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Abstract

The reformation of a body fundamentally involves the mapping of one natural ref-
erence configuration of it into another natural reference configuration. The mass and
the constitutive properties of the material remain unaltered, but the overall shape of
the reference configuration generally changes. If, when a natural reference configura-
tion is distorted, there is a portion of the boundary of the body that is displacement
controlled, then a reformation of the body must be such that the original displace-
ment controlled part of the boundary and its reformation are identical. In common
applications that involve reformation, the remainder of the boundary is traction-free
and a reformation essentially involves a change of the morphology of this traction-free
surface. For example, undulations are often a characteristic feature of the reformation
of a free, plane boundary surface. Reformations are a result of a material instability
and they may associate with a chemically induced diffusive processes in which particles
of the body move into preferred places. Fundamentally, a reformation is generated in
response to the drive to lower the total stored energy of the body. In this work we
are not concerned with the physical processes that take place during reformation, but
rather we are concerned with characterizing the onset of the instability. We develop a
variational characterization of the reformation instability for a nonlinear elastic body
and we include the effect of surface energy. As an example, we consider the axial de-
formation of a circular cylinder and argue that small scale nano-wires, for which the
diameter—to—length ratio is sufficiently small, are expected to be stable with respect
to spatial variations when extended. Moreover, we observe that if the surfacial energy
function is sufficiently convex at the undistorted state such wires may also be stable
with respect to spatial variations when compressed. We then show that such small scale
nano-wires are unstable with respect to reformation when extended.
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1 Introduction

In material science the occurrence of morphological instabilities is widely reported (see for
instance [3], [14], [18], [16], [19]). Indeed, a typical experimental observation reveals that
a strained solid that is in contact with a more compliant phase, such as its own melt or
vapor, can partially release its elastic energy by a sudden morphological transition at the
interface. This occurs, for instance, when the strained solid has a surface at which material
can be redistributed by a transport mechanism and thus it may reduce its elastic energy
via surface undulations. While these kinds of instability relate to the studies of Asaro
and Tiller [1] concerning corrosion phenomena, a recognition of the general nature of these
instabilities can be traced to the studies of Grinfeld ([11], [12]) and Srolovitz ([20]). These
works concern stress-induced instabilities in the context of linear elasticity and they show
that beyond some critical stress a planar traction-free face of an elastic solid is unstable
against undulations. Recently, an interesting analytical analysis of this problem has been
given by Fusco, Fonseca, Leoni and Morini in [7], and by Fusco and Morini in [8].

The problem of morphological instability rests at the core of epitaxy [17], [21], [6], i.e.,
the over-growth of a crystalline material onto a single crystal surface of a different material.
In this case the two lattice planes in contact accommodate the misfit, which is the origin
of a certain amount of elastic energy, and this leads to the major problem of the subject;
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the study of stress-induced crystal growth. This requires a detailed description of the
interaction between bulk and surface energies, where the role of surface stress and strain,
though recognized since the works of Gibbs [9], is still not completely clear, especially in the
case of a genuine three-dimensional model, [17], [22]. The inadequacy of linear theories when
misfits are too large and when elastic relaxation is taken into account suggests the need for
a nonlinear theory where the reference and deformed configurations are distinguished. To
our knowledge, the published works on morphological instabilities in solids applies to the
linearized theory of elasticity. Thus, in an attempt to contribute to the broader issues, in
this work we consider the morphological instability of stressed solids within the framework
of finite elasticity theory. Our approach uses variational methods and we focus on the
mechanical nature of the factors that regulate morphological instabilities.

In Section 2, we illustrate some of the main features of the problem addressed in this
paper through an elementary approach in which surface energy is neglected and linearized
elasticity is assumed. We use this setting to describe how a comparison argument may be
used to detect unstable configurations.

In Section 3, we formulate a variational characterization of material reformation in
which the ability to change relative positions of material particles is taken into account
through volume preserving mappings. In this framework the investigation of morphological
instabilities involves the analysis of the second variation of the total stored energy with
respect to domain variations. This leads to the study of variational problems for varying
domains—problems for which several techniques have been proposed in the literature ([4],
[5], [13]), but problems which yet involve many open and challenging mathematical issues.
Here, we use variational methods to establish decreasing energy directions in the space
of admissible perturbations in order to detect morphological instabilities. The inclusion
of surfacial energy in addition to bulk energy is important from a physical point of view,
but it complicates the story. For example, the second spatial variation shown in (3.16),
which governs the local stability of a minimizing state, contains many surface contributions
which are potential sources of instability, especially when the surface area-to-volume scale
differential becomes important. We find that for instability with respect to reformation,
the condition (3.24) and the negativeness of the quadratic form (3.28) is sufficient.

Finally, in Section 4, we investigate, as an example, the morphological instability of a
cylindrical solid under axial load. Nonlinear elasticity and both volume and surface energies
are considered. This investigation is thought to be relevant to the area of small scale physics
e.g., quantum (i.e., nano-) wires.

2 Heuristic approach to morphological instabilities

Let B0 := [0, l] × [0, γ0(x1)], where γ0(x1) > 0 for all x1 ∈ [0, l], be the natural reference
configuration of a elastic body in a two dimensional rectangular frame in E2, and let x =
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(x1, x2) ∈ B0 ⊂ E2 denote the position of its particles. Suppose that y = y(x) is the
deformation of B0 to an equilibrium configuration B := y(B0) such that y(x) = y∗(x) for
all x ∈ ∂1B0 := ∂B0 \ ∂2B0, where ∂2B0 represents the upper edge of B0 at x2 = γ0(x1)
for x1 ∈ [0, 1], which is supposed to be traction-free. Thus, the distortion of B0 is due
to the fact that the left, the right, and the bottom edges of B0 are subject to the given
placement y∗(x). Suppose that for this material the function g

(
∇y(·)

)
: B0 7→ R represents

the specific strain energy of the distorted configuration B measured per unit reference area.
For example, within linearized elasticity theory for an isotropic material one may take

g
(
∇y(x)

)
:= µtr

(
E2(x)

)
+

λ

2

(
tr(E(x))

)2
, (2.1)

where E = 1
2

(
∇y + (∇y)T

)
− 1 is the linearized strain tensor and λ, µ are the Lamé

coefficients, chosen such that the quadratic form in (2.1) is positive definite. Suppose, also,
that the configuration B = y(B0) is a local minimum of the potential energy

E(z;B0) =

∫ l

0

∫ γ0(x1)

0
g
(
∇z(x)

)
dx2dx1

corresponding to zero traction on ∂2B0 for the body B0 among all placements z(x) that lie
in an admissible class of placements, A, that satisfy z(x) = y∗(x) on ∂1B0. Thus,

E(y;B0) = min
z(·)∈A

E(z;B0).

