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1. Introduction

There is a well established definition of the space W 1,2(X, d, m) of real valued Sobolev 
functions defined on a metric measure space (X, d, m) ([8], [14], [3]). A function f ∈
W 1,2(X, d, m) comes with a function |Df |X ∈ L2(X, m), called minimal weak upper 
gradient, playing the role of what the modulus of the distributional differential is in the 
smooth setting.

In this paper we are interested in the structure of the Sobolev spaces and the corre-
sponding minimal weak upper gradients under some basic geometric constructions. The 
basic problem is the following. Let (X, dX , mX) and (Y, dY , mY ) be two metric measure 
spaces and consider the space X×Y endowed with the product measure mc := mX ×mY

and the product distance dc defined as

d2
c

(
(x1, y1), (x2, y2)

)
:= d2

X(x1, x2) + d2
Y (y1, y2), ∀x1, x2 ∈ X, y1, y2 ∈ Y.

Then one asks what is the relation between Sobolev functions on X × Y and those 
on X, Y . Guided by the Euclidean case, one might conjecture that f ∈ W 1,2(X × Y )
if and only if for mX -a.e. x the function y �→ f(x, y) is in W 1,2(Y ), for mY -a.e. y the 
function x �→ f(x, y) is in W 1,2(X) and the quantity

√
|Df(·, y)|2X(x) + |Df(x, ·)|2Y (y)

is in L2(X × Y, mc). Then one expects the above quantity to coincide with |Df |X×Y .
Curiously, this kind of problem has not been studied until recently and, despite the 

innocent-looking statement, the full answer is not yet known.
The first result in this direction has been obtained in [4], where it has been proved that 

the conjecture is true under the very restrictive assumption that the spaces considered 
satisfy the, there introduced, RCD(K, ∞) condition for some K ∈ R. Such restriction 
was necessary to use some regularization property of the heat flow.

The curvature condition has been dropped in the more recent paper [6]. There the 
authors prove that the above conjecture holds provided either both the base spaces 
are doubling and support a weak local 1–2 Poincaré inequality, or on both the spaces 
the integral of the local Lipschitz constant squared is a quadratic form on the space of 
Lipschitz functions.
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Our first contribution to the topic is the proof that the above conjecture is always 
true, provided one of the two spaces is R or a closed subinterval of R. Our strategy is 
new and also allows to cover the case of warped product of a space and a closed interval, 
thus permitting to consider basic geometric constructions like that of cone and spherical 
suspension of a given space, which are in fact our main concern.

The second main result of the paper concerns the Sobolev-to-Lipschitz property (see 
Section 3.3 for the definition) of a warped product. Such notion, introduced in [10] (see 
also [11]), is key to deduce precise metric information from the study of Sobolev functions 
and it is therefore important to ask whether warped products have this property. We 
will show that this is the case under very general assumptions.

Let us explain the role of this manuscript in relation with the literature on RCD
spaces. This project has been motivated by the study of the ‘volume-cone-to-metric-cone’ 
property of RCD spaces, obtained in [9], where the results of this manuscript have 
been used in a crucial way. The main result in [9] is the proof that, under appropriate 
assumptions on the volume of concentric balls, the ball BR(x̄) on a RCD(0, N) space is 
isomorphic to the cone, call it C, built over the sphere SR(x̄) equipped with the intrinsic 
distance induced by the embedding of the sphere on the space and the appropriate 
measure. The hard part is the proof that C and BR(x̄) are isometric and much like in 
the proof of the non-smooth splitting this is achieved by:

a) Showing that there is a bijection between the spaces which induces, by right compo-
sition, an isometry of the Sobolev spaces W 1,2.

b) Proving that C has, at least locally, the Sobolev-to-Lipschitz property (for BR(x̄)
this is already known from [4]), so that from the previous point one can conclude.

In order to tackle point (a) one needs first to know the structure of Sobolev functions 
on the cone C and in particular their relation with those on the sphere SR(x̄), because 
it is this latter space that is directly linked to BR(x̄). Clarifying this relation is our first 
main result. Obtaining point (b) under a sufficiently general set of assumptions is our 
second.

Let us underline that a posteriori, once the isomorphism between C and BR(x̄)
has been built, one obtains—via Ketterer’s results in [13]—that the sphere SR(x̄) is 
a RCD(N − 2, N −1) space. However, a priori very little is known about its structure so 
that one does not know whether the previous results in [4], [6] can be adapted to cover 
this situation: this is why it is necessary to work with minimal hypothesis on our base 
space X.

2. Preliminaries

2.1. Metric measure spaces

Let (X, d) be a complete metric space. By a curve γ we shall typically denote a 
continuous map γ : [0, 1] �→ X, although sometimes curves defined on different inter-
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vals will be considered. The space of curves on [0, 1] with values in X is denoted by 
C([0, 1], X). The space C([0, 1], X) equipped with the uniform distance is a complete 
metric space.

We define the length of γ by

l[γ] := sup
τ

n∑
i=1

d(γ(ti−1), γ(ti))

where τ := {0 = t0, t1, ..., tn = 1} is a partition of [0, 1]. The supremum here can 
be changed to ‘lim’ and the limit is taken with respect to the refinement ordering of 
partitions.

The space (X, d) is said to be a length space if for any x, y ∈ X we have

d(x, y) = inf
γ

l[γ]

where the infimum is taken among all γ ∈ C([0, 1], X) which connect x and y.
If the infimum is always a minimum, then the space is called geodesic space and we 

call the minimizers pre-geodesics. A geodesic from x to y is any pre-geodesic which is 
parametrized by constant speed. Equivalently, a geodesic from x to y is a curve γ such 
that:

d(γs, γt) = |s− t|d(γ0, γ1), ∀t, s ∈ [0, 1], γ0 = x, γ1 = y.

The space of all geodesics on X will be denoted by Geo(X). It is a closed subset of 
C([0, 1], X).

Given p ∈ [1, +∞] and a curve γ, we say that γ belongs to ACp([0, 1], X) if

d(γs, γt) ≤
t∫

s

G(r) dr, ∀ t, s ∈ [0, 1], s < t

for some G ∈ Lp([0, 1]). In particular, the case p = 1 corresponds to absolutely con-
tinuous curves, whose class is denoted by AC([0, 1], X). It is known (see for instance 
Theorem 1.1.2 of [1]) that for γ ∈ AC([0, 1], X), there exists an a.e. minimal function 
G satisfying this inequality, called the metric derivative which can be computed for a.e. 
t ∈ [0, 1] as

|γ̇t| := lim d(γt+h, γt)
.

h→0 |h|
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It is known that (see for example [7]) the length of a curve γ ∈ AC([0, 1], X) can be 
computed as

l[γ] :=
1∫

0

|γ̇t| dt.

In particular, on a length space X we have

d(x, y) = inf
γ

1∫
0

|γ̇t| dt

where the infimum is taken among all γ ∈ AC([0, 1], X) which connect x and y.
Given f : X �→ R, the local Lipschitz constant lip(f) : X �→ [0, ∞] is defined as

lip(f)(x) := lim
y→x

|f(y) − f(x)|
d(x, y)

if x is not isolated, 0 otherwise, while the (global) Lipschitz constant is defined as

Lip(f) := sup
x�=y

|f(y) − f(x)|
d(x, y) .

If (X, d) is a length space, we have Lip(f) = supx lip(f)(x).
We are not only interested in metric structure, but also in the interaction between 

metric and measure. For the metric measure space (X, d, m), basic assumptions used in 
this paper are:

Assumption 2.1. The metric measure space (X, d, m) satisfies:

• (X, d) is a complete and separable length space,
• m is a non-negative Borel measure with respect to d and finite on bounded sets,
• suppm = X.

Moreover, for brevity we will not distinguish X, (X, d) or (X, d, m) when no ambiguity 
exists. For example, we write S2(X) instead of S2(X, d, m) (see the next section).

2.2. Sobolev functions

Definition 2.2 (Test plan). Let (X, d, m) be a metric measure space and π ∈
P(C([0, 1], X)). We say that π has bounded compression provided there exists C > 0
such that

(et)�π ≤ Cm, ∀t ∈ [0, 1].
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Then we say that π is a test plan if it has bounded compression, is concentrated on 
AC2([0, 1], X) and

1∫
0

∫
|γ̇t|2 dπ(γ) dt < +∞.

The notion of Sobolev function is given by duality with that of test plan:

Definition 2.3 (Sobolev class). Let (X, d, m) be a metric measure space. A Borel function 
f : X → R belongs to the Sobolev class S2(X, d, m) (resp. S2

loc(X, d, m)) provided there 
exists a non-negative function G ∈ L2(X, m) (resp. L2

loc(X, m)) such that

∫
|f(γ1) − f(γ0)|dπ(γ) ≤

∫ 1∫
0

G(γs)|γ̇s| ds dπ(γ), ∀ test plan π.

In this case, G is called a 2-weak upper gradient of f , or simply weak upper gradient.

It is known, see e.g. [3], that there exists a minimal function G in the m-a.e. sense 
among all the weak upper gradients of f . We denote such minimal function by |Df |
or |Df |X to emphasize which space we are considering and call it minimal weak upper 
gradient. Notice that if f is Lipschitz, then |Df | ≤ lip(f) m-a.e., because lip(f) is a weak 
upper gradient of f .

It is known that the locality holds for |Df |, i.e. |Df | = |Dg| a.e. on the set {f = g}, 
moreover S2

loc(X, d, m) is a vector space and the inequality

|D(αf + βg)| ≤ |α||Df | + |β||Dg|, m-a.e., (2.1)

holds for every f, g ∈ S2
loc(X, d, m) and α, β ∈ R and the space S2

loc ∩ L∞
loc(X, d, m) is an 

algebra, with the inequality

|D(fg)| ≤ |f ||Dg| + |g||Df |, m-a.e., (2.2)

being valid for any f, g ∈ S2
loc ∩ L∞

loc(X, d, m).
Another basic—and easy to check—property of minimal weak upper gradients that we 

shall frequently use is their semicontinuity in the following sense: if (fn) ⊂ S2(X, d, m)
is a sequence m-a.e. converging to some f and such that (|Dfn|) is bounded in L2(X, m), 
then f ∈ S2(X, d, m) and

|Df | ≤ G, m-a.e.,

for every L2-weak limit G of some subsequence of (|Dfn|) (see [3]).
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Then the Sobolev space W 1,2(X, d, m) is defined as W 1,2(X, d, m) := S2(X, d, m) ∩
L2(X, m) and is endowed with the norm

‖f‖2
W 1,2(X,d,m) := ‖f‖2

L2(X,m) + ‖|Df |‖2
L2(X,m).

