does not exist continuous self-similar quasi-distances for
which WBCP holds on the non-standard Heisenberg group of exponent α.

In this statement, continuity of self-similar quasi-distances means continuity with respect
to the manifold topology. We refer to Section 5.3 for the study of topological properties of
self-similar quasi-distances.

From now on in this section, we fix α > 1. Following Example 2.11, we use exponential
coordinates of the first kind, we write p ∈ H as p = exp(xX + yY + zZ) and we identify p
with (x, y, z). Recall that dilations (δλ)λ>0 relative to the non-standard grading of exponent
α are given by

(5.7) δλ(x, y, z) = (λx, λαy, λα+1z) .

To prove Theorem 5.6, we argue by contradiction. We let d be a self-similar quasi-distance
on the non-standard Heisenberg group of exponent α. Hence d is left-invariant and, for some
fixed 0 < ρ < 1, we have

(5.8) d(δρk(p), δρk(q)) = ρk d(p, q)

for all p, q ∈ H and all k ∈ Z.

Next, we assume that d is continuous on H × H with respect to the manifold topology.
We set B := Bd(0, 1). The continuity of d implies in particular that B is closed and that
its boundary ∂B is given by ∂B = {p ∈ H; d(0, p) = 1}.

Finally, arguing by contradiction, we assume that WBCP holds on (H, d).

To get a contradiction, we first prove a series of lemmas, Lemma 5.9 to Lemma 5.22
below. The final conclusion will follow from these lemmas and is given at the end of this
section.
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First, the assumption about the validity of WBCP has the following consequence.

Lemma 5.9. For all p ∈ B and all λ > 0, there exists 0 < λ < λ such that p · δλ(p−1) ∈ B.

Proof. We first prove that for all p ∈ ∂B, there exist arbitrarily large values of j such that
d(p, δρj (p)) ≤ 1. By contradiction, assume that one can find p ∈ ∂B and k ≥ 0 such that

d(p, δρj (p)) > 1 for all j ≥ k. For l ≥ 0, set rl := ρlk and ql := δrl(p). We have d(0, ql) = rl
by (5.8) hence 0 ∈ ∩l≥0Bd(ql, rl). We also have

d(qj , ql) = d(δrj (p), δrl(p)) = rj d(p, δρ(l−j)k(p)) > rj = max(rj , rl)

for all 0 ≤ j < l. Hence qj 6∈ Bd(ql, rl) for all j 6= l. It follows that for all finite set J ⊂ N,
{Bd(qj , rj)}j∈J is a family of Besicovitch balls, which contradicts the validity of WBCP in
(H, d).

To conclude the proof, let p ∈ ∂B. Then p−1 ∈ ∂B by left-invariance of d and it follows
that d(p−1, δρj (p

−1)) ≤ 1 for arbitrarily large values of j. Hence, by left-invariance of d, we

get that p · δλ(p−1) ∈ B for arbitrarily small values of λ. If p belongs to the interior of B,
the claim follows from the continuity of the map λ 7→ p · δλ(p−1). �

As a consequence of Lemma 5.9, we prove in Lemma 5.10 a geometric property of the
unit ball B. Namely, starting at a point p ∈ ∂B with xp 6= 0, there is segment that is all
contained in B. This segment is a part of the flow line of the vector field −X starting at
p ∈ ∂B.

Lemma 5.10. For all p = (xp, yp, zp) ∈ ∂B with xp 6= 0, the segment

σ̂p :=

ßÅ
(1− t)xp, yp, zp + t

xpyp
2

ã
; t ∈ [0, 1]

™
is contained in B.

Proof. The segment σ̂p is a part of the flow line of the vector field −X. For technical
convenience, we will thus use in this proof exponential coordinates of the second kind
in which X is a constant vector field. Namely, for p ∈ H, we write p = exp(x3(p)Z) ·
exp(x2(p)Y ) ·exp(x1(p)X) and we identify p with [x1(p), x2(p), x3(p)]. The relation between
exponential coordinates of the second kind [x1(p), x2(p), x3(p)] and exponential coordinates
of the first kind (xp, yp, zp) when p is written as exp(xpX + ypY + zpZ) (which are used
elsewhere in this section) is given by x1(p) = xp, x2(p) = yp and x3(p) = zp + xpyp/2. In
exponential coordinates of the second kind, the group law is given by

x1(p · p′) = x1(p) + x1(p′)

x2(p · p′) = x2(p) + x2(p′)

x3(p · p′) = x3(p) + x3(p′) + x1(p)x2(p′) ,

the vector field X is the constant vector field X = ∂x1 , and the segment σ̂p writes as

σ̂p = {[(1− t)x1(p), x2(p), x3(p)]; t ∈ [0, 1]} .

Let θ ∈ (0, π/2) be fixed. For p = [x1(p), x2(p), x3(p)] with x1(p) > 0, we define Cp,θ
as the portion of the half-cone with vertex p, axis {exp(−x1X); x1 ≥ 0} and aperture 2θ
contained in the half space {x1 ≥ 0}. If p = [x1(p), x2(p), x3(p)] with x1(p) < 0, then Cp,θ is
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defined as the portion of the half-cone with vertex p, axis {exp(x1X);x1 ≥ 0} and aperture
2θ contained in the half space {x1 ≤ 0}. Namely, if x1(p) > 0,

Cp,θ := {[x1, x2, x3] ∈ H; 0 ≤ x1 ≤ x1(p) and

((x2 − x2(p))2 + (x3 − x3(p))2)1/2 ≤ (x1(p)− x1) tan θ}

and, if x1(p) < 0,

Cp,θ := {[x1, x2, x3] ∈ H; x1(p) ≤ x1 ≤ 0 and

((x2 − x2(p))2 + (x3 − x3(p))2)1/2 ≤ (x1 − x1(p)) tan θ} .

For p ∈ H, we set
γp(λ) := p · δλ(p−1) .

Noting that, in exponential coordinates of the second kind, p−1 = [−x1(p),−x2(p),−x3(p)+
x1(p)x2(p)], we have

(5.11)


x1(γp(λ)) = (1− λ)x1(p)

x2(γp(λ)) = (1− λα)x2(p)

x3(γp(λ)) = (1− λα+1)x3(p) + (λα+1 − λα)x1(p)x2(p) .

If x1(p) 6= 0, we get
d

dλ
γp(λ)|λ=0 = −x1(p)X

hence γp(λ) ∈ Cp,θ for all λ ≥ 0 small enough. Since Cq,θ ⊂ Cp,θ for all q ∈ Cp,θ with
x1(q) 6= 0, it follows that, for all q ∈ Cp,θ with x1(q) 6= 0,

(5.12) γq(λ) ∈ Cp,θ for all λ ≥ 0 small enough.

For p ∈ H with x1(p) 6= 0 and θ ∈ (0, π/2) fixed, one can find Lp,θ > 0 such that all
curves (γq(λ))λ∈[0,1] for q ∈ Cp,θ are Lp,θ-Lipschitz. This can be easily checked from the
explicit expression of γq(λ), see (5.11).

For t ∈ [0, 1], we define Ep,θ(t) as the intersection of Cp,θ with the two dimensional plane
{[x1, x2, x3] ∈ H;x1 = (1− t)x1(p)},

Ep,θ(t) := Cp,θ ∩ {[x1, x2, x3] ∈ H; x1 = (1− t)x1(p)} .