For later technical reasons, we suppose that both y(x) and g (∇y(x)) have smooth exten-
sions to points x ∈ E2 in a neighborhood N (B0) of B0. Let y

E(·) denote such an extension
for y(·), so that yE(x) = y(x) for all x ∈ B0.

The distorted equilibrium configuration B = y(B0) is assumed to be given as character-
ized above, and our interest here is in the local stability of B with respect to a reformation
of the reference configuration B0. A reformation is defined as a mapping of B0 to B0(ε)
with B0(0) = B0 such that ∂1B0 = ∂1B0(ε) remains fixed and the areas of B0 and B0(ε)
are equal. Thus, under a reformation, the top edge ∂2B0 is mapped to ∂2B0(ε), which we
shall characterize as x2 = γε0(x1) := γ0(x1) + εη(x1), where ε > 0 is sufficiently small,
η(0) = η(l) = 0, and

∫ l

0
η(x1)dx1 = 0. (2.2)

After a reformation of B0 7→ B0(ε), suppose we consider a placement that is a local minimizer
of the potential energy
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E
(
z;B0(ε)

)
=

∫ l

0

∫ γ0(x1)+εη(x1)

0
g
(
∇z(x)

)
dx2dx1

corresponding to zero traction on ∂2B0(ε) for the body B0(ε) among all placements z(x)
that lie in an admissible class of placements, A(ε), that satisfy z(x) = y∗(x) for all x ∈
∂1B0(ε) = ∂1B0. Of course, the constraint (2.2) also is supposed to hold. If

min
z(·)∈A(ε)

E
(
z;B0(ε)

)
< min

z(·)∈A
E(z;B0) (2.3)

for sufficiently small ε > 0, then we say that B0 is locally unstable under a reformation.
To investigate (2.3), one may set out to determine a minimizer yε(·) of E

(
z;B0(ε)

)
for all

sufficiently small ε and then attempt to compute the derivatives of E
(
yε;B0(ε)

)
with respect

to ε at ε = 0. However, in general this kind of computation cannot be made explicit because
the sequence of minimizers yε(·) is not explicit in its dependence on B0(ε). To overcome this
difficulty one is led to consider the theory of variational problems over varying domains, for
which several techniques have been proposed in literature and for which many open problems
are still under investigation. For an account of these issues we refer to [4, 5, 10, 13] and for
related deep calculations to [8].

Although the reformation instability problem is generally difficult, a sufficient condition
for determining unstable reference configurations is relatively straightforward and is based
on simpler calculations. Indeed, if both yE(·) and g

(
∇yE(·)

)
denote the extensions to an

open neighborhood of B0, as assumed earlier, then for sufficiently small ε > 0 it follows
that yE(x) ∈ A(ε) for x ∈ B0(ε), and we may consider E

(
yE;B0(ε)

)
and compute its

ε-derivatives. Suppose that the following conditions hold:

d

dε
E
(
yE;B0(ε)

)
|ε=0

= 0,
d2

dε2
E
(
yE;B0(ε)

)
|ε=0

< 0. (2.4)

Then, it follows that B0 is not locally stable with respect to a reformation. Indeed,

min
z(·)∈A(ε)

E
(
z;B0(ε)

)
≤ E

(
yE;B0(ε)

)
< E

(
y;B0

)
= min

z(·)∈A
E
(
z;B0

)
.

Example. The following brief review is taken from [10], where the full calculations can be
found: Consider the placement x ∈ B0 7→ y(x) := (x1 + ax1x2 + bx1, x2 + cx22 + dx21 + ex2),
which, of course, is well-defined on all of E2. In [10] it is shown that three of the five
coefficients (a, b, c, d, e) may be chosen such that y(x) is a local minimizer of E(z;B0) in the
admissible class A defined earlier. For this choice, it follows that
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g
(
∇y(x)

)
= µ(ax2 + b)2 + µ(2cx2 + e)2 +

λ

2

(
(a+ 2c)x2 + b+ e

)2
,

which in turn is well defined on all of E2. Again, it is shown in [10] that the relations (2.4)
can be satisfied by a selection of the remaining two coefficients. Therefore, B0 is not locally
stable under reformations. �

In the following section we will apply a strategy similar to that described above to the
study of reformation stability in the setting of finite elasticity including bulk and surface
energy.

3 Variational approach to reformation

Let B0 ⊂ E3 denote the reference configuration of a homogeneous elastic body whose par-
ticles are located at x ∈ B0. Given a smooth, injective deformation y = y(x) : B0 7→
B := y(B0) ⊂ E3, the specific strain energy at x ∈ B0 measured per unit volume of B0 is
given by W = W (∇y(x)), where W (·) is defined on the set Lin of all linear transformation
of E3 7→ E3. We assume that W (·) is objective in the sense that W (F) = W (QF) for
all Q ∈ Orth, where Orth ⊂ Lin denotes the set of all orthogonal linear transformations.
We consider that the boundary surface ∂B0 of the body supports a surface energy σ(µ)
measured per unit area of ∂B0. Here, µ := |(cof ∇y)n0| denotes the surface stretch under
the deformation y(x) and n0 is the outer unit normal to ∂B0. We shall let ρ0 denote the
constant mass density of the reference configuration B0.

The body is subject to a given placement y∗(x) for all x ∈ ∂1B0 and the remainder of
the boundary ∂2B0 = ∂B0 \∂1B0 is considered to be traction-free. Throughout this work we
assume that there is no body force action. Thus, for any admissible deformation y = y(x),
the total stored energy in B is1

E(y;B0) =

∫
B0

W (∇y)dv(x) +

∫
∂2B0

σ(µ)da(x) . (3.1)

Suppose y(x) is a smooth admissible minimizer of the functional E(·;B0). Then, for any

1Clearly, if σ(µ) = σ0µ, where σ0 > 0 is constant, then because µda(x) = da(y) the surface integral here
may be replace with σ0×area(∂2B), where ∂2B := y(∂2B0). In this case σ0 is interpreted as the surface tension
and the surface is a classical fluid-like surface. For a solid-like surface, it would be reasonable to assume that
σ(1) = 0, i.e., that the surface energy vanishes when the surface is not deformed from its reference state ∂B0,
in which case µ = 1. Of course, more general and physically improved forms of the surface energy function
for solid surfaces are possible. We have in mind the inclusion of the full surfacial deformation gradient in
place of the surface stretch µ. However, we shall not investigate this added complication in the present work.
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spatial variation yλ(x) = y(x) + λu(x), λ ∈ R, with u(x) = 0 for all x ∈ ∂1B0, the first
spatial variation of

E(yλ;B0) =

∫
B0

W (∇yλ)dv(x) +

∫
∂2B0

σ(µλ)da(x) (3.2)

must vanish at λ = 0 for all admissible u(x), and the second spatial variation at λ =
0 must be non-negative for all such u(x). Of course, here, µλ := |(cof ∇yλ)n0| with
µλda(x) = da(yλ). In the following, we shall use the notation Dλ := yλ(B0) and then
identify D0 = y0(B0) = y(B0) = B. Also, we define ∂2Dλ := yλ(∂2B0).

