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Abstract. We consider a Schrödinger hamiltonian H(A, a) with scaling critical

and time independent external electromagnetic potential, and assume that the an-

gular operator L associated to H is positive definite. We prove the following: if

‖e−itH(A,a)‖L1→L∞ . t−n/2, then ‖|x|−g(n)e−itH(A,a)|x|−g(n)‖L1→L∞ . t−n/2−g(n),

g(n) being a positive number, explicitly depending on the ground level of L and the

space dimension n. We prove similar results also for the heat semi-group generated

by H(A, a).

1. Introduction

This note is concerned with the dispersive properties of electromagnetic Schrödinger

groups of the form e−itH , where

H(A, a) =

(
−i∇+ |x|−1 A

( x
|x|

))2

+ |x|−2 a
( x
|x|

)
(1.1)

acts on a suitable form domain in L2(Rn) with n ≥ 2. Here A ∈ W 1,∞(Sn−1,Rn)

and a ∈ W 1,∞(Sn−1,R), where Sn−1 denotes the n−dimensional unit sphere. We also

assume that A satisfies the transversal gauge condition

A(θ) · θ = 0 ∀ θ ∈ Sn−1. (1.2)

Once it is well defined, the flow e−itH defines the unique solution ψ(t, x) := e−itHf(x)

to the Schrödinger equation

∂tψ(t, x) = −iH(A, a)ψ, ψ(0, x) = f(x) ∈ L2(Rn). (1.3)
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The wavefunction ψ(t, x) : R1+n → C standardly describes the interaction of a

free (non-relativistic) particle with an external time-independent electromagnetic field

(V,B)

V (x) := ∇
(
|x|−2a

(
x

|x|

))
, B(x) = D

(
|x|−1A

(
x

|x|

))
−D

(
|x|−1A

(
x

|x|

))t
.

Notice that the potentials in (1.1) are such that equation (1.3) enjoys the same scaling

invariance as the free Schrödinger equation, namely if ψ solves (1.3), then

ψλ(t, x) := ψ

(
t

λ
,
x

λ2

)
.

solves the same equation, with scaled datum fλ(x) = f(x/λ2). For those reasons, we

refer to (1.1) as to a scaling critical electromagnetic hamiltonian. An important role

in the description of H(A, a) is played by the angular hamiltonian

L = (−i∇Sn−1 + A)2 + a in L2(Sn−1), (1.4)

where ∇Sn−1 denotes the spherical gradient on Sn−1. In the free case A ≡ a ≡ 0, we

have H(A, a) = −∆ and L coincides with the Laplace-Beltrami operator L = ∆Sn−1 on

L2(Sn−1). Since L is the inverse of a compact operator, its spectrum is purely discrete

and consists of a sequence of eigenvalues µ1(A, a) ≤ µ2(A, a) ≤ . . . accumulating at

infinity. We denote by ψk the corresponding sequence of normalized L2-eigenfunctions:

Lψk = µk(A, a)ψk, ‖ψk‖L2(Sn−1) = 1. (1.5)

By the usual Hardy and diamagnetic inequalities, it is standard to show that the

condition

µ1(A, a) >
(n− 2)2

4
(1.6)

implies that the quadratic form associated to H is positive definite, and this allows to

work with the Friedrichs extension of H and define the flow e−itH by Spectral Theorem.

In the recent years, a big effort has been spent in order to understand dispersive

properties of scaling critical Schrödinger flows of the form e−itH , with H like in (1.1).

The very first results, concerning with Strichartz estimates, have been obtained in the

magnetic free case in [4, 5]. The main idea was to prove some Morawetz-type estimates,

based on uniform resolvent estimates, and then obtaining Strichartz estimates by

a TT ?-argument. This argument does not seem to work in presence of a scaling

critical magnetic potential, and several results have been later obtained for sub-critical

potentials, using the same kind of tricks (see e.g. [3, 7, 8, 10, 11, 14, 27, 28] and the

references therein). Very recently, in [12], a quite explicit representation formula for

e−itH has been provided, involving a convolution kernel written in terms of eigenvalues

and eigenfunctions of L, for any critical hamiltonian as in (1.1). By suitably estimating

this kernel, it has been possible to prove that the time-decay estimate∥∥e−itH(A,a)
∥∥
L1(Rn)→L∞(Rn)

≤ C t−
n
2 (1.7)



IMPROVED DECAY FOR SCHRÖDINGER FLOWS 3

holds, for any t > 0, and some constant C > 0, in some specific situations. The state

of the art is the following: estimate (1.7) holds

• in dimension n = 3 for the positive inverse-square electric potential (A ≡ 0,

0 ≤ a = constant in (1.1) (see [12])

• in dimension n = 2 for any reasonable A, a (see [13]).