W 1,2(X) is always a Banach space, but in general it is not an Hilbert space. Follow-
ing [12], we say that (X, d, m) is an infinitesimally Hilbertian space if W 1,2(X) is an 
Hilbert space.

In [3] (see also [2]) the following result has been proved.

Proposition 2.4 (Density in energy of Lipschitz functions). Let (X, d, m) be a metric 
measure space and f ∈ W 1,2(X). Then there exists a sequence (fn) of Lipschitz functions 
L2-converging to f such that the sequence (lip(fn)) L2-converges to |Df |.

2.3. Product spaces

In this subsection we recall the basic concepts and results about the Cartesian product 
and the warped product of two spaces. Both metric and metric measure structures are 
considered.

Given two metric measure spaces (X, dX , mX) and (Y, dY , mY ), we define their (Carte-
sian) product as:

Definition 2.5 (Cartesian product). We define the space (Y ×X, dc, mc) as the product 
space Y ×X equipped with the distance dc := dY ×dX and the measure mc := mY ×mX . 
Here dc = dY × dX means:

dc((y1, x1), (y2, x2)) =
√

d2
Y (y1, y2) + d2

X(x1, x2),

for any pairs (y1, x1), (y2, x2) ∈ Y ×X.

We shall make use of the following simple result, established in [10], linking Sobolev 
functions on the base spaces with those in the product:

Proposition 2.6. Let g ∈ L2
loc(X) and define f ∈ L2

loc(Y ×X) as f(y, x) := g(x).
Then f ∈ S2

loc(Y ×X) if and only if g ∈ S2
loc(X) and in this case the identity

|Df |Xc
(y, x) = |Dg|X(x),

holds for mc-a.e. (t, x).

For warped products the construction is slightly more complicated. The warped prod-
uct metric is defined for X, Y length spaces only and in order to introduce it we need 
first to discuss the corresponding notion of length:
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Definition 2.7 (Warped length of curves). Let (X, dX) and (Y, dY ) be two length spaces 
and wd : Y → [0, +∞) a continuous function. Let γ = (γY , γX) be a curve such that 
γY , γX are absolutely continuous. Then the wd-length of γ is defined as

lw[γ] := lim
τ

n∑
i=1

√
d2
Y (γY

ti−1
, γY

ti ) + w2
d(γY

ti−1
)d2

X(γX
ti−1

, γX
ti ),

where τ := {0 = t0, t1, ..., tn = 1} is a partition of I = [0, 1] and the limit is taken with 
respect to the refinement ordering of partitions.

It is not hard to check that the limit exists and that the formula

lw[γ] =
1∫

0

√
|γ̇Y

t |2 + w2
d(γY

t )|γ̇X
t |2 dt

holds.
Then we can define the metric dw using this length structure:

Definition 2.8 (Warped product of metric spaces). Let (X, dX) and (Y, dY ) be two length 
spaces and wd : Y → [0, ∞) a continuous function. Define a pseudo-metric dw on the 
space Y ×X by

dw(p, q) := inf{lw[γ] : γ = (γY , γX) with γY , γX absolutely continuous and

γ0 = p, γ1 = q},

for any p, q ∈ Y ×X.

The pseudo metric dw induces an equivalence relation on Y ×X by (y, x) ∼ (y′, x′) iff 
dw((y, x), (y′, x′)) = 0 and then a metric on the quotient. With a common slight abuse 
of notation we shall denote the completion of such quotient by (Y ×w X, dw). It is clear 
that if X, Y are separable, then so is Y ×w X. Let us denote by π : Y ×X → Y ×w X

the quotient map, then we can give the following definition:

Definition 2.9 (Warped product of metric measure spaces). Let (X, dX , mX) and 
(Y, dY , mY ) be two complete separable and length metric spaces equipped with non-
negative Radon measures. Assume also that mX is a finite measure and let wd, wm :
Y → [0, +∞) be continuous functions.

Then the warped product (Y ×w X, dw) is defined as above and the Radon measure 
mw is defined as

mw := π∗
(
(wmmY ) ×mX

)
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The assumption that mX is finite is needed to ensure that mw, which is always a Borel 
measure, is actually Radon. Indeed, observe that the trivial inequality

dw

(
(y, x), (y′, x′)

)
≥ dY (y, y′)

grants that the projection map πY : Y × X → Y passes to the quotient and induces 
a 1-Lipschitz map, still denoted by πY , from Y ×w X to Y . Then for p ∈ Y ×w X we 
can find a neighborhood U of πY (p) in Y such that mY (U) < ∞. It is then clear that 
π(U ×X) is a neighborhood of p in Y ×wX of finite mass, thus proving the claim. If mX

is not finite, it is still true that mw is a Radon measure, provided wm is never 0, but in 
applications to geometry it is often the case that wm is 0 in at least one point, so that 
we shall always assume that mX is finite, even if all our results only require mw to be 
Radon.

Finally a word on notation. With a slight abuse, we shall denote the typical element 
of Y ×w X by (y, x). This is not really harmful since the complement of π(Y × X) in 
Y ×w X is mw-negligible and in writing a function on Y ×w X as a function on Y ×X

it will be implicitly understood that such function passes to the quotient.

3. The results

3.1. Cartesian product

Throughout this section (X, d, m) is a fixed complete, separable and length space and 
I ⊂ R a closed, possibly unbounded, interval. We are interested in studying the Cartesian 
product (Xc, dc, mc) of I, endowed with its Euclidean structure, and (X, d, m).

Given a function f : Xc → R and x ∈ X we denote by f (x) : I → R the function given 
by f (x)(t) := f(t, x). Similarly, for t ∈ I we denote by f (t) : X → R the function given 
by f (t)(x) := f(t, x).

We start introducing the Beppo Levi space BL(Xc):

Definition 3.1 (The space BL(Xc)). The space BL(Xc) ⊂ L2(Xc, mc) is the space of 
functions f ∈ L2(Xc, mc) such that

i) f (x) ∈ W 1,2(I) for m-a.e. x,
ii) f (t) ∈ W 1,2(X) for L1-a.e. t,
iii) the function

|Df |c(t, x) :=
√

|Df (t)|2X(x) + |Df (x)|2I(t),

belongs to L2(Xc, mc).



2068 N. Gigli, B.-X. Han / Journal of Functional Analysis 275 (2018) 2059–2095
On BL(Xc) we put the norm

‖f‖2
BL(Xc) := ‖f‖2

L2(Xc) + ‖|Df |c‖2
L2(Xc).

The space BLloc(Xc) is the subset of L2
loc(Xc, mc) of functions which are locally equal to 

some function in BL(Xc).

The main result of this section is the identification of the spaces W 1,2(Xc) and BL(Xc)
and of their corresponding weak gradients |Df |Xc

and |Df |c. One inclusion has been 
proved in [4], notice that although in [4] a lower Ricci curvature bound is often present, 
the following result is stated for arbitrary (X, d, m) as above:

Proposition 3.2 (Proposition 6.18 of [4]). We have W 1,2(Xc) ⊂ BL(Xc) and
∫
Xc

|Df |2c dmc ≤
∫
Xc

|Df |2Xc
dmc, ∀f ∈ W 1,2(Xc). (3.1)

The key to proving the other inclusion is in the following purely metric lemma:

Lemma 3.3. Let f : Xc → R be of the form f(t, x) = g1(x) + h(t)g2(x) for Lipschitz 
functions g1, g2, h. Then

lip(f)2(t, x) ≤ lipX(f (t))2(x) + lipI(f (x))2(t)

for every (t, x) ∈ Xc.

Proof. Let (t, x), (s, y) ∈ Xc, and notice that

|f(s, y) − f(t, x)| = |g1(y) + h(s)g2(y) − g1(x) − h(t)g2(x)|

≤ |h(s) − h(t)||g2(y)|
|s− t| |s− t|

+ |g1(y) − g1(x) + h(t)(g2(y) − g2(x))|
d(x, y) d(x, y).

Hence from the Cauchy–Schwarz inequality we obtain, after a division by dc

(
(s, y), (t, x)

)
:

|f(s, y) − f(t, x)|
dc

(
(s, y), (t, x)

) ≤
√

|h(s) − h(t)|2|g2(y)|2
|s− t|2 + |g1(y) − g1(x) + h(t)(g2(y) − g2(x))|2

d2(x, y) .

Letting (s, y) → (t, x) and using the continuity of g2 we conclude. �
In this last lemma, the fact that I was an interval played no role; to realize the 

importance of this restriction and streamline the argument it is useful to introduce the 
following classes of functions:
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Definition 3.4 (The classes A and Ã). We define the space of functions A ⊂ BLloc(Xc)
as

A :=
{
g1(x) + h(t)g2(x) ∈ BLloc(Xc) : g1, g2 ∈ W 1,2(X), h : I → R is Lipschitz

}
,

and the space Ã ⊂ BLloc(Xc) as the set of functions f ∈ BLloc(Xc) which are locally 
equal to some function in A.

Notice that Proposition 2.6 and the calculus rules (2.1), (2.2) ensure that

Ã ⊂ S2
loc(Xc). (3.2)

The interest of functions in Ã is due to the next two results:

Proposition 3.5. Let f ∈ Ã. Then

|Df |Xc
= |Df |c mc-a.e.

Proof. Notice that by (3.2) the statement makes sense. Moreover, due to the local nature 
of the statement we can assume that f(t, x) = g1(x) + h(t)g2(x) ∈ A with h having 
compact support. With this assumption we have that f ∈ W 1,2(Xc) so that keeping in 
mind Proposition 3.2, to conclude it is sufficient to prove that

|Df |2Xc
(t, x) ≤ |Df (x)|2I(t) + |Df (t)|2X(x), mc-a.e. (t, x). (3.3)

To this aim, it is in turn sufficient to show that for any [a, b) ⊂ I and any Borel set 
E ⊂ X we have

∫
Ẽ

|Df |2Xc
(t, x) dt dm(x) ≤

∫
Ẽ

|Df (x)|2I(t) + |Df (t)|2X(x) dt dm(x) (3.4)

with Ẽ := [a, b) × E. Indeed if this holds, taking into account that open sets in Xc can 
always be written as disjoint countable union of sets of the form [a, b) × E, we deduce 
that (3.4) holds with Ẽ generic open set in Xc, so that using the fact that the integrand 
are in L1(Xc, mc) by exterior approximation we get that (3.4) holds for arbitrary Borel 
sets Ẽ ⊂ Xc and thus (3.3) and the conclusion.