Later in this section we shall introduce the notion of a ‘reformation’ of the reference
configuration and define related first and second referential variations. This will allow us to
investigate the local stability of the field y(·) with respect to reformation. First, however,
we attend to spatial variational issues.

3.1 The First Spatial Variation

In the following, it will be convenient to use the shorthand notation
˙
(·) to denote ∂(·)/∂λ

with x held fixed. Thus, for the first spatial variation we need to calculate

d

dλ
E(yλ;B0) =

∫
B0

˙
W (∇yλ)dv(x) +

∫
∂2B0

˙
σ(µλ)da(x) , (3.3)

and evaluate at λ = 0. Clearly, as integrand of the volume integral we have (noting that
ẏλ = u)

˙
W (∇yλ) = WF(∇yλ) · ∇u ,

where the subscript F denotes gradient of W (F) with respect to F. For the integrand of
the surface integral, we shall need the following elementary identity from the differential
geometry of surfaces:

µ̇λ = µλ divs ẏλ , (3.4)

where ‘divs’ denotes the surface divergence on ∂2Dλ and where the independent variable
in ẏλ is understood to be yλ, via the inversion x = y−1

λ (yλ). Thus, using ẏλ = u, for the
surface integral in (3.3) we have
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∫
∂2B0

˙
σ(µλ)da(x) =

∫
∂2Dλ

σ′(µλ) divs u da(yλ)

= −
∫
∂2Dλ

divs
(
σ′(µλ)Iλ

)
· u da(yλ) ,

where we have introduced Iλ := 1 − mλ ⊗ mλ with mλ = (cof∇yλ)n0/µλ denoting the
outer unit normal to ∂2Dλ, applied the identity

divs
(
σ′(µλ)Iλ

)
· u = gradsσ

′(µλ) · u− σ′(µλ)divsmλ · u
= divs

(
σ′(µλ)u

tan
)
− σ′(µλ) divs u

with the decomposition u = utan + (u · mλ)mλ on ∂2Dλ, and called upon the surface
divergence theorem with u = 0 on the border of ∂2Dλ, i.e., on ∂1Dλ.

The volume integral in (3.3) may be integrated by parts, and, because u = 0 on ∂1B0,
we obtain

∫
B0

˙
W (∇yλ)dv(x) =

∫
B0

WF(∇yλ) · ∇u dv(x)

= −
∫
B0

DivWF(∇yλ) · u dv(x) +

∫
∂2B0

WF(∇yλ)n0 · u da(x)

= −
∫
B0

DivWF(∇yλ) · u dv(x) +

∫
∂2Dλ

TT
λmλ · u da(yλ) ,

where we have used ‘Div’ to denote the divergence operator in B0, and in the last line we
have introduced a change of domain of integration using the relation mλ = (cof∇yλ)n0/µλ

and the definition of the (symmetric) Cauchy stress in Dλ, i.e.,

Tλ :=
1

det∇yλ
∇yλW

T
F (∇yλ) . (3.5)

Thus, we have

d

dλ
E(yλ;B0) =

∫
B0

WF(∇yλ) · ∇u dv(x)−
∫
∂2Dλ

divs
(
σ′(µλ)Iλ

)
· u da(yλ) , (3.6)
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and we may conclude that

d

dλ
E(yλ;B0)|λ=0 = −

∫
B0

DivWF(∇y) · u dv(x) +

∫
∂2B

(
TTn− divs

(
σ′(µ)I

))
· u da(y) .

Here, n = (cof ∇y)n0/µ is the outer unit normal to ∂2B = y(∂2B0), T is the value of Tλ

in (3.5) at λ = 0 and represents the Cauchy stress in B, and I := 1 − n ⊗ n. Because this
last equation must hold for all u that vanish on ∂1B0, we arrive at the first spatial variation
conditions

Div WF(∇y) = 0 ∀x ∈ B0 (3.7a)

and
TTn− divs(σ

′(µ)I) = 0 ∀y ∈ ∂2B . (3.7b)

In addition, recall that
y(x) = y∗(x) ∀x ∈ ∂1B0 . (3.7c)

3.2 The Second Spatial Variation

We now use (3.6) to determine the second spatial variation. Thus, we begin with

d2

dλ2
E(yλ;B0) =

∫
B0

WFF(∇yλ)[∇u] ·∇udv(x)−
∫
∂2B0

˙(
divs

(
σ′(µλ)Iλ

)
µλ

)
· u da(x)︸ ︷︷ ︸

J(λ)

, (3.8)

where the domain of integration of the second surface integral in (3.6) has been mapped
to ∂2B0 for the convenience of interchanging differentiation and integration. Note that the
surface integral term in (3.8) has been denoted as J(λ) for easy reference. Note, also, that
with the aid of (3.4) and µλda(x) = da(yλ) we may write

J(λ) =

∫
∂2Dλ

( ˙
divs

(
σ′(µλ)Iλ

)
· u+ divsẏλ

(
divs

(
σ′(µλ)Iλ

))
· u

)
da(yλ) . (3.9)

In (3.8), we are interested in (d2/dλ2)E(yλ;B0) at λ = 0, so below we begin to develop
J(0) by recording a few key steps in the process of reaching this goal. First, we obtain the
following identity:



10 R. Fosdick, L. Granieri & F. Maddalena

˙
divs

(
σ′(µλ)Iλ

)
|λ=0

= divs
(
σ′′(µ)µ(divsu)I+ σ′(µ)n⊗ (gradsu)

Tn
)

+σ′(µ)divsn(gradsu)
Tn− (gradsu)

Tgradsσ
′(µ)

+σ′(µ)(gradsn · gradsu)n− σ′(µ)(gradsn)(gradsu)
Tn . (3.10)

To see this, we find it convenient to use

˙
divs

(
σ′(µλ)Iλ

)
· a =

˙
divs

(
σ′(µλ)Iλa

)
∀ constanta ∈ E3 , (3.11)

and to introduce the substitution variable v := σ′(µλ)Iλa. Then, using

˙gradv = gradv̇ − gradv(gradẏλ) ,

which follows from a ‘chain-rule’ calculation, and the identity gradsv = gradvIλ it readily
follows that

˙gradsv = grads
(
σ′′(µλ)µ̇λIλa

)
+ grads

(
σ′(µλ)İλa

)
−gradsv(gradsẏλ) + gradsv(gradsẏλ)

Tmλ ⊗mλ .