Let p ∈ ∂B with x1(p) 6= 0, s ∈ (0, 1) and θ ∈ (0, π/2) be fixed. We first prove that

Ep,θ(s) ∩B 6= ∅ .
We set L := (1− s)−1Lp,θ and

I := {t ∈ [0, s]; ∃ γ : [0, t]→ Cp,θ L− Lipschitz, γ(0) = p, γ(t) ∈ Ep,θ(t) ∩B} ,
and we actually prove that s ∈ I from which the claim follows.

First, 0 ∈ I hence I is nonempty. Second, Cp,θ and Ep,θ(t) ∩ B being closed, I is closed
by Ascoli-Arzelà Theorem. Hence sup I ∈ I. By contradiction, assume that t := sup I < s.
Since t ∈ I, one can find a L-Lipschitz curve γ : [0, t] → Cp,θ such that γ(0) = p and
γ(t) ∈ Ep,θ(t) ∩ B. Set q := γ(t). Since q ∈ Cp,θ with x1(q) 6= 0, it follows from (5.12)
that γq(λ) ∈ Cp,θ for all λ ≥ 0 small enough. Since q ∈ B, it follows from Lemma 5.9 that
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γq(λ) ∈ B for arbitrarily small positive values of λ. Hence, one can find λ > 0 such that

γq(λ) ∈ Cp,θ for all 0 ≤ λ ≤ λ and γq(λ) ∈ B. It follows that one can find η > 0 such that
the curve c defined on [0, t+ η] byc(u) := γ(u) if u ∈ [0, t]

c(u) := γq

Å
u− t
1− t

ã
if u ∈ [t, t+ η]

satisfies c([0, t + η]) ⊂ Cp,θ and c(t + η) ∈ B. Since γq is Lp,θ-Lipschitz, c is (1 − t)−1Lp,θ-
Lipschitz, and hence L-Lipschitz, on [t, t+η]. Finally, by definition of γq (recall (5.11)) and
since x1(q) = (1− t)x1(p), we have

x1(c(t+ η)) =

Å
1− η

1− t

ã
x1(q) = (1− (t+ η)) x1(p)

and hence c(t+ η) ∈ Ep,θ(t+ η). This shows that t+ η ∈ I, which gives a contradiction.

Hence, for p ∈ ∂B with x1(p) 6= 0 and s ∈ (0, 1), we have Ep,θ(s) ∩ B 6= ∅ for all θ ∈
(0, π/2). Letting θ ↓ 0 and since B is closed, it follows that [(1− s)x1(p), x2(p), x3(p)] ∈ B
for all s ∈ (0, 1). Using once again the fact that B is closed, we finally get that the closed
segment σ̂p is contained in B as wanted. �

Lemma 5.13 to Lemma 5.20 below are successive consequences of Lemma 5.10. In addition
to Lemma 5.10, the only properties used to prove these lemmas are the left-invariance of
the quasi-distance d and topological properties of the unit ball B.

Lemma 5.13. For all p = (xp, yp, zp) ∈ ∂B with xp 6= 0, the segment

σp :=

ßÅ
(1− t)xp, yp, zp − t

xpyp
2

ã
; t ∈ [0, 1]

™
is contained in B.

Proof. By left-invariance of d, we have q−1 ∈ B for all q ∈ B. Then it follows from
Lemma 5.10 that for p ∈ ∂B with xp 6= 0, σp = (σ̂p−1)−1 ⊂ B. �

Given p = (0, yp, zp) ∈ H and w > 0, we set

D(p, w) := {(−t, yp, zp − tw + u); t ≥ 0, u ≥ 0} .

It is the two dimensional region in the plane {y = yp} above the half-line starting at p with
direction (−1, 0,−w).

Lemma 5.14. Let y > 0 be such that (0, y, z) ∈ B for some z > 0. Set z := max(z >
0; (0, y, z) ∈ B) and p := (0, y, z). Then p ∈ ∂B and for all 0 < w < y/2, we have

(5.15) D(p, w) ∩B = {p} .

Proof. By contradiction, assume that there is some point q ∈ D(p, w)∩B with q 6= p. Then,
by definition of D(p, w), we have q = (−t, y, z − tw + u) for some u, t ≥ 0. Since q 6= p
and by choice of z, we have t > 0 and hence xq = −t 6= 0. By Lemma 5.13, it follows that
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σq ⊂ B. In particular, the end point (0, y, z− tw+ u+ ty/2) of σq belongs to B. By choice
of z, we must then have −tw + u+ ty/2 ≤ 0, and hence

t

Å
w − y

2

ã
≥ u ≥ 0 .

This contradicts the assumption 0 < w < y/2 and concludes the proof. �

Given p = (0, yp, zp) ∈ H with yp, zp > 0 and v > 0, we set

S(p, v) := {(0, (1− s)yp, zp + sv + u) ; s ∈ [0, 1], u ≥ 0} .
It is the two dimensional region in the plane {x = 0} above the segment from the z-axis to
p with slope −v/yp.

Lemma 5.16. There exist p = (0, yp, zp) ∈ ∂B with yp, zp > 0 and v > 0 such that

S(p, v) ∩B = {p}
and such that, for all 0 ≤ y ≤ yp, (0, y, z) ∈ B for some z > 0.

Proof. The only property of the unit ball B used in this proof is the fact that B is a compact
neighborhood of the origin. Let p0 = (0, y0, z0) with y0, z0 > 0 be a point in the interior
of B such that (0, y, z) ∈ B for all 0 ≤ y ≤ y0 and all 0 ≤ z ≤ z0. For q = (0, yq, zq) with
yq, zq > 0, let

I(q) := {(0, y, zq); 0 ≤ y ≤ yq}
denote the horizontal segment from the z-axis to q and let

I+(q) := {(0, y, zq + u); 0 ≤ y ≤ yq, u > 0}
denote the two dimensional infinite rectangular strip strictly above I(q) in the plane {x = 0}.
Set

z := inf{z > z0; I+((0, y0, z)) ∩B = ∅} .
Since B is bounded and p0 belongs to the interior of B, we have z0 < z < +∞. We set
q := (0, y0, z). We have I+(q) ∩B = ∅ and, since B is closed, I(q) ∩B 6= ∅.

If there is some point p = (0, yp, z) ∈ I(q) ∩B with yp > 0, then, for any v > 0, we have
S(p, v) \ {p} ⊂ I+(q) hence S(p, v) ∩B = {p}. Note that p ∈ ∂B.

Otherwise I(q) ∩B = {(0, 0, z)}. For q = (0, y0, zq) with zq > 0, let

J(q) := {(0, (1− t)y0, zq + t(z − z0); t ∈ [0, 1]}
denote the segment in the plane {x = 0} from the z-axis to q with slope −(z − z0)/y0 and
let

J+(q) := {(0, (1− t)y0, zq + t(z − z0) + u; t ∈ [0, 1], u > 0}
the two dimensional region strictly above J(q) in the plane {x = 0}. Set

ẑ := inf{z > z0; J+((0, y0, z)) ∩B = ∅} .
Arguing as above, we have z0 < ẑ ≤ z. We set q̂ := (0, y0, ẑ). We have J+(q̂) ∩ B = ∅ and
J(q̂) ∩B 6= ∅. Since ẑ − z0 > 0, J(q̂) meets the z-axis at (0, 0, z + ẑ − z0) which belongs to
I+(q). Hence it cannot belong to B and there is some point p = (0, yp, zp) ∈ J(q̂) ∩B with
yp > 0. Note that zp > 0 and that p belongs to ∂B. Then for any v > (z − z0)yp/y0, we
have S(p, v) \ {p} ⊂ J+(q̂) hence S(p, v) ∩B = {p}.
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Finally, in both cases, we have yp ≤ y0. Then, for all 0 ≤ y ≤ yp, we have 0 ≤ y ≤ y0

and, by choice of p0, we get that (0, y, z) ∈ B for all 0 ≤ z ≤ z0. In particular, (0, y, z) ∈ B
for some z > 0, which concludes the proof. �

Lemma 5.17 below is a consequence of Lemma 5.14 together with Lemma 5.16. Given
p = (0, yp, zp) ∈ H with yp, zp > 0 and v > 0, we set

R(p, v) :=

®Ç
−t, (1− s)yp, zp + sv − t(1− s)yp

4
+ u

å
; u, t ≥ 0, s ∈ [0, 1)

´
.