Thus fix E ⊂ X Borel, let Ẽ := [a, b) ×E and up to a simple scaling argument assume 
also that [a, b) = [0, 1).

For k, i ∈ N, k > 0, we define fk,i ∈ W 1,2(X) as fk,i(x) := g1(x) + h( i
k )g2(x) and 

fk ∈ BL(Xc) as

fk(t, x) := (kt− i)fk,i+1(x) + (i + 1 − kt)fk,i(x), for t ∈
[
i , i+1]

.
k k
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Notice that fk → f in L2(Xc, mc). By Proposition 2.4, for each (k, i) we can find a 
sequence of Lipschitz functions fk,i,n ∈ Lip (X) converging to fk,i in L2(X, m) such 
that limn→∞ lip(fk,i,n) = |Dfk,i|X in L2(X, m). It will also be convenient to define 
gk,n, gk ∈ L2(Xc, mc) as

gk,n(·, t) := k(fk,i+1,n − fk,i,n) gk(·, t) := k(fk,i+1 − fk,i) for t ∈ ( i
k ,

i+1
k )

and to notice that

lim
n→∞

gk,n = gk lim
k→∞

gk = |Df (·)|I(·), (3.5)

both limits being in L2(Xc, m): here the first limit is obvious by construction, while the 
second follows from the identity gk(t, x) = k(h( i+1

k ) − h( i
k ))g2(x) valid for t ∈ ( i

k , 
i+1
k ).

Now define Fk,n ∈ Lip(Xc) as

Fk,n(t, x) := (kt− i)fk,i+1,n(x) + (i + 1 − kt)fk,i,n(x), for t ∈
[
i
k ,

i+1
k

]
and notice that construction we have Fk,n ∈ Ã, so that Lemma 3.3 gives

|lip(Fk,n)|2 ≤ |lipX(Fk,n)|2 + |lipI(Fk,n)|2, L1 ×m-a.e.,

for every k, n and since we also have limk limn Fk,n = f in L2(Xc, mc), such bound 
together with the lower semicontinuity of minimal weak upper gradients gives that∫

Ẽ

|Df |2Xc
dmc ≤ lim

k→∞
lim
n→∞

∫
Ẽ

lipX(Fk,n)2 dmc + lim
k→∞

lim
n→∞

∫
Ẽ

lipI(Fk,n)2 dmc (3.6)

so that to get (3.4)—and thus the conclusion—it is sufficient to prove that

lim
k→∞

lim
n→∞

∫
Ẽ

lipX(Fk,n)2 dmc ≤
∫
Ẽ

|Df (t)|2X(x) dmc(t, x),

lim
k→∞

lim
n→∞

∫
Ẽ

lipI(Fk,n)2 dmc ≤
∫
Ẽ

|Df (x)|2I(t) dmc(t, x).
(3.7)

To this aim, start observing that the continuity of h grants that R 
 t �→ f (t) ∈ W 1,2(X)
is continuous so that also the map I 
 t �→

∫
E
|Df (t)|2X dm is continuous. In particular, 

its integral on [0, 1] coincides with the limit of the Riemann sums:

∫
Ẽ

|Df (t)|2X(x) dmc(t, x) = lim
k→∞

1
k

k∑
i=0

∫
E

|Dfk,i|2X dm

= lim
k→∞

lim
n→∞

1
k

k∑
i=0

∫
lipX(fk,i,n)2 dm.

(3.8)
E
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From the very definition of Fk,n we get that

lipX(F (t)
k,n)2 ≤

(
(kt− i)lipX(fk,i+1,n) + (i + 1 − kt)lipX(fk,i,n)

)2

≤ (kt− i)lipX(fk,i+1,n)2 + (i + 1 − kt)lipX(fk,i,n)2,

on X for every t ∈ [ ik , 
i+1
k ], and thus

∫
Ẽ

lipX(F (t)
k,n)2(x) dmc(t, x) ≤

∫
X

1
k

k∑
i=0

lipX(fk,i,n)2

− 1
2

(
lipX(fk,0,n)2 + lipX(fk,k,n)2

)
dm

≤
∫
X

1
k

k∑
i=0

lipX(fk,i,n)2 dm.

This inequality and (3.8) give the first in (3.7). The second is a direct consequence of 
the fact that lipI(Fk,n) = gk,n and the limiting properties (3.5). �
Proposition 3.6 (Density in energy). For any function f ∈ BL(Xc) there exists a sequence 
(fn) ⊂ BL(Xc) ∩Ã converging to f in L2(Xc, mc) such that |Dfn|c → |Df |c in L2(Xc, mc)
as n → ∞.

Proof. We shall give the proof for the case I = R, the argument for arbitrary I being 
similar.

With a standard cut-off, truncation and diagonalization argument we can, and will, 
assume that the given f ∈ BL(Xc) is bounded and with bounded support. Then for any 
n ∈ N and i ∈ Z we define

gi,n(x) := n

(i+1)
n∫

i
n

f(x, s) ds,

and

hi,n(t) := χn

(
t− i

n

)
,

where χn : R �→ R is given by:

χn(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if t < − 1
n ,

nt + 1, if − 1
n ≤ t < 0,

1 − nt, if 0 ≤ t < 1
n ,

0, if 1 < t.

(3.9)
n



2072 N. Gigli, B.-X. Han / Journal of Functional Analysis 275 (2018) 2059–2095
Then we define the sequence (fn) as:

fn(t, x) :=
∑
i∈Z

hi,n(t)gi,n(x),

the sum being well defined because gi,n is not zero only for a finite number of i’s and it 
is immediate to check that fn ∈ Ã.

We claim that fn → f in L2(Xc, mc) as n → ∞. Integrating the inequality

(
fn(t, x)

)2 =
(∑

i∈Z

hi,n(t)gi,n(x)
)2

≤
∑
i∈Z

hi,n(t)
(
gi,n(x)

)2

≤
∑
i∈Z

hi,n(t)n
(i+1)/n∫
i/n

f2(s, x) ds,

on x and t we obtain ‖fn‖L2(Xc) ≤ ‖f‖L2(Xc), for every n ∈ N. This means that the 
linear operator Tn from L2(Xc, mc) into itself assigning fn to f is 1-Lipschitz for every 
n ∈ N. Since obviously fn → f in L2(Xc, mc) if f is Lipschitz with bounded support, the 
uniform continuity of the Tn’s grant that fn → f in L2(Xc, mc) for every f ∈ L2(Xc, mc).

Now, taking into account the L2-lower semicontinuity of the BL-norm, to conclude it 
is sufficient to show that for every n ∈ N we have

∫
Xc

|Df (t)
n |2X(x) dmc(t, x) ≤

∫
R×X

|Df (t)|2X(x) dmc(t, x),

∫
X̃

|Df (x)
n |2

R
(t) dmc(t, x) ≤

∫
R×X

|Df (x)|2
R
(t) dmc(t, x).

(3.10)

Start noticing that the definition of the functions gi,n, and Jensen’s inequality applied 
to the convex and lower semicontinuous function on L2(X) which sends g to 

∫
|Dg|2X dm

(intended to be +∞ if g /∈ W 1,2(X)) we see that gi,n ∈ W 1,2(X) with

∫
X

|Dgi,n|2X dm ≤ n

∫
X

(i+1)/n∫
i/n

|Df (t)|2X′ dt dm. (3.11)

Then from the trivial identity

f (t)
n = (1 + i− nt)gi,n + (nt− i)gi+1,n,

valid for every n and a.e. t ∈ [ i , i+1 ] we know that f (t)
n ∈ W 1,2(X) and
n n
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|Df (t)
n |2X ≤

(
(1 + i− nt)|Dgi,n|X + (nt− i)|Dgi+1,n|X

)2

≤ (1 + i− nt)|Dgi,n|2X + (nt− i)|Dgi+1,n|2X ,

for every n and a.e. t ∈ [ in , 
i+1
n ]. This yields the bound

∫
Xc

|Df (t)
n |2X(x) dmc(t, x) ≤ 1

n

∑
i∈Z

∫
X

|Dgi,n|2X(x) dm(x)

by (3.11) ≤
∑
i∈Z

∫
X

(i+1)/n∫
i/n

|Df (t)|2X(x) dt dm(x)

=
∫
Xc

|Df (t)|2X(x) dmc(t, x),

(3.12)

which is the first in (3.10).
Similarly, for m-a.e. x ∈ X the function f (x)

n : R → R is L1-a.e. well defined and given 
by

f (x)
n (t) = (1 + i− nt)gi,n(x) + (nt− i)gi+1,n(x), L1-a.e. t ∈

[
i
n ,

i+1
n

]
.

Arguing as before we get that f (x)
n ∈ W 1,2(R) for m-a.e. x and

(i+1)/n∫
i/n

|Df (x)
n |2

R
(t) dt =

(i+1)/n∫
i/n

n2(gi+1,n(x) − gi,n(x)
)2 dt

= n
(
gi+1,n(x) − gi,n(x)

)2

= n3

⎛
⎜⎝

(i+2)/n∫
(i+1)/n

f(t, x) dt−
(i+1)/n∫
i/n

f(t, x) dt

⎞
⎟⎠

2

= n3

⎛
⎜⎝

(i+1)/n∫
i/n

f (x)(t + 1/n) − f (x)(t) dt

⎞
⎟⎠

2

≤ n3

⎛
⎜⎝

(i+1)/n∫
i/n

t+1/n∫
t

|Df (x)|R(s) dsdt

⎞
⎟⎠

2

≤ n

(i+1)/n∫ t+1/n∫
t

|Df (x)|2
R
(s) dsdt,
i/n
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which yields ∫
Xc

|Df (x)
n |2

R
(t) dmc(t, x) ≤

∫
Xc

|Df (x)|2
R
(t) dmc(t, x),

which is the second in (3.10) and the conclusion. �
We now have all the tools to prove the main result of this section:

Theorem 3.7. The sets W 1,2(Xc) and BL(Xc) coincide and for every f ∈ W 1,2(Xc) =
BL(Xc) the identity

|Df |Xc
= |Df |c mc-a.e.,

holds.