Here, we also have used İλ = −ṁλ ⊗mλ −mλ ⊗ ṁλ and the readily established identity
ṁλ = −(gradsẏλ)

Tmλ, which follows by differentiating mλ = (cof∇yλ)n0/µλ and use of
(3.4). With the additional calculation

gradsv = grads
(
σ′(µλ)Iλa

)
= Iλa⊗ gradsσ

′(µλ) + σ′(µλ)grads(Iλa) ,

where, for constant a,

grads(Iλa) = grads
(
(1−mλ ⊗mλ)a

)
= −mλ ⊗ (gradsmλ)a− (mλ · a)gradsmλ ,

and the definition divs(·) := tr
(
grads(·)

)
, we have the intermediate conclusion that

˙
divs

(
σ′(µλ)Iλa

)
= divs

(
σ′′(µλ)µ̇λIλa

)
+ divs

(
σ′(µλ)İλa

)
−tr

(
gradsv(gradsẏλ)

)
+ (gradsẏλ)

Tmλ · (gradsv)Tmλ .
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To go further, we need the following helpful identities:

(gradsv)
Tmλ = −σ′(µλ)(gradsmλ)a ,

tr
(
gradsv(gradsẏλ)

)
= tr

((
Iλa⊗ gradsσ

′(µλ) + σ′(µλ)grads(Iλa)
)
gradsẏλ

)
=

((
gradsẏλ

)T
gradsσ

′(µλ)− σ′(µλ)mλ

(
gradsmλ

)
· gradsẏλ

)
· a ,

divs
(
σ′(µλ)İλa

)
=

(
divs

(
σ′(µλ)mλ ⊗ (gradsẏλ)

Tmλ

)
+σ′(µλ)divsmλ(gradsẏλ)

Tmλ

)
· a ,

and
divs

(
σ′′(µλ)µ̇λIλa

)
= divs

(
σ′′(µλ)µ̇λIλ

)
· a .

Thus, using these and (3.11) we find that

˙
divs

(
σ′(µλ)Iλ

)
· a

=
(
divs

(
σ′′(µλ)µ̇λIλ + σ′(µλ)mλ ⊗ (gradsẏλ)

Tmλ

)
+σ′(µλ)divsmλ(gradsẏλ)

Tmλ − (gradsẏλ)
Tgradsσ

′(µλ)

+σ′(µλ)(gradsmλ · gradsẏλ)mλ − σ′(µλ)(gradsmλ)(gradsẏλ)
Tmλ

)
· a .

Finally, substituting (3.4) into this last equation and evaluating at λ = 0 we find, because
of the arbitrariness of a, that the claim of (3.10) holds. Thus, recalling (3.9) we see that
J(0) may be expressed as

J(0) =

∫
∂2B

(
divs

(
σ′′(µ)µ(divsu)I+ σ′(µ)n⊗ (gradsu)

Tn
)

+σ′(µ)divsn(gradsu)
Tn− (gradsu)

Tgradsσ
′(µ)

+σ′(µ)(gradsn · gradsu)n− σ′(µ)(gradsn)(gradsu)
Tn

+divsu
(
divs

(
σ′(µ)I

)))
· u da(y) . (3.12)

In anticipation of three further rearrangements in (3.12), we note that the surface di-
vergence theorem and the fact that u = 0 on the border of ∂2B implies
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∫
∂2B

(
divs

(
σ′′(µ)µ(divsu)I+ σ′(µ)n⊗ (gradsu)

Tn
))

· u da(y)

= −
∫
∂2B

(
σ′′(µ)µ(divsu)

2 + σ′(µ)|gradsu)Tn|2
)
da(y) ,

which we shall use for the first line of integration in (3.12). Before making this substitution,
however, it is convenient to observe that (gradsu)

Tn = grads(u ·n)− (gradsn)u and to use
u = utan + (u · u)n on ∂2B to obtain the identity

|(gradsu)Tn|2 = |grads(u · n)|2 − 2(gradsu)
Tn · (gradsn)utan − |(gradsn)utan|2 .

Thus, in (3.12) we may make the following substitution:

∫
∂2B

(
divs

(
σ′′(µ)µ(divsu)I+ σ′(µ)n⊗ (gradsu)

Tn
))

· u da(y)

= −
∫
∂2B

σ′(µ)
(
|grads(u · n)|2 − 2(gradsu)

Tn · (gradsn)utan − |(gradsn)utan|2
)
da(y)

−
∫
∂2B

σ′′(µ)µ(divsu)
2 da(y) . (3.13a)

We now note that the integrand corresponding to the third line of (3.12) may be written
as

(
gradsn · gradsu

)
u · n =

(
divs

(
(gradsn)u

tan
)
− divs

(
gradsn

)
· u

)
u · n

=
(
divs

(
(gradsn)u

tan
))

u · n−
(
grads

(
divsn

)
· utan

)
u · n+ |gradsn|2(n · u)2 ,

wherein we have used the symmetry of gradsn, and the identity2 divs
(
gradsn

)
= grads

(
divsn

)
−

|gradsn|2n. Further reorganization leads to

2To see this, first note that

divs

(
gradsn

)
= Idivs

(
gradsn

)
+

((
divs

(
gradsn

))
· n

)
n .

But, we also have that (
divs

(
gradsn

))
· n = divs

(
(gradT

s n)n
)
− |gradsn|

2 ,
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(
gradsn · gradsu

)
u · n = divs

(
(gradsn)u

tan(u · n)− (divsn)(u · n)utan
)

−|(gradsn)utan|2 − (gradsn)u
tan · (gradsu)Tn

+(divsn)divs
(
(u · n)utan

)
+ |gradsn|2(n · u)2 . (3.13b)

As a third observation in the rearrangement of (3.12), it is helpful to rewrite the integrand
in the last line of (3.12) as

divsu
(
divs

(
σ′(µ)I

))
· u = (divsu)gradsσ

′(µ) · u− σ′(µ)(divsn)(divsu)n · u . (3.13c)

If we now substitute (3.13a,b,c) into (3.12), again recognize the symmetry of gradsn,
and combine terms, we obtain

J(0) = −
∫
∂2B

(
σ′′(µ)µ(divsu)

2 + σ′(µ)
(
|grads(u · n)|2 − 2(divsn)grads(u · n) · utan

+(divsn)(gradsn)u
tan · utan +

(
(divsn)

2 − |gradsn|2
)
(u · n)2

−divs
(
(gradsn)u

tan(u · n)− (divsn)(u · n)utan
))