At the same time of [12], in [15], an analogous formula has been independently obtained

for e−itH in the specific case of the Aharonov-Bohm potential, i.e. n = 2, a ≡ 0,

and A = α(−x2/|x|, x1/|x|), α ∈ R in (1.1). One of the main results in [15] is the

following: in suitable weighted topologies, one can observe a polynomial improvement

in the decay rate t−n/2; more precisely, the following estimate holds

‖|x|−g(α) e−itH(A,a) |x|−g(α)‖L1(Rn)→L∞(Rn) ≤ C t−
n
2
−g(α), (1.8)

where g(α) = dist(α,Z) =
√
µ1(A), being µ1 the first eigenvalue of the angular

operator L as above. The results of [15] where then extended to a wide class of

regular magnetic fields with finite flux in [21].

The main ingredient in the proof of (1.8), apart from the representation formula, is

estimate (1.7), which for the Aharonov-Bohm potential has been proven in [12]. The

aim of this paper is to prove that the polynomial improvement in (1.8) is a generic fact,

depending on the dimension and the ground level µ1(A, a), occurring as a consequence

of the dispersive estimate (1.7) holds.

We are now ready to state the main result of this paper.

Theorem 1.1. Let n ≥ 2, H(A, a) as in (1.1), where A ∈ W 1,∞(Sn−1,Rn), a ∈
W 1,∞(Sn−1,R) and A satisfies (1.2). Let L be as in (1.4), denote by µ1(A, a) its

smallest eigenvalue, and assume that µ1(A, a) ≥ 0. In addition, denote by

g(n) =

√(
n− 2

2

)2

+ µ1(A, a) − n− 2

2
. (1.9)

If, for all t > 0 and some C0, the following estimate holds

‖e−itH(A,a)‖L1(Rn)→L∞(Rn) ≤ C0 t
−n

2 , (1.10)

then there exists a constant C such that∥∥|x|−g(n) e−itH(A,a) |x|−g(n)
∥∥
L1(Rn)→L∞(Rn)

≤ C t−
n
2
−g(n) (1.11)

holds, for all t > 0.

Remark 1.2. Notice that, by interpolation between inequalities (1.10) and (1.11), it

follows that ∥∥|x|−θg(n) e−itH(A,a) |x|−θg(n)
∥∥
L1(Rn)→L∞(Rn)

≤ Cθ t
−n

2
−θg(n) (1.12)

holds for all θ ∈ [0, 1], all t > 0 and some Cθ.
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Remark 1.3. It well known that, in presence of a magnetic field, one always has

µ1(A, a) ≥ µ1(0, a) (by the diamagnetic inequality). Estimate (1.11) improves the

decay rate of (1.10) as soon as µ1(A, a) > 0, condition which can be standardly

rephrased by a variational characterization of µ1. This means that the more elliptic the

angular hamiltonian is, the better the decay is expected to be, in suitable topologies.

The validity of (1.11) relies in fact on the validity of (1.10), which is still not known

in a generic setting, and will be subject of further investigation in the future. Notice

that estimate (1.11) generalizes (1.8). For Schrödinger evolutions, as far as we know,

those are the first results in this direction.

On the other hand, this kind of phenomenon is qualitatively well known for the heat

equation. For radial magnetic fields this was observed in [20] in the L1 → L∞ setting.

Later on, in [6, 22] it was shown that similar effects occur, in a setting of weighted L2

spaces, for more general class of magnetic fields. We will briefly discuss the properties

of the semi-group generated by H(A, a) in Section 3.

In view of Theorem 1.1 and the results in [12, 13] about estimates (1.10), we have the

following corollaries.