It is the three dimensional region obtained by the following union. For s ∈ [0, 1], let
ps := (0, (1−s)yp, zp+sv). Note that {ps; s ∈ [0, 1]} is the lower boundary of S(p, v). Then,
for s ∈ [0, 1), D(ps, (1− s)yp/4) is the intersection of R(p, v) with the plane {y = (1− s)yp}
and we have

R(p, v) =
⋃

s∈[0,1)

D(ps, (1− s)yp/4) .

Lemma 5.17. There exists a point p = (0, yp, zp) ∈ ∂B with yp, zp > 0 and v > 0 such that
R(p, v) ∩B = {p}.

Proof. Let p = (0, yp, zp) ∈ ∂B with yp, zp > 0 and v > 0 be given by Lemma 5.16.
Since S(p, v) ∩ B = {p}, we have zp = max{z > 0; (0, yp, z) ∈ B}. Then it follows from
Lemma 5.14 that

(5.18) D(p, yp/4) ∩B = {p} .
Recall that D(p, yp/4) is the intersection of R(p, v) with the plane {y = yp}.

For s ∈ (0, 1), set qs := (0, (1 − s)yp, zs) where zs := max{z > 0; (0, (1 − s)yp, z) ∈ B}.
Note that zs is well defined since for all s ∈ (0, 1), we have (0, (1 − s)yp, z) ∈ B for
some z > 0 by Lemma 5.16. We have qs ∈ ∂B and it follows from Lemma 5.14 that
D(qs, (1− s)yp/4)∩B = {qs}. On the other hand, qs 6∈ S(p, v) since S(p, v)∩B = {p} and
hence zs < zp + sv. It follows that, for all s ∈ (0, 1),

D(ps, (1− s)yp/4) ∩B ⊂ (D(qs, (1− s)yp/4) ∩B) \ {qs} ,
where ps := (0, (1− s)yp, zp + sv). Hence,

(5.19) D(ps, (1− s)yp/4) ∩B = ∅ .
Recalling that D(ps, (1−s)yp/4) is the intersection of R(p, v) with the plane {y = (1−s)yp},
the lemma finally follows from (5.18) and (5.19). �

Lemma 5.20. There exists a point q = (0, yq, zq) ∈ ∂B with yq, zq < 0 and v > 0 such that

R̂(q, v) ∩Bd(q, 1) = {0} where

(5.21) R̂(q, v) :=

®Ç
−t, syq, sv +

t(3− s)yq
4

+ u

å
; u, t ≥ 0, s ∈ [0, 1)

´
.

Proof. Let p = (0, yp, zp) ∈ ∂B with yp, zp > 0 and v > 0 be given by Lemma 5.17 and set
q := p−1. By left-invariance of d, we have

q ·R(q−1, v) ∩Bd(q, 1) = p−1 · (R(p, v) ∩B) = {0} .
Noting that q ·R(q−1, v) = p−1 ·R(p, v) = R̂(q, v), we get the required conclusion. �
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The next lemma gives a geometric property of dilations of the region R̂(q, v).

Lemma 5.22. Let q = (0, yq, zq) ∈ H with yq, zq < 0, v > 0 and let R̂(q, v) be given

by (5.21). Then, for all q̂ = (xq̂, yq̂, zq̂) with xq̂, yq̂ < 0, there exists λ̂ > 0 such that, for all

λ > λ̂, q̂ ∈ δλ(R̂(q, v)).

Proof. Let q̂ = (xq̂, yq̂, zq̂) with xq̂, yq̂ < 0 be given. To prove that q̂ ∈ δλ(R̂(q, v)), we have
to find t ≥ 0, u ≥ 0 and s ∈ [0, 1) such that

(5.23)


x̂q = −tλ
ŷq = λαsyq

ẑq = λα+1(sv +
t(3− s)yq

4
+ u) .

From the first equation, we get t = −x̂q/λ > 0 since x̂q < 0. From the second equation, we
get s = λ−αŷqy

−1
q . We have s > 0 since ŷq < 0 and yq < 0. We also have s < 1 for all λ > 0

large enough. The third equation gives

u = − t(3− s)yq
4

− sv + λ−α−1ẑq

=
x̂qyq
4λ

Ç
3− λ−α ŷq

yq

å
− λ−α ŷq

yq
v + λ−α−1ẑq =

3x̂qyq
4

1

λ
+ o(

1

λ
).

It follows that u > 0 for λ > 0 large enough. All together, we get that, for all λ > 0 large
enough, one can find t ≥ 0, u ≥ 0 and s ∈ [0, 1) such that (5.23) holds as wanted. �

We are now going to conclude the proof of Theorem 5.6.

Proof of Theorem 5.6. Recall that we are arguing by contradiction. We consider a contin-
uous self-similar quasi-distance d on the non-standard Heisenberg group of exponent α and
we are assuming that d satisfies WBCP. To get a contradiction, we are going to construct
with the help of Lemma 5.20 and Lemma 5.22 families of Besicovitch balls with arbitrarily
large cardinality.

Let us choose q1 = (x1, y1, z1) with x1, y1 < 0 and set r1 := d(0, q1). By induction
assume that q1 = (x1, y1, z1), . . . , qm = (xm, ym, zm) have already been chosen so that
xi, yi < 0 for all i = 1, . . . ,m and so that {Bd(qi, ri)}mi=1 is a family of Besicovitch balls
where ri := d(0, qi).

Let q = (0, yq, zq) ∈ ∂B with yq, zq < 0 and v > 0 be given by Lemma 5.20. For all k ≥ 1,
we have

δρ−k(R̂(q, v)) ∩Bd(δρ−k(q), ρ−k) = δρ−k(R̂(q, v) ∩Bd(q, 1)) = {0} .

On the other hand, it follows from Lemma 5.22 that

qi ∈ δρ−k(R̂(q, v))

for all i = 1, . . . ,m and all k ≥ 1 large enough. Hence qi 6∈ Bd(δρ−k(q), ρ−k) for all
i = 1, . . . ,m and all k ≥ 1 large enough.
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Next, by continuity of d with respect to the manifold topology, we have

lim
k→+∞

d(δρk(qi), q) = d(0, q)

for all i = 1, . . . ,m. It follows that

lim
k→+∞

d(qi, δρ−k(q)) = lim
k→+∞

ρ−kd(δρk(qi), q) = +∞

for all i = 1, . . . ,m. Hence we can also choose k ≥ 1 large enough so that

d(qi, δρk(q)) > ri

for all i = 1, . . . ,m.