Proof. Proposition 3.2 gives the inclusion W 1,2(Xc) ⊂ BL(Xc). Now pick f ∈ BL(Xc)
and find a sequence (fn) ⊂ BL(Xc) ∩ Ã as in Proposition 3.6. By Proposition 3.5 we 
know that

|Dfn|Xc
= |Dfn|c mc-a.e., ∀n ∈ N.

By construction, the right hand side converges to |Df |c in L2(Xc, mc) as n → ∞, and 
since fn → f in L2(Xc, mc), by the lower semicontinuity of weak upper gradients we 
deduce that f ∈ W 1,2(Xc) and

|Df |Xc
≤ |Df |c, mc-a.e.,

which together with inequality (3.1) gives the thesis. �
3.2. Warped product

Throughout this section wd, wm : I → [0, +∞) are given continuous functions and X
is assumed to have finite measure. We are interested in studying Sobolev functions on 
the warped product space (Xw, dw, mw), where Xw := I ×w X.

Like in the Cartesian case, given f : Xw → R and t ∈ I we shall denote by f (t) : X → R

the function given by f (t)(x) := f(t, x). Similarly f (x)(t) := f(t, x) for x ∈ X.
We then consider the Beppo–Levi space BL(Xw) defined as follows:

Definition 3.8 (The space BL(Xw)). As a set, BL(Xw) is the subset of L2(Xw, mw) made 
of those functions f such that:

i) for m-a.e. x ∈ X we have f (x) ∈ W 1,2(R, wmL1),
ii) for wmL1-a.e. t ∈ R we have f (t) ∈ W 1,2(X),
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iii) the function

|Df |w(t, x) :=
√

w−2
d (t)|Df (t)|2X(x) + |Df (x)|2

R
(t) (3.13)

belongs to L2(Xw, mw).

On BL(Xw) we put the norm

‖f‖BL(Xw) :=
√

‖f‖2
L2(Xw) + ‖|Df |w‖2

L2(Xw).

It will be useful to introduce the following auxiliary space:

Definition 3.9 (The space BL0(Xw)). Let V ⊂ BL(Xw) be the space of functions f which 
are identically 0 on Ω ×X ⊂ Xw for some open set Ω ⊂ R containing {wm = 0}.

BL0(Xw) ⊂ BL(Xw) is defined as the closure of V in BL(Xw).

The goal of this section is to compare the spaces BL(Xw) and W 1,2(Xw) and their 
respective notions of minimal weak upper gradients, namely |Df |w and |Df |Xw

. Under 
the sole continuity assumption of wd, wm and the compatibility condition {wd = 0} ⊂
{wm = 0} we can prove that

BL0(Xw) ⊂ W 1,2(Xw) ⊂ BL(Xw)

and that for any f ∈ W 1,2(Xw) ⊂ BL(Xw) the identity

|Df |Xw
= |Df |w

holds mw-a.e., so that in particular the above inclusions are continuous. Without addi-
tional hypotheses it is unclear to us whether W 1,2(Xw) = BL(Xw) (on the other hand, 
it is easy to construct examples where BL0(Xw) is strictly smaller than BL(Xw)). Still, 
if we assume that

the set {wm = 0} ⊂ I is discrete (3.14)

and that wm decays at least linearly near its zeros, i.e.

wm(t) ≤ C inf
s:wm(s)=0

|t− s|, ∀t ∈ R, (3.15)

for some constant C ∈ R, then we can prove—using basically arguments about 
capacities—that

BL0(Xw) = BL(Xw),
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so that the three spaces considered are all equal. We remark that these two additional 
assumptions on wm are satisfied in all the geometric applications we have in mind, 
because typically one considers cone/spherical suspensions and in these cases wm has at 
most two zeros and decays polynomially near them.

We turn to the details. The following result is easily established:

Proposition 3.10. We have W 1,2(Xw) ⊂ BL(Xw).

Proof. Pick f ∈ W 1,2(Xw) and use Proposition 2.4 to find a sequence (fn) of Lipschitz 
functions on Xw such that fn → f and lip(fn) → |Df |Xw

in L2(Xw). Up to passing to 
a subsequence, not relabeled, we can further assume that 

∑
n ‖fn+1 − f‖L2(Xw) < ∞, so 

that the inequality

∥∥ ∑
n

‖f (t)
n − f (t)‖L2(X,m)

∥∥
L2(wmL1)

=

√√√√∫
I

∫
X

∑
n

|f (t)
n (x) − f (t)(x)|2 dm(x)wm(t) dt

=
∥∥∑

n

|fn − f |
∥∥
L2(Xw,mw) ≤

∑
n

∥∥|fn − f |
∥∥
L2(Xw,mw) < ∞

shows that for wmL1-a.e. t we have 
∑

n ‖f
(t)
n − f (t)‖L2(X,m) < ∞ and thus in particular 

f
(t)
n → f (t) in L2(X, m). Similarly, for m-a.e. x ∈ X, we have f (x)

n → f (x) in L2(I, wmL1).
Observe that for every (t, x) ∈ Xw we have

lip(fn)(t, x) = lim
(s,y)→(t,x)

|fn(s, y) − fn(t, x)|
dw((s, y), (t, x))

≥ lim
s→t

|fn(s, x) − fn(t, x)|
dw((s, x), (t, x))

= lim
s→t

|f (x)
n (s) − f

(x)
n (t)|

|s− t| = lipI(f (x)
n )(t)

and therefore by Fatou’s lemma we deduce

∫
X

lim
n→∞

∫
I

lipI(f (x)
n )2(t) d(wmL1)(t) dm(x) ≤ lim

n→∞

∫
Xw

lip(fn)2(t, x) dmw(t, x)

=
∫

|Df |2Xw
dmw < ∞.
Xw
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Since f (x)
n → f (x) in L2(I, wmL1) for m-a.e. x ∈ X, this last inequality together with the 

lower semicontinuity of minimal weak upper gradients ensures that f (x) ∈ W 1,2(I, wmL1)
for m-a.e. x ∈ X and ∫

Xw

|Df (x)|2I(t) dmw(t, x) ≤
∫
Xw

|Df |2Xw
dmc. (3.16)

An analogous argument starting from the bound

lip(fn)(t, x) = lim
(s,y)→(t,x)

|fn(s, y) − fn(t, x)|
dw((s, y), (t, x))

≥ lim
y→x

|fn(t, y) − fn(t, x)|
dw((t, y), (t, x))

= lim
y→x

|f (t)
n (y) − f

(t)
n (x)|

wd(t)d(x, y) = 1
wd(t) lipX(f (t)

n )(x)

valid for every t ∈ I such that wd(t) > 0, grants that f (t) ∈ W 1,2(X) for wmL1-a.e. t ∈ I

(recall that {wd = 0} ⊂ {wm = 0}) and∫
Xw

|Df (t)|2X(x)
w2

d(t) dmw(t, x) ≤
∫
Xw

|Df |2Xw
dmw. (3.17)

The bounds (3.16) and (3.17) ensure that f ∈ BL(Xw), so that the inclusion W 1,2(Xw) ⊂
BL(Xw) is proved. �

In order to prove that for f ∈ W 1,2(Xw) ⊂ BL(Xw) the minimal weak upper gradient 
|Df |Xw

coincides with the ‘warped’ gradient |Df |w defined in (3.13), we shall make use 
of the following simple comparison argument, which will then allow us to reduce the 
proof to the already known cartesian case.

Lemma 3.11. Let X be a set, d1, d2 two distances on it and m1, m2 two measures. Assume 
that (X, d1, m1) and (X, d2, m2) are both metric measure spaces satisfying the Assump-
tions 2.1, that for some C > 0 we have m2 ≤ Cm1 and that for some L > 0 we have 
d1 ≤ Ld2.

Then denoting by S(X1), S(X2) the Sobolev classes relative to (X, d1, m1) and 
(X, d2, m2) respectively and by |Df |1, |Df |2 the associated minimal weak upper gradients, 
we have

S(X1) ⊂ S(X2)

and for every f ∈ S(X1) the inequality

|Df |2 ≤ L|Df |1,

holds m2-a.e..



2078 N. Gigli, B.-X. Han / Journal of Functional Analysis 275 (2018) 2059–2095
Proof. The assumptions ensure that the topology induced by d2 is finer than the one 
induced by d1, hence every d1-Borel function is also d2-Borel. Then observe that the 
assumption d1 ≤ Ld2 ensures that d2-absolutely continuous curves are also d1-absolutely 
continuous, the d1-metric speed being bounded by L-times the d2-metric speed. Then 
considering also the assumption m2 ≤ Cm1 we see that (X, d2, m2)-test plans are also 
(X, d1, m1)-test plans, which, by definition, gives the inclusion S(X1) ⊂ S(X2). The 
inequality |Df |2 ≤ L|Df |1 m2-a.e. is then obtained by the m2-a.e. minimality of |Df |2
and the opposite inequality valid for the metric speeds. �

We can then prove the following result:

Proposition 3.12. Let f ∈ W 1,2(Xw) ⊂ BL(Xw). Then

|Df |Xw
= |Df |w, mw-a.e.

Proof. Fix ε > 0 and t0 ∈ R such that wm(t0) > 0 so that also wd(t0) > 0. Use the 
continuity of wd to find δ > 0 so that

∣∣∣wd(t)
wd(s)

∣∣∣ ≤ 1 + ε ∀t, s ∈ [t0 − 2δ, t0 + 2δ] (3.18)

and let χ : R → [0, 1] be a Lipschitz function identically 1 on [t0 − δ, t0 + δ] with support 
contained in [t0 − 2δ, t0 + 2δ].