Corollary 1.4 (Inverse square). Let n = 3 and let a ≥ 0. Consider the Schrödinger

Hamiltonian

H = −∆ +
a

|x|2
. (1.13)

There exists a constant C > 0 such that the following estimate∥∥ |x|−γ3 e−itH |x|−γ3 ∥∥
L1(Rn)→L∞(Rn)

≤ C t−
3
2
−γ3 (1.14)

with

γ3 =

√
1

4
+ a − 1

2
holds for all t > 0.

Remark 1.5. A one-dimensional analog of Corollary 1.4, without magnetic field of

course, was recently established in [19].

The proof of Corollary 1.4 is a straightforward application of Theorem 1.1 and Theo-

rem 1.11 in [12]. Analogously, applying Theorem 1.1 and Theorem 1.1 in [13], in the

2d-case we obtain the following result, which holds in a quite general setting.

Corollary 1.6 (2D-general case). Let n = 2, H(A, a) as in (1.1), where A ∈ W 1,∞(S1,R2),

a ∈ W 1,∞(S1,R) and A satisfies (1.2). Let L be as in (1.4), denote by µ1(A, a) its

smallest eigenvalue, and assume that µ1(A, a) ≥ 0. There exists a constant C > 0

such that the following estimate∥∥|x|−√µ1(A,a) e−itH(A,a) |x|−
√
µ1(A,a)

∥∥
L1(R2)→L∞(R2)

≤ C t−1−
√
µ1(A,a) (1.15)

holds, for all t > 0.
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2. Proof of Theorem 1.1

The main tool for the proof of Theorem 1.1 is the following representation formula(
e−itH(A,a) u0

)
(x) = − i e

i|x|2
4t

(2t)n/2

∫
Rn

K
( x√

2t
,
y√
2t

)
e

i|y|2
4t u0(y) dy, (2.1)

for any u0 ∈ C∞0 (Rn), proved in [13]. Here we are denoting by

K(x, y) = (|x| |y|)
2−n
2

∑
k∈N

i−βk Jβk(|x||y|) ψk
( x
|x|

)
ψk

( y
|y|

)
, (2.2)

where ψk are the eigenfunctions of L, and

αk =
n− 1

2
−

√(
n− 2

2

)2

+ µk(A, a) , βk =

√(
n− 2

2

)2

+ µk(A, a) (2.3)

µk being the eigenvalues of L. By [1, Eq. 9.6.3] it follows that i−νJν(z) = Iν(z/i) for

any z ∈ C, where Iν is the Bessel function of the second kind. Therefore we can write

K(x, y) = (|x| |y|)
2−n
2

∑
k∈N

Iβk(−i|x||y|) ψk
( x
|x|

)
ψk

( y
|y|

)
. (2.4)

It is crucial to our purpose to obtain suitable asymptotic information about µk and

ψk. First notice that, expanding the square in (1.4), one easily gets that the following

inequalities hold in the sense of quadratic forms on H1(Sn−1)

− 1

2
∆Sn−1 − ‖A‖2

∞ − ‖a‖∞ ≤ L(A, a) ≤ −3

2
∆Sn−1 + 3‖A‖2

∞ + ‖a‖∞. (2.5)

Since the eigenvalues of −∆Sn−1 grow as k
2

n−1 , a straightforward consequence of the

mini-max principle is that

µk(A, a) ∼ k
2

n−1 k →∞. (2.6)

We also need the following auxiliary Lemma, concerning with the eigenfunctions ψ′ks.

Lemma 2.1. For every n ≥ 2 there exists bn ≥ 0 such that for all k ∈ N it holds

‖ψk‖L∞(Sn−1) . µk(A, a)bn . (2.7)

Proof. In dimension n = 2 the result holds with b2 = 0 (see [13, Lem. 2.1]). Hence we

may assume that n ≥ 3. Let us first prove the statement for n ≥ 4. In this case by

[16, Thm. 2.6] for every 2 ≤ q ≤ 2n−2
n−3

there exists Cq such that

‖f‖2
Lq(Sn−1) ≤ Cq

(
‖∇|f |‖2

L2(Sn−1) + ‖f‖2
L2(Sn−1)

)
∀ f ∈ W 1,2(Sn−1), (2.8)