All together, we have proved that we can find k ≥ 1 large enough so that the balls
Bd(q1, r1), . . . , Bd(qm, rm), Bd(δρ−k(q), ρ−k) form a family of Besicovitch balls. We have

δρ−k(q) = (0, ρ−kαyq, ρ
−k(α+1)zq) with ρ−kαyq < 0, and ρ−k = d(0, δρ−k(q)). Then, using

Remark 5.24 below, we can choose qm+1 = (xm+1, ym+1, zm+1) with xm+1, ym+1 < 0 close
enough to δρ−k(q) so that, setting rm+1 := d(0, qm+1), the family {Bd(qi, ri)}m+1

i=1 is a family
of Besicovitch balls. �

Remark 5.24 (Being a family of Besicovitch balls is an open condition). Let {Bd(qi, ri)}mi=1

be a family of Besicovitch balls where ri := d(e, qi) in a graded group G with identity e
and equipped with a continuous self-similar quasi-distance d. One can find U1, . . . , Um open
neighborhoods of q1, . . . , qm respectively, such that, for all (q′1, . . . , q

′
m) ∈ U1 × · · · × Um,

{Bd(q′i, r′i)}mi=1 is a family of Besicovitch balls. Here we have set r′i := d(e, q′i). Indeed we
have d(qi, qj) − d(e, qi) > 0 for all i 6= j. By continuity of d on G × G with respect to the
manifold topology, one can find U1, . . . , Um open neighborhoods of q1, . . . , qm respectively
such that, if (q′1, . . . , q

′
m) ∈ U1 × · · · × Um, then d(q′i, q

′
j) − d(e, q′i) > 0 for all i 6= j. Hence

{Bd(q′i, r′i)}mi=1 is a family of Besicovitch balls.

5.2. Topological properties of self-similar distances. As already mentioned, one of the
main differences between self-similar and homogeneous quasi-distances are their topological
properties. One cannot extend Proposition 2.26 to self-similar quasi-distances. There are
indeed examples of self-similar distances on homogeneous groups such that the distance
from the identity e is not continuous at e with respect to the manifold topology. Hence
the topology induced by such self-similar distances does not coincide with the manifold
topology.

One such example is the following. We consider R equipped with the usual addition as
a group law and the dilations δλ(x) := λx. We take (vi)i∈I a basis of R viewed as a vector
space over Q and we choose it in such a way that some sequence vij converges to 0 as j goes
to +∞ for the usual topology of R. For x ∈ R, we write x =

∑
xivi where xi ∈ Q and all

but finitely many of the xi’s are 0 and we consider the left-invariant distance d such that
d(0, x) =

∑ |xi|. This distance is Q-homogeneous, i.e., d(δq(x), δq(y)) = qd(x, y) for all x,
y ∈ R and all q ∈ Q, and hence self-similar. We have d(0, vi) = 1 for all i ∈ I. In particular
d(0, vij ) = 1 for all j whereas vij converges to 0 as j goes to +∞ for the usual topology of
R. Hence d(0, ·) is not continuous at 0 with respect to the manifold topology on R.

However, with the additional assumption of the continuity of d(e, ·) at e with respect to
the manifold topology, one can extend Proposition 2.26 in the following way.
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Proposition 5.25. Let G be a graded group with identity e. Let d be a self-similar quasi-
distance on G. Assume that d(e, ·) is continuous at e with respect to the manifold topology.
Then the topology induced by d coincides with the manifold topology. Moreover, a set is
relatively compact if and only if it is bounded with respect to d.

Proof. First, the fact that d(e, ·) is assumed to be continuous at e with respect to the
manifold topology Tm implies that Td ⊂ Tm where Td denotes the topology induced by d.

Then the proof can be completed with technical modifications of the proof of Proposi-
tion 2.26 that we briefly sketch below. In the rest of this proof, the convergence of some
sequence of points means convergence with respect to the manifold topology.

Let 0 < λ < 1 be such that d(δλ(p), δλ(q)) = λd(p, q) for all p, q ∈ G. Let (pk) be
a sequence such that d(e, pk) goes to 0 and let us prove that pk converges to e. Using
the conventions and notations introduced in the proof of Proposition 2.26, we argue by
contradiction and assume that, up to a subsequence, there exists ε > 0 such that ‖pk‖ > ε
for all k (see (2.27) for the definition of ‖ · ‖). For each fixed k, ‖δλl(pk)‖ converges to 0
when l goes to +∞. Hence one can find a sequence of integers lk ≥ 1 such that, for all k,
‖δλlk (pk)‖ ≤ ε ≤ ‖δλlk−1(pk)‖. Then

‖δλlk (pk)‖ =
n∑
i=1

λlkdi |Pi(p)| ≥ λα
n∑
i=1

λ(lk−1)di |Pi(p)| = λα‖δλlk−1(pk)‖ ≥ ελα

where α := max1≤i≤n di. Hence ελα ≤ ‖δλlk (pk)‖ ≤ ε for all k. By compactness with respect

to the manifold topology of {p ∈ G; ελα ≤ ‖p‖ ≤ ε}, we get that, up to a subsequence,
δλlk (pk) converges to some p ∈ G such that ελα ≤ ‖p‖ ≤ ε. In particular p 6= e and
d(e, p) > 0. On the other hand, we have

0 < d(e, p) ≤ C(d(e, δλlk (pk)) + d(δλlk (pk), p))

= C(λlkd(e, pk) + d(e, p−1 · δλlk (pk)))

≤ C(d(e, pk) + d(e, p−1 · δλlk (pk))) .

Since d(e, pk) converges to 0 and since d(e, ·) is assumed to be continuous at e with respect
to the manifold topology and p−1 · δλlk (pk) converges to e, we get that the last upper bound
in the above inequalities goes to 0, which gives a contradiction. It follows Tm ⊂ Td and, all
together, we get that Tm = Td.

The proof that a set is relatively compact if and only if it is bounded with respect to
d can be achieved with similar technical modifications of the arguments of the proof of
Proposition 2.26. �

Proposition 5.25 implies the following generalization of Proposition 3.21 to self-similar
quasi-distances. In the statement and the proof of Proposition 5.26 continuity means con-
tinuity with respect to the manifold topology.

Proposition 5.26. Let Ĝ and G be graded groups with graded Lie algebra ĝ and g respec-
tively. Assume that there exists a surjective morphism of graded Lie algebras φ : ĝ → g.
Let ϕ : Ĝ → G denote the unique Lie group homomorphism such that ϕ∗ = φ and let d̂ be
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a continuous self-similar quasi-distance on Ĝ. Then

d(p, q) := d̂(ϕ−1({p}), ϕ−1({q}))

defines a continuous self-similar quasi-distance on G and ϕ : (Ĝ, d̂)→ (G, d) is a submetry.

Proof. One proves that d is a self-similar quasi-distance on G and that ϕ : (Ĝ, d̂)→ (G, d)
is a submetry with the same arguments as in the proof of Proposition 3.21. To prove that
d is continuous on G×G, we first prove that d(e, ·) is continuous at e. Here e denotes the

identity in G and below ê will denote the identity in Ĝ. Let (pk) be a sequence converging to
e (with respect to the manifold topology). Since ϕ is an open map and since ê ∈ ϕ−1({e}),
one can find a sequence p̂k ∈ ϕ−1({pk}) converging to ê. We have d(e, pk) ≤ d̂(ê, p̂k). Since

d̂ is assumed to be continuous, d̂(ê, p̂k) converges to 0. It follows that d(e, pk) converges
to 0 as well and hence d(e, ·) is continuous at e. The proof can now be completed using
Proposition 5.25 and following the arguments of the proof of Proposition 3.21. �

5.3. Arbitrary graded groups with two different layers not commuting. We con-
clude in this section the proof of Theorem 5.2.