We introduce the continuous functions w̄d, w̄m : R → R as

w̄d(t) :=

⎧⎪⎨
⎪⎩

wd(t0 − 2δ), if t < t0 − 2δ,
wd(t), if t ∈ [t0 − 2δ, t0 + 2δ],
wd(t0 + 2δ), if t > t0 + 2δ,

w̄m(t) :=

⎧⎪⎨
⎪⎩

wm(t0 − 2δ), if t < t0 − 2δ,
wm(t), if t ∈ [t0 − 2δ, t0 + 2δ],
wm(t0 + 2δ), if t > t0 + 2δ,

the corresponding product space (Xw̄, dw̄, mw̄) and consider the function f̄ : Xw → R

given by f̄(t, x) := χ(t)f(t, x) which belongs to W 1,2(Xw) and therefore, by what we 
just proved, to BL(Xw). The locality property of minimal weak upper gradients ensures 
that

|Df |Xw
= |Df̄ |Xw

and |Df |w = |Df̄ |w mw-a.e. on [t0 − δ, t0 + δ] ×X.

Since f̄ has support concentrated in the set of (t, x)’s with t ∈ [t0 − 2δ, t0 + 2δ] and wd
is positive in such interval, we can think of f̄ also as a real valued function Xw̄. With 
this identification in mind it is clear that

|Df̄ |Xw
= |Df̄ |Xw̄

and |Df̄ |w = |Df̄ |w̄ mw-a.e. on [t0 − 2δ, t0 + 2δ] ×X.
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We now consider the cartesian product (Xc, dc, mc) of (X, d, m) and R. Notice that the 
sets Xw̄ and Xc both coincide with R ×X and that by construction (recall also (3.18)) 
we have

cmc ≤ mw̄ ≤ Cmc and wd(t0)
1 + ε

dc ≤ dw̄ ≤ wd(t0)(1 + ε)dc

where c := min[t0−2δ,t0+2δ] wm and C = max[t0−2δ,t0+2δ] wm. Hence by Lemma 3.11 we 
deduce that mw̄-a.e. it holds

|Df̄ |Xc

wd(t0)(1 + ε) ≤ |Df̄ |Xw̄
≤ 1 + ε

wd(t0)
|Df̄ |Xc

and |Df̄ |c
wd(t0)(1 + ε) ≤ |Df̄ |w̄ ≤ 1 + ε

wd(t0)
|Df̄ |c.

Since by Theorem 3.7 we know that |Df̄ |Xc
= |Df̄ |c mc-a.e., collecting what we proved 

we deduce that

|Df |Xw

(1 + ε)2 ≤ |Df |w ≤ (1 + ε)2|Df |Xw

mw-a.e. on [t0 − δ, t0 + δ] ×X. By the arbitrariness of t0 such that wm(t0) > 0 and the 
Lindelof property of {wm > 0} ⊂ R we deduce that the above inequality holds mw-a.e.. 
The conclusion then follows letting ε ↓ 0. �

We now turn to the general relation between BL0(Xw) and W 1,2(Xw):

Proposition 3.13. We have BL0(Xw) ⊂ W 1,2(Xw).

Proof. Taking into account Proposition 3.12 it is sufficient to prove that V ⊂ W 1,2(Xw). 
Notice that for arbitrary f ∈ BL(Xw), considering the functions χn(t) := 0 ∨ (n −|t|) ∧ 1
and defining fn(t, x) := χn(t)f(t, x), via a direct verification of the definitions we have 
fn ∈ BL(Xw), while inequality (2.2) and the dominated convergence theorem grant 
that fn → f in BL(Xw). Therefore, using again Proposition 3.12 which ensures that 
BL-convergence implies W 1,2-convergence, to conclude it is sufficient to show that any 
f ∈ V with support contained in (I ∩ [−T, T ]) × X ⊂ Xw for some T > 0 belongs to 
W 1,2(Xw).

Thus fix such f ∈ V , for r > 0 denote by Ωr ⊂ R the r-neighborhood of {wm = 0}
and find r ∈ (0, 1) such that f is mw-a.e. zero on Ω2r × X. Then by continuity and 
compactness and recalling that {wd = 0} ⊂ {wm = 0} we deduce that there are constants 
0 < c ≤ C < ∞ such that

c ≤ wd(t), wm(t) ≤ C, ∀t ∈ I ∩ [−T, T ] \ Ωr/2.

We are now going to use a comparison argument similar to that used in the proof 
of Proposition 3.12. Find two continuous functions w′

d, w
′
m agreeing with wd, wm on 
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[−T, T ] \ Ωr/2 and such that c ≤ w′
d, w

′
m ≤ C on the whole R and consider the warped 

product (Xw′ , dw′ , mw′) and the cartesian product (Xc, dc, mc) of I and X. We then have 
the equalities of sets:

BL(Xw′) = BL(Xc) = W 1,2(Xc) = W 1,2(Xw′),

the first and last coming from Lemma 3.11 and the properties of w′
d, w

′
m and the middle 

one being given by Theorem 3.7.
By the construction of w′

d, w
′
m we see that f ∈ BL(Xw′) and thus, by what we just 

proved, that f ∈ W 1,2(Xw′). Then Proposition 2.4 grants that there exists a sequence 
(fn) of dw′-Lipschitz functions converging to f in L2(Xw′) with

sup
n∈N

∫
lip′(fn)2 dmw′ < ∞

uniformly bounded in n, where by lip′ we denote the local Lipschitz constant computed 
w.r.t. the distance dw′ . Notice that up to replacing fn with (−Cn) ∨ fn ∧ Cn for a 
sufficiently large Cn, we can, and will, assume that fn is bounded for every n ∈ N.

Now find a Lipschitz function χ : I → [0, 1] identically 0 on Ωr ∪ (I \ [−T − 1, T + 1]), 
identically 1 on I ∩ [−T, T ] \ Ω2r and put f̃n(t, x) := χ(t)fn(t, x). By construction it is 
immediate to check that the f̃n’s are still dw′ -Lipschitz, converging to f in L2(mw′) and 
satisfying

sup
n∈N

∫
lip′(f̃n)2 dmw′ < ∞. (3.19)

We now claim that the f̃n’s are dw-Lipschitz, converging to f in L2(Xw) and such that

sup
n∈N

∫
lip(f̃n)2 dmw < ∞, (3.20)

from which the conclusion follows by the lower semicontinuity of weak upper gradients 
and the bound |Df̃n|Xw

≤ lip(f̃n) valid mw-a.e.. Since all the functions f̃n and f are 
concentrated on ([−T, T ] \Ωr) ×X and on this set the measures mw and mw′ agree, we 
clearly have L2(Xw)-convergence. Moreover, since wd and wd′ agree on ([−T, T ] \Ωr) ×X, 
the topologies on ([−T, T ] \ Ωr) × X induced by dw and dw′ agree (with the product 
topology, given that these functions are positive) and a direct use of the definition yields

lim
(s,y)→(t,x)

dw

(
(s, y), (t, x)

)
dw′

(
(s, y), (t, x)

) = 1, ∀(t, x) ∈ ([−T, T ] \ Ωr) ×X.

In particular, we have lip(f̃n) = lip′(f̃n) in ([−T, T ] \ Ωr) × X, so that (3.20) follows 
from (3.19). It remains to prove that f̃n is dw-Lipschitz; to this aim recall that on a 
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length space the Lipschitz constant of a function is equal to the supremum of the local 
Lipschitz constant and conclude by

Lip(fn) = sup
Xw

lip(fn) = sup
Xw′

lip′(fn) = Lip′(fn) < ∞,

where Lip′(fn) denotes the dw′-Lipschitz constant. �
Finally, we prove that if the set of zeros of wm is discrete and wm decays at least 

linearly close to its zeros, then BL0(Xw) = BL(Xw):

Proposition 3.14. Assume that wm has the properties (3.14) and (3.15).
Then BL0(Xw) = BL(Xw).

Proof. A standard truncation argument shows that BL∩L∞(Xw) is dense in BL(Xw), so 
to conclude it is sufficient to show that for any f ∈ BL∩L∞(Xw) we can find a sequence 
(fn) ⊂ V converging to it in BL(Xw).

Thus pick f ∈ BL∩L∞(Xw), put D(t) := mins:wm(s)=0 |t − s| and for n, m ∈ N, n > 1
consider the cut-off functions

σm(x) := 0 ∨ (m− d(x, x̄)) ∧ 1,

ηn(t) := 0 ∨
(
1 − | log(D(t))|

log(n)

)
∧ 1,

η̃n(t) := 0 ∨
(
n− |t|

)
∧ 1,

where x̄ ∈ X is a chosen, fixed point, and define fn,m(t, x) := ηn(t)η̃n(t)σm(x)f(t, x). 
Since (t, x) �→ ηn(t)η̃n(t)σm(x) is Lipschitz and bounded for every n, m, a direct check 
of the definition of BL(Xw) shows that fn,m ∈ BL(Xw) for every n, m and, since ηn is 0 
on a neighborhood of {wm = 0}, we also have fn,m ∈ V for every n, m.

Using the fact that the functions (t, x) �→ ηn(t)η̃n(t)σm(x) are uniformly bounded by 
1 and pointwise converge to 1 as n, m → ∞ and the dominated convergence theorem we 
see that fn,m → f in L2(Xw) as n, m → ∞.

Next, recalling (2.2) and using that σm is 1-Lipschitz we see that

|D(f (t) − f (t)
n,m)|X(x) ≤

∣∣ηn(t)η̃n(t)σm(x) − 1
∣∣ |Df (t)|X(x) + |f(t, x)|1{d(·,x̄)≥m−1}(x)

for mw-a.e. (t, x), so that the dominated convergence theorem again gives that 
∫
|D(f (t)−

f
(t)
n,m)|2X(x) dmw(t, x) → 0 as n, m → ∞.