The diamagnetic inequality;

|∇|f || ≤ |(−i∇Sn−1 + A)f | a. e., (2.9)

see e. g. [24, Theorem 7.21], then implies that

‖f‖2
Lq(Sn−1) ≤ Cq

(
‖(−i∇Sn−1 + A)f‖2

L2(Sn−1) + ‖f‖2
L2(Sn−1)

)
. (2.10)
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The last inequality in combination with Hölder inequality then yield

‖f‖2+ 4
n−1

L2(Sn−1) ≤ C̃
(
‖(−i∇Sn−1 + A)f‖2

L2(Sn−1) + ‖f‖2
L2(Sn−1)

)
‖f‖

4
n−1

L1(Sn−1) . (2.11)

On the other hand, from [18] we deduce that∣∣e−t(L(A,a)+‖a‖∞) u
∣∣ ≤ ∣∣e−tL(A,0) u

∣∣ ≤ et∆Sn−1 |u|

holds for all u ∈ L1(Sn−1)∩L2(Sn−1). Hence the semigroup e−t(L(A,a)+‖a‖∞) is for every

t > 0 a contraction on L1(Sn−1). By adapting the proof of [9, Thm. 2.4.6, Cor. 2.4.7]

we then conclude that

‖e−t(L(A,a)+‖a‖∞) u‖L∞(Sn−1) ≤ cn t
−n−1

4 ‖u‖L2(Sn−1), ∀ u ∈ L2(Sn−1) (2.12)

for some cn and all t ∈ (0, 1]. In fact, the argument given there works under the

only assumptions that the semigroup considered is a contraction on L1 and that a

Nash-type inequality like (2.11) holds true.

If we now choose u = ψk and t = min{1, 1
µk
}, then (1.5) and (2.6) imply estimate

(2.7) for n ≥ 4 and bn = n−1
4

.

To prove the claim for n = 3, we note that in this case (2.10) holds for any q ∈ [2,∞).

In fact, this can be seen e.g. as a consequence of the analogue of Trudinger-Moser’s

inequality on compact Riemannian manifolds, see e.g. [2]. Consequently we obtain

the Nash-type inequality in the form

‖f‖4
L2(S2) ≤ C ′

(
‖(−i∇S2 + A)f‖2

L2(S2) + ‖f‖2
L2(S2)

)
‖f‖2

L1(S2) . (2.13)

Following the lines of the above arguments we thus obtain (2.7) with b3 = 1
2
. �

We are finally ready to finish the proof of our main result.

Proof of Theorem 1.1. First recall the integral representation

Iν(w) =
wν

2ν Γ(ν + 1
2
) Γ(1

2
)

∫ 1

−1

(1− s2)ν−
1
2 ews ds, w ∈ C, (2.14)

see [1, Eq. 9.6.18], which yields the upper bound

|Iν(iz)| . |z|ν

2ν Γ(ν + 1
2
)

∀ z ∈ R, ν ≥ 0. (2.15)

Let us now define

z :=
|x| |y|

2t
, t > 0, (2.16)

and write R2n = Ω1 ∪ Ω2, where

Ω1 =
{

(x, y) ∈ R2n : 1 ≤ z
}
, Ω2 =

{
(x, y) ∈ R2n : 0 ≤ z < 1

}
. (2.17)

By (1.10) and (2.1), it follows that

sup
(x,y)∈R2n

|K(x, y)| <∞. (2.18)
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Hence using (2.17) and the fact that g(n) ≥ 0, by assumption, we find

C1 := sup
(x,y)∈Ω1

(
|x| |y|

2t

)−g(n) ∣∣∣∣K( x√
2t
,
y√
2t

)∣∣∣∣
= sup

(x,y)∈Ω1

z−g(n)

∣∣∣∣K( x√
2t
,
y√
2t

)∣∣∣∣ < ∞. (2.19)

On the other hand, by combining Lemma 2.1 and equation (1.9) with (2.4) and (2.15)

we obtain

C2 := sup
(x,y)∈Ω2

(
|x| |y|

2t

)−g(n) ∣∣∣∣K( x√
2t
,
y√
2t

)∣∣∣∣
. sup

0≤z<1

∑
k∈N

z(βk−g(n)−n−2
2

) µk(A, a)2bn

2βk Γ(βk + 1
2
)