Proof of Theorem 5.2. Let G be a graded group with associated positive grading g = ⊕t>0Vt
of its Lie algebra. Let t < s be such that [Vt, Vs] 6= {0}. Let d be a continuous self-similar
quasi-distance on G. We argue by contradiction and assume that WBCP holds on (G, d).

By Proposition 2.18, there exists a graded subalgebra ĝ of g and a surjective morphism of
graded Lie algebras from ĝ onto h, where h is the t-power of the non-standard Heisenberg
Lie algebra of exponent s/t.

We denote by Ĝ := exp(ĝ) the graded group whose Lie algebra ĝ is endowed with the

positive grading induced by the given positive grading of g. The restriction of d to Ĝ, still
denoted by d, is a continuous self-similar quasi-distance on Ĝ. Since we assume that WBCP
holds on (G, d), WBCP also holds on (Ĝ, d) by Proposition 3.15.

Next, it follows from Proposition 5.26 that there exists a continuous self-similar quasi-
distance dH on the t-power, denoted by H, of the non-standard Heisenberg group of expo-
nent s/t, and a submetry from (Ĝ, d) onto (H, dH). Since WBCP holds on (Ĝ, d), WBCP
holds on (H, dH) by Proposition 3.20. Finally, we get that WBCP would hold for the con-
tinuous self-similar quasi-distance (dH)t on the non-standard Heisenberg group of exponent
s/t. This contradicts Theorem 5.6 and concludes the proof. �

6. Differentiation of measures

In this section, we give applications to differentiation of measures and we prove Theo-
rem 1.5.

Following the terminology of [Pre83], if (X, d) is a metric space, we say that d is finite
dimensional on a subset Y ⊂ X if there exist C∗ ∈ [1,+∞) and r∗ ∈ (0,+∞] such that
CardB ≤ C∗ for every family B = {B = Bd(xB, rB)} of Besicovitch balls in (X, d) such
that xB ∈ Y and rB < r∗ for all B ∈ B (see Definition 3.2 for the definition of families of
Besicovitch balls). If we need to specify the constants C∗ and r∗, we say that d is finite
dimensional on Y with constants C∗ and r∗. We say d is σ-finite dimensional if X can be
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written as a countable union of subsets on which d is finite dimensional. Note that WBCP
holds on (X, d) if and only if d is finite dimensional on X for some constant C∗ ∈ [1,+∞)
and with r∗ = +∞.

For homogeneous distances on homogeneous groups, we first prove the following strongest
equivalence between σ-finite dimensionality and validity of (W)BCP.

Proposition 6.1. Let G be a homogeneous group and let d be a homogeneous distance on
G. Then BCP holds on (G, d) if and only if d is σ-finite dimensional.

Proof. If BCP holds on (G, d) then WBCP holds as well and it follows from the definitions
that d is finite dimensional on G. To prove the converse, let m denote the Hausdorff dimen-
sion of (G, d) and let µ denote the m-dimensional Hausdorff measure on (G, d). It is well-
known that µ is a Haar measure on G. Since the distance d from which this m-dimensional
Hausdorff measure is constructed is homogeneous, µ is moreover m-homogeneous with re-
spect to the associated dilations (δλ)λ>0 on G, i.e., µ(δλ(A)) = λmµ(A) for all A ⊂ G and
all λ > 0. In particular µ is a doubling outer measure on (G, d). It follows that for every
subset A ⊂ G, µ-a.e. point p ∈ A is a µ-density point for A, i.e.,

lim
r↓0

µ(A ∩Bd(p, r))
µ(Bd(p, r))

= 1 .

Assume that d is σ-finite dimensional, i.e., G = ∪n∈NGn where d is finite dimensional
on each Gn. Then one can find n ∈ N such that µ(Gn) > 0 and we set A := Gn. Let
C∗ ∈ [1,+∞) and r∗ ∈ (0,+∞] be such that d is finite dimensional on A with constant C∗

and r∗. Since µ(A) > 0, one can find a point p ∈ A that is a µ-density point for A. Up
to a translation, one can assume that p = e where e denotes the identity in G. Next, by
homogeneity, for every λ ≥ 1, d is finite dimensional on δλ(A) with constants C∗ and r∗.

Let us prove that WBCP, and hence BCP by Corollary 3.8, holds in (G, d). We consider
{Bd(pi, ri)}ki=1 a family of Besicovitch balls in (G, d). Up to a dilation, one can assume
with no loss of generality that ri < r∗ for all i = 1, . . . , k. Up to a translation, one can
further assume that e ∈ ∩ki=1Bd(pi, ri). Shrinking balls if necessary, one can also assume
that ri = d(e, pi) for all i = 1, . . . , k.

By Remark 5.24 (recall that homogeneous distances on a homogeneous group are contin-
uous, see Corollary 2.28), one can find ε∗ > 0 such that {Bd(qi, si)}ki=1 is a family of Besi-
covitch balls in (G, d) as soon as d(pi, qi) ≤ ε∗ for all i = 1, . . . , k and where si := d(e, qi).
Moreover one can choose ε∗ small enough, namely ε∗ < r∗−max1≤i≤k ri, so that d(e, q) < r∗

as soon as d(q, pi) ≤ ε∗ for some i ∈ {1, . . . , k}.
Fix R ≥ 1 such that R ≥ 2 max1≤i≤k ri and ε > 0 such that ε ≤ min(ε∗,max1≤i≤k ri).

Let r < 1 be such that

µ(A ∩Bd(e, r))
µ(Bd(e, r))

> 1−
Å
ε

R

ãm
.

Then we claim that Bd(pi, ε)∩δR/r(A) 6= ∅ for all i = 1, . . . , k. Indeed, arguing by contradic-
tion, assume thatBd(pi, ε)∩δR/r(A) = ∅. By choice ofR and ε, we haveBd(pi, ε) ⊂ Bd(e,R).



48 ENRICO LE DONNE AND SÉVERINE RIGOT

Using the left-invariance and the homogeneity of µ, it follows that

1−
Å
ε

R

ãm
<
µ(A ∩Bd(e, r))
µ(Bd(e, r))

=
µ(δR/r(A) ∩Bd(e,R))

µ(Bd(e,R))

≤ µ(Bd(e,R) \Bd(pi, ε))
µ(Bd(e,R))

=
µ(Bd(e,R))− µ(Bd(pi, ε))

µ(Bd(e,R))

= 1−
Å
ε

R

ãm
which gives a contradiction.

Hence one can find qi ∈ Bd(pi, ε) ∩ δR/r(A) for all i = 1, . . . , k. Since ε ≤ ε∗, we

get that {Bd(qi, si)}ki=1 is a family of Besicovitch balls in (G, d) with qi ∈ δR/r(A) and
si := d(e, qi) < r∗ for all i = 1, . . . , k. By choice of R and r, we have R/r ≥ 1 and it follows
that k ≤ C∗. Hence WBCP holds in (G, d). �

Recall now that if (X, d) is a metric space and µ is a locally finite Borel measure on X,
we say that the differentiation theorem holds on (X, d) for the measure µ if

lim
r↓0+

1

µ(Bd(p, r))

∫
Bd(p,r)

f(q) dµ(q) = f(p)

for µ-almost every p ∈ X and all f ∈ L1
loc(µ).

The connection between σ-finite dimensionality and measure differentiation in the general
metric setting is given by the following result due to D. Preiss.