Similarly, we have

|D(f (x) − f (x)
n,m)|I(t) ≤

∣∣ηn(t)η̃n(t)σm(x) − 1
∣∣ |Df (x)|I(t) + |f(t, x)|1{|·|≥n−1}(t)
+ |f(t, x)|1{d(·,x̄)≤m}(x)1{|·|≤n}(t)|∂tηn|(t)
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for mw-a.e. (t, x) and again by dominated convergence we see that the first two terms in 
the right hand side go to 0 in L2(Xw) as n, m → ∞. For the last term, we use the fact that 
f is bounded and our assumptions on wm. Observe indeed that |∂tηn|(t) ≤

1D−1([n−1,1])(t)
D(t) log n

so that letting x1, . . . , xN be the finite number of zeros of wm in [−n − 1, n + 1] we have

∫
|f(t, x)|21{d(·,x̄)≤m}(x)1{|·|≤n}(t)|∂tηn|2(t) dmw

≤ ‖f‖2
L∞m(Bm(x̄))
log(n)2

∫
[−n,n]∩D−1([n−1,1])

1
D2(t)wm(t) dt

≤ C
‖f‖2

L∞m(Bm(x̄))
log(n)2

∫
[−n,n]∩D−1([n−1,1])

1
D(t) dt

≤ C
‖f‖2

L∞m(Bm(x̄))
log(n)2

N∑
i=1

∫
{t:|t−xi|∈[n−1,1]}

1
|t− xi|

dt

= 2NC
‖f‖2

L∞m(Bm(x̄))
log(n) .

Since the last term goes to 0 as n → ∞ for every m ∈ N, we just proved that

lim
m→∞

lim
n→∞

∫
|D(f (x) − f (x)

n,m)|2I(t) dmw(t, x) = 0,

which is sufficient to conclude. �
3.3. Sobolev-to-Lipschitz property

The aim of this section is to study the Sobolev-to-Lipschitz property on warped prod-
ucts; let us recall the definition:

Definition 3.15 (Sobolev-to-Lipschitz property). We say that a metric measure space 
(X, d, m) has Sobolev to Lipschitz property if for any function f ∈ W 1,2(X) with |Df |X ∈
L∞(X), we can find a function f̃ such that f = f̃ m-a.e. and Lip(f̃) = ess sup |Df |X .

Metric measure spaces with the Sobolev-to-Lipschitz property are, in some sense, 
those whose metric properties can be studied via Sobolev calculus. Such property firstly 
appeared, in its ‘dual’ formulation and in the formalism of Dirichlet forms, in [4], where 
it was written as:

The intrinsic distance induced by the quadratic Cheeger energy

is equal to the distance on the space
(3.21)
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and it was proved that RCD(K, ∞) spaces have such property. (3.21) has also been used 
in [5] as one of the ingredients for the axiomatization of the RCD(K, ∞) condition purely 
in terms of Dirichlet forms. In [10] the definition as above has been introduced and it has 
been observed that, regardless of lower Ricci bounds or infinitesimal Hilbertianity, this 
notion is sufficient to derive metric properties of the space out of properties of Sobolev 
functions defined on it. As discussed in the introduction this is relevant in applications 
when little to nothing is known about the base space.

We observe that under the only assumption that wd, wm are continuous we cannot 
hope to prove that Xw has the Sobolev-to-Lipschitz property. Indeed, if wm is 0 on 
some subinterval of I which disconnects I, then the measure mw has disconnected sup-
port and therefore we can find non-constant functions on Xw which are locally constant 
on the support of mw, which is easily seen to violate the Sobolev-to-Lipschitz condi-
tion.

We shall therefore only consider the case where wm is strictly positive in the interior 
of I, a condition which is satisfied in the standard geometric constructions like that of 
cone/spherical suspension.

It is unclear to us whether, even with this condition on wm, the Sobolev-to-Lipschitz 
property passes to warped products or not. What we are able to do, instead, is to identify 
two quite general properties which imply the Sobolev-to-Lipschitz, each of which passes 
to warped products. This will also imply that whenever these two properties hold for a 
certain base space, one can consider multiple warped products and still get that the final 
space has the Sobolev-to-Lipschitz property.

We begin introducing the two auxiliary concepts we just alluded to. The first is a 
variant of the length property which takes into account the reference measure:

Definition 3.16 (Measured-length space). We say that a metric measure space (X, d, m)
is measured-length if there exists a Borel set A ⊂ X whose complement is m-negligible 
with the following property. For every x0, x1 ∈ A there exists ε > 0 such that for every 
ε0, ε1 ∈ (0, ε] there is a test plan πε0,ε1 ∈ P(C([0, 1], X)) with:

a) the map (0, ε]2 
 (ε0, ε1) �→ πε0,ε1 is weakly Borel in the sense that for any ϕ ∈
Cb(C([0, 1], X)) the map

(0, ε]2 
 (ε0, ε1) �→
∫

ϕ dπε0,ε1 ,

is Borel.
b) We have

(e0)�πε0,ε1 =
1Bε0 (x0)

m(Bε0(x0))
m, and (e1)�πε0,ε1 =

1Bε1 (x1)

m(Bε1(x1))
m

for every ε0, ε1 ∈ (0, ε].
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c) We have

lim
ε0,ε1↓0

1∫∫
0

|γ̇t|2 dt dπε0,ε1(γ) ≤ d2(x0, x1). (3.22)

Remark 3.17. Notice that (b) forces

lim
ε0,ε1↓0

1∫∫
0

|γ̇t|2 dt dπ(γ) ≥ d2(x0, x1),

so that (c) can be read as a sort of ‘optimality in the limit’. In this direction, notice that 
with a reparametrization by constant-speed argument one can always assume that the 
plans π above also fulfil:

t �→
∫

|γ̇t|2 dπ(γ) is constant, (3.23)

because such reparametrization decreases the kinetic energy.

The second definition is a simple modification of the usual doubling notion:

Definition 3.18 (a.e. locally doubling spaces). We say that a metric measure space 
(X, d, m) is a.e. locally doubling provided there exists a Borel set B whose comple-
ment is m-negligible such that for every x ∈ B there are an open set Ω containing x and 
constants C, R > 0 such that

m(B2r(y)) ≤ Cm(Br(y)), ∀r ∈ (0, R), y ∈ Ω.

It is easy to check that a a.e. locally doubling and measured-length space has the 
Sobolev-to-Lipschitz property:

Proposition 3.19. Let (X, d, m) be an a.e. locally doubling and measured-length space. 
Then it has the Sobolev-to-Lipschitz property.

Proof. It is well known that on doubling spaces, for any given function in L1
loc, a.e. point 

is a Lebesgue point. Since the property of being a Lebesgue point is local in nature, 
we immediately have that even on a a.e. locally doubling space a.e. point is a Lebesgue 
point of a given L1

loc function.
With that said, let A ⊂ X be the set given in Definition 3.16, pick f ∈ W 1,2(X) with 

L := ess sup |Df | < ∞ and let B ⊂ X the set of its Lebesgue points of f .
Pick x, y ∈ A ∩ B, let ε be given by Definition 3.16, consider ε′ ∈ (0, ε] and the test 

plan πε′,ε′ given by Definition 3.16. Then we have
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∫
|f(γ1) − f(γ0)|dπε′,ε′(γ) ≤

1∫∫
0

|Df |(γt)|γ̇t| dt dπε′,ε′(γ)

≤ L

1∫∫
0

|γ̇t| dt dπε′,ε′(γ) ≤ L

√√√√√ 1∫∫
0

|γ̇t|2 dt dπε′,ε′(γ)

Letting ε′ ↓ 0, using the fact that x, y are Lebesgue points and the bound (3.22) we 
obtain

|f(y) − f(x)| = lim
ε′↓0

∣∣∣∣
∫

f d(e0)�πε′,ε′ −
∫

f d(e1)�πε′,ε′
∣∣∣∣

= lim
ε′↓0

∣∣∣∣
∫

f(γ1) − f(γ0) dπε′,ε′(γ)
∣∣∣∣

≤ lim
ε′↓0

∫
|f(γ1) − f(γ0)|dπε′,ε′(γ)

≤ L lim
ε′↓0

√√√√√ 1∫∫
0

|γ̇t|2 dt dπε′,ε′(γ) ≤ Ld(x, y).

This proves that the restriction of f to A ∩B is Lipschitz with Lipschitz constant bounded 
by L. Since A ∩B has full measure the proof is achieved. �

We shall now verify that both the properties of being a.e. locally doubling and 
measured-length pass to warped products. We start with the a.e. locally doubling, which 
is easier.

Proposition 3.20. Let (X, d, m) be an a.e. locally doubling space with finite measure and 
wd, wm :→ [0, +∞) continuous functions. Then the warped product (Xw, dw, mw) is a.e. 
locally doubling as well.

Proof. Let B ⊂ X be the set given in Definition 3.18, put B̂ := {wm > 0} × B ⊂ Xw

and notice that B̂ has negligible complement. Then recall that {wm > 0} ⊂ {wd > 0}, 
notice that it is trivial that the cartesian product of a doubling space and an interval is 
doubling and conclude using the continuity of wd, wm. �

To study the behavior of the measured-length property on warped products, we need 
to recall some facts about warped product distances. The content of the following lemma 
is well known, but we provide the simple proof for completeness.

Lemma 3.21. Let (X, d) be a complete and separable length space, I ⊂ R a closed, possibly 
unbounded interval, wd : I → R

+ a continuous function and consider the warped product 
metric space (Xw, dw).
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Then there exists a function D : I2 ×X → R
+ such that

dw

(
(t0, x0), (t1, x1)

)
= D(t0, t1, d(x0, x1)), ∀t0, t1 ∈ I, x0, x1 ∈ X, (3.24)

and for every sequence of curves γn = (γI
n, γ

X
n ) joining (t0, x0) to (t1, x1) whose dw-length 

converge to dw

(
(t0, x0), (t1, x1)

)
we have that the d-length of the curves γX

n converge to 
d(x0, x1).