−gradsσ
′(µ) ·

(
(divsu)u+ (gradsu)u

))
da(y) . (3.14)

There are two final rearrangements of (3.14) that are worth observing. First, we note that
the Gaussian curvature det(gradsn) satisfies the well-known relation (divsn)

2−|gradsn|2 =
2det(gradsn), and this may be used to simplify a term in the second line of (3.14). Second,
we note that by a reorganization of terms the explicit dependence on gradsσ

′(µ) in the last
line of (3.14) may be eliminated. To see this, we first recall the elementary identities

gradsu = grads
(
utan + (u · n)n

)
= gradsu

tan + (u · n)gradsn+ n⊗ grads(u · n)

where the first term on the right hand side vanishes because n is a unit vector field. Moreover, a straight-
forward calculation using the symmetry of gradsn shows that

Idivs

(
gradsn

)
= grads

(
divsn

)
,

which then gives

divs

(
gradsn

)
= grads

(
divsn

)
− |gradsn|

2n .
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and

divsu = tr(gradsu) = divsu
tan + (u · n)divsn .

Then, it follows that

gradsσ
′(µ) ·

(
(divsu)u+ (gradsu)u

)
= gradsσ

′(µ) ·
(
(divsu)u

tan + (gradsu)u
tan

)
= gradsσ

′(µ) ·
(
I(gradsutan)utan + (u · n)(gradsn)utan

− utandivsu
tan − utan(u · n)divsn

)
.

When these last two observations are substituted into (3.14) and the surface divergence
theorem is used (with u = 0 on the border of ∂2B), we find the following final form for the
second spatial variation (3.8):

d2

dλ2
E(yλ;B0)|λ=0 =

∫
B0

WFF(∇y)[∇u] · ∇udv(x) +

∫
∂2B

σ′′(µ)µ(divsu)
2da(y)

+

∫
∂2B

σ′(µ)
(
|grads(u · n)|2 + 2det(gradsn)(u · n)2

+divsn
(
(gradsn)u

tan · utan − 2grads(u · n) · utan
))

da(y)

+

∫
∂2B

σ′(µ)divs

(
2(divsn)(u · n)utan − 2(u · n)(gradsn)utan

−I(gradsutan)utan + utandivsu
tan

)
da(y) . (3.16)

Notice that if the surface stretch µ is constant on ∂2B, then, because of the surface divergence
theorem and the fact that u vanishes on the border of ∂2B, i.e., on ∂1B, the last integral in
(3.16) is zero. Later, we give an example where this condition applies. The field y(x) that
satisfies the first variation conditions (3.7), with µ(x) = |(cof ∇y)(x)n0(x)|, is said to be
stable with respect to spatial variations if the second variation (3.16) is positive. We shall
assume that there exists a smooth solution y(·) of (3.7) that is stable in this sense.

3.3 The First Reformation Variation

We now consider the question of the stability of the field y(·) with respect to ‘reforma-
tion’ of the reference configuration. In rough terms, if the natural reference configuration
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of a body is suitably reformed into a neighboring natural reference configuration, is the
reformed body more or less stable to the action of ‘equivalent’ boundary conditions?

First, we define the meaning of a ‘suitable’ reformation: Suppose that the reference
configuration is changed from B0 to a neighboring reference configuration B0(ε) having the
same homogeneous mass density ρ0 via a mapping

z = zε(x) := x+ εv(x) , (3.17a)

where v(x) satisfies

v(x) = 0 ∀x ∈ ∂1B0 (3.17b)

and3

vol(B0(ε)) =

∫
B0(ε)

dv(z) =

∫
B0

|det∇zε|dv(x) =
∫
B0

dv(x) = vol(B0) . (3.17c)

We refer to such a variation as a ‘reformation’ of the body from B0 to B0(ε) = zε(B0)
because the particles of the two bodies have the same mass density but are reorganized in
a way compatible with the fixed placement boundary condition on ∂1B0. A ‘reformation’
of B0 is not to be considered as a deformation of B0 in the sense of mechanics. It is simply
a mapping between two natural reference configurations of two bodies made out of the
same material: The reference placement of part of the boundary of B0(ε) is specified, i.e.,
∂1B0(ε) = ∂1B0, and the remainder of the boundary, as well as the interior of B0(ε) is
governed by the variation (3.17a).

Now, to define ‘equivalent’ boundary conditions, suppose we let ξ(z) denote a smooth
injective deformation of B0(ε) 7→ B(ε) = ξ(B0(ε)) such that ∂1B0(ε) = zε(∂1B0) = ∂1B0 has
the same given placement as ∂1B0, i.e.,

ξ(z) = y∗(z) ∀z ∈ ∂1B0(ε) = ∂1B0 . (3.17d)

We let A(ε) denote the set of all such admissible fields ξ(·) : B0(ε) 7→ B(ε). The remainder
of the boundary ∂2B0(ε) = ∂B0(ε) \ ∂1B0(ε) is supposed to be traction-free, as was ∂2B0.
Again, with neglect of body force actions, for any admissible deformation ξ = ξ(z), the
total stored energy in B(ε) is

3Note that because the mass densities of both reference configurations are equal to the constant value
ρ0, both being constructed of the same homogeneous material, the requirement (3.17c) states that in a
‘reformation’ we must have mass(B0(ε)) = mass(B0).
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E(ξ;B0(ε)) =

∫
B0(ε)

W (Dξ)dv(z) +

∫
∂2B0(ε)

σ(ν)da(z) , (3.18)

where D denotes the gradient with respect to z, ν = ν(z) := |(cof Dξ)m0| is the surface
stretch under the deformation ξ(z) and m0(= m0(ε)) denotes the outer unit normal to
∂2B0(ε). Clearly, m0(0) = n0.

Now suppose, for the moment, that ε is fixed and that ξ̄(z) is a smooth admissible
minimizer of the functional E(·;B0(ε)) in (3.18) in the sense of spatial variational calculus,
as discussed above in the two previous sub-sections. Then, conditions similar to (3.7) apply
for this minimizer and the second variation is calculated similar to (3.16), and is supposed
to be positive. One need only replace x, y(x), n0 and B0 in (3.7) and (3.16) with z,
ξ̄(z), m0(ε) and B0(ε), respectively. In addition, the operator ∇ must be replaced by D
and grads and divs must be interpreted as the surface gradient and surface divergence on
∂2B(ε) = ξ̄(∂2B0(ε)). We assume that such a minimizing field ξ̄(z), for z ∈ B0(ε), exists for
each ε in a neighborhood of 0. Of course, if ε = 0 then B0(0) = B0 and B(0) = B and the
results of (3.7) and the positiveness of (3.16) are recovered. Thus, we know that

ξ̄(zε(x))|ε=0 = ξ̄(x) = y(x) , ν(zε(x))|ε=0 = µ(x) .