Theorem 6.2 ([Pre83]). Let (X, d) be a complete separable metric space. The differentia-
tion theorem holds on (X, d) for all locally finite Borel measures if and only if d is σ-finite
dimensional.

The proof of Theorem 1.5 can now be completed using Theorem 6.2 and Proposition 6.1.

7. Sub-Riemannian distances

In this section we consider sub-Riemannian distances on stratified groups, and more gen-
erally on sub-Riemannian manifolds. We prove Theorem 1.9 and Theorem 1.10. The proofs
of these results are independent of the main result in this paper, namely independent of
Theorem 1.2, but use some of the techniques developed here, in particular Proposition 3.21.

7.1. No BCP in sub-Riemannian Carnot groups. Let G be a stratified group with
associated stratification of its Lie algebra given by g = V1 ⊕ · · · ⊕ Vs. We say that an
absolutely continuous curve γ : I → G is horizontal if, for a.e. s ∈ I, one has γ̇(s) ∈
span{X(γ(s)); X ∈ V1}. For a given scalar product inducing a norm ‖ · ‖ on the first layer
V1 of the stratification, we define the length, with respect to ‖ · ‖, of a horizontal curve γ by

l‖·‖(γ) :=

∫
I
‖γ̇(s)‖ ds .

We say that d is a sub-Riemannian distance on G if there exists a norm ‖ · ‖ induced by a
scalar product on V1 such that

d(p, q) = inf
¶
l‖·‖(γ); γ horizontal curve from p to q

©
.
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It is well-known that such a d defines a homogeneous distance on G.

Definition 7.1 (Sub-Riemannian Carnot groups). We say that (G, d) is a sub-Riemannian
Carnot group if G is a stratified group equipped with a sub-Riemannian distance d.

It is proved in [Rig04] that BCP does not hold on sub-Riemannian Carnot groups of
step ≥ 2 under some assumptions on the regularity of length-minimizing curves and of
the sub-Riemannian distance (see [Rig04, Theorem 1]). This result applies in particular to
sub-Riemannian distances on the stratified first Heisenberg group as we recall now.

Theorem 7.2 ([Rig04]). Let d be a sub-Riemannian distance on the stratified first Heisen-
berg group H1. Then BCP does not hold on (H1, d).

We extend in Theorem 1.9 the results of [Rig04] to any sub-Riemannian Carnot group of
step ≥ 2 without any further regularity assumptions.

Theorem 1.9 will be proved by showing that from any such sub-Riemannian Carnot group,
there exists a surjective morphism onto the stratified n-th Heisenberg group for some n ∈ N∗.
Moreover, the distance on the n-th Heisenberg group induced by this morphism is a sub-
Riemannian distance (see Proposition 3.21 for the definition of this induced distance). Then
the conclusion will follow from Theorem 7.2 and Lemma 7.4 below. Lemma 7.4 gives the
existence of an isometric copy of a sub-Riemannian first Heisenberg group inside every sub-
Riemannian n-th Heisenberg group. We refer to Example 2.11 for the definition of the n-th
Heisenberg Lie algebra hn and the stratified n-th Heisenberg group Hn. We first prove the
following preliminary result.

Proposition 7.3. Let (G, d) be a step 2 sub-Riemannian Carnot group with associated
stratification of its Lie algebra given by g = V1⊕V2. Assume that dimV2 = 1 and that V2 is
the center of g. Then g is the n-th Heisenberg Lie algebra hn. Moreover there exist positive
real numbers a1, . . . , an and a standard basis (X1, . . . , Xn, Y1, . . . , Yn, Z) of hn such that d
is the sub-Riemannian distance with respect to the norm induced by the scalar product on
V1 for which (aiXi, aiYi)1≤i≤n is orthonormal.

Proof. Let Z ∈ V2 be fixed so that V2 = RZ. Since V2 is the center of g, the Lie bracket
restricted to V1 × V1 can be identified with a non degenerate skew-symmetric bilinear form
on V1. Then the following facts follow from classical results of linear algebra. First, dimV1 is
even, dimV1 = 2n for some n ∈ N∗. Second, considering V1 equipped with the scalar product
with respect to which the sub-Riemannian d is defined, one can find an orthonormal basis
(X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn) of V1 such that [Xi, Yj ] = δijαiZ for some positive real numbers

α1, . . . , αn. We set Xi := (
√
αi)
−1X̃i. Then (X1, . . . , Xn, Y1, . . . , Yn, Z) is a basis of g

with the only non-trivial bracket relations [Xi, Yi] = Z for 1 ≤ i ≤ n. It follows that g
is the n-th Heisenberg Lie algebra hn and (X1, . . . , Xn, Y1, . . . , Yn, Z) is a standard basis
of hn. Moreover, setting ai :=

√
αi, we get that the sub-Riemannian distance d is the

sub-Riemannian distance for which (aiXi, aiYi)1≤i≤n is orthonormal. �

Lemma 7.4 below relies on classical results from sub-Riemannian geometry and more
specifically on a classical study of length-minimizing curves in the sub-Riemannian Heisen-
berg groups. In particular length-minimizing curves can be explicitly computed using Pon-
tryagin’s maximum principle and the fact that there are no strictly abnormal curves. Also
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each horizontal curve can be recovered from its projection on the first layer of the stratifi-
cation via the lift of the spanned area in each coordinate plane.

Lemma 7.4. Let (X1, . . . , Xn, Y1, . . . , Yn, Z) be a standard basis of hn. Let 0 < a1 ≤
. . . ≤ an be positive real numbers and let d denote the sub-Riemannian distance on Hn for
which (aiXi, aiYi)1≤i≤n is orthonormal. Then H := exp(span{Xn, Yn, Z}) is geodesically
closed and the distance d restricted to H is the sub-Riemannian distance on H for which
(anXn, anYn) is orthonormal.

Proof. In the statement H is geodesically closed means that for any two points p, q ∈ H
there exists a length-minimizing curve, i.e., a horizontal curve γ such that d(p, q) = l‖·‖(γ),
joining p and q and whose image is contained in H. Here ‖ · ‖ denotes the norm induced
by the scalar product for which (aiXi, aiYi)1≤i≤n is orthonormal. Then the fact that the
distance d restricted to H is the sub-Riemannian distance on H for which (anXn, anYn) is
orthonormal follows immediately.

We use in this proof exponential coordinates (x1, . . . , xn, y1, . . . , yn, z) of the first kind
with respect to the basis (a1X1, . . . , anXn, a1Y1, . . . , anYn, Z) and V1 denotes the first layer
of the stratification, V1 = span{Xi, Yi; 1 ≤ i ≤ n}. By left-invariance, it is enough to show
that given any point p ∈ H, there exists a length-minimizing curve joining 0 to p whose
image is contained in H. As already said, the proof below relies on classical results from
sub-Riemannian geometry. We refer to e.g. [Mon00] or [LR14b] for more details.

Let us first consider p = exp(Z) = (0, . . . , 0, 1). Writing down the normal geodesic
equation, one can see that if γ : I → Hn is a length-minimizing curve from 0 to p with
γ(s) = (x1(s), . . . , xn(s), y1(s), . . . , yn(s), z(s)) then its projections s 7→ (xi(s), yi(s)) on
each (xi, yi)-plane is a circle passing through the origin. Moreover, if we denote by (vi, vn+i)
the center of each one of these circles, we have

l‖·‖(γ) = 2π

(
2n∑
i=1

v2
i

)1/2

.