Finally, for (t0, x0) ∈ Xw with wd(t0) > 0 and given ε > 0 and t′ ∈ I we have that 
there exists x′ ∈ X with (t′, x′) ∈ Bε((t0, x0)) if and only if |t′ − t| < ε and in this case 
the set of such x′’s is a ball centered at x0 whose d-radius r(t0, t′, ε) satisfies

lim
ε↓0

sup
t′∈[t0−ε,t0+ε]

r(t0, t′, ε) = 0. (3.25)

Proof. Fix t0, t1 ∈ I, x0, x1 ∈ X and let Γw ⊂ C([0, 1], Xw) be the set of absolutely 
continuous curves joining (t0, x0) to (t1, x1) and Γ ⊂ C([0, 1], I) the set of absolutely 
continuous curves joining t0 to t1. Also, define Lw : Γw → R

+ and L : Γ → R
+ as

Lw((γI , γX)) :=
1∫

0

√
|γ̇I

s |2 + w2
d(γI

s )|γ̇X
s |2 ds,

L(γI) :=
1∫

0

√
|γ̇I

s |2 + w2
d(γI

s )d2(x0, x1) ds

and notice that Lw is invariant under reparametrization. We claim that

inf
γ∈Γw

Lw(γ) = inf
γI∈Γ

L(γI). (3.26)

Indeed, to get inequality ≤ find a sequence of curves γX
n joining x0 to x1 parametrized 

with constant speed and whose length converges to d(x0, x1). Then for every γI ∈ Γ
consider the curves γn := (γI , γX

n ) ∈ Γw and notice that limn Lw(γn) = L(γI).
To prove ≥, pick γ = (γI , γX) ∈ Γw and up to a small perturbation which does 

not alter Lw much, assume that the curve γX has always positive speed. Then let γ̃ =
(γ̃I , ̃γX) ∈ Γw be the reparametrization of γ chosen so that γ̃X has constant speed, call 
it �. Then we have � ≥ d(x0, x1) and thus

Lw(γ) = Lw(γ̃) =
1∫

0

√
| ˙̃γI

s |2 + w2
d(γI

s )�2 ds ≥
1∫

0

√
| ˙̃γI

s |2 + w2
d(γI

s )d2(x0, x1) ds = L(γ̃I),

concluding the proof of (3.26).
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The identity (3.26) gives the existence of the function D claimed in the statement, 
because the left-hand side of (3.26) equals dw

(
(t0, x0), (t1, x1)

)
while the right-hand side 

depends on t0, t1 and d(x0, x1) only.
The same arguments just used also yield the claim about the convergence of the 

d-length of the curves γX
n .

Concerning the last statement, notice that dw((t0, x0), (t′, x′)) ≥ |t0 − t′| for every 
t0, t′ ∈ I and x0, x′ ∈ X and that the equality holds if x0 = x′. This addresses the claim 
about the existence of x′. The fact that the set of such x′’s is a ball follows directly from 
(3.24) so that it remains to prove (3.25). Notice that r(t0, t′, ε) is characterized by the 
identity

D
(
t0, t

′, r(t0, t′, ε)
)

= ε

and that from (3.26) and the definition of L we see, choosing γI
s := (1 − s)t0 + st′, that

D
(
t0, t

′, r(t0, t′, ε)
)
≥

√
|t0 − t′|2 + |r(t0, t′, ε)|2 inf

[t0−ε,t0+ε]
w2

d ≥ r(t0, t′, ε) inf
[t0−ε,t0+ε]

wd.

Hence

r(t0, t′, ε) ≤
ε

inf [t0−ε,t0+ε] wd

and the conclusion follows by the continuity of wd and the assumption wd(t0) > 0. �
We turn to the proof that the warped product of an interval and a measured-length 

space is still measured-length. Unfortunately, the argument is a bit tedious: in the course 
of the proof, after having introduced some key objects, we shall explain what is the basic 
idea for the construction.

Proposition 3.22. Let (X, d, m) be a measured-length space of finite mass, I ⊂ R a closed, 
possibly unbounded, interval and wd, wm : I → [0, +∞) continuous functions. Assume 
that wm is strictly positive in the interior of I.

Then the warped product (Xw, dw, mw) is a measured-length space as well.

Proof.
Step 1: set up of the construction. Let A ⊂ X be the set given in the definition of 
measured-length space, I̊ the interior of I and put Â := I̊ ×A ⊂ Xw. Notice that Â has 
full mw-measure and fix (t0, x0), (t1, x1) ∈ Â.

We assume for the moment that there is a dw-geodesic γ = (γI , γX) connecting (t0, x0)
to (t1, x1) such that the image of γI , which we shall call K, is contained in I̊. Without 
loss of generality, we shall assume that γ has constant speed, so that

1∫
|γ̇s|2 ds = d2

w

(
(t0, x0), (t1, x1)

)
.

0
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Since K is compact, for some δ > 0 its δ-neighborhood Kδ is still contained in I̊ and 
thus the quantities infKδ/2 wd and infKδ/2 wm are strictly positive.

As will be clear in a moment, all the objects that we are going to build will live in 
Kδ/2×X ⊂ Xw and since the role of the reference measure mw is only for the L∞-bound 
in (c) of Definition 3.16, and since we have

mc|Kδ/2×X
≤

mw|Kδ/2×X

infKδ/2 wm

without loss of generality, we may replace mw by mc.
Let ε be the number given in Definition 3.16 related to the space X and the points 

x0, x1 ∈ A, put ε̂ := min{ δ
4 , ε infKδ/2 wd} and fix ε0, ε1 ∈ (0, ̂ε]. Most of the objects we 

shall define from now on will depend on ε0, ε1, but to keep the notation simple we shall 
often avoid explicitly referring to them.

Consider the two measures

μ0 =
1Bε0 (t0,x0)

mc(Bε0(t0, x0))
mc, μ1 =

1Bε1 (t1,x1)

mc(Bε1(t1, x1))
mc,

put νi := πI
�μi ∈ P(I) and let {μi,t}t∈I be the disintegration of μi w.r.t. πI , i = 0, 1. We 

shall think to the measures μi,t as measures on (X, d, m) so that the construction and 
Lemma 3.21 ensure that

μi,t =
1Bfi(t)(xi)

m(Bfi(t)(xi))
m, ∀t ∈ spt(νi) = [ti − εi, ti + εi], i = 0, 1,

for some functions f0, f1 which, due to the choice of ε̂, ε0, ε1 and the fact that we are 
considering those balls in the non-rescaled space (X, d, m), satisfy f0(t), f1(t) ≤ ε for 
every t in the respective domain of definition. Notice that inequality (3.25) gives

lim
εi↓0

sup
t∈[ti−εi,ti+εi]

fi(t) = 0, for i = 0, 1. (3.27)

Observe that ν0, ν1 � L1, let T : I → I be the optimal transport map from ν0 to ν1
and for t ∈ [t0 − ε0, t0 + ε0] consider the plan πf0(t),f1(T (t)) ∈ P(C([0, 1], X)) joining 
μ0,t to μ1,T (t) whose existence is ensured by Definition 3.16 and the fact that f0, f1 ≤ ε. 
According to Remark 3.17 we can also assume that

s �→
∫

|γ̇s|2 dπf0(t),f1(T (t))(γ) is constant, call it Sp2(t). (3.28)

Then we also know that for some Borel function t �→ C(t) ≥ 1 we have

(es)�πf0(t),f1(T (t)) ≤ C(t)m, ∀s ∈ [0, 1] (3.29)
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and point (c) in Definition 3.16, (3.27) and (3.28) ensure that

lim
ε0,ε1↓0

sup
t∈[t0−ε0,t0+ε0]

Sp2(t) ≤ d2(x0, x1). (3.30)

Interlude: idea of the construction. We shall build a test plan joining μ0 to μ1 in a way 
that resembles Knothe’s rearrangement, where—informally speaking—we rearrange the 
mass on the I-component according to the geodesic from ν0 to ν1 and, for fixed t, the 
disintegrated measure μ0,t is sent to μ1,T (t) via the plan πf0(t),f1(T (t)). This will almost 
give the desired answer, meaning that the plan built this way would satisfy (a), (b), (c)
in Definition 3.16.

However, in general the resulting plan won’t be a test plan because in principle it 
might not be of bounded compression: the problem is that we don’t have any form of 
control on the constant C(t) in (3.29) in terms of t so that when the plans πf0(t),f1(T (t))

are ‘glued together’ we can’t be sure of having a uniform bound on the densities of the 
marginals.

To overcome this problem, before interpolating in the X-variable we shall first slightly 
modify μ0, μ1 into measures having I-marginals small enough to compensate the ‘explod-
ing’ quantity C(t). We can do this with only a minor loss of kinetic energy, so that the 
new plan will still satisfy (c) in Definition 3.16, thus leading to the conclusion.
Back to Step 1. For ν0-a.e. t let s : [0, 1] → [0, 1] be defined as

s(s) :=
( 1∫

0

|γ̇X
r | dr

)−1
s∫

0

|γ̇X
r | dr,

(if γX is constant we take s to be the identity) and let s̄ be the map from C([0, 1], Xw)
to itself sending γ to γ ◦ s. Also, put σt := s̄�π

f0(t),f1(T (t)) and notice that the identity 
| ˙γ ◦ ss| = |s′|(s)|γ̇s| and (3.28) give that

∫
|γ̇s|2 dσt(γ) = Sp2(t)

(
∫ 1
0 |γ̇X

s | ds)2
|γ̇X

s |2, a.e. s ∈ [0, 1]. (3.31)

Now let Fi : [ti − εi, ti + εi] → [0, 1] be the cumulative distribution function of νi given 
by Fi(t) := νi((−∞, t]), i = 0, 1, and consider the functions ui : [0, 1] → R

+ defined as 
ui := ρi ◦ F−1

i , where ρi is the density of νi, i = 0, 1.
Introduce also ū : [0, 1] → R

+ as ū := 1
C◦F−1

0
(recall that t �→ C(t) ≥ 1 was defined 

in (3.29)), put u := min{u0, u1, ̄u} and define v : [0, 1] → [0, max{ε0, ε1}] as

v(t) := c

t∫ 1
u(s) ds, with c := max{ε0, ε1}∫ 1 1 ds

. (3.32)

0 0 u(s)
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Then v is invertible and its inverse v−1 : [0, max{ε0, ε1}] → [0, 1] is absolutely continuous 
and satisfies

(v−1)′ = u ◦ v−1

c
. (3.33)

Define the functions η0, η1 : I → R
+ as

ηi(t) :=
{

(v−1)′(t− ti), if t ∈ [ti, ti + max{ε0, ε1}],
0, otherwise

and notice that by constructions these are probability densities.
Step 2: definition of the interpolation. The interpolation will be built in 3 separate steps.

Let T0 be the optimal transport map from ν0 to η0L1, define T̂0 : I×X → C([0, 1], Xw)
as

T̂0(t, x)s :=
(
(1 − s)t + sT0(t), x

)
and put

π0 := (T̂0)�μ0.