Now, following a line of investigation outlined in Section 2, it is convenient to introduce
yE(z) as a smooth extension of the minimizer y(·) of (3.1) for all z in an open neighborhood
N (B0) of B0, such that yE(z) = y(z) for all z ∈ B0 ∪ ∂B0. Then, we have that for each
sufficiently small ε > 0,

ξ(z) := yE(z) ∈ A(ε) ∀ z ∈ B0(ε) ⊂ N (B0). (3.19)

Then, because ξ(z) is in the admissible class A(ε), we see that

E
(
ξ̄;B0(ε)

)
= min

ϕ(·)∈A(ε)
E
(
ϕ;B0(ε)

)
≤ E

(
ξ;B0(ε)

)
,

and from (3.18) we see that

E
(
ξ;B0(ε)

)
|ε=0

= E
(
yE;B0

)
= E

(
y;B0

)
.
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Thus, considering E
(
ξ;B0(ε)

)
as constructed from (3.19) and (3.18), we see that if

d

dε
E
(
ξ;B0(ε)

)
|ε=0

= 0 and
d2

dε2
E
(
ξ;B0(ε)

)
|ε=0

< 0, (3.20a)

then

E
(
ξ̄;B0(ε)

)
< E

(
ξ;B0(ε)

)
≤ E

(
y;B0

)
, (3.20b)

for sufficiently small ε > 0. This implies that the reference configuration B0 is not stable
with respect to reformation and it provides a sufficient condition for reformation instability.
In the remainder of work, we follow this approach and develop a sufficient condition for
reformation instability.

We now suppose, for any given ε and zε(x) as characterized in (3.17) and for ξ(·) as
defined in (3.19), that ξ ◦ zε(x) := ξ(z)|z=zε(x) is determined as outlined above. Then, to

investigate the effect of the ‘reformation’ variation (3.17) on the stability of the minimizing
solution y(x), it is convenient to first rewrite the functional (3.18) in the form

E(ξ ◦ zε;B0(ε)) =

∫
B0

W (Dξ(z))|z=zε(x)(det∇zε)dv(x)

+

∫
∂2B0

σ(ν(z))|z=zε(x)|(cof ∇zε)n0|da(x) ,

where, recall, ν(z) = |(cof Dξ(z)m0(z)|, and where from the mapping B0 7→ B0(ε) we have
used da(z) = |(cof ∇zε)n0|da(x). This is in a form that most clearly exposes how the total
stored energy (3.18) depends on the reformation parameter ε for the field ξ(·) of (3.19).
Our approach is to develop the conditions that require the first (reformation) variation of
E(ξ ◦ zε;B0(ε)) to vanish and the second (reformation) variation to be negative at ε = 0.
Satisfaction of these conditions then implies that the minimizing solution y(x), discussed
earlier, is unstable with respect to referential reformation.

In the following we use
˙
(·) to denote the operation ∂(·)/∂ε holding x fixed. Thus,

assuming smoothness for all fields so that the order of differentiation and integration can
be interchanged, we find that the first reformation variation has the form

d

dε
E(ξ ◦ zε;B0(ε)) =

∫
B0(ε)

(
DW (Dξ) · żε +W (Dξ)D · żε

)
dv(z)

+

∫
∂2B0(ε)

(
Dsσ(ν) · żε + σ(ν)Ds · żε

)
da(z) .
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Here, we have used the well-known identities

˙det∇zε = (det∇zε)D · żε and
˙|(cof ∇zε)n0| = |(cof ∇zε)n0|Ds · żε ,

where D · (·) is the divergence in B0(ε) and Ds · (·) denotes the surface divergence on
∂B0(ε). Clearly, the integrand of the volume integral above is equivalent to the divergence
D ·

(
W (ξ)żε

)
and, noting that żε = żtanε +(żε ·m0)m0, the integrand of the surface integral

above is equivalent to Ds · (σ(ν)żtanε ) + σ(ν)(Ds ·m0)(żε ·m0). Thus, applying the volume
and surface divergence theorems and using the fact that żε ≡ v and v(x) = 0 ∀ x ∈ ∂1B0,
we obtain

d

dε
E(ξ ◦ zε;B0(ε)) =

∫
∂2B0(ε)

(
W (Dξ) + σ(ν)(Ds ·m0)

)
(v ·m0)da(z) . (3.21)

In addition to this, it is straightforward to see that the ‘reformation’ constraint of (3.17b,c),
together with żε ≡ v, requires

d

dε
vol(B0(ε) =

∫
∂2B0(ε)

(v ·m0)da(z) = 0 . (3.22)

Now, according to the second of (3.20a), the first reformation variation given by (3.21)
evaluated at ε = 0 must vanish for all admissible v, i.e.,

d

dε
E(ξ ◦ zε;B0(ε))|ε=0 =

∫
∂2B0

(
W (∇y) + σ(µ)(Divsn0)

)
(v · n0)da(x) = 0 , (3.23a)

for all v(x) that vanish for all x ∈ ∂1B0 and, according to (3.22) evaluated at ε = 0, also
meet ∫

∂2B0

(v · n0)da(x) = 0 . (3.23b)

In the evaluation of (3.21) and (3.22) at ε = 0, it is clear from earlier observations how the
various symbols and operators are mapped. In particular, note that in (3.23a), and in the
sequel, we use Divs to denote the surface divergence operator on ∂2B0.

Clearly, (3.23) implies that
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W (∇y) + σ(µ)(Divsn0) = const. ∀x ∈ ∂2B0 . (3.24)

We shall return to the first reformation variation condition (3.24) in an example later in
Section 4.

3.4 The Second Reformation Variation

Now, to investigate the second variation condition (3.20b) for the instability of y(x)
with respect to reformation of B0, we first observe, from (3.21) with a domain of integration
change, that

d2

dε2
E(ξ ◦ zε;B0(ε)) =

∫
∂2B0

˙(
W (Dξ) + σ(ν)(Ds ·m0)

)
|z=zε(x)

v · (cof∇zε)n0 da(x)

+

∫
∂2B0

(
W (Dξ) + σ(ν)(Ds ·m0)

)
|z=zε(x)

v · ˙
(cof∇zε)n0 da(x) . (3.25)

Analogously, the constraint (3.22), yields

d2

dε2
vol(B0(ε)) =

∫
∂2B0

v · ˙
(cof∇zε)n0 da(x) = 0 .