On the other hand, since γ is a horizontal curve, the last coordinate of its end point is equal
to
∑n
i=1 a

2
iπ(v2

i + v2
n+i). Hence we must have

n∑
i=1

a2
iπ(v2

i + v2
n+i) = 1 .

Notice that the minimum of
»∑2n

i=1 v
2
i on the ellipsoid {∑n

i=1 a
2
iπ(v2

i +v2
n+i) = 1} is attained

on the smallest axis of the ellipsoid. It follows that the horizontal curve γ contained in H
and whose projection on the (xn, yn)-plane is a circle passing through the origin and centered
at (1/an

√
π, 0) is a length-minimizing curve between 0 and p.

Next, from the above length-minimizing curve between 0 and exp(Z) and using dilations
and rotations in H around the z-axis, it can be seen that one can join the origin to any
point in H \ exp(V1) with a length-minimizing curve that stays in H.

Finally, it can be checked that for p ∈ H ∩ exp(V1), the segment from 0 to p is the length
minimizing curve from 0 to p and that this segment stays obviously inside H. �



BCP ON GRADED GROUPS 51

We now conclude this section with the proof of the non-validity of BCP on sub-Riemannian
Carnot groups of step ≥ 2.

Proof of Theorem 1.9. We argue by contradiction and we assume that (G, d) is a sub-
Riemannian Carnot group of step ≥ 2 on which BCP hold. We prove that it is enough
to consider the case of a sub-Riemannian distance on the stratified first Heisenberg group.

To prove this claim, we will perform a series of quotients. At the level of the Lie algebras,
these quotients are surjective morphisms of stratified Lie algebras. Moreover, if we start
from a sub-Riemannian distance, the sub-Riemannian distance induced by each one of these
morphisms (as in Proposition 3.21), and for which BCP also holds by Propositions 3.20
and 3.21, will still be a sub-Riemannian distance. Indeed, if the stratification of the source
Lie algebra is given by V1 ⊕ · · · ⊕ Vs, we will only consider morphisms of stratified Lie
algebras whose kernel is contained either in V2 ⊕ · · · ⊕ Vs or in the center of the source Lie
algebra.

By a first quotient we can assume that the step of G is exactly 2. Note that in view of
Corollary 1.3, we could have skipped this first step. However this first quotient gives a proof
of Theorem 1.9 that is independent of our other results about more general graded groups.
By a second quotient we can assume that the second layer of G is one-dimensional. By a
third quotient we can assume that the center of the Lie algebra of G is the second layer of
its stratification.

By Proposition 7.3 we know that the Lie algebra of G is the n-th Heisenberg Lie al-
gebra. We also know that there exist a standard basis (X1, . . . , Xn, Y1, . . . , Yn, Z) of hn
and positive real numbers a1, . . . , an such that d is the sub-Riemannian distance for which
(aiXi, aiYi)1≤i≤n is orthonormal. Up to reordering the aj ’s, it follows from Lemma 7.4 that
there is a stratified subgroup H of G isomorphic to the stratified first Heisenberg group
and such that the sub-Riemannian distance d restricted to H is a sub-Riemannian distance
on H. Since we started from a sub-Riemannian distance on G for which BCP holds, it fol-
lows from Proposition 3.15 that BCP should hold for some sub-Riemannian distance on the
stratified first Heisenberg group. This contradicts Theorem 7.2 and concludes the proof. �

7.2. Differentiation of measures on sub-Riemannian manifolds. In this section we
prove that sub-Riemannian distances on sub-Riemannian manifolds are not σ-finite dimen-
sional, see Theorem 7.5. Then Theorem 1.10 follows from Theorem 7.5 and Theorem 6.2. We
refer to Section 6 for the definition of σ-finite dimensionality and its connection with mea-
sure differentiation. The proof of Theorem 7.5 follows from the fact that at regular points,
the metric tangent space to a sub-Riemannian manifold is isometric to a sub-Riemannian
Carnot group of step ≥ 2 together with Theorem 1.9.

To state our result, we first recall well-known facts about sub-Riemannian manifolds
(see e.g. [Mon02]). A sub-Riemannian manifold is a smooth Riemannian n-manifold (M, g)
equipped with a smooth distribution ∆ of k-planes where k < n. We also assume that M is
connected and that the distribution satisfies Hörmander’s condition. Namely, for all p ∈M ,
we assume that, if X1, . . . , Xk is a local basis of vector fields for the distribution near p,
these vector fields, along with all their commutators, span TpM . We denote by Vi(p) the
subspace of TpM spanned by all the commutators of the Xj ’s of order ≤ i evaluated at p.
Then the distribution satisfies Hörmander’s condition if, for all p ∈M , there is some i such
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that Vi(p) = TpM . Next, an absolutely continuous curve in M is said to be horizontal if
it is a.e. tangent to the distribution ∆. Then the sub-Riemannian distance d between two
points p, q ∈M is defined by

d(p, q) := inf
¶

lengthg(γ); γ horizontal curve from p to q
©
.

We say that p ∈ M is a regular point if, for each i, dimVi(p) remains constant near p.
Regular points form an open dense set in M .

Our main result in this section reads as follows.

Theorem 7.5. Let M be a sub-Riemannian manifold and let d be its sub-Riemannian
distance. Then d is not σ-finite dimensional.

Notice that our definition of sub-Riemannian manifolds does not includes Riemannian
ones. We recall that it is known that the Riemannian distance on a Riemannian manifold
of class C2 is σ-finite dimensional (see[Fed69, 2.8]).

Sub-Riemannian manifolds equipped with their sub-Riemannian distance include sub-
Riemannian Carnot groups of step ≥ 2. Besides, as said before, the following fact plays a
crucial role for our purposes.

Theorem 7.6 ([Bel96, Theorem 7.36], [Mit85, Theorem 1]). A sub-Riemannian manifold
equipped with its sub-Riemannian distance admits a metric tangent space in Gromov’s sense
at every point. At regular points, this space is isometric to a sub-Riemannian Carnot group
of step ≥ 2.

A metric tangent space in Gromov’s sense at a point p in a metric space (X, d) is defined
as a Hausdorff limit of some sequence of pointed metric spaces (X, d/λi, p) with λi → 0 as
i→ +∞. We refer to [Gro99] for more details about metric tangent spaces.

Proof of Theorem 7.5. We first prove that one only needs to consider the case where all
points in M are regular and moreover, for each i, dimVi(p) remains constant in M . Indeed,
since regular points form a nonempty open set, one can find an connected open set O in M
such that, for each i, dimVi(p) remains constant in O. We equip O with the distribution
of k-planes which is the restriction to O of the given distribution on M , thus making O a
sub-Riemannian manifold. We denote by dO the associated sub-Riemannian distance on O.
By definition we have for all p, q ∈ O,

dO(p, q) = inf
¶

lengthg(γ); γ horizontal curve from p to q in O
©
.

In particular, d(p, q) ≤ dO(p, q) for all p, q ∈ O, with possibly strict inequality. However it
can easily be checked that, for all p ∈ O and all r < dist(p,M \ O)/3, one has Bd(p, r) =
BdO(p, r). It follows that if d is σ-finite dimensional on M , then dO is σ-finite dimensional
on O as well. Indeed, assume that M can be written as M = ∪n∈NMn where d is finite
dimensional on eachMn with constants C∗n and r∗n. SetOk := {p ∈ O; dist(p,M\O) > 1/k}.
Then Bd(p, r) = BdO(p, r) for all p ∈ Ok and all r < 1/3k. It follows that, for each k
and n, dO is finite dimensional on Ok ∩Mn with constants C∗n and min(r∗n, 1/3k). Since
O = ∪k,n∈N(Ok ∩Mn), this shows that dO is σ-finite dimensional on O.