Notice that we trivially have (e0)�π0 = μ0. Similarly, considering the optimal map T1
from ν1 to η1L1 and the induced map T̂1 : I ×X → C([0, 1], Xw) given by T̂1(t, x)s :=
((1 − s)T1(t) + st, x), we put

π1 := (T̂1)�μ1,

and, much like before, we have (e1)�π1 = μ1. We shall now build a plan interpolating 
from (e1)�π0 to (e0)�π1. Recalling that the curve γI was previously introduced, we define 
the map

G : I × C([0, 1], X) → C([0, 1], Xw),

(t, γ) �→ s → G(t, γ)s := (T0(t) + γI
s − t0, γs).

Then we consider the plan σ ∈ P(I × C([0, 1], X)) given by

dσ(t, γ) := dν0(t) × dσt(γ),

and put

πmid := G�σ ∈ P (C([0, 1], Xw)).
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We claim that

(e0)�πmid = (e1)�π0 and (e1)�πmid = (e0)�π1. (3.34)

To see the first, fix a bounded Borel function ϕ : Xw → R and notice that

∫
ϕ(t, x) d(e0)�πmid(t, x) =

∫∫
ϕ(G(t, γ)0) dσt(γ) dν0(t)

=
∫∫

ϕ(T0(t), γ0) dσt(γ) dν0(t)

=
∫∫

ϕ(T0(t), x) d(e0)�σt(x) dν0(t)

=
∫∫

ϕ(T0(t), x) dμ0,t(x) dν0(t)

=
∫∫

ϕ(T0(t), x) dμ0(t, x)

=
∫∫

ϕ(T̂0(t, x)1) dμ0(t, x) =
∫

ϕ(t, x) d(e1)�π0(t, x)

(3.35)

The second in (3.34) follows by an analogous computation taking into account that 
t �→ T−1

1 (T0(t) + t1 − t0) is the optimal map t �→ T (t) from ν0 to ν1 (because in 1-d
‘optimal=monotone’).

The compatibility conditions (3.34) and a gluing argument ensure the existence of a 
plan π0mid1 ∈ P(C([0, 3], Xw)) such that

(Res[0,1])�π0mid1 = π0, (Res[1,2])�π0mid1 = πmid, (Res[2,3])�π0mid1 = π1,

where for [a, b] ⊂ [0, 3] the map Res[a,b] : C([0, 3], Xw) → C([a, b], Xw) sends a curve to 
its restriction on [a, b].

Finally, putting ε01 := max{ε0, ε1} we define the scaling map Scal : C([0, 3], Xw) →
C([0, 1], Xw) as

Scal(γ)s :=

⎧⎪⎨
⎪⎩

γsε−1
01
, for s ∈ [0, ε01],

γ1+ s−ε01
1−2ε01

, for s ∈ [ε01, 1 − ε01],
γ2+(s+ε01−1)ε−1

01
, for s ∈ [1 − ε01, 1],

and put

π := Scal�π0mid1.
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Step 3: estimate of the density. To prove that π has bounded compression it is sufficient 
to show that for every s ∈ [0, 1] it holds

(es)�πi ≤
max{c, 1}
mc(Bεi(xi))

m, for i = 0, 1 and (es)�πmid ≤ cm, (3.36)

where c is the constant defined in (3.32).
We start with the bound for π0. Recall that T0 is the optimal transport map from 

ν0 to η0L1, thus letting T0,s(t) := (1 − s)t + sT0(t) and denoting by ρs the density of 
(T0,s)�ν0, the general theory of optimal transport ensures that s �→ ρs(T0,s(t)) is convex 
for ν0-a.e. t. In particular we have

ρs(T0,s(t)) ≤ max{ρ0(t), η0(T0(t))}, ν0-a.e. t. (3.37)

Let G0 : I → [0, 1] be the cumulative distribution function of η0L1, i.e. G0(t) :=∫ t

−∞ η0 dL1 and notice that by definition of η0 we have G(t) = v−1(t − t0), so that 
property (3.33) gives

η0(t) = c−1 u(G0(t)), (3.38)

and by the definition of u we have

η0(t) = c−1 u(G0(t)) ≤ c−1 u0(G0(t)) = c−1 ρ0(F−1
0 (G0(t))), η0L1-a.e. t.

Since the optimal map T0 is the inverse of F−1
0 ◦G0, from (3.37) we get that

ρs(T0,s(t)) ≤ max{c−1, 1} ρ0(t), ρ0L1-a.e. t,

for every s ∈ [0, 1]. Now notice that with computations similar to those in (3.35) we see 
that

d(es)�π(t, x) = ρs(t)dt× dμ0,T−1
0,s (t)(x),

in particular (es)�π � mc and for its density we have

d(es)�π0

dmc
((T0,s(t), x) = ρs(T0,s(t))

dμ0,t

dm (x)

≤ max{c−1, 1}ρ0(t)
dμ0,t

dm (x) = max{c−1, 1} dμ0

dmc
(t, x)

≤ max{c−1, 1}
mc(Bε0(x0))

,

for every s ∈ [0, 1] so that in this case the claim (3.36) is proved. The bound for π1 is 
obtained in the same way, so we turn to the one on πmid.
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To this aim, start noticing that from the identity
∫

ϕ(t, s) d(es)�πmid =
∫ (∫

ϕ(T0(t) + γI
s − t0, γs) dσt(γ)

)
dν0(t)

=
∫ (∫

ϕ(T0(t) + γI
s − t0, γs) dπf0(t),f1(T (t))(γ)

)
dν0(t)

=
∫ (∫

ϕ(t + γI
s − t0, x) d(es)�πf0(T−1

0 (t)),f1(T (T−1
0 (t)))(x)

)
η0(t) dt

valid for any bounded Borel function ϕ, we see that (es)�πmid � mc and

d(es)�πmid

dmc
(t− t0 +γI

s , x) = η0(t)
d(es)�πf0(T−1

0 (t)),f1(T (T−1
0 (t)))

dm (x), η0L1×m-a.e. (t, x).

Recalling the bound (3.29) we therefore obtain

d(es)�πmid

dmc
(t− t0 + γI

s , x) ≤ η0(t)C(T−1
0 (t)), η0L1 ×m-a.e. (t, x).

Now notice that (3.38) and the definition of u give

η0(t) ≤
c−1

C(F−1
0 (G0(t)))

,

and since T−1
0 = F−1

0 ◦G0, these last two bounds give our claim.
Step 4: estimate of the kinetic energy. Notice that by the very definition of π we have

1∫∫
0

|γ̇s|2 ds dπ(γ) = 1
ε01

1∫∫
0

|γ̇s|2 ds dπ0(γ) + 1
ε01

1∫∫
0

|γ̇s|2 ds dπ1(γ)

+ 1
1 − 2ε01

1∫∫
0

|γ̇s|2 ds dπmid(γ)

(3.39)

We start estimating the energy of π0. Notice that since the dw-metric speed of the 
curve s �→ T̂0(t, x)s is constantly equal to |T0(t) − t|, we have

∫∫
|γ̇s|2 ds dπ0(γ) =

∫
|T0(t) − t|2 dμ0(t, x) =

∫
|T0(t) − t|2 dν0(t).

Now observe that since spt(ν0) ⊂ [t0 − ε0, t0 + ε0] and spt(η0) ⊂ [t0, t0 + ε01], in trans-
porting ν0 to η0L1 no point is moved for more than ε0 + ε01, therefore we have

∫∫
|γ̇s|2 ds dπ0(γ) ≤ |ε0 + ε01|2 ≤ 4ε2

01. (3.40)
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An analogous argument yields the bound

∫∫
|γ̇s|2 ds dπ1(γ) ≤ 4ε2

01. (3.41)

We pass to the energy of πmid. By the very definition of dw, the dw-squared speed of 
s �→ (γI

s + T0(t) − t0, γs) is equal to |γ̇I
s |2 + w2

d(γI
s + T0(t) − t0)|γ̇s|2 and thus we have

1∫∫
0

|γ̇s|2 ds dπmid(γ) =
1∫∫∫
0

|γ̇I
s |2 + w2

d(γI
s + T0(t) − t0)|γ̇s|2 ds dσt(γ) dν0(t)

=
1∫

0

|γ̇I
s |2 ds +

1∫∫
0

w2
d(γI

s + T0(t) − t0)
(∫

|γ̇s|2 dσt(γ)
)

ds dν0(t)

by (3.31) =
1∫

0

|γ̇I
s |2 ds +

1∫∫
0

w2
d(γI

s + T0(t) − t0)|γ̇X
s |2

× Sp2(t)
(
∫ 1
0 |γ̇X

s | ds)2
ds dν0(t).

Now observe that Lemma 3.21 ensures that 
∫ 1
0 |γ̇X

s | ds = d(x0, x1), hence from (3.30) we 
obtain

1
(
∫ 1
0 |γ̇X

s | ds)2
lim

ε0,ε1↓0
sup

t∈[t0−ε0,t0+ε0]
Sp2(t) = 1

and from this information, the continuity of wd, the weak convergence of ν0 to δt0 as 
ε0 ↓ 0 we obtain

lim
ε0,ε1↓0

1∫∫
0

|γ̇s|2 ds dπmid(γ) ≤
1∫

0

|γ̇I
s |2 + w2

d(γI
s )|γ̇X

s |2 ds = d2
w

(
(t0, x0), (t1, x1)

)
,

which together with (3.40), (3.41) and (3.39) gives the conclusion.
Step 5: conclusion. We assumed initially the existence of a geodesic γ = (γI , γX) with γI

having image in the interior of I. To remove such assumption, it is sufficient to observe 
that there always exists a sequence of curves γn = (γI

n, γ
X
n ) with the same boundary 

data whose length converges to dw((t0, x0), (t1, x1)) and such that γI
n has image in the 

interior of I for every n. Then we can repeat the above arguments with γn in place of γ
and conclude by diagonalization. �

Summing up what we proved so far we obtain:
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Theorem 3.23. Let (X, d, m) be an a.e. locally doubling and measured-length space with 
finite mass, I ⊂ R a closed, possibly unbounded, interval and wd, wm : I → [0, +∞)
continuous functions. Assume that wm is strictly positive in the interior of I.

Then the warped product space (Xw, dw, mw) is a.e. doubling and measured-length. In 
particular, it has the Sobolev-to-Lipschitz property.

Proof. Direct consequence of Propositions 3.20, 3.22 and 3.19. �
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