However, because we are eventually interested in the second variation evaluated at ε = 0,
and because (3.24) must hold, we see that the second line in (3.25) will cancel after this
evaluation and, therefore, we may concentrate our attention solely on the first line in (3.25).
Thus, defining

K(ε) :=

∫
∂2B0

˙(
W (Dξ) + σ(ν)(Ds ·m0)

)
|z=zε(x)

v · (cof∇zε)n0 da(x) (3.26)

we see that

d2

dε2
E(ξ ◦ zε;B0(ε))|ε=0 = K(0) , (3.27)

and we shall be interested in determining K(0).

With the view toward simplifying K(ε), we first observe that a change of domain of
integration using (cof∇zε)n0 da(x) = m0 da(z) supports the representation
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K(ε) =

∫
∂2B0(ε)

(
DW (Dξ) · żε +Dsσ(ν) · żε

(
Ds ·m0

)
+σ(ν)

(
−Ds ·

(
Ds(żε ·m0)

)
+

(
Ds · (Dsm0)

)
· żε

))
v ·m0 da(z) .

Here, we have used Ẇ (Dξ) = DW (Dξ) · żε and σ̇(ν) = Dsσ(ν) · żε, and we have employed
the identity

˙Ds ·m0 = −Ds ·
(
Ds(żε ·m0)

)
+

(
Ds · (Dsm0)

)
· żε ,

which results from the following argument: First, we recall the well known identity ṁ0 =
−(Dsżε)

Tm0 for the unit normal field m0 = m0(ε) on ∂B0(ε), and the chain rule ∇sm0 =
(Dsm0)∇zε, where ∇s denotes the surface gradient in ∂B0 . Then,

˙∇sm0 =
˙Dsm0∇zε + (Dsm0)

˙∇zε ,

wherein we may use ˙∇zε = (Dżε)∇zε to obtain

˙Dsm0 =
˙∇sm0(∇zε)

−1 − (Dsm0)(Dżε) .

But, because ˙∇sm0 = ∇sṁ0 and because the chain rule yields

∇sṁ0 = −∇s

(
(Dsżε)

Tm0(ε)
)
= −Ds

(
(Dsżε)

Tm0(ε)
)
∇zε ,

we see that

˙Dsm0 = −Ds

(
(Dsżε)

Tm0(ε)
)
− (Dsm0)(Dżε) .

Finally, using (Dsżε) = (Dżε)(1−m0 ⊗m0) and Ds ·m0 = tr (Dsm0), we readily find the
identity

˙Ds ·m0 = −Ds ·
(
Ds(żε ·m0)

)
+

(
Ds · (Dsm0)

)
· żε .

Now, according to the identity4 Ds · (Dsm0) = Ds(Ds · m0) − |Dsm0|2m0 and the
replacement

4See footnote 2 for the development of this identity in a similar context.
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Dsσ(ν) · żε
(
Ds ·m0

)
=

(
Ds

(
σ(ν)(Ds ·m0)

)
− σ(ν)Ds(Ds ·m0)

)
· żε ,

we see that K(ε) may be written as

K(ε) =

∫
∂2B0(ε)

(
DW (Dξ) · żε +Ds

(
σ(ν)(Ds ·m0)

)
· żε

−σ(ν)Ds ·
(
Ds(żε ·m0)

)
− σ(ν)|Dsm0|2m0 · żε

)
żε ·m0 da(z) .

This can be further simplified by first noting that DsW = (1 − m0 ⊗ m0)DW = DW −(
(DW ) ·m0

)
m0, so that the first two terms in the integrand above can be rewritten as

DW (Dξ) · żε +Ds

(
σ(ν)(Ds ·m0)

)
· żε

= Ds

(
W + σ(ν)(Dsm0)

)
· żε +

(
(DW ) ·m0

)
m0 · żε .

Then, noting that

(
Ds ·

(
Ds(żε ·m0)

))
(żε ·m0) = Ds ·

((
Ds(żε ·m0)

)
(żε ·m0)

)
− |Ds(żε ·m0)|2

=
1

2
Ds ·

(
Ds(żε ·m0)

2
)
− |Ds(żε ·m0)|2 ,

recalling (3.24) and (3.27), and evaluating at ε = 0, we find the final form of the second
reformation variation:

d2

dε2
E(ξ ◦ zε;B0(ε))|ε=0 =

∫
∂2B0

(
∇W (∇y) · n0(v · n0)

2 + σ(µ)
(
|∇s(v · n0)|2

−|∇sn0|2(v · n0)
2 − 1

2
Divs ·

(
∇s(v · n0)

2
)))

da(x) . (3.28)

Thus, y(x) is said to be unstable with respect to ‘reformation’ if, in addition to (3.24),
we require that (3.28) is negative for all v(x) that vanish on ∂1B0 and meet the condition
(3.23b). Notice that if µ = const. on ∂2B0 then the surface divergence theorem and the fact
that v(x) = 0 on ∂1B0 shows that the Divs(·) term in (3.28) integrates to zero. In this case,
if the curvature of ∂2B0 is ‘large enough’ (in the sense that |∇sn0| is sufficiently large on
∂2B0), then the second reformation variation (3.28) is possibly negative for some admissible
fields v and y(x) would then be unstable with respect to reformation. We shall consider an
example for which this happens below.
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4 Example

Consider an isotropic cylindrical wire which in its natural reference configuration B0 has
length l0 and radius b0. A fixed right-handed orthonormal coordinate basis {ii i = 1, 2, 3}
and corresponding right-handed orthonormal cylindrical basis {er, eθ, i3} is given such that
the axis of the cylinder corresponds to the i3 base vector and corresponding coordinate line.
In B0, x3 = 0 is one end of the cylinder while x3 = l0 is the other. The deformation y(x)
is given by

y1 = βx1 , y2 = βx2 , y3 = αx3 ,

the ends ∂1B0 corresponding to that part of the boundary on which the displacement is
assumed to be given, i.e., α is considered to be a given constant and β will be determined
below in terms of α, and fixed. The lateral surface ∂2B0 corresponds to the remainder of
the boundary of B0, which is supposed to be traction-free. This deformation field maps B0

to B := y(B0) which is a cylinder of radius b = βb0 and length l = αl0. For an isotropic
elastic body, it is well-known that the Cauchy stress T appearing in (3.7b) is given by

T =
2

det∇y

[
III

∂W̄

∂III
1+

(
∂W̄

∂I
+ I

∂W̄

∂II

)
B− ∂W̄

∂II
B2

]
,

where I := trB, II := (I2 − trB2)/2, III ≡ detB, W = W̄ (I, II, III), and B ≡ ∇y(∇y)T.
Thus, with the homogeneous deformation above, it follows after some calculation that

T =
1

2αβ

∂ ¯̄W

∂β

(
i1 ⊗ i1 + i2 ⊗ i2

)
+

1

β2

∂ ¯̄W

∂α
i3 ⊗ i3 , (4.1)

where, now, by substitution we have written W = ¯̄W (α, β). Of course, because the defor-
mation is homogeneous the equilibrium equation (3.7a)is satisfied.