Hence, from now on in this proof, let us assume that the distribution on M is such that,
for each i, dimVi(p) remains constant in M and let dimVi denote its constant value. Such
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distributions are called generic in [Mit85]. Arguing by contradiction we also assume that
the sub-Riemannian distance d on M is σ-finite dimensional, M = ∪n∈NMn where d is finite
dimensional on each Mn.

We let m :=
∑
i i(dimVi−dimVi−1) denote the Hausdorff dimension of (M,d) (see [Mit85,

Theorem 2]) and let µ denote the m-dimensional Hausdorff measure in (M,d). It is proved
in [Mit85] that µ is doubling on each compact set. This implies in particular that for any
subset A ⊂ M , µ-a.e. point p ∈ A is a µ-density point for A. On the other hand since
µ(M) > 0 and M = ∪n∈NMn, one can find n ∈ N such that µ(Mn) > 0, and hence one can
find some µ-density point p ∈Mn for Mn. Then Proposition 3.1 in [LD11] and Theorem 7.6
imply that (Mn, d) admits a metric tangent space in Gromov’s sense at p and this space
is isometric to a sub-Riemannian Carnot group (G, d∞) of step ≥ 2. In particular, by
definition of a metric tangent space, there exist a sequence (λi) with λi → 0 as i → +∞
and maps φi : G→Mn such that, for all p, q ∈ G,

1

λi
d(φi(p), φi(q)) −→

i→+∞
d∞(p, q) .

Since d is finite dimensional on Mn, Lemma 7.7 below implies that d∞ is a finite dimensional
sub-Riemannian distance on G. This contradicts Proposition 6.1 and Theorem 1.9 and
concludes the proof. �

Lemma 7.7. Let (X, d) and (X∞, d∞) be metric spaces. Assume that there exist a sequence
(λi) with λi → 0 as i→ +∞ and maps φi : X∞ → X such that for all x, y ∈ X∞,

1

λi
d(φi(x), φi(y)) −→

i→+∞
d∞(x, y) .

Assume that d is finite dimensional on X. Then d∞ is finite dimensional on X∞.

Proof. Assume that d is finite dimensional on X with constant C∗ ∈ [1,+∞) and r∗ ∈
[0,+∞]. Let {Bd∞(x1, r1), . . . , Bd∞(xN , rN )}, N ∈ N, be a family of Besicovitch balls in
(X∞, d∞) with rl < r∗ for all l = 1, . . . , N . Let x0 ∈ ∩1≤l≤NBd∞(xl, rl). Let ε > 0 be small
enough so that, for all l, k = 1, . . . , N with l 6= k, d∞(xk, xl) > max(rl, rk) + 2ε and so that
rl + ε < r∗ for all l = 1, . . . , N . Let i be large enough so that λi ≤ 1 and

| 1
λi
d(φi(xl), φi(xk))− d∞(xl, xk)| < ε

for all l, k = 0, . . . , N . Then for all l, k = 1, . . . , N with l 6= k, we have

1

λi
d(φi(xl), φi(xk)) > d∞(xl, xk)− ε > max(rl, rk) + ε

and, for all l = 1, . . . , N ,

1

λi
d(φi(x0), φi(xl)) < d∞(x0, xl) + ε ≤ rl + ε .

Hence {Bd(φi(x1), λi(r1 +ε)), . . . , Bd(φi(xN ), λi(rN +ε))} is a family of Besicovitch balls in
(X, d) with radii < r∗. It follows that N ≤ C∗ which proves that d∞ is finite dimensional
on X∞. �
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Remark 7.8. One can relax the hypothesis of constant rank for the distribution ∆ and the
proof of Theorem 7.5 can be generalized provided there exists a regular point p ∈ M such
that dim ∆p < dimM .

8. Final remarks

8.1. Assouad’s embedding theorem and BCP. Assouad’s embedding Theorem for
snowflakes of doubling metric spaces has the following consequence in connection with the
Besicovitch Covering Property.

Proposition 8.1. Let (X, d) be a doubling metric space. Then there exists a continuous
quasi-distance ρ on X that is biLipschitz equivalent to d and such that (X, ρ) satisfies BCP.

Proof. By Assouad’s embedding theorem (see [Ass83]), the snowflaked metric space (X, d1/2)

admits a biLipschitz embedding F : (X, d1/2) → Rn into some Euclidean space. Since
Euclidean spaces satisfy BCP, it follows that F (X) equipped with the restriction of the
Euclidean distance satisfies BCP (see Proposition 3.15). Set ρ(x, y) := ‖F (x)− F (y)‖2 for
x, y ∈ X. This defines a continuous quasi-distance on X that satisfies BCP. Finally, if L
is the biLipschitz constant of the embedding F , then ρ is L2-biLipschitz equivalent to the
distance d. �

In particular, if (G, d) is a homogeneous group equipped with a homogeneous distance,
Proposition 8.1 gives the existence of a continuous quasi-distance biLipschitz equivalent to d
and for which BCP holds. In case G is a homogenous group for which there are two different
layers of the grading that do not commute, it follows from Theorem 1.2 that such a quasi-
distance cannot be homogeneous, i.e., cannot be both left-invariant and one-homogeneous
with respect to the associated dilations. What is not known is whether one can find one
such ρ with one of these properties. It is not known either whether one can find a distance,
rather than a quasi-distance, biLipschitz equivalent to d and for which BCP holds.

Notice that there are examples of non doubling metric spaces satisfying BCP. Hence the
doubling assumption in Proposition 8.1 is not a necessary condition to get the existence of
biLipschitz equivalent (quasi-)distances satisfying BCP.

8.2. Metric spaces of negative type. For the stratified Heisenberg groups Hn, J. Lee
and A. Naor proved in [LN06] that the homogeneous distance d such that

d(0, p) =

ÜÑ
n∑
j=1

x2
j + y2

j

é2

+

ÕÑ
n∑
j=1

x2
j + y2

j

é2

+ 16 z2

ê1/4

in exponential coordinates of the first kind relative to a standard basis of hn is of negative
type (see Example 2.11 for the definition of standard basis of hn). Up to a multiplicative
constant, this distance turns out to coincide with the Hebisch-Sikora’s distance dR when
R = 2, namely, d2 = 8−1/4d (see Example 2.23 for the definition of dR).

Recall that a metric space (X, d) is said to be of negative type if (X,
√
d) is isometric to a

subset of a Hilbert space. One could wonder whether the validity of BCP and the property
of being of negative type may have some connections. One can for instance wonder whether



BCP ON GRADED GROUPS 55

Corollary 1.3 could give some hints towards the existence of homogeneous distances of
negative type on homogeneous groups with commuting different layers, such as stratified
groups of step 2. One can also wonder whether Corollary 1.3 could give some hints towards
the non existence of homogeneous distances of negative type on a homogeneous group for
which there are two different layers of the grading that do not commute, such as stratified
groups of step 3 or higher. Unfortunately, it turns out that one can always find subsets in
a Hilbert space that, when equipped with the restriction of the Hilbert norm, are doubling
metric spaces for which BCP does not hold. Hence it is not clear whether one can easily
find connections between the validity of BCP and the property of being of negative type.

8.3. Open question. To our knowledge, there is no known example of metric spaces (X, d)
for which there is no distances biLipschitz equivalent to d for which BCP holds.
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