< ∞, (2.20)

where the convergence of the series is guaranteed by (2.6). Note that the power z in

the series is positive in view of the definition of βk and g(n). Inequality (2.20) together

with (2.19) implies that

sup
(x,y)∈R2n

|x|−g(n)

∣∣∣∣K( x√
2t
,
y√
2t

)∣∣∣∣ |y|−g(n) ≤ (2t)−g(n) max {C1, C2}, (2.21)

which in view of equation (2.1) proves estimate (1.11). �

3. The heat semi-group

For the heat semi-group generated by H(A, a) we have a result analogous to Theorem

1.1. It is important to notice that the analogue of (1.10) for the heat semigroup is not

an assumption in this setting, but holds true in general.

Theorem 3.1. Let n ≥ 2 and let H(A, a) be given by (1.1), with A ∈ W 1,∞(Sn−1,Rn)

and 0 ≤ a ∈ W 1,∞(Sn−1,R). Suppose that A satisfies (1.2). Then there exists a

constant C such that∥∥|x|−g(n) e−tH(A,a) |x|−g(n)
∥∥
L1(Rn)→L∞(Rn)

≤ C t−
n
2
−g(n) (3.1)

holds for all t > 0.

Proof. Let u0 ∈ C∞0 (Rn). A straightforward modification of equation (2.1) gives(
e−tH(A,a) u0

)
(x) =

1

(2t)n/2

∫
Rn

G
( x√

2t
,
y√
2t

)
u0(y) dy, (3.2)

where

G(x, y) = (|x| |y|)
2−n
2 e−

|x|2+|y|2
2

∑
k∈N

Iβk(|x||y|) ψk
( x
|x|

)
ψk

( y
|y|

)
. (3.3)

By domination of Schrödinger semi-groups, see e.g. [17] and diamagnetic inequality

for singular magnetic operators, see [25],, it follows that∥∥e−tH(A,a)
∥∥
L1(Rn)→L∞(Rn)

≤
∥∥e−tH(A,0)

∥∥
L1(Rn)→L∞(Rn)

≤
∥∥et∆∥∥

L1(Rn)→L∞(Rn)
= (2t)−

n
2 .



8 LUCA FANELLI, GABRIELE GRILLO, AND HYNEK KOVAŘÍK

Hence

sup
(x,y)∈R2n

|G(x, y)| <∞. (3.4)

We now follow the line of arguments of the proof of Theorem 1.1 and with the same

notion we obtain

C3 := sup
(x,y)∈Ω1

(
|x| |y|

2t

)−g(n) ∣∣∣∣G( x√
2t
,
y√
2t

)∣∣∣∣
= sup

(x,y)∈Ω1

z−g(n)

∣∣∣∣G( x√
2t
,
y√
2t

)∣∣∣∣ < ∞, (3.5)

in view of (3.4). On the other hand, by (2.14)

e−
|x|2+|y|2

2 Iβk(|x||y|) ≤ e−|x||y| Iβk(|x||y|) ≤ (|x| |y|)βk
2βk Γ(βk + 1

2
)

Similarly as in the proof of Theorem 1.1 we thus conclude that

C4 := sup
(x,y)∈Ω2

(
|x| |y|

2t

)−g(n) ∣∣∣∣G( x√
2t
,
y√
2t

)∣∣∣∣
≤ sup

0≤z<1

∑
k∈N

z(βk−g(n)−n−2
2

) µk(A, a)bn

2βk Γ(βk + 1
2
)

< ∞. (3.6)

This in combination with (3.5) implies that

sup
(x,y)∈R2n

|x|−g(n)

∣∣∣∣G( x√
2t
,
y√
2t

)∣∣∣∣ |y|−g(n) ≤ (2t)−g(n) max {C3, C4},

which proves the claim. �

Remark 3.2. For certain values of n,A and a the result of Theorem 3.1 is not new.

For example, the case n = 2 and a = 0 was treated in [20, Sect. 6]. On the other hand,

when A = 0 and a is constant, then upper bound (3.1) is equivalent to [26, Thm. 2].
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