We now consider the traction-free boundary condition expressed in (3.7b). First, we
note that the surface stretch µ = |(cof ∇y)n0| on ∂2B0 is easily calculated as µ = αβ, and
is constant. Here, of course, we have used n0 = er. Because µ = const., it follows that
divs(σ

′(µ)I) = −σ′(µ)(divsn)n, in which we must recall that n is the outer unit normal to
the lateral surface ∂2B of the deformed cylinder. Thus, again we have n = er, but, here, er
is evaluated on the deformed cylindrical surface r = b. For this surface, we have
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gradsn =
eθ ⊗ eθ

b
, divsn =

1

b
. (4.2)

With (4.1), the boundary condition (3.7b) is expressed as

1

2αβ

∂ ¯̄W

∂β
+

σ′(µ)

b
= 0 where µ = αβ . (4.3)

Given the volume and surface energy functions ¯̄W (α, β) and σ(µ), this equation is used to
determine β in terms of the given constant axial extension α. Of course, we may set b = βb0
in (4.3). We emphasize that for a given α and β thus determined, the ends of the cylinder
B0 are considered to represent the displacement part of the boundary ∂1B0.

Because µ = const., we may now write the second spatial variation (3.16) as

d2

dλ2
E(yλ;B0)|λ=0 =

∫
B0

WFF(∇y)[∇u] · ∇udv(x) + σ′′(µ)µ

∫
∂2B

(divsu)
2da(y)

+ σ′(µ)

∫
∂2B

(
|grads(u · n)|2 + 2det(gradsn)(u · n)2

+divsn
(
(gradsn)u

tan · utan − 2grads(u · n) · utan
))

da(y) ,

which, for the stability with respect to spatial variations of y(x), should be positive for all
admissible u. To analyze this possibility we first concentrate on the surface integral terms
in which we use (4.2) and make the replacements

u = urer + uθeθ + u3i3 , utan = uθeθ + u3i3 ,

where, on ∂2B the fields ur, uθ and u3 are functions of θ and y3. It is clear that on ∂2B the
element of area is da(y) = bdθdy3, and it is easy to show that

divsu =
1

b

(
ur +

∂uθ
∂θ

)
+

∂u3
∂y3

, (4.4a)

grads(u · n) = 1

b

∂ur
∂θ

eθ +
∂ur
∂y3

i3 . (4.4b)
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Thus, for sufficiently small b = βb0, (small, say, relative to l = αl0) the second spatial
variation is approximately given by

d2

dλ2
E(yλ;B0)|λ=0 =

∫
B0

WFF(∇y)[∇u] · ∇udv(x)

+
σ′′(µ)µ

b

∫ l

0

∫ 2π

0

(
ur +

∂uθ
∂θ

)2

dθdy3

+
σ′(µ)

b

∫ l

0

∫ 2π

0

(
∂ur
∂θ

− uθ

)2

dθdy3

+ terms of order O(1) in b as b → 0 . (4.5)

We expect that physically ‘reasonable’ surface energy functions σ(·) for solid-like bodies
will be convex for a non-trivial range of surface stretches µ around the undistorted state
where µ = 1, and, thus, satisfy σ′′(µ) > 0 for µ ̸= 1, with σ′(µ) = 0 for µ = 1. In addition,
for extension of the wire (i.e., α > 1), if we assume that (4.3) yields a value of β (this
quantity governs the lateral contraction or expansion of the wire) such that µ = αβ > 1 for
α > 1, then, for uniform wires of sufficiently small radius, (4.5) shows that a homogeneous
extension is stable with respect to spatial variations. Moreover, if the surface energy ‘well’
at µ = 1 is strongly convex it may be that uniform wires of sufficiently small radius are also
stable in this sense under homogeneous compression. Of course, definite conclusions are
dictated by the specific forms of the volumetric and surfacial energy functions ¯̄W (α, β) and
σ(µ). This may have a bearing on understanding a possible novel characteristic behavior
of special ‘quantum (or nano-) wires’.

We now turn to the question of the stability of y(x) for the above homogeneous de-
formation with respect to ‘reformation’ of the reference configuration B0. This requires a
consideration of (3.24) and (3.28). Clearly (3.24) holds because the deformation is homo-
geneous and, similar to (4.2), we have Divsn0 = 1/b0 on the reference lateral boundary
∂2B0. Note, also, that the first term in (3.28) containing ∇W ((∇y(x)) is zero because the
deformation is homogeneous, and that σ(µ) is constant so that we may use the surface
divergence theorem to eliminate the Divs(·) term in (3.28). Thus, for this example (3.28)
becomes

d2

dε2
E(ξ ◦ zε;B0(ε))|ε=0 = σ(µ)

∫
∂2B0

(
|∇s(v · n0)|2 − |∇sn0|2(v · n0)

2
)
da(x) ,

in which we may set |∇sn0|2 = 1/b20 and da(x) = b0dθdx3. Knowing that v · n0 = vr(θ, x3)
on ∂2B0, we finally write this as
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d2

dε2
E(ξ ◦ zε;B0(ε))|ε=0 =

σ(µ)

b0

∫ l0

0

∫ 2π

0

[(∂vr
∂θ

)2

− vr
2 + b20

(
∂vr
∂x3

)2]
dθdx3 , (4.6)

which, as a sufficient condition for instability with respect to ‘reformation’, should be neg-
ative for all vr(θ, x3) that vanish at x3 = 0 and x3 = l0; in addition, according to (3.23b),
vr(θ, x3) also must satisfy

∫ l0

0

∫ 2π

0
vrdθdx3 = 0 . (4.7)

Clearly, the Poincarè inequality implies that

∫ l0

0
v2rdx3 ≤ C

∫ l0

0

(
∂vr
∂x3

)2

dx3 ,

for some positive constant C. Thus, we see that (4.6) will be positive for sufficiently large
b0. It is well-known that the choice of C = 2/l20 is valid for the Poincarè inequality (though
not the optimal choice); this implies that (4.6) is positive for b0 > l0/

√
2. Of course, the

value l0/
√
2 on the right hand side of this inequality can be made even lower by choosing

the optimal Poincarè constant C. Notice, also, that if b0 is sufficiently small, then (4.6)
can be made negative by choice of an admissible function vr(x3), which is independent of
θ. Thus, for quantum (i.e., nano-) wires of small b0/l0 the homogeneous extension y(x) of
this example application is not stable with respect to referential ‘reformation’.
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